
 

 

 

 
 

 
 
 
 

NATIONAL OPEN UNIVERSITY OF NIGERIA 
                         
 
 
 
 
 
 
 
 
                      SCHOOL OF SCIENCE AND TECHNOLOGY 
 
 
 
 
 
 

 
COURSE CODE: MTH 416 

 
 
 
 
 
 
 
 
 

           COURSE TITLE: ALGEBRAIC NUMBER THEORY 

 
 
 
 
 
 
 
 
 



 

COURSE                

GUIDE 
 

 
                 MTH 416: ALGEBRAIC NUMBER THEORY 

 
 
Course Writer: Prof. Adelodun 

Department Of Mathematics, 
Babcock University, Ilisan 
Ogun State 

 

Course Developer:  Dr. S.O Ajibola 

                                 School Of Science And Technology 

National Open University Of Nigeria, 

Lagos. 

 
Course Coordinator: Dr. Disu Babatunde 

                                 School Of Science And Technology 

National Open University Of Nigeria, 

Lagos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

Multimedia Technology in Teaching and Learning 
 

 
 

NATIONAL OPEN UNIVERSITY OF NIGERIA 
 

 
 
 
 

National Open University of Nigeria 

Headquarters 

14/16 Ahmadu Bello Way 

Victoria Island 
Lagos 

 

 

Abuja Annex 

245 Samuel Adesujo Ademulegun Street 

Central Business District 

Opposite Arewa Suites 

Abuja 

 
e-mail:  centralinfo@nou.edu.ng 

URL: www.nou.edu.ng 
 
National Open University of Nigeria 2006 

 
First Printed 

 
ISBN: 

 
All Rights Reserved 

 
Printed by …………….. 
For 

National Open University of Nigeria 

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/


 

 

iii 



 

 

 



 

 

 
 
 
 

 

 

ACKNOWLEDGEMENT: 

 I acknowledge the authors whose books I used for this write up.   These authors appear in 

the references. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

TABLE OF CONTENTS 

INTRODUCTION 

WHAT YOU WOULD IN THIS COURSE 

AIM OF THE COURSE 

OBJECTIVES OF THE COURSE 

WORKING THROUGH THE COURSE 

COURSE MATERIALS 

STUDY UNITS 

TEXT BOOKS 

ASSESSMENT 

TUTOR MARKED ASSIGNMENT 

COURSE OVER VIEW 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

INTRODUCTION 

 

The course, MTH 416, Titled Algebraic Number Theory mostly belongs to the realm of 

abstract mathematics.  The importance of abstract Mathematics is in folds.  Apart from the 

fact that it sharpens the brain, it is also may real quantities that we use came out of abstract 

thinking.   For example, the invention of electricity might have not been possible; were the 

idea of complex numbers which involves imaginary numbers (an abstract idea) was not 

developed. Remember the problem faced when the equation   was not possible 

in the real number system. We will in this course study algebraic numbers which are 

solutions of particular equations. We shall study factorization and the situation when a 

Polynomial is not factorizable. We will learn of Eisenstein Theorem which tells of the 

conditions when a polynomial is irreducible, so that one will recognize if solving an 

equation involving a polynomial can be solved by factorization. The latest of Fermat’s last 

Theorem   will be revealed, Dirichilet’s Theorem and its applications will be studied. 

 



 

 

 

WHAT YOU WILL LEARN IN THIS COURSE 

a) In this course, you will learn what an algebraic number or an algebraic integer is. 

Using Eisenstein Theorem, you will be able to determine, applying certain 

conditions, if a polynomial is factorizable. You will, as a learner, be familiar the 

more, with synthetic division. You will learn of ideals, prime and proper ideals.  

Class group and class member, very useful topics in Number theory will be learnt.  

You will learn of the Fermat’s last Theorem.  You will learn that Fermat’s last 

Theorem that has been a problem for mathematicians for more than 200 years is no 

longer an open problem but that the Dirichilet’s Theorem is still an open problem. 

  

AIM OF THE COURSE 

Among other benefits, the course is aimed at preparing you for abstract think that will 

eventually translate into reality. As one may be aware, many physical facilities that we use 

arise from abstract thinking. The course may introduce you into specializing in number 

theory. 

 

OBJECTIVES OF THE COURSE 

On successful completing the course, you should be able to: 

(i) Say what an algebraic number is. 

(ii) Say what an algebraic element is. 

(iii) Determine when a polynomial is irreducible by applying Eisenstein 

criteria of irreducibility 

(iv) Perform the operations of addition, subtraction and multiplication on 

quadratic fields.  

(v) Give examples of cyclotomic fields. 

(vi) Be better informed of proper and prime ideals. 

(vii) Be introduced into the idea of class group and class number. 

(viii) Be familiar with Fermat’s last Theorem, Dirichlet’s theorem with 

 its application and Minkowski’s theorem. 

 

 



 

 

COURSE MATERIALS 

The following are the requirements, or materials need for a thorough understanding of 

the course. 

(i) Abstract algebra courses like Abstract algebra I and II of the NUC      

BMAS. 

(ii) Text book to be listed later. 

(iii) Assignment file. 

(iv)  Dates of tutorials, Assessment and Examination. 

 

RECOMMENDED TEXT-BOOKS 

 

1. Fraileigh,J.B. A first course in Abstract Algebra. 

2. Herstein, I.N. Topics in Algebra. 

3.  Kuku,A.O. Abstract Algebra. 

4. Mollin, R.A. Number Theory with Applications. Ribenboim P. 

Algebraic Number Theory. 

 

ASSIGNMENT FILE AND TUTOR MARKED ASSIGNMENT (TMA) 

There are various exercises given in the course. Some of them are worked in addition to 

the examples already given.  It is very important the exercises are attempted. The exercise 

given at the end of each unit and at the end of each module should be done and submitted 

to the course lecturer. 

 

 

 

 

 

 

 

 

 

 

 



 

 

COURSE OVERVIEW 

There are 4 modules in the course, comprising 11 units with module I comprising 3 units, 

module2 comprising 2 units module3 comprising 4 units and module 4 comprising 2 

units: 

Module 1:   Algebraic Numbers 

Unit 1 :        Rings: definitions and example. 

Units2.       Field 

Units3.      Algebraic numbers 

Module 2: Quqdratic and cyclotomic fields. 

Unit: 1:      Quadratic fields 

Unit: 2:       Cyclotomic fields 

Module 3 :  Factorization into irreducible and ideals. 

 Units 1:   Factorization of polynomial over a field. 

    Unit 2:  Factorizating into irreducible 

 Unit 3:  Ideals 

 Unit 4:    Class and class number 

Module 4:  Fermat’s Last Theorem, Dirichilet Theorem and Minkowski’s 

Theorem. 

 Unit 1:  Fermat”s Last Theorem 

 Unit 2:  Dirichlet’s and Minkowski’s Theorems. 
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MTH 416:  Algebraic Number Theory 

Module 1:  Algebraic Numbers 

Unit 1. Ring 

(This unit gives the fundamentals needed for the module). 

1.0 INTRODUCTION 

The theory of numbers, or arithmetic, is often called “the queen of mathematics”. The 

simplicity of its subject matter (the ordinary integers and their generalization), attract 

mathematicians of all classes, whether they be beginners, professional number 

theorists, or specialists in other branches of mathematics.       Emphasis upon the 

algebraic point-of-view seems to me justifiable for several reasons. First of all, the 

algebraic point-of-view establishes the context in which number theoretic problems 

have their most natural formulation. This is true of even those problems which 

concern only the natural numbers. For example, the problem of finding all integer 

solutions of the Pell-Fermat equation  

x² + dy² = ± 1 (d: a square-free integer) involves in an essential way the study of the 

quadratic field of nth roots of unity plays an analogous role. In order to represent an 

integer as the sum of two (respectively, four) squares, it is advantageous to work in 

the ring of Gaussian integers (respectively, in a suitably chosen quaternion algebra). 

The law of quadratic reciprocity involves both quadratic fields and roots of unity. 

Fields more general than the rational numbers and rings more general than the 

ordinary integers arise quite naturally when one discusses any of the above problems. 

        Secondly, although the algebraic approach does not lead to a solution of all 

number theoretic problems, it does, as the reader will see, nonetheless quickly lead to 

substantial results. Continuing in the direction of this book, one would reach the deep 

theorems of class field theory. 
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        Thirdly, even those who prefer analytic number theory will agree that the full 

generality and power of the analytic approach reveals itself only in the context of 

number fields and simple algebras, not in investigations involving the rational number 

alone.  

        Finally, algebraic number theory provides the student with numerous illustrative 

examples of notions he has encountered in his algebra courses: groups, rings, fields, 

ideals, quotient rings and quotient fields, homomorphism and isomorphism, modules and 

vector spaces. A further benefit to the student lies in the fact that, in studying algebraic 

number theory, he will meet many new algebraic notions, notions which are fundamental 

not only for arithmetic but for other branches of mathematics as well, in particular 

algebraic geometry. Here are some examples: integrality, field extensions, Galois Theory, 

modules over principal ideal rings, Noetherian rings and modules, Dedekind rings, and 

rin… gs of fractions.             

   

2.0: Objective 

To further teach index knowledge of Abstract algebra 

To know the Definition and solve some examples 

 

3.0 Main Content 

3.1 Definition. 

 Let R be a set. Then R is called a ring if two binary operations  

(i)    Called addition and (ii)   Called multiplication are defined such that: 

(a)  is an ablelian group. 

(b)  is a semi group 

(c)   

(i)  is right distributive over  
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(ii)  is left distributive over .  

A ring  may be denoted , indicating the two fundamental operations required 

to make the set, R a ring.   But if there is no confusion of the operations, we just denote 

the ring,  by  

We should note that it is the multiplicative properties that are used to characterize a ring. 

Thus, a ring  is called commutative if  is commutative in .   Again a ring,  is called 

a ring with identify if  has the multiplicative identity, 1. That is,  such that 

 then  is called a ring with identity. We, usually, shall 

write  for the additive identity except we state otherwise, If the ring is a commutative 

one, only one of the distributive laws needs holds for  to be called a ring.  Very often 

too, we denote  by  and  by. 

Examples 

(i)   is a  commutative ring with 1. 

(ii)   is a commutative ring with 1. 

(iii)   is a commutative ring with 1. 

(iv)   is a commutative ring with 1 

(v) ,     is commutative ring with 1. 

       Counter example 

(i)            (ii)  

Example:  Show that  is a commutative ring with identity. 

Verification 

For  to be a group, it must be that:  
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(a)  is an abelian group, and certainly   is an abelian group. 

(b)  is a semigroup. It is also clear that  is a semigroup. 

(c)  The distributing properties of (a) right distributive property of multiplication  over 

addition is obvious and since multiplication is abelian, the right distributive 

property implies the left distributive property. 

Therefore,  is a ring . Indeed,  is a commutative ring with, 1.            

Exercise  

(1)   Follow a similar procedure to show that  and  are        

      Commutative rings with 1.  

(2)                     Show when  is not an abelian group. 

 Solution to exercise 2 

To show that not a commutative ring with identity is, we show which of the 

properties of a ring does not hold: For  to be a ring,  must be: 

(i) Abelian group.  

(ii) Semigroup with respect to multiplication. 

(iii) The distributive properties must hold. 

Is  an abelian group?     

If it is, the following holds. 

(a) Closure with respect to addition, 

(b) Associativity with respect to addition, 

(c)   

(d)  

Clearly,(c)and (d) does not hold in  so,  is not a group and cannot therefore 

be a ring. 
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Zero divisors and proper zero divisors 

3.2 Definition.   

Let  be a ring and let  such that  Then  is called a left zero divisor and 

 is called right zero divisor. If it happens that with  then is called 

a proper left zero divisor and , a right proper zero divisor. If  is commutative, then the 

notion of left and right zero divisors or left proper and right proper zero divisors coincide 

and we just have zero divisors or proper zero divisors.  

Examples.   (i) in  are proper zero divisors. 

(i) Let  If  where  

 

Then 

                                   .      

So,  has proper zero divisors, since  

(iii).   has proper zero divisors, since  

              

Counter examples 

(i) , has no proper zero divisors. 

(ii)  has no proper zero divisors. 

Exercise. Show whether  has proper zero divisors. 
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3.3  Integral Domain 

 

  A ring  is called an integral domain (or entire ring) if  

(i)   is commutative with 1 

(ii)      has no proper zero divisors. 

Examples 

(i)  is an integral domain. 

(ii)  is an integral domain. 

(iii)  is an integral domain. 

(iv)   (or indeed  is an integral domain. 

Counter examples 

(i)  where  is not an integral 

domain. 

(ii)   (or indeed  even) is not an integral domain. 

 

Remark 

 

A commutative ring,  with identity is an integral domain iff the cancellation law holds 

i.e.    (or ). 

3.4 Unit or inverse 

Definition. 

Let  be a ring with 1, and let x, y  be any two elements such that . Then  is 

called a left unit and  is called a right unit of .   Also we call  a left inverse and  a 

right inverse of .  We note that the distinction vanishes if  is commutative.   A unit 
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 . is also called invertible element of  if  then  is called the inverse 

of , inverse of  is written   We denote the set of all unit of  by . 

Concrete examples 

(i) In the ring, ,  

(ii) In the ring  

Exercise. 

Show that  is both left and right units. 

Solution to the Exercise 

 

3.5:  Division Ring 

Definition:   A ring  with identity such that every non zero element has a multiplicative 

inverse (i.e every nonzero element is a unit) is called a division ring (or Skew field) 

Concrete Examples 

(i)   is a division Ring. 

(ii)     is a division ring. 

Concrete counter examples. 

(i)          (ii     

(iii) The Quaternion of Hamilton. 

We denote the  is a group under component-wise addition. 

We give certain elements of  as follows: 

1=  , j =  k =  
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Again, we let 

  

. 

By the definition of addition given,  

Thus, 

 

                                            =  

To define multiplication in  we first define  

 and   

 

 

 

 

 

 

 

Note.     Product of two adjacent elements from left to right gives the next while product 

from right to left gives negative of the next. 

Example: The ring of real quarternons,  

 has the elements of the form,  and 

k 

i 

j 
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are symbols satisfying  

 

 

 

 

 

 

 

 

 

 

 

Note. Production of two adjacent elements from left to right gives the next one, while 

product from the left gives the negative of the next one. Suppose that  

 

 

Define  in by 

   

 

and  multiplication in   by 

i 

k j 
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Exercise. Verify that  

4.0 CONCLUSION 

Obviously, it can further, be shown that not all Abelians are rings  i.e quotient rings 

(quarternon) 

For instance, Show when  is not an abelian group 

To show that not a commutative ring with identity is, we show which of the 

properties of a ring does not hold: For  to be a ring,  must be: 

(iv) Abelian group.  

(v) Semigroup with respect to multiplication. 

(vi) The distributive properties must hold. 

Is  an abelian group?     

If it is, the following holds, hence, it does not hold. 

a) Closure with respect to addition, 

b) Associativity with respect to addition, 

c)   

d) 

 

It is clearly shown that the last two axioms does not hold in   so,  is not 

a group and cannot therefore be a ring. 
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5.0  SUMMARY 

In summary, a ring must be an Abelian group satisfying the following properties: 

i) associativity of products  i.e   (a.b).c = a.(b.c) 

ii) associativity of addition i.e  (a+b)+c = a+(b+c) 

iii) commutativity  and  identity i.e (1+0)= (0+1) =1 

iv) and, also  (0.1) = (1.0) = 0 

v) must also satisfy the closure properties. 

vi) must also satisfy, the distributive properties. 

6.0 TUTOR MARK ASSINMENTS 

1 .Answer true or false: 

(i) A ring is also an abelian group with respect to addition. 

(ii)   A ring must be a semi group under multiplication. 

(iii)   is a ring. 

(iv)  is an abelian group.                  

(v) ( ) is an integral domain. 

(vi) It is the multiplicative property we use to describe a ring. 

2. Define a division ring. Hence show if   is a division ring.? 
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MODULE 1 

Unit 2.                                         Field. 

1.0 INTRODUCTION 

The word "field" as used in algebra refers to a certain algebraic structure. 

 

A  field is a set equipped with two binary operations, one called addition and the other 

called multiplication, denoted in the usual manner, which are both commutative and 

associative, both have identity elements (the additive identity denoted 0 and the 

multiplicative identity denoted 1), addition has inverse elements (the additive inverse of x 

denoted −x as usual), multiplication has inverses of nonzero elements (the multiplicative 

inverse of x denoted either 1x or x−1), multiplication distributes over addition, and 0≠1. 

 

Important examples of fields are  

 the field R of real numbers 

 the field C of complex numbers 

 the field Q of rational numbers 

 the prime field with p elements where p is any prime number. 

2.0     OBJECTIVE 

To increase the level of abstraction and reasoning of Students, 

To solve examples that are related. 

3.0   MAIN CONTENTS 

Definition:   A field is a commutative division ring. The definition of a ring as given 

implies that the nonzero elements of a field form an abelian group under multiplication. 
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Examples. 

(i)  (  is a field, the field of real number 

(ii)  ( ) is a field. 

(iii) (Q, +,   .) is a field, the field of rational numbers. 

Exercise:    Verify that ( ) is a field. 

Solution 

(i) Note that  is the set of remainders, when  is divided by 7. i.e. 

 

 

.           We make the following tables for  
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 Table 1:   

 

 

 

 

 

Table 

2:  

From table 2,  In      (i )   s.t . . 

(ii)   Every nonzero element in  has a multiplicative inverse: 

(a)  The multiplicative inverse of   is   

(b)  The multiplicative inverse of  is   

            (c)The multiplicative inverse of  is     

 

Exercises.   Write down the multiplicative inverse of  

(i)               (ii)              (iii)    

Theorem. 

Any finite integral domain is a field. 
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Proof. 

To prove the theorem, we just need to show that every nonzero element of a finite 

integral domain  has a multiplicative inverse. Suppose that . 

Let a be any fixed nonzero element of  and let    the set of 

nonzero elements of S. Suppose that  

Then the elements of   are distinct, since  

Also since  has no proper zero divisor (as an integral domain), every element of  is 

nonzero.     Moreover,   So, there exists  such that  i.e.   Multiplicative 

inverse.  

Corollary. 

For any prime  is a field. 

Proof /llustration. 

We note that are fields, for by the tables of  

and  shown earlier,  for any prime , 

 has no proper zero divisors and clearly, it is commutative with identity. 

 

Example 

Show if  is a field, an integral domain in, or a Skew field.where 

, + is the usual matrix addition and. is the usual matrix 

multiplication. 

Solution 

We note that  is the set of a special 2 by 2 matrices over  and as such it is an abelian 

group with respect to addition,  it is a semi group under multiplication.  This special 
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matrix is commutative since 

 

Since ,  so the special matrices,  has identity.  Therefore, from the 

foregone,  is a field. 

5.0 SUMMARY 

We can further summarized with this theorem that any finite integral domain is a field. 

Proof. 

To prove the theorem, we just need to show that every nonzero element of a finite 

integral domain  has a multiplicative inverse. Suppose that . 

Let a be any fixed nonzero element of  and let    the set of 

nonzero elements of S. Suppose that  

Then the elements of   are distinct, since  

Also since  has no proper zero divisor (as an integral domain), every element of  is 

nonzero.     Moreover,   So, there exists  such that  i.e.   Multiplicative 

inverse.  

Corollary. 

For any prime  is a field. 

illustration. 

We note that are fields, for by the tables of  

and  shown earlier,  for any prime , 

 has no proper zero divisors and clearly, it is commutative with identity. 
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5.0:  CONCLUSION 

The rational numbers, which are the integers and the fractions like [23, -1/3, 355/113], 

allow you to do the following things with them: you can add and subtract them, you can 

multiply them, and you can divide them as long as you don't divide by 0.  

Those operations satisfy various rules such as a+b = b+a, a×(b×c) = (a×b)×c and a×(b+c) 

= a×b+a×c for any rational numbers a,b,c. There are "neutral" elements: 0 doesn't do 

anything when it's added to any number, and 1 doesn't do anything when it's multiplied 

by any number. Every number a has an inverse: a + (−a) = 0, and if it's nonzero it also 

has a reciprocal a×1a =1.  There are a few other similar rules, I didn't list them all, but it's 

a short and familiar list. This is an example of a field. In fact this is the model upon which 

the notion of a field is based. Generally, a field is any set of things (numbers, functions, 

bicycles, stuffed animals, doesn't matter) which are equipped with operations of 

"addition" and "multiplication". Each of these is just a machine that takes two things and 

outputs a thing.  

They don't have to resemble ordinary addition and multiplication in any way, they just 

need to have the same properties I mentioned above. If they do, you have a field.  

For example, we can take the two words "Even" and "Odd", and define "addition" and 

"multiplication" between these words according to the familiar rules of how odd and even 

numbers behave. So Even + Even = Even, Even + Odd = Odd + Even = Odd, Odd + Odd 

= Even, Even x Even = Even x Odd = Odd x Even = Even and Odd x Odd = Odd.   

This is a field! You may take the time to verify that all the rules apply. "Even" is the 

neutral element for addition (so it's like the "0" of this field) and "Odd" is neutral for 

multiplication (so it's like the "1"). In fact this is the smallest field, having just two 

elements. 
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6.0:   TUTOR MARKED ASSIGNMENTS 

1.   What do you mean by  Give the elements of .  Hence show if  

has proper zero divisors.  Deduce if   is a field 

2. Write true or false for each of the following assertions. 

(a)  is a field. 

(b)  We can talk of the field of integers. 

(c). the set of integers has a multiplicative inverse for each element. 

(d).  is not a field. 

(e)   is a field and so we can talk of the field of real numbers. 

(f)  A field is commutative ring. 

(g) Any integral domain is a field. 
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MODULE 1 

Unit 3:  Algebraic Numbers (extension field) 

1.0 INTRODUCTION 

The extension field degree of an extension field K/F, denoted [K:F], is the dimension 

of K as a vector space over F, i.e, [K:F] = dimF K. 

Given a field F, there are a couple of ways to define an extension field. If F is 

contained in a larger field, . Then by picking some elements not in , one 

defines  to be the smallest subfield of containing and the . For instance,  

rationals can be extended by the Complex numbers  , yielding  . If there is only 

one new element, the extension is called a simple extension. The process of adding a 

new element is called "adjoining." Since elements can be adjoined in any order, it 

suffices to understand simple extension Because is contained in a larger field, its 

algebraic operations, such as multiplication and addition, are defined with elements 

in . Hence,  

 
 
 

 








 FgandFinspolynomialaregf
g

f
F 0......,: 




  

2.0 OBJECTIVES 

The objectives are: 

To show that every number field is a simple extension of the rationals  

To show that naturally, the choice of  is not unique.  

 

3.0 MAIN CONTENT 

Definitions 

(i) Extension field  



 
 

32 
 

A field   is called an extension field of a field  if .  Thus  is an 

extension field of the field ,  is also an extension field of both the field 

are fields of real numbers, field of rational numbers 

and field of the complex numbers respectively. 

(ii) Algebraic Element. 

An element,  of an extension field  of a field  is algebraic over 

 

For some nonzero . If  is not algebraic over  is 

transcendental over .  Note, denotes a ring of polynomials in    That is,              

 

Examples:  

(i)  is an extension of  is a zero of  

Therefore  is an algebraic element over   

then    

(ii)    is algebraic is an algebraic element of   , since    

 

 is algebraic over . 

Counter Examples.     

(i)  is not algebraic over  since   

 

Therefore  is a transcendental element. 
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(ii)   is not  algebraic over  since,   then 

 

 Thus,  are transcendental over . 

(iii)  Now , i.e  is an extension of .  Then  is algebraic 

over . 

Remark. 

Just as we do not speak of a vector space but of a vector space over , in the same way, 

we do not speak of algebraic number but of algebraic number over  

Example. 

Show that the real number,   is algebraic over  .  

Solution. 

 is algebraic over , for any . 

Now,      then        

That is, . 

and . 

 

So,  

We show that  is a zero of the polynomial. 

 

If  , then   

becomes 
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Therefore  is algebraic over , since  

Exercise.  

For each of the following given numbers,  , show whether  is algebraic over    

by looking for   such that   

(i)          (ii)           (iii)    

 

Solutions 

(i) For ,  we try the function 

 

Now, find   where  , and see if . 

Now,  

                    = 1+2  +2                                          

     i.e.    

       Therefore,   is algebraic over   

(ii) For , try the function,  

If   then  is an algebraic number over . 

Now,   

Then   
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Therefore, , hence  is algebraic over   

For , try  

 

 

          

         1 2 2i + 2 

         3=0.  

Therefore  is algebraic over  . 

4.0 SUMMARY 

As in conclusion 

 

5.0 CONCLUSION 

We conclude with this remark that Just as we do not speak of a vector space but of a 

vector space over , in the same way, we do not speak of algebraic number but of 

algebraic number over  

6.0 TUTOR MARKED ASSIGNMENT 

1. When is a field called an extension field of a field ? Is  an extension  of   
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2. What do you mean by an algebraic element? 

If   and  , show if  is algebraic over  . 

3. What is a transcendental element?  If  and , show if 

 is a  transcendental element of  

 

QUESTION BANKS FOR THE MODULE (exercises) 

1. When is a ring said to be a commutative ring with 1.  Give 2 examples of a 

commutative ring with 1.  Give an example of a non-commutative ring with 

identity. 

2. List the properties a set must satisfy in order to be called a ring. 

3. When will a ring become 

(a)  A division  ring?          (b)  an entire ring? 

(c)  An integral domain?     (d)  A field? 

4.   Give the elements of    (a.) ,   (b).    . 

 If  (i).   (   is an integral domain.   (ii).    is a field. 

5.  Answer true or false for each of the following: 

 (a).     is a commutative ring with identity. 

 (b).     is a division ring. 

(c).     is a field. 

(d)      is a field. 

(e)     is a field. 

6. Let  where  , ,    be a 

commutative    ring with identity.    Determine if  S  is an integral domain. 

7(a) Define an algebraic element.  Hence show that   (i)   is algebraic element 

over   ,  if   .  Where  is an extension of . 
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(b)  is an algebraic element over    if   . 

(c)  If  , determine if   is an algebraic element over  ,  where   is 

an extension of  . 

8.    Show that the real number,  is algebraic over  .  
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Module 2:  Quadratic and Cyclotomic Fields. 

Unit 1:  Quadratic Field. 

1.0 INTRODUCTION 

We can now say a bit more about the relationship between quadratic fields and 

cyclotomic fields. 

Let pe /2  for an odd prime p. Recall disc 2)(  pp where the sign is positive if and 

only if  p = 1(mod4). Using the definition of the discriminant, we have 

    pp pj

i   2/3  

where the i  are the embeddings of Q[ω] in C. But each embedding simply maps each ωi 

to some other ω
j
, thus we may compute √±p using field operations on the powers of ω. In 

other words, ][Qp  ,with the sign positive if and only if p=1(mod4). 

For example, for p=3 the above equation becomes 

3
1

1
2





| 

which can be rewritten 123    

Similarly for p=5 we obtain .215 4342    

The 8th cyclotomic field contains √2 because in this case we have. 

,2/22/2 i and hence, 12    
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If the qth cyclotomic field contains Q[p], the 4qth cyclotomic field contains pQ    

because it must contain the fourth root of unity i along with √p. 

Now consider any square free ......1 rppm   for each pi take the cyclotomic field 

containing √p. Then take the smallest cyclotomic field K containing all these fields. Then 

K contains mQ . Set d = disc(A∩Q m ). It can be easily verified that the desired K is 

in fact the dth cyclotomic field. 

Kronecker and Weber proved that every abelian extension of Q (normal with abelian 

Galois group) is contained in a cyclotomic field. Hilbert and others studied abelian 

extensions of general number fields, and their results are known as class field theory. 

2.0 OBJECTIVE 

The objectives are: 

To define Quadratic and Cyclotomic Fields 

To solve some numerical examples 

 

3.0 MAIN CONTENTS 

Definitions 

 Quadratic fields are subfields of  generated by    and , where    is a square 

free integers.  A square free integer is an integer that is not divisible by the square of any 

prime.  A quadratic field is denoted by  .   A member of    is of the form   

   The operations of  are 

(i)  

(ii)  

i.e.  
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Numerical Examples 

To establish the two operations of addition and multiplication in quadratic fields, we give 

the following numerical examples. 

(A)     If addition in  is defined as follows  

   

       then do in   

(1)     

(2)  

(3)  

(4)     

Solutions 

(1)  

 

(2)      

(3)   

  

Exercise.    Do No. (4). 

(B) If multiplication in  is defined by 

, 

then do the following multiplication problems. 



 
 

41 
 

(1)   

(2)    

(3)  

 

Solutions 

(1)  

 

 

 

(2)  

 

 

(3)  

 

 

Exercise.    Perform the following multiplication in  . 

(i)                (iii)      

(ii)                (iv) . 

Solutions 

(i)  
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(ii)  

 

 

(iii)   

 

 

 

 

We recall that elements of   can be denoted by  and that for any  

 where for any     

Now,  

 

 

 

 

That is,     is called the norm    of  .  It is clear that    is the 

complex conjugate of   and   

If   , then   and  is the wit of the monic equation 
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Definition.  A number  is called a quadratic integer if the coefficients  

and  in the equation    are both integers.  An easy test for this fact is the 

following proposition holds:   

Proposition.   The number  is a quadratic integer if and only if the following 

hold: 

If    or     and   are both integers, or both half integers. 

 

Proof. 

Recall the equation  

 

Where for  to be a quadratic integer,    and    in   both integers, 

Since   in  is an integer, clearly    must be a half integer; hence,  must be an 

integer or of the form . 

Since    is a square free integer,    must therefore be an integer or a half integer 

(whichever    is) to make   an integer.  In the 2
nd

 case (   and    both 

half integers) if    is the remainder of , then the fractional part of   is 

,  which is an integer precisely when  , that is, in the case of . 
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4.0 TUTOR MARKED ASSIGNMENTS (TMAs) 

1(a)   what do we mean by a square free integer? 

  (b)   Let   denote a quadratic field, write down a typical elements of ,  where  

d  is a square free integer. 

2. If  ,       compute  . 

3.   If      and   ,   compute . 

 

5.0 SUMMARY 

We shall summarize by the re-emphasize the definition and a related proposition thus.  

A number  is called a quadratic integer if the coefficients  and  in 

the equation    are both integers.  An easy test for this fact is the following 

proposition holds:   

      Proposition.   The number  is a quadratic integer if and only if the following   

hold: 

    If    or     and   are both integers, and both half 

integers. 

 

 

6.0  CONCLUSSION 

As in the summary. 
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MODULE 2 

Unit 2.                                               

                                                    Cyclotomic Field 

1.0 INTRODUCTION  

Preamble 

(a)  Ideal.   It is thought fit that certain facts that will help in understanding of 

cyclotomic fields be established, before going into the topic.  The author felt this 

way because not all the readers may have the prerequisite background. 

Let    be a commutative ring with unit element 1.  A subset    of   is called an 

ideal of  if it satisfies the following properties.   

(i)  If  ,  then  .  (ii)  If  ,  then    In 

particular,   is also an additive subgroup of   

Principal Ideal:  If  , the ideal,   of all multiples of    is the principal 

ideal generated by  , and is denoted by  .  An ideal    of   is principal ideal  if  

 for some   

Prime Ideal:  An ideal    of    is said to be a prime ideal if satisfies the following 

properties: 

(i)  

(ii) If   or  ,  for  or  equivalently, given two ideals of  

,  such that  , then either    or  . 

An idea    of    is said to be maximal if:        (ii). There exists no 

ideal    of    such that  . 

2.0 OBJECTIVES 

To be taking through what is an ideal, principal ideal, prime ideal, nth root of unity. 

      To know the definition of Cyclotomic Fields 
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3.0 MAIN CONTENT 

3.1 Primitive th root of unity. 

Let    be a field and,   integer, .  An element    such that  

is called an  th  root of unity.  The set   of all  th roots of unity in 

 is a multiplicative group.  We denote by  the set of all roots of unity in .  That is, 

 

Let   and let    be the order of  , in the multiplicative group  ,  that is,    is 

the smallest positive integer such that  .  Then we say that    is a primitive  th  

root of units. 

3.2 Cyclotomic Fields 

We shall just give examples of cyclotomic fields so that the reader will understand what 

is meant by the mathematical structure, cyclotomic fields. 

Examples 

(i) Let    be a prime number, let .  So if  , then   since for  

 for   i.e.  for   then . 

(ii) The cyclotomic field, , generated by a th root of unity,  ,  where  

  is any integer.  We can assume that if    is even, then   since, 

.  Indeed if  where    is odd, if    is a primitive th root 

of unity, then  ,  so .   On the other hand, , so  

 or  .  In this case  Thus,    or   

belongs to  . 
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 4.0 TUTOR MARK ASSIGNMENTs (TMAs) 

1. Let    be a ring.  When   said to be a left ideal of ?   When is  said to be a 

right ideal of ? 

2. Define the terms (a), prime ideal of a ring ,  (b),  principal ideal of a ring  . 

3. Give an example of a cyclotomic field. 

 

5.0 SUMMARY 

However, by know you must have been equipped with the following: 

The definition of both right and left Ideal of a ring R. 

      The definition of both prime ideal and principal ideal of a ring  . 

       and finaly, you must have been aquanted with the definition and example of a   

cyclotomic field. 

6.0 : CONCLUSION 

In conclusion, test your comprehension of this module by solving the following QB. 

QUESTION BANKS FOR MODULE 2 

1. (a)  What is a square free integer? 

  (b) Give a typical element of a quadratic field. 

  (c)  If in a quadratic field, ,  ,   

Compute (i),      (ii),   . 

  (d)   If in    multiplication is defined by 

 

then compute the following: 

(i)     (ii)   (3+2  



 
 

49 
 

2. If the elements of   can be denoted by   and that for any 

,  where for any  .    Show that  

. 

3. (a)  What do you mean by an ideal  of a ring, ? 

 (b)  What do we mean by a principal ideal of a ring, ? 

4. (a) Give an example of a cyclotomic field. 

 (b) Define each of the following  

(i)  th root of unity.  (ii)  primitive th root of unity. 
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Module 3: Factorization into irreducible and ideas of Polynomials over a Field 

Unit 1: Factorization of Polynomials over a Field 

1.0 INTRODUCTION 

Polynomials are an extension of quadratics so you may which it useful to review 

quadratics before reading this section. Also many of the ideas discussed here involve 

complex numbers so you may want to review those as well. 

 

To create a polynomial imagines carrying out the following steps:  

 Start with a variable x.  

 Raise x to various integer powers, starting with the power 0 and ending with the 

power n (where n is a positive integer):  

1,   x,   x
 2
,   x

 3
,   … x

 n
. 

 Multiply each power of x by a coefficient. Let a3 denote the coefficient of x
 3
, and 

so on.  

 Add all the terms together.  

The result is a polynomial. Note that some of the coefficients could be zero so that 

some of the powers of x could be absent. The formal definition of a polynomial shall 

be discussed in the main content of this unit. 



(1) Definition of Factorization of polynomials over finite fields.  

(2) The Primitive element theorem.  

(3) Finite separable extensions have a primitive element 

3.0 MAIN CONTENTS 

3.1 Definition of Polynomial 



 
 

51 
 

We begin by defining a polynomial: 

Consider an infinite formal sum, 

 

 

with each  .  This infinite formal sum is called formal power series in    with 

coefficients in . The ’s are called the coefficients of the power series,   being called 

the coefficient of  .   We denote the set of all such power series, .   If we now 

require that in the infinite formal sum, , all, but a finite number of the  

’s  are zero.  Then   is called a polynomial in    with coefficients in    (it is also 

called polynomial in    over  ), and the element    is called the coefficient of     If  

 for  ,  then    is called a polynomial of degree    and   is 

said to be the leading coefficient of  .    Then we write,    i.e.  

     is referred to as the constant of the 

polynomial.   We denote the set of all such polynomials by  .  The polynomial is 

called monic if  1. 

 3.2 Factorization 

The basic tool we need to use in this section is Division Algorithm for    where    

is the set of polynomials in    over the field, . 

Theorem 3 (Division Algorithm for ) 

Let  

 

and 
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be two polynomials in  , with  Then there exist unique 

polynomials,  and  in F  such that  where the 

degree of r(x) is less than  degree of   

Remark 

(i) We omit the proof as it is found in any standard book in abstract Algebra. 

(ii)  One can compute  and  in the division algorithm theorem by long 

division. 

We present the following corollaries resulting from the division algorithm theorem 

Corollary I:  An element   is said to be a zero of  if and only if  

is a factor of in  . 

Corollary II:  A nonzero polynomial,  of degree  can have at most  zeros 

in  field, F. 

Computational Examples 

1. Working in let  where 

   

To find  and  in the theorem, we perform synthetic division:  

Now, 
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Thus, 

 

Therefore,  and . 

2. Still working in we note that 1 is a zero of .  

3. i. e. if  

 

Then  i. e.  is a zero which implies that  is a factor of 

  (Corollary I) 

Therefore, to find  and  of the theorem, we divide  

 by   . 

 

       

 

 

 

 

 

 

 

Therefore,  

Hence,  and  

4.0   TUTOR MARK ASSIGNMENT (TMAs) 

1. If  of  and  

  

Find polynomials   such that  

 + r(x). 

+ 2x + 4  
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where degree  degree  

2. When is a polynomials said to be irreducible over  ? 

3. State the Eisenstein Theorem with its conditions. 
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MODULE 2 

Unit 2:  Factorizing into irreducible 

1.0 INTRODUCTION 

If F is a field, a non-constant polynomial is irreducible over F if its coefficients belong 

to F and it cannot be factored into the product of two non-constant polynomials with 

coefficients in F. 

A polynomial with integer coefficients, or, more generally, with coefficients in a unique 

factorisation domain R is sometimes said to be irreducible over R if it is an irreducible 

element of the polynomial ring (a polynomial ring over a unique factorization domain is 

also a unique factorization domain), that is, it is not invertible, nor zero and cannot be 

factored into the product of two non-invertible polynomials with coefficients in R. 

Another definition is frequently used, saying that a polynomial is irreducible over R if it 

is irreducible over the field of fractions of R (the field of rational numbers, if R is the 

integers). Both definitions generalize the definition given for the case of coefficients in a 

field, because, in this case, the non constant polynomials are exactly the polynomials that 

are non-invertible and non zero. 

2.0 OBJECTIVE 

To know the Define a polynomial in x. 

To know Eisenstein Theorem with its conditions 

To know when a polynomial is said to be irreducible over  
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3.0 MAIN CONTENT 

3.1 Definition: An irreducible polynomial may be defined as a non-constant polynomial 

that cannot be factored into the product of two non-constant polynomials. The property of 

irreducibility depends on the field and ring to which the coefficients are considered to 

belong. For example, the polynomial x
2
 - 2 is irreducible if the coefficients 1 and -2 are 

considered as integers, but it factors as [   22  xx  ] if the coefficients are 

considered as real numbers. One says "the polynomial x
2
 - 2 is irreducible over the 

integers but not over the reals". 

A polynomial that is not irreducible is sometimes said to be reducible. 

Irreducible polynomials appear naturally in polynomial factorisation and algebraic field. 

It is helpful to compare irreducible polynomials to prime numbers: prime numbers 

(together with the corresponding negative numbers of equal magnitude) are the 

irreducible integers. They exhibit many of the general properties of the concept of 

'irreducibility' that equally apply to irreducible polynomials, such as the essentially 

unique factorization into prime or irreducible factors. 

Remark.    If  quadratic factors i then,  

has a factorization. If factorization into two quadratic polynomials is not possible,  is 

said to be irreducible over   We state without proof, Eisenstein Theorem which gives 

conditional criteria for irreducibility. 

3.2 Eisenstein Theorem. 

 Let  be a prime. Suppose that 

 is in  and  (mod p), 
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but  for  with    Then  is irreducible 

over  We next give examples, to apply the theorem. 

3.3 Examples (application of Eisenstein Theorem) 

(i) Show that  is irreducible over  taking  

Solution 

Conditions of the theorem: 

(a).    

            (b).  for,      

            

Solution 

(a) Here  and,  since  

(b)  Here,  

(mod3)

 

But  since 3|3(0              satisfied. 

 

Because the conditions of the theorem holds, then 

 

is irreducible over  

(ii). Taking  check if   is reducible over  

Solution 

Here,  

this is not true. 

Therefore,  

  This is not true. 
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Hence  is not reducible over   

(iii). Show that through   is irreducible over  but reducible over  

Solution (Aliter). 

For  to be reducible in  has to have zeros in    

This shows that   is irreducible over   However,   view in 

 is reducible over  since  factors in   

into . 

(iv).Theorem cyclotomic polynomial, 

 

is irreducible over  for any prime, p. 

  

Proof.      We need only to consider factorization in . 

Let 

 

Then, 

 

Satisfies the Eisenstein criterion for any prime p, and is thus irreducible over . 

But it is clear that if  were a nontrivial factorization of  

in Then  will give a nontrivial 

factorization of  in Thus  must also be irreducible over                                                      

q.e.d 
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4.0 CONCLUSION 

We shall conclude by discussing Schönemann–Eisenstein theorem and the criteria for 

Direct (without transformation), Indirect (after transformation) and Cyclotomic 

polynomials in the summary in due course. 

 

5.0 SUMMARY 

Suppose we have the following polynomial with integer coefficient. 

 

If there exists a prime number  p such that the following three conditions all applies: 

 p divides each ai for i ≠ n, 

 p does not divide an, and 

 p
2
 does not divide a0, 

then Q is irreducible over the rational numbers. It will also be irreducible over the 

integers, unless all its coefficients have a nontrivial factor in common (in which case Q as 

integer polynomial will have some prime number, necessarily distinct from p, as an 

irreducible factor). The latter possibility can be avoided by first making Q primitive, by 

dividing it by the greatest common divisor  of its coefficients (the content of Q). This 

division does not change whether Q is reducible or not over the rational numbers (see 

primitive part-content factorisation for details), and will not invalidate the hypotheses of 

the criterion for p (on the contrary it could make the criterion hold for some prime, even 

if it did not before the division). 
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Example 

Eisenstein's criterion may apply either directly (i.e., using the original polynomial) or 

after transformation of the original polynomial. 

5.1 Direct (without transformation) 

Consider the polynomial Q = 3x
4
 + 15x

2
 + 10. In order for Eisenstein's criterion to apply 

for a prime number p it must divide both non-leading coefficients 15 and 10, which 

means only p = 5 could work, and indeed it does since 5 does not divide the leading 

coefficient 3, and its square 25 does not divide the constant coefficient 10. One may 

therefore conclude that Q is irreducible over Q (and since it is primitive, over Z as well). 

Note that since Q is of degree 4, this conclusion could not have been established by only 

checking that Q has no rational roots (which eliminates possible factors of degree 1), 

since a decomposition into two quadratic factors could also be possible. 

5.2 Indirect (after transformation) 

Often Eisenstein's criterion does not apply for any prime number. It may however be that 

it applies (for some prime number) to the polynomial obtained after substitution (for 

some integer a) of x + a for x. The fact that the polynomial after substitution is irreducible 

then allows concluding that the original polynomial is as well. This procedure is known 

as applying a shift. 

For example consider H = x
2
 + x + 2, in which the coefficient 1 of x is not divisible by 

any prime, Eisenstein's criterion does not apply to H. But if one substitutes x + 3 for x in 

H, one obtains the polynomial x
2
 + 7x + 14, which satisfies Eisenstein's criterion for the 

prime number 7. Since the substitution is an automorphism of the ring Q[x], the fact that 

we obtain an irreducible polynomial after substitution implies that we had an irreducible 

polynomial originally. In this particular example it would have been simpler to argue that 
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H (being monic of degree 2) could only be reducible if it had an integer root, which it 

obviously does not; however the general principle of trying substitutions in order to make 

Eisenstein's criterion apply is a useful way to broaden its scope. 

Another possibility to transform a polynomial so as to satisfy the criterion, which may be 

combined with applying a shift, is reversing the order of its coefficients, provided its 

constant term is nonzero (without which it would be divisible by x anyway). This is so 

because such polynomials are reducible in R[x] if and only if they are reducible in R[x, 

x
−1

] (for any integral domain R), and in that ring the substitution of x
−1

 for x reverses the 

order of the coefficients (in a manner symmetric about the constant coefficient, but a 

following shift in the exponent amounts to multiplication by a unit). As an example 2x
5
 − 

4x
2
 − 3 satisfies the criterion for p = 2 after reversing its coefficients, and (being 

primitive) is therefore irreducible in Z[x]. 

5.3 Cyclotomic polynomials 

An important class of polynomials whose irreducibility can be established using 

Eisenstein's criterion is that of the cyclotomic polynomials for prime numbers p. Such a 

polynomial is obtained by dividing the polynomial x
p
 − 1 by the linear factor x − 1, 

corresponding to its obvious root 1 (which is its only rational root if p > 2): 

 

Here, as in the earlier example of H, the coefficients 1 prevent Eisenstein's criterion from 

applying directly. However the polynomial will satisfy the criterion for p after 

substitution of x + 1 for x: this gives 
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all of whose non-leading coefficients are divisible by p by properties of binomial 

coefficients, and whose constant coefficient equal to p, and therefore not divisible by p
2
. 

An alternative way to arrive at this conclusion is to use the identity (a + b)
p
 = a

p
 + b

p
 

which is valid in characteristic p (and which is based on the same properties of binomial 

coefficients, and gives rise to the Frobenius endomorphism), to compute the reduction 

modulo p of the quotient of polynomials: 

 

which means that the non-leading coefficients of the quotient are all divisible by p; the 

remaining verification that the constant term of the quotient is p can be done by 

substituting 1 (instead of x + 1) for x into the expanded form x
p−1

 + ... + x + 1. 

6.0 TUTOR MARK ASSIGNMENTs (TMAs) 

1. Define a polynomial in x. 

2. When is a polynomial said to be irreducible over ? 

3. State the Eisenstein Theorem with its conditions. 

            4. Define the following: Direct (without transformation), Indirect  

            (after transformation) and Cyclotomic polynomials in the summary in due course. 
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MODULE 3 

Unit 1  

                                                       Ideals 

1.0 INTRODUCTION  

An ideal is a subset R  a ring that forms an additive group and has the 

property such that, whenever Rx  and y , then xy  and yx . For 

example, the set of even integers is an ideal in the ring of integers . 

 Given an ideal  ; it is possible to define a quotient ring( /R ). Ideals are 

commonly denoted using a Gothic typeface. 

2.0: OBJECTIVE 

To know the definition of Ideals 

To treat the two sided Ideal 

 

3.0 MAIN CONTENT 

Definition 

Let  be a nonempty subset of a ring,  such that  

(i).  is a subgroup of  i. e.   

(ii) For any  

(iii) For any  Then  is called a two sided ideal of  If only 

(i) and (ii) hold,  is called a left ideal of  If (i) and (iii) hold,  is called a 

right ideal of  We remark that in a commutative ring, there is no distinction 

between left and right ideals of a ring  

A two –sided ideal will just be referred to just as an ideal. 

Examples 

(i) . Here  is called a trivial ideal of  
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(ii)  is an ideal of  for  Again,  i. e.,  is a 

subgroup of itself.  is also a trivial ideal. 

(iii)In ( , + . ), 3  is an ideal, for any fixed n  . For if n = 3,  } and  

a, b  3  

(iv) In  let  Check if  is an ideal in  

(a) Clearly,  is an additive subgroup of   since  where 

 

Then . 

(b) Now, in , For any  

 (Not left sided ideal) 

  But (right sided ideal). 

Remark. An ideal is to a ring as a normal subgroup is to a group. 

Definition. (Analogue of the definition of a factor group). 

If  is an ideal in a ring  then the ring of cosets, under the induced operations is 

the quotient ring or factor ring or residue class ring of  modulo  and is denoted by 

.  The cosets are residue class modulo  

Consider the ring,  of integers. The only additive subgroup of (  are the 

subgroups  since .  We next show that this subgroup of  is an ideal. If r is any 

integer, and  then  is a multiple of  That is if  then 

 Thus  is an ideal, and the cosets,  of  for 

a ring, /  under the induced operations of addition and multiplication.  
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Example. The subset,  of  is an ideal of and  has 3 elements: 

 

  (Recall that  is the kernel).   We observe that 

  with the correspondence ,    

Theorem:  If    is a ring with unity, and    is an ideal of  containing a unit, then 

. 

 

4.0 CONCLUSION 

We shall conclude with the following thus: 

Definition:  Let R be a commutative ring, and Let . The principal ideal generated 

by a is  

 

Lemma. Let R be a commutative ring, and Let . Then is a two-sided ideal in R.  

Proof.  

First, . If , then . Finally, if , 

then .  

Thus, is an additive subgroup of R.  

If and , then  

 

Therefore, is a two-sided ideal.  
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5.0 SUMMARY 

 If R is a ring, an additive subgroup of R is a subset of R which is closed under 

addition, contains 0, and is closed under taking additive inverses.  

 A subring is a subset S of a ring R which is an additive subgroup of R which is 

closed under multiplication.  

 A left ideal is a subset I of a ring R which is an additive subgroup of R such that if 

and , then . A right ideal is a subset I of a ring R which is an 

additive subgroup of R such that if and , then . A two-sided 

ideal is a subset I of a ring R which is an additive subgroup of R such that if 

and , then .  

 If R is a commutative ring and , the principal ideal generated by x is the set  

 

 An integral domain R is called a principal ideal domain (or PID for short) if 

every ideal in R is principal.  

Example.  

( A principal ideal in the ring of real polynomials) In , the following set is an 

ideal:  

       

It's the set consisting of all multiples of . For example, here are some 

elements of :  
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6.0. TUTOR MARKED ASSIGNMENTs (TMAs) 

Let R be a ring.  Define an ideal  of .  Hence show that the subset   of  is 

n ideal of  
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MODULE 3 

Unit 2:  Class Group and Class Number 

1.0 INTRODUCTION 

Let  be a number field, then each fractional ideal of  belongs to an equivalence class 

consisting of all fractional ideal satisfying for some nonzero element of . The 

number of equivalence classes of fractional ideal of  is a finite number, known as the 

‘’CLASS NUMBER’’ of . Multiplication of equivalence classes of fractional ideals is 

defined in the obvious way, i.e., by letting . It is easy to show that with this 

definition, the set of equivalence classes of fractional ideals form an Abelian 

multiplicative group, known as the ‘’CLASS GROUP’’ of . 

2.0 OBJECTIVE 

To know the definition of class groups and class numbers. 

To know the definition of (Discriminant) 

 

3.0 MAIN CONTENT 

 3.1 Definition:      Class Groups and class Numbers. 

We need to give definitions of certain terms in order to be able to define what is meant by 

class groups and their class numbers.  

(a) Definition (Discriminant).  

Let be a square free integer and set 

 

 

 Then  is called a fundamental discriminant with associated radicand .  Let  

 and set  .    Then 
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 is a discriminant with conductor , and associated radicand  

 

 having underlying fundamental  with associated fundamental radicand . 

(b)     Let  be a discriminant .  A fractional -ideal is a set of the form , 

where     is the ideal, for some nonzero   and some nonzero  -ideal ,  

fractional -ideals and called invertible if there is another ideal  such that   . 

Example:  If      ,    ,  

 the conductor.  Also    ]. 

Check if the ideal,   is invertible. 

Solution.     It will be invertible if   another ideal I such that  . 

We will note that    and  ] 

Therefore, the ideal  ] is not invertible. 

 

Definition.   Let    be a discriminant and let   forms a group under 

multiplication.  The principal ,  called the ideal class group of  with 

cardinality,   called the number of .  

3.2 Formula for Class Numbers of Quadratic Orders 

If  is the conductor of an order   with fundamental discriminant , class number  

, are unit index  , then 

 where    is the conductor for associated with , 

 

with  being the Kronecker symbol, and with the product ranging over all distinct 
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prime factors of .  Also if , then   unless  in which case,  or  

 for which .  It also follows that    Indeed  

Example.  If   then  and  

  

 

since the Kronecker symbol,   Also, the fundamental unit 

 

 and 

 

Therefore, the unit index,  ,  since  then  

 

Exercises 

1. Distinguish between class group and class number. 

2. When is an ideal   called invertible? 

 

4.0  SUMMARY 

In mathematics, the Gauss class number problem (for imaginary quadratic fields), as 

usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic 

fields with class number n. It is named after the great mathematician Carl Friedrich 

Gauss. It can also be stated in terms of discriminants. There are related questions for real 

quadratic fields and the behavior as  . 

The difficulty is in effective computation of bounds: for a given discriminant, it is easy to 

compute the class number, and there are several ineffective lower bounds on class 

number (meaning that they involve a constant that is not computed), but effective bounds 

(and explicit proofs of completeness of lists) are harder. 

Contents 
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5.0  CONCLUSION 

We shall conclude thus. 

Lists of discriminants of class number 1 

For more details on this topic, see Heegner number. 

For imaginary quadratic number fields, the (fundamental) discriminants of class number 

1 are: 

 

The non-fundamental discriminants of class number 1 are: 

 

Thus, the even discriminants of class number 1, fundamental and non-fundamental 

(Gauss's original question) are: 

 

 

6.0  TUTOR MARK ASSIGNMENTs (TMAs) 

1(a) Distinguish between a polynomial in  and a formal power series in . 

  (b)  Give an examples of each of the following polynomials in . 

        (i)      (ii)        (iii)          (iv)    

2.   Working in  ,   let   ,   where  fd []zd l  e   

 

      Then find     and  such that 

  With the degree of    being less than the degree of  

 

 3.0When is a polynomial in x reducible over Q?  Hence, state the Eistenstein Theorem 
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4. Without proof.  State the distinguishing conditions of the theorem.  Hence, using the 

distinguishing conditions, show that  is irreducible over 

.  

5. Taking    check if   is reducible over  . 

6. Show that the subset     of    is an ideal of , and that  has 3 

elements. 

7. Recall that  is an analogue of .   Then show that  is not an integral 

domain by showing that (0,1)  and  (1,0) are proper zero divisors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

74 
 

7.0: REFERENCES AND FURTHER READINGS 

1. Eynden, C.U. (2001).  Elementary Number Theory.  McGraw-Hill, 

Madrid, p.202; pp. 252-253. 

2. Fraileigh, J.B. (1977).  First Course in Abstract Algebra.  Addison-

Wesley, Ibadan.  pp. 232-233. 

3. Herstein, I.N. (1964).  Topics in Algebra.  Blaisdell. Toronto, pp. 123; 

165; 117; 97; 188, 248; 318; 327. 

4. Kuku, A.O. (1982).  Abstract Algebra.  Ibadan University Press, Ibadan, 

pp. 163-175; 178-181; p.317,295. 

5. MacLane, S. (1967).  Algebra. Macmillan London, pp. 118-165. 

6. Mollin, R.A. (1998).  Fundamental Number Theory with Applications.  

C.R.C. Press, New York, pp. 341-360. 

7. Ribenbom, P. (1972).  Algebraic Number Theory.  John Wiley & Sons 

Inc. New York, pp. 265; 77; 85; 12; 11 

 

 

 

 

 

 

 

 

 

 



 
 

75 
 

Module 4:   

Fermat’s Last Theorem, Dirichilet Theorem and Minkowski Theorem 

Unit 1.  

 

1.0: INTRODUCTION 

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, 

especially in older texts) states that no three positive integers a, b, and c satisfy the 

equation a
n
 + b

n
 = c

n
 for any integer value of n greater than two. The cases n = 1 and 

n = 2 are known to have infinitely many solutions since antiquity. 

This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of 

Arithmetica where he claimed he had a proof that was too large to fit in the margin. The 

first successful proof was released in 1994 by Andrew Wiles, and formally published in 

1995, after 358 years of effort by mathematicians. The unsolved problem stimulated the 

development of algebraic number theory in the 19th century and the proof of the 

modularity theorem in the 20th century. It is among the most notable theorems in the 

history of Mathematics and prior to its proof it was in the Guinness Book of Records as 

the "most difficult mathematical problem", one of the reasons being that it has the largest 

number of unsuccessful proofs. 

2.0:  OBJECTIVE 

To know the history of Fermat’s Last Theorem, 

To know the definitions of Fermat’s Last Theorem, 

 The show that the equation 444 zyx  has no solution in positive integers   

3.0:  MAIN CONTENT 

3.1 Fermat’s Last Theorem 

Definition 

Fermat’s Last Theorem says that for  , the equation  

 

has no solution in positive integers .  The theorem is an example of a Diophantine 

equation which is a type of equations in which integral (or sometimes, rational) solutions 
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are desired.  If  , we can find solutions to (1), for example,   

satisfy the equation since  

 

Similarly,   satisfy the equation.  But when  ,   the story 

is different.  Many attempts of the proof of the Theorem has been made since the problem 

arose over 200 years ago.  Mathematicians proved the theorem for particular values of    

and by the 1990s all values up to more than 100,000 had been accounted for.  As one of 

the many proofs that has been offered in the past, we reproduce the following for the case  

,  in the Fermat’s Last Theorem.  The proof will use the analysis of Pythagorean 

triples. 

Theorem:    

The equation,  

 

has no solution in positive integers.   

This implies that   case of Fermat’s Last Theorem, since if (2) had a solution with  

, then setting   would satisfy (2). 

Proof.  We start by showing that if equation (2) has a solution in positive integers   

and , then it has another solution    in positive integers with  . 

Case 1:  Some prime    divides  all    and  . 

Then    divides    which we see that   divides .     Thus 

 

and so,   ,       is another solution with  . 

Lemma 1.   If   is a primitive Pythagorean triple,    and   are relatively prime 

in pairs, one of   and   even ands the other odd, and    is odd. 
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Case 2:  No prime divides all of   and    Then, since 

 

 and    from a primitive Pythagorean triple.  By Lemma 1, we conclude that 

 and    (and so  and  )  are relatively prime in pairs, that exactly one of  

  is even and that    is odd.    Let us assume that   is even.  So that    is 

even and    is odd.  Then by Pythagorean triple theorem applied to (3), there exists) 

relatively prime positive integers u and v such that   and 

. 

We now apply the same theorem to the equation    We see that     and  

  form another primitive Pythagorean triple, and since we know that    is odd, we must 

have    even and    odd.  Thus there exist relatively prime positive integers    and    

such that 

 

Now, since , by considering the prime factorization of both sides of the 

equation  

, we see that there must exist positive integers    and    such that  

  and  .    In the same way, since    from the equation  

    In the same way, positive integers    and   such that   

and   

Now, we have 

 

where   and    are positive integers.  Also  
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From equation (4), we see we have another solution to equation (*) with   as 

claimed at the beginning of the proof.  This concludes Case 2. 

So far, our argument has been entirely positive.  We showed that given a solution    

to equation (*) in positive integers, then we can find another solution    also in 

positive integers, with .   But we need not stop there.  From   and , we 

could  create a third solution, say  .    In fact, given just one solution, we could 

find an infinite sequence of solutions with   

This is clearly impossible, since one cannot have an infinite decreasing sequence of 

positive integers.  Thus no solution can exist.                                                                  

Many attempts at solving the problem were successfully made until 1994 when Wiles 

apparently found s solution.  At present, it seems generally accepted that Fermat’s Last 

Theorem has been proved. 

4.0 SUMMARY 

Around 1637, Fermat wrote in the margin of a book that he could prove this deceptively 

simple theorem. His claim was discovered after his death some 30 years later. No proof 

by Fermat was ever found. This claim, Fermat's Last Theorem, stood unsolved in 

mathematics for the following three and a half centuries. 

The claim eventually became one of the most notable unsolved problems of mathematics. 

Attempts to prove it prompted substantial development in number theory, and over time 

Fermat's Last Theorem gained prominence as an unsolved problem in Mathematics. It is 

related to the Pythagorean  theorem, which states that a
2
 + b

2
 = c

2
, where a and b are the 

lengths of the legs of a right triangle and c is the length of the hypotenuse. 

The Pythagorean equation has an infinite number of positive integer solutions for a, b, 

and c; these solutions are known as Pythagorean triples. Fermat stated that the more 

general equation a
n
 + b

n
 = c

n
 had no solutions in positive integer, if n is an integer greater 

than 2. Although he claimed to have a general proof of his conjecture, Fermat left no 

details of his proof apart from the special case n = 4. 
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5.0 CONCLUSION 

We shall conclude with the Definition of Fermat’s Last Theorem says that for  , the 

equation  nnn zyx   

has no solution in positive integers .  The theorem is an example of a Diophantine 

equation which is a type of equations in which integral (or sometimes, rational) solutions 

are desired.  If  , we can find solutions to (1), for example,   

satisfy the equation since  

 

Similarly,   satisfy the equation.  But when  ,   the story 

is different. 
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MODULE 4 

Unit 2.  

1.0 INTRODUCTION 

In number theory, Dirichlet's theorem on Diophantine approximation, also called 

Dirichlet's approximation theorem, states that for any real number α and any positive 

integer  N, there exists integers p and q such that 1 ≤ q ≤ N and 

 

This is a fundamental result in Diophantine approximation, showing that any real 

number has a sequence of good rational approximations: in fact an immediate 

consequence is that for a given irrational α, the inequality 

 

is satisfied by infinitely many integers p and q. This corollary also shows that the  Thue-

Siegel- Roth theorem, a result in the other direction, provides essentially the tightest 

possible bound, in the sense that the limits on rational approximation of algebraic 

numbers cannot be improved by lowering the exponent 2 + ε beyond 2. 

 

2.0: OBJECTICES 

To know the history of Dirichlet Theorem, 

To know the definitions of Dirichlet and Minkowski’s Theorem, 

To know the Diophantine equation, 

To know For what values of  does the equation,   for . 

 

3.0 MAIN CONTENTS 

3.1: Dirichlet and Minkowski’s Theorem 

3.1.1  Dirichlet’s Theorem.s 
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Definition 

If    and   are relatively prime (i.e. ), then the infinite arithmetic progression 

  contains infinitely many primes.  Unlike Fermat’s 

last theorem that has been proved. Dirichlet Theorem is one of the unanswered questions.  

We can illustrate the theorem with a few examples. 

(a) take 2 primes and such that , i.e.    and   are relatively prime or 

coprime.  e.g.  .  Then the sequence that follows contains infinitely 

many primes. 

 

(b) Now that   we have 

 

(c) For ,  the sequence is as follows: . 

(d) , then    Hence the sequence is as follows: 

 

 

3.1.2:  Minkowski’s Theorem 

We just state without proof, the Minkowski’s Theorem, as the mechanics required of its 

proof is beyond this course.  It may be left for algebraic number theorists. 

Minkowski’s Theorem.   Let  be a lattice in , and let   be the volume of the 

fundamental parallelotope  of .   If    is a symmetric convex body having volume, 

, it can only be said that there is a point of , distinct from the origin, 

which is in    (but not necessarily in the interior of ). 

 

 

 

 



 
 

83 
 

4.0: SUMMARY 

In summary The simultaneous version of the Dirichlet's approximation theorem states 

that given real numbers and a natural number then there are integers 

such that  

 

PROOF 

This theorem is a consequence of the pigeonhole principle.Peter Gustav. Lejeune 

Dirichlet who proved the result used the same principle in other contexts (for example, 

the Pell equation)) and by naming the principle (in German) popularized its use, though 

its status in textbook terms comes later.The method extends to simultaneous 

approximation. 

Another simple proof of the Dirichlet's approximation theorem is based on Minkowski’s 

Theorem applied to the set 

. Since the 

volume of is greater than , Minkowski’s Theorem establishes the existence of a non-

trivial point with integral coordinates. This proof extends naturally to simultaneous 

approximations by considering the set: 

 

5.0: CONCLUSION 

In Mathematics, Minkowski's theorem is the statement that any convex set in Rn 

which is symmetric with respect to the origin and with volume greater than 2n d(L) 

contains a non-zero lattice point. The theorem was proved by Hermann Minkowski 

in 1889 and became the foundation of the branch of number theory called the 

geometry of numbers. 

 

https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
https://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet
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6.0  TUTOR MARK ASSIGNMENTs (TMAs). 

1. State the Fermat’s Last Theorem.  What is an open problem?  Is the Fermat’s Last 

Theorem still an open problem?  If not, when and by whom was the theorem 

proved? 

2. What is a Diophantine equation? 

3. For what values of  does the equation,   for . 

4. (a) State the Dirichlet Theorem.  Illustrate with (i)  ,   (ii)   ,      

(iii)      (iv)    

(b) Is the Dirichlet Theorem an open problem? 
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