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1  Introduction 

An ordinary differential equation (ODE) is an equation that contains one or several derivatives 

of an unknown function, which could be called y(x) (or sometimes y(t) if the independent 

variable is time t). The equation may also contain y itself, known functions of x (or t), and 

constants. For example 
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2 Objectives ORDINARY DIFFERENTIAL EQUATION

(1) y′ = cos x

(2) y′′ + 9y = 0

(3) x2y′′′y′ + 2exy′′ = (x2 + 2)y2

are ordinary differential equations (ODEs).

An ODE is said to be of order n if the nth derivative of the unknown function y is the highest derivative

of y in the equation. The concept of order gives a useful classification into ODEs of first order, second

order, and so on. Thus, (1) is of first order, (2) is of second order, and (3) of third order.

In this unit, you shall be introduced to first, and second order ordinary differential equations and also

you shall have a brief grasp of systems of ordinary differential equations.

2 Objectives

At the end of this unit, you should be able to

(i) Solve first order ordinary differential equations of different kinds.

(ii) Solve second order ordinary differential equations, both homogeneous and non homogeneous equa-

tions.

(iii) Solve systems of ordinary differential equations.

3 Main Content

3.1 First Order ODEs

A first order ordinary differential equation is an equation that contains only the first derivative y′ and may

contain y and any given function of x. Such equations can be of the following forms

y′ = f(x, y) (1)

when written explicitly, and

F (x, y, y′) = 0 (2)

in its implicit form. For instance, the implicit first order ODE x−3y′ − 4y2 = 0 (x 6= 0) can be written

explicitly as y′ = 4x3y2

3.1.1 Concept of Solution

A function

y = h(x)

is called a solution of a given ODE (1) on some open interval a < x < b if h(x) is defined and differentiable

throughout the interval and is such that

y′ = h′(x)
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Example 3.1 Verify that y = h(x) = c/x, x 6= 0 is a solution of xy′ = −y, where c is an arbitrary constant.

Solution.

To verify this, you have to differentiate, y′ = h′(x) = −c/x2, and multiply by x to get xy′ = −c/x =
−y. Thus xy′ = −y, the given ODE.

Example 3.2 The ODE y′ = dy
dx

= cos x can be solved directly by integration on both sides. Indeed by

calculus, you have

y =

∫

cos xdx = sin x + c

where c is an arbitrary constant.

Observe that in each of the ODEs given in the above examples, the solution contain arbitrary constant.

Such a solution containing arbitrary constant c is called general solution of the ODE. While a solution

of an ODE that does not contain an arbitrary constant c is called a particular solution of the ODE. For

instance in Example 2, if you fix c = 3, then y = sin x + 3 is a particular solution of the ODE y′ = cos x.

3.1.2 Initial Value Problem (IVP)

The value

y(x0) = y0 (3)

given at an initial value x0 of x in the interval a < x < b is called an inital condition. An ODE

y′ = f(x, y), y(x0) = y0 (4)

with an initial condition is called an initial value problem (IVP).

Example 3.3 Solve the initial value problem

y′ = dy
dx

= 3y, y(0) = 5.7

Solution.

The general solution to the above differential equation is y = ce3x. From this solution an the inital

condition, you have y(0) = ce0 = c = 5.7. Hence the initial value problem has y(x) = 5.7e3x as the

particular solution.

In what follows, you will learn different approaches to solving different kinds first order ordinary dif-

ferential equations.
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

3.1.3 Separable ODEs.

Many practically useful ODEs can be reduced to the form

g(y)y′ = f(x) (5)

by purely algebraic manipulations. Then you can integrate on both sides with respect to x, to obtain

∫

g(y)y′dx =

∫

f(x)dx + c. (6)

But y′ = dy
dx

, so that y′dx = dy, and by substitution in (6) you have

∫

g(y)dy =

∫

f(x)dx + c (7)

If f and g are continuous functions, the integral in (7) exist, and by evaluating them you obtain a

general solution of (5). This method of solving ODEs is called the method of separating variables, and

(5) is called a separable equation, because in (7) the variables are now separated; x appears only on the

right and y only on the left.

Example 3.4 Solve the ODE y′ = 1 + y2.

Solution.

This ODE is separable because it can be written as

dy

1 + y2
= dx. Thus by integration,

∫

dy

1 + y2
=

∫

dx + c

you obtain, arctan y = x + c or y = tan(x + c)

Example 3.5 Solve the initial value problem

y′ = ky, y(0) = y0

where k is a constant.

Solution.

By separation of varibles and integrating, you have

dy

y
= kdx,

∫

dy

y
=

∫

kdx, so that ln |y| = kt + c̃, i.e., y = cekt

Using the initial condition, you have that c = y0. Hence

y = y0e
kx

is the solution of the initial value problem.
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Reduction to Separable Form

Certain nonseparable ODEs can be made separable to transformations that introduce for y a new unknown

function. This technique is discussed for a class of ODEs of practical importance, namely, for equations

y′ = f
(y

x

)

(8)

Here, f is any (differentiable) function of y/x, such as sin(y/x), (y/x)4, and so on. (Such an ODE is

sometimes called a homogeneous ODE, a term that shall be reserved for a more important purpose.)

For this form of an ODE, you shall set y/x = u; thus,

y = ux and by product differentiation, y′ = u′x + u

Substituting into y′ = f(y/x) then gives

u′x + u = f(u) or u′x = f(u) − u.

You can see that this can be separated as follows;

du

f(u) − u
=

dx

x
(9)

Example 3.6 Solve

2xyy′ = y2 − x2

Solution.

To get the usual explicit form, divide the given equation by 2xy,

y′ =
y2 − x2

2xy
=

y

2x
− x

2y

Now let y = ux, and as before, y′ = u′x + y Thus substiting for y and y′ and then simplifying by

subtracting u on both sides gives you

u′x + u =
u

2
− 1

2u
, u′x = −u

2
− 1

2u
=

−u2 − 1

2u

You see that in the last equation you can now separate the variables,

2udu
1+u2 = −dx

x
. By integration, ln(1 + u2) = − ln |x| + c̃ = ln

∣

∣

1
x

∣

∣ + c̃.

Take exponets on both sides to get 1 + u2 = c/x or 1 + (y/x)2 = c/x. Multiply the last equation by

x2 to obtain

x2 + y2 = cx. Thus
(

x − c

2

)2

+ y2 =
c2

4
.
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

3.1.4 Exact ODEs.

You remember from calculus that if a function u(x,y) has continuous partial derivatives, its differential (also

called its total differential) is

du =
∂u

∂x
dx +

∂u

∂y
dy.

From this it follows that if u(x, y) = c = const, then du = 0

For example, if u = x + x2y3 = c, then

du = (1 + 2xy3)dx + 3x2y2dy = 0

or

y′ =
dy

dx
= −1 + 2xy3

3x2y2

′

an ODE that you can solve by going backward. This idea leads to powerful solution method as follows.

A first-order ODE M(x, y) + N(x, y)y′ = 0, written as (use dy = y′dx)

M(x, y)dx + N(x, y)dy = 0 (10)

is called an exact differential equation if the differential form M(x, y)dx + N(x, y)dy is exact, that is,

this form is the differential

du =
∂u

∂x
dx +

∂u

∂y
dy (11)

of some function u(x,y). Then (10) can be written

du = 0.

By integration you immediately obtain the general solution of (1) in the form

u(x, y) = c. (12)

This is called an implicit solution, in contrast with a solution y = ϕ(x) as defined earlier, which is also

called an explicit solution, for distinction.

Comparing (10) and (11), you see that (10) is an exact differential equation if there is some function

u(x, y) such that

(a)
∂u

∂x
= M, (b)

∂u

∂y
= N (13)

From this, you can derive a formula for checking whether (10) is exact or not, as follows.

Let M and N be continuous and have continuous first partial derivatives in a region in the xy-plane

whose boundary is a closed curve without self-intersections. Then by partial differentiation of (13),

∂M

∂y
=

∂2u

∂y∂x
,

∂N

∂x
=

∂2u

∂x∂y
.
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

By the assumption of continuity, the two second partial derivatives are equal. Thus

∂M

∂y
=

∂N

∂x
. (14)

This condition is not only necessary but also sufficient for (10) to be an exact differential equation.

If (10) is exact, the function u(x, y) can be found by inspection or in the following systematic way.

From (13a) you have by integration with respect to x

u =

∫

Mdx + k(y) (15)

in this integration, y is to be regarded as a constant, and k(y plays the role of a “constant” of integration. To

determine k(y), you have to derive ∂u/∂y from (15), use (13b) to get dk/dy, and integrate dk/dy to get k.

Formula (15) was obtained from (4a). Instead of (4a), you may equally use (13b). Then instead of (15)

you will first have by integration with respect to y that

u =

∫

Ndy + l(x). (15∗)

To determine l(x), you can derive ∂u/∂x from (6∗), use (4a) to get dl/dx, and integrate. The following are

examples for illustration

Example 3.7 Solve

cos(x + y)dx + (3y2 + 2y + cos(x + y))dy = 0 (16)

Solution.

Step 1. Test for exactness. Our equation is of the form (10) with

M = cos(x + y) N = 3y2 + 2y + cos(x + y)

Thus

∂M

∂y
= − sin(x + y)

∂N

∂x
= − sin(x + y)

From this and (14), you see that (16) is exact.

Step 2. Implicit general solution. From (15) you obtain by integration

u =

∫

Mdx + k(y) =

∫

cos(x + y)dx + k(y) = sin(x + y) + k(y) (17)

To find k(y), differentiate this formula with respect to y and use formula (13b), to obtain

∂u

∂y
= cos(x + y) +

dk

dy
= N = 3y2 + 2y + cos(x + y)

7



3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Hence dk/dy = 3y2+2y. By integration, k = y3+y2+ c̃. Inserting this result into (17) and observing

(12), you obtain the answer

u(x, y) = sin(x + y) + y3 + y2 = c

Step 3. Checking an implicit solution. You can check by differentiating the implicit solution

u(x, y) = c implicitly and see whether this leads to the given ODE (16):

du =
∂u

∂x
dx +

∂u

∂y
dy = cos(x + y)dx + (cos(x + y) + 3y2 + 2y)dy = 0 (18)

This completes the check.

Example 3.8 WARNING! Breakdown in the Case of Nonexactness

The equation −ydx + xdy = 0 is not exact because M = −y and N = x, so that in (14), ∂M/∂y = −1
but ∂N/∂x = 1. You can show that in such a case the present method does not work. From (15),

u =

∫

Mdx + k(y) = −xy + k(y), hence
∂u

∂y
= −x +

dk

dy
.

Now, ∂u/∂y should equal N = x, by (13b). However, this is impossible because k(y) can depend only on

y. Try (15∗); it will also fail. Solve the equation by another method that is discussed below.

Reduction to Exact Form. Integrating Factors

The ODE in Example 3.8 is −ydx + xdy = 0. It is not exact. However, if you multiply it by 1/x2, you will

get an exact equation [check exactness by (14)!],

−ydx + xdy

x2
= − y

x2
dx +

1

x
dy = d

(y

x

)

= 0 (19)

Integration of (19) then gives the general solution y/x = c = const.

This example gives the idea. All you did was multiply a given nonexact equation, say,

P (x, y)dx + Q(x, y)dy = 0 (20)

by a function F that, in general, will be a function of both x and y. The result was an equation

FPdx + FQdy = 0 (21)

that is exact, so you can solve it as just discussed. Such a function F (x, y) is then called an integrating

factor of (20).

Example 3.9 Integrating Factor

The integrating factor in (19) is F = 1/x2. Hence in this case the exact equation (21) is

FPdx + FQdy =
−ydx + xdy

x2
= d

(y

x

)

= 0. Solution
y

x
= c.

These are straight lines y = cx throught the origin.

It is remarkable that you can readily find other integrating factors for the equation −ydx+xdy = 0, namely,

1/y2, 1/(xy), and 1/(x2 + y2), because

−ydx + xdy

y2
= d

(

x

y

)

,
−ydx + xdy

xy
= −d

(

ln
x

y

)

,
−ydx + xdy

x2 + y2
= d

(

arctan
y

x

)

. (22)
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

How to Find Integrating Factors

In simpler cases you may find integrating factors by inspection or perhaps after some trials, keeping 22 in

mind. In the general case, the idea is the following.

For M dx + N dy = 0 the exactness condition (13) is ∂M/∂y = ∂N/∂x. Hence for (13), FPdx +
FQdy = 0, the exactness condition is

∂

∂y
(FP ) =

∂

∂x
(FQ). (23)

By the product rule, with subscripts denoting partial derivatives, this gives

FyP + FPy = FxQ + FQx.

In the general case, this would be complicated and useless. So following the Golden Rule: If you cannot

solve your problem, try to solve a simpler one - the result may be useful (and may also help you later on).

Hence you look for an integrating factor depending only on one; fortunately, in many practical cases, there

are such factors, as you shall see. Thus, let F = F (x). Then Fy = 0, and Fx = F ′ = dF/dx, so that (23)

becomes

FPy = F ′Q + FQx

Dividing by FQ and reshuffling terms, you have

1

F

dF

dx
= R, where R =

1

Q

(

∂P

∂y
− ∂Q

∂x

)

(24)

This proves the following theorem.

Theorem 3.1 Integrating Factor F (x) If (20) is such that the right side R of (24), depends only on x, then

(20) has an integrating factor F = F (x), which is obtained by integrating (24) and taking exponents on

both sides,

F (x) = exp

∫

R(x)dx. (25)

Similarly, if F ∗ = F ∗(y), then instead of (24) you get

1

F ∗

dF ∗

dy
= R∗, where R∗ =

1

P

(

∂Q

∂x
− ∂P

∂y

)

(26)

and you have the companion

Theorem 3.2 Integrating Factor F ∗(y) If (20) is such that the right side R∗ of (26) depends only of y,
then (20) has an integrating factor F ∗ = F ∗(y) which is obtained from (26) in the form

F ∗(y) = exp

∫

R∗(y)dy. (27)

Example 3.10 Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(ex+y + yey)dx + (xey − 1)dy = 0, y(0) = −1 (28)

9



3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Solution.

Step 1. Nonexactness. The exactness check fails:

∂P

∂y
=

∂

∂y
(ex+y + yey) = ex+y + ey + yey but

∂Q

∂x
=

∂

∂x
(xey − 1) = ey

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)]

depends on both x and y,

R =
1

Q

(

∂P

∂y
− ∂Q

∂x

)

=
1

xey − 1
(ex+y + ey + yey − ey).

Try Theorem 2. The right side of (26) is

R∗ =
1

P

(

∂Q

∂x
− ∂P

∂y

)

=
1

ex+y + yey
(ey − ex+y − ey − yey) = −1

Hence (27) give the integrating factor F ∗(y) = e−y. From this result and (28) you get the exact

equation

(ex + y)dx + (x − e−y)dy = 0.

Test for exactness: you will get on both sides of the exactness condition. By integration, using (13a).

u =

∫

(ex + y) dx = ex + xy + k(y)

Differentiate this with respect to y and use (13b) to get

∂u

∂y
= x +

dk

dy
= N = x − e−y,

dk

dy
= −e−y, k = e−y + c∗.

Hence the general solution is

u(x, y) = ex + xy + e−y = c.

Step 3. Particular solution. The initial condition y(0) = 1 gives u(0,−1) = 1+0+e = 3.72. Hence

the answer is ex + xy + e−y = 1 + e = 3.72.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the

initial condition.

3.1.5 Linear ODEs. Bernoulli Equation.

Linear ODEs or PDEs that can be transformed to linear form are models for various phenomena, for in-

stance, in physics, biology, population dynamics, and ecology, as you shall see.

A first-order ODE is said to be linear if it can be written

y′ + p(x)y = r(x) (29)

The defining feature of this equation is that it is linear in both the unknown function y and its derivative

y′ = dy/dx, whereas p and r may be any given functions of x. If in an application the independent variable

is time, you should write t instead of x.

10



3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

If the first term is f(x)y′ (instead of y′), divide the equation by f(x) to get the “ standard form” (1),

with y′ as the first term, which is practical.

For instance, y′ cos x + y sin x = x is a linear ODE, and its standard form is y′ + y tan x = x sec x.

The function r(x) on the right may be a force, and the solution y(x) a displacement in a motion or an

electrical current or some other physical quantity. In engineering, r(x) is frequently called input, and y(x)
is called the output or the response to the input (and, if given, to the initial condition).

Homogeneous Linear ODE.

You are expected to solve (29) in some interval a < x < b, call it I. Two cases are possible for r(x) = 0;
i.e., either r(x) ≡ 0 or r(x) 6= 0.

If r(x)=0, then the ODE (29) becomes

y′ + p(x)y = 0 (30)

and is called homogeneous. By separating variables and integrating you obtain

dy

y
= −p(x)dx, thus ln |y| = −

∫

p(x)dx + c ∗ .

Takin exponents on both sides, you obtain the general solution of the homogeneous ODE(30),

y(x) = ce−
R

p(x)dx (c = ±ec∗ when y ≷ 0) (31)

here you may choose c=0 and obtain the trivial solution y(x) = 0 for all x in the interval I.

Nonhomogeneous Linear ODE.

The next is to consider the case r(x) 6= 0 in (29) for all x in the interval I considered. In this case, the

ODE(29) is called nonhomogeneous. It turns out that in this case, (29) has a pleasant property; namely,

it has an integrating factor depending only on x. You can find this factor F (x) by theorem 3.1 in the last

section. For this purpose you write (29) as

(py − r)dx + dy = 0

This is Pdx + Qdy = 0, where P = py − r and Q = 1. Hence the right side of (24) is simply 1(p-0)=p, so

that (24) becomes
1

F

dF

dx
= p(x)

Separation and integration gives

dF

F
= pdx and ln |F | =

∫

pdx.

Taking exponents on both sides, gives the desired integrating factor F(x),

F (x) = e
R

pdx

11



3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Now, multiply (29) on both sides by this F. Then by the product rule,

e
R

pdx(y′ + py) = (e
R

pdxy)′ = e
R

pdxr.

By integrating the second and third of these three expressions with respect to x, you get

e
R

pdxy =

∫

e
R

pdxrdx + c.

Dividing this equation by e
R

pdx and denoting the exponent
∫

pdx by h, you obtain

y(x) = e−h

(
∫

ehrdx + c

)

, h =

∫

pxdx. (32)

(The constant of integration in h does not matter.) Formula (32) is the general solution of (29) in the form

of an integral. Thus, solving (29) is now reduced to the evaluation of an integral.

Example 3.11 First-Order ODE, General Solution

Solve the linear ODE

y′ − y = e2x

Solution.

Here

p = −1, r = e2x, h =

∫

pdx = −x

and from (32) you obtain the general solution

y(x) = ex

(
∫

e−xe2xdx + c

)

= ex(ex + c) = cex + e2x.

In simpler cases, such as the present, you may not need the general formula (32), but may wish to

proceed directly, multiplying the given equation by eh = e−x. This gives

(y′ − y)e−x = (ye−x)′ = e2xe−x = ex.

Integrating on both sides, you obtain the same result as before;

ye−x = ex + c, hence y = e2x + cex

Example 3.12 First-Order ODE, Initial Value Problem.

Solve the initial value problem

y′ + y tan x = sin 2x, y(0) = 1.

12



3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Here p = tan x, r = sin 2x = 2 sin x cos x, and

∫

pdx =

∫

tan xdx = ln | sec x|.

From this you see that in (32),

eh = sec x, e−h = cos x, ehr = (sec x)(2 sin x cos x) = 2 sin x,

and the general solution of our equation is

y(x) = cos x

(

2

∫

sin xdx + c

)

= c cos x − 2 cos2 x.

From this and the initial condition, 1 = c · 1 − 2 · 12, thus c = 3 and the solution of our initial value

problem is y = 3 cos x − 2 cos2 x.

Reduction to Linear Form. Bernoulli Equation

Numerous application can be modeled by ODE’s that are nonlinear but can be transformed to linear ODEs.

One of the most useful ones of these is the Bernoulli equation.

y′ + p(x)y = g(x)ya a ∈ R (33)

If a = 0 or a = 1, Equation (33) is linear. Otherwise it is nonlinear. Then you will set

u(x) = [y(x)]1−a.

Differentiating this and substituting y′ from (33), you obtain

u′ = (1 − a)y−ay′ = (1 − a)y−a(gya − py).

Simplification gives

u′ = (1 − a)(g − py1−a),

where y1−a = u on the right, so that you get the linear ODE

u′ + (1 − a)pu = (1 − a)g. (34)

Example 3.13 Logistic Equation.

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation)

y′ = Ay − By2 (35)

Solution.

13



3.2 Second Order Linear ODEs ORDINARY DIFFERENTIAL EQUATION

Write (34) in the form (35) in the form (33), that is,

y′ − Ay = B − By2

to see that a = 2, so that u = y1−a = y−1. Differentiating this u and substitute y′ from (35),

u′ = −y−2y′ = −y−2(Ay − By2) = B − Ay−1

The last term is −Ay−1 = −Au. Hence you have obtained the linear ODE

u′ + Au = B

The general solutionis [by (32)]

u = ce−At + B/A.

Since u=1/y, this gives the solution of (35),

y =
1

u
=

1

ceAt + B/A
(36)

Directly from (35) you see that y ≡ 0 (y(t) = 0 for all t) is also a solution.

3.2 Second Order Linear ODEs

A second-order ODE is called linear if it can be written in the form

y′′ + p(x)y′ + q(x)y = r(x) (37)

and nonlinear if it cannot be written in this form.

The distinctive feature of this equation is that it is linear in y and its derivativs, whereas the function

p, q and r on the right may be any given functions of x. If the equation begins with say f(x)y′′ then divide

by f(x) to have the standard form (37) with y′′ as the first term, which is practical.

If r(x) ≡ 0 (that is, r(x) = 0 for all x considered; read “r(x) is identically zero”), then (37) is reduced

to

y′′ + p(x)y′ + q(x)y = 0 (38)

and is called homogeneous. If r(x) 6= 0, then (1) is called nonhomogeneous.

For instance, a nonhomogeneous linear ODE is

y′′ + 25y = e−x cos x

and a homogeneous linear ODE is

xy′′ + y′ + xy = 0, in standard form y′′ +
1

x
y′ + y = 0.

An example of a non linear ODE is

y′′y + y′2 = 0

The functions p and q in (37) and (38) are called the coefficients of the ODEs. Solutions are defined

similarly as for first-order ODEs in section. A function

y = h(x)

is called a solution of a (linear or nonlinear) second-order ODE on some open interval I if h is defined and

twice differentiable throughout that interval and is such that the ODE becomes an identity if you replace

the unknown y by h, the derivative y′ by h′, and the second derivative y′′ by h′′. Examples are given below.

14
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Homogeneous Linear ODEs: Superposition Principle

Linear ODEs have a rich solution structure. For the homogeneous equation the back bone of this structure

is the superposition principle or linearity principle, which says that you can obtain further solutions from

given ones by adding them or by multiplying them with any constants. Of course, this is a great advantage

of homogeneous linear ODEs. The following is an example.

Example 3.14 Homogeneous Linear ODEs: Superposition of Solutions

The functions y = cos x and y = sinx are solutions of the homogeneous linear ODE

y
′′ + y = 0

for all x. You can verify this by differentiation and substitution. This gives you (cos x)′′ = − cos x; hence

y
′′ + y = (cos x)′′ + cos x = − cos x + cos x = 0

Similarly for y = sinx. You can go an important step further. You multiply cos x by any constan, for instance, 4.7 and

sinx by say, −2, and take the sum of the results, claiming that it is a solution. Indeed differentiation and substitution

gives

(4.7 cos x − 2 sinx)′′ + (4.7 cos x − 2 sinx) = −4.7 cos x + 2 sinx + 4.7 cos x − 2 sinx = 0

In this example you have obtained from y1(= cos x) and y2(= sin x) a function of the form

y = c1y1 + c2y2 (c1, c2 arbitrary constants). (39)

This is called a linear combination of y1 and y2. In terms of this concept you can now formulate the result

suggested by your example, often called the superposition principle or linearity principle.

Theorem 3.3 Fundamental Theorem for the Homogeneous Linear ODE (38)

For a homogeneous linear ODE (38), any linear combination of two solutions on an open interval I is

again a solution of (38) on I. In particular, for such an equation, sums and constant multiples of solutions

are again solutions.

Proof. Let y1 and y2 be solutions of (38) on I. Then by substituting y = c1y1 +c2y2 and its derivatives

into (38), and using the familiar rule of derivatives, you get

y′′ + py′ + qy = (c1y1 + c2y2)
′′ + p(c1y1 + c2y2)

′ + q(c1y1 + c2y2)

= c1y
′′ + c2y

′′ + p(c1y
′

1 + c2y
′

2) + q(c1y1 + c2y2)

= c1(y
′′ + py′

1 + qy1) + c2(y
′′

2 + py′

2 + qy2) = 0

since in the last line, (· · · ) = 0 because y1 and y2 are solutions, by assumption. This shows that y is a

solution of (38) on I.

Remark 3.1 You should not forget that this highly important theorem holds forhomogeneous linear ODEs

only but does not hold for nonhomogeneous linear or nonlinear ODEs, as the following example illustrate.
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Example 3.15 A Nonhomogeneous Linear ODE Verify by substitution that the functions y = 1 + cos x
and y = 1 + sin x are solutions of the nonhomogeneous linear ODE

y′′ + y = 1

but their sum is not a solution. Neither is, for instance 2(1 + cos x)or5(1 + sin x).

Example 3.16 A Nonlinear ODE Verify by substitution that the functions y = x2 and y = 1 are solutions

of the nonlinear ODE

y′′y − xy′ = 0

but their sum is not a solution. Neither is −x2, so you cannot even multiply by −1!

Initial Value Problem. Basis. General Solution

Recall that from section 3.1, that for a first-order ODE, an initial value problem consists of the ODE and

one initial condition y(x0) = y0. The initial condition is used to determine the arbitrary constant c in the

general solution of the ODE. This results in a unique solution as you need it in most applications. That

solution is called a particular solution of the ODE. These ideas extend to second-order equations as follows.

For a second-order homogeneous linear ODE (38) an initial value problem consists of (38) and two

initial conditions

y(x0) = K0, y′(x0) = K1. (40)

These conditions prescribe given values K0 and K1 of the solution and its first derivative (the slope of its

curve) at the same given x = x0 in the open interval considered.

The conditions (40) are used to detem the two arbitrary constants c1 and c2 in general solution

y = c1y1 + c2y2 (41)

of the ODE; here, y1 and y2 are suitable solutions of the ODE, with “suitable” to be explained after the

next example. This results in a unique solution, passing through the point (x0, K0) with K1 as the tangent

direction (the slope) at that point. That solution is called a particular soluion of the ODE (38).

Example 3.17 Initial Value Problem

Solve the initial value problem

y′′ + y = 0, y(0) = 3.0, y′(0) = −0.5.

Solution.

Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by example 3.14),

and you can take

y = c1 cos x + c2 sin x

This will turn out to be the general solution as defined below.

Step 2. Particular solution. You need the derivative y′ = c1 sin x + c2 cos x. From this and the initial

values you will obtain, since cos 0 = 1 and sin 0 = 0,

y(0) = c1 = 3.0 and y′(0) = c2 = −0.5.
16
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This gives as the solution of your initial value problem the particular solution

y = 3.0 cos x − 0.5 sin x.

Definition 3.1 General Solutin, Basis, Particular Solution

A general solution of an ODE(38) on an open interval I is a solution (41) in which y1 and y2 are solutions

of (38) on I that are not proportional, and c1 and c2 are arbitrary constants. These y1, y2 are called the basis

(or a fundamental system) of solutions of (38) on I.
A particular solution of (38) on I is obtained if you assign specific values to c1 and c2 in (41).

Note that y1 and y2 are called proportional on I if for all x on I,

(a) y1 = ky2 or (b) y2 = ly1 (42)

where k and l are numbers, zero or not. (Note (a) implies (b) if and only if k 6= 0).

Actually, you can reformulate your definition of a basis by using a concept of general importance.

Namely, two functions y1 and y2 are called linearly independent on an interval I where they are defined if

k1y1(x) + k2y2(x) = 0 everywhere on I implies k1 = 0 and k2 = 0. (43)

And y1 and y2 are called linearly dependent on I if (43) holds for some constants k1, k2 not both zero.

Then if k1 6= 0 k2 6= 0, you can divide and see that y1 and y2 are proportional,

y1 = −k2

k1

y2 or y2 = −k1

k2

y1.

In contrast, in the case of linear independence these funcitons are not proportional because then you cannot

divide in (43). This gives the following

Definition 3.2 Basis (Reformulated)

A basis of solutions of (38) on an open interval I is a pair of linearly independent solutions of (38) on I.

If the coefficients p and q of (38) are continuous on some open interval I, then (38) has a general

solution. It yields the unique solution of any initial value problem (38), (40). It includes all solutions of

(38) on I; hence (38) has no singular solutions (solutions not obtainable from the general solution).

Example 3.18 cos x and sin x in example 3.17 from a basis of solutions of the ODE y′′ + y = 0 for all

x because their quotient is cot x 6= const (or tan x 6= const). Hence y = c1 cos x + c2 sin x is a general

solution. The solution y = 3.0 cos x − 0.5 sin x of the initial value problem is a particular solution.

Example 3.19 Verify by substitution that y1 = ex and y2 = e−x are solutions of the ODE y′′− y = 0. Then

solve the initial value problem

y′′ − y = 0, y(0) = 6 y′(0) = −2.

Solution.

(ex)′′ − ex = 0 and (e−x)′′ − e−x = 0 shows that ex and e−x are solutions. They are not proportional,

because ex/e−x 6= const. Hence ex, e−x form a basis for all x. You now write down the corresponding

general solution and its derivatives and equate their values at 0 to the given initial conditions,

y = c1e
x + c2e

−x, y′ = c1e
x − c2e

−x, y(0) = c1 + c2 = 6, y′(0) = c1 − c2 = −2

By addition and subtraction, c1 = 2, c2 = 4, so that the answer is y = 2ex + 4e−x. This is the

particular solution satisfying the two initial conditions.

17
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3.2.1 Homogeneous Linear ODEs with Constant Coefficients

In this section, you shall study second-order homogeneous linear ODEs whose coefficients a and b,

y′′ + ay′ + by = 0. (44)

How to solve (44)? You remember that the solution of the first-order linear ODE with a constan coefficient

k
y′ + ky = 0

is an exponential function y = ce−kx. This gives you the idea to try as a solution of (44) the function

y = eλx. (45)

Substitutin (45), and its derivative

y′ = λeλx and y′′ = λ2eλx

into your equation (44), you obtain

(λ2 + aλ + b)eλx = 0.

Hence if λ is a solution of the important characteristic equation (or auxiliary equation)

λ2 + aλ + b = 0 (46)

then the exponential function (45) is a solution of the ODE (44). Now from elementary algebra you recall

that the roots of this quadratic equation (46) are

λ1 =
1

2
(−a +

√
a2 − 4b), λ1 =

1

2
(−a −

√
a2 − 4b) (47)

(46) and (47) will be basic because our derivation shows that the functions

y1 = eλ1x and y2 = eλ2x (48)

are solutions of (44). Verify by substituting (48) into (44).

From algebra you further know that the quadratic equation (46) may have three kinds of roots, depending

on the sign of the discriminant a2 − 4b, namely,

(Case I) Two real and distinct roots if a2 − 4b > 0,

(Case II) A real and repeated root if a2 − 4b = 0,

(Case III) Complex conjugate roots if a2 − 4b < 0.
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Case I. Two Distinct Real Roots λ1 and λ2

In this case, a basis of solutions of (44) on any interval is

y1 = eλ1x and y2 = eλ2x

because y1 and y2 are defined (and real) for all x their quotient is not constant. The corresponding general

equation is

y = c1e
λ1x + c2e

λ2x (49)

Example 3.20 You can now solve y′′ − y = 0 in Example 3.19 systematically. The characteristic equation

is λ2 − 1 = 0. Its roots are λ1 = 1 and λ2 = −1. Hence a basis of solutions is ex and e−x and gives the

same general solution as before.

y = c1e
x + c2e

−x.

Example 3.21 Solve the initial value problem

y′′ + y′ − 2y = 0, y(0) = 4, y′(0) = −5

Solution.

Step 1. General solution. The characteristic equation is

λ2 + λ − 2 = 0.

Its roots are

λ1 = 1
2
(−1 +

√
9) = 1 and λ2 = 1

2
(−1 −

√
9) = −2

so that you obtain the general solution

y = c1e
x + c2e

−2x.

Step 2. Particular solution. Since y′(x) = c1e
x − 2c2e

−2x, you obtain from the general solution and

the initial conditions

y(0) = c1 + c2 = 4

y′(0) = c1 − 2c2 = −5

Hence c1 = 1 and c2 = 3. This gives the answer y = ex + 3e−2x.

19



3.2 Second Order Linear ODEs ORDINARY DIFFERENTIAL EQUATION

Case II. Real Double Root λ = −a/2

If the discriminant a2 − 4b is zero, you see directly from (47) that you get only one root, λ = λ1 = λ2 =
−a/2, hence only one solution,

y1 = e−(a/2)x.

To obtain a second independent solution y2 (needed for a basis), you use the method of reduction of order

discussed in the last section, setting y2 = uy1. Substituting this and its derivatives y′

2 = u′y1 + uy′

1 and y′′

2

into (44), you first have

(u′′y1 + 2u′y′

1 + uy′′

1) + a(u′y1 + uy′

1) + buy1 = 0

Collecting terms in u′′, u′, and u, as in the last section, you obtain

u′′y1 + u′(2y′

1 + ay1) + u(y′′

1 + ay′

1 + by1) = 0.

The expression in the last parentheses is zero, since y1 is a solution of (44). The expression in the first

parentheses is zero, too, since

2y′

1 = −ae−ax/2 = −ay1.

You are thus left with u′′y1 = 0. Hence u′′ = 0. By two integrations, u = c1x + c2. To get a second

independent solution y2 = uy1, you can simply choose c1 = 1, c2 = 0 and take u = x. Then y2 = xy1.
Since these solution are not proportional, they form a basis. Hence in the case of a double root of (46) a

basis of solutions (44) on any interval is

e−ax/2, xe−ax/2,

The corresponding general solution is

y = (c1 + c2x)e−ax/2 (50)

Example 3.22 The characteristic equation of the ODE y′′ + 6y′ + 9y is λ2 + 6λ + 9 = (λ + 3)2 = 0.
It has the double root λ = −3. Hence a basis is e−3x and xe−3x. The corresponding general solution is

y = (c1 + c2x)e−3x.

Example 3.23 Solve the initial value proble

y′′ + y′ + 0.25y = 0, y(0) = 3.0, y′(0) = −3.5

Solution.

The characteristic equation is λ2 + λ + 0.25 = (λ + 0.5)2 = 0. It has the double root λ = −0.5. This

gives the general solution

y = (c1 + c2x)e−0.5x.

You need it derivative

y′ = c2e
−0.5x − 0.5(c1 + c2x)e−0.5x.

From this and the initial conditions you obtain

y(0) = c1 = 3.0, y′(0) = c2 − 0.5c1 = −3.5; hence c2 = −2.

The particular solution of the initial value problem is y = (3 − 2x)e−0.5x
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Case III. Complex Roots −1
2
a + iω and −1

2
a − iω

This case occurs if the discriminant a2 − 4b of the characteristic equation (46) is negative. In this case, the

roots of (46) and thus the solutions of the ODE (44) come at first out complex. However, you show that

from them you can obtain a basis of real solutions

y1 = e−ax/2 cos ωx, y2 = eax/2 sin ωx (ω > 0) (51)

where ω2 = b − 1
4
a2. It can be verified by substitution that these are solutions in the present case. You can

derive them systematically after the two examples by using the complex exponential function. They form a

basis on any interval since their quotient cot ωx is not constant. Hence a real general solution in Case III is

y = eax/2(A cos ωx + B sin ωx) (A, B, arbitray). (52)

Example 3.24 Solve the inital valued problem

y′′ + 0.4′ + 0.4y = 0, y(0) = 0 y′(0) = 3.

Solution.

Step 1. General solution. The characteristic equation is λ2 + 0.4λ + 9.04 = 0. It has the roots

−0.2 ± 3i. Hence ω = 3, and the genral solution (52) is y = e−0.2x(A cos 3x + B sin 3x).

Step 2. Particular solution. The first initial condition gives y(0) = A = 0. The remaining expresion

is y = Be−0.2x sin 3x. You need the derivative (chain rule!)

y′ = B(−0.2e−0.2x sin 3x + 3e−0.2x cos 3x).

From this and the second initial condition, you should obtain y′(0) = 3B = 3. Hence B = 1. Your

solution is then

y = e−0.2x sin 3x.

Example 3.25 Complex Roots

A general solution of the ODE

y′′ + ω2y = 0 (ω constant, not zero)

is

y = A cos ωx + B sin ωx.

With ω = 1, this comfirms example 3.17.
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3.2.2 Nonhomogeneous ODEs

Method of Undetermined Coefficients

In this section you will be introduced to nonhomogeneous linear ODEs

y′′ + p(x)y′ + q(x)y = r(x) (53)

where r(x) 6= 0. You will see that a “general solution” of (53) is the sum of a general solution of the

corresponding homogeneous ODE

y′′ + p(x)y′ + q(x)y = 0 (54)

and a “particular solution” of (53). These two new terms “general solution of (53)” and a particular solution

of (53)“ are defined as follows.

Definition 3.3 General Solution, Particular Solution

A general solution of the nonhomogeneous ODE (53) on an open interval I is a solution of the form

y(x) = yh(x) + yp(x); (55)

here, yh = c1y1 + c2y2 is a general solution of the homogeneous ODE (54) on I and yp is any solution of

(53) on I containing no arbitrary constants.

A Particular solution of (53) on I is a solution obtained from (55) by assigning specific values to the

arbitrary constants c1 and c2 in yh.

Your task is now two fold, first to justify these definitions and then to develop a method for finding a

solution yp of (53).

Accordingly, you should first show that a general solution as just defined satisfied (53) and that the

solution of (53) and (54) are related in a very simple way.

Theorem 3.4 Relations of Solutions of (53) to Those of (54)

(a) The sum of a solution y of (53) on some open interval I and a solution ỹ of (54) on I is a solution (53)

on I. In particular, (55) is a solution of (53) on I.

(b) The difference of two solutions of (53) on I is a solution of (54) on I.

Proof.

(a) Let L[y] denote the left side of (53). Then for any solutions y of (53) and ỹ of (54) on I,

L[y + ỹ] = L[y] + L[ỹ] = r + 0 = r.

(b) For any solutions y and y∗ of (53) on I you have L[y − y∗] = L[y] − L[y∗] = r − r = 0.

Now for homogeneous ODEs (54) you know that general solutions include all solutions. You show that

the same is true for nonhomogeneous ODEs (53).
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Theorem 3.5 A General Solution of a Nonhomogeneous ODE includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in (53) are continuous on some open interval I, then

every solution of (53) on I is obtained by assigning suitable values to the arbitrary constants c1 and c2 in a

general solution (55) on I.

Proof. Let y∗ be any solution of (53) on I and x0 and x in I. Let (55) be any general solution of (53)

on I This solution exists Indeed, yh = c1y1 + c2y2 exists (why?) because of the continuity assumption, and

yp exists according to a construction (how?) Now, by theorem 1(b) just proved, the difference Y = y∗ − yp

is a solution of (54) on I. At x0 you have

Y (x0) = y∗(x0) − yp(x0), Y ′(x0) = y∗′(x0) − y′

p(x0).

Existence and uniqueness theorem (proved in the next unit) implies that for these conditions, as for any

other initial conditions in I, there exists a unique particular solution of (54) obtained by assigning suitable

values to c1, c2 in yh. From this and y∗ = Y + yp the statement follows.

Method of Undetermined Coefficients

Your discussion suggests the following. To solve the nonhomogeneous ODE (53) or an initial value problem

for (53), you have to solve the homogeneous ODE (54) and find any solution yp of (53), so that you obtain

a general solution (55) of (53)

How can you find a solution yp of (53)? One method is the so-called method of undetermined coeffi-

cients. It is much simpler than another, more general method, (which may not be discussed in this book).

Since it applies to models of vibrational systems and electric circuits. It is frequently used in engineering.

More precisely, the method of undetermined coefficients is suitable for linear ODEs with constant

coefficients a and b

y′′ + ay′ + by = r(x) (56)

when r(x) is an exponential function, a power of x, a cosine or sine, or sums or products of such functions.

These functions have derivatives similar to r(x) itself. This gives the idea. You choose a form for yp similar

to r(x), but with unknown coefficients to determined by substituting that yp and its derivatives into the

ODE. Table 1 shows the choice of yp for practically important forms of r(x). Corresponding rules are as

follows.

Table 1: Method of Undetermined Coeffients
Term in r(x) Choice for yp(x)
keγx Ceγx

kxn (n = 0, 1, · · · ) Knx
n + Kn−1x

n−1 + · · · + K1x + K0

k cos ωx
k sin ωx

K cos ωx + M sin ωx

keαx cos ωx
keαx sin ωx

eαx(K cos ωx + M sin ωx)
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Example 3.26 Application of the Basic Rule (a)

Solve the initial value problem

y′′ + y = 0.001x2, y(0) = 0, y′(0) = 1.5. (57)

Solution.

Step 1. General solution of the homogeneous ODE. The ODE y′′ + y = 0 has the general solution

yh = A cos x + B sin x.

Step 2. Solution yp of the nonhomogeneous ODE. First try yp = Kx2. Then y′′

p = 2K. By substitu-

tion. By substitution, 2K + Kx2 = 0.001x2. For this to hold for all x. the coefficient of each power

of x (x2 and x0) must be the same on both sides; thus K = 0.001 and 2K = 0, a contradiction.

The second line in Table 1 suggests the choice

yp = K2x
2 + K1x + K0. Then y′′

p + yp = 2K2 + K2x
2 + K1x + K0 = 0.001x2.

Equating the coefficients of x2, x, x0 on both sides, you have K2 = 0.001, K1 = 0.2K2 + K0 = 0.
Hence K0 = −2K2 = −0.002. This gives yp = 0.001x2 − 0.002, and

y = yh + yp = A cos x + B sin x + 0.001x2 − 0.002.

Step 3. Solution of the initial value problem. Setting x=0 and using the first initial condition gives

y(0)=A-0.002=0, hence A=0.002. By differentiation and from the second initial condition.

y′ = y′

h + y′

p = −A sin x + B cos x + 0.002x and y′(0) = B = 1.5.

This gives the answer

y = 0.002 cos x + 1.5 sin x + 0.001x2 − 0.002.

Example 3.27 Application of the Modification Rule (b)

Solve the initial value problem

y′′ + 3y′ + 2.25y = −10e−1.5x, y(0) = 1, y′(0) = 0. (58)

Solution.

Step 1. General solution of the homogeneous ODE. The characteristic equation of the homogeneous

ODE is λ2 + 3λ + 2.25 = (λ + 1.5)2 = 0. Hence the homogeneous ODE has the general solution

yh = (c1 + c2)e
−1.5x.

Step. 2 Solution yp of the nonhomogeneous ODE. The function e−1.5x on the right would normally

require the choice Ce−1.5x. But you see from yh that this function is a solution of the homogeneous

ODE, which corresponds to a double root of the characteristic equation. Hence, according to the

Modification Rule you have to multiply your choice function by x2. That is, you choose
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yp = Cx2e−1.5x Then y′

p = C(2x − 1.5x2)e1.5x,
y′′

p = C(2 − 3x − 3x + 2.25x2)e−1.5x.

Substituting these expressions into the give ODE and omit the factor e−1.5x. This yields

C(2 − 6x + 2.25x2) + 3C(2x − 1.5x2) + 2.25Cx2 = −10.

Comparing the coefficients of x2, x, x0 gives 0 = 0, 0 = 0, 2C = −10, hence C = −5. This gives

the solution yp = −5x2e−1.5x. Hence the given ODE has the general solution

y = yh + yp = (c1 + c2)e
−1.5x − 5x2e−1.5x.

Step 3. Solution of the initial value problem. Setting x = 0 in y and using the first initial condition,

you obtain y(0) = c1 = 1. Differentiation of y gives

y′ = (c2 − 1.5c1 − 1.5c2x)e−1.5x − 10xe−1.5x + 7.5x2e−1.5x

From this and the second initial condition you have y′(0) = c2 − 1.5c1 = 0. Hence c2 = 1.5c1 = 1.5.
This gives the answer

y = (1 + 1.5x)e−1.5x − 5x2e−1.5x = (1 + 1.5x − 5x2)e−1.5x.

Example 3.28 Application of the Sum Rule (c)

Solve the initial value problem

y′′ + 2y′ + 5y = e0.5x + 40 cos 10x − 190 sin 10x, y(0) = 0.16 y′(0) = 40.08 (59)

Solution.

Step 1. General solution of the homogeneous ODE. The characteristic equation

λ2 + 2λ + 5 = (λ + 1 + 2i)(λ + 1 − 2i) = 0

shows that a real general solution of the homogeneous ODE is

yh = e−x(A cos 2x + B sin 2x)

Step 2. Solution of the nonhomogeneous ODE. Write yp = yp1
+ yp2

, where yp1
corresponds to the

exponential term and yp2
to the sum of the order two terms. Set

yp1
= Ce0.5x then y′

p1
= 0.5Ce0.5x and y′′

p1
= 0.25Ce0.5x.
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Substitution into the given ODE and omission of the exponential factor gives (0.25+2.05+5)C = 1,
hence C = 1/6.25 = 0.16, and yp1

= 0.16e0.5x.

Now set yp2
= K cos 10x + M sin 10x, as in Table 1, and obtain

y′

p2
= −10K sin 10x + 10M cos 10x, y′′

p2
= −100K cos 10x − 100M sin 10x.

Substitution into the given ODE gives for the cosine terms and for the sine terms

−100K + 2 · 10M + 5K = 40, −100M − 2 · 10K + 5M = −190

The solution is K = 0, M = 2. Hence yp2
= 2 sin 10x. Together,

y = yh + yp1
+ yp2

= e−x(A cos 2x + B sin 2x) + 0.16e0.5x + 2 sin 10x.

Step 3. Solution of the initial value problem. From y and the first initial condition, y(0) = A+0.16 =
0.16, hence A = 0. Differentiation gives

y′ = e−x(−A cos 2x − B sin 2x − 2A sin 2x + 2B cos 2x) + 0.08e0.5x + 20 cos 10x.

From this and the second initial condition you have y′0 = −A + 2B + 0.08 + 20 = 40.08, hence

B = 10. This gives the solution

10e−x sin 2x + 0.16e0.5x + 2 sin 10x.

3.2.3 Solution by Variation of Parameters

Here is a continuation of the discussion of nonhomogeneous linear ODEs

y′′ + p(x)y′ + q(x)y = r(x). (60)

In previous sections you have seen that a general soluton of (60) is the sum of the general solution yh of

the corresponding homogeneous ODE and any particular solution yp of (60). To obtain yp when r(x) is not

too complicated, you can often use the method of undetermined coefficients, as you have shown in the last

section.

However, since this method is restricted to functions r(x) whose derivatives are of a form similar to r(x)
itself (powers, exponential functions, etc.), It is desirable to have a method valid for more general ODEs

(53), which you shall now develop. It is called the method of variation of parameters and is credited to

Lagrange. Here p, q, r in (1) may be variable (given functions of x), but you should assume that they are

continuous on some open interval I.

Lagrange’s method gives a particular solution yp of (53) on I in form

yp(x) = −y1

∫

y2r

W
dx + y2

∫

y1r

W
dx (61)

where y1, y2 form a basis of solutions of the corresponding homogeneous ODE

y′′ + p(x)y′ + q(x)y = 0 (62)
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on I, and W is the Wronskian of y1, y2,

W = det

(

y1 y2

y′

1 y′

2

)

= y1y
′

2 − y2y
′

1 (63)

Example 3.29 Method of Variation of Parameters

Solve the nonhomogeneous ODE

y′′ + y = sec x =
1

cos x
.

Solution.

A basis of solutions of the homogeneous ODE on any interval is y1 = cos x, y2 = sin x. This gives

the Wronskian

W (y1, y2) = cos x cos x − sin x(− sin x) = 1.

From (61), choosing zero constant of integratio, you get the particular solution of the given ODE

yp = − cos x

∫

sin x sec x dx + sin x

∫

cos x sec x dx

= cos x ln | cos x| + x sin x

From yp and the general solution yh = c1y1 + c2y2 of the homogeneous ODE you obtain the answer

y = yh + yp = (c1 + ln | cos x|) cos x + (c2 + x) sin x.

Had you included integration constants −c1, c2 in (61), then (61) would have given the additional

c1 cos x + c2 sin x = c1y1 + c2y2, that is, a general solution of the given ODE directly from (61). This

will always be the case.

3.3 Higher Order Linear ODEs

Recall that an ODE is of nth order if the nth derivative y(n) = dny/dxn of the unknown function y(x) is

the highest occurring derivative. Thus the ODE is of the form

F (x, y, y′, ..., y(n)) = 0

(

y(n) =
dny

dxn

)

where lower order derivatives and y itself may or may not occur. Such an ODE is called linear if it can be

written

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = r(x). (64)

(For n = 2 you return to second order equation with p1 = p and p0 = q). The coefficients p0, ..., pn−1 and

the function r on the right are any given functions of x, and y is unknown. y(n) has coefficient 1. This is
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practical, and it is called the standard form. (If you have pn(x)y(n)), divide by pn(x) to get this form.) An

nth-order ODE that cannot be written in the form (64) is called nonlinear.

If r(x) is identically zero, r(x) ≡ 0 (zero for all x considered, usually in some open interval I), then

(64) becomes

y(n) + pn−1(x)y(n−1) + · · · + p1(x)y′ + p0(x)y = 0 (65)

and is called homogeneous. If r(x) is not identically zero, then the ODE is called nonhomogeneous.

A solution of an nth-order (linear or nonlinear) ODE on some open interval I is a function y = h(x)
that is defined and n times differentiable on I and is such that the ODE becomes an identity if you replace

the unknown function y and its derivatives by h and its corresponding derivatives.

The extension of the concepts and methods of section 3.2 for linear ODEs from order n=2 to arbitrary

order n is easily obtained. This is straightforward and needs no new ideas. However, the formulas become

more involved, the variety of roots of the characteristic equation becomes much larger with increasing n,

and the Wronskian plays a more prominent role. For a detailed study on higher order ODE, see unit 3.

4 Conclusion

In this unit, you have studied ordinary differential equations (ODEs) of first order, second order and of

higher order (n > 2). You have used different approach in solving some first order differential equation

and second order ordinary differential equation. You have also proved some important theorem of higher

order differential equation, which are obvious extensions of the theorems proved for second order ordinary

differential equations.

5 Summary

Having gone through this unit, you now know that

(i) first order ODEs are equations of the form

F (x, y, y′) = 0 or in explicit form y′ = f(x, y)

involving the derivative y′ = dy/dx of an unknown function y, given functions of x, and, perhaps, y
itself. If the independent variable x is time, you denote it by t.

(ii) A general solution, of a first-order ODE is a solution involving an arbitrary constant, which you

denoted by c.

(iii) unique solutions can be found by determining a value of c from an initial condition y(x0) = y0.

(iv) An ODE together with an initial condition is called an initial value problem

y′ = f(x, y), y(x0) = y0 (x0, y0 given numbers)

and its solution is a particular solution of the ODE.
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5 Summary ORDINARY DIFFERENTIAL EQUATION

(v) A separable ODE is one that you can put into the form

g(y)dy = f(x)dx

and solve by integrating both sides

(vi) An exact ODE is of the form

M(x, y)dx + N(x, y)dy = 0

where Mdx + Ndy is the differential

du = uxdx + uydy

of a function u(x, y), so that from du=0 you immediately get the implicit general solution u(x, y) = c.
This methods extend to nonexact ODEs that can be made exact by multiplying then by some function

F (x, y), called the integrating factor

(vii) Linear ODEs are such of the form

y′ + p(x)y = r(x)

(viii) The Bernoulli equation are equations of the form

y′ + p(x)y = g(x)ya

(ix) A second-order ODE is called linear if it can be written

y′′ + p(x)y′ + q(x)y = r(x)

(x) it is homogeneous if r(x) is zero for all x considered, usually in some open interval; this is written

r(x) ≡ 0. Then

y′′ + p(x)y′ + q(x)y = 0.

(xi) If r(x) 6= 0 for some x considered, then the second order linear ODE is called nonhomogeneous.

(xii) by superposition principle the linear combination y = ky1 + ly2 of two solutions y1, y2 is again a

solution.

(xiii) Two linearly independent solutions y1, y2 of a homogeneous ODE on an open interval I form a basis

(or fundamental system) of solutions on I and y = c1y1 + c2y2 with arbitrary constants c1, c2 is a

general solution of the homogeneous ODE on I. From it you can obtain a particular solution if you

specify numeric values (numbers) for c1 and c2, usually by prescribing two initial conditions

y(x0) = K0, y′(x0) = K1 (x0, K0, K1 are given numbers)

a second order ODE together with an initial conditions form an initial value problem.

(xiv) the general solution of a nonhomogenous ODE is of the form

y = yh + yp

where yh is a general solution of the homogeneous part and yp is a particular solution of the nonhomo-

geneous part obtained by a general method, variation of parameters, or in many practical cases by
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the method of undetermined coefficients. The latter applies when second order ODE has constant

coefficients p and q, and r(x) is a power of x, sine, cosine, etc. Then you can write the second order

ODE as

y′′ + ay′ + by = r(x)

The corresponding homogeneous ODE y′′ + ay′ + by = 0 has solutions y = eλx, where λ is a root of

λ2 + aλ + b = 0.

Hence there are three cases which are

Case Type of Roots General Solution

I Distinct real λ1, λ2 y = c1e
λ1x + c2e

λ2x

II Double −1
2
a y = (c1 + c2x)e−ax/2

III Complex −1
2
a ± iω∗ y = e−ax/2(A cos ω∗x + B sin ω∗x)

6 Tutor Marked Assignments(TMAs)

Exercise 6.1 First-Order ODEs

Find the general solution using suitable method.

1. y′ = x2(1 + y2)

(a) y = 1
2
tan(2x + c)

(b) y = tan(x3 + c)

(c) y = 2 tan(x3 − c)

(d) y = tan(x3

3
+ c)

2. yy′ + xy2 = x

(a) y =
√

1 + ce−x2

(b) y = 1 + ce−x2

(c) y = 1 + ce−x

(d) y =
√

1 + ce−x

3. y′ + y sin x = sin x

(a) y = cecos x + 1

(b) y = ce− cos x + 1

(c) y = cesin x + 1

(d) y = ce− sin x + 1

4. 3 sin 2ydx + 2x cos 2ydy = 0
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(a) sin 2y = −cx3

(b) sin y = cx3

(c) sin 2y = cx−3

(d) sin 2y = c
2
x3

5. (y cos xy − 2x)dx + (x cos xy + 2y)dy = 0

(a) sin y − x2 + xy = c

(b) sin xy − x2 + y2 = c

(c) sin xy − x2 + y = c

(d) sin y2 − xy + y2 = c

6. sin(y − x)dx + [cos(y − x) − sin(y − x)]dy = 0

(a) ex sin(y − x) = c

(b) ey cos(y − x) = c

(c) ey sin(y − x) = c

(d) ex cos(y − x) = c

Solve the following initial value problems using suitable method in each case.

7. yy′ + x = 0, y(3) = 4

(a) y2 + x2 = 16

(b) y2 + x2 = 25

(c) y2 − x2 = 16

(d) y2 − x2 = 25

8. y′ = 1 + y2, y(1
4
π) = 0

(a) y = tan(x − 1
4
π)

(b) y = tan(x + 1
4
π)

(c) y = tan(2x − 1
4
π)

(d) y = tan(2x + 1
4
x)

9. (2xy2 − sin x)dx + (2 + 2x2y)dy = 0, y(0) = 1

(a) x2y + sin x + 2y = c

(b) x2y + cos x + 2y = c

(c) x2y2 + sin x + 2y = c

(d) x2y2 + cos x + 2y = c

Exercise 6.2 Second Order ODEs

Find a general solution in the following
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1. y′′ − 2y′ − 8y = 52 cos 6x

(a) c1e
4x + c2e

−2x − 1.1 cos 6x + 0.3 sin 6x

(b) c1e
4x + c2e

−2x + 1.1 cos 6x − 0.3 sin 6x

(c) c1e
4x + c2e

−2x − 1.1 cos 6x − 0.3 sin 6x

(d) c1e
4x + c2e

−2x + 1.1 cos 6x + 0.3 sin 6x

2. y′′ + 8y′ + 25y = 26 sin 3x

(a) e−4x(A cos 3x + B sin 3x) − 3
4
cos 3x − 1

2
sin 3x

(b) e−4x(A cos 3x + B sin 3x) − 3
4
cos 3x + 1

2
sin 3x

(c) e−4x(A cos 3x + B sin 3x) − 3
4
sin 3x + 1

2
cos 3x

(d) e−4x(A cos 3x + B sin 3x) + 3
4
sin 3x − 1

2
cos 3x

Solve the following initial value problems.

3. y′′ + 5y′ − 14y = 0, y(0) = 6, y′(0) = −6

(a) y = 4e2x − 2e−7x

(b) y = 4e2x + 2e−7x

(c) y = 4e2x + 2e7x

(d) y = 4e2x − 2e7x

4. x2y′′ − xy′ − 24y = 0, y(1) = 15, y′(1) = 0

(a) y = 9x−4 + 6x6

(b) y = 9x4 + 6x6

(c) y = 9x−4 + 6x−6

(d) y = 9x4 + 6x−6

5. y′′ + 5y′ + 6y = 108x2, y(0) = 18, y′(0) = −26

(a) y = e−2x − 2e−3x + 18x2 − 30x + 19

(b) y = e−2x + 2e−3x + 18x2 − 30x + 19

(c) y = e−2x − 2e−3x + 18x2 + 30x + 19

(d) y = e−2x − 2e−3x + 18x2 − 30x − 19

Exercise 6.3 Higher-Order ODEs

Solve the given ODE.

1. 4x2y′′ + 12xy′′ + 3y′ = 0

(a) c1 + c2x
1/2 + c3x

−1/2

(b) c1 + c2x
1/2 + c3x

1/2

(c) c1 + c2x
−1/2 + c3x

−1/2

32



6 Tutor Marked Assignments(TMAs) ORDINARY DIFFERENTIAL EQUATION

(d) c1 + c2x
−1/2 + c3x

1/2

2. 8y′′′ + 12y′′ − 2y′ − 3y = 0

(a) c1e
−0.5x + c2e

0.5x + c3e
1.5x

(b) c1e
0.5x + c2e

−0.5x + c3e
−1.5x

(c) c1e
−0.5x + c2e

0.5x + c3e
−1.5x

(d) c1e
0.5x + c2e

0.5x + c3e
1.5x

Solve the given initial value problem.

3. x3y′′′ + 7x2y′′ − 2xy′ − 10y = 0, y(1) = 1, y′(1) = −7, y′′(1) = 44

(a) 0.5x−1 − 1.5x−5

(b) 0.5x−1 + 1.5x−5

(c) −0.5x−1 − 1.5x−5

(d) −0.5x−1 + 1.5x−5
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1  Introduction 

In Unit 1, you were introduced to basic methods of obtaining solutions of some nth order (n _ 

1) ordinary differential equation. In this unit, your attention shall be directed to the more 

theoretical aspects of differential equation. 

2  Objectives 

At the end of this unit, the student should be able to; (i) say when a first order ODE has a 

solution, a unique solution or no solutions.

34



3 Main Content

(ii) say when a function of two variables satisfies a Lipschitz condition on the second variable.

(iii) approximate a solution of an ODE using the Picard’s iteration.

(iv) describe the dependence of a solution on initial condition on the function f.

(v) state and apply the existence theorem for linear differential equations.

3 Main Content

3.1 Existence and Uniqueness Theorem of First-Order Equations

In order to fully understand the proof of this theorem and those which follow, you will need to be familiar

with certain concepts of real function theory. Since you may not be familiar with all these topics, the first

section will be devoted to a brief survey of some of them.

3.1.1 Some Concepts from Real Function Theory

Uniform Convergence

Definition 3.1 (Convergent Sequence of Real Numbers) A sequence {xn} of real numbers is said to

converge to the limit x if, given any ε > 0, there exists a positive number N such that

|xn − x| < ε

for all n > N. This you can indicate by writing lim
n→∞

xn = x.

Definition 3.2 (Pointwise Convergence) A sequence {fn} of real valued functions fn : I ⊂ R → R

(n ≥ 1) defined on an interval I of R is said to converge to a real valued function f : I → R if given any

ε > 0, and x ∈ I, there exists N = N(ε, x) ∈ N such that

|fn(x) − f(x)| ≤ ε

for all n ≥ N

Definition 3.3 (Uniform Convergence) A sequence {fn} of real valued functions fn : I ⊂ R → R

(n ≥ 1) defined on an interval I of R is said to converge to a real valued function f : I → R if given any

ε > 0, there exists N = N(ε) ∈ N such that

|fn(x) − f(x)| ≤ ε

for all n ≥ N and for all x ∈ I.

Example 3.1 Consider the sequence of functions {fn} defined for all x on the real interval 0 ≤ x ≤ 1 by

fn(x) =
nx2

nx+ 1
0 ≤ x ≤ 1, (n = 1, 2, 3, ...)

Solution.

35



3.1 Existence and Uniqueness Theorem of First-Order Equations

For x = 0, The corresponding sequence {fn(0)} of real numbers is 0, 0, 0, ... and lim
n→∞

fn(0) = 0. For every x

such that 0 < x ≤ 1, you have

fn(x) =
nx2

nx + 1
and lim

n→∞

fn(x) = x

Thus the sequence {fn} converges pointwise on 0 ≤ x ≤ 1 to the limit function f defined by f(x) = x,

0 ≤ x ≤ 1. Futher the convegence is uniform on 0 ≤ x ≤ 1. To this, consider

|fn(x) − f(x)| =

∣

∣

∣

∣

nx2

nx + 1
− x

∣

∣

∣

∣

=
x

nx + 1

Given ε > 0, you have
x

nx + 1
≤ ε provided n >

1

ε
− 1

x
. But for x such that 0 ≤ x ≤ 1, you have

1

ε
− 1

x
≤ 1

ε
− 1. Thus if you choose N =

1

ε
− 1, you have that n >

1

ε
− 1

x
for all n > N. Hence, given ε > 0,

there exists N = 1
ε − 1 (depending only upon ε and not on x) such that |fn(x) − f(x)| < ε for all n > N for

every x such that 0 ≤ x ≤ 1. In other words, the convergence is uniform on 0 ≤ x ≤ 1.

The following are two important theorems on uniformly convergent sequences which shall be used in

the proof of existence theorem. You can find the proofs of this theorem in most texts on advanced calculus

and real analysis.

Theorem 3.1 Let {fn} be a sequence of real valued functions which converges uniformly to f on the

interval a ≤ x ≤ b. Suppose each function fn(n = 1, 2, 3, ...) is continuous on a ≤ x ≤ b. Then the limit

function f is continuous on a ≤ x ≤ b.

Example 3.2 In Example 3.1 you saw that the sequence of functions {fn} defined on the real interval

0 ≤ x ≤ 1 by

fn(x) =
nx2

nx+ 1
, (n = 1, 2, 3, ...)

converges uniformly to a limit function f on 0 ≤ x ≤ 1. Further, each function fn(n = 1, 2, 3, ...) is

continuous on 0 ≤ x ≤ 1. By theorem 3.1, you could conclude at once that the limit function f is also

continuous on 0 ≤ x ≤ 1. Indeed, in this example, the limit function f is that defined by f(x) = x,
0 ≤ x ≤ 1, and clearly this function f is continuous on 0 ≤ x ≤ 1

Theorem 3.2 Let {fn} be a sequence of real functions which converges uniformly to f on the interval

a ≤ x ≤ b. Suppos each function fn(n = 1, 2, 3, ...) is continuous on a ≤ x ≤ b. Then for every α and β
such that a ≤ α < β ≤ b,

lim
n→∞

∫ β

α

fn(x)dx =

∫ β

α

lim
n→∞

fn(x)dx

Example 3.3 You could illustrate this theorem by again considering the sequence of functions {fn} dis-

cussed in Examples 3.1 and 3.2 and defined by

fn(x) =
nx2

nx+ 1
, 0 ≤ x ≤ 1, (n = 1, 2, 3, ...)

The hypothesis of Theorem 3.2 is identical with that of theorem 3.1, and you have already noted in Example

3.2 that the sequence under consideration satisfies this hypothesis on 0 ≤ x ≤ 1. Thus you could conclude

that

lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

lim
n→ß

fn(x)dx
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Since lim
n→∞

fn(x) = f(x) = x in this example, you conclusion here would be that

lim
n→∞

∫ 1

0

nx2

nx+ 1
dx =

∫ 1

0

xdx

You could verify this directly,

∫ 1

0

nx2

nx+ 1
dx =

∫ 1

0

[

x− 1

n
+

1

n(nx+ 1)

]

dx

=
x2

2
− x

n
+

1

n2
ln(nx+ 1)

∣

∣

∣

∣

1

0

= 1
2
− 1

n
+ ln(n+1)

n2

This

lim
n→∞

∫ 1

0

nx2

nx+ 1
dx = lim

n→∞

[

1

2
− 1

n
+

ln(n+ 1)

n2

]

=
1

2

Clearly

∫ 1

0

xdx =
1

2
, also, and your conclusion is thus verified.

Next is to consider briefly the uniform convergence of an infinite series of real functions, each of which

is defined on a real interval a ≤ x ≤ b.

Definition 3.4 Consider the infinite series

∞
∑

n=1

un of real functions un(n = 1, 2, 3, ...), each of which is

defined on a real interval a ≤ x ≤ b. Consider the sequence {fn} of so-called partial sums of this series,

defined as follows:






































































f1 = u1

f2 = u1 + u2

f3 = u1 + u2 + u3

· · · · · · ·

fn = u1 + u2 + u3 + · · · + un

· · · · · · ·

The infinite series

∞
∑

n=1

un is said to uniform uniformly to f on a ≤ x ≤ b if its seqeunce of partial sums

{fn} converges uniformly to f and a ≤ x ≤ b.

The following theorem gives you a very useful test for uniform convergence of series.

Theorem 3.3 (Weierstrass M-Test) Let {Mn} be a sequence of positive constants such that the series of

constants

∞
∑

n=1

Mn converges. Let

∞
∑

n=1

un be a series of real functions such that |un(x)| ≤Mn, for all x such

that a ≤ x ≤ b and for n = 1, 2, 3, .... Then the series

∞
∑

n=1

un converges uniformly on a ≤ x ≤ b.
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Example 3.4 Consider the series

∞
∑

n=1

sinnx

n2
on the interval 0 ≤ x ≤ 1. The sequence

{

1

n2

}

is a sequence

of positive constants which is such that the series

∞
∑

n=1

1
n2 is convergent.

You can take Mn =
1

n2
and observe that

|un(x)| =

∣

∣

∣

∣

sinnx

n2

∣

∣

∣

∣

=
1

n2
= Mn

for all x such that 0 ≤ x ≤ 1 and for each n = 1, 2, 3, ... Thus by theorem 3.3, the series

∞
∑

n=1

sinnx

x

converges uniformly on 0 ≤ x ≤ 1.

Functions of Two Real Variables; the Lipschitz Condition.

Definition 3.5

1. A set of points A of the xy plane will be called connected if any two points of A can be joined by a

continuous curve which lies entirely in A.

2. A set of points A of the xy plane is called open if each point of A is the center of a circle whose

interior lies entirely in A.

3. A open, connected set in the xy plane is called a domain.

4. A point P is called a boundary point of a domain D if every circle about P contains both points in

D and points not in D.

5. A domain plus its boundary points will be called a closed domain.

Example 3.5 The set of all points (x, y) lying within the ellipse x2+2y2 = 1 and characterized by x2+y2 <
1 is a domain D. The boundary points of D are the points of the ellipse itself. The set of points (x, y) such

that x2 + 2y2 ≤ 1 within and on the ellipse is a closed domain.

It is assumed that you are somewhat familiar with functions f of two real variables x and y, defined on a

domain of the xy plane or on such a domain plus its boundary. The following are few concepts and results.

Definition 3.6 Let f be a real function defined on a domain D of the xy plane, and let (x0, y0) be an

(interior) point of D. The function f is said to be continuous at (x0, y0) if, given any ε > 0, there exists a

δ > 0 such that

|f(x, y) − f(x0, y0)| < ε

for all (x, y) ∈ D such that

|x− x0| < δ and |y − y0| < δ

Definition 3.7 Let f be a real function defined on D, where D is either a domain or a closed domain of

the xy plane. The function f is said to be bounded on D if there exists a positive number M such that

|f(x, y)| ≤M for all (x, y) in D.
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Theorem 3.4 Let f be defined and continuous on a closed rectangle

R : a ≤ x ≤ b, c ≤ y ≤ d

Then the function f is bounded on R.

Example 3.6 The function f defined by f(x, y) = x2 + y2 is continuous on the closed rectangle R : 0 ≤
x ≤ 1, 0 ≤ y ≤ 2. Thus by theorem 3.4, the function f is bounded on R. In fact, you have |f(x, y)| =
|x2 + y2| ≤ 5 for all (x, y) ∈ R.

Having disposed of these preliminaries, you would now be introduced to a concept which will be of

paramount importance in the existence and uniqueness proof.

Definition 3.8 Let f be defined on D, where D is either a domain or a closed domain of the xy plane. The

function f is said to satisfy a Lipschitz Condition (with respect to y) in D if there exist a constant k > 0
such that

|f(x, y1) − f(x, y2)| ≤ k|y1 − y2| (1)

for every (x, y1) and (x, y2) which belong to D. The constant k is called the Lipschitz Constant.

The following theorem will help you to determine when a function f satisfies the Lipschitz condition.

Theorem 3.5 Let f be such that
∂f

∂y
exists and is bounded for all (x, y) ∈ D, where D is a domain or

closed domain such that the line segment joining any two points of D lies entirely within D. Then f satisfies

a Lipschitz Condition (with respect to y) in D, where the Lipschitz Constant is given by

k = sup
(x,y)∈D

∣

∣

∣

∣

∂f(x, y)

∂y

∣

∣

∣

∣

Example 3.7 Consider the function f defined by f(x, y) = y2,whereD is the rectangle defined by |x| ≤ a,

|y| ≤ b. Then
∂f(x, y)

∂y
= 2y, and so

∂f

∂y
exists and is bounded for all (x, y) ∈ D. Thus by theorem 3.5,

the function f satisfies a Lipschitz Condition in D, where the Lipschitz Constant k is given by 2b. If you

directly apply the definition of Lipschitz condition instead of theorem 3.5, you would find that

|f(x, y1) − f(x, y2)| = |y2
1 − y2

2| = |y1 + y2||y1 − y2| ≤ 2b|y1 − y2|

for all (x, y1), (x, y2) ∈ D.

Note that the sufficient condition of theorem 3.5 is not necessary for f to satisfy a Lipschitz condition

in D. That is, there exist functions f such that f satisfies a Lipschitz condition (with respect to y) in D but

such that the hypothesis of theorem 3.5 is not satisfied.

Example 3.8 Consider the function f defined by f(x, y) = x|y|, where D is the rectangle defined by

|x| ≤ a, |y| ≤ b. Note that

|f(x, y1) − f(x, y2)| = |x|y1| − x|y2|| ≤ |x||y1 − y2| ≤ a|y1 − y2|

for all (x, y1), (x, y2) ∈ D. Thus f satisfies a Lipschitz Condition (with respect to y) in D. However the

partial derivative
∂f

∂y
does not exist at any point (x, 0) ∈ D for which x 6= 0.
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3.1.2 Existence and Uniqueness of Solutions

The Basic Problem and a Basic Lemma

The basic problem with which this unit is primarily concerned is formulated below as follows.

Let D be a domain in the xy plane and let (x0, y0) be an (interior) point of D. Consider the differential

equation
dy

dx
= f(x, y) (2)

where f is a continuous real valued function defined on D. Consider the following problem. Your wish is

to determine:

1. an interval α ≤ x ≤ β of real x axis such that α < x0 < β, and

2. a differentiable real function φ defined on this interval [α, β] satisfying the following three require-

ments:

(a) (x, φ(x)) ∈ D, an thus f(x, φ(x)) is defined, for all x ∈ [α, β].

(b)
dφ(x)

dx
= f [x, φ(x)], an thus φ satisfies the differential equation (2), for all x ∈ [α, β].

(c) φ(x0) = y0

You should call this problem the initial-value problem associated with the differential equation (2) and

the point (x0, y0). And denote it briefly by











dy

dx
= f(x, y)

y(x0) = y0,

(3)

and call a function φ satisfying the above requirements on an interval [α, β] a solution of the problem on

the interval [α, β].

If φ is a solution of the problem on [α, β], then the requirement (b) shows that φ has a continuous first

derivative φ′ on [α, β].

In ordet to investigate this problem you shall need the following basic lemma.

Lemma 3.1 Let f be a continuous function defined on a domain D of the xy plane. Let φ be a continuous

function defined on a real interval α ≤ x ≤ β and such that [x, φ(x)] ∈ D for all x ∈ [α, β]. Let x0 be any

real number such that α < x < β. Then φ is a solution of the differential equation
dy

dx
= f(x, y) on [α, β]

and is such that φ(x0) = y0 if and only if φ satisfies the integral equation

φ(x) = y0 +

∫ x

x0

f [t, φ(t)]dt (4)

for all x ∈ [α, β].

Proof. If φ satisfies the differential equation
dy

dx
= f(x, y) on [α, β], then

dφ(x)

dx
= f [x, φ(x)] for all

x ∈ [α, β] and the integration yields at once

φ(x) =

∫ x

x0

f [t, φ(t)]dt+ c
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If also φ(x0) = y0, then you have c = y0 and so φ satisfies the integral equation (4) for all x ∈ [α, β].

Conversely, if φ satisfies the integral equation (4) for all x ∈ [α, β], then differentiation yields

dφ(x)

dx
= f [x, φ(x)]

for all x ∈ [α, β] and so φ satisfies the differential equation
dy

dx
= f(x, y) on [α, β]; also the equation (4)

shows that φ(x0) = y0.

The Existence and Uniqueness Theorem.

The following is the statement of the main theormem of this chapter.

Theorem 3.6 Let D be a domain of the xy plane, and let f be a real function satisfying the following two

requirments

(i) f is continuous in D; and

(ii) f satisfies a Lipschitz Condition (with respect to y) in D; that is, there exists a constant k>0 such that

|f(x, y1) − f(x, y2)| ≤ k|y1 − y2|
for all (x, y1), (x, y2) in D.

Let (x0, y0) be an (interior) point of D; let a and b be such that the rectangle R : |x−x0| ≤ a, |y− y0| ≤ b,

lies in D; let M = max |f(x, y)| for (x, y) ∈ R; and let h =

(

a,
b

M

)

.

Then there exists a unique solution φ of the initial-value problem











dy

dx
= f(x, y)

y(x0) = y0

(5)

on the interval |x − x0| ≤ h. That is, there exists a unique differentiable real function φ defined on the

interval |x− x0| ≤ h which is such that

(i)
dφ(x)

dx
= f [x, φ(x)] for all x on this interval; and

(ii) φ(x0) = y0

Remark 3.1 Since R lies in D, f satisfies the requirements (i) and (ii) of the Hypothesis in R. In paticular,

since f is thus continuous in the rectangular closed domain R, the constant M defined in the second

hypothesis actually does exist. If you examine more closely the number h defined in the second hypothesis

of the theorem, you would discover if a <
b

M
, then h = a and the solution φ is defined for all x in the

interval |x − x0| ≤ a used in defining the rectangle R. If, however,
b

M
< a, then h =

b

M
< a and so the

solution φ is assured only for all x in the smaller interval |x − x0| ≤ h < a associated with the smaller

rectangle R1 defined by |x− x0| ≤ h < a, |y − y0| < b.

Due to the lengthy nature of the proof of this theorem, you shall be refered to more advanced textbooks

on Ordinary Differential Equations. The ones given in the reference could be of help. But you shall be

given the method and steps of proof. 41
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Method of Proof

You shall prove this theorem by the method of successive approximations. Let x be such that |x− x0| ≤ h.
You could define the sequence of functions

φ1, φ2, φ3, ..., φn, ...

called the successive approximations or (Picards Iterants) as follows:







































































φ1(x) = y0 +

∫ x

x0

f [t, y0]dt

φ2(x) = y0 +

∫ x

x0

f [t, φ1(t)]dt

φ3(x) = y0 +

∫ x

x0

f [t, φ2(t)]dt

............

φn(x) = y0 +

∫ x

x0

f [t, φn−1(t)]dt

(6)

The proof is divided into five main steps in which you would show the following

1. The functions {φn} defined by (6) actually exist, have continuous derivatives, and satisfy the inequal-

ity |φn(x) − y0| ≤ b on |x− x0| ≤ h; and thus f [x, φn(x)] is defined on this interval.

2. The functiions {φn} satisfy the inequlity

|φn(x) − φn−1(x)| ≤
M

k
· (kh)n

n!
on |x− x0| ≤ h.

3. As n → ∞, the sequence of functions {φn} converges uniformly to a continuous function φ on

|x− x0| ≤ h.

4. The limit function φ satisfies the differential equation
dy

dx
= f(x, y) on |x− x0| ≤ h and is such that

φ(x0) = y0.

5. This function φ is the only differentiable function on |x − x0| ≤ h which satisfies the differential

equation
dy

dx
= f(x, y) and is such that φ(x0) = y0.

Remarks and Examples

Notice carefully that Theorem 3.6 is both an existence theorem and a uniqueness theorem. It tells you that

if

(i) f is continuous, and

(ii) f satisfies a Lipschitz condition (with respect to y) in the rectangle R,

Then
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3.1 Existence and Uniqueness Theorem of First-Order Equations

(a) there exists a solution φ of
dy

dx
= f(x, y), defined on |x − x0| ≤ h, which is such that φ(x0) = y0;

and

(b) this solution φ is unique solution satisfying these conditions.

Example 3.9 Consider the initial-value problem











dy

dx
= y

1

3

y(0) = 0.

(7)

Here f(x, y) = y
1

3 is continuous in the rectangle R : |x| ≤ a, |y| ≤ b about the origin. Thus there exists at

leat one solution of
dy

dx
= y

1

3 on |x| ≤ h such that y(0) = 0.

Being assured of the existence of a solution of problem (7), you can now examine the uniqueness aspect.

If f satisfies a Lipschitz Condition on R, then Theorem 3.6 will apply and uniqueness will also be assured.

You have
∣

∣

∣

∣

f(x, y1) − f(x, y2)

y1 − y2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

|y
1

3

1 − y
1

3

2

y1 − y2

∣

∣

∣

∣

∣

If you choose y1 = δ > 0 and y2 = −δ, this becomes

∣

∣

∣

∣

∣

δ
1

3 − (−δ 1

3 )

δ − (−δ)

∣

∣

∣

∣

∣

=
1

δ
2

3

Since this becomes unbounded as δ approches zero, you see that f does not satisfy a Lipschitz Condition

throughout any domain containing the line y = 0, and hence not in R. Thus you can not apply theorem

3.6 to obtain a uniqueness conclusion here. On the other hand, you must not conclude that uniqueness is

impossible simply because a Lipschitz Condtion is not satisfied. The simple truth is that at this point you

can draw no conclusion one way or the other about uniqueness in this problem.

In fact, the problem does not have a unique solution; for you can actually exhibit two solutions. Indeed, the

functions φ1 and φ2 defined, respectively, by φ1(x) = 0 for all x and

φ1(x) =















(

2

3
x

)
3

2

, x ≥ 0

0, x ≤ 0,

are both solutions of problem (7) on the interval −∞ < x <∞

You can observe that theorem 3.6 is a “local” existence theorem and an existence theorem “in the small.”

For it states that if f satisfies the given hypothesis in a domain D and if (x0, y0) is a point of D, then there

exists a solution φ of










dy

dx
= f(x, y)

y(x0) = y0

defined on an interval |x− x0| ≤ h, where h is sufficiently small. It does not assert that φ is defined for all

x, even if f satisfies the given hypotheses for all (x, y). Existence “in the large” can not be asserted unless

additional, very specialized restrictions are placed upon f. If f is linear in y, then an existence theorem in

the large may be proved. 43
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Example 3.10 Consider the initial value problem










dy

dx
= y2

y(1) = −1

(8)

Here f(x, y) = y2 and
∂f(x, y)

∂y
= 2y are both continuous for all (x, y). Thus using theorem 3.5 you

observe that f satisfies the hypothesis of theorem 3.6 in every rectangle

|x− 1| ≤ a, |y + 1| ≤ b,

about the point (1,−1). As in theorem 3.6, let M = max |f(x, y)| for (x, y) ∈ R, and h = min

(

a,
b

M

)

.

Then theorem 3.6 asserts that the initial-value problem (8) possesses a unique solution defined on |x− 1| ≤
h.

Now in this case M = (−1 − b)2 = (b+ 1)2 and so

h = min

[

a,
b

(b+ 1)2

]

Now consider F (b) =
b

(b+ 1)2
. From F ′(b) =

1 − b

(b+ 1)3
, you see that the maximum value of F (b)

for b > 0 occurs at b = 1; and you find F (1) = 1
4
. Thus if a ≥ 1

4
,

b

(b+ 1)2
≤ a for all b > 0 and so

h =
b

(b+ 1)2
≤ 1

4
, regardless of the value of a. If, however, a < 1

4
, then certainly h < 1

4
. Thus in any case

h ≤ 1
4
. For b = 1, a ≥ 1

4
, h = min

[

a,
b

(b+ 1)2

]

= min(a, 1
4
) = 1

4
.

This is the “best possible” h, according to the theorem. That is, at best theorem 3.6 assures us that

the initial-value problem (8) possesses a unique solution on an interval 3
4
≤ x ≤ 5

4
. Thus, although the

hypotheses of theorem 3.6 are satisfied for all (x, y), the theorem only assures us of a solution to our

problem on the “small” interval |x− 1| ≤ 1
4
.

On the other hand, this not necessarily mean that the actual solution of problem (8) is defined only on

this small interval and nowhere outside of it. It may actually be defined on a much larger interval which

includes the small |x − 1| ≤ 1
4

on which it is guaranteed by the theorem. Indeed, the solution of problem

(8) is readily found to be y = − 1
x
, and this is actually defined and possesses a continuous derivatives on the

interval 0 < x <∞.

Theorem 3.7 Let f be continuous in the unbounded domain D : a < x < b,−∞ < y < +∞. Let f satisfy

a Lipschitz Condition (with respect to y) in this unbounded domain. That is, assume there exists k > 0 such

that

|f(x, y1) − f(x, y2)| ≤ k|y1 − y2|
for all (x, y1), (x, y2) ∈ D.

Then a solution φ of
dy

dx
= f(x, y) such that φ(x0) = y0, where (x0, y0) is any point of D, is defined

on the entire open interval a < x < b. In particular, if a = −∞ and b = +∞, then φ is defined for all x,
−∞ < x < +∞.

For example, a solution of the initial-value problem

dy

dx
= F (x)y, y(x0) = y0,

where F is continuous for −∞ < x < +∞, is defined for all x, −∞ < x < +∞.44
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3.1.3 Dependence of Solutions on Initial Condition and on the Function f

You shall be introduce to how the solution of the differential equation
dy

dx
= f(x, y) depends upon a slight

change in the initial conditions or upon a slight change int function f. It would seem that slight changes

would cause only slight changes in the solution.

In the first place, you shall consider the result of a slight change in the initial condition y(x0) = y0. Let

f be continuous and satisfy a Lipschitz Condition with respect to y in a domain D, and let (x0, y0) be a

fixed point of D. Then by theorem 3.6 the initial-value problem











dy

dx
= f(x, y)

y(x0) = y0

has a unique solution φ defined on some sufficiently small interval |x − x0| ≤ h0. Now suppose the initial

y value is changed from y0 to Y0. Our first concern is whether or not the new initial-value problem.











dy

dx
= f(x, y)

y(x0) = Y0

(9)

also has a unique solution on some sufficiently small interval |x − x0| ≤ h1. If Y0 is such that |Y0 − y0| is

sufficiently small then you can be certain that the problem (9) does posses a unique solution on some such

interval |x − x0| ≤ h1. In fact, let the rectangle R : |x − x0| ≤ a, |y − y0| ≤ b, lie in D and let Y0 be

such that |Y0 − y0| ≤
b

2
. Then an application of theroem 3.6 to problem (9) shows that this problem has a

unique solution ψ which is defined and contained in R for |x − x0| ≤ h1, where h1 = min

(

a,
b

2M

)

and

M = max |f(x, y)| for (x, y) ∈ R. Thus you may assume that there exists δ > 0 and h > 0 such that for

each Y0 satisfying |Y0 − y0| ≤ δ problem (9) possesses a unique solution φ(x, Y0) on |x− x0| ≤ h

The following is the basic theorem concerning the dependence of solutions on initial conditions. You

can obtain the proofs of these theorems in most advanced book on Ordinary differential Equations.

Theorem 3.8 Let f be continuous and satisfy a Lipschitz Condition with respect to y, with Lipschitz Con-

stant k, in a domain D of the xy plane; and let (x0, y0) be a fixed point of D. Assume there exists δ > 0 and

h > 0 such that for each Y0 satisfying |Y0 − y0| ≤ δ the initial-value problem











dy

dx
= f(x, y)

y(x0) = Y0

(10)

possesses a unique solution φ(x, Y0) defined and contained in D on |x− x0| ≤ h.

If φ denotes the unique solution of (10) when Y0 = y0, and φ denotes the unique solution of (10) when

Y0 = ỹ0, where |ỹ0 − y0| = δ1 ≤ δ, then

|φ̃(x) − φ(x)| ≤ δ1e
kh on |x− x0| ≤ h.

Thus the solution φ(x, Y0) of problem (10) is a continuous function of the initial value Y0 at Y0 = y0.
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3.1 Existence and Uniqueness Theorem of First-Order Equations

Thus under the conditions stated, if the initial values of the two solutions φ and φ̃ differ by a sufficiently

small amount, then their values will differ by an arbitrary small amount at every point of |x− x0| ≤ h.

The following shows how the solution of
dy

dx
= f(x, y) will change if the function f is slightly changed.

In this connection you have following theorem.

Theorem 3.9 1. In a domain D of the xy plane, assume that

(i) f is continuous and satisfies a Lipschitz Condition with respect to y, with Lipschitz constant k.

(ii) F is continuous.

(iii) |F (x, y) − f(x, y)| ≤ ε for (x, y) ∈ D.

2. Let (x0, y0) be a point of D, and let

(i) φ be the solution of the initial-value problem










dy

dx
= f(x, y),

y(x0) = y0,

(ii) ψ be a solution of the initial-value problem










dy

dx
= f(x, y),

y(x0) = y0,

(iii) [x, φ(x)] and [x, ψ(x)] in D for |x− x0| ≤ h.

Then

|φ(x) − ψ(x)| ≤ ε

k
(ekh − 1) on |x− x0| ≤ h.

Thus, under the hypothesis stated, if ε is sufficiently small, the difference between the solutions φ and

ψ will be arbitrary small on |x− x0| ≤ h. The following example illustrates how this result can be used to

advantage.

Example 3.11 Consider the initial-value problem.










dy

dx
= x2 + y2 + y + 1,

y(0) = 0

(11)

The differential equation of this problem may not be solved explicitly by any of the methods which you

know, but the differential equation
dy

dx
= y + 1 can be. If x and y are sufficiently small, the difference

|(x2 + y2 + y + 1) − (y + 1)| = |x2 + y2| will be less than or equal to any given ε > 0. Thus the solution

of problem (11) will differ from that of the problem










dy

dx
= y + 1

y(0) = 0

(12)

by an arbitrarily small amount if x and y are sufficiently small. You can thus use the explicit solution of

problem (12) to obtain information about the solution of the problem (11) in a sufficiently small neighbour-

hood of (0, 0).
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3.2 Existence and Uniqueness Theorem of Linear Differential Equations

This section is an extension of what you have studied in the previous section about existence and uniqueness

theorem of first order equation to that of nth other Linear Differential Equations.

3.2.1 The Basic Existence Theorem

The first concern here is the basic existence theorem for an initial value problem involving the nth order

linear differential equation

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · · + an−1(x)

dy

dx
+ an(x)y = b(x) (13)

where a0, a1, ..., an−1, an, and b are continuous on a real interval a ≤ x ≤ b, and a0(x) 6= 0 on a ≤ x ≤ b.
Recall that in the last section you obtained an existence theorem for the general first-order initial value

problem
dy

dx
= f(x, y), y(x0) = y0, by means of the method of successive approximations. As a first step

toward obtaining an existence theorem for above mentioned existence theorem of the section 3.1 to obtain

a similar theorem concerning a system of n first-order differential equations in n unknowns.

Specifically, you have to consider a system of n first-order differential equations of the form










































dy1

dx
= f1(x, y1, y2, ..., yn)

dy2

dx
= f2(x, y1, y2, ..., yn)

...
dyn

dx
= fn(x, y1, y2, ..., yn)

(14)

the n unknowns y1, y2, ..., yn, where f1, f2, ..., fn are n continuous real functions defined in some domain

D of real (n+ 1)−dimensional x, y1, y2, ..., yn space.

Definition 3.9 By a solution of the system you would mean an ordered set of n differential real functions

(φ1, φ2, ..., φn)

defined on some real x interval a ≤ x ≤ b such that

[x, φ1(x), φ2(x), ..., φn(x)] ∈ D

and










































dφ1(x)

dx
= f1[x, φ1(x), φ2(x), ..., φn(x)]

dφ2(x)

dx
= f2[x, φ1(x), φ2(x), ..., φn(x)]

...
dφn(x)

dx
= fn[x, φ1(x), φ2(x), ..., φn(x)]

for all x such that a ≤ x ≤ b.

Corresponding to theorem 3.6, you have the followiing theorem dealing with the system (14). Since its

proofs parallels that of theorem 3.6 you would merely have the outline of the major steps of the proof and

omit the details. 47
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Theorem 3.10 Let the functions f1, f2, ..., fn be continuous in the (n+1)−dimensional rectangleR defined

by

|x− x0| ≤ a, |y1 − c1| ≤ b1, ..., |yn − cn| ≤ bn

where (x0, c1, ..., cn) is a point of real (n+1)−dimensional (x, y1, ..., yn) space and a, b1, ..., bn are positive

constants.

Let M be such that |fi(x, y1, y2, ..., yn)| ≤ M for i = 1, 2, ..., n for all (x, y1, y2, ..., yn) ∈ R. Let

h = min

(

a,
b1
M
,
b2
M
, · · · , bn

M

)

.

Let the function fi(i = 1, 2, ..., n) satisfy a Lipschitz condition with Lipschitz constant k in R. That is,

assume there exists a constant k > 0 such that

|fi(x, ȳ1, ȳ2, ..., ȳn) − fi(x, ỹ1, ỹ2, ..., ỹn)| ≤ k(|ȳ1 − ỹ1| + |ȳ2 − ỹ2| + · · · + |ȳn − ỹn|) (15)

for any two points (x, ȳ1, ȳ2, ..., ȳn), (x, ỹ1, ỹ2, ..., ỹn) ∈ R, and for i = 1, 2, ..., n.

There exists a unique solution

φ1, φ2, ..., φn

of the system










































dy1

dx
= f1(x, y1, y2, ..., yn)

dy2

dx
= f2(x, y1, y2, ..., yn)

...
dyn

dx
= fn(x, y1, y2, ..., yn)

(16)

such that

φ1(x0) = c1, φ2(x0) = c2, ..., φn(x0) = cn,

defined for |x− x0| ≤ h.

Outline of Proof.

First of all define functions φi,j by

φi,0(x) = ci (i = 1, 2, ..., n)

and

φi,j(x) = ci +

∫

x0

fi[t, φ1,j−1(t)...., φn, j − 1(t)]dt

(i = 1, 2, ..., n; j = 1, 2, 3, ...).
Then prove by mathematical induction that all of the functions φi,j so defined are continuous and satisfy the

relations

|φi,j(x) − φi,j−1(x)| ≤
M(kn)j−1|x− x0|j

j!

(i = 1, 2, 3, ..., n; j = 1, 2, 3, ...; |x− x0| ≤ h). Thus also

|φi,j(x) − φi,j−1(x)| ≤
M

kn

(knh)j

j!
(17)

(i = 1, 2, 3, ..., n; j = 1, 2, 3, ...). This would enable you to conclude that for each i = 1, 2, ..., n, the

sequence {φi,j} defined by

φi,j(x) = φi,0(x) +

j
∑

p=1

[φi,p(x) − φi,p−1(x)], (j = 1, 2, 3, ...)
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converges uniformly to a continuous function φi. You may then show that each φi(i = 1, 2, ..., n) satisfy

the integral equation

φi(x) = ci +

∫ x

x0

fi[t, φ1(t), ..., φn(t)]dt,

on |x− x0| ≤ h. From this you have at once that

dφ(x)

dx
= fi[t, φ1(t), ..., φn(t)]

on |x− x0| ≤ h and φi(x0) = ci(i = 1, 2, ..., n).

Our outline of the existence proof is thus completed. It is clear that it parallels that for the case n = 1
given for theorem 3.6. Th proof of the uniqueness in the present case also parallels that of theorem 3.6, and

you expected to make necessary changes and complete the present outline.

Theorem 3.10 can be used to obtain an existence and uniqueness theorem for the basic initial-value

problem associated with an nth order differential equation of the form

y(n) = f
[

x, y, y′, ..., y(n−1)
]

(18)

Definition 3.10 Consider the differential equation

y(n) = f [x, y, y′, ..., y(n)], (19)

where f is a continuous real function defined in a domainD of real (n+1)−dimensional (x, y, y′, ..., y(n−1))-
space. By a solution of the equation (10) you mean a real function φ having an nth derivative (and hence

all lower ordered derivatives) on a real interval a ≤ x ≤ b such that

f [x, φ(x), φ′(x), ..., φ(n−1)(x)] ∈ D

and φ(n)(x) = f [x, φ(x), φ′(x), ..., φ(n−1)′(x)] for all x such that a ≤ x ≤ b.

Theorem 3.11 Consider the differential equation

y(n) = f [x, y, y′, ..., y(n)] (20)

where the functiion f is continuous and satisfies a Lipschitz Condition of the form (15) in a domain D of

real (n+ 1)−dimensional (x, y, y′, ..., y(n−1))-space. Let (x0, c0, c1, ..., cn−1) be a point of D.

Then there exists a unique solution φ of the nth-order differential equation such that

φ(x0) = c0, φ
′(x0) = c1, ..., φ

(n−1)(x0) = cn−1, (21)

defined on some interval |x− x0| ≤ h about x = x0.

3.2.2 Basic Existence and Uniqueness theorems on Linear Systems

Now, your attention will be shifted to the linear system






































y′1 = a11(x)y1 + a12(x)y2 + · · · + a1n(x)yn + b1(x)

y′2 = a21(x)y1 + a22(x)y2 + · · · + a2n(x)yn + b2(x)

..........

y′n = an1(x)y1 + an2(x)y2 + · · · + ann(x)yn + bn(x)

(22)

where the coefficients aij and the functions bi are continuous on the interval a ≤ x ≤ b.

The following lemma is of great importance. 49
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Lemma 3.2 Let the functions aij and bi(i = 1, 2, ..., n; j = 1, 2, ..., n) be continuous on the interval a ≤
x ≤ b.

Then the functions fi defined by

fi(x, y1, y2, ..., yn) = ai1(x)y1 + ai2(x)y2 + · · · + ain(x)yn + bi(x),

(i = 1, 2, ..., n), satisfy a Lipschitz Condition on

a ≤ x ≤ b,−∞ < yi < +∞(i = 1, 2, ..., n).

That is, there exists a constant k > 0 such that

|f(x, ȳ1, ȳ2, ..., ȳn) − f(x, ỹ1, ỹ2, ..., ỹn)| ≤ k(|ȳ1 − ỹ1| + |ȳ2 − ỹ2| + · · · + |ȳn − ỹn|)

for all x such that a ≤ x ≤ b and any two sets of real numbers ȳ1, ȳ2, ..., ȳn and ỹ1, ỹ2, ..., ỹn (i = 1, 2, ..., n).

Proof. Since each of the functions aij is continuous on a ≤ x ≤ b, corresponding to each of these

functions there exists a constant kij such that |aij(x)| ≤ kij for all x ∈ [a, b], (i = 1, 2, ..., n; j = 1, 2, ..., n).
Let k = max{kij} for i = 1, 2, ..., n; j = 1, 2, ..., n. Then |aij(x)| ≤ k for all x ∈ [a, b]. Then for every

x ∈ [a, b] and any two sets of real numbers ȳ1, ȳ2, ..., ȳn and ỹ1, ỹ2, ..., ỹn, you have

|fi(ȳ1, ȳ2, ..., ȳn) − fi(ỹ1, ỹ2, ..., ỹn)| ≤ |ai1(x)ȳ1 + ai2(x)ȳ2 + · · · + ain(x)ȳn + bi(x)
−ai1(x)ỹ1 − ai2(x)ỹ2 − · · · − ain(x)ỹn − bi(x)|

= |ai1(x)[ȳ1 − ȳ1] + ai2(x)[ȳ2 − ȳ2] + · · · + ain(x)[ȳn − ȳn]|

≤ |ai1(x)||ȳ1 − ỹ1| + |ai2(x)||ȳ2 − ỹ2| + · · · + |ain(x)||ȳn − ỹn|

≤ k(|ȳ1 − ỹ1| + |ȳ1 − ỹ1| + · · · + |ȳ1 − ỹ1|).

The following gives you the existence theorem concerning the linear system (22).

Theorem 3.12 Let the coefficients aij and the functions bi, (i, j = 1, 2, ..., n) in the linear system (22) be

continuous on the real interval a ≤ x ≤ b.
Let x0 be a point of the interval a ≤ x ≤ b, and let c1, c2, ..., cn be a set of n real constants.

Then there exists a unique solution

φ1, φ2, ..., φn

of the system (22) such that

φ1(x0) = c1, φ2(x0) = c2, ..., φn(x0) = cn,

and this solution is defined on the entire interval a ≤ x ≤ b.

Outline of Proof.

The system (22) is a special case of the system (16) with which theorem 3.10 is concerned, and the present

outline of proof parallels that given for theorem 3.10. You would first of all define the functions φi,j by

φi,0(x) = ci (i = 1, 2, ..., n)

and

φi,j(x) = ci +

∫ x

x0

[ai1(t)φ1,j−1(t) + · · · + ain(t)φn,j−1(t) + bi(t)]dt (23)
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(i = 1, 2, ..., n; j = 1, 2, 3, ...) on a ≤ x ≤ b.
The functions φi,j so defined are continuous on the entire interval a ≤ x ≤ b. Also, by hypothesis there

exists M > 0 such that |ai1(x)c1 + · · · + ain(x)cn + bi(x)| ≤M, (i = 1, 2, ..., n), a ≤ x ≤ b.
By the lemma the functions defined by

ai1(x)y1 + ai2(x)y2 + · · · + ain(x)yn + bi(x)

satisfy a Lipschitz condition on a ≤ x ≤ b. You can thus use the formulas (23) and this Lipschitz condition

to obtain by induction the inequality

|φi,j(x) − φi,j−1(x)| ≤
M(kn)j−1|x− x0|j

j!

(i = 1, 2, ..., n; j = 1, 2, 3, ...) on the entire interval a ≤ x ≤ b. Thus also

|φi,j(x) − φi,j−1(x)| ≤
M

kn

(knH)j

j!
(24)

(i = 1, 2, ..., n; j = 1, 2, 3, ...), a ≤ x ≤ b, where H = max(|a − x0|, |b − x0|). The inequality (24)

here corresponds to the inequality (17) in the proof of theorem 3.10. The remainder of the proof outlined

for theorem 3.10 now carries over to the present case for a ≤ x ≤ b and you would obtain the desired

conclusion.

Now you are in a position to obtain the basic existence theorem for the initial value problem associated

with the nth-order linear differential equation (13).

Theorem 3.13 Consider the differential equation of (13) where a0, a1, ..., an−1, an, and b are continuous

on the interval a ≤ x ≤ b and a0(x) 6= 0 on a ≤ x ≤ b.
Let x0 be a point of the interval a ≤ x ≤ b, and let c0, c1, ..., cn−1 be a set of n real constants.

Then there exists a unique solution φ of (13) such that

φ(x0) = c0, φ′(x0) = c1, ..., φ(n−1)(x0)cn−1, (25)

and this solution is defined over the entire interval a ≤ x ≤ b.

Proof. Let

y1 = y, y2 =
dy

dx
, ..., yn =

dn−1

dxn−1
.

Then the nth order linear differential equation (13) is equivalent to the linear system



















































y′1 = y2

y′2 = y3
...

y′n−1 = yn

y′n = −an(x)

a0(x)
y1 −

an(x)

a0(x)
y1 − · · · − an(x)

a0(x)
y1 −

b(x)

a0(x)

(26)

If φ is a solution of (13) which satisfies the conditions (25), then the ordered set of functions φ1, φ2, ..., φn,
where φ1 = φ, φ2 = φ′, ..., φn = φ(n−1), is a solution of the linear system (26) which satisfies the conditions

φ1(x0) = c0, φ2(x0) = c1, ..., φn(x0) = cn−1, (27)51
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Conversely, if φ1, ..., φn is a solution of (26) which satisfies (27), then the function φ = φ1 is a solution of

the differential equation (13) which satisfies conditions (25).

The system (26) is simply a special case of the linear system (22) to which theorem 3.12 applies. Thus

the system (26) possesses a unique solution φ1, ..., φn defined on the entire interval a ≤ x ≤ b which

satisfies the conditions (27). Thus if you set φ = φ1, the above-noted equivalence of (13) and (25) with (26)

and (27) gives the desired conclusion.

Example 3.12

Consider the initial-value problem:































(x2 − x− 6)
d2y

dx2
+ (x2 + 4)

dy

dx
+

1

2x+ 3
y = e−x

y(2) = 0

y(2) = 4

The coefficient of y is continuous except at x = −3/2. The remaining coefficients and the non-homogeneous

term are continuous for all values of x, −∞ < x < ∞. The leading coefficients (x2 − x − 6) equals zero

at x = −2 and x = 3. Thus the hypothesis of theorem 3.13 is satisfied in every closed interval a ≤ x ≤ b
such that −3/2 < a < x0 = 2 < b < 3. Therefore the given initial-value problem has a unique solution,

and you are assured that this solution is defined over every such closed interval a ≤ x ≤ b.

An important corollary to this theorem concerning the homogeneous equation

a0(x)
d(n)y

dxn
+ a1(x)

d(n−1)y

dxn−1
+ · · · + an−1(x)

dy

dx
+ an(x)y = 0 (28)

This corollary, is stated and proved below

Corollary 3.1 The function φ is a solution of the homogeneous equation such that

φ(x0) = 0, φ′(x0) = 0, ..., φ(n−1)(x0) = 0, (29)

where x0 is a point of an interval a ≤ x ≤ b on which the coefficients a0, a1, ..., an are all continuous and

a0(x) 6= 0.

Then φ(x) = 0 for all x such that a ≤ x ≤ b.

Proof. First not that φ such that φ(x) = 0 for all x ∈ [a, b] is indeed a solution of the differential

equation (28) which satisfies the initial conditions (29). But by theorem (3.13) the initial-value problem

composed of Equation (28) and conditions (29) has a unique solution on a ≤ x ≤ b. Hence the stated

conclusion follows.

4 Conclusion

In this unit you have studied the Existence and Uniqueness theorem of Ordinary Differential Equations of

First order and Linear System. This has enabled you to know when a given Ordinary differential equation

has a solution, a unique solution or no solutions.
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5 Summary

5 Summary

Having gone through this section, you are now able to

(i) say when a first order ODE has a solution, a unique solution or no solutions.

(ii) say when a function of two variables satisfies a Lipschitz condition on the second variable.

(iii) approximate a solution of an ODE using the Picard’s iteration.

(iv) describe the dependence of a solution on initial condition on the function f.

(v) state and apply the existence theorem for linear differential equations.

6 Tutor Marked Assigments(TMAs)

Exercise 6.1

1. Consider the initial-value problem

dy

dx
= y4/3, y(x0) = y0.

(a) Discuss the existence of a solution of this problem.

(b) Discuss the uniqueness of a solution of this problem.

2. For each of the following initial-value problems show that there exists a unique solution of the prob-

lem if y0 6= 0. In each case discuss the existence and uniqueness of a solution if y0 = 0.

(a)
dy

dx
= y2/3, y(x0) = y0.

(b)
dy

dx
=

√

|y|, y(x0) = y0

3. For each of the following initial-value problems find the largest interval |x| ≤ h on which theorem

3.6 guarantees the existence of a unique solution. In each case find the unique solution and show that

it actually exists over a larger interval that that guaranteed by the theorem.

(a)
dy

dx
= 1 + y2, y(0) = 0.

(b)
dy

dx
= e2y, y(0) = 0.

4. Show that theorem 3.6 guarantees the existence of a unique solution of the initial-value problem

dy

dx
= x2 + y2, y(0) = 0

on the interval |x| ≤
√

2

2

5. Which of the following sequences of functions {fn} defined on 0 ≤ x ≤ 1 does not converge

uniformly on 0 ≤ x ≤ 1.

(a) fn(x) =
1

x+ n
, 0 ≤ x ≤ 1, (n = 1, 2, 3, ...).
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(b) fn(x) = x− xn

n
, 0 ≤ x ≤ 1, (n = 1, 2, 3, ...).

(c) fn(x) =
1

nx+ 1
, 0 ≤ x ≤ 1, (n = 1, 2, 3, ...).

(d) fn(x) =
nx2

nx+ 1
, 0 ≤ x ≤ 1, (n = 1, 2, 3, ...).

6. Which of the following functions does not satisfy a Lipschitz Condition in the rectangle D defined

by |x| ≤ a, |y| ≤ b.

(a) f(x, y) = x2 + y2.

(b) f(x, y) = x sin y + y cosx.

(c) f(x, y) = x2ex+y.

(d) f(x, y) = y
2

3

7. Consider the third-order differential equation

d3y

dx3
= x2 + y

dy

dx
+

(

d2y

dx2

)2

of the form (20) of the text.

(a) Does there exist a unique solution φ of the given equation such that

φ(0) = 1, φ′(0) = −3, φ′′(0) = 0?

Explain precisely why or why not.

(b) Find the system of three first-order equations to which the given third order equation is equiva-

lent.

8. Does there exist a solution of the initial value problem











(x2 − 4)
d4y

dx4
+ 2x

d2y

dx2
+ (sinx)y = 0

y(0) = 0, y′(0) = 1, y′′(0) = 1, y′′′(0) = −1?

If so, is the solution unique and over what interval are you assured that it is defined? Explain precisely.

9. Give that each of the functions f1 and f2 defined for all x by

f1(x) = sinx and f2(x) =
∞

∑

n=1

(−1)n+1x2n−1

(2n− 1)!

are solutions of the initial-value problem











d2y

dx2
+ y = 0

y(0) = 0, y′(0) = 1

For all x, −∞ < x∞, what theorem enables us to conclude that f1(x) = f2(x) for all x, −∞ < x <
∞? Explain. 54
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10. Consider the differential equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (30)

where a0, a1 and a2 are continuous for all x, −∞ < x <∞, and a0(x) 6= 0 for all values of x.

(a) Let f be a nontrivial solution of differential equation (30), let f ′ denote the derivatives and let

x0 ∈ [a, b]. Prove that if f(x0) = 0, then f ′(x0) 6= 0.

(b) Let f and g be two distinct solutions of differential equation (30), and suppose there exists

x0 ∈ [a, b] such that f(x0) = g(x0) = 0. Prove that there exists a constant c such that f = cg.

[Hint: Observe that the function h defined by h(x) = Af(x) − Bg(x), where A = g′(x0) and

B = f ′(x0), is also a solution of differential equation (30).]
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1  Introduction 

The subject of linear ordinary differential equations is one of great theoretical and practical 

importance. Theoretically, the subject is one of simplicity and elegance. Practically, linear 

differential equations originate in a variety of applications to science and engineering. 

Fortunately many of the linear differential



2 Objectives

equations which thus occur are of a special type, linear with constant coefficients, for which explicit meth-

ods of solution are available.

2 Objectives

At the end of this unit, you should be able to;

(i) Use certain methods to obtain solutions of linear ordinary differential equations with constant coeffi-

cient.

(ii) know some basic theorems which could be used to solve such problems.

3 Main Content

3.1 Basic Theory of Linear Differential Equations

3.1.1 Definition and Basic Existence Theorem

Definition 3.1 A Linear differential equation of order n is an equatio of the form

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = b(x) (1)

where a0 is not identically zero. It shall be assumed that a0, a1, ..., an and b are continuous real functioins

on a real interval a ≤ x ≤ b and that a0(x) 6= 0 for any x on a ≤ x ≤ b.

The right hand member is called the nonhomogeneous term. If b is identically zero the equation reduces

to

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1y
′ + an(x)y = 0

and is then called homogeneous.

Example 3.1 y′′ + 3xy′ + x3y = ex is a linear differential equation of the second order.

Example 3.2 y′′′ + xy′′ + 3x2y′ − 5y = sin x is a linear differential equation of the third order.

You can recall from the last unit the following basic existence theorem for initial-value problems asso-

ciated with an nth order linear differential equation:

Theorem 3.1 Consider

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = b(x) (1)

where a0, a1, ..., an and b are continuous real functions of a real interval a ≤ x ≤ b and a0(x) 6= x for any

x on a ≤ x ≤ b.

Let x0 be any point of the interval a ≤ x ≤ b, and let c0, c1, ..., cn−1 be n arbitrary constants.

Then there exists a unique solution f of (1) such that f(x0) = c0 f ′(x0) = c1, ..., f
(n−1)(x0) = cn−1,

and this solutiion is defined over the entire interval a ≤ x ≤ b.
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Example 3.3 Consider the initial-value problem























y′′ + 3xy′ + x3y = ex

y(1) = 2

y′(1) = 5

The coefficients 1, 3x and x2 as well as the nonhomogeneous term ex, in this second-order differential

equation are all continuous for all values of x, −∞ < x < ∞. The point x0 here is the point 1, which

certainly belongs to this interval; and the real numbers c0 and c1 are 2 and −5, respectively. Thus theorem

3.1 tells you that a solution of the given problem exists, is unique, and is defined for all x, −∞ < x < ∞.

Example 3.4 Consider the initial-value problem











































2y′′′ + xy′′ + 3x2y′ − 5y = sin x

y(4) = 3

y′(4) = 5

y′′(4) = −7

2

Here you have a third-order problem. The coeffiecients 2, x, 3x2, and −5, as well as the nonhomogeneous

term sin x, are all continuous for all x, −∞ < x < ∞. The point x0 = 4 certainly belongs to this interval;

the real numbers c0, c1 and c2 in this problem are 3, 5 and −7
2
, respectively. Theorem 3.1 tells you that this

problem has a unique solution which is defined for all x, −∞ < x < ∞.

A useful corollary to theorem 3.1 is the following:

Corollary 3.1 Let y be a solution of the homogeneous equation

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1y
′ + an(x)y = 0 (2)

such that y(x0) = 0, y′(x0) = 0, ..., y(n−1)(x0) = 0, where x0 is a point of the interval a ≤ x ≤ b in which

the coefficients a0, a1, ..., an are all continuous and a0(x) 6= 0.

Then y(x) = 0 for all x on a ≤ x ≤ b.

Example 3.5 The solution y of the third-order homogeneous equation

y′′′ + 2y′′ + 4xy′ + x2y = 0

which is such that

y(2) = y′(2) = y′′(2) = 0

is the trivial solution y such that y(x) = 0 for all x.

3.1.2 The Homogeneous Equations

Here you shall be considering the fundamental results concerning the homogeneous equations (2). First is

the statement of the basic theorem: 58
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Theorem 3.2 Basic Theorem on Linear Homogeneous Differential Equations Let y1, y2, ..., ym be any

m solutions of the homogeneous linear differential equation (2).

Then c1y1 + c2y2 + · · · + cmym is also a solution of (2), where c1, c2, ..., cm are arbitrary constants.

You could put this theorem in a very simple form by means of the concept of linear combination, which

is now introduced to you.

Definition 3.2 If y1, y2, ..., ym are m given functions, and c1, ..., cm are constants, the the expression

c1y1 + c2y2 + · · · + cmym

is called a linear combination of y1, y2, ..., ym.

In terms of this concept, theorem (3.2) may be stated as follows:

Theorem 3.3 (Theorem 3.2 restated) Any linear combination of solutions of the homogeneous linear dif-

ferential equation is also a solution of (2)

Example 3.6 You could verify that sin x and cos x are solutions of

y′′ + y = 0.

Theorem 3.2 states that c1 sin x + c2 cos x is also a solution for any constants c1 and c2. For example,

5 sin x + 6 cos x

is a solution.

Example 3.7 You should be able to verify that ex, e−1, and e2x are solutions of

y′′′ − 2y′′ − y′ + 2y = 0

Theorem 4.2 states that y(x) = c1e
x + c2e

−x + c3e
2x is a solution for any constants c1, c2 and c3. For

example,

y(x) = 2ex − 3e−x +
2

3
e2x

is a solution.

Here you shall consider what constitutes the general solution of 4.2. To understand this, you would first

be introduced to the concepts of linear dependence and linear independence.

Definition 3.3 Then n functions y1, y2, ..., yn are called linearly dependent on a ≤ x ≤ b if there exists

constants, c1, c2, ..., cn, not all zero such that

c1y1(x) + c2y2(x) + · · · + cnyn(x) = 0

for all x such that a ≤ x ≤ b.

In particular, two functions y1 and y2 are linearly dependent on a ≤ x ≤ b if there exists constants

c1, c2, not both zero, such that

c1y1(x) + c2y2(x) = 0

for all x such that a ≤ x ≤ b. 59
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Example 3.8 You could observe that x and 2x are linearly dependent on the interval 0 ≤ x ≤ 1. For there

exists constants c1 and c2 not both zero such that

c1x + c2(2x) = 0

for all x on the interval −1 ≤ x ≤ 2. For example, let c1 = 2, c2 = −2.

Example 3.9 You could observe that sin x, 3 sin x, and − sin x are linearly dependent on the interval −1 ≤
x ≤ 2 for there exists constants c1, c2, c3, not all zero, such that

c1 sin x + c2(3 sin x) + c3(− sin x) = 0

for all x on the interval −1 ≤ x ≤ 2. For example, let c1 = 1, c2 = 1, c3 = 4.

Definition 3.4 The n functions y1, ...yn are called linearly independent on the interval a ≤ x ≤ b if they

are not linearly dependent there. That is, the function y1, ..., yn are linearly independent on a ≤ x ≤ b if

the relation

c1y1 + · · · + cnyn = 0

for all x such that a ≤ x ≤ b implies that

c1 = c2 = · · · = cn = 0.

(in other words, the only identically vanishing linear combination of y1, ..., yn is the “trivial” linear combi-

nation

0 · y1 + 0 · y2 + · · · + 0 · yn).

Example 3.10 You could observe that x and x2 are linearly independent on 0 ≤ x ≤ 1, since c1x+c2x
2 = 0

for all x on 40 ≤ x ≤ 1 implies that both c1 = 0 and c2 = 0.

Theorem 3.4 The nth order homogeneous linear differentia equation (2) always possesses n solutions

which are linearly independent. Further, if y1, y2, ..., yn are n linearly independent solutions of (2), then

every solution y of (2) can be expressed as a linear combination

y = c1y1 + · · · + cnyn

of these n linearly independent solutions by proper choice of the constants, c1, ..., cn

The above theorem helps us to formulate the meaning of a general solution of an nth order homogeneous

linear differential equation as follows:

Definition 3.5 (General Solution) If y1, y2, ..., yn are n linearly independent solutions of the nth order

homogeneous linear differential equation (2) on a ≤ x ≤ b, then the function y defined by

y(x) = c1y1(x) + · · · + cnyn(x), a ≤ x ≤ b,

where c1, ..., cn are arbitrary constants, is called a general solution of (2) on a ≤ x ≤ b.

Thus if you can find n linearly independent solutions of (2), you can at once write the general solution

of (2) as a linear combination of these n solutions.
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Example 3.11 You have observed that sin x and cos x are solutions of y′′ + y = 0 for all x, −∞ < x < ∞.

Further, you can verify that these two solutions are linearly independent. Thus the general y solution may

be expressed as the linear combination

y(x) = c1 sin x + c2 cos x

where c1 and c2 are arbitrary constants.

Example 3.12 The solutions ex, e−1 and e2x of

y′′′ − 2y′′ − y′ + 2y = 0

may be shown to be linearly independent for all x, −∞ < x < ∞. Thus the general solution y may be

expressed as the linear combination

y(x) = c1e
x + c2e

−x + c3e
2x,

where c1, c2, and c3 are arbitrary constants.

The next theorem gives you a simple criterion for determining whether or not n solutions of (2) are

linearly independent. Before that, you need the following concept.

Definition 3.6 Let y1, ..., yn be n real functions each of which has an (n− 1)st derivative on a real interval

a ≤ x ≤ b. The determinant

W (y1, y2, ..., yn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2 · · · yn

y′

1 y′

2 · · · y′

n

· · · · · · · · · · · ·

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

in which primes denote derivatives, is called the Wronskian of these n functions. You can observe that

W (y1, y2, ..., yn) is itself a real function defined on a ≤ x ≤ b. Its value at x is denoted by W (y1, y2, ..., yn)(x).

Theorem 3.5 The n solutions y1, y2, ..., yn of the nth order homogeneous linear differential equation (2)

are linearly independent on a ≤ x ≤ b if and only if the Wronskian of y1, y2, ..., yn is different from zero for

some x on the interval a ≤ x ≤ b.

You have further:

Theorem 3.6 The Wronskian of n solutions y1, y2, ..., yn of (2) is either identically zero on a ≤ x ≤ b or

else is never zero on a ≤ x ≤ b.

Thus if you can find n solutions of (2), you can apply the theorems (3.5) and (3.6) to determine whether

or not they are linearly independent. If they are linearly independent, then you can form the general solution

as a linear combination of these n linearly independent solutions.

In the case of the general second-order homogeneous linear differential equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0,

the Wronskian of two solutions y1 and y2 is the second-order determinant
∣

∣

∣

∣

y1 y2

y′

1 y′

2

∣

∣

∣

∣

= y1y
′

2 − y′

1y2.
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Example 3.13 You can apply theorem 3.5 to show that the solutions sin x and cos x of

y′′ + y = 0

are linearly independent.

W (sin x, cos x) =

∣

∣

∣

∣

sin x cos x

cos x − sin x

∣

∣

∣

∣

= − sin2 x − cos2 x = −1 6= 0.

Thus since W (sin x, cos x) 6= 0, you would conclude that sin x and cos x are indeed linearly independent.

Example 3.14 The solutions ex, e−x, and e2x of

y′′′ − 2y′′ − y′ + 2y = 0

are linearly independent, for

W (ex, e−x, e2x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ex e−x e2x

ex −e−x 2e2x

ex e−x 4e2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= e2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

1 −1 2

1 1 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −6e2x 6= 0.

3.1.3 Nonhomogeneous Equation

You shall now consider breifly the nonhomogeneous equation

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = b(x) (1)

The basic theorem dealing with this equation is the following

Theorem 3.7 Let v be a any soluton of the given (nonhomongeneous) nth-order linear differential equation

(1). Let u be any solution of the corresponding homogeneous equation

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = 0 (2)

Then y=u+v is a solution of the given (nonhomogeneous) equation (1).

Example 3.15 Observet that y = x is a solution of the nonhomogeneous equation

y′′ + y = x.

and that y = sin x is a solution of the corresponding homogeneous equation

y′′ + y = 0.

The by theorem 3.7, the sum

y = sin x + x

is also a solution of the given nonhomogeneous equation

y′′ + y = x.

You can check that this is indeed true. 62
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Definition 3.7 Consider the nth-order (nonhomogeneous) linear differential equation

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = b(x) (1)

and the corresponding homogeneous equation

a0(x)y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = 0 (2)

1. The general solution of (2) is called the complementary function of equation (1) and is denoted by

yc.

2. Any particular solution of (1) involving no arbitrary constants is called a particular integral of (1),

denoted by yp.

3. The solution y = yc +yp of (1), where yc is the complementary function and yp is a particular integral

of (1) is called the general solution of (1).

Thus to find the general solution of (1), you need merely find:

(a) The complementary function, that is the general linear combination of n linearly independent solutions

of the corresponding homogeneous equation (2); and

(b) a particular integral, that is, any particular solution of (1) involving no arbitrary constants.

Example 3.16 Consider the differential equation.

y′′ + y = x

The complementary function is the general solution

yc = c1 sin x + c2 cos x

of the corresponding homogeneous equation

y′ + y = 0.

In particular integral is given by

yp = x.

Thus the general solutionof the given equation may be written

y = yc + yp = c1 sin x + c2 cos x + x.

The remaining sections of this unit, shall be devoted to study methods. of obtaining the two constituents

parts of the general solutions.

3.2 General Theory for Linear Differential Equations with Constant Coefficent

The general form of an nth order linear differential equation is given by

a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = b(x) (3)

where a0, a1, ..., an−1, an are constants and b is a function of x. If b(x) ≡ 0 then (3) becomes of

a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = 0 (4)

and is called homogeneous otherwise, it is said to be nonhomogeneous.63
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3.2.1 Homogeneous Linear Equations with Constant Coefficents.

As you have already said, the general form of a homogeneous linear Ordinary Differential Equation with

constant coefficients is given by (4) i.e.,

a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = 0 (4)

where a0, a1, ..., an−1, an are constants.

In order to solve this equation, you would first of all assume a trial solution of the form

y(x) = eλx (5)

Differentiating and substituting this in (4), gives you

a0λ
neλx + a1λ

n−1eλx + · · · + an−1λeλx + ane
λx = 0

or

eλx(a0λ
n + a1λ

n−1 + · · · + an−1λ + an) = 0.

Since eλx 6= 0, you obtain that the polynomial equation in the unknown λ :

a0λ
n + a1λ

n−1 + · · · + an−1λ + an = 0 (6)

This equation is called the auxilliary equation or the characteristic equation of the given differential equa-

tion (6). If y = eλx is a solution of (4) then you see that the constant λ satisfy (6). Hence to solve (5), you

write the auxiliary equation (6) and solve it for λ. Observe that (6) is formally obtained form (4) by merely

replacing the kth derivative in (4) by λk(k = 1, 2, ..., n). Three cases arises, according as the roots of (6)

are real and distinct, real and repeated, or complex.

3.2.2 Case I. Distinct Real Roots

Suppose the roots of (6) are the n distinct real numbers

λ1, λ2, ..., λn

Then

eλ1x, eλ2x, ..., eλx

are n distinct solutions of (4). Further, using the Wronskian determinant one may show that these n solutions

are linearly independent. Thus you have the following result.

Theorem 3.8 Consider the nth-order homogeneous linear differential equation (4) with constant coeffi-

cients. If the auxilliary equation (6) has the n distinct real roots λ1, λ2, ..., λn, then the general solution of

(6) is

y = c1e
λ1x + c2e

λ2x + · · · + cne
λnx

where c1, c2, ..., cn are arbitrary constants.

Example 3.17 y′′ − 3y′ + 2y = 0
The auxiliary equation is

λ2 − 3λ + 2 = 0.

Hence

(λ − 1)(λ − 2) = 0, λ1 = 1, λ2 = 2.64
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The roots are real and distinct. Thus ex and e2x are solutions and the general solution may be written

y = c1e
x + c2e

2x

You can verify that ex and e2x are indeed linearly independent. Their Wronskian is

W (ex, e2x) =

∣

∣

∣

∣

∣

∣

ex e2x

ex 2e2x

∣

∣

∣

∣

∣

∣

= e3x 6= 0. Thus by theorem 3.5, you are sure of their linear independence.

Example 3.18 y′′′ − 4y′′ + y′ + 6y = 0. The auxilliary equation is

λ3 − 4λ2 + λ + 6 = 0.

You could observe that λ = −1 is a root of this equation. By sythetic division, you obtain by factorization

(λ + 1)(λ2 − 5λ + 6) = 0

or

(λ + 1)(λ − 2)(λ − 3) = 0

Thus the roots are the distinct real numbers

λ1 = −1, λ2 = 2, λ3 = 3

and the general solution is

y = c1e
−x + c2e

2x + c3e
3x.

3.2.3 Case II. Repeated Real Roots

For a better understanding, you can begin the study of this case by considering a simple example.

Example 3.19 An introductory Example. Consider the differential equation

y′′ − 6y′ + 9y = 0. (7)

the auxilliary equation is

λ2 − 6λ + 9 = 0

or

(λ − 3)2 = 0

The roots of this equation are

λ1 = 3, λ2 = 3.

(real but not distinct). Corresponding to the root λ1, you have the solution e3x, and corresoponding to λ2 you

have the same solution e3x. The linear combination c1e
3x + c2e

3x of these “two” solutions is clearly not the

general solution of the differential equation (7), for it not a linear combination of two linearly independent

solutions. Indeed, you may write the combination c1e
3x + c2e

3x as simply c0e
3x, where c0 = c1 + c2; and

clearly y = c0e
3x, involving one arbitrary constant, is not the general solution of the given second-order

equation.

You must find a linearly independent solution; but how can you proceed to do so? Since you already

know the one solution e3x, you may set

y = e3xu (8)

where u is to be determined. Then 65
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y′ = e3xu6′ + 3eexu.

y′′ = e3xu′′ + 6e3xu′ + 9e3xu.

Substituting into equation (7) you have

(e3xu′′ + 6e3xu′ + 9e3xu) − 6(e3xu6′ + 3eexu) + 9e3xu.

or

e3xy′′ = 0

Letting w = u′, you have the first-order equation

e3xw′ = 0

Or simply

w′ = 0

The general solution of this first-order equation is simply w = c, where c is an arbitrary constant. Choosing

the particular solution w = 1 and recalling that u′ = w, you find

u = x + c0

where c0 is an arbitrary constant. For any constant c0, you could verify that ue3x = (x+ c0)e
3x is a solution

of the given second order equation (7). Now you can also verify that this solution and the previously known

solution e3x are linearly independent. Choosing c0 = 0, you obtain the solution

y = xe3x,

and thus corresponding to the double root 3 you find the linearly independent solutions

e3xandxe3x

of equation (7) Thus the general solution of equation (7) may be written

y = c1e
3x + c2xe3x (9)

or

y = (c1 + c2x)e3x. (10)

With this example as a guide, you can return to the general nth-order equation (4). If the auxilliary equation

(6) has the double real root λ, you would surely expect that eλx and xeλx would be the corresponding

linearly independent solutions. This is indeed the case. Specifically, suppose the roots of (6) are the double

real root λ and the (n − 1) distinct real

λ1, λ2, ..., λn−2

Then linearly independent solutions of (4) are

eλx, xeλx, eλ1x, eλ2x, ..., eλn−2x

and the general solution may be written

y = c1e
λx + c2xeλx + c3e

λ1x + c4e
λ2x + · · · + cne

λn−2x.

or

y = (c1 + c2x)eλx + c3e
λ1x + c4e

λ2x + · · · + cne
λn−2x.

In like manner, if the auxilliary equation (6) has the triple real root λ, corresponding linearly independent

solutions are 66



3.2 General Theory for Linear Differential Equations with Constant Coefficent

eλx, xeλxandx2eλx.

The corresponding part of the general solution may be written

(c1 + c2x + c3x
2)eλx.

Proceeding further in like manner, you could summarize case II in the following theorem:

Theorem 3.9 (i) Consider the nth order homogeneous linear differential equation (4) with constant

coefficients. If the auxilliary equation (6) has the real root λ recurring k times, then the part of the

general solution of (4) corresponding to this k-fold repeated root is

(c1 + c2x + c3x
2 + · · · + ckx

k−1)eλx.

1. (ii) If, further, the remaining roots of the auxiliary equation (6) are the distinct real numbers λk+1, ..., λn,

then the general solution of (4) is

y = (c1 + c2x + c3x
2 + · · · + ckx

k−1)eλx + ck+1e
λk+1x + · · · + cne

λnx.

2. If, however any of the remaining roots are also repeated, then the parts of the general solution of (4)

corresponding to each of these other repeated roots are expressions similar to that corresponding to

λ in part (i)

Here are some examples

Example 3.20 Find the general solution of

y′′′ − 4y′′ − 3y′ + 18y = 0

The auxilliary equation.

λ3 − 4λ2 − 3λ + 18 = 0

has roots 3, 3,−2. The general solution is

y = c1e
3x + c2xe3x + c3e

−2x

or

y = (c1 + c2x)e3x + c3e
−2x.

Example 3.21 Find the general solution of

y(iv) − 5y′′′ + 6y′′ + 4y′ − 8y = 0.

The auxilliary equation is

λ4 − 5λ3 + 6λ2 + 4λ − 8 = 0

with roots 2, 2, 2,−1. The part of the general solution corresponding to the threefold root 2 is

y = (c1 + c2x + c3x
2)e2x

and that corresponding to the simple root −1 is simply

y = c4e
−x

Thus the general solution is

y = (c1 + c2x + c3x
2)e2x + c4e

−x
67
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3.2.4 Case III. Conjugate Complex Roots

Now suppose that the auxiliary equation has the complex number a + bi (a, b real, i2 = −1, b 6= 0) as

a nonrepeated root. Then, sinc the coefficients are real, the conjugate complex number a − bi is also a

nonrepeated root. The corresponding part of the general solution is

k1e
(a+bi)x + k2e

(a−bi)x,

where k1 and k2 are arbitrary constants. The solutions defined by e(a+bi)x and e(a−bi)x are complex functions

of the real variable x. It is desirable to replace these by two real linearly independent solutions. This can be

accomplished by using Euler’s Formula,

eiθ = cos θ + i sin θ

which holds for all real θ.

Using this you have:

k1e
(a+bi)x + k2e

(a−bi)x = k1e
axebix + k2e

axe−bix

= eax[k1e
ibx + k2e

−ibx]

= eax[k1(cos bx + i sin bx) + k2(cos bx − i sin bx)]

= eax[(k1 + k2) cos bx + i(k1 − k2) sin bx]

= eax[c1 sin bx + c2 cos bx]

where c1 = i(k1 − k2), c2 = k1 + k2 are two new arbitrary constants. Thus the part of the general solution

corresponding to the nonrepeated conjugate complex roots a + bi is

eax[c1 sin bx + c2 cos bx].

Combining this with the results of case II, you have the following theorem covering case III.

Theorem 3.10 1. Consider the nth order homogeneous linear differential equation (4) with constant

coefficients. If the auxiliary equation (6) has the conjugate complex roots a+bi and a-bi, neither

repeated, then the corresponding part of the general solution of (4) may be written

y = eax(c1 sin bx + c2 cos bx).

2. If, however, a+bi and a-bi are each k-fold roots of the auxiliary equation (6), then the corresponding

part of the general solution of (4) may be written

y = eax[(c1 + c2x + c3x
2 + · · · + ckx

k−1) sin bx + (ck+1 + ck+2x + ck+3x
2 + · · · + c2kx

k−1) cos bx]

Here are some several examples.

Example 3.22 Find the general solution of

y′′ + y = 0

You have already used this equation to illustrate the theorems of section 3.1. You could now obtain its

solution using theorem 3.10. The auxiliary equation λ2 + 1 = 0 has the roots λ = ±i. this are the pure

imaginary complex numbers a ± bi, where a = 0, b = 1. The general solution is thus

y = r0x(c1 sin 1 · x + c2 cos 1 · x),

which is simply

y = c1 sin x + c2 cos x68
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Example 3.23 Find the general solution of

y′′ − 6y′ + 25y = 0

The auxiliary equation is λ2 − 6λ + 25 = 0.
Solving it, you find

λ =
6 ±

√
36 − 100

2
=

6 ± 8i

2
= 3 ± 4i.

Here the roots are the conjugate complex numbers a± bi, where a = 3, b = 4. The general solution may be

written

y = e3x(c1 sin 4x + c2 cos 4x).

Example 3.24 Find the general solutio of

y(iv) − 4y′′′ + 14y′′ − 20y′ + 25y = 0

The auxiliary equation is

m4 − 4m3 + 14m2 − 20m + 25 = 0.

The solution of this equation presents some ingenuity and labor. Since our purpose in this example is not

to display your mastery of the solution of algebraic equation but rather to illustrate the above principles of

determining the general solution of differential equation, you can verify that the roots are

1 + 2i, 1 − 2i, 1 + 2i, 1 − 2i

Since each pair of conjugate roots is double, the general solution is

y = ex[(c1 + c2) sin 2x + (c3 + c4) cos 2x]

3.2.5 An Initial-Value Problem

Here is an application of the results concerning general solutions of homogeneous linear equation with

constants to an initial-value problem involving such an equation.

Example 3.25 Solve the initial-value problem

y′′ − 6y′ + 25y = 0 (11)

y(0) = −3 (12)

y′(0) = −1 (13)

First note that by theorem 3.1, this problem has a unique solution defined for all x, −∞ < x < ∞. You can

now proceed to find this solution; that is, you seek the particular solution of the differential equation (11)

which satisfies the two initial conditions (12) and (13). You have already found the general solution of the

differential equation (11) in example 3.23. It is

y = e3x(c1 sin 4x + c2 cos 4x). (14)

From this, you find

y′ = e3x[(3c1 − 4c2) sin 4x + (4c1 + 3c2) cos 4x]. (15)

You can now apply the initial conditions. Applying condition (12), y(0) = −3. to equation (14), you find

−3 = e0(c1 sin 0 + c2 cos 0)69



3.2 General Theory for Linear Differential Equations with Constant Coefficent

which reduces at once to

c2 = −3 (16)

Applying condition (13), y′(0) = −1, to Equation (15), you obtain

−1 = e0[(3c1 − 4c2) sin 0 + (4c1 + 3c2) cos 0]

which reduces to

4c1 + 3c2 = −1 (17)

Solving Equation (16) and (17), you find






c1 = 2

c2 = −3.

Replacing c1 and c2 in Equation (4.19) by these values, you obtain the unique solution of the given

initial-value problem in the form

y = e3x(2 sin 4x − 3 cos 4x).

You may write this in an alternate form by first multiplying and dividing by
√

(22) + (−3)2 =
√

13 to

obtain

y =
√

13e3x

[

1√
13

sin 4x − 3√
13

cos 4x

]

from this you may express the solution in the alternate form

y =
√

13e3x sin(4x + φ),

where the angle φ is defined by the equations



















sin φ = − 3√
13

cos φ =
2√
13

3.2.6 The Method of Undetermined Coefficients

You will be dealing with the (nonhomogeneous) differential equation

a0y
(n) + a1y

(n−1) + · · · an−1y
′ + any = b(x) (18)

where the coefficients a0, a1, ..., an are constants but where the nonhomogeneous term b is (in general) a

nonconstant function of x. Recall that the general solution of (18) may be written

y = yc + yp

where yc is the complementary function. that is the general solution of the corresponding homogeneous

equation (equation (18) with b replaced by 0), and yp is a particular integral, that is, any solution of (18)

containing no arbitrary constants. In last section, you learnt how to find the complementary function, now

you will consider methods of determining a particular integral.

You shall first consider the method of undetermined coefficients. Mathematically speaking, the class of

functions b to which this method applies is actually quite restricted; but this mathematically narrow class

includes functions of frequent occurrence and considerable importance in various physical applications.

And this method has one distinct advantage - when it does apply, it is relatively simple.

The following are some preliminary definitions70
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Definition 3.8 You should call a function UC function if it is either

1. A function defined by any of the following

(a) xn, where n is a positive integer or zero.

(b) eax, where a is a constant 6= 0.

(c) sin(bx + c), where b and c are constants, b 6= 0.

(d) cos(bx + c), where b and c are constants, b 6= 0.

or

2. A function defined as a finite product of two or more functions of these four types.

The method of undetermined coefficients applies when the nonhomogeneous function b in the differ-

ential equation is a finite linear combination of UC functions. Observe that given a UC function f, each

successive derivative of f is either itself a constant multiple of a UC function or else a linear combination

of UC functions.

Definition 3.9 Consider a UC function f. The set of functions consisting of f itself and all linearly in-

dependent UC functions of which the succesive derivatives of f are either constant multiples or linear

combinations will be called the UC set of f.

Example 3.26 The function f defined for all real x by f(x) = x3 is a UC function. Computing derivatives

of f, you find

f ′(x) = 3x2, f ′′(x) = 6x, f ′′′ = 6,
f (n)(x) = 0 for n > 2.

Examples

Below are a few illustrative examples which gives you the procedure for finding the particular integral using

the method of undetermined coefficients.

Example 3.27

y′′ − 2y′ − 3y = 2ex − 10 sin x.

The corresponding homogeneous equation is

y′′ − 2y′ − 3y = 0

and the complementary function is

yc = c1e
3x + c2e

−x

The nonhomogeneous term is the linear combination 2ex − 10 sin x of the two UC functions given by ex

and sin x.

1. Form the UC set for each of these two functions. You find

S1 = {ex}
S2 = {sin x, cos x}.

2. Note that neither of these sets is identical with nor included in the other; hence both are retained.71
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3. Furthermore, by examining the complementary function, you see that none of the functions ex, sin x, cos x

in either of these sets is a solution of the corresponding homogeneous equation. Hence neither set

needs to be revised.

4. Thus the original set S1 and S2 remain intact in this problem, and you form the linear combination

Aex + B sin x + C cos x

of the three elements ex, sin x, cos x of S1 and S2, with the undetermined coefficients A, B, C.

5. You can determine these unknown coefficients by substituting the linear combination formed in step

(4) into the differential equation and demanding that it satisfies the differential equation identically.

That is, you take

yp = Aex + B sin x + C cos x

is a particular solution. Then

y′

p = Aex + B cos x − C sin x

y′′

p = Aex − B sin x − C cos x

Substitution, gives you

[Aex − B sin x − C cos x] − 2[Aex + B cos x − C sin x] − 3[Aex + B sin x + C cos x] = 2ex − 10 sin x

or

−4Aex + (−4B + 2C) sin x + (−4C − 2B) cos x = 2ex − 10 sin x.

Equating coefficients of like terms, you should obtain the equations






















−4A = 2

−4B + 2C = −10

−4C − 2B = 0.

From these equations, you find that


























A = −1

2

B = 2

C = −1

and hence you obtain the particular integral

yp = −1

2
ex + 2 sin x − cos x

Thus the general solution of the differential equation under consideration is

y = yc + yp = c1e
3x + c2e

−x − 1

2
ex + 2 sin x − cos x

Example 3.28 Initial-Value Problem This section will be closed by applying the results to the solution to

the initial-value problem






















y′′ − 2y′ − 3y = 2ex − 10 sin x,

y(0) = 2

y′(0) = 4. 72
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By theorem 3.1, this problem has a unique solution, defined for all x, −∞ < x < ∞; So you can now

proceed to find it. In example 3.27, you found that the general solution of the differential equation is

y = c1e
3x + c2e

−x − 1

2
+ 2 sin x − cos x.

From this, you have

y′ = 3c1e
3x − c2e

−x − 1

2
ex + 2 cos x + sin x.

Applying the initial conditions to the last two equations, respectively, you have



















2 = c1e
0 + c2e

0 − 1

2
e0 + 2 sin 0 − cos 0

4 = 3c1e
0 − c2e

0 − 1

2
e0 + 2 cos 0 + sin 0

These equations simplify at once to the following:



















c1 + c2 =
7

2

3c1 − c2 =
5

2

From these two equations you obtain










c1 =
3

2

c2 = 2.

Substituting these values for c1 and c2 into the general solution you obtain the unique solution of the given

initial-value problem in the form

y =
3

2
e3x + 2e−x − 1

2
ex + 2 sin x − cos x.

3.2.7 Variation Of Paramenters

The Method

While the process of carrying out the method of undetermined coefficients is quite straightforward (involv-

ing only techniques of college algebra and differentiation, the method applies in general to a rather small

class of problems. For example, it does not apply to the apparently simple eqution

y′′ + y = tan x

You thus need a method of finding a particular integral which applies in all cases of variable coefficients) in

which the complementary function is known. Such a method is called method of variation of parameters,

which you would now consider.

This method shall be developed with the general second order differential equation with variable coef-

ficients

a0(x)y′′ + a1(x)y′ + a2(x)y = b(x) (19)

Suppose that y1 and y2 are linearly independent solutions of the corresponding homogeneous equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0 (20)73
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Then the complementary function of equation (19) is

c1y1 + c2y2,

where c1 and c2 are arbitray constants. The procedure in the method of variation of parameters is to replace

the arbitray constants c1 and c2 in the complementary function by respective functions v1 and v2 which will

be determined so that the resulting function

v1y1 + v2y2 (21)

will be a particular integral of equation (19) (hence the name, variation of parameters). conditions that (21)

be a solution of (19). Since you have two functions but only one conditions on them, you are thus free to

impose a second condition, provided this second condition does not violate the first one. You shall see when

and how to impose this additional condition as you proceed.

You thus assume a solution of the form (21) and write

yp = v1y1 + v2y2, (22)

Differentiating (22) you would have

y′

p = v1y
′

1 + v2y
′

2 + v′

1y1 + v′

2y2 (23)

At this point, you should impose the condition;

v′

1y1 + v′

2y2 = 0 (24)

With this condition imposed, (33) reduces to

y′

p = v1y
′

1 + v2y
′

2. (25)

Now differentiating (25), you should obtain

y′′

p = v1y
′′

1 + v2y
′′

2 + v′

1y
′

1 + v′

2y
′

2. (26)

Now impose the basic condition that (22) be a solution of equation (19). Thus you substitute (22), (25), and

(26) for y, y′, and y′′, respectively, in equation (19) and obtain the identity

a0[v1y
′′

1 + v2y
′′

2 + v′

1y
′

1 + v′

2y
′

2] + a1[v1y
′

1 + v2y
′

2] + a2[v1y1 + v2y2] = b

This can be written as

v1[a0y
′′

1 + a1y
′

1 + a2y1] + v2[a0y
′′

2 + a1y
′

2a2y2] + a0[v
′

1y
′

1 + v′

2y
′

2] = b (27)

Since y1 and y2 are solutions of the corresponding homogeneous differential equation (20), the expressions

in the first two brackets in (27) are identically zero. This leaves merely

v′

1y
′

1 + v′

2y
′

2 =
b

a0

(28)

This is actually what the basic conditioin demands. Thus the two imposed conditions require that the

functions v1 and v2 be chosen such that the system of equations















y1v
′

1 + y2v
′

2 = 0

y′

1v
′

1 + y′

2v
′

2 =
b

a0

(29)

74
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is satisfied. The determinant of coefficients of this system is precisely

W (y1, y2) =

∣

∣

∣

∣

y1 y2

y′

1 y′

2

∣

∣

∣

∣

Since y1 and y2 are linearly independent solutions of the corresponding homogeneous differential equations

(20) you know that W (y1, y2) 6= 0. Hence the system (29) has a unique solution. Actually solving the

sytem you obtain

v′

1 =

∣

∣

∣

∣

∣

∣

0 y2

b

a0

y′

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2

y′

1 y′

2

∣

∣

∣

∣

= − by2

a0W (y1, y2)

v′

2 =

∣

∣

∣

∣

∣

∣

y1 0

y′

1

b

a0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 y2

y′

1 y′

2

∣

∣

∣

∣

=
by1

a0W (y1, y2)

Thus you obtain the functions v1 and v2 given by

v1(x) = −
∫ x b(t)y2(t)dt

a0(t)W [y1(t), y2(t)]

v2(x) =

∫ x b(t)y1(t)dt

a0(t)W [y1(t), y2(t)]

(30)

Therefore a particular integral of equation (29) is

yp = v1y1 + v2y2,

where v1 and v2 are defined by (30)

Examples

Example 3.29

y′′ + y = tan x (31)

The complementary function is

yc = c1 sin x + c2 cos x.

Assume

yp = v1 sin x + v2 cos x, (32)

where the functions v1 and v2 will be determined such that this is a particular integral of the differential

equation (31). Then using the formulas above, you obtain

v′

1 =

∣

∣

∣

∣

0 cos x

tan x − sin x

∣

∣

∣

∣

∣

∣

∣

∣

sin x cos x

cos x − sin x

∣

∣

∣

∣

=
− cos x tan x

−1
= sin x
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v′

1 =

∣

∣

∣

∣

sin x 0
cos x tan x

∣

∣

∣

∣

∣

∣

∣

∣

sin x cos x

cos x − sin x

∣

∣

∣

∣

=
− sin x tan x

−1
= −sin2 x

cos x
=

cos2 x − 1

cos x
= cos x − sec x.

Integrating you find:
{

v1 = − cos x + c3

v2 = sin x − ln | sec x + tan x| + c4
(33)

Substituting (33) into (32) you have

yp = [− cos x + c3] sin x + [sin x − ln | sec x + tan x| + c4] cos x

= − sin x cos x + c3 sin x + sin x cos x − ln | sec x + tan x|(cos x) + c4 cos x

= c3 sin x + c4 cos x − (cos x)[ln | sec x + tan x|].

Since a particular integral is a solution free of arbitrary constants, you may assign any particular values A

and B to c3 and c4, respectively, and the result will be the particular integral

A sin x + B cos x − (cos x)[ln | sec x + tan x|].

Thus y = yc + yp becomes:

y = c1 sin x + c2 cos x + A sin x + B cos x − (cos x) ln | sec x + tan x|

which you may write as

y = C1 sin x + C2 cos x − cos x − (cos x) ln | sec x + tan x|,

where C1 = c1 + A, C2 = c2 + B.

Thus you see that you might as well have chosen the constants c3 and c4 both equal to 0 in (33). for

essentially the same result, y = c1 sin x + c2 cos x − (cos x) ln | sec x + tan x|, would have been obtained.

This is the general solution of the differential equation (31).

The method of variation of parameters extend to higher order linear equations. The proof of the validity

of this method for the general nth-order equation will not be given in this work, you can find it in advanced

text of ODE.

4 Conclusion

In this unit, you have studied the basic theory of linear differential equations and have used the explicit

methods described in this unit to obtain the general and particular solutions of differential equations with

constant coefficients.

5 Summary

Having gone through this unit, you now know;

1. the basic theory of nth order linear ordinary differential equations.

2. how to obtain the solutions to a given ODE using the explicit method described in this unit.76



6 Tutor Marked Assignments(TMAs)

6 Tutor Marked Assignments(TMAs)

Exercise 6.1

1. Theorem 3.1 applies to one of the following problems but not to the other. Determine to which the

problems applies and state precisely the conclusion which can be drawn in this case. Explain why the

theorem does not apply to the remaining problem.

(a)























y′′ + 5y′ + 6y = ex

y(0) = 5

y′(0) = 7.

(b)























y′′ + 5y′ + 6y = ex

y(0) = 5

y′(1) = 7.

2. Answer orally: What is the solution of the following initial-value problem? Why?























y′′ + xy′ + x2y = 0

y(1) = 0

y′(1) = 0.

3. Consider the differential equation

y′′ − 5y′ + 6y = 0.

(a) Show that e2x and e3x are linearly independent solutions of this equation on the interval −∞ <

x < ∞.

(b) Write the general solution of the given equation.

(c) Find the solution which satisfies the condition y(0) = 2, y′(0) = 3. Explain why this solution is

unique.

4. Consider the differential equation

x2y′′ + xy′ − 4y = 0

(a) Show that x2 and 1
x2 are linearly independent solutions of this equations of this equation on the

interval 0 < x < ∞.

(b) Write the general solution of the given equation.

(c) Find the solution which satisfies the conditions y(2) = 3, y′(2) = −1. Over what interval is this

solution defined?

5. The functions ex and e4x are both solutions of the differential equation

y′′ − 5y′ + 4y = 0.

(a) Show that these solutions are linearly independent on the interval −∞ < x < ∞.

(b) What theorem enables you to conclude at once that 2ex − 3e4x is also a solution of the given

differential equation?

(c) Show that the solution of part(b) and the solution ex are also linearly independent on −∞ <

x < ∞.
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6. Given that e−x, e3x and e4x are all solutions of

y′′′ − 6y′′ + 5y′ + 12y = 0,

show that they are linearly independent on the interval −∞ < x < ∞ and write the general solution.

Exercise 6.2

Find the general solution of each of the differential equations in the following exercises.

1. y′′ − 5y′ + 6y = 0.

2. y′′ − 2y′ − 3y = 0.

3. 4y′′ − 12y′ + 5y = 0.

4. 3y′′ − 14y′ − 5y = 0.

5. y′′′ − 3y′′ − y′ + 3y = 0

6. y′′′ − 6y′′ + 5y′ + 12y = 0

7. y′′ − 8y′ + 16y = 0

8. 4y′′ + 4y′ + y = 0

9. y′′ − 4y′ + 13y = 0

10. y′′ + 6y′ + 25y = 0

11. y′′ + 9y = 0

12. 4y′′ + y = 0

13. y′′′ − 5y′′ + 7y′ − 3y = 0

14. 4y′′′ + 4y′′ − 7y′ + 2y = 0

15. y′′′ − 6y′′ + 12y′ − 8y = 0

16. y′′′ + 4y′′ + 5y′ + 6y = 0

17. y′′′ − y′′ + y′ − y = 0

18. y(iv) + 8y′′ + 16y = 0

19. y(v) − 2y(iv) + y′′′ = 0

20. y(iv) − y′′′ − 3y′′ + y′ + 2y = 0

21. y(iv) − 3y′′′ − 2y′′ + 2y′ + 12y = 0

22. y(iv) + 6y′′′ + 15y′′ + 20y′ + 12y = 0

23. y(iv) + y = 0.

24. y(v) = 0

Solve the initial-value problems in the exercises that follow.
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25.























y′′ − y′ − 12y = 0

y(0) = 3

y′(0) = 5

26.























9y′′ − 6y′ + y = 0

y(0) = 3

y′(0) = −1

27.























y′′ − 4y′ + 29y = 0

y(0) = 0

y′(0) = 5

28.























4y′′ + 4y′ + 37y = 0

y(0) = 2

y′(0) = −4

29.







































y′′′ − 6y′′ + 11y′ − 6y = 0

y(0) = 0

y′(0) = 0

y′′(0) = 2.

30.







































y′′′ − 2y′′ + 4y′ − 8y = 0

y(0) = 2

y′(0) = 0

y′′(0) = 0.

31. The roots of the auxiliary equation, corresponding to a certain 10th-order homogeneous linear differ-

ential equation with constant coefficients, are

4, 4, 4, 4, 2 + 3i, 2 − 3i, 2 + 3i, 2 − 3i, 2 + 3i, 2 − 3i

Write the general solution.

32. Given that sin x is a solution of

y(iv) + 2y′′′ + 6y′′ + 2y′ + 5y = 0,

find the general solution.

Exercise 6.3 79



6 Tutor Marked Assignments(TMAs)

Find the general solution of each of the differential equations following

1. y′′ − 3y′ + 2y = 4x2

2. y′′ − 2y′ − 8y = 4x2 − 21e−3x.

3. y′′ + 2y′ + 5y = 6 sin 2x + 7 cos 2x

4. y′′′ + 2y′′ − 3y′ − 10y = 8e−2x.

5. y′′′ + y′′ + 3y′ − 5y = 5 sin 2x + 10x2 − 3x + 7.

6. y(iv) − 3y′′′ + 2y′′ = 3e−x + 6e2x − 6x

7. y(iv) − 5y′′′ + 7y′′ − 5y′ + 6y = 5 sin x − 12 sin 2x

Solve the initial-value problem in Exercises 18 through 21.

8.























y′′ − 4y′ + 3y = 9x2 + 4.

y(0) = 6

y′(0) = 8.

9.























y′′ + 4y′ + 13y = 5 sin 2x.

y(0) = 1

y′(0) = −2.

10.























y′′ + y = 3x2 − 4 sin x.

y(0) = 0

y′(0) = 1.

11.











































y′′′ − 4y′′ + y′ + 6y = 3xex + 2ex − sin x.

y(0) =
33

40

y′(0) = 0

y′′(0) = 0
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1  Introduction 

In your previous studies, you know that equation such as 

where ai; i = 1; 2; :::; n are variable coefficient can be reduced to vector form 
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2 Objectives LINEAR SYSTEM

where the unknown functions x ∈ R
n, A is n × n matrix function of t defined on some interval I and

F : I → R
n is defined and continuous on I. While f : I × R

n → R
n is a vector function of two variable t

and x defined on R
n+1.

In this unit, you shall study Linear systems of ODE of the form (2). And you shall see some results

concerning the solution of this linear systems.

2 Objectives

At the end of this unit, you should be able to

(i) identify different forms of systems of ODE.

(ii) understand the nature of solutions of systems of ODE, both homogeneous and nonhomogeneous

ODE.

(iii) define and obtain the adjoint of a system.

(iv) characterize fundamental matrices in terms of exponential functions.

3 Linear System

3.1 Properties of Solution of Homogeneous Linear System

Definition 3.1 If F (t) = 0, then the system (2) is called a linear homogeneous system otherwise the

system (2) is a linear nonhomogeneous system. The order of (2) is the order of A.

Definition 3.2 A function Φ : I → R
n is a solution of

x′ = f(t, x)

(f : G → R
n, where G ⊂ R × R

n, an open subset.) If for t ∈ I, you have that the pair (t, Φ(t)) ∈ G and

Φ(t) is differentiable on I and

Φ′(t) = f(t, x(t))

Definition 3.3 A function Φ : I → R
n is a solution of IVP

x′ = f(t, x), x(t0) = x0

if t0 ∈ I and Φ satisfies definition 3.2 and x(t0) = x0

It is evident from existence and uniqueness theorem that for any given t0 ∈ I, x0 ∈ R
n with ‖x0‖ < ∞,

the system (2) has a unique solution satisfying x(t0) = x0.

Your attention will be drawn first to the homogeneous equation,

ẋ = A(t)x (3)

the following results are immediate
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3.1 Properties of Solution of Homogeneous Linear System LINEAR SYSTEM

Theorem 3.1

1. If x = Φ(t) is a solution of (3) satisfying Φ(t0) = 0, t ∈ I, then Φ(t) ≡ 0 on I.

2. If Φ1, Φ2, ..., Φr are solutions of (3) on I. Then

r
∑

i=1

ciΦi are also solutions on I.

Proof.

1. The proof of this follows from the fact that X ≡ 0 is a solution of (3) and the uniqueness property of

solution (3).

2. Note that given Φ1, Φ2, ..., Φr,

dΦ1

dt
= AΦ1, dΦ2

dt
= AΦ2, · · · , dΦr

dt
= AΦr.

Therefore

d

dt
(ciΦ

i) = AciΦ
i, i = 1, 2, 3, ..., r

Let

Φ = c1Φ
1 + c2Φ

2 + · · · + crΦ
r =

r
∑

i=1

ciΦ
i

Thus

Φ̇ =
d

dt

(

r
∑

i=1

ciΦi

)

=
r
∑

i=1

d

dt
(ciΦ

i) =
r
∑

i=1

AciΦi = A

r
∑

i=1

ciΦ
i = AΦ.

This follows from the linearity of (2)

Theorem 3.2 The set of all solutions of (3) on I form an n−dimensional vector space over the real field

called solution space.

Proof. That the solution space is a vector follows from property (2) and the fact that X ≡ 0 is a

solution of (3) on I.

To prove that the space is n−dimensional, you have to prove the existence of n-linearly independent

solutions of (3) on I such that any other solutions of (3) on I can be written as a linear combination of this

independent set.

Let ai, (i = 1, 2, ..., n) be a linealy independent set in R
n. In particular, you can choose ai = (0, 0, ..., 0, 1, 0, ...,

with 1 at the ith position. They by the existence theorem, given t0 ∈ I, ai ∈ R
n, there exists n solutions

Φi(t), i = 1, 2, ..., n of (3) such that Φi(t) = ai. These solutions are uniquely defined by t0 and ai. Suppose

the Φi’s are linearly dependent, then there exist constants ci (i = 1, 2, ..., n) not all equal to zero sunc that

r
∑

i=1

ciΦ
i(t) = 0, t ∈ I.
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3.1 Properties of Solution of Homogeneous Linear System LINEAR SYSTEM

In particular,

n
∑

i=1

cia
i =

n
∑

i=1

ciΦ
i(t0) = 0 t0 ∈ I

which contradicts the assumption that the ai’s are linearly independent.

Now let Φ be any solution such that

Φ(t0) = a, a ∈ R
n

for some unique constants c1, ...cn,

a =
n
∑

i=1

ciai

Since the ai’s form a basis in R
n. Hence the function

n
∑

i=1

ciΦ
i is a solution of (3) on I, which assumes the

value a at t = t0 and by uniqueness

Φ =
n
∑

i=1

ciΦi

Thus every other solution of (3) can be expressed as a unique linear combination of the Φi’s. Hence the

proof of theorem (1.2) is complete.

Definition 3.4 1. If Φ1, Φ2, ..., Φn are linearly independent solutions of (3) on I, then the set Φ1, Φ2, ..., Φn

is called a fundamental set of solutions of (3) on I.

2. If Φ1, Φ2, ..., Φn are solutions of (3) on I, the matrix with Φ1, Φ2, ..., Φn as a column is called a matrix

solution of (3)

X =























Φ1
11 Φ2

12 · · · Φn
1n

Φ1
21 Φ2

22 · · · Φn
2n

...
...

. . .
...

Φ1
n1 Φ2

n2 · · · Φn
nn























and it is easy to verify that

Ẋ = A(t)X (4)

is the matrix differential equation associated with the system (3). The problem of determining n

linearly independent solutions of (3) is the same as finding a particular solution of such that the

columns are linearly independent.

3. If X is a matrix solution such that all its column are linearly indpendent. Then X is said to be

fundamental matrix solution of (3).

Theorem 3.3 A solution matrix X of (3) on I is fundamental if and only if the determinant

det X(t) 6= 0 for at least one t ∈ I
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3.1 Properties of Solution of Homogeneous Linear System LINEAR SYSTEM

The proof of the above theorem requires the following lemma.

Lemma 3.1 Let X be a solution matrix of (3) on I then

W (t) ≡ det X(t) (5)

satisfies on I the differential equation

Ẇ (t) = {tr(A)}W (t) (6)

with initial condition.

W (t0) = W0, t0 ∈ I

indeed for t ∈ I,

W (t) = W0 exp

(∫ t

0

trA(s)ds

)

(7)

where the trace of A

tr(A) =
n
∑

i=1

aii

Proof of Lemma Let xij and aij be components of X and A respectively. Since X is a solution matrix,

we have

Ẋ = AX

and hence

ẋij =
n
∑

i=1

aikxkj, i, j = 1, 2, ..., n

By definition W=W(t) is differentiable in t. Futhermore, the derivative

Ẇ (t) =
n
∑

i=1

Wi(t)

where the terms is obtained from W by differentiating ith row of W and leaving all other rows. Indeed

Ẇ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

a1kxk1

n
∑

k=1

a1kxk2 · · ·
n
∑

k=1

a1kxkn

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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3.1 Properties of Solution of Homogeneous Linear System LINEAR SYSTEM

The determinant remains unchanged if you subtract from the 1st row { a12x second row +a13x third row

+... + a1nx nth row}. In deed you shall obtain

Ẇ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11x11 a11x12 · · · a11x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

By treating W2, W3, ...,Wn in similar way, you see that

Ẇ (t) = (a11 + a22 + · · · + ann)W (t)

which proves (6). The result (7) follows by

Ẇ (t) = (tr(A(t)))W (t)

W (t) = W0 exp

(∫ t

t0

trA(s)ds

)

Note: As a conseqence of the lemma, it is clear that if W (t0) 6= 0 then W (t) 6= 0 for t ∈ I. This is

obvious from the fact that exp(
∫ t

t0
trA(s)ds) does not vanish except at a singularity of A(t). The continuity

ensures that this does not happen.

Also the fact that W (t) 6= 0 for all t ∈ I proves that the column of X = X(t) are linearly independent.

Proof of Theorem1.3 Let X be a fundamental matrix of (3) on I , with column vector xj, j = 1, 2, ..., n.

Suppose that x is a nontrivial solution of (3) on I. By theorem (1.1), there exists a unique constant ci,

i = 1, 2, ..., n not all zero such that

x =
∑

i=1

cixi

or equivalently

x = XC

where C = (c1, ..., cn)T , a column matrix, and X is the matrix with xi, i = 1, ..., n as columns. At any

point t0 ∈ I, x is a system of n linear equations in n−unknowns c1, ..., cn. It has a unique solution for any

choice of x(t0). Hence from the theory of linear algebra det(X(t0)) 6= 0 for t ∈ I. Then the columns of X

are linearly independent, and so X is a fundamental matrix of (3) on I.

Remark 3.1 A matrix of linearly independent vectors on I may have its determinant equal to zero. The

main point of Theorem 1.2 is that this cannot happen for column vectors which are solutions of (3)

X(t) =





t t2

0 0





ẋ11 = 1 ẋ12 = 2t

ẋ21 = 0 ẋ22 = 0
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3.2 The Adoint of the System (3) LINEAR SYSTEM

Not possible.

Theorem 3.4 If Φ is a fundamental matrix of (3) on I so also is ΦC where C is a constant nonsingular

n × n matrix. Every fundamental matrix of (3) on I is of the form (ΦC) for some nonsingular constant

matrix C.

Proof. By definition, if Φ is a fundamental matrix, then

Φ̇ = A(t)Φ, t ∈ I

and
d

dt
(ΦC) = Φ̇C = A(t)ΦC

Thus ΦC is a solution matrix.

The fact that ΦC is a fundamental matrix follows from the fact

det(ΦC) = (det Φ)(det C) 6= 0

If Φ1, Φ2, are fundamental matrix on I for (3) then we prove that for some nonsingular constant matrix C,

Φ2 = Φ1C

To verify this, set

Φ(t) = Φ−1
1 Φ2 or Φ1Ψ = Φ2

Differentiating, the last equation

Φ̇2 = Φ̇1Ψ + Φ1Ψ̇

and so

AΦ2 = AΦ̇1Ψ + Φ1Ψ̇ or Φ1Ψ̇ = 0

This implies that

Ψ̇ = 0 i.e., Φ = C, where C is a constant.

By definition, C is nonsingular

3.2 The Adoint of the System (3)

Let Φ be a fundamental matrix of (3) on I, then by definition Φ−1 exists on I and

ΦΦ−1 = In (8)

where In is the unit n × n constant matrix . Differentiating (8) yields

Φ̇Φ−1 + ΦΦ̇−1 = 0 so that A(t)ΦΦ−1 + ΦΦ̇−1 = 0
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3.3 Linear nonhomogeneous System LINEAR SYSTEM

Thus

Φ̇−1 = −Φ−1A(t)

Taking the transpose of both sides, then

(Φ̇−1)T = AT (t)(Φ−1)T

so that (Φ−1)T is a fundamental matrix of

ẋ = −AT (t)x (9)

The equatioin (9) is known as the adjoint of the system (3). The matrix differential equation

Ẋ = −AT (t)X

associated with (9) is also the adjoint of the matrix associated with (3).

The relationship is symmetric. Thus, (3) is called the adjoint of (9) and (9) the adjoint of (3).

Theorem 3.5 If Φ is a fundamental matrix for (3) then Ψ is a fundamental matrix for its adjoint (9) if and

only if

ΨT Φ = C

for some constant nonsingular n × n matrix C.

Proof. Suppose Φ is a fundamental matrix of (3). Then (Φ−1)T is a fundamental matrix of (9). Also

Ψ is a fundamental matrix of (9) . By theorem (1.4), (Φ−1)T is a fundamental matrix (Φ−1)T C is also a

fundamental matrix. Therefore

Ψ = (Φ−1)T C (10)

Taking transpose of both sides of (10) you have

Ψ̇T = Φ−1C and ΨT Φ = C

and hence the proof.

3.3 Linear nonhomogeneous System

You will refer to the system (2) as a linear inhomogeneous system with A(t), F (t) defined as before. By

the existence and uniqueness theorem given t0 ∈ I, x0 ∈ R
n, with ‖x0‖ < ∞ then there exist a unique

solution x(t) of (2) satisfying x0(t) = x0.

3.3.1 Variation of Parameter Technique

Recall that if Φ(t) is a fundamental matrix solution for (3) then

x(t) = Φ(t)C (11)

where C is a constant n-vector is a solution of (3). For a particular solution x(t), with x0(t) = x0, C is given

by Φ(t0)x0. Then C in (11) is a vector parameter. Now you have to consider C as a variable in t and seek a

condition on C=C(t) such that (11) is a solution of (2) on I satisfying some prescribed initial condition.
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3.3 Linear nonhomogeneous System LINEAR SYSTEM

Indeed let

x(t) = Φ(t)C(t) (12)

be a solution of (2). Differentiating both sides of (12), you have

ẋ(t) = Φ̇(t)C(t) + Φ(t)Ċ(t)

Ax(t) = A(t)Φ(t)C(t) + Φ(t)Ċ(t) (13)

From (2),

Ax(t) = A(t)Φ(t)C(t) + F (t) (14)

since Φ is a fundamental matrix solution and (12) is a solution of (2),

Ċ(t) = Φ−1(t)F (t) (15)

A particular case of equation (15) satisfying C(t0) = 0 is given by

C(t) =

∫ t

t0

Φ−1(τ)F (τ)dτ.

Thus

x(t) =

∫ t

t0

Φ(τ)Φ−1(τ)F (τ)dτ

is a solution of (2). Now, the solution x(t) of (2) satisfying the initial condition

x(t0) = x0

is given by

x(t) = Φ(t)Φ−1(t0)x0 +

∫ t

t0

Φ(τ)Φ−1(τ)F (τ)dτ (16)

Theorem 3.6 Given the system (2), with A(t) (n × n matrix), F (t) n−vector (functions) defined and con-

tinuous on the interval I. Let Φ = Φ(t) be a fundamental matrix solution of (3) on the interval I, then the

function

x(t) = Φ(t)

[

Φ−1(t0)x0 +

∫ t

t0

Φ−1(τ)F (τ)dτ

]

is a solution of (2 ) on the interval I, satisfying the initial condition x(t0) = x0.

Proof. Φ(t) is a fundamental matrix solution of (3), then

x(t) = Φ(t)C(t)

By straightforward differentiation

ẋ(t) = Φ̇(t)C(t) + Φ(t)Ċ(t)

From (13) and (14)

Φ(t)Ċ(t) = F (t)

yielding

Ċ(t) = Φ−1(t)F (t) (17)
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3.3 Linear nonhomogeneous System LINEAR SYSTEM

Integrating (17), you will obtain

C(t) =

∫ t

t0

Φ−1(τ)F (τ)dτ

Therefore,

Φ(t)C(t) = Φ(t)

∫ t

t0

Φ−1(τ)

Now the solution of the system (2) satisfying the initial condition x(t0) = x0 is given by

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(τ)F (τ)dτ

and

x(t) = Φ(t)

[

Φ−1(t0)x0 +

∫ t

t0

Φ−1(τ)F (τ)dτ

]

and this completes the proof of theorem (1.6).

Theorem 3.7 Let A(t), F (t) be defined as in theorem 1.6, Let Φ = Φ(t) be a fundametal matrix solution

for the adjoint system (9). Then the equation

x(t) = (ΦT )−1

[

ΦT (t0)x0 +

∫ t

t0

ΦT (τ)F (τ)dτ

]

(18)

is a solution of (2) satisfying x(t0) = x0.

Proof. Now let x be a solution of (2) and Φ be a fundamental matrix of solution of (18). Then

x(t) = ΦT (t)x(t) (19)

Differentiating both sides of (19) you have

ẋ(t) = Φ̇T (t)x(t) + ΦT (t)ẋ(t)

From (9), you have that

ẋ(t) = −A(t)ΦT x(t) + ΦT (t)[A(t)x(t) + F (t)]orẋ(t) = ΦT (t)F (t)

Integerating from t = t0 to t, you have

ΦT (t)x(t) − ΦT (t0)x(t0) =

∫ t

t0

ΦT (τ)F (τ)dτ

i.e.,

ΦT (t)x(t) = ΦT (t0)x(t0) +

∫ t

t0

ΦT (τ)F (τ)dτ

which yields

x(t) = (ΦT )−1

[

ΦT (t0)x0 +

∫ t

t0

ΦT (τ)F (τ)dτ

]

and the proof of theorem (1.7) is complete.
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3.4 Linear Homogenous Equation with constant Coefficients LINEAR SYSTEM

3.4 Linear Homogenous Equation with constant Coefficients

Consider the system

ẋ(t) = Ax(t) (20)

where A is a constant n × n matrix. Suppose that

x(t) = ceλt

is a solution of (20), then

ẋ(t) = λceλt = Aceλt

That is

(A − λIn) = 0

Thus

x = ceλt

is a solution of (20) if and only if λ is an eigenvalue and c is the corresponding eigenvector.

Theorem 3.8 Let λ1, λ2, ..., λn be distinct eigenvalues of A with corresponding eigenvectors c1, c2, ..., cn,

then

x(t) =
n
∑

i=1

cie
λit

is the general solution of (20).

Proof. Assuming that all the eigenvalues of A are distinct, then there exists a nonsingular matrix T

which reduces A to its diagonal form that is

T−1AT = D

where

D =



















λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
0 0 λ3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λn−1 0
0 0 0 · · · 0 λn



















Now let

y = T−1x

ẏ = T−1ẋ = T−1Ax = T−1ATy = Dy

That is

ẏi = λiyi

and so

yi = cie
λit

where the ci’s are arbitrary constants.

You can now exhibit n-linearly independent solutions of the vector equation

ẏ = Dy

They are
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3.4 Linear Homogenous Equation with constant Coefficients LINEAR SYSTEM

y1 =































eλit

0

0

...

0































, y1 =































0

eλ2t

0

...

0































, · · · yn =































0

0

0

...

eλnt































These vectors are linearly independent since the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eλ1t 0 0 · · · 0 0
0 eλ2t 0 · · · 0 0
0 0 eλ3t · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · eλn−1t 0
0 0 0 · · · 0 eλnt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= e(λ1+λ2+···+λn)t

which is nonzero. Since x = Ty, Ty1, T y2, ..., T yn form a fundamental solution for (20) and the matrix

whose columns are Ty1, T y2, ..., T yn is the fundamental matrix.

Example 3.1 Find the general solution of the system

ẋ =

(

0 1
1 2

)

x, x(0) =

(

0
1

)

Solution. The eigenvalues of the matrix

A =

(

0 1
1 2

)

is obtained as follows

∣

∣

∣

∣

0 − λ 1
1 2 − λ

∣

∣

∣

∣

= 0 i.e., −λ(2 − λ) − 1 = 0 or λ2 − 2λ − 1 = 0

so that

λ1,2 =
2 ± 2

√
2

2
i.e., λ1 = 1 +

√
2 and λ2 = 1 −

√
2

Now, for λ1 = 1 +
√

2,





−1 −
√

2 1

1 1 −
√

2









c1

c2



 = 0 or

(−1 −
√

2)c1 + c2 = 0

c1 + (1 −
√

2)c2 = 0
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3.4 Linear Homogenous Equation with constant Coefficients LINEAR SYSTEM

So that




c1

c2



 =







a

1 +
√

2

a







For λ2 = 1 −
√

2,





−1 +
√

2 1

1 1 +
√

2









c1

c2



 = 0 or

(−1 +
√

2)c1 + c2 = 0

c1 + (1 +
√

2)c2 = 0

So that




c1

c2



 =









b

1 −
√

2

b









Therefore,

y1 =







a

1 +
√

2

a






e(1+

√
2)t, and y2 =









b

1 −
√

2

b









e(1−
√

2)t

are linearly independent solutions of the system

ẋ =

(

0 1
1 2

)

x, x(0) =

(

0
1

)

The fundamental matrix for the system is

Φ = col(y1, y2)

The general solution of the system is

x = y1 + y2

x(0) =









a

1 +
√

2
+

b

1 −
√

2

a + b









=





0

1



 or

a

1 +
√

2
+

b

1 −
√

2
= 0 (i)

a + b = 1 (ii)

From (i) a = b, thus, a = 1
2

= b so that

x(t) =











1

2(1 +
√

2)

1

2











e(1+
√

2)t +











1

2(1 −
√

2)

1

2











e(1−
√

2)t
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Example 3.2 Solve the differential equation

...
x − 2ẍ − ẋ + 2x = 0

Subject to

x(0) = 0, ẋ(0) = 0, ẍ(0) = 1

Solution. The given differential equation is equivalent to the system

ẋ = Ax

where

A =













0 1 0

0 0 1

−2 1 2













The eigenvalues of A are the roots of

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0

0 −λ 1

−2 1 2 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 or λ3 − 2λ2 − λ + 2 = 0

From which we obtain

λ1 = 1, λ2 = −1 and λ3 = 2

For λ1 = 1













−1 1 0

0 −1 1

−2 1 1

























c1

c2

c3













=













0

0

0













or

−c1 + c2 + 0 = 0

0 − c2 + c3 = 0

−2c1 + c2 + c3 = 0

from this you obtain c1 = c2 = c3 = a. Thus, the eigenvector associated to λ1 = 1 is













c1

c2

c3













=













a

a

a













For λ2 = −1
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











1 1 0

0 1 1

−2 1 3

























c1

c2

c3













=













0

0

0













or

c1 + c2 + 0 = 0

c2 + c3 = 0

−2c1 + c2 + 3c3 = 0

from this you obtain c2 = −c1 and c3 = c1. If c1 = b then, the eigenvector associated to λ1 = 1 is













c1

c2

c3













=













b

−b

b













For λ3 = 2













−2 1 0

0 −2 1

−2 1 0

























c1

c2

c3













=













0

0

0













or

−2c1 + c2 + 0 = 0

0 − 2c2 + c3 = 0

−2c1 + c2 + 0 = 0

from this you obtain c2 = 2c1 and c3 = 4c1. If c1 = c then, the eigenvector associated to λ1 = 1 is













c1

c2

c3













=













c

2c

3c













are linearly independent. The general solution of the system

ẋ =













0 1 0

0 0 1

−2 1 2

























x1

x2

x3













with x(0) = 0, ẋ(0) = 0, and ẍ(0) = 1 is

x(t) =













a

a

a













et +













b

−b

b













e−t +













c

2c

4c













e2t

Using the initial condition, you obtain

a + b + c = 0 (i)

a − b + 2c = 0 (ii)

a + b + 4c = 0 (iii)
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Solving the above system gives you that

a = −1

2
, b =

1

6
, c =

1

3

Therefore the solution is

x(t) =













−1
2

−1
2

−1
2













et +













1
6

−1
6

1
6













e−t +













1
3

2
3

4
3













e2t

Example 3.3 Solve completely the differential equation

ẍ + x = 0, x(0) = 0, ẋ(0) = 1

Solution.

The auxiliary equation is

λ2 + 1 = 0 or, λ2 = −1, i.e., λ = ±i

Thus, the general solution is

x(t) = c1 sin t + c2 cos t

ẋ(t) = c1 cos t − c2 sin t

Using the initial values, you obtain

x(0) = c2 = 0 and ẋ(0) = c1 = 1

Therefore, c1 = 0 and c2 = 1. Thus, the solution to the initial value problem is x(t) = sin t.

Example 3.4 Solve the system

ẋ =





0 1

1 0



x +





0

sin t



 , x(0) =





0

1





Solution.

Consider the homogeneous system

ẋ =





0 1

1 0



x
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The eigenvalues of A =





0 1

1 0



 are the roots of

|A − λI| = 0

That is the roots of

λ2 − 1 = 0 or λ = ±1

the eigenvector for λ = 1 is





−1 1

1 −1









c1

c2



 =





0

0





This implies that c1 = c2 = a and so





a

a



 et is a solution of the system.

For λ = −1,





1 1

1 1









c1

c2



 =





0

0





Gives you that c1 = −c2 = b. Thus,





b

−b



 e−t is also a solution of the system

ẋ =





0 1

1 0



x

Set a = b = 1, then the two solutions are linearly independent. The fundamental matrix solution

Φ = Φ(t) is given by

Φ(t) =





et e−t

et −e−t





and

Φ−1(t) =
1

2





e−t e−t

et −e−t





using (16), the desired solution

x(t) = Φ(t)Φ−1(0)x0 + Φ(t)

∫ t

0

Φ−1(τ)F (τ)dτ

x(t) =
1

2





et e−t

et −e−t









1 1

1 −1









0

1



+
1

2





et e−t

et −e−t





∫ t

0





eτ e−τ

eτ −eτ









0

sin τ



 dτ
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Example 3.5 Find the general solution for the system

ẋ =





0 1

−ω2 0



x +





0

sin t



 , x(0) =





a

b





Solution.

Consider the homogeneous linear differential equation

ẋ =





0 1

−ω2 0





The eigenvectors are





1
ω

sin ωt

cos ωt



 and





cos ωt

−ω sin ωt





They are linearly independent and the fundamental matrix solution is given by

Φ(t) =





cos ωt 1
ω

sin ωt

−ω sin ωt cos ωt





The general solution of the system

ẋ =





0 1

−ω2 0



x +





0

sin t



 , x(0) =





a

b





is

x(t) = Φ(t)Φ−1(0)x(0) + Φ(t)

∫ t

0

Φ−1(τ) sin τdτ

=





cos ωt 1
ω

sin ωt

−ω sin ωt cos ωt









1 0

0 1









a

b



+





cos ωt 1
ω

sin ωt

−ω sin ωt cos ωt





∫ t

0





cos ωτ 1
ω

sin ωτ

−ω sin ωτ cos ωτ









0

sin τ



 dτ

from (16)

Example 3.6 Solve the nonlinear differential equation

ẋ =





0 1

−2 −3



x +





0

e−
1

2
t



 , x(0) =





1

0




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The eigenvalues of A =





0 1

1 0



 are the roots of

|A − λI| = 0

That is the roots of

λ2 − 1 = 0 or λ = ±1

the eigenvector for λ = 1 is





−1 1

1 −1









c1

c2



 =





0

0





This implies that c1 = c2 = a and so





a

a



 et is a solution of the system.

For λ = −1,





1 1

1 1









c1

c2



 =





0

0





Gives you that c1 = −c2 = b. Thus,





b

−b



 e−t is also a solution of the system

ẋ =





0 1

1 0



x

Set a = b = 1, then the two solutions are linearly independent. The fundamental matrix solution

Φ = Φ(t) is given by

Φ(t) =





et e−t

et −e−t





and

Φ−1(t) =
1

2





e−t e−t

et −e−t





using (16), the desired solution

x(t) = Φ(t)Φ−1(0)x0 + Φ(t)

∫ t

0

Φ−1(τ)F (τ)dτ

x(t) =
1

2





et e−t

et −e−t









1 1

1 −1









0

1



+
1

2





et e−t

et −e−t





∫ t

0





eτ e−τ

eτ −eτ









0

sin τ



 dτ
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Φ(0) =





1 1

−1 −2



 and Φ−1(0) =





−1 −1

1 2





From (16), the general solution of the system

ẋ =





0 1

−2 −3



x +





0

e−
1

2
t



 , x(0) =





1

0





is given by

x(t) = Φ(t)Φ−1(0)x0 + Φ(t)

∫ t

0

Φ−1(τ)f(τ)dτ

=





e−t e−2t

−e−t −2e−2t









−1 −1

1 2









1

0





+





e−t e−2t

−e−t −2e−2t





∫ t

0

1

e−3τ





e−τ e−2τ

−eτ −2e−2τ









0

e−
1

2
τ





3.5 Characterization of Fundamental Matrix in terms of exponential functions

Let the function etA, where A is a constant n × n matrix be defined by

etA =
∞
∑

n=0

tnAn

n!
(21)

That is interpreting etA as a Taylor series expansion. Now define the norm of A ‖A‖ by

‖A‖ =
n
∑

i,j=1

|aij|

and the expression
∥

∥

∥

∥

tnAn

n!

∥

∥

∥

∥

≤ |t|n
n!

‖A‖n

and since the exponential series

∞
∑

n=0

rn

n!
converges for all finite values of r, you conclude from the inequality

∥

∥

∥

∥

∥

N
∑

n=0

tnAn

n!

∥

∥

∥

∥

∥

≤
N
∑

n=0

|t|n
n!

‖A‖n

That the series (21) converges for every constant matrix A and for all finite values of t.

It is also readily verifiable that
d

dt

(

etA
)

= AetA
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so that the matrix etA satisfies (20), that is etA is a matrix solution of (20).

Since e0A = I and the determinant of etA = exp(Trace of A) you conclude that etA is a fundamental

matrix solution for (20). On the basis of the fact, the following result is stated.

Theorem 3.9 A fundamental matrix solution for (20) is given by

Φ(t) = etA |t| < ∞

and the solution x(t) satisfying (20) with x(τ) = ξ is given by

x(t) = e(t−τ)ξ

It is of interest to investigate the form of Φ(t) = etA. For this purpose, you require the following results

from linear Algebra.

Proposition 3.1 Every complex n × n matrix A is similar to a matrix of the form

J =







































J0 0 0 0 · · · 0

0 J1 0 0 · · · 0

0 0 J2 0 · · · 0

0 0 0 J3 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · Jn







































(22)

where J0 is a diagonal matrix with diagonal elements λ1, λ2, ..., λq and

Ji =







































λq+i 1 0 0 · · · 0 0 0

0 λq+i 1 0 · · · 0 0 0

0 0 λq+i 1 · · · 0 0 0

...
...

...
. . .

. . .
...

...
...

0 0 0 0 · · · λq+i 1 0

0 0 0 0 · · · 0 λq+i 1







































(23)

The λ′
is, i = 1, 2, ..., q + s are the eigenvalues of A which need not be distince. If λj is a simple

eigenvalue, it appears in J0 and if all the eigenvalues are distinct, then A is similar to the diagonal matrix
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J given by

J =































λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λn































The J ′
is can be rewritten in the form

Ji = λq+iIri + Zi

where Ji has ri rows and columns and

Zi =















1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















Another valid form of Ji is

λq+i + iIri + Zi

Where r is a non-zero complex number. Note that Zi is nil-potent (Zri

i = 0). Indeed Z2
i has its diagonal of

one’s moved one element to the right of what of Zi and all other elements zero. Thus Zr0−1
i is the matrix

with zero everywhere except for a single 1 in the first end last column.

For 3 × 3 matrix,

Zi =





0 1 0
0 0 1
0 0 0





Z2
i =





0 0 1
0 0 0
0 0 0





Z3
i =





0 0 0
0 0 0
0 0 0





Now Let J be the canonical form of A defined by (22). Suppose P is a non-singular matrix such that

P−1AP = J ⇒ PJP−1 = A

Then

etA = etPJP−1

= PetJP−1

Proof. For any matrix M

(PMP−1)k = PMkP−1
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Since J has the form (22), then Jk is of the form

Jk =















Jk
0 0 0 · · · 0
0 Jk

1 0 · · · 0
0 0 Jk

2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Jk
s















and

etJ =
∞
∑

k=0

tkJk

k!
(24)

=





















































∞
∑

k=0

tkJk
0

k!
0 0 · · · 0

0
∞
∑

k=0

tkJk
1

k!
0 · · · 0

0 0
∞
∑

k=0

tkJk
2

k!
· · · 0

...
...

...
. . .

...

0 0 0 · · ·
∞
∑

k=0

tkJk
s

k!





















































=































etJ0 0 0 · · · 0

0 etJ1 0 · · · 0

0 0 etJ2 · · · 0

...
...

...
. . .

...

0 0 0 · · · etJs































It is obvious that

etJ0 =































etλ1 0 0 · · · 0

0 etλ2 0 · · · 0

0 0 etλ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · etλq































(25)

and since
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Ji = λq+i + Zi

etJi = etλq+ietZi

etJi = etλq+i

































1 t t2

2!
· · · tri−1

(ri−1)!

0 1 t · · · tri−2

(ri−2)!

0 0 1 · · · tri−3

(ri−3)!

...
...

...
. . .

...

0 0 0 · · · 1

































(26)

Where Ji are ri × ri matrix and n = q + r1 + r2 + · · ·+ rs. Thus if the canonical form of A is known, then

a fundamental matrix etA of (20) is given explicitly by (24) where etJ can be obtained from (24), (25) and

(26).

3.6 Linear Nonhomogeneous System

Example (4), (5) and (6) have been are using the method of variation of parameter techniques. Now, consider

it from direct differentiation and integration.

Consider the nonlinear system

ẋ = A(t)x + f(t) t ∈ I (27)

where as before A(t) is continuous n × n matrix defined on I, and f : I → R
n is continuous function by

the basic existence theorem, for any given t0 ∈ I, x0 ∈ R
n ‖x0‖ < ∞ there is a unique solution x(t) of

(27) satisfying the initial condition x(t0) = x0.

In the special case

ẋ = A(t)x (28)

You know that if Φ(t) is a fundamental matrix solution of (28) then the solution x(t) with x(t0) = x0 is

given by

x(t) = Φ(t)Φ−1(t0)x0

You now have a stepping stage for the solution of (28)

Theorem 3.10 Let Φ = Φ(t) be a fundamental matrix for the adjoint

ẋ = −AT (t)x (29)

of (28) of I, then the function Φ = Φ(t) defined by

Φ(t) =
{

ΦT (t)
}−1

[

ΦT (t0)x0 +

∫ t

t0

ΦT (τ)f(τ)dτ

]

(30)

is a solution of (28) satisfying the initial condition Φ(t0) = x0.
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Proof. Let Φ = Φ(t) be a fundamental matrix solution for (29) and let x be a solution of (27). Then

d
dt

(

ΦT x
)

= Φ̇T x + ΦT ẋ

= Φ̇T x + ΦT {A(t)x + f(t)}

But Φ̇T = −ΦT A(t). Hence

d

dt

(

ΦT x
)

= −ΦT A(t)x + ΦT A(t)x + ΦT f(t) = ΦT f(t)

Integrating between t = t0 and t, you have

ΦT (t)x(t) − ΦT (t0)x(t0) =

∫ t

t0

ΦT (τ)f(τ)dτ

so that

ΦT (t)x(t) = ΦT (t0)x(t0) +

∫ t

t0

ΦT (τ)f(τ)dτ

Therefore

x(t) =
{

ΦT (t)
}−1

[

ΦT (t0)x(t0) +

∫ t

t0

ΦT (τ)f(τ)dτ

]

and the proof of theorem 1.10 follows.

You can also obtain a representation of the solution of (27) in terms of fundamental matrix of (28). See

theorem (1.6).

Example 3.7 See examples 3.4, 3.5 and 3.6

3.7 Linear Homogeneous System with Periodic Coefficients

Consider the system (28) where A(t) as before is a continuous n × n matrix defined on I ⊂ R and

A(t + ω) = A(t) for all t ∈ I. (31)

for some constant ω > 0. In this case (28) is called a periodic system.

The basic result here is that a fundamental matrix can be expressed as a periodic matrices and a solution

matrix for a system with constant coefficients.

Theorem 3.11 If Φ = Φ(t) is a fundamental matrix for (28) on I, then so also is Ψ, where

Ψ(t) = Φ(t + ω) t ∈ I, ω > 0

Corresponding to every such Φ, then there exists a periodic nonsingular matrix P, with period ω and a

constant R such that

Φ(t) = P (t)etR, t ∈ I (32)

Proof. Let Φ = Φ(t) be a fundamental matrix solution for (28) on I. Then

d

dt
(Φ(t)) = A(t)Φ(t) t ∈ I
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And so
d
dt

Φ(t + ω) = A(t + ω)Φ(t + ω)

= A(t)Φ(t + ω)

Therefore Φ(t + ω) is a solution matrix of (28). It is fundamental since

[det Φ(t + ω)]|t=0
= det Φ(ω) 6= 0

Thus there exists a constant nonsingular n × n matrix C such that

Φ(t + ω) = Φ(t)C (33)

What is more there exists a constant matrix R such that

C = eωR (34)

From (33) and (34), you have that

Φ(t + ω) = Φ(t)eωR (35)

Then by (36),

P (t + ω) = Φ(t + ω)e−(t+ω)R

= Φ(t)eωR · e−(t+ω)R

= Φ(t)e−tR = P (t)

by (36). Thus P (t) is periodic with period ω. Since Φ(t) and e−tR are nonsingular on I, so also is P (t).

You can now examine the following implicatiion of theorem 1.11.

Let Φ(t) be a fundamental matrix solution of (28) such that

Φ(0) = I

where I is the identity matrix. Then

1. Φ(t + ω) = Φ(t)Φ(ω)

2. Φ(−ω) = Φ−1(ω)

3. Φ(ρω) = Φρ(ω) for some ρ > 0 an integer.

Clearly,

Φ(t + ω) = Φ(t)C

where C is a constant n × n nonsingular matrix. At t = 0, you have that

Φ(ω) = C

So that Φ(t + ω) = Φ(t)Φ(ω) Now set t = −ω

I = Φ(0) = Φ(−ω)Φ(ω)

Thus

Φ(−ω) = Φ−1(ω)

Set t = ω in
Φ(t + ω) = Φ(ω)Φ(ω)

= Φ(2ω) = Φ2(ω)

By induction, it follows that

26
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Φ(ρω) = Φρ(ω) for ρ > 0 and integer

4. If A(t) = A ≡ constant, then A is periodic with arbitrary period, and if Φ(t) is a fundamental matrix

solution such that Φ(0) = I, then for arbitrary s,

Φ(t + s) = Φ(t)Φ(s)

Φ(t − s) = Φ(t)Φ(−s) = Φ(t)Φ−1(s)

5. Observe that the result implies the existence of at least one solution Φ = Φ(t) of (28) such that

Φ(t + ω) − ρΦ(t) = 0 (36)

for all t, where ρ is some convenient constant. Indeed if Φ = Φ(t) is a solution of (28) then there is a

constant n-vector x0 such that

Φ(t) = Φ(t)x0

where Φ(t) is a fundamental matrix solution of (28). That is

Φ(t) = ρ(t)etRx0

If Φ(t) is to satisfy (37), then a simple calculation will show that ρ, x0 must satisfy

(eωR − ρI)x0 = 0

Thus if ρ is an eigenvalue of eωR and x0 the corresponding eigenvector then Φ(t) satisfying (37).

Note, the eigenvalues of eωR are called the characteristic multipliers of the system (28).

To each characteristic multipliers of (28) you can define a characteristic exponent τ by

ρ = eτω

4 Conclusion

In this section, you have studied Linear Systems of ODE. You saw the properties of solution of Linear

systems for both homogeneous and nonhomogeneous systems. You also had knowledge of the adjoint

system of a given linear system of ODE.

5 Summary

Having gone throught this unit, you now know that;

(i) A linear system of ODE is of the form

ẋ = Ax + F (t) = f(t, x)

where A, F and f have their usual meaning
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(ii) A function Φ : I → R
n is a solution of the system

x′ = f(t, x)

If for t ∈ I, you have that the pair (t, Φ(t)) ∈ G and Φ(t) is differentiable on I and satisfy

Φ′(t) = f(t, x)

(iii) the solution space forms an n-dimensional vector space over R
n

(iv) The equation

x′ = A(t)x

has n-linearly independent solutions.

(v) any solution of y′ = A(t)y is a linear combination of the n-linearly independent solutions the

system.

(vi) A matrix whose columns comprises of the n-linearly independent solutions of y = A(t)y is also a

solution of the system and is called the fundamental matrix of solutions.

(vii) If ȳ is any particular solution of the nonhomongeneous equation

y′ = A(t)y + b(t)

Then any solution of the nonhomongeneous system can be written in the form

y(t) = ȳ(t) + Y (t) · C
where Y (t) is a fundamental matrix of solutions to the corresponding homogeneous equation

y′ = A(t)y

(viii) (method of variation of constants) if Y(t) is a fundamental matrix to

y′ = A(t)y

then

ȳ(t) = Y (t)

∫ t

a

Y −1(s)b(t)ds

(with A(t) continuous on [a, b]) is a particular solution to the nonhomogeneous equation

y′ = Ay + b

(ix) a general solution of the nonhomogeneous system

y′ = Ay + b

is

y(t) = Y (t)

[

C +

∫ t

a

Y −1(s)b(c)ds

]

where Y (t) is the fundamental matrix of solutions and C is an n × n nonsingular constant matrix.

(x) The adjoint of the system

x′ = A(t)x

is given by

x′ = AT (t)x
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6 Tutor Marked Assignments(TMAs)

Exercise 6.1

Find a real general solution of the following systems.

1.







y′
1 = 3y2

y′
2 = 12y1

(a) y1 = c1e
−3t + c2e

3t, y2 = −2c1e
−3t + 2c2e

3t

(b) y1 = c1e
−3t + c2e

3t, y2 = 2c1e
−3t − 2c2e

3t

(c) y1 = c1e
−6t + c2e

6t, y2 = −2c1e
−6t + 2c2e

6t

(d) y1 = c1e
−6t + c2e

6t, y2 = 2c1e
−6t + 2c2e

6t

2.







y′
1 = y1 + y2

y′
2 = y1 + y2

(a) y1 = c1e
−2t + c2, y2 = c1e

−2t − c2

(b) y1 = c1e
2t − c2, y2 = c1e

2t + c2

(c) y1 = c1e
2t + c2, y2 = c1e

2t − c2

(d) y1 = c1e
−2t − c2, y2 = c1e

−2t + c2

3.







y′
1 = 4y2

y′
2 = −4y1

(a) y1 = A cos 4t + B sin 4t, y2 = B cos 4t − A sin 4t where A = c1 + c2, B = i(c1 − c2)

(b) y1 = A cos 2t + B sin 2t, y2 = B cos 2t − A sin 2t where A = c1 + c2, B = i(c1 − c2)

(c) y1 = A cos 2t + B sin 2t, y2 = −B cos 2t + A sin 2t where A = c1 + c2, B = i(c1 − c2)

(d) y1 = A cos 4t + B sin 4t, y2 = −B cos 4t + A sin 4t where A = c1 + c2, B = i(c1 − c2)

4.























y′
1 = −y1 + y2 + 0.4y3

y′
2 = y1 − 0.1y2 + 1.4y3

y′
3 = 0.4y1 + 1.4y2 + 0.2y3

(a) y1 = 2c1 + c2e
−6t, y2 = −c1 + c3e

−6t, y3 = −c1 − 2(c2 + c2)e
−6t

(b) y1 = 2c1 + c2e
6t, y2 = −c1 + c3e

6t, y3 = −c1 + 2(c2 + c2)e
6t

(c) y1 = 2c1 + c2e
−6t, y2 = −c1 + c3e

−6t, y3 = −c1 + 2(c2 + c2)e
−6t

(d) y1 = 2c1 − c2e
−6t, y2 = −c1 + c3e

6t, y3 = −c1 + 2(c2 + c2)e
−6t
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5.























y′
1 = 2y1 + 8y2 − 4y3

y′
2 = −4y1 − 10y2 + 2y3

y′
3 = −4y1 − 4y2 − 4y3

Solve the following initial value problems.

6.































y′
1 = y1 + 2y2

y′
2 = 1

2
y1 + y2

y1(0) = 16,
y2(0) = −2

7.































y′
1 = 1

2
y1 − 2y2

y′
2 = −3

2
y1 + y2

y1(0) = 0.4,
y2(0) = 3.8

8.































y′
1 = 2y1 + 5y2

y′
2 = 5y1 + 12.5y2

y1(0) = 12,
y2(0) = 1

9. If Y is a fundamental matrix for

y′ = Ay

and T is a nonsingular constant n×n matrix, find the vector equation for which T ·Y is a fundamental

matrix.

Find the vector differential eqution with Fundamental matrix Y (t) as

10.





sin t cos t

cos t − sin t





11.





et tet

et (t + 1)et





Find particular solution for the following equations

12. y′ =





1 1

0 −1



 y +





1

0





13. y′ =





1 1

0 −1



 y +





1

0





110



6 Tutor Marked Assignments(TMAs) LINEAR SYSTEM

14. y′ =





1 1

0 −1



 y +





1

0





Determine a general solution of y′ = Ay, where

15. A =













0 −3 1

−2 −1 1

0 0 2













16. A =













1 1 −1

1 1 1

−1 1 1













17. A =





















0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0





















18. A =





0 −4

−4 0





19. A =













2 −1 3

2 −1 3

2 −1 3













Solve y′ = Ay, y(0) = y0 where

20. A =





−1 4

2 3



 , y(0) =





3

0





21. A =













2 −1 3

3 1 0

2 −1 3













, y(0) =













−4

4

4













22. A =





0 2

−2 0



 , y(0) =





1

1




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Find eAt by determining a fundamental matrix for y′ = Ay

23. A =





1 2

0 −1





24. A =





1 2

0 −1





25. A =













2 0 0

0 1 −8

0 2 −7













λ1,2 = −3 ± i, λ3 = 2

26. A =













−8 6 −3

−12 10 −3

−12 −12 −2













, P (λ)(λ + 2)2(λ − 4)

27. A =





















0 −1 0 0

1 0 0 0

1 0 0 −1

0 1 1 0





















, P (λ) = (λ2 + 1)2
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1  Introduction 

In this unit, you shall have a detail of the study you were introduced to in unit 4, which are 

Adjoint systems. 

2  Objectives 

At the end of this unit, you should be able to 

(i)  Define and give examples of Adjoint Equations. 

(ii)  Establish some results related to adjoint equations 

(iv)  Define self - adjoint equations and give examples 

(v)  Transform a system to a self-adjoint one.
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3 The Adjoint Equation

3 The Adjoint Equation

3.1 Definitions and Examples

Definition 3.1 Consider the nth-order linear differential operator

Ln = a0(x)
dn

dxn
+ a1(x)

dn−1

dxn−1
+ · · · + an−1(x)

d

dx
+ an(x)

And the corresponding nth-order linear differential equation

Lny = 0

The nth order linear operator

L̄n = (−1)n dn

dxn
[a0(x)] + (−1)n−1 dn−1

dxn−1
[a1(x)] + · · · −

d

dx
[an−1(x)] + an(x)

is the adjoint operator of the operator Ln, and the differential equation

L̄ny = 0

is called the adjoint equation to the equation Lny = 0. That is, the adjoint equation to

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · · + an−1(x)

dy

dx
+ an(x) = 0 (1)

is the equation

(−1)n dn

dxn
[a0(x)y] + (−1)n−1 dn−1

dxn−1
[a1(x)y] + · · · −

d

dx
[an−1(x)y] + an(x)y = 0 (2)

Note: In your knowlege of equation (1) you have assumed that a0, a1, ..., an−1, an are all continuous on

an interval a ≤ x ≤ b and that a0(x) 6= 0 on a ≤ x ≤ b. In order that the adjoint Equation (2) shall shall

possess such continuity properties on a ≤ x ≤ b you must now further assume that the coefficients ak in

Equation (1) have continuous (n − k)th derivatives (k = 0, 1, ..., n − 1) on a ≤ x ≤ b.

3.1.1 The Second-Order Case

Consider in particular the second-order linear differential operator

L2 = a0(x)
d2

dx2
+ a1(x)

d

dx
+ a2(x)

and the corresponding second-order linear differential equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (3)

From equation (2) the adjoint equation to equation (3) is

(−1)2 d2

dx2
[a0(x)y] + (−1)

d

dx
[a1(x)y] + a2(x)y = 0

This reduces to

a0(x)
d2y

dx2
+ [2a′

0 − a1(x)]
dy

dx
+ [a′′

0(x) − a′

1(x) + a2(x)y] = 0, (4)

where the primes denote differentiations with respect to x. Thus the adjoint equation to the second-order

equation (3) is the equation (4). 114



3.1 Definitions and Examples

Example 3.1 Consider

x2 d2y

dx2
+ 7x

dy

dx
+ 8y = 0. (5)

Here a0(x) = x2, a1(x) = 7x, a2(x) = 8. By (4) the adjoint equation to equation (5) is

x2 d2y

dx2
+ [4x − 7x]

dy

dx
+ [2 − 7 + 8]y = 0

or simply

x2 d2y

dx2
− 3x

dy

dx
+ 3y = 0. (6)

Of course you could have obtained equation (6) directly from (2) without using the special result given in

(4).

3.1.2 Lagrange Identity

Theorem 3.1 Langrange Identity.

1. Let the coefficients ak in

Ln = a0(x)
dn

dxn
+ a1(x)

dn−1

dxn−1
+ · · · + an−1(x)

d

dx
+ an(x)

have continuuous (n-k)th derivatives, (k = 0, 1, 2, ..., n) on the interval a ≤ x ≤ b.

2. Let u and v be any two functions having nth derivatives on a ≤ x ≤ b.

Then

vLn[u] − uL̄n[v] =
d

dx
[P (u, v)] (7)

where

P (u, v) =
n

∑

k=1

[

k
∑

j=1

(−1)j−1u(k−1)(van−k)
(j−1)

]

(8)

Note: You should refer to the form P (u, v) as the bilinear concomitant associated with Ln. The notation

u(k−j) denotes the (k − j)th derivative of u with respect to x, and in like manner (van−k)
(j−1) denotes the

(j − 1)stx derivative of van−k.

Proof. By differentiating the expression

U (k−1)V − U (k−2)V ′ + · · · + (−1)n−2U ′V (k−2) + (−1)k−1UV (k−1)

one obtains the formula

V U (k) = (−1)kV (k)U +
d

dx
[U (k−1)V − U (k−2)V ′ + · · · + (−1)k−2U ′V (k−2) + (−1)k−1UV (k−1)] (9)

(k = 0, 1, 2, ..., n). Apply formula (9) with U = u and V = va0, va1, ..., van−1, successively, in

vLn[u] = va0
dnu

dxn
+ va1

dn−1u

dxn−1
+ · · · + van−1

du

dx
+ vanu.
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3.1 Definitions and Examples

You obtain

vLn[u] = (−1)n(va0)
(n)u +

d

dx
[u(n−1)(va0) − u(n−2)(va0)

′ + · · · + (−1)n−1u(va0)
(n−1)]

+(−1)n−1(va1)
(n−1)u +

d

dx
[u(n−2)(va1) − u(n−3)(va1)

′ + · · · + (−1)n−2u(va1)
(n−2)]

+ · · · + (−1)1(van)′u +
d

dx
[uvan−1] + vanu

= u

n
∑

k=0

(−1)n−k(vak)
(n−k) +

d

dx

[

n
∑

j=1

(−1)j−1u(n−j)(va0)
(j−1)

]

= +
d

dx

[

n−1
∑

j=1

(−1)j−1u(n−1−j)(va1)
(j−1)

]

+ · · · +
d

dx

[

1
∑

j=1

(−1)j−1u(1−j)(van−1)
(j−1)

]

But
n

∑

k=0

(−1)(n−k)(vak)
(n−k)=Ln[v]

Thus

vLn[u] − uL̄n[v] =
n

∑

k=1

d

dx

[

k
∑

j=1

(−1)j−1u(k−j)(van−k)
(j−1)

]

and hence

vLn[u] − uL̄n[v] =
d

dx

n
∑

k=1

[

k
∑

j=1

(−1)j−1u(k−j)(van−k)
(j−1)

]

Corollary 3.1 Green’s formula

With the Hypothesis of Theorem 3.1. Then for any two points x1 and x2 of a ≤ x ≤ b,

∫ x2

x1

{vLn[u] − uL̄n[v]}dx = P (u, v)|x=x2 − P (u, v)|x=x1

Proof. Merely integrate the Lagrange Identity (7) from x1 to x2.

The Second-Order Case.

Consider the Lagrange Identity (7) in the second-order case. In this case

L2 = a0(x)
d2

dx2
+ a1(x)

d

dx
+ a2(x)

and from (4) you see that the adjoint operator L̄2 may be written

L̄2 = a0(x)
d2

dx2
+ [2a′

0(x) − a1(x)]
d

dx
+ [a′′

0(x) − a′

1(x) + a2(x)].

Thus the left member vL2[u] − uL̄2[v] of the Lagrange Identity reduces to

a0vu′′ + a1vu′ − a0uv′′ − 2a′

0uv′ + a1uv′ − a′′

0uv + a′

1uv, (10)116
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where the primes denote differentiations with respect to x. Now the right member of the identity is d
dx

[P (u, v)],
where in this case

P (u, v) =
2

∑

k=1

[

k
∑

j=1

(−1)j−1u(k−j)(va2−k)(j−1)

]

=
1

∑

j=1

(−1)j−1u(1−j)(va1)
(j−1)+

2
∑

j=1

(−1)j−1u(2−j)(va0)
(j−1).

This reduces to

P (u, v) = uva1 + u′(va0) − u(va0)
′

or

P (u, v) = a0vu′ + (a1 − a′

0)vu − a0v
′u. (11)

Thus the right member of (7) in the second-order case is

d

dx
[a0vu′ + (a1 − a′

0)vu − a0v
′u]. (12)

You should perform the indicated differentiation in (12) and observe that the result is indeed the expres-

sion given by (10).

Theorem 3.2 A necessary and sufficient condition that f be a solution of the nth order linear differential

equation Lny = 0is that f be a solution of the (n − 1)st-order linear differential equation.

P [y, g(x)] = c, (13)

where P (u, v) is the bilinear concomitant associated with Ln, the function g is a nontrivial solution of the

adjoint equation L̄ny = 0, and c is an arbitrary constant.

Proof. Since g is a solution of L̄ny = 0, L̄n[g(x)] = 0 and the Lagrange Identity (7) with u = y, and

v = g(x) becomes

g(x)Ln[y] =
d

dx
{P [y, g(x)]} (14)

If f is a solution of Lny = 0, then Ln[f(x)] = 0. Thus letting y = f(x) in (14), you see that (14) reduces to

d

dx
{P [f(x), g(x)]} = 0.

Thus

P [f(x), g(x)] = c,

where c is an arbitrary constant. Thus if f is a solution of Lny = 0, then it also satisfies the equation

P [y, g(x)] = c, which is actually an (n− 1)st order linear differential equation in the dependent variable y.

Conversely, suppose f satisfies P [y, g(x)] = c, where c is an arbitrary constant. Then P [f(x), g(x)] = c

and
d

dx
{P [f(x), g(x)]} = 0. Then (14) gives g(x)Ln[f(x)] = 0. Since g is a nontrivial solution of L̄ny = 0,

you see that f is a solution of Lny = 0. Thus if f satisfies P [y, g(x)] = c, it also satisfies Lny = 0.

The Second Order Case

The bilinear concomitant P (u, v) associated with the second order linear operator L2 has been given ex-

plicitly in (11). Using this, you find that in the second order case

P [y, g(x)] = a0(x)g(x)
dy

dx
+ {[a1(x) − a′

0(x)]g(x) − a0(x)g′(x)}y.117
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Hence f is a solution of the second-order linear equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (15)

if and only if it is a solution of the first-order linear equation

a0(x)g(x)
dy

dx
+ {[a1(x) − a′

0(x)]g(x) − a0(x)g′(x)}y = c (16)

where g is a solution of the adjoint equation to (15) and c is an arbitrary constant.

Example 3.2 Solve

x2 d2y

dx2
+ 7x

dy

dx
+ 8y = 0 (17)

by finding a solution of its adjoint equation by inspection.

Solution.

The adjoint equation to the given equation is given by (6). It is

x2 d2y

dx2
− 3x

dy

dx
+ 3y = 0.

Clearly g such that g(x) = x is a solution of this equation. In Equation (17) a0(x) = x2, a1(x) = 7x,

and a2(x) = 8. Thus in this case Equation (16) becomes

x2 · x
dy

dx
+ {[7x − 2x] · x − x2 · 1}y = c

or simply

x3 dy

dx
+ 4x2y = c. (18)

substituting this first-order linear equation in the standard form, you have that x4 is an integrating

factor. Thus the equation (18) reduces to

d

dx
[x4y] = cx

integrating will give you

x4y =
cx2

2
+ c2

y = c1x
−2 + c2x

−4,

where c1 and c2 are arbitrary constants. Thus f defined by f(x) = c1x
−2 + c2x

−4 is a solution of

(17), where c1 and c2 are arbitrary constants. In other words, you have obtained the general solution

of equation (17) by finding a solution of its adjoint and then solving the related first order equation

(18).

Theorem 3.3 Let L̄n be the adjoint operator of Ln. Then Ln is the adjoint operator of L̄n.
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Proof. Let L̄n denote the adjoint operator of L̄n Then

uL̄n[v] − v ¯̄L[u] =
d

dx
{P̄ (u, v)},

where P̄ (u, v) is the bilinear concomitant associated with the operator L̄n. By hypothesis,

vLn[u] − uL̄n[v] =
d

dx
{P (u, v)},

where P (u, v) is the bilinear concomitant associated with Ln. Thus

v{Ln[u] − ¯̄L[u]} =
d

dx
{P (u, v) + P̄ (v, u)}.

Now (8) shows that the bilinear concomitant associated with an nth order linear differential operator is a

homogeneous linear form in v, v′, ..., v(n−1). Thus

P (u, v) + P̄ (v, u) = c1v
(n−1) + c2v

(n−2) + · · · + cnvn (19)

where the coefficients ci(i = 1, ..., n) are functions of u, u′, ..., u(n−1), the various coefficients in the opera-

tors under consideration, and certain derivatives of these various coefficents. Thus
d

dx
{P (u, v) + P̄ (u, v)}

is the homogeneous linear form

c1v
(n) + [c′1 + c2]v

(n−1) + · · · + [c′n−1 + cn]v′ + c′nv (20)

in v, v′, ..., v(n). Thus by (19) you see that

v{Ln[u] − ¯̄Ln[u]} is equal to the form (21).

Thus the coefficients of v(n), v(n−1), ..., v′ in (21) must be zero. From this it follows at once that c1 = c2 =
· · · = cn = 0, and hence (20) shows that P (u, v)+P̄ (v, u) = 0. Thus from (19) you see that ¯̄Ln[u] = Ln[u].
Thus the adjoint operator of the adjoint operator L̄n is the original operator Ln.

Thus if Lny = 0 is a given nth order homogeneous linear equation and L̄ny = 0 is the adjoint equation

L̄ny = 0 is the original equation Lny = 0.

Example 3.3 You have already seen in Example 3.1 that the adjoint equation to

x2 d2y

dx2
+ 7x

dy

dx
+ 8y = 0 (21)

is

x2 d2y

dx2
− 3x

dy

dx
+ 3y = 0 (22)

In equation (23) a0(x) = x2, a1(x) = −3x, and a2(x) = 3. Using (4) you find that the adjoint equation to

(23) is

x2 d2y

dx2
+ [4x + 3x]

dy

dx
+ [2 + 3 + 3]y = 0

which is the original equation (22).
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3.2 Self Adjointness

Definition 3.2 An nth order homogeneous linear differential equation Lny = 0 is called self adjoint if it is

identical with its adjoint equation Lny = 0.

In what follows you should be concerned with self-adjoint equations of the second order. In this con-

nection, you have the following theorem.

Theorem 3.4 Consider the second-order linear differential equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0, (23)

where a0 has a continuous second derivative, a1 has a continuous first derivative, a2 is continuous, and

a0(x) 6= 0 on a ≤ x ≤ b. A necessary and sufficient condition that equation (24) be self-adjoint is that

d

dx
[a0(x)] = a1(x) (24)

on a ≤ x ≤ b.

Proof. From Equation (4) the adjoint to equation (24) is

a0(x)
d2y

dx2
+ [2a′

0(x) − a1(x)]
dy

dx
+ [a′′

0(x) − a′

1(x) + a2(x)]y = 0. (25)

If condition (75) is satisfied, then

2a′

0(x) − a1(x) = a(x)

and

a′′

0(x) − a′

1(x) + a2(x) = a2(x)

These relations show that Equations (24) and (26) are identical; that is, equation (24) is self-adjoint.

Conversely, If Equation (24) and (26) are identical then

2a′

0(x) − a1(x) = a(x)

and

a′′

0(x) − a′

1(x) + a2(x) = a2(x)

The second of these conditions shows that a′

0(x) = a1(x) + c, where c is an arbitrary constant. From the

first condition, you see that a′

0(x) = a1(x). Thus c = 0 and you have the condition (25).

Corollary 3.2 Suppose the second-order equation

a0(x) d2y

dx2 + a1(x) dy

dx
+ a2(x)y = 0, (24)

is self-adjoint.

Then Equation (24) can be written in the form

d

dx

[

a0(x)
dy

dx

]

+ a2(x)y = 0 (26)
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Proof. Since Equation (24) is self-adjoint, condition (25) is satisfied. Thus equation (24) may be

written

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0,

or
d

dx

[

a0(x)
dy

dx

]

+ a2(x)y = 0

Example 3.4 (Legendre’s Equation)

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0

is self-adjoint, for a0(x) = 1 − x2, a1(x) = −2x and
d

dx
(1 − x2) = −2x. Written in the form (27), it is

d

dx

[

(1 − x2)
dy

dx

]

+ n(n + 1)y = 0

Theorem 3.5 The coefficients a0, a1 and a2 in the differential equation

a0(x) d2y

dx2 + a1(x) dy

dx
+ a2(x)y = 0 (24)

are continuous on a ≤ x ≤ b, and a0(x) 6= 0 on a ≤ x ≤ b.

Then Equation (24) can be transformed into the equivalent self-adjoint equation

d

dx

[

P (x)
dy

dx

]

+ Q(x)y = 0 (27)

on a ≤ x ≤ b, where

P (x) = e
R a1(x)

a0(x)
dx

, Q(x) =
a2(x)

a0(x)
e

R a1(x)
a0(x)

dx
(28)

by multiplication throughout by the factor

1

a0(x)
e

R a1(x)
a0(x)

dx
. (29)

Proof. Multiplying equation (24) through by the factor (30) you obtain

e
R a1(x)

a0(x)
dx d2y

dx2
+

a1(x)

a0(x)
e

R a1(x)
a0(x)

dx dy

dx
+

a2(x)

a0(x)
e

R a1(x)
a0(x)

dx
y = 0

This equation is clearly self-adjoint and may be written as

d

dx

[

e
R a1(x)

a0(x)
dx dy

dx

]

+
a2(x)

a0(x)
e

R a1(x)
a0(x)

dx
y = 0

or
d

dx

[

P (x)
dy

dx

]

+ Q(x)y = 0

where P and Q are given by (29). 121
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Example 3.5 Consider the equation

x2 d2y

dx2
− 2x

dy

dx
+ 2y = 0 (30)

Here a0(x) = x2, a1(x) = −2x. Since a′

0(x) = 2x 6= −2x = a1(x), Equation (31) is not self-adjoint. You

can form the factor (30) for this equation. You have

1

a0(x)
e

R a1(x)
a0(x)

dx
=

1

x2
e

R

−2x

x2 dx =
1

x4
.

Multiplying Equation (31) by
1

x4
on any interval a ≤ x ≤ b which does not include x = 0, you obtain

1

x2

d2y

dx2
−

2

x3

dy

dx
+

2

x4
y = 0.

Since
d

dx

(

1

x2

)

= −
2

x3
, this equation is self adjoint and may be written in the form

d

dx

[

1

x2

dy

dx

]

+
2

x4
y = 0

4 Conclusion

In this unit, you studied adjoint equations, you saw some examples, and learnt of self-adjoint equations and

how to transform an equation to a self adjoint equation.

5 Summary

Having gone through this unit, you can now

1. Give the meaning of adjoint equations.

2. obtain an adjoint equation of a given Linear ODE

3. identify self adjoint equations

4. transform an equation to an equivalent self adjoint equation.

6 Tutor Marked Assignments(TMAs)

Exercise 6.1

1. Find the adjoint equation to each of the following equations:

(a) x2 d2y

dx2
+ 3x

dy

dx
+ 3y = 0.

(b) (2x + 1)
d2y

dx2
+ x3 dy

dx
+ y = 0.

122



6 Tutor Marked Assignments(TMAs)

(c) x3 d3y

dx3
+ x2 d2y

dx2
+ x

dy

dx
+ y = 0.

(d) d4y

dx4 + x
d3y

dx3
+ x2 d2y

dx2
+ x3 dy

dx
+ x3y = 0.

2. Solve

x2 d2y

dx2
+ (2x3 + 7x)

dy

dx
+ (8x2 + 8)y = 0.

by finding a simple solution of its adjoint equation by inspection.

3. Transform each of the following equations into an equivalent self-adjoint equation:

(a) x2 d2y

dx2
+ x

dy

dx
+ y = 0

(b) (x4 + x2)
d2y

dx2
+ 2x3 dy

dx
+ 3y = 0

(c)
d2y

dx2
− tan x

dy

dx
+ y = 0

(d) f(x) dy

dx2 + g(x)y = 0
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1  Introduction 

In this unit, you shall be introduced to a special kind of boundary value problem known as a 

Sturm-Liouville Problem. Your study of this type of problem will introduce you to several 

important concepts including characteristic function, orthogonality, and Fourier series (which 

are beyond the scope of this book). These concepts are frequently employed in the 

applications of differential equations to physics and engineering. 

2  Objectives 

At the end of this unit, you should be able to 

(i)  Define and give examples of Sturm-Liouville problems 

(ii) Know the meaning of characteristic values and characteristic functions.

124



3 Main Content

3 Main Content

3.1 Sturm-Liouville Problems

3.1.1 Definition and Examples

The first concern in this unit is a study of the special type of two-point boundary value problem given in the

following definition:

Definition 3.1 Consider a boundary value problem which consists of

1. a second-order homogeneous linear differential equation of the form

d

dx

[

p(x)
dy

dx

]

+ [q(x) + λr(x)]y = 0 (1)

where p, q and r are real functions such that p has continuous derivative, q and r are continuous, and

p(x) > 0 and r(x) > 0 for all x on a real interval a ≤ x ≤ b; and λ is a parameter independent of x;
and

2. two supplementary conditions

A1y(a) + A2y
′(a) = 0,

B1y(b) + B2y
′(b) = 0

(2)

where A1, A2, B1 and B2 are real constants such that A1 and A2 are not both zero and B1 and B2 are

not both zero.

This type of boundary-value problem is called a Sturm-Liouville Problem (or Sturm-Liouville System).

Two important special cases are those in which the supplementary conditions (2) are either of the form

y′(a) = 0, y(b) = 0 (3)

or of the form

y′(a) = 0, y′(b) = 0. (4)

Example 3.1 The boundary-value problem

d2y

dx2
+ λy = 0 (5)

y(0) = 0, y(π) = 0 (6)

is a Sturm-Liouville problem. The differential equation (5) may be written

d

dx

[

1 · dy

dx

]

+ [0 + λ · 1]y = 0

and hence is of the form (1), where p(x) = 1, q(x) = 0, and r(x) = 1. The supplementary conditions (6)

are of the special form (3) of (2).
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3.1 Sturm-Liouville Problems

Example 3.2 The boundary-value problem

d

dx

[

x
dy

dx

]

+ [12x2 + λx3]y = 0 (7)

3y(1) + 4y′(1) = 0,

5y(2) − 3y′(2) = 0
(8)

is a Sturm-Liouville Problem. The differential equation (7) is of the form of (1), where p(x) = x, q(x) =
2x2, and r(x) = x3. The conditions (8) are of the form (2), where a = 1, b = 2, A1 = 3, A2 = 4, B1 = 5,
and B2 = −3.

You are now due to be introduced to what is involved in solving a Sturm-Liouville Problem. You must

find a function f which satisfies both the differential equation (1) and the two supplementary conditions

(2). Clearly one solution of any problem of this type is the trivial solution φ such that φ(x) = 0 for all

values of x. Equally clear is the fact that this trivial solutiion is not very useful. You should therefore focus

you attention on the search for nontrivial solutions of the problem. That is, you should attempt to find

functions, not identically zero, which satisfies both the differential equation(1) and the two conditions (2).

You shall see that the existence of the nontrivial solutions depends upon the value of the parameter λ in the

differential equation (1). To illustrate this, you have to return to the Sturm-Liouville Problem of Example

(1) and attempt to find nontrivial solutions

Example 3.3 Find nontrivial solutions of the Sturm-Liouville Problem

d2y

dx2
+ λy = 0, (5)

y(0) = 0, y(π) = 0. (6)

Solution.

You would need to consider three cases according as λ = 0, λ < 0 and λ > 0. In each case you should

first find the general solution of the differential equation (5). You shall then attempt to determine the

two arbitrary constants in this solution so that the supplementary conditions (6) will also be satisfied.

Case I: (λ = 0). In this case the differential equation (5) reduced at once to

d2y

dx2
= 0

and so the general solution is

y = c1 + c2x. (9)

You can now apply conditions (6) to the solution (9). Applying the first condition y(0) = 0, you

obtain c1 = 0. Applying the second condition y(π) = 0, you find that c1 + c2π = 0. Hence, since

c1 = 0, you must have also that c2 = 0. Thus in order for the solution (9) to satisfy the conditions

(6), you must have c1 = c2 = 0. But then the solution (9) becomes the solution y such that y(x) = 0
for all values of x. Thus if the parameter λ = 0, the only solution of the given problem is the trivial

solution.
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3.1 Sturm-Liouville Problems

Case II: (λ < 0). The auxiliary equation of the differential equation (5) is m2 + λ = 0 and the roots

±
√
−λ. Since in this case λ < 0, these roots are real and unequal. Denoting

√
−λ by α, you can see

that for λ < 0 the general solution of (5) is of the form

y = c1e
αx + c2e

−αx (10)

Applying the conditions (6) to the solution (10) starting with the first, gives you

c1 + c2 = 0 (11)

Applying the second condition y(π) = 0, you find that

c1e
απ + c2e

−απ = 0 (12)

You must thus determine c1 and c2 such that the system consisting of (11) and (12) is satisfied. Thus

in order for the solution (10) to satisfy the conditions (6), the constants c1 and c2 must satisfy the

system (11) and (12). Obviously c1 = c2 = 0 is a solution of this system; but these values of c1 and c2

would only give the trivial solution of this given problem. You must therefore seek nonzero values of

c1 and c2 which satisfy (11) and (12). By some theorems of ODE, this system has nonzero solutions

only if the determinant of the coefficient is zero. Therefore you must have

∣

∣

∣

∣

1 1
eαπ e−απ

∣

∣

∣

∣

= 0.

But this implies that eαπ = e−απ and hence that α. Thus in order for a nontrivial function of the form

(10) to satisfy the conditions (6) you must have α = 0. Since α =
√
−λ, you must have λ = 0. But

λ < 0 in this case. Thus there are no nontrivial solutions of the given problem in the case λ < 0.

Case III: (λ > 0). Since λ > 0, here, the roots ±
√
−λ of the auxiliary equation of (5) are the

conjugate complex numbers ±
√

λi. Thus in this case the general solution of (5) is of the form

y = c1 sin
√

λx + c2 cos
√

λx. (13)

Applyining now the conditions (6) to this general solution, begining from the first condition y(0)=0,

you obtain

c1 sin 0 + c2 cos 0 = 0

and hence c2. Applying the second condition y(π) = 0, you would find that

c1 sin
√

λπ + c2 cos
√

λπ = 0

Since c2 = 0, this reduces at once to

c1 sin
√

λπ = 0 (14)

You must therefore satisfy (14). At first glance it appears that you can do this in either of two ways:

you can set c1 = 0 or you can set sin
√

λπ = 0. However, if you set c1 = 0, then (since c2 = 0 also)

the solution (13) reduces immediately to the unwanted trivial solution. Thus to obtain a nontrivial

solution you cannot set c1 = 0 but rather you must set

sin
√

λπ = 0 (15)

If k > 0, then sin kπ = 0 only if k is a positive integer n = 1, 2, 3, .... Thus in order that the

differential equation (5) have a nontrivial solution of the form (13) satisfying the conditions (6), you

must have

λ = n2, where n = 1, 2, 3, ... (16)
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In other words, the parameter λ in (5) must be a member of the infinit sequence

1, 4, 9, 16, ..., n2, ...

You can now summarize you result as follows. If λ < 0 the Sturm-Liouville problem consisting of

(5) and (6) does not have a nontrivial solution; if λ > 0, a nontrivial solution can exist only if λ is

one of the values given by (16). You now note that if λ is one of the values (16), then the problem

does have nontrivial solutions. Indeed, from (13) you see that nontrivial solutions corresponding to

λ = n2(n = 1, 2, 3, ...) are given by

y = cn sin nx(n = 1, 2, 3, ...), (17)

where cn(n = 1, 2, 3, ...) is an arbitrary nonzero constant. That is, the functions defined by c1 sin x,

c2 sin 2x, c3 sin 3x, ..., where c1, c2, c3, ... are arbitrary nonzero constants, are non trivial solutions of

the given problem.

3.1.2 Characteristic Values and Characteristic Functions

Example 12.3 shows that the existence of nontrivial solution of a Sturm-Liouville Problem does indeed

depend upon the value of the parameter λ in the differential equation of the problem. Those values of

the parameter for which nontrivial solutions do exist, as well as the corresponding nontrivial solutions

themselves, are singled out by the following definition.

Definition 3.2 Consider the Sturm-Liouville Problem consisting of the differential equation (1) and the

supplementary conditions (2). The values of the parameter λ in (1) for which there exist nontrivial solutions,

of the problem are called the Characteristic values of the problem. The corresponding nontrivial solutions

themselves are called the characteristic functions of the problem.

Example 3.4 Consider again the Sturm-Liouville Problem

d2y

dx2
+ λy = 0, (5)

y(0) = 0, y(π) = 0. (6)

In Example 12.3 you found that the values of λ in (5) for which there exist nontrivial solutions of this

problem are the values

λ = n2, where n = 1, 2, 3, ... (16)

These then are the characteristics values of the problem under consideration. The characteristic function of

the problem at the corresponding nontrivial solutions

y = cn sin nx (n = 1, 2, 3, ...) (17)

where cn(n = 1, 2, 3, ...) is an arbitrary nonzero constant.

Example 3.5 Find the characteristic values and the characteristic functions of the Sturm-Liouville Problem

d

dx

[

x
dy

dx

]

+
λ

x
y = 0, (18)

y′(1) = 0, y′(e2π) = 0 (19)

where it is assumed that the parameter λ in (18) is nonnegative.128
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Solution.

Consider separately the cases λ = 0 and λ > 0. If λ = 0, the differential equation (18) reduces to

d

dx

[

x
dy

dx

]

= 0

The general soltion of this differential equation is

y = C ln |x| + C0,

where C and C0 are arbitrary constants. If you apply the conditions (19) to this general solution, you

will find that both of them require that C = 0 but neither of them imposes andy arbitrary constant.

These are nontrivial solutions for all choices of C0 6= 0. Thus λ = 0 is a characteristic value and

the corresponding characteristic functions are given by y = C0, where C0 is an arbitrary nonzero

constant.

If λ > 0, you see that for x 6= 0 this equation is equivalent to the Cauchy-Euler Equation

x2 d2y

dx2
+ x

dy

dx
+ λy = 0. (20)

Letting x = et, then equation (20) transforms into

d2y

dx2
+ λy = 0. (21)

Since λ > 0, the general solution of (21) is of the form

y = c1 sin
√

λt + c2 cos
√

λt

Thus for λ > 0 and x > 0 the general solution of (18) may be written

y = c1 sin(
√

λ ln x) + c2 cos(
√

λx). (22)

Differentiating (22) and Applying the supplementary conditions (19) gives you that

dy

dx
=

c1

√
λ

x
cos(

√
λx) − c2

√
λ

x
sin(

√
λ ln x) (23)

for x > 0. Applying the first conditiioin y′(0) = 0 of (19) to (23), you would have

c1

√
λ cos(

√
λ ln 1) − c2

√
λ sin(

√
λ ln 1) = 0

or simply c1

√
λ = 0. Thus you must have

c1 = 0.

Applying the second condition y′(e2π) = 0 of (19) to (23), you obtain

c1

√
λe−2π cos(

√
λ ln e2π) − c2

√
λe−2π sin(

√
λ ln e2π) = 0.

Since c1 = 0 by (24), and ln e2π = 2π, this reduces at once to

c2

√
λe−2π sin(2π

√
λ) = 0.

Since c1 = 0, the choice c2 = 0 would lead to the trivial solution. Thus you must have sin(2π
√

λ) = 0
and hence 2π

√
λ = nπ, where n = 1, 2, 3, .... Thus in order to satisfy the second condition (19)

nontrivially you must have

λ =
n2

4
(n = 1, 2, 3, ...) (24)129
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Corresponding to these values of λ you obtain for x > 0 the nontrivial solutions

y = Cn cos

(

n ln x

2

)

, (n = 1, 2, 3, ...) (25)

where Cn(n = 1, 2, 3, ...) are arbitrary nonzero constants.

Thus the values

λ = 0,
1

4
, 1,

9

4
, 4,

25

4
, ...,

n2

4
, ...,

given by (25) for n ≥ 0, are the characteristic values of the given problem. The functions

C0, C1 cos

(

ln x

2

)

, C2 cos(ln x), C3 cos

(

3 ln x

2

)

, ...,

given by (26) for n ≥ 0, where C0, C1, C2, C3, ... are arbitrary nonzero constants, are the correspond-

ing characteristic functions.

For each of the Sturm-Liouville Problems of Examples (3.3) and (3.5), you must have found an infi-

nite number of characteristic values. You could observe that in each of these problems the infinite set of

characteristic values thus found can be arranged in a monotonic increasing sequence

λ1 < λ2 < λ3 < · · ·

such that λn → +∞ as n → ∞. For example, the characteristic values of the problem in example (3.3) can

be arranged in the monotonic increasing sequence

1 < 4 < 9 < 16 < · · · (26)

such that λn → +∞ as n → +∞. You also note that in each problem there is a one-parameter of character-

istic functions corresponding to the same characteristic value are merely nonzero constant multiples of each

other. For example, in the problem of example 3.3, the one-parameter family of characteristic functions

corresponding to the characteristic value n2 is cn sin nx, where cn 6= 0 is the parameter.

You might now inquire whether or not all Sturm-Liouville Problems of the type under consideration

possess characteristic values and characteristic functions having the properties noted in the preceding para-

graph. You can answer in the affirmative by stating the following important theorem.

Theorem 3.1 Consider the Sturm-Liouville Problem consisting of

(i) the differential equation
d

dx

[

p(x)
dy

dx

]

+ [q(x) + λr(x)]y = 0, (27)

where p, q and r are real functions such that p has a continuous derivative, q and r are continuous

and p(x) > 0 and r(x) > 0 for all x on the real interval a ≤ x ≤ b; and λ is a parameter independent

of x; and

(ii) the conditions
A1y(a) + A2y

′(a) = 0

B1y(b) + B2y
′(b) = 0

(28)

where A1, A2, B1 and B2 are real constants such that A1 and A2 are not both zero and B1 and B2

are not both zero. 130



4 Conclusion

Then

(i) There exists an infinite number of characteristic values λn can be arranged in a monotonic increasing

sequence

λ1 < λ2 < λ3 < · · ·
such that λn → +∞ as n → +∞.

(ii) correspoinding to each characteristic value λn there exists a one-parameter family of characteristic

functions φn. Each of these characteristic functions is defined on a ≤ x ≤ b, and any two character-

istic functions corresponding to the same characteristic value are nonzero constant multiples of each

other.

(iii) Each characteristic function φn corresponding to the characteristic value λn (n = 1, 2, 3, ...) has

exactly (n − 1) zeros in the open interval a < x < b.

Example 3.6 Consider again the Sturm-Liouville Problem of Examples 3.3 and 3.4

d2y

dx2
+ λy = 0, (29)

y(0) = 0, y(π) = 0. (30)

You have already noted the validity of conclusions (i) and (ii) of theorem 3.1 for this problem. The infinite

number of characteristic values λn = n2(n = 1, 2, 3, ...) can be arranged in the unbounded monotonic

increasing sequence indicated by (27); and the characteristic functions cn sin nx(cn 6= 0), corresponding to

λn = n2 possess the properties stated.

Conclusion (iii) is illustrated by showing that each function cn sin nx corresponding to λn = n2 has exactly

(n − 1) zeros in the open interval 0 < x < π. You know that sin nx = 0 if and only if nx = kπ, where k is

an integer. Thus the zeros of cn sin nx are given by

x =
kπ

n
, (n = 0,±1,±2, ...) (31)

The zeros (28) which lie in the open interval 0 ≤ x ≤ π are precisely those for which k = 1, 2, 3, ..., n− 1.
Thus, just as conclusion (iii) asserts, each characteristic functions cn sin nx has precisely (n − 1) zeros in

the open interval 0 < x < π.

4 Conclusion

In this unit, you have studied the two point Sturm-Liouville problem. You saw some examples, and learnt

how to find the solutions to these problems by obtaining the Characteristic values and the Characteristic

functions.

5 Summary

Having gone through this unit, you now know

(i) what is meant by a two point Sturm-Liouville boundary value problem.

(ii) the meaning of a characteristic value and the corresponding characteristic function of a Sturm-

Liouville problem. 131
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Exercise 6.1

Find the characteristic values and characteristic functions of each of the following Sturm-Liouville Prob-

lems.

1.































d2y

dx2
+ λy = 0

y(0) = 0,

y
(π

2

)

= 0.

2.



























d2y

dx2
+ λy = 0

y(0) = 0,

y′ (π) = 0.

3.



























d2y

dx2
+ λy = 0

y(0) = 0,

y (L) = 0, where L > 0

4.



























d2y

dx2
+ λy = 0

y′(0) = 0,

y′ (L) = 0, where L > 0.

5.



























d2y

dx2
+ λy = 0

y(0) = 0,

y(π) − y′(π) = 0.

6.



























d2y

dx2
+ λy = 0

y(0) − y′(0) = 0,

y(π) − y′(π) = 0.

7.































d

dx

[

x
dy

dx

]

+
λ

x
y = 0

y(1) = 0,

y(eπ) = 0. 132



6 Tutor Marked Assignments(TMAs)

8.































d

dx

[

x
dy

dx

]

+
λ

x
y = 0

y(1) = 0,

y′(eπ) = 0.

9.































d

dx

[

(x2 + 1)
dy

dx

]

+
λ

x2 + 1
y = 0

y(0) = 0,

y(1) = 0.

[Hint. Let x = tan t.]

10.































d

dx

[

1

3x2 + 1

dy

dx

]

+ +λ(3x2 + 1)y = 0

y(0) = 0,

y(π) = 0.

[Hint. Let t = x3 + x]
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1  Introduction 

The mathematical formulation of numerous physical problems results in differential equations 

where are actually nonlinear. In many cases it is possible to replace such a non-linear 

equation by a related linear equation which approximates the actual nonlinear equations 

closely enough to give useful results. However, such a “linearization” is not always feasible; 

and when it is not, the original nonlinear equation itself must be considered. While the general 

theory and methods of linear equations are highly developed, very little of a general character 

is known about nonlinear equations. The study of nonlinear equations is generally confined to 

a variety of rather special cases, and one must resort to various methods of approximation. In 

this unit, you shall be introduced briefly to certain of these methods. 
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2 Objectives

2 Objectives

At the end of this unit, you should be able to;

(i) define phase plane, paths and critical points.

(ii) describe types of critical points

(iii) define and describe stability of a critical point.

(iv) determine the critical points of linear system.

(v) describe the nature of the critical point (0, 0)

(vi) describe the stability of the critical point (0, 0)

(vii) linearize a nonlinear differential equation and describe the nature and stability of the critical point

(0, 0)

3 Main Content

3.1 Phase Plane, Paths, and Critical Points

3.1.1 Basic Concepts and Definitions

For simplicity, you should be concerned with second-order nonlinear differential equations of the form

ẍ = F (x, ẋ) (1)

where x=x(t). As a specific example of such equation you have the important van der Pol equation

ẍ + µ(x2 − 1)ẋ + x = 0, (2)

where µ is a positive constant. For the time being, you could observe that you can put (2) in form (1), where

F (x, ẋ) = −µ(x2 − 1)ẋ − x

Suppose that the differential equation (1) describes a certain dynamical system having on degree of

freedom. The state of this system at time t is determined by the values of x (position) and ẋ (velocity). The

plane of the varibles x and ẋ is called a phase plane.

If you let y = ẋ, you can replace the second-order equation (1) by the equivalent system







ẋ = y

ẏ = F (x, y)
(3)

You can determine information about the equation (1) from a study of the system (1). In particular you

should be interested in the configuration formed by the curves which the solutions of (3) define. You should

regard t as a parameter so that these curves will appear in the xy plane. Since y = ẋ = dx/dt, this xy plane

is simply the x, dx/dt- phase plane mentioned in the preceeding paragraph.
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3.1 Phase Plane, Paths, and Critical Points

More generally, you should consider the system of the form







ẋ = P (x, y)

ẏ = Q(x, y)
(4)

where P and Q have continuous first partial derivatives for all (x, y). Such a system, in which the inde-

pendent varible t appears only in the differentials dt of the left members and not explicitly in the functions

P and Q on the right, is called an autonomous system. You shall now proceed to study the configurations

formed in the xy-phase plane by the curves which are defined by the solutions of (4).

From the existence theorem, it follows that given any number t0 and any pair (x0, y0) of real numbers,

there exists a unique solution






x = f(t)

y = g(t)
(5)

of the system (5) such that






f(t0) = x0

g(t0) = y0

If f and g are not both constant functions, then (5) defines a curve in the xy plane which you shall call a

path of the system (4).

If the ordered pair of functions defined by (5) is a solution of (4) and t1 is any real number, then it is

easy to see that the ordered pair of functions defined by







x = f(t − t1)

y = g(t − t1)
(6)

is also a solution of (4). Assuming that f and g in (5) are not both constant functions and that t1 6= 0, the

solutions defined by (5) and (6) are two different solutions are simply different parametrizations of the same

path. You can observe that the terms solution and path are not synonymous. On the one hand, a solution

of (4) is an ordered pair of functions (f, g) such that x = f(t), y = g(t) simultaneously satisfy the two

equations of the system (4) identically; on the other hand, a path of (4) is a curve in the xy-phase plane,

which may be defined parametrically by more than one solution of (4).

Through any point of the xy-phase plane there passes at most one path of (4). Let C be a path of (4) and

consider the totality of different solutions of (4) which define this path C parametrically. For each of these

defining solutions, C is traced out in the same direction as the parameter t increases. Thus with each path

C there is associated a definite direction, the direction of increase of the parameter t in the various possible

parametric representations of C by the corresponding solutions of the system. In your figures, you shall use

arrows to indicate this direction associated with a path.

Eliminating t between the two equations of the system (4), you obtain the equation

dy

dx
=

Q(x, y)

P (x, y)
(7)

This equation gives the slope of the tangent to the path of (4) passing through the point (x, y), provided

the functions P and Q are not both zero at this point. The general solution of (7) thus provides the one-

parameter family of paths of (4). However, the description (7) does not indicate the directions associated

with these paths.

At a point (x0, y0) at which both P and Q are zero, the slope of the tangent to the path, as defined by

(7), is indeterminate. Such points are singled out in the following definition.136



3.1 Phase Plane, Paths, and Critical Points

Definition 3.1 Given the autonomous system







ẋ = P (x, y)

ẏ = Q(x, y)
(4)

a point (x0, y0) at which both

P (x0, y0) = 0 and Q(x0, y0) = 0

is called a critical point of (4).

Example 3.1 Consider the linear autonomous system







ẋ = y

ẏ = −x
(8)

Solving this, using the methods developed in unit 4, you would find that the general solution of the system

may be written






x = c1 sin t − c2 cos t

y = c1 cos t + c2 sin t

where c1 and c2 are arbitrary constants. The solution satisfying the conditions x(0) = 0, y(0) = 1 is readily

found to be






x = sin t

y = cos t
(9)

This solution defines a path C1 in the xy plane. The solution satisfying the conditions x(0) = −1, y(0) = 0
is







x = sin(t − π/2)

y = cos(t − π/2)
(10)

The solution (10) is different from the solution (9), but (10) also defines the same path C1. That is, the

ordered pairs of functions defined by (9) and (10) are two different solutions of (8) which are different

parametrizations of the same path C1. Eliminating t from either (9) or (10) you obtain the equation x2+y2 =
1 of the path C1 in the xy phase plane. Thus the path C1 is the circle with center at (0, 0) and radius 1. From

either (9) or (10) you see that the direction associated with C1 is the clockwise direction.

Eliminating t between the equations of the system (8) you obtain the differential equation

dy

dx
= −

x

y
(11)

which gives the slope of the tangent to the path of (8) passing through the point (x, y), provided (x, y) 6=
(0, 0).
The general solution

x2 + y2 = c2

of equation (11) gives the one-parameter family of paths in the xy phase plane. Several of these are shown

in figure 1. The path C1 referred to above is of course that for which c = 1
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C

1 2 30

y

x

1

Figure 1:

Looking back at the system (8), you see that P (x, y) = y and Q(x, y) = −x. Therefore the only critical

point of the system is the origin (0, 0). Given any real number t0, the solution x = f(t), y = g(t) such that

f(t0) = g(t0) = 0 is simply






x = 0

y = 0

for all t.

You can also interpret the autonomous system (4) as defining a velocity vector field V, where

V (x, y) = [P (x, y), Q(x, y)]

The x component of this velocity vector at a point (x, y) is given by P (x, y), and the y component there is

given by Q(x, y). This velocity vector of a representative point R describing a path of (4) defined paramet-

rically by a solution x = f(t), y = g(t). At a critical point both components of this vector velocity are zero,

and hence at a critical point the point R is at rest.

In particular, you can consider the special case (3) which arises from a dynamical system described by

the differential equation (1). At a critical point of (3) both
dx

dt
and

dy

dt
are zero. Since

dy

dt
=

d2x

dt2
, you thus

see that at such a point the velocity and acceleration of the dynamical system described by (1) are both zero.

Thus the critical points of (3) are equilibrium points of the dynamical system described by (1).

The following are basic concept dealing with critical points and paths.

Definition 3.2 A critical point (x0, y0) of the system (4) is called isolated if there exists a circle

(x − x0)
2 + (y − y0)

2 = r2

about the point (x0, y0) such that (x0, y0) is the only critical point of (4) within this circle.

In what follows, assume that every critical point is isolated.138



3.2 Critical Points and Paths of Linear Systems

Definition 3.3 Let C be a path of the system (4), and let x = f(t), y = g(t) be a solution of (4) which

represents C parametrically. Let (x0, y0) be a critical point of (4). You shall say that the path C approaches

the critical point (x0, y0) as t → +∞ if

lim
t→+∞

f(t) = x0, lim
t→+∞

g(t) = y0, (12)

Definition 3.4 Let C be a path of the system (4) which approaches the critical point (x0, y0) as t → +∞,
and let x = f(t), y = g(t) be a solution of (4) which represents C parametrically. You will say that C
enters the critical point (x0, y0) as t → +∞ if

lim
t→+∞

g(t) − y0

f(t) − x0

(13)

exists or if the quotient in (13) becomes either positively or negatively infinite as t → +∞.

3.1.2 Types of Critical Points

1. Center: This is a critical point that is surrounded by infinite family of closed paths which is not

approached by any of the paths as t → +∞ or t → −∞.

2. Saddle point

3. A critical point is called spiral point if such a point is approached in a spiral-like manner by an infinite

family of paths as t → +∞ (or as t → −∞).

4. A critical point is called a node if such a point is not only approached but also entered by an infinite

family of paths as t → +∞ (or as t → −∞).

3.1.3 Stability

Definition 3.5 Let (x0.y0) be a critical point of the system (4); let C be a path of (4); and let x = f(t),
y = g(t) be a solution of (4) represent C parametrically. Let

D(t) =
√

[f(t) − x0]2 + [g(t) − y0]2 (14)

denote the distance between (x0, y0) and the point R : [f(t), g(t)] on C. The critical point (x0, y0) is called

stable if for every ε > 0, there exists a number δ > 0 such that the following is true: Every path C for

which

D(t0) < δ for some value t0 (15)

is defined for all t ≥ t0 and is such that

D(t) < ε for t0 ≤ t < ∞. (16)

3.2 Critical Points and Paths of Linear Systems

3.2.1 Basic Theorems

Although the major interest in this unit is to classify the critical point of nonlinear systems. But you shall

see that under appropriate circumstance you can replace a given nonlinear system by a related linear system

and then employ this linear system to determine the nature of the critical point of the given system. Thus in

this section, you shall first investigate the critical points of a linear autonomous system.139



3.2 Critical Points and Paths of Linear Systems

Consider the linear system






ẋ = ax + by

ẏ = cx + dy.
(17)

where a, b, c and d (in the right member of the second equation) are real constants. The origin (0, 0) is

clearly a critical point of (15). Assume that
∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

∣

6= 0, (18)

and hence (0, 0) is the only critical point of (15). Note that the solutions of (15) are sought and found of the

form






x = Aeλt

y = Beλt

(19)

and if (17) would be a solution of (15), then λ must satisfy the quadratic equation

λ2 − (a + d)λ + (ad − bc) = 0 (20)

called the characteristic equation of (15). Note that by condition (16), zero cannot be a root of the equation

(18) in the problem under discussion. Let λ1 and λ2 be the roots of the characteristic equation (18). You

need to prove that the nature of critical point (0, 0) of the system (15) depends upon the nature of the roots

λ1 and λ2. We shall consider five cases according as

1. λ1, and λ2 are real, unequal, and of the same sign

2. λ1, and λ2 are real, unequal, and of opposite signs

3. λ1, and λ2 are real and equal

4. λ1, and λ2 are conjugate, complex and pure imaginary.

5. λ1, and λ2 are pure imaginary.

Theorem 3.1 If the roots λ1 and λ2 of the characteristic equation are

1. real, unequal and of the same sign, then the critical point (0, 0) of the linear system is a node.

2. are real, unequal and of opposite sign then the critical point (0, 0) of the linear system is a saddle

point

3. real and equal then the critical point (0, 0) of the linear system (15) is a node

4. conjugate complex with real part not zero (that is not pure imaginary) then the critical point (0, 0) of

the linear system (15) is a spiral point.

5. pure imaginary, then the critical point (0, 0) of the linear system (15) is a center

Theorem 3.2 The critical point (0, 0) of the linear system







ẋ = ax + by

ẏ = cx + dy
, where

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

∣

6= 0,

is stable if and only if both roots of the characteristic equation have negative or zero real parts.140
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3.2.2 Examples and Applications

Example 3.2 Determine the nature of the critical point (0, 0) of the system







ẋ = 2x − 7y

ẏ = 3x − 8y
(21)

and determine whether or not the point is stable.

Solution.

The system (19) is of the form (15) where a = 2, b = −7, c = 3 and d = −8. The characteristic

equation is

λ2 + 6λ + 5 = 0.

Hence the roots of the characteristic equation are λ1 = −5 and λ2 = −1. Since the roots are negative,

the critical point (0, 0) of (19) is a node. Since the roots are negative, the point is stable.

Example 3.3 Determine the nature of the critical point (0, 0) of the system







ẋ = 2x + 4y

ẏ = −2x + 6y
(22)

and determine whether or not the point is stable.

Solution. Here a = 2, b = 4, c = −2 and d = 6. The characteristic equation is

λ2 − 8λ + 20 = 0

and its roots are 4±2i. Since these roots are conjugate complex but not pure imaginary, conclude that

the critical point (0, 0) of (20) is a spiral point. Since the real part of the roots is positive, the point is

stable.

3.3 Critical Points and Paths of Nonlinear Systems

3.3.1 Basic Theorems on Nonlinear Systems

Consider the nonlinear real autonomous system







ẋ = P (x, y)

ẏ = Q(x, y)
(23)

Assume that the system (21) has an isolated critical point which you shall choose to be the origin (0, 0).
Assume further that the function P and Q in the right members of (21) are such that P (x, y) and Q(x, y)
can be written in the form







P (x, y) = ax + by + P1(x, y)

Q(x, y) = cx + dy + Q1(x, y)
(24)

where (i) a, b, c and d are real constants, 141
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and

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

∣

6= 0,

and (ii) P1 and Q1 have continuous first partial derivatives for all (x, y), and are such that

lim
(x,y)→(0,0)

P1(x, y)
√

x2 + y2
= lim

(x,y)→(0,0)

Q1(x, y)
√

x2 + y2
= 0 (25)

Thus the linear system under consideration may be written in the form






ẋ = ax + by + P1(x, y)

ẏ = cx + dy + Q1(x, y)
(26)

where a, b, c, d, P1 and Q1 satisfy the requirements above.

If P (x, y) and Q(x, y) in (21) can be expanded in power series about (0, 0), the system (21) takes the

form


























ẋ =

[

∂P

∂x

]

(0,0)

x +

[

∂P

∂y

]

(0,0)

y + a12x
2 + a22xy + a21y

2 + · · ·

ẏ =

[

∂Q

∂x

]

(0,0)

x +

[

∂Q

∂y

]

(0,0)

y + b12x
2 + b22xy + b21y

2 + · · ·

(27)

This system is of the form (24), where P1(x, y) and Q1(x, y) are the terms of higher degree in the right

members of the equations. The requirments above will be met, provided the Jacobian
∂(P, Q)

∂(x, y)

∣

∣

∣

∣

(0,0)

6= 0.

Observe that the constant terms are missing in the expansion in the right members of (25), since P (0, 0) =
Q(0, 0) = 0.

Example 3.4 The system






ẋ = x + 2y + x2

ẏ = −3x − 4y + 2y2

is of the form (24) and satisfies the requirments (i) and (ii) above. Here a = 1, b = 2, c = −3 and d = −4,
and

∣

∣

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

∣

∣

= 2 6= 0

Further P1(x, y) = x2, Q1(x, y) = 2y2, and hence

lim
(x,y)→(0,0)

P1(x, y)
√

x2 + y2
= lim

(x,y)→(0,0)

x2

√

x2 + y2
= 0

and

lim
(x,y)→(0,0)

Q1(x, y)
√

x2 + y2
= lim

(x,y)→(0,0)

2y2

√

x2 + y2
= 0

By the requirement of (ii) the nonlinear terms P1(x, y) and Q1(x, y) in (24) tend to zero more rapidly

than the linear terms ax + by and cx + dy. Hence one would suspect that the behaviour of the paths of the

system (24) near (0, 0) would be similar to that of the paths of the related linear system






ẋ = ax + by

ẏ = cx + dy
(28)
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obtained from (24) by neglecting the nonlinear terms. In other words, it would seem that the nature of the

critical point (0, 0) of the nonlinear system (24) should be similar to that of the linear system (15). In general

this is actually the case. It is now time to state without proof the main theorem regarding this relation.

Theorem 3.3 Consider the nonlinear system







ẋ = ax + by + P1(x, y)

ẏ = cx + dy + Q1(x, y)
(29)

where a, b, c, d, P1 and Q1 satisfy the requirements (i) and (ii) above. Consider the linear system







ẋ = ax + by

ẏ = cx + dy
(30)

obtained from (27) by neglecting the nonlinear terms P1(x, y) and Q1(x, y). Both systems have an isolated

critical point at (0, 0). Let λ1 and λ2 be the roots of the characteristic equation

λ2 − (a + d)λ + (ad − bc) = 0 (31)

of the linear system (28).

Then

(a) The critical point (0, 0) of the nonlinear system (28) in the following cases

(i) If λ1 and λ2 are real, unequal and of the same sign, then not only is (0, 0) a node of (28) but also

(0, 0) is a node of (27).

(ii) If λ1 and λ2 are real, unequal, and of opposite sign, then not only is (0, 0) a saddle point of (28), but

also (0, 0) is a saddle point of (27).

(iii) If λ1 and λ2 are real and equal and the system (28) is not such that a = d 6= 0, b = c = 0. Then not

only is (0, 0) a node of (28), but also (0, 0) is a node of (27).

(iv) If λ1 and λ2 are conjugate complex with real part not zero, then not only is (0, 0) a spiral point of

(28), but also (0, 0) is a spiral point of (27).

(b) The critical point (0, 0) of the nonlinear system (27) is not necessarily of the type as that of the linear

system (28) in the following cases:

(v) If λ1 and λ2 are real and equal and the system (28) is such that a = d 6= 0, b = c = 0, then although

(0, 0) is a node of (28), the point (0, 0) may be either a node, a spiral point of (28).

(vi) If λ1 and λ2 are pure imaginary, then although (0, 0) is a center of (28), the point may be either a

center or a spiral point of (27).

Theorem 3.3 deals with the type of the critical point (0, 0) of the nonlinear system (27). Concerning the

stability of this point, you have without proof the following theorem of Lyapunov. More on this is discussed

in unit 8.

Theorem 3.4 With Hypothesis as exactly as in theorem 3.3,
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(a) If the roots λ1 and λ2 of the characteristic equation (29) of the linear system (28) both have negative

real parts, then not only is (0, 0) a stable critical point of (28) but also (0, 0) is a stable critical point

of (27).

(b) If at least one of the roots λ1 and λ2 of (29) has a positive real part, then not only is (0, 0) an unstable

critical point of (28), but also an unstable critical point of (27).

Example 3.5 Consider the nonlinear system







ẋ = x + 4y − x2

ẏ = 6x − y + 2xy
(32)

. This is of the form (27), where P1(x, y) = −x2 and Q1(x, y) = 2xy. You see at once that the hypotheses

of Theorems 13.7 and 13.8 are satisfied. Hence to investigate the critical point (0,0) of (30), consider the

linear system






ẋ = x + 4y

ẏ = 6x − y
(33)

of the form (28). The characteristic equation (29) of this system is

λ2 − 25 = 0.

Hence the roots are λ1 = 5, λ2 = −5. Since the roots, are real, unequal, and of opposite sign, you see from

conclusion (ii) of theorem 3.3, that the critical point (0, 0) of the nonlinear system (31) is a saddle point.

From the conclusion (b) of theorem 3.4, you further conclude that the point is unstable.

Eliminating dt from the equation (30), you obtain the differential equation

dy

dx
=

6x − y + 2xy

x + 4y − x2
(34)

which gives the slope of the paths in the xy-phase plane defined by the solutions of (30). The first order

equation (32) is exact. Its general solutionis readily found to be

x2y + 3x2 − xy − 2y2 + c = 0 (35)

where c is an arbitrary constant. Equation (33) is the equation of the family of paths in the xy-phase plane.

Example 3.6 Consider the nonlinear system







dx
dt

= sin x − 4y

dy

dt
= sin 2x − 5y

(36)

Using the expansion

sin x = x −
x3

3!
+

x5

5!
− · · ·

You write this system in the form







ẋ = x − 4y − x3

6
+ x5

120
+ · · ·

ẏ = 2x − 5y − 4x3

3
+ 4x5

15
− · · ·

(37)
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4 Conclusion

The hypothesis of theorems 3.3 and 3.4 are satisfied. Thus to investigate the critical point (0,0) of (27) or

(28), you consider the system






ẋ = x − 4y

ẏ = 2x − 5y
(38)

The characteristic equation of this system is

λ2 + 4λ + 3 = 0.

Thus the roots are λ1 = −3, λ2 = −1. Since the roots are real, unequal, and of the same sign, you see

from conclusion (i) of theorem 3.3 that the critical point (0, 0) of the nonlinear system (34) is a node. From

conclusion (a) of theorem 3.4, you can conclude that this node is stable.

Example 3.7 Consider the two nonlinear systems







ẋ = −y − x2

ẏ = x
(39)

and






ẋ = −y − x3

ẏ = x
(40)

The point (0, 0) is a critical point for each of these systems. The hypotheses of Theorem 3.3 are satisfied in

each case, and in each case the corresponding linear system to be investigated is







ẋ = −y

ẏ = x
(41)

The characteristic equation of the system (39) is

λ2 + 1 = 0

with the pure imaginary roots ±i. Thus the critical point (0, 0) of the linear system (39) is a center. How-

ever, Theorem 3.3 does not give us definite information, concerning the nature of this point for either of

the nonlinear systems (37) and (38). Conclusion (vi) of theorem 3.3 tells you that in each case (0, 0) is

either a center or a spiral point; but this is all that this theorem tells us concerning the two systems under

consideration.

4 Conclusion

In this unit, you studied nonlinear systems. In which you learnt how to determine the critical points of a

system of differential equations and discuss the nature and stability of a critical point especially (0,0) You

also learnt how to linearize a non linear system.

5 Summary

Having gone through this unit, you are now able;
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6 Tutor Marked Assignments(TMAs)

(i) define phase plane, paths and critical points.

(ii) describe types of critical points

(iii) define and describe stability of a critical point.

(iv) determine the critical points of linear system.

(v) describe the nature of the critical point (0, 0)

(vi) describe the stability of the critical point (0, 0)

(vii) linearize a nonlinear differential equation and describe the nature and stability of the critical point

(0, 0)

6 Tutor Marked Assignments(TMAs)

Exercise 6.1

Determine the nature of the critical point (0, 0) of each of the linear autonomous systems in the

following Also determine whether or not the critical point is stable.

1.







ẋ = x + 3y

ẏ = 3x + y

2.







ẋ = 3x + 4y

ẏ = 3x + 2y

3.







ẋ = 2x − 4y

ẏ = 2x − 2y

4.







ẋ = x − y

ẏ = x + 5y

Determine the type and stability of the critical point (0, 0) of each of the nonlinear autonomous

systems

5.







ẋ = x + x2 − 3xy

ẏ = −2x + y + 3y2

6.







ẋ = x + y − x2y

ẏ = 3x − y + 2xy3

7.







ẋ = (y + 1)2 − cos x

ẏ = sin(x + y)
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6 Tutor Marked Assignments(TMAs)

8. Consider the autonomous system






ẋ = yex

ẏ = ex − 1

(a) What type of critical point is (0, 0)?

(b) Obtain the differential equation of the paths and find its general solution.
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LYAPUNOV EQUATION 
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6 Tutor Marked Assignments (TMAs)  160 

1 Introduction 

In this unit, you shall be introduced to stability theory. This will aid you to determine the 

stability of a system of ordinary differential equation. 

2  Objectives 

At the end of this section, you should be able to 

(i) say whether a system of an ODE is stable or not. 

(ii) determine whether a critical point is stable or not. 

(iii) use Lyapunov’s theory to determine the stability of a critical point. 
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3 Stability

3 Stability

The term stability is an expression that almost tells its own story. Suppose a device of some

sort operates under general conditions, and these conditions are slightly changed or modified.

The question now is, “Does this change or modification have little or considerable effect on the

device? In your thought, if the first instance is stable, then the second is unstable.

How does this apply to physical systems in particular? The system will depend upon certain

number of physical parameters x1, x2, ..., xn which define position and also velocity. These will

be represented in some space R
n by a vector point x. The state of the system at time t will

be x = x(t). As will be produce a trajectory g, in R
n space. The question again is, how do

trajectories g which start near g behave with respect to g? Do they as time goes on remain near

g which is stability or do they shift away from g which is instability.

Suppose at time t, the state of a physical system is described by

xi = xi(t) i = 1, 2, ..., n

and suppose the conditions of motion of the system require variable to satisfy

ẋi = xi(x1, x2, x3, ..., xn) (1)

Suppose xi = ηi(t) is some particular state of the system i.e., xi = ηi(t) is a solution of (1).

To study the properties of solutions of (1) in the neighbourhood of ηi(t), you make

yi = xi − ηi

where yi = 0 or xi = ηi is the unperturbed motion or trajectory and xi(t) describes another

solution or state of the system. The new variable yi(t), now satisfies an equation of the form

dyi

dt
= yi(y1, y2, ..., yn, t) (2)

where

yi(y1, y2, ..., yn, t) = xi(y1 + η1, ..., yn − ηn, t) − xi(η1, η2, ..., ηn, t). (3)

Here the curve {ηi(t)} is denoted by

yi = 0

is called the null-solution (or trivial solution) as can be seen from (2) and (3). Thus the stability

of the solution ηi(t) of (1) is reduced to that of the trivial solution of yi ≡ 0 of (2).

Given that equation

ẋ = f(t, x), df(t, 0) = 0 (4)

in which f : I × D → R
n is assumed continuous and satisfy conditions for uniqueness and

continuous dependence of solutions on initial data. Then the following definitions hold.

3.1 Stability in the sense of Lyapunov

Definition 3.1 The trivial solution x(t) = 0 of (4) is said to be stable (in the sense of Lyapunov)

if ε > 0 is given and t ∈ I, there exists, for any y(t) a solution of (4), a positive number
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3.1 Stability in the sense of Lyapunov

δ = δ(t0, ε) such that ‖y(t0)‖ < δ implies that ‖y(t)‖ < ε or ‖y(t0) − x(t0)‖ < δ implies that

‖y(t) − x(t)‖ < ε for t > t0.

If δ can be chosen independent of t0, then the x(t) is said to be uniformly stable.

Definition 3.2 The solution x(t) is said to be assymptotically stable if it is stable and for any

given δ > 0 and a solution y(t) of (4),

lim
t→∞

‖x(t) − y(t)‖ = 0 for ‖x(t0) − y(t0)‖ < δ

Note that the definition of stability given are local in nature in the sence that you are con-

cerned with solutions where the initial values are sufficiently close.

Example 3.1 Show that the differential equation

ẍ + x = 0

is stable in the sense of Lyapunov but not assymptotically stable.

Solution.

The scalar equation

ẍ + x = 0

is equivalent to the system

ẋ = y

ẏ = −x

or x =





0 1

−1 0





with solution as

x = A cos t + B sin t and y = −A sin t + B cos t

Define the a norm on X =





x

y



 ≡





x1

x2



 by

‖X‖ = |x1| + |x2|

‖X(0)‖ = |A| + |B|

‖X(t)‖ = |A cos t + B sin t| + | − A sin t + B cos t|
≤ 2(|A| + |B|) < ε

Choose δ = ε
2
.

Then from the definition, the trivial solutions




x

y



 =





0

0





is stable in the sense of Lyapunov. However, the trivial solution is NOT assymptotically

stable, why?
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3.1 Stability in the sense of Lyapunov

Example 3.2 Show that the differential equation

ẍ + 3ẋ + 2x = 0

is both stable and assymptotically stable in the sense of Lyapunov.

Solution.

The scalar equation

ẍ + 3ẋ + 2x = 0

is equivalent to the system

ẋ1 = x2

ẋ2 = −3x2 − 2x1

or X =





0 1

−2 −3



 X with X =





x1

x2





The auxiliary equation is

λ2 + 3λ + 2 = 0 i.e., λ1 = −1, and λ2 = −2

The general solution is given by

X = c1e
−t + c2e

−2t and Ẋ = −c1e
−t − 2c2e

−2t

‖X(0)‖ = |x(0)| + |ẋ(0)| ≤ 2c1 + 3c2

‖X(t)‖ ≤ 2|c1|e
−t + 3|c2|e

−2t

≤ (2|c1| + 3|c2|)e
−t

Since e−t ≤ 1. Choose δ =
ε

2|c1| + 3|c2|
and conclude that the trivial solution is stable.

lim
t→∞

‖X(t)‖ ≤ lim
t→∞

{2|c1| + 3|c2|}e
−t → 0 as t → 0

Therefore, lim
t→∞

‖X(t)‖ = 0. Thus, the trivial solution of the system

Ẋ =





0 1

−2 −3



 X

is assymptotically stable in the sense of Lyapunov.

Example 3.3 Consider the homogeneous system

ẋ = Ax

where A is a constant n× n matrix all of whose eigenvalues have negative real parts. Then you

can conclude both stability and assymptotic stability.
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3.1 Stability in the sense of Lyapunov

Proof. Suppose all the roots of a are distinct, recall that Tyi, i = 1, 2, ..., n are the n

linearly independent solution, where

yi =















































0

...

0

eλit

0

...

0















































i = 1, 2, ..., n

Ty1 =



















eλ1t

0

...

0



















. Any solution x(t) of the system is of the form

x(t) = (Ty1, T y2, ..., T yn)xn

‖x(t)‖ ≤ Ae−µt‖x0‖

where µ is the smallest of

αi < 0λi = αi + jβiα1 < α2 < · · · < αj < 0

you can conclude both stability and assymptotic stability.

Suppose the roots are not necessarily distinct. Then the general solution is given by

x(t) =
k

∑

j=1

mj
∑

i=1

ti−1eλjtcij m1 + m2 + · · · + mk = n (5)

Fix j = 1, Then the expression (5) becomes

x(t) = c11e
λ1t + c21te

λ1t + c31t
2eλ1t + · · · + cm11t

m1−1eλ1t

‖ti−1eλjtci,j‖ ≤ mij|t
i−1|

∣

∣

∣

∣

e(αj+µ)t

eµt
· eβjt

∣

∣

∣

∣

αj + µ < 0, µ > 0

≤ mij|t
i−1| e

−(αj+µ)t

eµt

≤ Mmije
−µt → 0 as t → ∞
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3.1 Stability in the sense of Lyapunov

Therefore assymptotically stable.

Note that given the system

ẋ = Ax

A is a constant n × n matrix all of whose eigenvalues have negative real parts then there exists

α > 0, β > 0 such that

‖eAt‖ ≤ βe−αt, t > 0 (6)

(i) If all the roots of A are distinct then each column of the fundamental matrix solution of

Φ is of the form

eλktP k k = 1, 2, ..., n

where the P k’s are some constants n−vectors, Clearly, you can write

λk = µk + αk, uk < 0

Assume that uk < −α for all k. Then

Φ(t) ≤ n max |P k
j |e

−αt, t > 0, k, j = 1, 2, ..., n

If λi is a repeated root of A, then the corresponding column of Φ involve terms of the

form

Φr(t) = etλi

n
∑

i=1

ti−1

(i − 1)!
P i (7)

where Pi’s are constant n−vectors. Since

tretλs

e−αt = tre(µs+αi)t µs < −αs < 0

and µs + αs < 0, it follows that

tre(µs+α)t → 0 as t → ∞

Thus

tre(µs+α)t ≤ Ms, Ms > 0

is a constant. Combining with (7) it follows readily that there exist constants M > 0 and

α > 0 such that

‖Φ(t)‖ ≤ Me−αt

Remark 3.1

ẋ = A(t)x

with A(t + ω) = A(t), the solution

Φ(t) = P (t)etR

If all the roots of R have negative real parts then

‖Φ(t)‖ ≤ Me−αt t ≥ 0, α > 0, M > 0
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3.2 Quasilinear System

3.2 Quasilinear System

Theorem 3.1 Given the differential equation

ẋ = Ax + f(t, x) x(0) = x0 (8)

where A is a constant n × n matrix all whose eigenvalues have negative real parts, f is a

continuous function of x and t. Suppose that

‖f(t, x)‖ ≤ K‖x‖ (9)

for t and x. Then the solution of the system (8) are assymptotically stable provided K is small

enough

Proof. Any solution of (8) can be written in the form

x(t) = eAtx0 +

∫ t

0

eA(t−τ)f(τ, x(τ))dτ

‖x(t)‖ ≤ ‖eAt‖‖x0‖ +

∫ t

0

‖eA(t−τ)‖‖f(τ, x(τ))‖dτ

Clearly there exists α > 0, β > 0 such that

‖eAt‖ ≤ βe−αt, t ≥ 0

and so

‖x(t)‖ < β‖x0‖e
−αt + βK

∫ t

0

eατ‖x(τ)‖dτ

Thus
‖x(t)eαt‖

β‖x0‖ +
∫ t

0
βkeατ‖x(t)‖dτ

≤ 1 (10)

Multiplying bothsides by βk

βk‖x(t)eαt‖

β‖x0‖ +
∫ t

0
βkeατ‖x(τ)‖dτ

≤ βk

Integrating between 0 and t you obtain

log

[

β‖x0‖ +

∫ t

0

βkeατ‖x(τ)‖dτ

]t

0

≤ βkt

β‖x0‖ +
∫ t

0
βkeατ‖x(τ)‖dτ

β‖x0‖
≤ eβkt

Thus

‖x(t)‖eαt ≤ β‖x0‖ +

∫ t

0

βkeατ‖x(τ)‖dτ ≤ β‖x0‖e
βkt

and so

‖x(t)‖ ≤ β‖x0‖e
−(α−βk)t

Fix k > 0 such that α − kβ > 0, then
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3.3 Lyapunov Second Method

e−(α−kβ)t ≤ 1 for all t

Therefore

‖x(t)‖ ≤ β‖x0‖ < ε provided ‖x0‖ < δ = ε
β

The solutions

x(t) ≤ β‖x0‖e
−(α−βk)t

are assymptotically stable since

lim
t→∞

‖x(t)‖ ≤ lim
t→∞

β‖x0‖e
−(α−β)t = 0

3.3 Lyapunov Second Method

The examples you have considered so far pressume a knowledge of solutios before you can

conclude stability. There are only very few equations whose solutions can be determined in

closed form (i.e., in terms of elementary functions).

An alternative method initiated by a Russian Mathematician A.M. Lyapunov is a generaliza-

tion based on the well known observatioin that near the equilibrium point of a physical system,

the total energy of a given system is either constant or decreasing. Therefore idea here is intro-

duction of some functions now known as Lyapunov functions, which generalize the total energy

in a system.

Consider the differential equation

ẋ = f(x, t), f(0) = 0 (11)

where f : R
n → R

n is continuous and the solutions are unique and very continuously with the

initial data.

Let V : R
n → R be defined and continuous together with the first partial derivatives ∂V

∂xi

(i = 1, 2, ..., n) on some open let Ω ⊂ R
n

Ω = {x : x ∈ R
n, ‖x‖ < h}

The following are some definitions that would be of help you as you proceed in the understand-

ing of this topic.

Definitions

1. A function V : Ω → R is said to be positive definite (negative definite) if V (0) = 0 and

V assume positive (negative) values on Ω.

2. A function V : Ω → RΩ ⊂ R is said to be positive(negative) semi-definite if V (0) = 0
and V (x) ≥ 0 (V (x) ≤ 0) on Ω. If the functions assume arbitrary values then it is said to

be indefinite.
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3.3 Lyapunov Second Method

Example 3.4

(a) V = x2 + y2 is positive definite.

(b) (x + y)2 + z2 is positive semi-definite.

(c) V = x2 + y2 − z2 is indefinite.

3. The derivatives (Euler’s) of V along solution paths of (11) is given by

V̇ =
d

dt
V (x(t)) =

∂V

∂xi

ẋi =
∂V

∂x1

f(xi)

Note: On investigation of stability or instability Lyapunov pioneered the work which appeared

in France 1907. The definitions (1), (2) and (3) are very essential in this study. These will be

tied up ultimately in the context of systems.

Stability or Instability can be assumed directly using the following theorems accondingly.

Theorem 3.2 Given the differential equation (4) that is

ẋ = f(t, x), f(t, 0) = 0

Suppose there exists a C1 function V : R
n → R which is positive definite and is such that the

time derivative of V along the solution paths of (4), that is, F · gradV is negative semi-definite.

Then the trivial solution x ≡ 0 is stablen in the sense of Lyapunov.

Theorem 3.3 Lyapunov Given the system (4). Suppose that there exists a C1 function V :
R

2 → R, with the following properties;

(i) V is positive definite.

(ii) The time derivative U(x1, x2) of V (x1, x2) along the solution paths of (4) is negative

definite.

(iii) Then the trivial solution x = 0 of (4) is assymptotically stable.

Theorem 3.4 Given the sytem (4). Suppose that there exists a C1 function V : R
2 → R, with

the following properties

(i) V is positive definite.

(ii) The time derivatives U(x1, x2) of V (x1, x2) along the solution paths of (4) is positive

definite.

Then the trivial solution of (4) is unstable in the sense of Lyapunov.

Theorem 3.5 (Cêtaev) On Instability Consider the system (11) i.e.,

ẋ = f(x); f(0) = 0

which f is sufficiently smooth in the domain G (in R
n) containing the origin. Let D ⊂ G be a

domain in R
n with the boundary of D which lies inside G passing through the origin.

Suppose there exists a C1 function V : R
n → R such that
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3.3 Lyapunov Second Method

(i) V (x) = 0 on that part of the boundary D lying inside G and V (x) > 0 elsewhere.

(ii) The time derivative elsewhere of V along the solution paths of (11) that is f · gradV > 0
in D.

Then the trivial solution x ≡ 0 of (11) is unstable

The following are some applications of these theorems to some specific cases.

Example 3.5 Consider the section equation

ẍ + x = 0

or rather the equivalent 2-system

ẋ1 = x2, ẋ2 = −x1 (12)

with the function V defined by

V (x1, x2) =
1

2
(x2

1 + x2
2)

Show that the system (12) is stable in the sense of Lyapunov

Solution.

Clearly V given by

V (x1, x2) =
1

2
(x2

1 + x2
2)

is positive definite. Along the solution paths of (12)

V̇ (x1, x2) = x1ẋ1 + x2ẋ2 = x1x2 − x1x2 = 0

Thus V̇ (x1, x2) is negative semi-definite. Hence V is a suitable function to which theorem

1.2 can be applied to give that the trivial solution x ≡ 0 is stable in the sense of Lyapunov.

Example 3.6 Consider the system

ẋ1 = −x3
1 − 2x1x

2
2

ẋ2 = x2
1x2 − x3

2







(13)

with the function V (x1, x2) defined by

V (x1, x2) = x2
1 + x2

1x
2
2 + x4

2

prove that the system (13) is assymptotically stable

Solution.
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3.3 Lyapunov Second Method

Note that V (x1, x2) is positive definite since

V (x1, x2) = x2
1 + x2

1x
2
2 + x4

2 = x2
1(1 + x2

2) + x4
2 ≥ 0

Along the solution paths of (13)

V (x1, x2) = 2x1ẋ1 + 2x1x
2
2ẋ12x2x

2
1ẋ2 + 4x3

2ẋ2

= −2x1(x
3
1 + 2x1x

2
2) − 2x1x

2
2(x

3
1 + 2x1x

2
2)

+2x2
1x2(x

2
1x2 − x2

2) + 4x3
2(x

2
1x2 − x3

2)

= −2x4
1 − 4x2

1x
2
2 − 2x2

1x
4
2 − 4x6

2

V̇ (x1, x2) = −2x2
1(x

2
1 + 2x2

2 + x4
2) − 4x6

2

This is negative definite. Thus by theorem 1.3, the system (13) is assymptotically stable

in the sense of Lyapunov.

Example 3.7 Consider the 2-system

ẋ1 = x2, ẋ2 = −ax2 − bx1 (14)

a, b are constants, with the function V (x1, x2) defined by V (x1, x2) = ax2
2 + bx2

1. Discuss the

conditions for

(i) assymptotic stability

(ii) instability on the system (14)

Solution.

Our V (x1, x2) defined by

V (x1, x2) = ax2
2 + bx2

1

is positive semidefinite if a ≥ 0, b ≥ 0. Along the solution paths of (14)

V̇ (x1, x2) = ẋ1
∂V
∂x1

+ ẋ2
∂V
∂x2

= ẋ2(2bx1) + (−ax2 − bx1)2x2 + 2bx1x2 − 2ax2
2 − 2bx1x2

= −2ax2
2

Note: Our V is positive definite if a > 0, b > 0, also that V̇ , considered as a function x1

and x2 satisfies the following

(i) V̇ is negative definite if a > 0

(ii) V̇ is positive definite if a < 0

and conclusions follows accordingly That is
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4 Conclusion

(i) Assymptotically stable if V̇ is negative definite.

(ii) Instability if V̇ is positive definite

Example 3.8 Given the scalar equation

ẍ + aẋ + h(x) = 0 (15)

where a > 0 is a constant and the function h : R
2 → R is such that solutions exist and are

unique and very continuously with initial data. By considering with initial data. By considering

an appropriate equivalent system and considering the function

2V (x, y) = (y + ax)2 + y2 + 4H(x)

where H(x) =

∫ x

0

h(s)ds. Determine the conditions on h which ensure (i) stability (ii) as-

symptotic stability of the trivial solution of scalar equation (15)

Solution.

1. The scalar equation (15) is equivalent to the system

ẋ = y

ẏ = −ay − h(x)







(16)

Along the solution paths of (16)

V̇ = (y + ax)ẏ + a(y + ax)ẋ + yẏ + 2h(x)ẋ

−(y + ax)(ay + h(x)) + ay2 + a2xy − ay2 − yh(x) + 2h(x)y

= −ay2 − yh(x) − a2xy − ah(x)x + ay2 + ax2y − ay2 − yh(x) + 2h(x)y

= −(ay2 + ah(x)x) = −a(y2 + h(x)x)

If xh(x) < 0 for all x 6= 0 when you conclude stability b if xh(x) > 0 for all x 6= 0 then

you conclude assymptotic stability.

4 Conclusion

Lyapunov and other theroems listed earlier depend heavily on the construction of suitable Lya-

punov functions. There is no fixed standard technique for constructing such Lyapunov functions

for a given ordinary differentiatial equation. This remains the main problems in the application

of the theorems.

If a suitable function V can be found then stability or instability follows and if not, you

cannot proceed.
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5 Summary

5 Summary

Having gone through this unit, you are now able to;

(i) determine the stability of the trivial solution and a critical point of a system of ODE.

(ii) use the Lyapunov’s theorem to determine the stability of a solution of a linear system.

6 Tutor Marked Assignments(TMAs)

Exercise 6.1

1. Given the function V defined by

V (x, y) =
1

2
y2 + G(x)

where G(x) =

∫ x

0

g(s)ds Determine the conditions on g which ensure stability of the

trivial solution of

ẍ + g(x) = 0, g(0) = 0

Note: Any relevant theorems used must be stated.

2. By considering the function

V =
1

2
(x2 + y2)

Prove that the trivial solution of the system

ẋ = −x − x3 − x sin y

ẏ = −y − y3

3

is assymptotically stable in the sense of Lyapunov.

3. The scalar equation
...
x + f(ẋ)ẍaẋ + bx = 0

a > 0, b > 0 are constants, f is a continuous function such that solutions exist and are

uniquely determined by the initial conditions. Furthermore the function

f(y) ≥ C ≥
b

a

where C is a constant by considering the function V defined by

V =
1

2
(az2) +

1

2
(b2x2 + a2y2) + byz + abxy + b

∫ y

0

uf(u)du

Prove that the scalar equation

...
x + f(ẋ)ẍ + aẋ + bx = 0

is stable and assymptotically stable in the sense of Lyapunov.
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4. Consider the scalar equation

ẍ − x3 = 0

and V (x1, x2) defined by

V (x1, x2) = x1x2

Show that the scalar equation is unstable in the sense of Lyapunov. Any relevant theorem

used must be clearly stated

5. Consider the 2-system

ẋ1 = x2 + x2
1x2, ẋ2 = x1 + 10x4

2

and by using V (x1, x2) defined by

V (x1, x2) = x1x2

Show that the trivial solution x = 0 is unstable.

6. (a) State and prove a theorem due Lyapunov used in establishing stability of a trivial

solution x = 0 of the scalar equation

ẋ = f(x), f(0) = 0

(b) Hence or otherwise show that the system

ẋ1 = x2, ẋ2 = −x2 − x1 − 2x3
1

and the function V3(x1, x2) is positive definite.

(c) Show that the zero solution x = 0 is assymptotically stable in the sense of Lyapunov.

7. By considering the system

ẋ1 = x2 + 2x2, ẋ2 = 3x1 + x2

and the function V4(x1, x2) = x1x2

(a) Show that the zero solution x ≡ 0 is unstable in the sense of Lyapunov

(b) Any theorem used in the above must be stated (No Proof).

8. By considering the function V : R
2 → R defined by

V (x1, x2) = x2
2 + 9x2

1

Show that the zero solution x ≡ 0 of the trivial solution of the system

ẋ1 = x2, ẋ2 = −9x1

is stable in the sense of Lyapunov

9. Given that the function V : R
2 → R defined by V (x1, x2) = x1x2. Prove that the trivial

solution, x = 0 of the system

ẋ1 = x2, ẋ2 = x3
1

is unstable
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