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Introduction 
 
You are welcome to Set Theory and Abstract Algebra.  This course is a 
3-credit course and it is offered at the undergraduate level. 
 
This course consists of 2-modules of 4 units each. The prerequisite for 
this course is MTH131 – Elementary Set Theory. 
 This Course Guide tells you briefly what the course is all about, what 
materials you will be using and how you can walk your way through 
these materials. 
 
 What You Will Learn in This Course 
 
Set Theory and Abstract Algebra is course that is compulsory for all 
B.Sc (Hons) Mathematics students, Computer Science Students and 
Communications Technology Students.  All Students in Education 
Majoring in Mathematics as teaching subjects are required to pass this 
course. This text is an informal axiomatic treatment of Set Theory and 
Abstract Algebra. 
 
The text contains expository treatment of fundamentals of Algebras.  
Topics such as Sets and Functions, Groups Subgroups Lagrange’s 
Theorem, Polynomial Rings, Special Integral Domains and Irreducibility 
and Field Extensions are given expository treatments.  
 
Each unit begins with clear statements of pertinent definitions principles 
and relevant theorems, and further illustrated with some graded and 
solved problems. The supplementary exercises are meant to illustrate the 
work further. 
 
Course Aims 
 
The aim of the course can be summarized as follows: 
 
• To introduce you to concept of Algebra at the University Level 
• To  expose you  to idea of groups theory , subgroups and the 

relevant theorems on groups 
• To prepare you rigorously for more advance courses in algebra 
 
Course Objectives 
 
Set out below are the wider objectives of the course as a whole.  On 
successful completion of this course you should be able to: 
 
• Explain the meaning of Groups ,Subgroups, Polynomial Rings 

Integral Domain, Irreducibility and Field Extensions 
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• Be able to give examples of groups subgroups, polynomial rings 
• Solve related problems concerning these topics. 
 
Working through this Course 
 
To complete this course, you are required to read the study units, read 
the recommended textbooks and other materials provided by the NOUN. 
 
Assignment File 
  
The assignment File contains details of the work you must submit to 
your tutor for marking. It contains a more compact form of the Tutor-
marked  
 
Assessment 
 
There are two aspects of the assessment of the course. First are the tutor-
marked assignments; second there is a written examination. In tackling 
the assignments, you are expected to apply information, knowledge and 
techniques gathered during the course. The assignments must be 
submitted to your tutor for formal assessment in accordance with the 
stipulated deadlines. 
 
How to Get the Most from the Course  
 
In distance learning, the study units replace the lecturer. This is an 
advantage over the conventional mode of learning; because it affords the 
opportunity of reading and working through all the specially designed 
materials at your pace, at a time and place that suit you best. Just as a 
lecturer might give you an in-class exercise, your study units provide 
exercises for you to do at appropriate points. 
 
Each of the study units follows a common format. The first item is an 
introduction to the subject matter of the unit and the course as a whole. 
Next is a set of learning objectives. These objectives let you know what 
you should be able to do by the time you have completed the unit. You 
should use these objectives to guide your study.  When you have 
finished the unit you must go back and check whether you have 
achieved the objectives. If you make a habit of doing this you will 
significantly improve your chances of passing the course. 
 
Exercises are interspersed within the units, and answers are given. 
Working through these exercises will help you to achieve the objectives 
of the unit and help you to prepare for the assignments and examination. 
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The following is a practical strategy for working through the course. 
  
1) Read this Course Guide thoroughly. 
 
2) Organize  a study schedule 
 
3) Once you have created your own study schedule, do everything 

you can to stick to it. 
 
4) Work through the unit.  The content of the unit itself has been 

arranged to provide a sequence for you to follow. 
 
5) Review the objectives for each study unit to confirm that you 

have achieved a unit’s objectives; you can then start on the next 
unit. Proceed unit by unit through the course and try to pace your 
study so that you keep yourself on schedule. 

 
6) When you have submitted an assignment to your tutor for 

marking, do not wait for its return before starting on the next unit. 
Keep to your schedule. When the assignment is returned, pay 
particular attention to your tutor’s comments. 
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MODULE 1 
 
Unit 1  Sets and Functions 
Unit 2   Groups 
Unit 3  Subgroups 
Unit 4  Lagrange’s Theorem 
 
 
UNIT 1 SETS AND FUNCTIONS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Sets 
3.2 Cartesian Products 
3.3 Relation 
3.4 Functions 
3.5 Some Number Theory 

3.5.1 Principle of Induction 
3.5.2 Divisibility in Z 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Reading 
 
1.0  INTRODUCTION 
 
In this unit we first discuss some ideas concerning sets and functions. 
These concepts are fundamental to the study of any branch of 
mathematics, in particular, algebra. 
 
In MTH 131, we discuss some elementary number theory.  The primary 
aims of this section, is to discuss some few facts, that we will need in 
the rest of the course. We also hope to: 
Give you a glimpse of the elegance of number theory.  It is this elegance 
that led the mathematician Gauss to call number theory the ‘queen of 
mathematics’. 
 
We would like to repeat that this unit consists of very basic ideas that 
will be used throughout the course. So go through it carefully. 
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2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• use various operations on sets 
• define Cartesian products of sets 
• check if a relation is an equivalence relation or not, and find 

equivalence classes 
• define and use different kinds of functions 
• state  the principle of induction 
• use the division algorithm and unique prime factorisation 

theorem. 
 
3.0 MAIN CONTENT 
 
3.1  Sets  
 
You must have used the word ‘set’ off and on in your conversations to 
describe any collection.  In mathematics the term set is used to describe 
any well defined collection of objects, that is, every set should be so 
described that given any object it should be clear whether the given 
object belongs to the set or not. 
 
For instance, the collection N of all natural numbers is well defined, and 
hence is a set.  But the collection of all rich people is not a set, because 
there is no way of deciding whether a human is rich or not.  
 
If S is set, an object a in the collection S is called an element of S. This 
fact is expressed in symbols as a∈ S (read as “a is in S” or “a belongs to 
S”). If a is not in S, we write a∈ S.   For example, 3∈ R the set of real 
numbers. But. 1− ∉ R. 
 
Elementary Group Theory 
 
A set with no element in it is called the empty set, and is denoted by the 
Greek φ  (phi). For example, the set of all natural numbers less than 1 
isφ . 
 
There are usually two way of describing a non-empty set: 
 
(1) Roster method, and (2) set builder method.  
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Roster Method 
 
In this method, we list all the elements of the set: within braces. For 
instance, the collection of all positive divisors of 48 contains 1, 2, 3, 4, 
6, 8, 12, 16, 24 and 48 as its elements. S0 this set may be written as '{1, 
2, 3, 4, 6, 8, 12, 16, 24, 48}. 
 
In this description of a set, the following two conventions are followed: 
 
Convection 1 
 
The order in which the elements of the set are listed is not important. 
 
Convention 2 
 
No element is written more than once, that is, every element must be 
written exactly once.  
 

For example, consider the set S of all integers between r
2
1 and 4

4
1 .  

Obviously, these integers are 2, 3 and 4.  So we may write S = (2, 3, 4}. 
 
We may also write S = (3, 2, 4}, but we must not write S = (2, 3, 2, 4}. 
Why? Isn't this what Convention 2 says? 
 
The roster method is sometimes used to list the elements of a large set 
also. In this case we may not want to list all the elements of the set. We 
list a few, enough to give an indication of the rest of the elements. For 
example, the set of integers lying between 0 and 100 is {0, 1, 2… 100}, 
and the set of all integers is  
Z = {0, ,1± ,2± ……}. 
 
Another method that we can use for describing a set is the  
 
Set Builder Method 
 
In this method we first try to find a property which characterises, the 
elements of the set, that is, a property P which all the elements of the set 
possess. Then we describe the set as: 
 
{x | x has property P}, or as 
 
{x: x has property P}. 
 
This is to be read as “the set all x such that x has property P”.  For 
example, the set of all integers can also be written as 
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Z = {x | x is an integer}. 
 
Some other sets that you may be familiar with are 
 

Q, the set of rational numbers =






 ∉∈ 0  Z, b b a,

b
a         . 

R, the set of real numbers 
 
C, the set of complex numbers = {a+ib   a, b ∈ R}. (Here i = 1− .) 
 
Let us now see what subsets are. 
 
Subsets 
 
Consider the sets A = {1, 3, 4} and B = {1, 4}. Here every element of B 
is also all element of A. in such a case, that is, when every element of a 
set B is an element of a set A, we say that B is a subset of A, and we 
write this as B ⊆  A. 
 
for every set A, A ⊆  A. 
 
Also, for any set A, φ ⊆  A. 
 
Now consider the set S = {1, 3, 5, 15} and T = (2, 3, 5, 7}. Is S ⊆T? 
No, because not every element of S is in T; for example, 1 ∈ S but 1∉ 
T. In this case we say that S is not a subset of T, and denote it by S ⊄  T. 
 
‘ '∃ denotes ‘there exists’,  Note that if B is not a subset of A, there must 
be an element of B which is not an element of A. In mathematical 
notation this can be written as ‘ '∃  x ∋  B such that x ∉ A’. 
 
We can now say that two sets A and B are equal (i.e., have precisely 
the same elements) if and only if A ⊆B and B ⊆  A. 
 
Sets and Functions 
 
Try the following exercise now. 
 
SELF ASSESSMENT EXERCISE 1 
 
Which of the following statements are true? 
 
(a)  N ⊆  Z,  (b)  Z ⊆  N,  (c)  {0} ⊆  {1, 2, 3},  (d)  {2, 4, 6} ⊄  {2, 4, 
8}. 
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Let us now look at some operations on sets.  We will briefly discuss the 
operations of union, intersection and complementation on sets.  
 
Union 
 
If A and B are subsets of a set S, we can collect the elements of both to 
get a new set. This is called their union. Formally, we define the union 
of A and B to be the set of those elements of S which are in A or in B.  
 
We denote the union of A and B by:  
 
A U B.  Thus, 
A U B =  { }  B    A  or  xx    S       x  ∈∈∈  
 
For example, if A = {1, 2} and B = {4, 6, 7}, then A U B = {1, 2, 4, 6, 
7}. 
 
Again, if A = (1, 2, 3, 4] and B= (2, 4, 6, 8), A U B= (1, 2, 3, 4, 6, 8).  
Observe that 2 and 4 are in both A and B, but when we write A U B, we 
write these elements only once, in accordance with Convention 2 given 
earlier.  
 
Can you see that, for any set A, A   A = A? 
 
Try the following exercise now. While trying it remember that to show 
that A ⊄  B you need to show that x ∈ A  ⇒  x ∈ B 
 
SELF ASSESSMENT EXERCISE 2 
 
Let A, B, C, be subsets of a set Such that A ⊄  C and B ⊄  C. 

 
Then show that: 
 
a. A   B ⊄  C 
b. A   B = B   A 
c. A   φ= A 
 
Now will extend the definition of union to define the union of more than 
two sets. 
 
If A1, A2, A3……… Ak are k subsets of a set S, then their union 
A1A2  …..Ak is the set of elements which belong to at least one of 
these sets. That is, 
A1A2……. Ak = {x ∈ S   x ∈ Ai for some I = 1, 2…… k). 
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The expression A1A2…..Ak is often abbreviated to .Ai

k

1i=
  

If ℘ is a collection of subsets of a set S, then we can define the union of 
all members of ℘ by =

℘∈
A

A
 { }℘∈∈    A some  A  forx       

Now let us look at another way of obtaining a new set from two or more 
given sets. 
 
Intersection 
 
If A and B are two subsets of a set S, we can collect the elements that 
are common to both A and B. We call this set the intersection of A, and 
B (denoted by A   B, So, 
 
A   B = { }BxandA S   x x ∈∈∈       
 
Thus, if P= {1, 2, 3, 4} and Q= {2, 4, 6, 8}, then PQ= {2, 4}. 
 
Can you see that, for any set A, A A = A? 
 
Now suppose A = {1, 2} and B = (4, 6, 7). Then what is A B? We 
observe that, in this case A and B have no common elements, and so A 
  B =φ , the empty set. 
 
When the intersection of two sets is φ  , we say that the two sets are 
disjoint (or mutually disjoint).  For example, the sets {1, 4} and {0, 5, 
7, 14} are disjoint. 
 
Try this exercise now. 
 
SELF ASSESSMENT EXERCISE 3 
 
Let A and B be subsets of a set S.  Show that  
 
a. A   B = B   A 
b. A ⊆B ⇒ A   B = A 
c. A   φ=φ  
 
Elementary Group Theory 
 
The definition of intersection can be extended to any number of sets.  
 
Thus, the intersection of k subsets A1, A2…… Ak of a set S is 
A1A2  …….Ak ={ }, .......k2, 1  for each iA S   x x i =∈∈  . 
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We can shorten the expression A1A2  …….Ak to .Ai

k

1i=
  

 
In general, if ℘ is a collection of subsets of a set S, then we can define 
the intersection of all the members of ℘by =

℘∈
A

A
  AxSx{ ∈∈    V 

}A ℘∈  
 
In the following exercise we give important properties of unions and 
intersections of sets. 
 
SELF ASSESSMENT EXERCISE 4 
 
For any subsets, A, B, C of a set S, show that  
 
a. (A   B)   C = A   (B   C) 
b. (A B)   C = A   (B   C) 
c. A   (B   C) = (A U  B)   (A   C) 
d. A   (B   C) = (A   B)   (A   C) 
 
SELF ASSESSMENT EXERCISE 5 
 
State whether the following are true or false.  If false, give a counter-
example. 
  
a. If A ⊆  B and B ⊆  C, then A ⊆  C 
b. If A ⊄  B and B ⊄  A, then A and B are disjoint 
c. A ⊄   A U B 
d. If A U B =φ  , then A = B =φ  . 
 
Apart from the operations of unions and intersections, there is another 
operation on sets, namely, the operation of taking differences. 
 
Differences 
 
Consider the sets A = {1, 2, 3} and B = {2, 3, 4}. Now the set of all 
elements of A that are not in B is {1}. We call this set the difference 
A\B. Similarly, the difference B \ A is the set of elements of B that are 
not in A, that is, {4}. Thus, for any two subsets ‘A and B of a set S, 

}.BxandAxXx{ ∈∈∈       
 
When we are working with elements and subsets of a single set X, we 
say that the set X is the universal set. Suppose X is the universal set and 
A ⊆  X.  Then the set of all elements of X which are not in A is called 
the complement of A and is denoted by A′ cA  or X \ A. 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 8 

Thus, 
 

cA  = }.AxXx{ ∉∈     
 
For example, if X = {a, b, p, q, r} and A = (a. p, q}, then cA  = { b′ , r}. 
 
Try the following exercise now. 
 
SELF ASSESSMENT EXERCISE 6 
 
Why are the following statements true? 
 
a.  A and cA are disjoint, i.e., A ∩ cA  = φ  
b.  A U cA  = X, where X is the universal set. 
c. ( cA ) = A. 
 
And now we discuss one of the most important constructions in set 
theory. 
 
3.2 Cartesian Products 
 
An interesting set that can be formed from two given sets is their 
Cartesian product, named after a French philosopher and 
mathematician Rene Descartes (1596 -1650).  He also invented the 
Cartesian coordinate system. 
 
Let A and B be two sets. Consider the pair (a, b), in which the first 
element is from A and the second from B.  Then (a, b) is called an 
ordered pair.   In an ordered pair in order in which the two elements are 
written is important.   Thus, (a, b) and (b, a) are different ordered 
pairs.  Two ordered pairs (a, b) and (c, d) are called equal, or the 
same, if a = c and b = d. 
 
Definition 
 
The Cartesian product A x B, of the sets A and B, is the set of all 
possible ordered pairs (a, b), where a .Bb,A ∈∈   
 
For example, if A = {1, 2,2 3} and B = {4, 6}, then A X B = { (1, 4), (1, 
6), (2, 4), (2, 6), (3, 4), (3, 6)}. 
 
Also note that 
B x A = {(4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6, 3)} and A x B ≠ B x A. 
 
Let us make some remarks about the Cartesian product here. 
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Remarks:  
 
i. A x B = φ  if A = φ  or B =φ . 
ii. If A has m elements and B has n elements, then A x B has mn 

elements. B x A also has mn elements. But the elements of B x A 
need not be the same as the elements of A x B, as you have just 
seen.  

 
We can also define the Cartesian product of more than two sets in a 
similar way. Thus, if A1, A2, A3 …..... An are n sets, we can define their 
Cartesian product as 

A1 x A2 x…… xAn = {(a1, a2 …… an)   a1 ∈ A1 ……..an ∈ An}. 
 
For example, if R is the set of all real numbers, then 
 
R x R = {(a1, a2)   a1, ∈ R, a2 ∈ R} 
R x R x R = {(a1, a2, a3)   a1, ∈ R, for i = 1, 2, 3}, and so on.  It is 
customary to write 
R2 for R x R and Rn

 for R x ……… x R (in times). 
 
Now, you know that every point in a plane has two coordinates, x and y. 
Also, every ordered pair (x, y) of real numbers defines the coordinates 
of a point in the plane.  So, we can say that R2 represents a plane. In fact, 
R2 is the Cartesian product of the x-axis and the y-axis.  In the same way 
R3 represents three-dimensional space, and Rn represents n-dimensional 
space, for any n ≥1. Note that R represents a line. 
 
Try the following exercises now. 
 
SELF ASSESSMENT EXERCISE 7 
 
If A = {2, 5} B = {2, 3}, find A x B, B x A and A x A. 
 
SELF ASSESSMENT EXERCISE 8 
 
If A x B = {(7, 2), (7, 3), (7, 4), (2, 2), (2, 4)}, determine A and B. 
 
SELF ASSESSMENT EXERCISE 9 
 
Prove that (A   B) x C = (A x C)   (B x C) and (A   B) x C == (A x 
C)   (B x C). 
 
Let us now look at certain subsets of Cartesian products. 
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3.3 Relations 
 
You are already familiar with the concept of a relationship between 
people. For example, a parent-child relationship exists between A and B 
if and only if A is a parent of B or B is a parent of A. 
 
In mathematics, relation R on a set S is a relationship between the 
elements of S.  If a ∈ S is related to b ∈ S by means of relation, we 
write a R b or (a, b) ∈ R ⊆S x S. And this is exactly how we define a 
relation on a set. 
 
Definition 
 
A relation R defined on a set S is a subset of S x S. 
 
For example, if N is the set of natural and R is the relation’ is a multiple 
of’ then 15 R 5, but not 5 R 15.  That is, (15, 5) ∈ R but (5, 15) ∉ R.  
Here R ⊆  N x N. 
 
Again, if Q is the set of all rational numbers and R is the relation ‘is 
greater than’, then 3 R 2 (because 3> 2). 
 
The following exercise deals with relations. 
 
SELF ASSESSMENT EXERCISE 10 
 
Let N be the set of all natural numbers and R the relation {(a, a2)   a ∈ 
N}.  State whether the following are true or false: 
 
a. 2 R 3,  b. 3 R 9,  c. 9 R 3. 
 
We now look at some particular kinds of relations. 
 
Definition 
 
A relation R defined on a set S is said to be 
 
i. reflexive if we have aRa V  a ∈ S. 
ii. symmetric if aRb ⇒ bRa V a , b ∈ S. 
iii. transitive if aRb and bRc ⇒ aRc V a, b, c ∈ S. 
 
To get used to these concepts, consider the following examples.  
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Example 1 
 
Consider the relation R on Z given by ‘aRb iff and only if a> b’.   
Determine whether R is reflexive, symmetric and transitive.  
 
Solution 
 
Since a > a is not true, aRa is not true. Hence, R is not reflexive.  
 
If a > b, then certainly b > a is not true.  That is, aRb does not imply 
bRa.  Hence, it is into symmetric, 
 
Since a > b and b > c implies a > c, we find that aRb, bRc implies aRc. 
Thus, R is transitive. 
 
Example 2 
 
Let S be a non-empty set. Let ℘ (S) denote the set of all S, i.e., ℘ (S) = 
{A :  A ⊆  S}. We call ℘ (S) the power set of S. 
 
Define the relation R on ℘ (S) by 
R= {(A, B)    A, B ∈  ℘(S) and A ⊆  B}. 
 
Check whether R is reflexive, symmetric or transitive. 
 
Solution 
 
Since A ⊆  A V A ∈ ℘ (S), R is reflexive. 
 
If A ⊆  B, B need not be contained in A. (In fact, A ⊆  Band B ⊆  A ⇔  
A = B.)  Thus, R is not symmetric. 
 
If A ⊆Band B ⊆  C, then A ⊆  C V A, B, C ∈ ℘(S). Thus, R is 
transitive. 
 
You may like to try the following exercises now.  
 
SELF ASSESSMENT EXERCISE 11 
 
The relation R ⊆  N x N is defined by (a, b)∈, R if 5 divides (a -b).  Is R 
Reflexive? Symmetric? Transitive? , 
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SELF ASSESSMENT EXERCISE 12 
 
Give examples to show why the relation in Self-Assessment Exercise l0 
is not reflexive, symmetric or transitive. 
 
The relationship in Self-Assessment Exercise 11 is reflexive, symmetric 
and transitive.  Such a relation is called an equivalence relation. 
 
A very important property of an equivalence relation on a set S is that it 
divides S into a number of mutually disjoint subsets, that is, it partitions 
S. Let us see how this happens. 
 
Let R be an equivalence relation on the set S. Let a ∈ S. Then the set {b 
∈ S  aRb} is called the equivalence class of a in S. It is just the set of 
elements in S which are related to a. We denote it by [a}. 
 
For instance, what is the equivalence class of 1 for R given in Self- 
Assessment Exercise 11? 
 
This is 
 
[1] = {n  | 1Rn, n ∈ N} 

= { n | n ∈ N and 5 divides 1-n} 
= { n | n ∈ N and 5 divides n-1} 
= {1, 6, 11, 16, 21 ...}, 
 

Similarly, 
 
[2] = { n | n ∈ N and 5 divides n-2} 

= {2, 7, 12, 17, 22,}, 
[3] = {3, 8, 13, 18, 23 ...}, 
[4] = {4, 9, 14, 19, 24,}, 
[5] = {5, 10, 15, 20, 25 ...}, 
[6] = {1, 6, 11, 16, 21 ...}, 
[7] = {2, 7, 12, 17, 22 ...}, 
 
Note that 
 
i. [1] and [6] are not disjoint. In fact, [1] = [6]. Similarly, [2] = [7], 

and so on. 
ii N = [1]  [2]   [3]   [4]   [5], and the sets on the right hand 

side are mutually disjoint. 
 
We will prove these observations in general in the following theorem. 
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Theorem 1 
 
Let R be an equivalence relation on a set S. For a ⊆  S, let [a] denote the 
equivalence class of a. then 
 
a. a ∈ [a], 
b. b ∈ [a] ⇔ [a] = [b], 
c. S = 

Sa∈
 [a] 

d. if a, b ∈ S, then [a]  [b] = φ  or [a] = [b]. 
 
Proof:   a. Since R is an equivalence relation, it is reflexive. 
 
∴ aRa V a ∈ S, ∴ a ∈ [a]. 
 
b. Firstly, assume that b ∈ [a]. We will show that [a] ⊆  [b] and [b] 

⊆  [a].  For this, let x ∈ [a].  Then  xRa. 
 
We also know that aRb. Thus, by transitivity of R, we have xRb, i.e., x 
∈ [b]. ∴ [a] ⊆  [b].   
 
We can similarly show that [b] ⊆  [a]. 
∴ [a] = [b]. 
 
Conversely, assume that [a] = [b].  Then b ∈ [b].  ∴ b ∈ [a]. 
 
c. Since [a] ⊆  S V a ∈ S, 

Sa∈
  [a] ⊆  S (see Self Assessment 

Exercise 2). 
 
Conversely, let x ∈ S.  Then λ∈ [x], x ⊆   [x] by (a) above. [x] is one of 
the sets in the collection whose union is

Sa∈
  [a].  

Hence, x = 
Sa∈
  [a]. So, S ⊆  

Sa∈
  [a]. 

Thus, S ⊆  
Sa∈
  [a] and 

Sa∈
 [a] ⊆  S, proving (c). 

 
d. Suppose [a]   [b] φ≠ .  Let x  ∈ [a]   [b]. 
  
Then x ∈ [a] and x ∈ [b] 
⇒ [x] = [a] and [x] = [b], by (b) above 
⇒ [a] = [b]. 
 
Note that in Theorem 1, distinct sets on the right hand side of (c) are 
mutually disjoint because of (d). Therefore, (c) expresses S as a union of 
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mutually disjoint subsets of S; that is we have a partition of S into 
equivalence classes. 
 
Let us look at some more examples of partitioning a set into equivalence 
classes. 
 
Examples 3 
 
Let S be the set of straight lines in R x R. Consider the relation on S 
given by ‘L1 R L2 if L1 = L2 or L1 is parallel to L2’. Show that R is an 
equivalence relation. What are the equivalence classes in S? 
 
Solution 
 
R is reflexive, symmetric and transitive. Thus, R is an equivalence 
relation. 
 
Now, take any line L1 (see Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let L be the line through (0, 0) and parallel to L1. Then L∈ [L1]. Thus, 
[L] = [L1]. In this way the distinct through (0, 0) give distinct 
equivalence classes into which S is partitioned. Each equivalence class 
[L] consists of all the lines in the planes that are parallel to L. 
 
Now for a nice self assessment exercise! 
 
SELF ASSESSMENT EXERCISE 13 
 
Show that ‘aRb if and only if |a| = |b|’ is an equivalence relation on Z. 
what are [0] and [1]? 
 

Y 

X 

L 

O 

L1 

Fig. 1: The equivalence class of L1 
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In the next section we will briefly discuss a concept that you may be 
familiar with namely, functions. 
 
3.4 Functions 
 
Recall that a function f from a non-empty set A to a non-empty set B is a 
rule which associates with every element of A exactly on element of B. 
This is written as f: A → B. If f associates with a ∈ A, the element b of 
B, we write f(a) = b. A is called the domain of f, and the set f(A) = {f(a) 
| a ∈ A} is called the range of f. The range of f is a subset of B, i.e., 
f(A) ⊆  B. B is called the codomain of f. 
 
Note that 
 
i. For each element of A, we associate some element of B. 
 
ii. For each element of A, we associate only one element of B. 
 
iii Two or more elements of A could be associated with the same 

element of B. 
 
For example, let A = {1, 2, 3}, B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define 
f: A → B by f(1) = 1, f(2) = 4, f(3) = 9. Then f is a function with domain 
A and range {1, 4, 9}. In this case we can also write f(x) = x2 fro each x 
∈ A or f: A → B: f(x) = x2.  We will often use this notation for defining 
any function. 
 
If we define g: A → B by g(1) = 1, g(2) = 1, g(3) = 4, then g is also a 
function. The domain of g remains the same, namely, A. but the range of 
g is {1, 4}. 
 
Remark 
 
We can also consider a function f: A → B to be the subset {(a, f(a)) | a ∈ 
A} of A x B. 
 
Now let us look at functions with special properties. 
 
Definition 
 
A function f: A → B is called one-one (or injective) if f associates 
different elements of A with different elements of B, i.e., if a1, a2  ∈ A 
and a1 ≠ a2, then f(a1) ≠ f(a2). In other words, f is 1 - 1 if f(a1) = f(a2) ⇒ 
a1 = a2. 
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In the examples given above, the function f is one-one. The function g is 
not one-one because 1 and 2 are distinct elements of A, but g(1) = g(2). 
 
Now consider another example of sets and functions. 
 
Let A = {1, 2, 3}, B = {p, q, r}. Let f: A → B be defined by f(1) = q, f(2) 
= r, f(3) = p. then f is a function. Here the range of f = B = codomain of 
f. This is an example of an onto function, as you shall see. 
 
Definition 
 
A function f: A → B is called onto (or surjective) if the range of f is B, 
i.e., if, for each b ∈ B, there is an a ∈ A such that f (a) = b. In other 
words, f is onto if f(A) = B. 
 
For another important example of a surjective function, consider two 
non-empty sets a and B. we define the function π1: A x B → A: π1 ((a, 
b)) = a. π1 is called the projection of A x B onto A. You can see that the 
range of π1 is the whole of A. Therefore, π1 is onto. Similarly, π2: A x B 
→ B: 2p ((a, b)) = b, the projection of A x B onto B, is a surjective 
function. 
 
If a function is both one-one and onto, it is called bijective, or a 
bijection. You will be using this type of function heavily in Block 2 of 
this course. 
 
Consider the following example that you will use again and again. 
 
Example 4 
 
Let A be any set. The function IA: A → A: IA(a) = a is called the 
identity function on A. Show that IA is bijective. 
 
Solution 
 
For any a ∈ A, IA(a) = a. Thus, the range of IA is the whole of A. That is, 
IA is onto. 
 
IA is also: because if a1, a2, ∈ A such that a1 ≠ a2, then IA (a1) ≠ IA(a2). 
 
Thus, IA is bijective. 
 
If f: A → B is a bijection, then we also say that the sets A and B are 
equivalent.  Any set which is equivalent to the set {1, 2, 3……... n}, for 
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some n ∈ N, is called a finite set. A set that is not finite is called an 
infinite set. 
 
Convention  
 
The empty set f  is assumed to be finite. 
Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 14 
 
Let f: N → N be defined by f(n) = n + 5. Prove that f is one-one but not 
onto. 
 
SELF ASSESSMENT EXERCISE 15 
 
Let f: Z → Z be defined by f(n) = n + 5. Prove that f is both one-one and 
onto. 
 
The next exercise deals with a function that you will often come across, 
namely, the constant function f: A → B: f(a) = c, where c is a fixed 
element of B. 
 
SELF ASSESSMENT EXERCISE 16 
 
What must X be like for the constant function f: X → {c} to be 
injective? Is f surjective? 
 
Let us now see what the inverse image of a function is. 
 
Definition 
 
Let A and B be two sets and f: A → B be a function. Then, for any 
subset S of B, the inverse image of S under f is the set. 
 
f-1(S) = {a ∈ A | f(a) ∈ S}. 
 
For example, 1

AI- (A) = {a ∈ A | IA(a) ∈ A} = A. 
 
Again, for the function f in Self-Assessment Exercise 14, 
f-1 ({1, 2, 3}) = {n ∈ N | f(n) ∈ {1, 2, 3}} 
  = {n ∈ N | n+5 ∈ {1, 2, 3}} 
  =φ , the empty set. 
 
But f-1 (N) = {6, 7, 8, .....}. 
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We now give some nice theorems involving the inverse image of a 
function. 
 
Theorem 2 
 
Let f : A → B be a function. Then, 
a) for any subset S of B, f(f-1(S)) ⊆  S. 
b) for any subset X of A, X ⊆  f-1(f(X)). 
 
Proof 
 
We will prove (a) and you can prove (b) (see Self Assessment Exercise 
17).  Let b ∈ f(f-1(S)). Then, by definition, ∃  a ∈ f-1(S) such that b = 
f(a). But a ∈ f-1(S) ⇒ f(a) ∈ S. That is, b ∈ S. Thus, f(f-1(S) ⊆  S. 
 
The theorem will be proved once you solve Self Assessment Exercise 
17. 
 
SELF ASSESSMENT EXERCISE 17 
 
Prove (b) of Theorem 2. 
 
SELF ASSESSMENT EXERCISE 18 
 
Given f: A → B and S, T ⊆  B, show that 
 
a. if S ⊆  T, then f-1(S) ⊆  f-1(T). 
b. f-1 (S   T) = f-1(S)   f-1(T) 
c. f-1 (S   T) = f-1(S)   f-1(T) 
 
Now let us look at the most important way of producing new functions 
from given ones. 
 
Composition of Functions 
 
If f : A → B and g: C → D are functions and if the range of f is a subset 
of C, there is a natural way of combining g and f to yield a new function  
h: A → D. Let us see how. 
 
For each x ∈ A, h(x) is defined by the formula h(x) = g(f(x)). 
 
Note that f(x) is in the range of f, so that f(x) ∈ C. Therefore, g(f(x)) is 
defined and is an element of D. This function h is called the 
composition of g and f and is written as g  f. The domain of g  f is A 
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and its codomain is D. In most cases that we will be dealing with we 
will have B = C. Let us look at some examples. 
 
Example 5 
 
Let f: R → R and g: R → R be defined by f(x) = x2 and g(x) = x + 1. 
What is g  f? What is fg? 
 
Solution 
 
We observe that the range of f is a subset of R, the domain of g. 
Therefore, g  f is defined. By definition, Vx∈ R,g  f(x) = g(f(x)) = f(x) 
+ 1 = x2 + 1. 
 
Now, let us find fg. Again, it is easy to see that f g is defined.  Vx ∈ 
R,f g(x) = f(g(x)) = (g(x))2 = (x + 1)2. 
 
So f g and g  f are both defined. But g f ≠ fg(1).) 
 
Example 6 
 
Let A = {1, 2, 3}, B = {p, q, r} and C = {x, y}. Let f: A → B be defined 
by f(1) = p, f(2) = p, f(3) = r. Let g: B → C be defined by g(p) = x, g(q) 
= y, g(r) = y. determine if f g and g  f can be defined. 
 
Solution 
 
For f g to be defined, it is necessary that the range of g should be a 
subset of the domain of f. In this case the range of g is C and the domain 
of f is A. As C is not a subset of A, fg cannot be defined. 
 
Since the range of f, which is {p, r}, is a subset of B, the domain of g, 
we see that g f is defined. Also g  f: A → C is such that 
 
g  f(1) = g(f(1)) = g(p) = x, 
g  f(2) = g(f(2)) = g(p) = x, 
g  f(3) = g(f(3)) = g(r) = y. 
 
In this example note that g is surjective, and so is g f. 
 
Now for an exercise on the composition of functions. 
 
SELF ASSESSMENT EXERCISE 19 
 
In each of the following questions, both f and g are functions from R → 
R. Define fg and g  f. 
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a. f(x) = 5x, g(x) = x + 5 
b. f(x) = 5x, g(x) = x/5 
c. f(x) = | x |, g(x) = x2. 
 
We now come to a theorem which shows us that the identity function 
behaves like the number 1 ∈ R does for multiplication. That is, if we 
take the composition of any function f with a suitable identity function, 
we get the same function f. 
 
Theorem 3 
 
Let A be a set. For every function f: A → A, we have f  IA = IA  f = f. 
 
Proof 
 
Since both f and IA are defined from A to A, both the compositions f  IA 
and IA  f are defined. Moreover, V x∈ A., 
f  IA(x) = f(IA(x)) = f(x), so f  IA = f. 
Also, Vx∈ A, IA  f(x) = IA(f(x)) = f(x), so IA  f = f. 
  
You can try the next self assessment exercise on the lines of this 
theorem. 
 
SELF ASSESSMENT EXERCISE 20 
 
If A and B are sets and g: B → A, prove that IA g = g and g  IB = g. 
 
In the case of  real numbers, you know that given any real number x ≠ 0, 

y∃  ≠ 0 such that xy = 1. y is called the inverse of x. Similarly, we can 
define an inverse function for a given function. 
 
Definition 
 
Let f: A → B be a given function. If there exists a function g: B → A 
such that f g = IB and g  f = IA, then we say that g is the inverse of f, 
and we write g = f-1. 
 
For example, consider f: R → R defined by f(x) = x + 3. If we define g: 
R→ R by g(x) = x – 3, then f g(x) = f(g(x)) = g(x) + 3 = (x – 3) + 3 = x 
Vx∈ R. Hence, fg = IR. You can also verify that g  f = IR. So g = f-1. 
 
Note that in this example f adds 3 to x and g does the opposite – it 
subtracts 3 from x. Thus, the key to filling the inverse of a given 
function is: try to retrieve x from f(x). 
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For example, let f: R → R be defined by f(x) = 3x + 5. How can we 
retrieve x from 3x + 5? The answer is “first subtract 5 and then divide 

by 3”. So, we try g(x) = x 5
3
- . And we find g  f(x) = g(f(x)) = f (x ) 5

3
-  

= (3x 5) 5
3

+ -  = x. 

Also, f g(x) = 3(g(x)) + 5 = 



 −

3
5x(  + 5 = x Vx∈ R. 

 
Let’s see if you’ve understood the process of extracting the inverse of a 
function. 
 
SELF ASSESSMENT EXERCISE 21 
 

What is the inverse of f: R → R: f(x) = x
3

? 

 
Do all functions have an inverse? No, as the following example shows. 
 
Example 7 
 
Let f: R → R, be the constant function given by f(x) = 1 Vx∈ R.  What 
is the inverse. 
 
Solution 
 
If f has an inverse g: R → R, we have f g = Ig, i.e. V x∈ R,   f g(x) = 
x.  
 
Now take x = 5. We should have f g (5) = 5, i.e., f(g(5)) = 5. but f(g(5)) 
= 1, 
 
Since f(x) = 1 V R x. So we reach a contradiction. Therefore, f has no 
inverse. 
 
In view of this example, we naturally ask for necessary and sufficient 
conditions for f to have an inverse. The answer is given by the following 
theorem. 
 
Theorem 4 
 
A function f: A → B has an inverse if and only if f is bijective. 
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Proof 
 
Firstly, suppose f is bijective. We shall define a function g: B → A and 
prove that g = f-1. 
 
Let b ∈ B. Since f is onto, there is some a ∈ A such that f(a) = b. Since f 
is one-one, there is only one such a ∈ A. We take this unique element a 
of A as g(b). That is, given b ∈ B, we define g(b) = a, where f(a) = b. 
 
Note that, since f is onto, B = {f(a) | a ∈ A}. Then, we are simply 
defining g: B → A by g(f(a)) = a. This automatically ensures that g  f = 
IA. 
 
Now, let b ∈ B and g(b) = a. Then f(a) = b, by definition of g. 
Therefore, f g(b) = f(g(b)) = f(a) = b. Hence, f g = IB. 
 
So, f g = IB and g  f = IA. This proves that g = f-1. 
 
Conversely, suppose f has an inverse and that g = f-1. We must prove 
that f is one-one and onto. 
 
Suppose f(a1) = f(a2). Then g(f(a1)) = g(f(a2)). 
⇒ g  f(a1) = g  f(a2) 
⇒ a1 = a2, because g f = IA. 
So, f is one-one. 
 
 
Next, given b ∈ B, we have fog = IB, so that f g(b) = IB(b) = b, 
i.e., f(g(b)) = b. That is, f is onto. 
 
Hence, the theorem is proved. 
 
Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 22 
 
Consider the following functions from R to R. For each determine 
whether it has an inverse and, when the inverse exists, find it. 
 
a. f(x) = x2 V x∈ R. 
b. f(x) = 0 V x∈ R. 
c. f(x) = 11x + 7 V x∈ R. 
 
Let us now discuss some elementary number theory. 
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3.5 Some Number Theory 
 
In this section we will spell out certain factorization properties of 
integers that we will use throughout the course. For this we first need to 
present the principle of finite induction. 
 
3.5.1 Principle of Induction 
 
We will first state an axiom of the integers that we will often use 
implicitly, namely, the well-ordering principle. We start with a 
definition. 
 
Definition 
 
Let S be a non-empty subset of Z. An element a ∈ S is called a least 
element (or a minimum element) of S if a ≤ b V x ∈ S. For example, n 
has a least element, namely, 1. But Z has no least element. In fact, many 
subsets of Z, like 2Z, {-1, -2, -3, .....}, etc., don’t have least elements. 
 
The following axiom tells us of some sets that have a least element. 
 
Well-ordering Principle: Every non-empty subset of N has a least 
element. 
 
You may be surprised to know that this principle is actually equivalent 
to the principle of finite induction, which we now state. 
 
Theorem 5 
 
 Let S ⊆∈ N such that 
 
i. 1 ∈ S, and 
ii. Whenever k ∈ S, then k + 1 ∈ S 

Then S = N 
 

This theorem is further equivalent to: 
 
Theorem 6 
 
Let S ⊆  N such that 
 
i. 1 ∈ S, and 
ii. if m ∈ S V m < k, then k ∈ S. 

then S = N 
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We will not prove the equivalence of the well-ordering principle and 
Theorems 5 and 6 in this course, since the proof is slightly technical. 
 
Let us rewrite Theorem 5 and 6 in the forms that we will normally use. 
 
Theorem 5’: Let P(n) be a statement about a positive integer n such that 
 
i. P(1) is true, and 
ii. if P(k) is true for some k ∈ N, then P(k + 1) is true. 

Then, P(n) is true for all n ∈ N. 
 
Theorem 6’: Let P(n) be a statement about a positive integer n such that 
 
i. P(1) is true, and 
ii. if P(m) is true for all positive integers m < k, then P(k) is true. 

Then P(n) is true for all n ∈ N. 
 
The equivalence statements given above are very useful for proving a lot 
of results in algebra. As we go along, we will often use the principle of 
induction in whichever form is convenient. Let us look at an example. 
 
Example 8 

Prove that 13 + 23 +.............. + n3 = 
2 2n ( n 1)

4
+  for every n ∈ N. 

 
Solution 
 
Let Sn = 13 +................. + n3, and let P(n) be the statement that  

S =
2 2n ( n 1)

4
+ . 

 

Since S1 = 4
2x1 22

, P(1) is true. 

 

Now, suppose P(n – 1) is true, i.e., Sn-1 = 
2 2( n 1) n

4
-  

 
Then Sn = 13 + ................ + (n – 1)3 + n3 

= Sn-1 + n3 

= 
2 2( n 1) n

4
-  + n3, since P(n – 1) is true. 

= 
2 2n [( n 1) 4 n]

4
- +  
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= 
2 2n ( n 1)

4
+  

 
Thus, P(n) is true. 
 
Therefore, by the principle of induction, P(n) is true for all n in N. 
 
Now, use the principle of induction to prove the following property of 
numbers that you must have used time and again. 
 
SELF ASSESSMENT EXERCISE 23 
 
For a, b ∈ R and n ∈ N, prove that (ab)n = anbn. 
 
Let us now look at some factorization properties of integers. 
 
3.5.2 Divisibility in Z 
 
One of the fundamental ideas of number theory is the divisibility of 
integers. 
 
Definition 
 
Let a, b ∈ Z, a ≠ 0. Then, we say that a divides b if there exists an 
integer c such that b = ac. We write this as a | b and say that a is a 
divisor (or factor) of b, or b is divisible by a, or b is a multiple of a. 
 
If a does not divide b we write a | b. 
 
We give some properties of divisibility of integers in the following 
exercise. You can prove them very easily. 
 
SELF ASSESSMENT EXERCISE 24 
 
Let a, b, c be non-zero integers. Then 
 
a. a | 0, ± 1 | a, ± a | a. 
b. a | b ⇒ ac | bc. 
c. a | b and b | c ⇒ a | c. 
d. a | b and b | a ⇔ a = ± b. 
e. c | a and c | b ⇒ c | (ax + by) V x, y ∈ Z. 
 
We will now give a result, to prove which we use Theorem 5’. 
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Theorem 7 
 
(Division Algorithm): Let a, b ∈ Z, b > 0. Then there exists unique 
integers q, r such that a = qb + r, where 0 ≤  r < b. 
 
Proof 
 
We will first prove that q and r exist. Then we will show that they are 
unique. To prove their existence, we will consider three different 
situations: a = 0, a > 0, a < 0. 
 
Case 1  (a = 0) : Take q = 0, r = 0. Then a = qb + r. 
 
Case 2  (a > 0) : Let P(n) be the statement that n = qb + r for some q, r Î  

Z, 0 ≤ r < b. 
 
Now let us see if P(1) is true. 
 
If b = 1, we can take q = 1, r = 0, and thus, 1 = 1.1 + 0. 
 
If b ≠ 1, then take q = 0, r = 1, i.e., 1 = 0.b + 1. 
 
So, P(1) is true. 
 
Now suppose P(n - 1) is true, i.e., (n – 1) = q1b + r1 for some q1, r1 ∈ Z, 
0 ≤  r1 < b. But then r1 ≤  b – 1, i.e., r1 + 1 ≤ b. Therefore, 
 

n = 



=+++
<+++
b1rif,0b)1q(

b)1r(if),1r(bq

11

111

  

This shows that P (n) is true. Hence, by theorem 5’, P(n) is true, for any 
n ∈ N. That is, for a > 0, a = qb + r, q, r ∈ Z, 0 ≤ r < b. 
 
Case 3  (a < 0): Here (-a) > 0. Therefore, by Case 2, we can write 
 
(-a) = qb + r’, 0 ≤ r’ < b 
 

i.e., a = 




<<−+−−
=−

b'r0if),'rb(b)1q(
0'rif,b)q(

 
 

 

 
This proves the existence of the integers q, r with the required 
properties. 
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Now let q’, r’ be in Z such that a = qb + r and a = q’b + r’, where 0 ≤ r, 
r’ < b. Then r – r’ = b(q’ – q). Thus, b | (r – r’). But |r – r’| < b. Hence, r 
– r’ = 0, i.e., r = r’ and q = q’. So we have proved the uniqueness of q 
and r. 
 
In the expression, a = qb + r, 0 ≤  r < b, r is called the remainder 
obtained when a is divided by b. 
 
Let us go back to discussing factors. 
 
Definition 
 
Let a, b ∈ Z. c ∈ Z is called a common divisor of a and b if c | a and c | 
b. 
 
For example, 2 is a common divisor of 2 and 4. From Self Assessment 
Exercise 24(a) you know that 1 and -1 are common divisors of a and b, 
for any a, b ∈ Z. Thus, a pair of integers does have more than one 
common divisor. This fact leads us to the following definition. 
 
Definition 
 
An integer d is said to be a greatest common divisor (g.c.d in short) of 
two non-zero integers a and b if 
 
i. d | a and d | b, and 
ii. if c | a and c | b, then c | d. 
 
Note that if d and d’ are two g.c.d s of a and b, then (ii) says that d | d’ 
and d’ | d. Thus, d = ± d’ (see Self-Assessment Exercise 24). But then 
only one of them is positive. This unique positive g.c.d. is denoted by 
(a, b). 
 
We will now show that (a, b) exists for any non-zero integers a and b. 
You will also see how useful the well-ordering principle is. 
 
Theorem 8 
Any two non-zero integers a and b have a g.c.d, and (a, b) = ma + nb, for 
some m, n ∈ Z. 
 
Proof 
 
Let S = {xa + yb | x, y ∈ Z, (xa + yb) > 0}. 
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Since a2 + b2 > 0, a2 + b2 ∈ S, i.e., S ≠ f . But then, by the well-ordering 
principle, S has a least d ∈ S. Therefore, d > 0. So by the division 
algorithm we can write 
a = qd + r, 0 £  r < d. Thus, 
r = a – qd = a – q(ma + nb) = (1 – qm)a + (-q)b. 
 
Now, if r ≠ 0, then r ∈ S, which contradicts the minimality of d in S. 
Thus, r = 0, i.e., a = qd, i.e., d | a. We can similarly show that d | b. Thus, 
d is a common divisor of a and b. 
 
Now, let c be an integer such that c | a and c | b. 
 
Then a = a1c, b = b1c for some a1, b1 ∈ Z. 
 
But then d = ma + nb = ma1c + nb1c. Thus, c | d. So we have shown that 
d is a g.c.d. In fact, it is the unique positive g.c.d. (a, b). 
 
For example, the g.c.d. is 2 and 10 is 2 = 1.2 + 0.10, and the g.c.d. of 2 
and 3 is 1 = (-1) 2+ 1(3). 
 
 Pair of integers whose g.c.d. is 1 have a special name. 
 
Definition 
 
If (a, b) = 1, then the two integers a and b are said to be relatively 
prime (or co prime) to each other. 
 
Using Theorem 8, we can say that a and b are co prime to each other 
iff there exists m, a ∈ Z such that 1 = ma + nb. 
 
The next theorem shows us a nice property of relatively prime numbers. 
 
Theorem 9 
 
If a, b ∈ Z, such that (a, b) = 1 and b | ac, then b | c. 
 
Proof 
 
We know that ∃  m, n ∈ Z such that 1 = ma + nb. Then c = c.1 = c(ma 
+nb) = mac + nbc. 
 
Now, b | ac and b | bc. ∴ b | (mac + nbc) (by Self-Assessment Exercise 
24(c)). Thus, b | c. 
 
Let us now discuss prime factorization. 
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Definition 
 
A natural number p (≠ 1) is called a prime if its only divisors are 1 and 
p. If a natural number n (≠ 1) is not a prime, then it is called a composite 
number. 
 
For example, 2 and 3 are prime numbers, while 4 is a composite 
number. 
 
Note that, if p is a prime number and a ∈ Z such that p |  a, then (p, a) = 
1. 
 
Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 25 
 
If p is a prime and p | ab, then show that p | a or p | b. 
 
SELF ASSESSMENT EXERCISE 26 
 
If p is a prime and p| a1a2 ...... an, then show that p ai for some i = 1, ..., n. 
 
Now consider the number 50. We can write 50 = 2 x 5 x 5 as a product 
of primes. In fact we can always express any natural number as a 
product of primes. This is what the unique prime factorization theorem 
says. 
 
Theorem 10  
 
(Unique Prime Factorisation): Every integer n > 1 can be written as n 
p1, p2 ............ pn, where p1, .........., pn are prime numbers. This 
representation is unique, except for the order in which the prime factors 
occur. 
 
Proof 
 
We will first prove the existence of such a factorization. Let P (n) be the 
statement that n + 1 is a product of primes. P (1) is true, because 2 is a 
prime number itself. 
 
Now let us assume that P (m) is true for all positive integers m < k. We 
want to show that P (k) is true. If (k + 1) is a prime, P (k) is true. If k + 1 
is not a prime, then we can write k + 1 = m1m2, where 1 < m1 < k + 1 
and 1 < m2 < k + 1. But then P (m1 - 1) and P(m2 – 1) are both true. 
Thus, m1 = p1p2.........pr, m2 = q1 q2 ............ qs, where p1, p2... pr, q1, q2, 
………, qs are primes. Thus, 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 30 

k + 1 = p1p2 … pr q1 q2 …. qs, i.e., P(k) is true. Hence, by Theorem 6’, 
P(n) is true for every n ∈ N. 
 
Now let us show that the factorisation is unique. 
Let n = p1p2 … pt = q1 q2 …. qs, where 
 
p1, p2 … pt, q1, q2 …. qs, are primes. We will use induction on t. 
 
If t = 1, then p1 = q1 q2 ……., qs. But p1 is a prime. Thus, its only factors 
are 1 and itself. Thus, s = 1 and p1 = q1. 
 
Now suppose t > 1 and the uniqueness holds for a product of t – 1 
primes. Now p1 | q1q2 …… qs and hence, by Self-Assessment Exercise 
26, p1 | q1 for some i. By re-ordering q1, ….., qs we can assume that p1 | 
q1. But both p1 and q1 are primes. Therefore, p1 = q1 are primes.  
 
Therefore, p1 = q1. But then p2 …… pt = q2 ……. qs. So, by induction, t 
– 1 = s – 1 and p2, ……., pt are the same as q2, ……qs in some order. 
 
Hence, we have proved the uniqueness of the factorisation. 
 
The primes that occur in the factorisation of a number may be repeated 
in the factorisation 50 = 2 x 5 x 5. By collecting the same primes 
together we can give the following corollary to Theorem 10. 
 
Corollary: Any natural number n can be uniquely written as n = 

1m
1p 2m

2p ...... rm
rp , where for i = 1, 2, ........., r, each mi ∈ N and each pi 

is a prime with 1 < p1 < p2 < …. < pr. 
 
As an application of Theorem 10, we give the following important 
theorem, due to the ancient Greek mathematician Euclid. 
 
Theorem 11 
 
There are infinitely many primes. 
 
Proof 
 
Assume that the set P of prime numbers is finite, say 
P = {p1, p2, …., pn}. Consider the natural number 
n = (p1p2, ……, pn) + 1 
 
Now, suppose some pi | n. Then pi | (n – p1p2 ……In.. pn), i.e., pi | 1, a 
contradiction. Therefore, no pi divides n. But since n > 1, Theorem 10 
says that n must have a prime factor. We reach a contradiction. 
Therefore, the set of primes must be infinite. 
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Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 27 
 
Prove that p  is rational for any prime p. 

(Hint : Suppose p  is rational. Then p = a
b

, where a, b ∈ Î  Z and we 

can assume that (a, b) = 1. Now use the properties of prime numbers that 
we have just discussed.) 
 
Let us now summarise what we have done inn this unit. 
 
4.0 CONCLUSION        
 
In this unit, we have placed emphasis on some properties of sets and 
subsets. We have also defined relations in general and equivalence 
relations in particular.  The definitions of functions were also 
considered.  The summary of what we have considered in this unit are 
given below, Please read carefully and master every bit of it in order for 
you to follow the subsequent units. 
 
5.0 SUMMARY 
 
In this unit we have covered the following points. 
 
• Some properties of sets and subsets. 
• The union, intersection, difference and complements of sets.  
• The Cartesian product of sets. 
• Relation in general and equivalence relations in particular. 
• The definition of a function, a 1-1 function, an onto function and 

a bijective function. 
• The composition of functions. 
• The well-ordering principle, which states that every subset of N 

has a least element. 
• The principle of finite induction, which states that : If P(n) is a 

statement about some n ∈ N such that: 
 
- P(1) is true, and 
- if P(k) is true for some k ∈ N, then P(k + 1) is true, 

then P(n) is true for every n ∈ N. 
 

• The principle of finite induction can also be stated as: 
If P(n) is a statement about some n ∈ N such that 
- P(1) is true, and 
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- if P(m) is true for every positive integer m < k, then P(k) is true, 
then P(n) is true for every n ∈ N, 

 
Note that well-ordering principle is equivalent to the principle of finite 
induction. 

 
• Properties pf divisibility in Z, like the division algorithm and 

unique prime factorisation. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 1 
 
a) T  b) F  c) F  d) T 
 
 
ANSWER TO SELF ASSESSMENT EXERCISE 2 
 
a. x ∈ A   B ⇒ x ∈ A or x ∈ B ⇒x ∈ C, since A ⊆  C and B ⊆  

C. 
  
b. x ∈ A   B ⇔ x ∈ A or x ∈ B ⇔ x ∈ B or x ∈ A Û  x ∈ B   

A. ∴ A   B = B   A. 
 
c. x ∈ A   φ  ⇒ x ∈ A or x ∈φ  ⇒ x ∈ A, since φ  has no element. 

∴ A   φ  ⊆  A. 
Also, A ∈ A   φ , since x ∈ A ⇒ x ∈ A   φ . 
∴A = A   φ  
 

ANSWER TO SELF ASSESSMENT EXERCISE 3 
 
a. You can do it on the lines of Self Assessment Exercise 2(b). 
 
b. x ∈ A   B ⇒ x ∈ A and x ∈ B ⇒ x ∈ A, since A ⊆  B. 

∴ A   B ⊆  A. 
 

Conversely, x ∈ A ⇒ x ∈ A and x ∈ B since A ⊆  B. 
⇒ x ∈ A   B. 
∴ A ⊆  A   B. 
∴ A   B = A. 

 
c. Use the fact that φ  ⊆  A. 
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ANSWER TO SELF ASSESSMENT EXERCISE 4 
 
a. x ∈ (A   B)   C  ⇔ x ∈ A   B or x ∈ C 
  ⇔ x ∈ A or x ∈ B or x ∈ C. 
  ⇔ x ∈ A or x ∈ B   C 
  ⇔ x ∈ A   (B   C) 
 ∴ (A   B)   C = A   (B   C) 
 
b. Try it on the same lines as (a). 
 
c. B   C ⊆  B ⇒ A   (B   C) ⊆  A   B. 
  

Similarly, A   (B   C) ⊆  A   C. 
 ∴ A   (B   C) ⊆  (A   B)   (A   C) 
  

Conversely, x ∈ (A   B)   (A   C) 
 ⇒ x ∈ A   B and x ∈ A   C 
 ⇒ x ∈ A or x ∈ B and x ∈ A or x ∈ C. 
 ⇒ x ∈ A or x ∈ B   C 
 ⇒ x ∈ A   (B   C) 
 ∴ (A   B)   (A   C) ⊆  A   (B   C). 
  

Thus, (c) is proved 
 
d. Try it on the same lines as (c). 
 
ANSWER TO SELF ASSESSMENT EXERCISE 5 
 
a. T 
b. F.  For example, if A = [0, 1] and B = [0, 2], then 
 A ⊄B, B ⊄  and A   B = (0) ≠φ . 
c. F, In fact, for any set A, A ⊆B. 
d. T. 
e. T. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 6 
 
a. x ∈ A iff x ∉ Ac. 
 
b. Since A and Ac are subsets of X, A   Ac ⊆  X. 
 Conversely, if x ∈ X and x ∉A, then x ∈Ac. 
 ∴ X ⊆  A   Ac. 
 ∴X = A   A c. 
 
c. x ∈ A ⇔ x ∉ Ac ⇔ x ∈ (Ac)c. ∴A = (Ac)c. 
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ANSWER TO SELF ASSESSMENT EXERCISE 7 
 
A x B = {(2, 2), (2, 3), (5, 2), (5, 3)} 
B x A = {(2, 2), (3, 2), (2, 5), (3, 5)} 
A x A = {(2, 2), (2, 5), (5, 2), (5, 5)} 
 
ANSWER TO SELF ASSESSMENT EXERCISE 8 
 
The set of the first coordinates is A. ∴A = {7, 2}. 
The set of the second coordinates is B. ∴B = {2, 3, 4}. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 9 
 
(x, y) ∈ (A   B) x C  ⇔ x ∈ A   B and y ∈ C 

⇔ x ∈ A or x ∈ B and y ∈ C 
⇔ x ∈ A and y ∈ C or x ∈ B and y ∈ C 
⇔ (x, y) ∈ A x C or (x, y) ∈ B x C 
⇔ (x, y) ∈ (A x C)   (B x C). 

 
You can similarly show that 
 
(A   B) x C = (A x C)   (B x C). 
 
ANSWER TO SELF ASSESSMENT EXERCISE 10 
 
a. F  b. T  c. F 
 
ANSWER TO SELF ASSESSMENT EXERCISE 11 
 
Since 5 divides (a - a) = 0 V a ∈ N, R is reflexive. 
If 5 | (a – b), then 5 | (b – a). ∴, R is symmetric. 
If 5 | (a – b), then 5 | (b – c), then 5 | {(a – b) + (b – c)}, i.e. 
5 | (a – c). ∴, R is transitive. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 12 
 
2 R 2 is false 
(2, 4) ∈ R, but (4, 2) ∉ R. 
(2, 4) ∈ R, (4, 16) ∈ R, but (2, 16) ∉ R. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 13 
 
|a| = |a|  V a ∈ Z ∴, R is reflexive. 
|a| = |b| ⇒ |b| = |a| ∴, R is symmetric. 
|a| = |b| and |b| = |c| ⇒ |a| = |c|. ∴, R is transitive. 
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∴, R is an equivalence relation. 
 
[0] = {a ∈ Z | aR0} = {a ∈ Z | |a| = 0} = {0}. 
[1] = {1, -1}. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 14 
 
For n, m ∈ N, f(n) = f(m) ⇒ n + 5 = m + 5 ⇒ n = m. 
∴, f is 1 – 1. 
Since 1 ∉ f(N), f(N) ≠N.∴, f is not surjective. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 15 
 
f is 1 – 1 (as in Self Assessment Exercise 14). 
For any z ∈ Z, f(z – 5) = z. ∴, f is surjective, and hence, bijective. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 16 
 
f(x) = c  V  x ∈ X. 
 
Suppose X has at least two elements, say x and y. Then f(x) = c = f(y), 
but x ≠ y. That is, f is not 1 – 1. Therefore, if f is 1 – 1, then X consists 
of only one element. 
 
Since f(X) = {c}, f is surjective. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 17 
 
x ∈ X ⇒ f(x) ∈ f(X) ⇒ x ∈ f-1 (f(X)).∴, X ⊆  f-1 f(X)). 
 
ANSWER TO SELF ASSESSMENT EXERCISE 18 
 
a. x ∈ f-1 (S) ⇔ f(x) ∈ ST. 

⇔ f(x) ∈ S or f(x)∈T 
⇔ x ∈ f-1 (S) or x ∈f-1 (T) 

 ∴ f-1 (S) ⊆  f-1 (T). 
 
b. x ∈ f-1 (S   T) ⇔ f(x) ∈ S   T 

 ⇔ f(x) ∈ S or f(x) ∈ T 
 ⇔ x ∈f-1 (S) or x ∈ f-1 (T) 
 ⇔ x ∈f-1 (S)  f-1 (T) 

 
c.) Do it on the lines of (b). 
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ANSWER TO SELF ASSESSMENT EXERCISE 19 
 
f g and g  f are functions from R to R in all cases. 
 
a. f g (x) = f(x + 5) = 5(x + 5)  V x ∈ R 

g  f (x) = g(5x) = 5x + 5 V  x ∈ R. 
 

b. f g (x) = g  f (x) = x V x ∈ R. 
 

c. f g (x) = x2 = g  f (x) V x ∈ R. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 20 
 
Show that IA g(b) = g(b) and g  IB(b) = g(b) V b ∈ B. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 21 
 
g : R → R : g(x) = 3x. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 22 
 
a. f is not 1 – 1, since f(1) = f(-1). 

∴, f-1 doesn’t exist. 
 

b. f is not surjective, since f(R) ≠ R. 
∴ , f-1 doesn’t exist. 
 

c. f is bijective, ∴, f-1 exists. 
f-1: R → R : f-1(x) = x 7

11
- . 

 
ANSWER TO SELF ASSESSMENT EXERCISE 23 
 
Let P(n) be the statement that (ab)n = anbn. 
P(1) is true. Assume that P(n – 1) is true. Then 
(ab)n = (ab)n-1 (ab) = (an-1 bn-1)ab, since P(n -1) is true. 

= an-1 (bn-1a)b 
= an-1 (abn-1)b 
= anbn. 

∴, P(n) is true 
∴, P(n) is true V n ∈N. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 24 
 
a. Since a.0 = 0, a | 0. 

(± 1) (± a) = a. ∴± 1 | a and ± a | a. 
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b. a | b ⇒ b = ad, for some d ∈ Z 
⇒ bc = (ac)d, 
⇒ ac | bc 
 

c. b = ad, c = be, for some d, e ∈ Z. 
∴, c = ade. ∴, a | c. 

 
d. a | b ⇒ b = ad,  for some d ∈ Z 

b | a ⇒ a = be, for some e ∈ Z. 
∴, a = ade ⇒ de = 1, since a ≠ 0. 
∴, e = ± 1. ∴, a = ± b. 
 

e. c | a and c | b ⇒ a = cd, b = ce for some d, e ∈Z. 
∴ , for any x, y ∈ Z, ax + by = c(dx + ey). 
∴ , c | (ax + by). 

 
ANSWER TO SELF ASSESSMENT EXERCISE 25 
 
Suppose p |  a. Then (p, a) = 1. ∴, by Theorem 9, p | b. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 26 
 
Let P(n) be the statement that p | a1 a2 ……… an 
⇒ p | ai for some i = 1, 2, ……….., n. 
P(1) is true. 
 
Suppose P (m – 1) is true. 
 
Now, let p | a1a2 ……… am. Then p | (a1 ………. Am-1)am. 
By Self Assessment Exercise 25, p | (a1 a2 ……… am-1) or p | am. 
∴, p | ai for some i = 1, ……, m (since P(m – 1) is true). 
∴, P(m) is true. 
∴, P(n) is true V n ∈N. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 27 
 

p  = a
b

 ⇒a2 = pb2 ⇒ p | a2 ⇒ p | a, since p is a prime. 

 
Let a = pc. Then a2 = pb2 ⇒ p2c2 = pb2 ⇒ pc2 = b2 
⇒ p | b2 ⇒ p | b. 
∴, p | (a, b) = 1, a contradiction. 
∴, p  is irrational. 
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1.0 INTRODUCTION 
 
In Unit 1 we have discussed some basic properties of sets and functions. 
In this unit we are going to discuss certain sets with algebraic structures. 
We call them groups. 
 
The theory of groups is one of the oldest branches of abstract algebra. It 
has many applications in mathematics and in the other sciences. Group 
theory has helped in developing physics, chemistry and computer 
science. Its own roots go back to the work of the eighteenth century 
mathematicians Lagrange, Ruffini and Galois. 
 
In this unit we start the study of this theory. We define groups and give 
some examples. Then we give details of some properties that the 
elements of a group satisfy. We finally discuss three well known and 
often used groups. In future units we will be developing group theory 
further. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• define and give examples of binary operations 
• define and give examples of abelian and non-abelian groups 
• use the cancellation laws and laws of indices for various groups 
• use basic properties of integers modulo n, permutations and 

complex numbers. 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 40 

3.0 MAIN CONTENT 
 
3.1 Binary Operations 
 
You are familiar with the usual operations of addition and multiplication 
in R, Q and C. these operations are examples of binary operations, a 
term that we will now define. 
 
Definition 
 
Let S be an non-empty set. Any function *  : S x S → S is called a 
binary operation on S. 
 
So, a binary operation associates a unique element of S to every ordered 
pair of elements of S. 
 
For a binary operation *  on S and (a, b) ∈ S x S, we denote * (a, b) by 
a* b. 
 
We will use symbols like +, -, x,⊕ ,  , *  and ∆ to denote binary 
operations. 
 
Let us look at some examples. 
 
i. + and x are binary operations on Z. In fact, we have +(a, b) = a + 

b and x (a, b) = a ´  b V a, b ∈ Z. We will normally denote a x b 
by ab. 

 
ii. Let ℘(S) be the set of all subsets of S. Then the operations   

and   are binary operations on ℘ (S), since A   B and A   B 
are in ℘ (S) for all subsets A and B of S. 

 
iii. Let X be a non-empty set and F(X) be the family of all functions 

f: X → X. Then the composition of functions is a binary 
operation on F (X), since fg ∈ F (X) "  f, g ∈ F (X). 

 
We are now in a position to define certain properties that binary 
operations can have. 
 
Definition 
 
Let *  be a binary operation on a set S. We say that 
 
i. *  is closed on a subset T of S, if a *  b ∈ T V a, b ∈ T. 
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ii. *  is associative if, for all a, b, c ∈ S, (a, *  b) *  c = a *  (b *  c). 
 
iii. *  is commutative if, for all a, b Î  S, a *  b = b *  a. 
 
For example, the operations of addition and multiplication on R are 
commutative as well as associative. But, subtraction is neither 
commutative nor associative on R. Why? Is a – b = b – a or (a – b) –c = 
a -  (b – c) V a, b, c ∈ R? No, for example, 1 – 2 ≠ 2 – 1 and (1 – 2) -3 ≠ 
1 – (2 – 3). Also subtraction is not closed on N ⊆  R, because 1 ∈ N, 2 
∈ N but 1 – 2 ∉ N. 
 
Note that a binary operation on S is always closed on S, but may not be 
closed on a subset of S. 
 
Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 1 
 
For the following binary operations defined on R, determine whether 
they are commutative or associative. Are they closed on N? 
 
1. x ⊕  y = x + y – 5 
2. x *  y = 2(x + y) 

3. x ∆ y = x y
2
-  

for all x, y ∈ R. 
 
In calculations you must have often used the fact that a(b + c) = ab + ac 
and (b + c) a = bc + ba V a, b, c ∈ R. This fact says that multiplication 
distributes over addition in R. In general, we have the following 
definition. 
 
Definition 
 
If   and *  are two binary operations on a set S, we say that *  is 
distributive over   if V a, b, c ∈ S, we have a *  (b   c) = (a *  b)   (a 
*  c) and (b   c) *  a = (b *  a)   (c *  a). 
 

For example, let a *  b = a b
2
+   V a, b ∈ R. Then a(b *  c) = a 






 +

2
cb  = 

ab ac
2
+  = ab *  ac, and 

(b *  c)a = 





 +

2
cb a = ba ca

2
+  = ba *  ca V a, b, c ∈ R. 
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Hence, multiplication is distributive over * . 
 
For another example, go back to Self Assessment Exercise 4 of Unit 1. 
What does it say? It says that the intersection of sets distributes over the 
union distributes over the intersection of sets. 
 
Let us now look deeper at some binary operations. You know that, for 
any a ∈ R, a + 0 = a, 0 + a = a and a + (-a) = (-a) + a = 0. We say that 0 
is the identity element for addition and (-a) is the negative or additive 
inverse of a. In general, we have the following definition. 
 
Definition 
 
Let *  be a binary operation on a set S. If there is an element e ∈ S such 
that V a ∈ S, a *  e = a and e *  a = a, then e is called an identity 
element for * . 
 
For a ∈ S, we say that b ∈ S is an inverse of a, if a *  b = e and b *  a = 
e. In this case we usually write b = a-1. 
 
Before discussing examples of identity elements and inverses consider 
the following result. In it we will prove the uniqueness of the identity 
element for * , and the uniqueness of the inverse of an element with 
respect to* , if it exists. 
 
Theorem 1 
 
Let *  be a binary operation on a set S. Then 
 
a. if *  has an identity element, it must be unique. 
 
b. if *  is associative and s ∈ S has an inverse with respect to * , it 

must be unique. 
 
Proof 
 
a.  Suppose a and e’ are both identity elements for * . 
 

Then e = e *  e ' , since e '  is an identity element. 
= e ' , since e is an identity element. 
That is, e = e ' . Hence, the identity element is unique. 

 
b. Suppose there exist a, b ∈ S such that s *  a = e = a *  s and s *  b 

= e = b *  s, e being the identity element for * . Then 
 a = a *  c = a *  (s *  b) 
 = (a *  s) *  b, since *  is associative. 
 = e *  b = b. 
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That is, a = b. 
 
Hence, the inverse of s is unique. 
 
This uniqueness theorem allows us to say the identity element and the 
inverse, henceforth. 
 
A binary operation may or may not have an identity element. For 
example, the operation of addition on N has no identity element. 
 
Similarly, an element may not have an inverse with respect to a binary 
operation. For example, 2∈Z has no inverse with respect to 
multiplication on Z, does it? 
 
Let us consider the following examples now. 
 
Example 1 
 
If the binary operation⊕ : R x R → R is defined by a ⊕  b = a + b – 1, 
prove that ⊕  has an identity. If x ∈ R, determine the inverse of x with 
respect to ⊕ , if it exists. 
 
Solution 
 
We are looking for some e ∈ R such that a ⊕  e = a = e ⊕  a V a ∈ R. 
So we want e ∈ R such that a + e – 1 = a V a ∈ R. Obviously, e = 1 will 
satisfy this. Also, 1 ⊕  a = a Va ∈ R. Hence, 1 is the identity element 
of⊕ . 
 
For x ∈ R, if b is the inverse of x, we should have b ⊕  x = 1. 
i.e., b + x – 1 = 1, i.e., b = 2 – x. Indeed, (2 – x) ⊕  x = (2 – x) + x – 1 = 
1. 
Also, x ⊕  (2 – x) = x + 2 – x – 1 = 1. So, x-1 = 2 – x. 
 
Example 2 
 
Let S be a non-empty set. Consider ℘(S), the set of all subsets of S. Are 
 and  commutative or associative operations on ℘(S)? Do identity 
elements and inverses of elements of ℘(S) exist with respect to these 
operations? 
 
Solution 
 
Since AB = BA and AB = BA V A, B ∈ ℘(S), the operations 
of union and intersection or are associative operations on ℘(S).  Self 
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Assessment Exercise of Unit 1 also says that both operations are 
associative. You can see that the empty set φ  and the set are S the 
identities of the operations of union and intersection, respectively.  Since 
S ≠ φ , there is no B ∈ ℘(S) such that S   B =φ . In fact, for any A ∈ 
℘(S) such that A ≠ φ , A does not have an inverse with respect to union. 
Similarly, any proper subset of S does not have an inverse with respect 
to intersection. 
 
Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 2 
 
1. Obtain the identity element, if it exists, for the operations given in 

Self Assessment Exercise 1. 
 

2. For x ∈ R, obtain x-1 (if it exists) for each of the operations given 
in Self Assessment Exercise 1. 

 
When the set S under consideration is small, we can represent the way a 
binary operation on S acts by a table. 
 
Operation Table 
 
Let S be a finite set and *  be a binary operation on S. We can represent 
the binary operation by a square table, called an operation table or a 
Cayley table. The Cayley table is named after the famous mathematician 
Arthur Cayley (1821 – 1895). 
 
To write this table, we first list the elements of S vertically as well as 
horizontally, in the same order. Then we write a *  b in the table at the 
table at the intersection of the row headed by a and the column headed 
by b. 
 
For example, if S = {-1, 0, 1} and the binary operation is multiplication, 
denoted by then it can be represented by the following table. 
 

 
              -1                  0                 1 

 
-1 

   
       (-1).(-1)            (-1).0          (-1).1 
            =1                    =0              =-1 
 

 
0 

        
        0.(-1)               0.0          (-1).1 
           =0                =0              =0 
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1 

        
        1.(-1)              1.0               1.1 
          =-1               =0                =1 
 

 
Conversely, if we are given a table, we can define a binary operation on 
S. For example, we can define the operation *  on S = {1, 2, 3} by the 
following table. 
 

*           1                   2                  3 

1          1                   2                  3 

2          3                   1                  2 

3          2                   3                  1 

 
From this table we see that, for instance, 1 *  2 = 2 and 2 *  3 = 2. 
 
Now 2 *  1 = 3 and 1 *  2 = 2. ∴2 *  1 ≠ 1 *  2. That is, *  is not 
commutative. 
 
Again, (2 *  1) *  3 = 3 *  3 = 1 and 2 *  (1 *  3) = 2. 
∴ (2 *  1) *  3 ≠ 2 *  (1 *  3). ∴, *  is not associative. 
 
See how much information a mere table can give! 
 
The following exercise will give you some practice in drawing Cayley 
tables. 
 
SELF ASSESSMENT EXERCISE 3 
 
Draw the operation table for the set ℘(S) (ref. Example 2), where S = 
{0, 1} and the operation in . 
 
Now consider the following definition. 
 
Definition 
 
Let *  be a binary operation on a non-empty set S and let a1, .., ak+1 ∈ S. 
 
We define the product a1 *  …… *  ak+1 as follows: 
 
If k = 1, a1 *  a2 is a well defined element in S. 
If a1 *  ……… *  ak is defined, then 
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a1 *  …….. *  ak+1 = (a1 *  …….. *  ak)*  ak+1 
We use this definition in the following result. 
 
Theorem 2 
 
Let a1, …….., am+n  be elements in a set S with an associative binary 
operation * . Then 
(a1 *  …….. *  am) *  (am+1 *  …….. *  am+n) = a1 * ……..*  am+n. 
 
Proof 
 
We use induction on n. That is, we will show that the statement is true 
for n = 1. 
 
Then, assuming that is true for n – 1, we will prove it for n. 
 
If n = 1, our definition above gives us 
 
(a1 *  …….. *  am) *  *  am+n = a1 * ……..*  am+n. 
 
Now, assume that 
 
(a1 *  ……. *  am) * (am+1 *  ….. *  am+n-1) = a1 *  ……. *  am+n-1 
 
Then 
 
(a1 *  ….. *  am) * (am+1 *  ….. *  am+n) 
= (a1 *  ….. *  am) * ((am+1 *  ……. *  am+n-1) *  am+n) 
= ((a1 *  ….. *  am) * (am+1 *  ….. *  am+n-1)) *  am+n, since *  is associative 
= (a1 *  ….. *  am+n-1) *  am+n, by induction 
= (a1 *  ….. *  am+n, by definition. 
 
Hence, the result holds for all n. 
 
We will use Theorem 2 quite often in this course, without explicitly 
referring to it. 
 
Now that we have discussed binary operations let us talk about groups. 
 
3.2 What is a Group? 
 
In this section we study some basic properties of an algebraic system 
called a group. This algebraic system consists of a set with a binary 
operation which satisfies certain properties that we have defined in Sec. 
2.2. Let us see what this system is. 
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Definition 
 
Let G be a non-empty set and *  be a binary operation on G. We say that 
the pair (G,* ) is a group if 
 
G1) *  is associative, 
G2) G contains an identity element e for * , and 
G3) every element in G has an inverse in G with respect to * . 
 
We will now give some examples of groups. 
 
Example 3 
 
Show that (Z, +) is a group, but (Z,) is not. 
 
Solution 
 
 + is an associative binary operation on Z. the identity element with 
respect to + is 0, and the inverse of nay n ∈ Z is (-n). Thus, (Z, +) 
satisfies G1, G2 and G3. 
 
Therefore, it is a group. 
 
Now, multiplication in Z is associative and 1∈ Z is the multiplicative 
identity. But does every element in Z have a multiplicative? No. For 
instance, 0 and 2 have no inverses with respect to ‘.’. Therefore, (Z,.) is 
not a group. 
 
Note that (Z,.) is a semi group since it satisfies G1. So, there exist semi 
groups that aren’t groups! 
 
The following self assessment exercise gives you two more examples of 
groups. 
 
SELF ASSESSMENT EXERCISE 4 
 
Show that (Q, +) and (R, +) are groups. 
 
Actually, to show that (G, * ) is a group it is sufficient to show that *  
satisfies the following axioms. 
 
G1’)  *  is associative. 
G2’)  ∃e ∈ G such that a *  e = a V a ∈ G. 
G3’)  Given a ∈ G, ∃  b ∈ G such that a *  b = e. 
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What we are saying is that the two sets of axioms are equivalent. The 
difference between them is the following: 
 
In the first set we need to prove that e is a two-sided identity and that the 
inverse b of any a ∈ G satisfies a *  b = e and b *  a = e. In the second 
set we only need to prove that e is a one-sided identity and that the 
inverse b of any a ∈ G only satisfies a *  b = e. 
 
In fact, these axioms are also equivalent to 
 
G1”)  *  is associative. 
G2”)  ∃  e ∈ G such that e *  a = a V a ∈ G. 
G3”) Given a ∈ G ∃  b ∈ G such that b *  a = e. 
 
Clearly, if *  satisfies G1, G2 and G3, then it also satisfies G1’, G2’ and 
G3’. The following theorem tells us that if *  satisfies the second set of 
axioms, then it satisfies the first set too. 
 
Theorem 3 
 
Let (G, * ) satisfy G1’, G2’ and G3’. Then e *  a = a "  a ∈ G. Also, 
given a ∈ G, if ∃  b ∈ G such that a *  b = e, then b *  a = e. Thus, (G,* ) 
satisfies G1, G2 and G3. 
 
To prove this theorem, we need the following result. 
 
Lemma 1 
 
Let (G, * ) satisfy G1’, G2’ and G3’. If ∃  a ∈ G such that a *  a = a, then 
a = e. 
 
 
Proof 
 
By G3’ we know that ∃  b ∈ G such that a *  b = e. 
 
Now (a *  a) *  b = a *  b = e. 
 
Also, a * (a *  b) = a *  e = a. Therefore, by G1’, a = e. 
 
Now we will use this lemma to prove Theorem 3. 
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Proof to Theorem 3 
 
G1 holds since G1 and G1’ are the same axioms. We will next prove 
that G3 is true. Let a ∈ G such that a *  b = e. We will show that b *  a = 
e. Now, 
 
(b *  a) *  (b *  a) = (b *  (a *  b) *  a = (b *  e) *  a = b * a. 
 
Therefore, by Lemma 1, b * a = e. Therefore, G3 is true. 
 
Now we will show that G2 holds. Let a ∈ G. Then by G2’, for a ∈ G, a 
*  e = a. since G3 holds, ∃  b ∈ G such that a *  b = b *  a = e. Then 
e *  a = (a *  b) *  a = a *  (b *  a) = a *  e = a. 
 
That is, G2 also holds. 
 
Thus, (G, * ) satisfies G1, G2 and G3. 
 
Now consider some more examples of groups. 
 
Example 4 
 
Let G = { ±  1, ± i}, i = 1- . Let the binary operation be multiplication. 
Show that (G,×) is a group. 
 
Solution 
 
The table of the operation is 
 

      1           -1            i            -i 
1      1           -1            i            -i 
    -1     -1            1           -i             i 
i       i           -i           -1            1 
    -i     -i             i            1           -1 

 
This table shows us that a.1 = a V a ∈ G. Therefore, 1 is the identity 
element. It also shows us that (G,.) satisfies G3’. Therefore, (G,.) is a 
group. 
 
Note that G = {1, x, x2, x3}, where x = i. 
 
From Example 4 you can see how we can use Theorem 3 to decrease the 
amount of checking we have to do while proving that a system is a 
group. 
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Note that the group in Example 4 has only 4 elements, while those in 
Example 3 and Self Assessment Exercise 4 have infinitely many 
elements. We have the following definitions. 
 
Definition 
 
If (G, * ) is a group, where G is a finite set consisting of n elements, then 
we say that (G, * ) is a finite group of order n. If G is an infinite set, 
then we say that (G,* ) is an infinite group. 
 
If *  is a commutative binary operation we say that (G, * ) is a 
commutative group, or an abelian group. Abelian groups are named 
after the gifted young Norwegian mathematician Niels Henrik Abel. 
 
Thus, the group in Example 4 is a finite abelian group of order 4. The 
groups in Example 3 and Self Assessment 4 are infinite abelian groups. 
 
Now let us look at an example of a non-commutative (or non-abelian) 
group. Before doing this example recalls that an m ´  n matrix over a set 
S is a rectangular arrangement of elements of S in m rows and n 
columns. 
 
Example 5 
 
Let G be the set of all 2 x 2 matrices with non-zero determinant. That is, 
 

G = 








≠∈






 0 R, ad-bc d  a, b, c,
dc
ba

       
    
   

 

 
Consider g with the usual matrix multiplication, i.e., for 
 

A = 







dc
ba

    
   

and P = 







sr
qp

    
   

 in G, A.P = 







++
++

dsdr    cqcp
bs br   aq ap 

    
 

 
Show that (G,.) is a group. 
Solution 
 
First we show that, is a binary operation, that is, A, P∈ G  ⇒ A.P ∈ G. 
 
Now, 
 
det(A. P) = det A. det P ≠ 0, since det A ≠ 0, det P ≠ 0. 
 
Hence, A.P ∈ G for all A, P in G. 
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We also know that matrix multiplication is associative and .
10
01







  

is the multiplicative identity. Now, for A = 







dc
ba

    
   

 in G, the matrix 

 

B = 
















−−
−

−
−

−

bcad
a

bcad
c

bcad
b

bcad
d

 is such that det B = 1
ad bc-

 ≠ 0 and AB  

 

= .
10
01







  

 
Thus, B = A-1. (Note that we have used the axiom G3’ here, and not G3.) 
This shows that the act set of all 2 x 2 matrices over R with non-zero 
determinant forms a group under multiplication. Since 
 









43
21

  







01
10

 = 







34
12

 and 









01
10

 







43
21

 = 







21
43

’ 

 
We see that this group is not commutative. 
 
This group is usually denoted by GL2(R), and is called the general 
linear group of order 2 over R. We will be using this group for 
examples throughout Blocks 1 and 2. 
 
And now another example of an abelian group. 
 
Example 6 
 
Consider the set of all translation of R2, 
T = { }Ra,bfixedb)ya,(x(x,y)fR:Rf a,b

22
a,b ∈++=→    somefor   

 
Note that each element fa,b in T is represented by a point (a, b) in R2. 
Show that (T,  ) is a group, where   denotes the composition of 
functions. 
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Solution 
 
Let us see if   is a binary operation on T. 
 
Now fa,b fc,b(x, y) = fa,b(x + c, y + d) = (x + c + a, y + d + b) 
 = fa+c, b+d(x, y) for any (x, y) ∈ R2. 
∴fa,b  fc,d = fa+c, b+d ∈ T. 
Thus,   is a binary operation on T. 
Now, fa,b f0,0 =  fa,bV fa,b ∈ T. 
 
Therefore, f0,0 is the identity element. 
 
Also, fa,b  f-a,-b is the inverse of f0,0 V fa,b∈T. 
 
Thus, (T,  ) satisfies G1’, G2’ and G3’, and hence is a group. 
 
Note that fa,b fc,d = fc,d   fa,b V fa,b fc,d ∈ T. Therefore, (T,  ) is abelian. 
 
Try the following self assessment exercises now. 
 
SELF ASSESSMENT EXERCISE 5 
 
Let Q*, R* and Z* denote the sets of non-zero rationals, reals and 
integers. Are the following statements true? If not, give reasons. 
 
1. (Q*, .) is an abelian group. 
2. (R*, .) is a finite abelian group. 
3. (Z*, .) is a group. 
4. (Q*, .), (R*, .) and (Z*, .) are semigroups. 
 
SELF ASSESSMENT EXERCISE 6 
 
Show that (G, * ) is a non-abelian group, 
where G = { }0  a R,  b a, ≠∈)b,a(  and *  is defined on G by 
(a, b) *  (c, d) = (ac, bc + d). 
 
We will now look at some properties that elements of a group satisfy. 
 
3.3 Properties of Groups 
 
In this section we shall give some elementary results about properties 
that group elements satisfy. But first let us give some notational 
conventions. 
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Convention 
 
Henceforth, for convenience, we will denote a group (G, * ) by G, if 
there is no danger of confusion. We will also denote a *  b by ab, for a, 
b∈ G, and say that we are multiplying a and b. The letter e will 
continue to denote the group identity. 
 
Now let us prove a simple result. 
 
Theorem 4 
 
Let G be a group. Then 
 
a. (a-1)-1 = a for every a ∈ G. 
b. (ab)-1 = b-1 a-1 for all a, b ∈ G. 
 
Proof 
 
a.  By the definition of inverse, 

(a-1)-1 (a-1) = e = (a-1) (a-1)-1. 
 
But, a a-1 a = c also. Thus, by Theorem 1 (b), (a-1)-1 = a. 

 
b. For a, b∈G, ab∈G. Therefore, (ab)-1 ∈G and is the unique 

element satisfying (ab) (ab)-1 = (ab)-1 (ab) = e. 
 
However, (ab) (b-1 a-1) = ((ab) b-1)a-1 

= (a (b b-1)a-1) 
= (a e)a-1 
= aa-1 
= e 

Similarly, (b-1 a-1) (ab) = e. 
 
Thus, by uniqueness of the inverse we get (ab)-1 = b-1 a-1. 
Note that, for a group G, (ab)-1 = a-1 b-1 V a, b ∈ G only is abelian. 
 
You know that whenever ba = ca or ab = ac for a, b, c in R*, 
we can conclude that b = c. That is, we can cancel a. This fact is true for 
any group. 
 
Theorem 5 
 
For a, b, c in a group G, 
a. ab = ac ⇒ b = c. (This is known as the left cancellation law.) 
b. ba = ca ⇒ b = c. (This is known as the right cancellation law.) 
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Proof 
 
We will prove (a) and leave you to prove (b) (see Self Assessment 7). 
 
a. Let ab = ac. Multiplying both sides on the left hand side by a-1 ∈ 

G, we get  
a-1(ab) = a-1(ac) 

 ⇒ (a-1 a)b = (a-1a)c 
 ⇒ eb = ec, e being the identity element. 
 ⇒ b = c. 
 
Remember that by multiplying we can mean we are performing the 
operation * . 
 
SELF ASSESSMENT EXERCISE 7 
 
Prove (b) of Theorem 5. 
 
Now use Theorem 5 to solve the following self assessment exercise. 
 
SELF ASSESSMENT EXERCISE 8 
 
If in a group G, there exists an element g such that gx = g for all x ∈ G, 
then show that G = {e}. 
 
We now prove another property of groups. 
 
Theorem 6 
 
For elements a, b in a group G, the equations ax = b and ya = b have 
unique solutions in G. 
 
Proof 
 
We will first show that these linear equations do have solutions in G, 
and then we will show that the solutions are unique. 
 
For a, b ∈ G, consider a-1 b ∈ G. We find that a(a-1 b) = (aa -1)b = eb = 
b. Thus, a-1 b satisfies the equation ax = b, i.e., ax = b has a solution in 
G. 
But is this the only solution? Suppose x1, x2 are two solutions of ax = b 
in G. then ax1 = b = ax2. By the left cancellation law, we get x1 = x2. 
thus, a-1 b is the unique solution in G. 
 
Similarly, using the right cancellation law, we can show that ba-1 is the 
unique solution of ya = b in G. 
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Now we will illustrate the property given in Theorem 6. 
 
Example 7 
 

Consider A = 







21
32

, B = 







40
51

 in GL2 (R) (see Example 5). 

Find the solution of AX = B. 
 
Solution 
 
From Theorem 6, we know that X = A-1 B. Now, 
 

A-1 = 







−

−
21
32

 (see Example 5). 

 

∴ A-1 B = 







−

−
31
22

 = X. 

 
In the next example we consider an important group. 
 
Example 8 
 
Let S be a non-empty set. Consider ℘(S) (see Example 2) with the 
binary operation of symmetric difference∆, given by 
A  ∆ B = (A \ B)   (B \ A) V A, B ∈ Ã (S). 
 
Show that (℘(S), ∆) is an abelian group. What is the unique solution for 
the equation Y ∆ A = B? 
 
Solution 
 
∆ is an associative binary operation. This can be seen by using the fact 
that 
A \ B = A   Bc, (A   B)c = Ac   Bc, (A   B)c = Ac   Bc and that   
and   are commutative and associative. ∆ is also commutative since A 
∆ B = B ∆ A V A, B ∈ ℘(S). 
 
Also, φ  is the identity element since A ∆ φ  = A V A ∈ ℘(S). 
Further, any element is its own inverse, since A ∆ A = φ  V A ∈ ℘(S). 
Thus, (℘ (S), ∆) is an abelian group. 
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For A, B in (℘(S), ∆) we want to solve Y ∆ A = B. but we know that A 
is its own inverse. So, by Theorem 6, Y = B ∆ A-1 = B ∆ A is the unique 
solution. What we have also proved is that (B ∆ A) ∆ A = B for any A, 
B in ℘Ã (S). 
Try the following self assessment exercise now. 
 
SELF ASSESSMENT EXERCISE 9 
 
Consider Z with subtraction as a binary operation. Is (Z, -) a group? Can 
you obtain a solution for a – x = b Va, b ∈ Z? 
 
And now let us discuss repeated multiplication of an element by itself. 
 
Definition 
 
Let G be a group. For a ∈ G, we define 
 
i. a0 = e. 
 
ii. a0 = an-1.a, if n > 0 
 
iii a-a = (a-1)n, if n > 0. 
 
n is called the exponent (or index) of the integral power an of a. 
Thus, by definition a1 = a, a2 = a.a, a3 = a2. a, and so on. 
 
Note: When the notation used for the binary operation is addition, an 
becomes na. For example, for any a ∈ Z, 
 
na = 0 if a = 0, 
na = a + a + … + a (n times) if n > 0; 
na = (-a) + (-a) + … + (-a) (-n times) if n < 0. 
 
Let us now prove some laws of indices for group elements. 
 
Theorem 7 
 
Let G be a group. For a ∈ G and m, n ∈ Z, 
 
a. (an)-1 = a-n = (a-1)n, 
b. am.an = am+n, 
c. (am)n = amn. 
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Proof 
 
We prove (a) and (b), and leave the proof of (c) to you (see Self 
Assessment Exercise 10). 
 
a. If n = 0, clearly (an)-1 = a-n = (a-1)n, 

Now suppose n > 0. Since aa-1 e, we see that 
e = en = (aa-1)n  

= (aa-1) (aa-1) ....... (aa-1) (n times) 
= an (a-1)n, since a and a-1 commute 

∴ (an)-1 = (a-1)n. 
Also, (a-1)n = a-n, by definition. 
∴ (an)-1 = (a-1)n = a-n when n > 0. 
If n < 0, then (-n) > 0 and 
(an)-1 = [a-(-n)]-1 

= [(a-n)-1]-1, by the case n > 0 
= a-n 

 Also, (a-1)n = (a_1)-(-n) 
= [(a-1)-1]-n, y the case n > 0 
= a-n. 

So, in this case too, 
(an)-1 = a-n = (a-1)n. 

 
b. If m = 0 or n = 0, then am+n = am.an. Suppose m ≠ 0 and n ≠ 0. 
 
We will consider 4 situations. 
 
Case 1 (m > 0 and n > 0): We prove the proposition by induction on n. 
If n = 1, then am.a = am+1, by definition. 
Now assume that am.an-1 = a 
Then, am.an = am(an-1.a) = (am.an-1) a = am+n-1.a = am+n. Thus, by the 
principle of induction, (a) holds for all m > 0 and n > 0. 
 
Case 2 (m < 0 and n < 0): Then (-m) > 0 and (-n) > 0. Thus, by Case 1, 
a-n.a-m = a-(n+m) = a-(m+n). Taking inverses of both the sides and using (a), 
we get, 
am+n = (a-n.a-m)-1 = (a-m)-1.(a-n)-1 = am.an. 
 
Case 3 (m > 0, n < 0 such that m + n ≥ 0): Then, by Case 1, am+n.a-n = 
am. Multiplying both sides on the right by an = (a-n)-1, we get am+n = 
am.an. 
 
Case 4 (m > 0, n < 0 such that m + n < 0): By Case 2, a-m.am+n = an. 
Multiplying both on the left by am = (a-m)-1, we get am+n = am.an. 
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The cases when m < 0 and n > 0 are similar to Case 3 and 4. Hence, am+n 
= am.an for all a ∈ G and m, n ∈ Z. 
 
To finish the proof of this theorem try self assessment exercise 10. 
 
SELF ASSESSMENT EXERCISE 10 
 
Now you can prove (c) of theorem 7. 
 
(Hint: Prove, by induction on n, for the case n > 0.  
             Then prove for n < 0.) 
 
We will now study three important groups. 
 
3.4 Three Groups 
 
In this section we shall look at three groups that we will use as examples 
very often throughout this course – the group of integers modulo n, the 
symmetric group and the set of complex numbers. 
 
3.4.1 Integers Modulo n 
 
Consider the set of integers, Z, and n ∈ Z and n ∈ N. Let us define the 
relation of congruence on Z by: a is congruent to b modulo n if n divides 
a-b. We write this as a ≡ b (mod n).  For example, 4 ≡ 1 (mod n 3), 
since 3 | (4 -1). 
 
Similarly, (-5) ≡ 2 mod 7) and 30 ≡ 0 (mod 6). 
 
≡ is an equivalent relation (see Sec. 3.3 of Unit 1), and hence partitions 
Z into disjoint equivalence classes called congruence classes modulo n. 
We denote the class containing r by r . 
 
Thus, r  = {m ∈ Z | m ≡ r(mod n)}. 
 
So an integer m belongs to r  for some r, 0 ≤ r <, iff n | (r – m), i.e., iff r 
– m = kn, for some k ∈ Z. 
 
∴ r  = {r + kn  |  k Î  Z}. 
 
Now, if m ≥ a, then the division algorithm says that m = nq + r for some 
q, r ∈ Z, 0 ≤ r <. That is, m ≡  r (mod n), for some r 0, …., n – 1.  
 
Therefore, all the congruence classes modulo n are 0 , 1 , ……, n 1- .  
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Let Zn = { 0 , 1 , 2 , ……., n 1- }. We define the operation + on Zn by a  
+ b  = a b+ . 
 
Is this operation well defined? To check this, we have to see that if a  = 
b  and c  = d  in Zn, then a b+  = c d+ . 
 
 
 
 
 
 
 
 
 
 
Now, a ≡ b (mod n) and c ≡ d (mod n). Hence, there exist integers k1 and 
k2 such that a - b = k1n and c – d = k2n. But then (a + c) – (b + d) =  
(a – b) + (c – d) = (k1 + k2)n. 
 
∴ a c+  = b d+ . 
 
Thus, + is a binary operation on Zn.  
 
For example, 2  + 2  = 0  in Z4 since 2 + 2 = 4 ≡ 0 (mod 4).  
 
To understand addition in Zn, try the following self assessment exercise. 
 
SELF ASSESSMENT EXERCISE 11 
 
Fill up the following operation table for + on Z4.  
 
Now, let us show that (Zn, +) is a commutative group.  
 
i. a  + b  = a b+  = b a+  = b  + a  V a , b  ∈ Zn, i.e., 
 addition is commutative in Zn.  
 
ii. a  + ( b  + c ) = a  + ( b c+ ) = a (b c)+ +  
 = (a b ) c+ +  = ( a b+ ) + c  = ( a  + b ) + c  V a , b , c  ∈ Zn, 
 i.e., addition is associative in Zn. 
 
iii. a  + 0  = a  = 0  + a  V a  ∈ Zn, i.e., 0  is the identity for addition. 
 
iv. For  ∈ Zn,∃ n a-  ∈ Zn such that a  + n a-  = n  = 0  = n a-  + a . 

 
Thus, every element a  in Zn has an inverse with respect to addition. 

+      0             1            2            3  

0   

1   

2   

3   
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The properties (i) to (iv) show that (Zn, +) is an abelian group. 
 

Try the following self assessment exercise now. 
 

SELF ASSESSMENT EXERCISE 12 
 

Describe the partition of Z determined by the relation ‘congruence 
modulo 5’. 

 
Actually we can also define multiplication on Zn by a . b  = ab . Then, 
a b  = b a  V a , b  ∈ Zn. Also ( a b ) c  = a ( b c ) V a , b , c  ∈ Zn. Thus, 
multiplication in Zn is a commutative and associative binary operation. 

 
Zn also has a multiplicative identity, namely, 1 . 

 
But (Zn,.) is not a group. This is because every element of Zn, for 
example 0  does not have a multiplicative inverse. 

 
But, suppose we consider the non-zero elements of Zn, that is, ( nZ* , .) Is 
this a group? For example 4Z*  = { 1 , 2 , 3 } is not a group because . is 
not even a binary operation on 4Z* , since 2 . 2  = 0  ∉ 4Z* . But ( pZ* ,.). is 
an abelian group for any prime p. 
 
SELF ASSESSMENT EXERCISE 13 
 
Show that ( 5Z* ,.) is an abelian group. 
 
(Hint: Draw the operation table.) 
 
Let us now discuss the symmetric group. 
 
3.4.2 The Symmetric Group 
 
We will now discuss the symmetric group briefly. In MTH 312 we will 
discuss this group in more detail. 
 
Let X be a non-empty set. We have seen that the composition of 
functions defines a binary operation on the set F(X) of all functions 
from X to X. This binary operation is associative. IX, the identity map, is 
the identity in F (X). 

 
Now consider the subset S(X) of F (X) given by 

 
S(X) = {f ∈ F (X) | f is bijective}. 
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So f ∈ S(X) iff f-1: X → X exists. Remember that f  f-1 = f-1  f = IX. This 
also shows that f-1 ∈ S(X). 
 
Thus, o is a binary operation on S(X). 
 
Let us check that (S(X), o) is a group 
 
i. o is associative since (f o g) o h = f(g o h) V f, g, h ∈S(X). 
ii. I x is the identity element because f o I x = I x o f V f ∈ S(X). 
iii. f-1 is the inverse of f, for any f ∈ S(X). 
 
Thus, (S(X), o) is a group. It is called the symmetric group on X. 
 
If the set X is finite, say X = (1, 2, 3 ……………….,n), then we denote 
S(X) by Sn, and each f Sn is called a permutation on n symbols. 
 
Suppose we want to construct an element f in Sn.  We can start by 
choosing f(1).  Now, f(1) can be any one of the n symbols 1, 2, ….,n.  
Having chosen f(1), we can choose f(2) from the set {1, 2, ….n}\{f(1)}, 
i.e., in (n – 1) ways.  This is because f is 1 – 1.  Inductively, after 
choosing f(i), we can choose f (I + 1) in ( n – I ) ways.  Thus, f can be 
chosen in (1 x 2 x….xn) n 1 ways, i.e., Sn contains an! Elements. 
 
For our convenience, we represent f ∈ Sn by 
 









)n(f...............)2(f)1(f

n..............21
 

 

For example, 







1342
4321

represents the function f: 

  
{1, 2, 3, 4} → {1, 2, 3, 4}:  f(1) = 2, f(2) = 4, f(3) = 3, f(4) = 1.  the 
elements in the top row can be laced in any order as long as the order of 
the elements in the bottom row is changed accordingly. 
 

Thus, 







1324
4312

also represents the same function f. 

 
Try this exercise now. 
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SELF ASSESSMENT EXERCISE 14 
 
Consider S3, the set of all permutations on 3 symbols. This has 3! (=6) 

elements.  One is the identify function, I.  Another is 







312
321

.  Can 

you list the other four. 
 
Now, while solving Self Assessment Exercise one of the elements you 

must have obtained is f = 







132
321

. 

 
Here f(1) = 2, f(2) = 3 and f(3) = 1, such a permutation is called a cycle.  
In general we have the following definition. 
 
Definition 
 
We say that f ∈ Sn is a cycle of length r if there are x1……., xr in X = { 
1, 2, ….., n} such that f(xi) = xi + 1 for 1 ≤ i  ≤ r – 1, (fxr) and f(t) = t for 
t xi, …..xr.  In this case f is written as (xi …xr), 
For example, by f = (2 4 5 10) ∈ S10 we mean f(2) = 4, f(4) = 5, f(5) = 
10, f(10) = 2 and f(j) = j for j ≠ 2, 4, 5,10. 
 

i.e., f = 







29876105341

10987654321
 

 
f ∈ Sn fixes an element x if f(x) = x.    
 
Note that, in the notation of a cycle, we don’t mention the elements  that 
are left fixed by the permutation. Similarly, the permutation. 
 









31452
54321

is the cycle ( 1 2 5 3 4) in S5, 

 
Now let us see how we calculate the composition of two permutations.  
Consider the following example S3, 
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),4,2(
52341
54321

)2()1()4()3()5(
54321

)5()4()3()2()1(
54321

21435
54321

13452
54321

=







=









ααααα

=









αβαβαβαβαβ

=

















=βα

          

          

          

  

 

 
Since 1, 3 and 4 are left fixed. 
 
The following exercises will give you some practice in computing the 
product of elements in Sn. 
 
SELF ASSESSMENT EXERCISE 15 
 
Calculate (1 3)   (1 2) in S3. 
 
SELF ASSESSMENT EXERCISE 16 
 
Write the inverses of the following in S3: 
 
a. (1 2) 
b. (1 3 2) 

 
Show that (1 2)  (1 3 2)]-1 ≠ (1 2)-1  (1 3 2)-1.  (This shows that in 
Theorem 4(b) we can’t write (ab)-1 = a-1b-1.) 
 
And now let us talk of a group that you may be familiar with, without 
knowing that it is a group.j 
 
3.4.3 Complex Numbers 
 
In this sub-section we will show that the set of complex numbers forms 
a group with respect to addition.  Some of you may not be acquainted 
with some basic properties of complex numbers.  We have placed these 
properties in the appendix to this unit. 
 
Consider the set C of all ordered pairs (x, y) of real numbers, i.e., we 
take C = R x R. 
 
Define addition (+) and multiplication (.) in C as follows: 
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(x1, y1) + (x2, y2) = (x1 x2 – y1 + y2) and 
(x1, y1) . (x2, y2) = (x1 x2 – y1 y2, x1 y2 – x2 y1) 
for  (x1,y1) and (x2, y2) in C. 
 
This gives us an algebraic system (C, +,.) called the system of complex 
numbers.  We must remember that two complex numbers (x1, y1) and 
(x2, y2) are equal iff x1 = x2 and y1 = y2. 
 
You can verify that + and, are commutative and associative. 
 
Moreover, 
 
i. (0, )) is the additive identity. 
ii. For (x, y) in C, (-x, -y) s its additive inverse. 
iii. (1, 0) is the multiplicative identity. 
iv. If (x, y) (0, 0) in C, then either x2 > 0 or y2 > 0. 
 
Hence, x2 + y2 > 0.  Then 
 

(x, y).  2222 yx
y,

yx
x

+
−

+
 

 

         = 







+

+
+
−

⋅
+
−

⋅−
+

⋅ 22222222 yx
xy

yx
yx,

yx
)y(y

yx
xx                    

 
         =  (1, 0) 
 
Thus, (C, +) is a group and (C*,.) is a group. (AS usual, C* denotes the 
set of non-zero complex numbers). 
 
Now let us see what we have covered in this unit. 
 
4.0 CONCLUSION 
 
The study of groups in algebra is a fundamental requirement for any 
students who want to   major in pure mathematics. You are required to 
pay attention to all the details in this unit.    
 
5.0 SUMMARY 
 
In this unit we have 
 
• discussed various types of binary operations. 
• defined and give examples of groups. 
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• proved and used the cancellation laws and laws of indices for 
group elements. 

• discussed the group of integers modulo n, the symmetric group 
and the group of complex numbers. 

 
We have also provided an appendix in which we list certain basic fact 
about complex numbers. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 1 
 
1. a. x ⊕  y = y ⊕ x, V x, y ∈ 
  Therefore, ⊕ is commutative 
 
  (x ⊕  y) ⊕  z = ( x + y – 5) ⊕  z = ( x +y – 5) + z - 5 
                      = x + y + z – 10 
                      = x ⊕  (y ⊕  z) 

Therefore, ⊕  is associative. 
 

⊕ is not closed on N since 1 ⊕  1∉ N. 
 
b. * is commutative, not associative, closed on N. 
c. ∆ is not commutative, associative or closed on N. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 2 
 
a. The identity element with respect to ⊕ is 5. 
 Suppose e is the identity element for * 

Then x * e = x ⇒ 2 (x + e) = x ⇒ c = - 
2
x , which depends on x. 

Therefore, there is no fixed element e in R for which x * e = e * x 
= x V x ∈ R.  Therefore, * has no identify element. 
 

b. The inverse of x with respect to ⊕  is 10-x.  Since there is no 
identity for the other operations, there is no question of obtaining 
x-1. 

 
ANSWER TO SELF ASSESSMENT EXERCISE 3 
 
℘(S) = {φ, (0), {1}, (0, 1)} 
 
So, the table is 
 

N φ {0} {1} S 

φ φ φ φ {1} 
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{0} φ {0} φ {0} 

{1} φ φ {1} {1} 

S φ {0} {1} S 

 
ANSWER TO SELF ASSESSMENT EXERCISE 4 
 
Check that both of then satisfy G1, G2 and G3 
 
ANSWER TO SELF ASSESSMENT EXERCISE 5 
 
a. and (d) are true. 
b. R* is an infinite abelian group. 
c. (Z*,.) satisfies G1 and G2, but not G3.  NO integer, apart from +- 

1, has a multiplicative inverse. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 6 
 
((a, b) * (c, d)) * (e, f) 
=  (ac, bc + d) * (e, f) 
=  (ace, (bc + d) e +f ) 
=  (a, b) * ( (c, d) * (e, f) ) 
 
Thus, * satisfies G1’. 
 
(a, b) * (1, 0) = (a, b) V (a, b) ∈ G. 
 
Therefore, G3’ holds. 
 
Therefore, (G, *) is a group. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 7 
 
ba = ca ⇒ (ba)a-1 ⇒ (ca)a-1 ⇒ b = c 
 
ANSWER TO SELF ASSESSMENT EXERCISE 8 
 
Let x ∈ G.  Then gx = g = ge.  So, by Theorem 5, x = e. 
 
∴ G = {e}, 
 
ANSWER TO SELF ASSESSMENT EXERCISE 9 
 
(Z,-) is not a group since G1 is not satisfied. 
 
For any a, b ∈ Z, a – (a – b) = b.  So, a – x has a solution for any a, b ∈ 
Z. 
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ANSWER TO SELF ASSESSMENT EXERCISE 10 
 
When n = 0, the statement is clearly true. Now, let n > 0.  We will apply 
induction on n.  For n = 1, the statement is true. 
 
Now , let n > 0.  We will apply induction on n.  For n = 1, the statement 
is true.   
Now, assume that it is true for n – 1, that is, (am)(n – 1) .  = am(n – 1).  
 
Then, (am)n = (am)n -1 + 1 = (am)(n – 1) .  = am, by (b) 
          = am(n – 1) . am 
          = am (n + 1 + 1), by (b) 
          =  amn. 
So, (c) is true V n > m ∈ Z. 
 
Now, let n < 0.  Then (-n) > 0. 
 
∴  (am)n  = [(am)-n]-1, by (a) 
  = [(am)-n]-1, by the case n > 0 
  = [(a-mn)] -1 
  = amn, by (a). 
 
Thus, V m, n ∈ Z, (c) holds. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 11 
 
+ 0  1  2  3  

0  0  1  2  3  

1  1  2  3  0  

2  2  3  0  1  

3  3  0  1  2  
 
ANSWER TO SELF ASSESSMENT EXERCISE 12 
 
Z is the disjoint union of the following 5 equivalence classes. 
 

},.........15, 10, 5, 0, 5, 10 {........,0 −−=  
....}........., .....11, 6, 1, 4, 9 {........,1 −−=  
....}.........,.....12, 7, 2, 3, 8 {........,2 −−=  
.....}.............,13, 8, 3, 2, 7 {........,3 −−=  
.....}..........,....14, 9, 4, 1, 6 {........,4 −−=  
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ANSWER TO SELF ASSESSMENT EXERCISE 13 
 
The operation table for on Z5 is 
 
 . 1  2  3  4  

1  1  1  3  4  

2  2  4  1  3  

3  3  1  4  2  

4  4  3  2  1  
 
It shows that, is an associative and commutative binary operation of Z*5.  
1 is the multiplicative identity and every element has an inverse. 
 
Thus, (Z*5,.) is an abelian group. 
 

ANSWER TO SELF ASSESSMENT EXERCISE 14 
 

































213
321

,
132
321

,
231
321

,
123
321

 

 
ANSWER TO SELF ASSESSMENT EXERCISE 15 
 
f = (1 3), g = (1 2). 
 

Then f o g = 















312
321

123
321
  

        

     = 







)3(fg)1(fg)2(fg

321
 

 

      = 







)3(r)1(r)2(r

321
 

 

      = )321(
132
321

=






  
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ANSWER TO SELF ASSESSMENT EXERCISE 16 
 

a. Let f = (1 2) = .
312
321








∴f-1 = ,

321
312







  

 just interchanging the rows. 
 ∴ f-1 = (1 2). 
 
b. (1 3 2)-1 = (2 3 1). 

Now, (1 2) o (1 3 2) =  







123
321

 

     

 Its inverse is 







321
123

 = (1 3). 

On other hand, 
(1 2)-1-

 o (1 3 2)-1-
 o = (1 2) o (1 2 3) = (2 3) ≠ (1 3). 

 
APPENDIX: COMPLEX NUMBERS  
 
Any complex number can be denoted by an ordered pair of real numbers 
(x, y). In fact, the set of complex numbers is 
 
C = { (x, y)  x, y ∈ R }. 
 
Another way of representing (x, y) ∈ C is x + iy, where i = .i− . 
 
We call x the real part and y the imaginary part of x + iy. 
 
The two representations agree if we denote (x, 0) by x and (0, 1) by i 
.On doing so we can write 
 
x + iy  = (x, 0) + (0, 1) (y, 0) 

= (x, 0), + (0, y), 
= (x, y), 

and i2 = (0, 1) (0,.1) = (-1, 0) = -1. 
 
While working~ with complex numbers, We' will sometimes use the 
notation x + iy and sometimes the fact that the elements of C can be 
represented by points in R2. 
 
You can see that 
(xi + iy1) + (x2 + iy2) = (x1, y1) + (x2, y2) 

= (x1 + x2, x2 + y2) 
= (x1 + x2) + i(y1 + y2), and 
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(xi + iy1) (x2 + iy2) = (x1, y1) + (x2, y2) 
= (x1x2 - y1y2, x1y2) 
= (x1x2) - y1y2) + i(x1y2 + x2y1).), and 
 

Now, given a complex number, we will define its conjugate. 
 
Definition 
 
For a complex number z = x + iy, the complex number x + i (-y) is 
called the conjugate of z. It is also written as x -iy and is denoted by z  . 
 
For z. = x + iy, we list the following properties. 
 
i.  z + z  is a real number. In fact, z + z  =.2 x. 
ii.  z . z  = x2 + y2, a non-negative real number. 
iii. ,zzzz 2121 +=+  for any z1, z2 ∈ C.  This is because 
 )yy(ixx( 2121 +++  = (x1 + x2) – i(y1 + y2) 
    = (x1 - iy1) + i(x2 - iy2) 
    = 21 zz + . 
iv. ,z.zzz 2121  =  for any z1, z2 ∈ C. 
 
Let us now see another way of representing complex numbers.  
 
Geometric Representation of Complex Numbers Y 
 
We have seen that a complex number, z = x + iy is represented by the 
point (x, y) in the plane.  If O is the point (0, 0) and P is (x,y) (see 
Fig.3), then we know that the distance OP = 22 yx + .  This is called 
the modulus (or the absolute value) of the complex y number z and is 
denoted by | z |. Note that 22 yx + 0 iff x = 0 and y = 0. 
 
Now, let us denote | z | by r and the angle made by OP with the positive 
x-axis by θ. Then θ is called an argument of the non-zero complex: 
number z.  If θ is an argument of z, then 0 + 2nπ is also an argument of 
z for all n ∈ Z,.  However, there is a unique value of these arguments 
which lies in the interval [-π,π].  It is called the principal argument of 
x + iy, and is denoted by Arg (x +iy). 
 
From fig. 3 you can see that x = r cosθ, y = sinθ = r sinθ that is, z = 
(rcosθ, rsinθ) = r(cosθ + i sinθ) = re10. 
 
This is called the polar form of the complex number (x + iy). 
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Now, if z1 = ,erzander 21 i
22

i
1

θθ =  then 
 .errzz )(i

2121
21 θ+θ=  

 
Thus, an argument of z1 z2 = an argument of z1 + an argument of z2. 
 
We can similarly show that if z2 ≠ 0, 

An argument of 
2

1

z
z = an argument of z1 – an argument of z2. 

In particular, if θ is an argument of z (≠ 0), then (-θ) is an argument of z- 
We end by stating one of the important theorems that deals with 
complex numbers. 
 
De Moivre’s Theorem: If z = r(cosθ + i sinθ) and n ∈ N, then zn = 1n 
(cos nθ + i sin nθ ).  
 
7.0 REFERENCES/FURTHER READING 
 
Birkhaff and Melhnew:   A Survey of Modern Algebra.  
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UNIT 3  SUBGROUPS 
 
CONTENTS 
 
1.0 Introduction  
2.0 Objectives 
3.0 Main Content 
 3.1 Subgroups  

3.2 Properties of Subgroups  
3.3  Cyclic Groups  

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Reading 
 
1.0  INTRODUCTION  
 
You have studied the algebraic structures of integers, rational numbers, 
real numbers and, finally, complex numbers. You have noticed that, not 
only is Z ⊆  Q ⊆  R ⊆  C. but the operations of addition and 
multiplication coincide in these sets. 
 
In this unit you will study more examples of subsets of groups which are 
groups in their own right. Such structures are rightfully named 
subgroups.  In Sec. 3.3 we will discuss some of their properties also. 
 
In Sec. 3.4 we will see some cases in which we obtain a group from a 
few elements of the group. In particular, we will study cases of groups 
that can be built up by a single element of the group. 
 
Do study this unit carefully because it consists of basic concepts which 
will be used again and again in the rest of the course.  
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• define subgroups and check if a subset of a given group is a 

subgroup or not 
• check if the intersection. union and product of two subgroups is ;I 

subgroup 
• describe the structure and properties of cyclic groups. 
 
 
 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 73 

3.0 MAIN CONTENT 
 
3.1 Subgroups  
 
You may have already noted that the groups (Z,+), (Q,+) and (R,+) are 
contained in the bigger group (C,+) of complex numbers, not just as 
subsets but as groups. All these are examples of subgroups, as you will 
see. 
 
Definition 
 
Let (G,*) be a group. A non-empty subset H of G is called a subgroup of 
G if 
 
i.  a * b ∈ H V a. b ∈ H. i.e.. * is a binary operation on H. 
ii.  (H,*) is itself a group. 
 
So, by definition, (Z,+) is a subgroup of (Q,+), (R,+) and (C,+). 
 
Now, if (H, *) is a subgroup of (G,*), can the identity element in (H,*) 
be different from the identify element in (G,*)?  Let us see. If h is the 
identity of (H,*), then for any a ∈ H. 
 
b * a = a * h = a.  However, a ∈ H ⊆  G. Thus. a * e = e * a = a. where e 
is the identity in G. 
 
Therefore h * a = e * a. 
By right cancellation in (G,*). We get h = e. 
Thus, whenever (H, *) is a subgroup of (G,*). e ∈ H. 
 
Now you may like to try the following exercise.  
 
SELF ASSESSMENT EXERCISE 1 
 
If (H, *) is a subgroup of (G,*), does a -1 ∈ H for every a ∈ H., 
 
Self Assessment Exercise 1 and the discussion before it allows us to 
make the following remark. 
 
Remark 1 
 
(H,*) is a subgroup o! (G, *) if and only if 
 
i. e ∈ H. 
ii. a, b ∈ H ⇒ a * b ∈ H 
iii. a ∈ H ⇒ a-1 ∈ H. 
 
We would also like to make an important remark about notation here.  
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Remark 2 
 
If (H,*) is a subgroup of (G,*), we shall just say that H is a subgroup 
of G, provided that there is no confusion about the binary operations. 
We will also denote this fact by H ≤ G. 
 
Now we discuss an important necessary and sufficient condition for a 
subset to be a subgroup. 
 
Theorem 1 
 
Let H be a non-empty subset of a group G. Then H is a subgroup of G 
iff 
a, b ∈ H =} ab-1 ∈ H. 
 
Proof 
 
Firstly, let us assume that H ≤ G. Then, by Remark 1, a, b ∈ H ⇒ a, b-l 
∈ H. 
 
Conversely, since H ≠ φ ∃  a ∈ H. But then, aa-1 = e ∈ H. 
 
Again, for any a e H, ea-1 = a-1 ∈ H. 
 
Finally, if: a, b ∈ H, then a, b-1 ∈ H. Thus, a (b-l)-1 = ab ∈ H, i.e., 
H is closed under the binary operation of the group.  
 
Therefore by Remark 1, H is a group. 
 
Let us look at some examples of subgroups now. While going through 
these you may realise the fact that a subgroup of an abelian group is 
abelian. 
 
Example 1  
 
Consider the group (C*,.). Show that 
 
S = {z ∈ C | |z| = 1} is a subgroup of C* 
 
Solution 
 
S ≠φ , since 1∈ S. Also, for any z1, z2 ∈ S, 
 

|z1z2
-1 | = |z1| |z2

1| = |z1| |z|
1

2

= 1. 

Hence, z1 z2
-1 ∈ S.  Therefore, by Theorem 1, S ≤ C*. 
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Example 2 
 
Consider G = M2x3 (C), the set of all 2 x 3 matrices over C. Check that 
(G,+) is an abelian group. Show that 
 

S = 








∈






 Cc,b,a
c00
ba0

     is a subgroup of G. 

 
Solution 
 
We define addition on G by 
 









+++
+++

=







+








uftesd
rcqbpa

uts
rqp

fed
cba

. 

 
You can see that + is binary operation on G. O = is the additive identity 
and  
 









−−−
−−−

fed
cba

is the inverse of 







fed
cba

∈ G. 

 
Since, a + b = b a V a, b ∈ C, + is also abelian. 
 
Therefore, (G,+) is an abelian group. 
 
Now, since O ∈ S, S ≠ φ.  Also, for 
 









c00
ba0

, 







f00
ed0
∈  S, we see that 

 









c00
ba0

 - 







f00
ed0

=   







−
−−

fc00
ebda0

 ∈  S. 

 
∴  S ≤ G. 
 
Example 3 
 
Consider the set of all invertible 3 x 3 matrices over R, GL3 (R). That is, 
A ∈ GL3(R) iff det (A) ≠ 0.  Show that SL3 (R) = (A E GL3(R)  det(A) 
1} is a subgroup of (GL3(R),.). 
 
 
 

H ≤ (G, +) ⇔ 
 H ≠ φ and  
a – b ∈ H. 
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Solution 
 
The 3x3 identity matrix is in SL3(R). Therefore, SL3(R) ≠ φ. 
 
Now, for A, B ∈ SL3(R). 

det (AB-1) = det (A) det(B-1) = det (A) 
)Bdet(

1 = 1, since det (A) =1and 

det (B) =l. 
∴AB-1 ∈ SL3(R) 
:. SL3(R) ≤ GL3(R). 
 
Try the following exercise now. 
 
SELF ASSESSMENT EXERCISE 2 
 
Show that for any group G, {e} arid G are subgroups of G. 
({e} is called the trivial subgroup.) 
 
The next example is very important, and you may use it quite often. 
 
Example 4  
 
Any non-trivial subgroup of (Z, +) is of the form mZ; where m ∈ N and 
mZ = { mt | t ∈ Z} = { 0, ±m, ±2m, ±3m, }. 
 
Solution 
 
We will first show that mZ is a subgroup of Z. Then we will show that if 
H is a subgroup of Z, H ≠ {0}, then H = mZ, for some m ∈ N. 
 
Now, 0 ∈ mZ. Therefore, mZ ≠ φ. Also, for mr, ms ∈ mZ, mr-ms = 
m(r-s) ∈ mZ. 
 
Therefore, mZ is a subgroup of Z. 
 
Note that m is the least positive integer in mZ.  
 
Now, let H ≠ {0} be a subgroup of Z and S={i | i> 0, i ∈ H}. 
 
Since H ≠ {0}, there is a non-zero integer k in H. If k > 0, then k ∈ S. If 
k < 0, then (-k) ∈ S, since (-k) ∈ H and (-k) > 0. 
 
Hence, S ≠ φ. 
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Clearly, S ⊆  N. Thus, by the well-ordering principle (Sec. 16.1) S has a 
least element, say s. That is, s is the least positive integer that belongs to 
H. 
 
Now s Z ⊆  H. Why? Well, consider any element st∈ sZ. 
 
If t = 0, then st = 0 ∈ H. 
If t > 0, then st = s +s +….. + s (t times) ∈ H. 
If t < 0, then st = (-s) + (-s) + …...+ (-s) (-t times) ∈  H. 
 
Therefore, st ∈ H V t ∈ Z. That is, sZ ⊆  H. 
 
Now, let m ∈ H. By the division algorithm (see Sec. 1.6.2), m = ns + r 
for some n, r ∈ Z, 0 ≤ r < s. Thus, r = m -ns. But H is a subgroup of Z 
and m, ns ∈ H. Thus, r ∈ H. By minimality of sin S, we must have r = 
0, i.e., m = ns. Thus, H ⊆ sZ.  
 
So we have proved that H = sZ. 
 
Before going to the next example, let us see what the nth roots of unity 
are, that is; for which complex numbers z is zn = 1. 
 
From Unit 2, you know that the polar form of a non-zero complex 
number z ∈ C is z = r(cosθ + i sinθ), where r = |z| and θ ia an argument 
of z.  Moreover, if θ1 is an argument of z1 and θ2 that of z2, then θ1 + θ2 
is an argument of z1 z2.  Using this we will try to find the nth roots of 1, 
where n ∈ N. 
 
Thus, by De Moivre’s theorem, 
 
1 = 2n = 1n (cos nθ+ i sin nθ), that is, 
cos (θ) + i sin(θ) = rn (cos nθ) + i sin nθ). ………………………….. (1) 
 
Equating the modulus of both the sides of (1), we get rn = 1, i.e., r = 1. 
On comparing the arguments of both sides of (1), we see that 0 + 2πk (k 
∈ Z) and nθ are arguments of the same complex number.  Thus, nθ can 
take any one of the values 2πk, k ∈ Z.  Does this mean that as k ranges 

over Z and θ ranges over 
n
m2sini

n
m2cos

n
k2sini

n
k2 π

+
π

=
π

+
π    if and 

only if t2
n
m2

n
k2

π=
π

−
π

 for some t ∈ Z.  This will happen if k = m + 

nt, i.e., k = m (mod n).  Thus, corresponding to every r  in Zn we get an 

nth root of unity, z = cos
n

k2sini
n

k2 π
+

π  , 0 ≤ r < n; and these are all the 

nth roots of unity. 
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For example, if n = 6, we get the 6th roots of 1 as z0, z1, z2, z3, z4, and z5, 

where zj, .6,5,4,3,2,1j,
6

j2sini
6

j2 π
+

π    In Fig. 1 you can see that 

all these lie on the unit circle (i.1., the circle of radius one with centre (0, 
0)).  They form the vertices of a regular hexagon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, let ω = 
n

2sini
n

2cos π
+

π
.  Then all the nth roots of 1 are 1, ω, ω2, 

……., ωn-1, since ωj, = 
n

j2sini
n

j2cos π
+

π  for 0 ≤ j ≤ n – 1 (using De 

Moivre’s theorem). 
 
Let n = {1, ω, ω2, ……., ωn-1}.  The following exercise shows you an 
interesting property of the elements of n . 
 
SELF ASSESSMENT EXERCISE 3 
 

If n > 1 and ω = 
n

2sini
n

2cos π
+

π , then show that 1 + ω + ω2 + ω3 +….+ 

ωn-1 = 0. 
Now we are in a position to obtain a finite subgroup of C*. 
 
Example 5 
 
Show that n ≤ (C*,.). 

Y 

O 
X 

Z1

 

Z3 

Z2

 

Z0

 

Fig. 1: 6th Roots of Unity 
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Solution  
 
Clearly, n ≠ φ.  Now, let ωi , ωj

 ∈ n . 
 
Then, by the division algorithm, we can write i + j = qn + r for q, r ∈ Z, 
0 ≤ r ≤ n – 1.  But then ωi , ωj

 = ωi +j
 = ωqn + r = (ωn)q, ωr  = ωr ∈ n , since 

ωn
 = 1, i.e, ωn – 1.   Thus, n is closed under multiplication. 

 
Finally, if ω1

∈ n , then 0 ≤ i ≤ n – 1 and ωi, ωn – 1 = ωn = 1, i.e., ωn – 1 is 
the inverse of ω1 for all 1 ≤ i < n.  Hence, n is a subgroup of C*. 
 
Note that n is a finites group of order n and is a subgroup of an 
infinite group, C*.  So, for every natural number n we have a finite 
subgroup of order n of C*. 
 
Before ending this section we will introduces you a subgroup that you 
will use off and on. 
 
Definition 
 
The centre of a group G, denoted by Z(G) =G, denoted by Z(G), is the 
set Z(G) = {g ∈ G   xg = gx V x ∈ G.}. 
 
Thus, Z(G) is the set of some elements of G that commute with every 
element of G. 
 
For example, if G is abelian, then Z(G) = G. 
 
We will now show that Z(G) ≤ G. 
 
Theorem 2 
 
The centre of any group G is a subgroup of G. 
 
Proof 
 
Since e ∈ Z(G), Z(G) ≠ φ.  Now, 
 
a ∈ Z(G) ⇒ ax  V  x ∈ G. 
  ⇒ x = a-1 xa V x ∈ G, pre-multiplying by a-1. 
  ⇒ x = a-1 = a-1 x V x ∈ G, post-multiplying by a-1. 
  ⇒ a-1 ∈  Z(G). 
 
Also, for any a, b ∈ Z(G) and for any x ∈ G. 
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(ab) x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). 
∴ ab ∈  Z(G). 
 
Thus,  Z(G) is a subgroup of G. 
 
The following exercise will give you some practice in obtaining the 
centre of a group. 
 
SELF ASSESSMENT EXERCISE 4 
 
Show that Z(S3)) = (I). 
 
(Hint:  write the operation table for S3) 
 
Let us now discuss some properties of subgroups. 
 
3.2 Properties of Subgroups  
 
Let us start with showing that the relation ‘is a subgroup of’ is transitive.  
The proof is very simple. 
 
Theorem 3 
 
Let G be a group, H be a subgroup of G and K be a subgroup of H.  
Then k is a subgroup of G. 
 
Proof 
 
Since K ≤ H, K ≠ φ and ab-1∈ K V a, b ∈ K.  Therefore, K ≤ G. 
 
Let us look at subgroups of Z, in the context of Theorem 3. 
 
Example 6 
 
In Example 4 we have seen that any subgroup of Z is of the form mZ for 
some m ∈ N.  Let mZ and kZ be two subgrougs of Z.  Show that mZ is 
a subgroup of kZ iff k | m. 
 
Solution 
 
We need to show that mZ ⊆  kZ ⇔ k | m.  Now mZ ⊆  kZ ⇔ m ∈ mZ 
⊆  kZ ⇒ m ∈ kZ ⇒ m = kr for some r ∈ Z k |m. 
 
Conversely, suppose k | m. 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 81 

Then, m = kr for some r ∈ Z.  Now consider any n ∈ mZ such that n = 
mt. 
 
Then n = mt = (kr) t = k (rt) ∈ kZ. 
 
Hence, mZ ⊆  kZ 
 
Thus, mZ ≤ kZ iff  k | m.  
 
Now, you may like to try the next exercise. 
 
SELF ASSESSMENT EXERCISE 5 
 
Which subgroups of Z is 9Z a subgroup of? 
 
We will now discuss the behaviour of subgroups under the operations of 
intersection and union. 
 
Theorem 4 
 
If H and K are two subgroups of a group G, then H∩K is also a 
subgroup of G. 
 
Proof 
 
Since e ∈ H and e ∈ K, where e is the identity of G, e ∈  H∩K. 
 
Thus, H∩K ≠ φ. 
 
Now, let a, b ∈ H∩K.  By Theorem 1, it is enough to show that ab-1∈ 
H∩K.   Now, since a, b ∈ H, ab-1∈ K.  Similarly, since a, b ∈ K, ab-1∈ 
K.  Thus, ab-4 ∈  H∩K.  Hence, H∩K is a subgroup of G. 
 
The whole argument of Theorem 4 remains valid if we take a family of 
subgroups instead of just two subgroups.  Hence, we have the following 
result. 
 
Theorem 4': if {Hi}i∈1 is a family of subgroups of a group G, then 

1  i ∈
  

Hi is also a subgroup of G. 
 
Now, do you think the union of two (or more) subgroups is again a 
subgroup?  Consider the two subgroups 2Z and 3Z of Z.  Let S = 2Z 
3Z.  Now, 3∈ 3Z ⊆S, 2 ∈ 2Z ⊆S, but 1 = 3 – 2 is neither in 2Z nor 

in 3Z.  Hence, S is not a subgroup of (Z,+).  Thus, if A and B are 
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subgroups of G, AB need not be a subgroup of G.  But, if A⊆B is a 

subgroup of G.  The next exercise says that this is the only situation in 
which AB is a subgroup of G. 

 
SELF ASSESSMENT EXERCISE 6 
 
Let A and B be two subgroups of a group G. Prove that AB is a 

subgroup of G iff A ⊆B or B ⊆A. 
 
(Hint: Suppose A⊆B and B⊆A. Take a ∈ A \ B and e B \ A. Then 
show that ab⊄  AB.  Hence, AB ≤G.  Note that proving this 

amounts to proving that AB ≤ G ⇒ A ⊆  B or B ⊆  A. 

Let us now see what we mean by the product of two subsets of a group 
G. 
 
Definition 
 
Let G be a group and A, B be non-empty subsets of G. 
 
The product of A and B is the set AB = {ab   a ∈ A, b ∈ B}. 
 
For example, (2Z) (3Z) = {(2m) (3m) | m, n ∈ Z} 

     = {6mn | m, n ∈ Z} 
     =6Z. 

In this example we find that the product of two subgroups is a subgroup. 
But is that always so? Consider the group 
 
S1 = {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, and its subgroups H = {1, (1 
2)} and K = {1, (1 3)}. 
 

Remember, (1 2) is the permutation 







312
321

and ( )321 is the 

permutation 







132
321

.) 

 
Now HK = {I ◦ I, I ◦ (1 3), (1 2) ◦I, (1 2) ◦ (1 3)} 
      = {I, (1 3), (1 2), (1 3 2)} 
 
HK is not a subgroup of G, since it is not even closed under 
composition.  (Note that (1 3) ◦ (1 2) = (1. 2 3) ∉ HK.) 
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So, when will the product of two subgroups be a subgroup? The 
following result answers this question. 
 
Theorem 5 
 
Let H and K be subgroups of a group G.  Then HK is a subgroups of G 
if HK = KH. 
 
Proof 
 
Firstly, assume that HK ≤ G.  We will show that HK = KH.  Let hk ∈ 
HK.  Then (hk)-1 = k-1 h-1 ∈ HK, since HK ≤ G. 
 
Therefore, k-1 h-1 = k1 h1 for some h1∈ H, k1∈ K.  But then hk = (k-1 h-1)-

1 = 1
1

1
1 hk −− ∈ KH.   Thus, HK⊆  KH. 

 
Now, we will show that KH ⊆  HK. Let kh ∈ KH. Then (kh)-1 = h-1 k-1 
∈ HK.  But HK ≤ G. Therefore, (kh)-1)-1 ∈ HK, that is, kh ∈ HK. Thus, 
KH ⊆  HK. 
 
Hence, we have shown that HK = KH. 
 
Conversely, assume that HK = KH. We have to prove that HK ≤ G. 
Since e = e2 ∈ HK, HK ≠ φ.   
Now, let a, b∈ HK. Then a = hk and b = h1 kl for some h, h1 ∈ Hand k, 
kl ∈ K. 
 
Then ab-1 = (hk) (k 1

1
−  h 1

1
− )= h [ (kk, 1

1
− ) h 1

1
− ]. 

 
Now (kk 1

1
− ) h 1

1
−  ∈ KH = HK. Therefore, ∃  h2k2 ∈ HK such that (kk 1

1
− ) 

h 1
1
−  = h2k2. 

+Then, ab-1 = h(h2k2) = (hh2)k2 ∈ HK. 
Thus, by Theorem 1, HK ≤ G. 
 
The following result is a nice corollary to Theorem 5. 
 
Corollary:  If H and K are subgroups or abelian group G, then HK.  
 
Try the following exercise now. 
 
SELF ASSESSMENT EXERCISE 7 
 
Is AB a subgroup of S4, where A = {I, (1 4)} and B = {I, (1 2)}?  
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The next topic that we will take up is generating sets. 
 
3.3  Cyclic Groups  
 
In this section we will briefly discuss generating sets, and then talk 
about cyclic groups in detail. 
 
Let G be any group and S a subset of G. Consider the family F of all 
subgroups of G that contain S, that is, 
 
F = {H | H ≤ G and S ⊆  H}. 
 
We claim that F≤ φ.  Why Doesn’t G ∈ F? Now, by Theorem 4′, 

FH
H
∈

  is 

a subgroup of G. 
 
Note that 
 
i         S ⊆  

FH
H
∈

 . 

 
ii.       

FH
H
∈

  is the smallest subgroup of G containing S. (Because if K is 

a subgroup of G containing S, then K ∈ F. 
Therefore,

FH
H

∈
⊆ K.    ) 

 
These observations lead us to the following definition. 
 
Definition 
 
If S is a subset of a group G, then the smallest subgroup of G containing 
S is called the subgroup generated by the set S, and is 'written as <S>. 
 
Thus, <S> = ∩ {H | H ≤ G, S ⊄  H}. 
If S = φ, then <S> = {e}. 
If <S> = G, then we say that G is generated by the set S, and that S is a 
set of generators of G. 
 
If the set S is finite, we say that G is finitely generated.  
 
Before giving examples, we will give an alternative way of describing 
<S>. This definition is much easier to work with than the previous one. 
 
Theorem 6 
 
If S is a non-empty subset of a group G, then 
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<S> = { }.Sa|a.....aa i
n
k

n
2

n
1

k21    Zn ..,…… ,n k,   i   1 for k1∈   
 
Proof 
 
Let A = { }.Sa|a.....aa i

n
k

n
2

n
1

k21    Zn ..,…… ,n k,   i   1 for k1∈  
Since a1……, ak ∈ S ⊆  <S> and <S> is a subgroup of G, .Sa 1

1

n >∈<  
 
Now, let us see why <S> ⊆  A. We will show that A is a subgroup 
containing S. Then, by the definition of <S>, it will follow that <S> ⊆  
A. 
 
Since any a ∈ S can be written as a =al, S ⊆  A. 
Since S / φ A / φ. 
 
Now let x, y ∈ A. Then x = )a.......aa( k21 n

k
n
2

n
1

1m
r

m
2

m
1 )b.......bb( r21 − l 

                      = )a.......aa( k21 n
k

n
2

n
1 .A)b.......b( 1r m

1
m

r ∈−  
 
Thus, by Theorem 1, A is a subgroup of G. Thus, A is a subgroup of G 
containing S.  And hence, <S> ⊆  A. 
 
This shows that <S> = A.  
 
Note that, if (G, +) is a group generated by S, then any element of G is 
of the form n1 a1 + n2 a2 + …….. nr ar, where a1, a2 …., ar ∈ S and n1, n2 nr 
∈ Z. 
 
For example, Z is generated by the set of odd integers S = {±1, ±3, 
±5,….}. Let us see why.   Let m ∈ Z. Then m = 2 r

s  where r ≥ 0 and s ∈ 
S. Thus, m e <5>. And hence, <S> = Z. 
 
Try the following exercises now. 
 
SELF ASSESSMENT EXERCISE 8 
 
Show that S = {I} generates Z. 
 
SELF ASSESSMENT EXERCISE 9 
 
Show that a subset S of N generates the group Z of all integers iff there 
exist 
S1….. , Sk in Sand nl, ….. nk in Z such that n1s1 + …...+ nksk =1. 
 
(Hint: Apply Theorem 6.) 
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SELF ASSESSMENT EXERCISE 10 
 
Show that if S generates a group G and S ⊆  T ⊆  G, then <T> = G. 
 
Self-Assessment Exercise 10 shows that a group can have many 
generating sets. Self Assessment Exercise 8 gives an example of a group 
that is generated by only one element. We give such a group a special 
name. 
 
Definition 
 
A group G is called a cyclic group if G = < {a} > for some a ∈ G. We 
usually write < {a} > as < a>. 
 
Note that < a > = {an | n ∈ Z}. 
 
A subgroup H of a group G is called a cyclic subgroup if it is a cyclic 
group. Thus, < (12) > is a cyclic subgroup of S3 and 2Z = <2> is a cyclic 
subgroup of Z. 
 
We would like to make the following remarks here. 
 
Remark 3 
 
i. If K ≤ G and a ∈ K, then <a> ⊆K.  This is because <a> is the 

smallest subgroup of G containing 
 
ii. All the elements of <a> = {an | n∈ Z} may or may not be a 

distinct.  For example, take a = (1 2) ∈ S3. 
 
Then < (1 2)> = {I, (1 2)}, since (1 2)2 = I, (1 2)3 = (1 2), and so on. 
 
SELF ASSESSMENT EXERCISE 11 
 
Show that if G ≠ {e}, then G ≠ < e >. 
 
SELF ASSESSMENT EXERCISE 12 
 
Show that <a> = <a-1> for any a ∈ G. 
 
We will now prove a nice property of cyclic groups. 
 
Theorem 7 
 
Every cyclic group is abelian 
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Proof 
 
Let G = <a> = {an | n ∈ Z}.  Then, for any x, y in G there exist m, n ∈ Z 
such that x = am, y = an.  But, then xy = am. aa = am +n = an.am = yx.  Thus, 
xy = yx for all x, y. in G. 
 
That is, G is abelian. 
 
Note that Theorem 7 says that every cyclic group is abelian.  But this 
does not mean that every abelian group of is cyclic.  Consider the 
following example. 
 
Example 7 
 
Consider the set K4 = {e, a, b, ab} and the binary operation of K4 given 
by the table. 
 

•  e a b ab 

e e a b ab 

a a e ab b 

b b ab e a 

ab ab b a e 

 
The table shows that (K4 , .) is a group. 
 
This group is called the Klein 4-group, after the pioneering German 
group theorist Felix Klein. 
 
Show that K4 is abelian but not cyclic. 
Solution 
 
From the table we can see that K4 is abelian. If it were cyclic, it would 
have to be generated by e, a,. b or ab. Now, < e > = {e}. Also, al =a,a2 = 
e,a3 = a, and so on. 
 
Therefore, < a > = {e, a}. Similarly, < b > = {e, b} and < ab > = { e, ab}. 
 
Therefore, K4 can't be generated bye, a, b or ab. 
Thus, K4 is not cyclic. 
 
Use Theorem 7 to solve the following exercise. 
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SELF ASSESSMENT EXERCISE 13 
 
Show that S3 is not cyclic. 
 
Now let us look at another nice property of cyclic groups. 
 
Theorem 8 
 
Any subgroup of a cyclic group is cyclic. 
 
Proof 
 
Let G = < x > be a cyclic group and H be a subgroup. 
 
If H = {e}, then H = < e >, and hence, H is cyclic. 
 
Suppose H ≠ {e}. Then 3 n ∈ Z such that xn∈ H, n ≠ 0. Since H is a 
subgroup, (x-n)-1 = x-n ∈ H. Therefore, there exists a positive integer 
m(i.e., n or-n) such that xm ∈ H.  Thus, the set S = {t ∈ N | xt | ∈  H} is 
not empty.  By the well-ordering principle (see Sec.) 1.6.1.) S has a least 
element, say k. We will show that H = < xk >. 
 
Now, <xk > ⊆  H, since xk ∈ H. 
 
Conversely, let xn be an arbitrary element in H. By the division 
algorithm n = mk + r where m, r ∈ Z, 0 ≤ r ≤ k-l. But then xr = xr = xn – 

mk = xn. xk)m ∈ H, since xn, xk ∈.  H. But k is the least positive integer 
such that xk ∈ H.  Therefore, xr can be in H only if r = 0. And then, n = 
mk and xn  = (xk)m ∈ < kk >.  Thus, H ⊆  < xk >. Hence, H = < xk?, that 
is, H is cyclic. 
 
Using Theorem 8 we can immediately prove what we did in Example 4. 
. 
Now, Theorem 8 says that every subgroup of a cyclic group is cyclic. 
But the converse is not true. That is, we can have groups whose proper 
subgroups are all cyclic, without the group being cyclic. We give such 
an example now. 
 
Consider the group S3, of all permutations on 3 symbols. Its proper 
subgroups are subgroups are all cyclic, without the group being cyclic.  
We give an example now. 
 
Consider the group S3, of all permutations on 3 symbols.  Its proper 
subgroups are 
 
A = < 1 >   
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B = <12>  
C = < (1 3) > 
D = < (2 3) >  
E = <123> 
 
As you can see, all these are cyclic. But, by Self Assessment Exercise 
you know that S3 itself is not cyclic.  
 
Now we state a corollary to Theorem 8, in which we write down the 
important point made in the proof of Theorem 8.  
 
Corollary:  Let H ≠{e} be a subgroup of < a >. Then H = < an >, where 
n is the least positive integer such that an ∈ H. 
 
Try the following exercises now. 
 
SELF ASSESSMENT EXERCISE 14 
 
Show that any non-abelian group must have a proper subgroup other 
than {e}. 
 
SELF ASSESSMENT EXERCISE 15 
 
Obtain all the subgroups of Z4, which you know is < 1 >. 
 
 Let us now see what we have done in this unit. 
 
4.0 CONCLUSION 
 
Subgroups play important roles in group theory. In MTH 312 you will 
be introduced to another important subgroups called the normal 
subgroups which has a lot of application in some other sciences such as 
Molecular Chemistry, You are to read carefully and master all the 
materials in this unit.  
 
5.0 SUMMARY 
I 
n this unit we have covered the following points. 
 
• The definition and examples of subgroups. 
• The intersection of subgroups is a subgroup.  
• The union of two subgroups H and K is a subgroup if and only if 

H ⊆K or K ⊆  H. 
• The product of two subgroups H and K is a subgroup if and only 

if HK = KH. 
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• The definition of a generating set. 
• A cyclic group is abelian, but the converse need not be true. 
• Any subgroup of a cyclic group is cyclic, but the converse need 

not be true. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 1 
 
1. Yes, because H is a group in its own right. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 2 
 
 2. {e} ≠ . Also for any e e-1 = e ∈ {e} ….., by Theorem 1, {e} ≤ G. 

G ≤ φ.  Also for any x ∈ G, x--1 ∈ G.  :., for a, b ∈ G. 
 A, b e G ∴ ab-1 e G. ∴G ≤ G. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 3 
 
Since 0)1(,1 nn =ω−=ω i.e., 
(1 - .0......1)( 1n2 =ω++ω+ω+ω −  
Since .0......1,1 1n2 =ω++ω+≠ω −  
 
ANSWER TO SELF ASSESSMENT EXERCISE 4 
 
From Self Assessment Exercise 14 of Unit 2 recall the elements of S3. 
On writing the operation table for S3 you will find that only I commute 
with every permutation in S3. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 5 
 
The divisors of 9 are 1, 3 and 9 
Thus, 9Z is a subgroup of Z, 3Z and itself only. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 6 
 
We know that if A ⊆  B or B ⊆  A, then AB is A or B, and hence, is a 
subgroup of G. 
 
Conversely, we will assume that A⊆  Band B ⊆  A, and conclude that 
AB ≰ G. 
Since A⊆B, ∃  a ∈ A such that a ∉ B. 
 
Since B⊆A, ∃  b ∈ B such that b ∉ A. 
 
Now, if ab ∈ A, then ab = c, for some c ∈ A. 
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Then b = a-1 c ∈ A, a contradiction.  ∴ab ∉ A. Similarly, ab ∉ B. ...ab 
∉ AB. 
 
But a ∈ AB and b ∈ AB. So, AUB ≰ G.  
 
ANSWER TO SELF ASSESSMENT EXERCISE 7 
 
AB = {I, (1 4), (1 2), (1 2 4)  
But, (1 2) ◦ (14) = (142) ∉ AB. ∴ AB ≰ S4 
 
ANSWER TO SELF ASSESSMENT EXERCISE 8 
 
For any n ∈ Z, n = n. l ∈ < {1} >.  ∴ Z = < {1} >. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 9 
 
Firstly, suppose Z = < S>. Then 1 ∈ < S >.  ∴ ∃s1,….,sk ∈ S and  
nl, ……. ,nk ∈ Z such that n1s1 +….. + nksk = 1. 
 
Conversely, suppose∃ , s1, …….sk ∈ S and n1,…., nk ∈ Z such that  
n1s1 + n2s2 +….. + nksk = 1. 
 
Then, for any n ∈ Z, n = n.1 = nn1, s1, + ...:. + nnksk ∈ <S>. 
∴ Z = < S >. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 10 
 
We know that G = < S >. Therefore, for any g ∈ G, 
∃  s1……,sk ∈ S and  n1,….., nk ∈ Z such that g = k1 n

k
n
1 s.........s m  

Since S ⊆T, s1 ∈ T Vi = 1, …., k. 
∴ by Theorem 6, we see that G = < T >. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 11 
 
Since G ≠ {e}, ∃a ≠ e in G.  Since a ≠ e for any r ∈ Z. a ≠< e >. 
∴ G ≠ < e >. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 12 
 
We will show that < a > ⊆< a-1> and < a-1> ⊆  < a >. 
Now, any element of < a > is an = (a-1) -n, for n ∈ Z. 
∴ an ∈ < a-1 >. ∴< a > ⊆  < a-1 >. 
 
Similarly, < a-1 > = < a >. 
 
< a >=< a-1>. 
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ANSWER TO SELF ASSESSMENT EXERCISE 13 
 
Since S3 is not abe!ian (e.g., (1 3) ◦ (1 2) ≠  (1 2) ◦ (1 3)), by . 
Theorem 7, S3 can't be cyclic. 
 
6.0   TUTOR-MARKED ASSIGNMENT 
 
1. Let G be a non-abelian group. Then G ≠ {e}. Therefore, 3 a ∈ G, 

a ≠ e. Then < a > G. G ⊆  < a >, since G is non-abelian. ∴ < a > 
≤ G. 

2.    Since Z4 is cyclic, all its Subgroups are cyclic. 
Thus, its Subgroups are Z4, < 2  >, < 3  > and 

 
7.0    REFERENCES/FURTHER READING 
 
Blacksell:  Topics in Algebra. 
 
Birkhaffand Melhew (1972). Survey of Modern Algebra.  
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UNIT 4  LAGRANGE'S THEOREM 
 
CONTENTS 
 
1.0  Introduction  
2.0 Objectives 
3.0 Main Content 

3.1 Cosets  
 3.2 Lagrange’s Theorem  
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Reading 
 
1.0  INTRODUCTION 
 
In the previous unit we have discussed different subgroups. In this unit 
we will see how a subgroup can partition a group into equivalence 
classes. To do this we need to define the concept of cosets.  
 
In Sec. 4.3 we use cosets to prove a very useful result about the number 
of elements in a subgroup. The beginnings of this result were made in a 
research paper on the solvability of algebraic equations by the famous 
mathematician Lagrange. Today this elementary theorem is known as 
Lagrange’s theorem, though Lagrange proved it for subgroups of Sn 
only.  
 
While studying MTH 312 you will be using Lagrange’s theorem again 
and again.  So, make sure that you read this unit carefully. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to:: 
 
• form left or right cosets of a subgroup 
• partition a group into disjoint cosets of a group 
• prove and use Lagrange’s theorem. 
 
3.0 MAIN CONTENT 
 
3.1  Cosets  
 
In Sec. 3.3 we defined the product of two subsets of a group. We will 
now look at the case when one of the subsets consists of a single 
element only. In fact, we will look at the situation H{x) = {hx | h ∈ H}, 
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where H is a subgroup of a group G and x ∈ G. We will denote H{x} by 
Hx. 
 
Definition  
 
Let H be a subgroup of a group G, and let x ∈ G. We call the set, 
{hx | h E H} a right coset of H in G. The element x is a representative 
of Hx. 
 
We can similarly define the left coset  
 
xH {xh | h E H} 
 
Note that, if the group operation is +, then the right and left cosets of H 
in (G,+) represented} x ∈ G are 
 
H+x = {h+x  |  h∈ H} and x + H = { x + h  |  h∈ H} , respectively.  
 
Let us look at some examples. 
 
Example 1  
 
Show that H is a right as well as a left coset of a subgroup H in a group 
G. 
 
Solution 
 
Consider the right coset of H in G represented by e, the identity of G. 
Then 
He= {he | h∈ H} = {h | h ∈ H} =H. 
 
Similarly, eH = H.  
 
Thus, H is a right as well as left coset of H in G.  
 
Example 2  
 
What are the right cosets of 4Z in Z? ' 
 
Solution 
 
Now H = 4Z = {….., -8, -4, 0, 4, 8, 12, ….} 
 
The, right cosets of H are 
H + 0 = H, using Example 1. 
H +1 = {…… , -11, -7, -3, 1,5,9, 13,….. } 
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H + 2 = {….., -10, -6, -2, 2, 6, 10, 14, …..} 
H+3 = { ….,-9,-5,-1,3,7,11,15,…. } 
H + 4 = {….., -8, -4, 0, 4, 8, 12,…..} = H 
 
Similarly, you can see that H+5 = H+1, H+6 = H+2, and so on. 
 
You can also check that H-1 = H+3, H-2= H+2, H-3 = H+1, and so on 
 
Thus, the distinct right co sets are H, H+1, H+2 and H+3.  
 
 In general, the distinct right cosets of H (= nZ) in Z are H, H+l,  
 
H+ (n-l). Similarly, the distinct left cosets of H (=nZ) in Z are H, 1 +H, 
2+H ......, (n-1) + H. 
 
Before giving more examples of cosets, let us discuss some properties of 
cosets. 
 
Theorem 1 
 
Let H be a subgroup of a group G and let x, y ∈ G. 
 
Then 
 
a.  x  ∈ Hx 
b.  Hx = H ⇔ x ∈ H.  
c.  Hx = H ⇔ xy-1 ∈ H. 
 
Proof  
 
a. Since x = ex and e ∈ H, we find that x ∈ Hx. 
b.  Firstly, let us assume that Hx = H. Then, since x ∈ H x, x ∈ H. 

 
Conversely, let us assume that x ∈ H. We will show that Hx ⊆  H 
and H ⊆  Hx. Now any element of Hx is of the form hx, where h 
∈ H. This is in H, since h ∈ H and x ∈ H. Thus, Hx ⊆   H. 
Again, let h∈ H. Then h = (hx-l) x ∈ Hx, since hx-1 ∈ H. 
 
∴ H ⊆Hx. 
∴ H = Hx. 

 
c.  Hx = Hy = ⇔ Hxy-1 = Hyy-1 = He = H ⇔ xy-1 ∈ H, by (b). 

 
Conversely, Xy-1 ∈ H ⇔ Hxy-1 = H ⇔ Hxy-1y = Hy ⇔ Hx = Hy. 
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Thus, we have proved (c). 
 
The properties listed in Theorem 1, are not only true for right cosets.  
We make the following observations. 
 
Note:  Along the lines of the proof of Theorem 1, we can prove that if H 
is a subgroup of G and x, y ∈ G,  
 
a.   x ∈ xH.  
b.  xH = H ⇔ x ∈ H. 
c.  xH = yH ⇔ x-ly ∈ H.  
 
Let us look at a few more examples of cosets. 
 
Example 3 
 
Let G = S3 = {I, (1 2), (1 3), (2 3), (1 23), (13 2) and H be the cyclic 
subgroup of G generated by (1 2 3). Obtain the left cosets of H in G. 
 
Solution 
 
Two cosets are 
 
H = {I, (1 23), (1 3 2)} and 
(1 2)H = {(1 2), (1 2) ◦ (1 2 3), (1 2) ◦ (1 3 2)} 

= {(1 2), (2 3), (1 3)) 
 
For the other cosets you can apply Theorem 1 to see that 
 
(1 2) H = (2 3)H = (1 3)H and 
(123)H = (132)H. 
 
Thus, the distinct left cosets of Hare H and (1 2)H. 
 
Try the following exercise now. 
 
SELF ASSESSMENT EXERCISE 1 
 
Obtain the left and right cosets of H = < (1 2) > in S3.  Show that Hx ≠ 
xH for some x ∈ S3. 
 
Let us now look at the cosets of a very important group, the quaternion 
group. 
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Example 4  
 
Consider the following set of 8 2x2 matrices over C. 
 
Q8 = {±I, ±A, ±B, ±C}’ where 
 

I = 







10
01

’ A = 







− 01

10
, B = 








− i0
i0

, C = 







− i0
0i

and i = .1−  

 
You can check that the following relations hold between the elements of  
Q8: 
 
I2 = I, A2 = B2 = C2 =-I, 
AB = C = -BA, BC = A = -CB, CA = B = -AC. 
 
Therefore, Q8 is non-abelian group under matrix multiplication. 
 
Show that the subgroup H = < A > has only two distinct right cosets in 
Q8. 
 
Solution 
 
H = < A> = {I, A, A2, A3} = {I, A, -I, -A}, 
Since A4 = I, A5 = A, and so on. 
Therefore, HB = {B, C, -B, -C}, using the relations given above. 
Using Theorem I (b), we see that 
H= HI = HA = H(-I) = H(-A). 
Using Theorem I(c), we see that 
HB =HC= H(-B) = H(-C). 
Therefore, H has only two distinct right co sets in Q8, H and HB. 
 
The following exercise will help you to understand Q8. 
 
SELF ASSESSMENT EXERCISE 2 
 
Show that K = {I, -I} is a subgroup of Q8, Obtain all its right cosets in 
Q8. 
 
We will show that each group can be written as the union of disjoint 
cosets of any of its subgroups.  For this we define a relation on the 
elements of G. 
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Definition 
 
Let H be a subgroup of a group G.  We define a relation ‘~’ on G by x~y 
iff xy-1 ∈ H, where x, y ∈ G.  Thus, from Theorem 1 we see that x ~ y 
iff Hx = Hy. 
 
We will prove that this relation is an equivalence relation (see unit 1). 
 
Theorem 2 
 
Let H be a subgroup of a group G. Then the relation ~defined by ‘x ~y’ 
xy-1 ∈ H is an equivalence relation. The equivalence classes are the right 
cosets of H in G. 
 
Proof  
 
We need to prove that ~is reflexive, symmetric and transitive. 
 
Firstly, for any x ∈ G, xx-1 = e ∈ H,  ∴ x ~ x, that is, ~ is reflexive. 
 
Secondly, if x ~ y for any x, y ∈ G, then xy-1 ∈ H. 
 
∴ xy = xy-1- ∈ H, Thus, y ~ x.  That is, ~ is symmetric. 
 
Finally, fi x, y, z, ∈ G such that x ~ y and y ~ z, then xy-1 ∈ H and yz-1 

∈ H. 
 
 ∴ (xy-1) (yz-1) = x(y-1y)z-1 = xz-1 ∈ H, ∴x ~ z. 
 
That is ~ is transitive. 
Thus, ~ is an equivalence relation. 
The equivalence class determined by x ∈ G is  {x |  = {y ∈ G | y – x} = 
{y ∈ G | xy-1 ∈ H}. 
 
Now, we will show that [x] = Hx. So, let y ∈ [x]. Then Hy = Hx, by 
Theorem 1.   And since y ∈ Hy, y ∈ Hx. 
 
Therefore, [x] ⊆  Hx. 
 
Now, consider any element hx of Hx. Then x(hx)-1 = xx-1 h-1 = h-1 ∈ H. 
 
Therefore, hx ~ x. That is, hx ∈ [x]. This is true for any hx ∈ Hx. 
Therefore, H ⊆  G [x]. 
 
Thus, we have shown that [x] = Hx. 
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Using Theorem 2 and Theorem 1 (d) of Unit l, we can make the 
following remark. 
 
Remark 
 
If Hx and Hy are two right cosets of a subgroup H in G, then Hx = Hy 
or Hx∩Hy = φ. 
 
Note that what Theorem 2 and the remark above say is that any 
subgroup H of a group G partitions G into disjoint right cosets. 
 
On exactly the same lines as above we can state that 
 
i.  any two left cosets of H in G are identical or disjoint, and 
ii.  G is the disjoint union of the distinct left cosets of H in G. 
 
So, for example, S3 = < (1 23) >   (1*2) < (1 2 3) > (using Example 3). 
 
You may like to do the following exercises now. 
 
SELF ASSESSMENT EXERCISE 3 
 
Let H be a subgroup of a group G. Show that there is a one-to-one 
correspondence between the elements of H and those of any right or left 
coset of H. 
 
(Hint:  Show that the mapping f: H → Hx: f(h) = hx is a bijection.) 
 
SELF ASSESSMENT EXERCISE 4 
 
Write Z as a union of disjoint cosets of 5Z. 
 
Using Self-Assessment Exercise 3 we can say that if H is a finite 
subgroup of a group G, then the number of elements in every coset of 
H is the same as the number of elements in H. 
 
We will use this fact to prove an elementary theorem about the number 
of cosets of a subgroup of a finite group 10, the next section. 
 
3.2 LAGRANGE'S THEOREM  
 
In this section we will first define the order of a finite group and then 
show that the order of any subgroup divides the order of the group. 
So let us start with a definition. 
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Definition 
 
The order of a finite group G is the number of elements in G.  It is 
denoted by o(G).  
For example, o(S3) = 6 and o(A3) = 3. Remember, A3 = {I, (1 23), (1 
32)}! 
 
You can also see that o(Zn> = n. And, from Sec. 2.5.2 you know that 
o(Sn> = n! . 
 
Now, let G be a finite group and H be a subgroup of G. We define a 
function f between the set of right cosets of H in G and the set of left 
cosets of H in G by 
 
f: {Hx  |  x ∈ G} → {y H  | y∈ G}: f (Hx) = x-1H. 
 
Now try Self-Assessment Exercise 5. 
 
SELF ASSESSMENT EXERCISE 5 
 
Check that f is a bijection. 
 
Self-Assessment Exercise 5 allows us to say that there is a one-to-one 
correspondence between the right cosets and the left cosets of H in G. 
Thus, the number of distinct right cosets of H in G always equals the 
number of distinct left cosets of H in G. 
 
Definition 
 
Let H be a subgroup of a finite group G. We call the number of distinct 
of H in G the index of H in G, and denote it by | G : H|. 
 
Thus, from Example 3 we see that | S3: A3| = 2.  
 
Note that, if we take H = {e}, then | G: {e} | = o(G), since {e}g = {g} V 
g ∈ G and {e}g ≠ {c}g′ if g ≠g′ . 
 
Now let us look at the order of subgroups. In Sec. 3.4 you saw that the 
orders of the subgroups of S3 are 1, 2, 3 and 6. All these divide o(S3) = 
6. This fact is part of a fundamental theorem about finite groups. Its 
beginnings appeared in a paper in 1770, written by the famous French 
mathematician Lagrange. He proved the result for permutation groups 
only.  The general result was probably proved by the famous 
mathematician Evariste Galois in 1839. 
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Theorem 3 (Lagrange)  
 
Let H be a subgroup of a finite group G. Then o(G) = o(H) | G: H |. 
Thus, o(H) divides o(G), and | G: H | divides o(G). 
 
Proof 
 
You know that we can write G as a union of disjoint right cosets of H in 
G. So, if Hx1, Hx2, are all the distinct right cosets of if in G, we have 
 
G = Hx1  Hx2 ……  Hxr …………. (1)  
 
From Self Assessment Exercise 3, we know that | Hx1 | = | Hx2 | =...= | 
Hxr | =o(H). 
 
Thus the total number of elements in the union on the right hand side of 
(l) is element o(H) + o(I I) +….. + o(H) (r    times) = r o(H). 
 
Therefore, (1) says that o(G) = r o(H)  

   =o(H) | G: H |.' 
 
You will see the power of Lagrange's theorem when we get down to 
obtaining all the subgroup of a finite group. 
 
For example, suppose we are asked to find all the subgroups of a group 
G of order 35. Then the only possible subgroups are those of order 1, 5, 
7 and 35. So, for example, we don't need to waste time looking for 
subgroups of order 2 or 4.  
 
In fact, we can prove quite a few nice results by using Lagrange's 
theorem. Let us prove some results about the order of an element. But 
first, let us define this phrase. 
 
Definition  
 
Let G be a group and g ∈ G. Then the order of g is the order of the 
cyclic subgroup < g >, if < g > is finite. We denote this finite number by 
o(g). If < g > is an infinite subgroup of G, we say that g is of infinite 
order.  
 
Now, let g ∈ G have finite order. Then the set {e, g, g2, ...} is finite, 
since G is finite. Therefore, all the powers of g can't be distinct.  
 
Therefore, gr = gS for some r > s. Then 
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gr-s ⇒,e and r-s ∈ N. Thus, the set {t ∈ N | gt = e} is non-empty. So, by 
the well-ordering principle it has a least element Let n be the least 
positive integer such that gn = e. 
 
Then  
 
< g > = {e. g, g2, gn - 1}. 
Therefore, o(g) =0< g > = n. 
 
That is, o(g) is the least positive integer n such that gn = e. 
 
(Note that. if g ∈ (G, + ), then o(g) is the least positive integer n such 
that gn = e.) 
 
Now suppose g ∈ G is of infinite order. Then, for m ≠ n, gm ≠ gn. 
(Because, if gm n = e, which shows that < g > is a finite group.) We will 
use this fact while proving 
 
Theorem 5 
 
Try the following exercise now. 
 
SELF ASSESSMENT EXERCISE 6 
 
What are the orders of  
 

a) (1 2) ∈ S3,  b)  I  ∈ S4,  c)  







− 01

10
∈ Qg, 

d) 3 ∈ Z4,  e)  1 ∈ R? 
 
Now Jet us prove an important result about the order of an element. 
 
Theorem 4  
 
Let G be a group and g ∈ G be of order n. Then gm = e for some m ∈N 
iff n | m. 
 
Proof 
 
We will first show that gm e ⇒ n | m.  For this & consider the set 
S = {r ∈ Z  | gr = e}. 
 
Now, n ∈ S. Also, if a, b ∈ S, then ga = e = gb. Hence, ga -b = ga (gb)-1 = 
e. Therefore. 
a-b ∈ S. Thus, S ≤  Z. 
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So, from Example 4 of Unit 3, we see that S = nZ. Remember, n is the 
least positive integer in S!  
 
Now if gm = e for some m ∈ N, then m ∈ S = nZ. Therefore, n | m. 
 
Now let us show that n | m ⇒ gm = e. Since n | m, m = nt for some t ∈ 
Z; Then gm = gnt = (gn)t = et = e. Hence, the theorem is proved. 
 
We will now use Theorem 4 to prove a result about the orders of 
elements in a cyclic group. 
 
Theorem 5  
 
Let G = < g > be 11 cyclic group. 
 
a.  If g is of infinite order then gm is also of infinite order for every m 

∈ Z. 

b.  If o(g) = n, then o(gm) = 
)m,n(

n V m = 1, …., n-l.((n, m) is the 

g.c.d. of n and m.) 
 
Proof 
 
a.  An element is of .infinite order iff all its powers are distinct. We 

know that all the powers of gm are distinct. We have to show that 
all the powers of gm are distinct. If possible, let (gm)t = (gm)w. 
Then gmt = gmw. But then mt = mw, and hence t = w. This shows 
that the powers of gm are all distinct, and hence gm is of infinite 
order. 

 
b.  Since o(g) = n, G= {e, g,….. , gn -1} < gm >, being a subgroup of 

G, must be of finite order. Thus, gm is of finite order. Let o(gm) = 

t. We will show that t
)m,n(

n . 

Now, gmt = (gm)t y= e ⇒ n |  tm, by Theorem 4. 
 
Let d = (n, m). We can then write n = n1d, m = m1d, where (ml nl) =1. 
 

Then n1 d
n = 

)m,n(
n

 

 
Now, n | tm ⇒ n | tmld  ⇒ n1d | tmld ⇒ n  |  tm1. 
 
But (n,ml) = 1. Therefore, nl |  t.  ……………………..………... (1) 
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Also, .ee)g(ggg)g( 11111111 mmnnmdmdnmnm ======  
 
Thus, by definition of o(gm) and Theorem 4, we have 

t  | nl, ……………………………………………… (2) 
 
 (1) and (2) show that 

t = n1  ,
m,n

n  

i.e., o(gm) = 
m,n

n  

 

Using this result we know that o )4( , in Z12 is  
)4,12(

12 = 3. 

The next exercise will give you some practice in using Theorem 5. 
 
SELF ASSESSMENT EXERCISE 7 
 
Find the orders of= ,4,2  and 5∈ Z18. 
 
The next exercise is a consequence of Lagrange’s theorem. 
 
SELF ASSESSMENT EXERCISE 8 
 
Let G be a finite group and x ∈ G.  Then, show that o(x) divides o(G).  
In particular, show that xo(G) = e. 
 
We use the result of Self-Assessment Exercise 8 to prove a simple but 
important result of finite group theory. 
 
Theorem 6 
 
Every group of prime order is cyclic. 
 
Proof 
 
Let G be a group of prime order p.  Since p ≠ 1, ∃ a ∈ G such that a ≠ e.  
Now, by Self-Assessment Exercise and Theorem 4, o(a) | p.  Therefore, 
o(a) = 1 or o(a) = p.  Since a  ≠ e, o(a) ≥ 2. 
 
Thus, o(a) = p, i.e., o(< a >) = p.  So, < a > ≤ G such that o(< a >) = 
o(G).   Therefore, < a> = G.  That is, G is cyclic. 
 
Using Theorem 3 and 6, we can immediately say that all the proper 
subgroups of a group of order 35 are subgroups. 
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Now let us look at groups of composite order. 
 
Theorem 7 
 
If G is a finite group such that o(G) is neither 1 nor a prime, then G has 
non-trivial proper subgroups. 
 
Proof 
 
If G is not cyclic, then any a ∈ G, a ≠ e, generates a proper non-trivial 
subgroup < a >. 
 
Now suppose G is acyclic, say G = < x >, where o(x) = mn (m, n ≠ 1). 
 
Then, (xm)n = xmn = e.  Thus, by Theorem 4, o(xm) ≤ n < o(G). 
 
Now, you can see Theorem 7 to solve the following exercise. 
 
SELF ASSESSMENT EXERCISE 9 
 
Obtain two trivial proper subgroups of Z8. 
 
We will now prove certain important number theoretic results which 
follow from Lagrange’s theorem.   Before going further, recall the 
definition of ‘relatively prime’ from Sec. 1.6.2. 
 
We first define the Euler phi-function, named after the Swiss 
mathematician Leonard Euler (1707 – 1783). 
 
Definition 
 
We define the Euler phi-function φ : N → N as follows: 
 
φ(i) = 1, and 
φ(u) = number of natural numbers < n and relatively prime to n, for  
n ≥ 2. 
 
For example, φ(2) = 1 and φ(6) = 2 (since the only positive integers < 6 
and relatively prime to 6 are 1 and 5). 
 
We will now prove a lemma, which will be needed to prove the theorem 
that follows it.   This lemma also gives us examples of subgroups of Zn, 
for every  
n ≥ 2. 
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Lemma1: Let G = { 1)n,r(|Zr n =∈ } , where n ≥ 2.  Then (G,.) is a 
group, 
where rssr = V s ,r ∈ Zn. Further, o(G) = φ (n). 
 
Proof 
 
We first check that G is closed under multiplication. 
 
Now, s ,r ∈ G ⇒ (r, n) = 1 and (s, n) = 1 ⇒ (rs, n) = 1. 
 
⇒ rs  ∈ G.  Therefore, is a binary operation on G. 
 
1∈ G, and its identity. 
 
Now, for r ∈ G, (r, n) = 1. 
⇒  ar + bn = 1 for some a, b, ∈ Z (by Theorem 8 of Unit 1) 
⇒ n  |  ar 
⇒ ar = 1 (mod n) 
⇒ .1   r  a =  
⇒ 1-r a =  
 
Further,  a ∈ G, because if a and n have a common factor other than 1, 
then this factor will divide ar + bn = 1.  But that is not possible. 
 
Thus, every element in G has an inverse. 
 
Therefore, (G,.) is a group. 
 
In fact, it is the group of the elements of Zn that have multiplication 
inverse.  Since G consist of all those r ∈ G such that r < n and (r, n) = 1, 
o(G) = φ(n).   
 
Lemma 1 and Lagrange’s theorem immediately give us the following 
result due to the mathematician Euler and Pierre Fermat. 
 
Theorem 8 (Euler-Fermat) 
 
Let a ∈ N and n ≥ 2 such that (a, n) = 1. 
Then, aφ(n) = 1 (mod n). 
 
Proof 
 
Since a  ∈ Zn and (a, n) = 1, a  ∈ G (of Lemma 1).  Since o(G) = φ(n), 
we use Self-Assessment Exercise and find that a-φ(n) = 1 . 
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Thus, aφ(n)= 1 (mod n). 
Now you can use Theorem 8 to solve the following exercises. 
 
SELF ASSESSMENT EXERCISE 10 
 
What is the remainder left on dividing 347 by 23?  (Note that φ(23) = 22, 
since each of the numbers 1, 2, …, 22 are relatively prime to 23.) 
 
SELF ASSESSMENT EXERCISE 11 
 
Let a ∈ N and p be a prime.  Show that = 1 (mod p).  (This result is 
called Fermat’s little theorem.  To prove it you will need to use the 
fact that φ(p) = 
 p-1.) 
 
You have seen how important Lagrange’s theorem is. Now, is it true that 
if  
m | o(G), then G has a subgroup of order m?  IF G is cyclic, it is true.  
(You can prove this on the lines of the proof of Theorem 7.)  But, if G is 
not cyclic, the converse of Lagrange’s theorem is not true.   
 
In Unit 7 we will show you that the subgroup 
A4 = {I, (1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), 

(1 2),  
          (3 4), (1 3), (2 4), (1 4), (2 3)}. 
of S4 has no subgroup of order 6, though 6 | 12 = o(A4). 
 
Now let us summaries what we have done in this unit. 
 
4.0 CONCLUSION 
 
We have examined in this unit subgroup and cosets of a group. You 
should read this unit carefully because it will useful in MTH 312 where 
we shall be considering a class of subgroup called normal subgroup.  
 
5.0 SUMMARY 
 
In this unit we have covered the following points. 
 
• The definition and examples of right and left cosets of a 

subgroup. 
• Two left (right) cosets of a subgroup are disjoint or identical. 
• Any subgroup partitions a group into disjoint left (or right) cosets 

of the subgroup. 
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• The definition of the order of a group and the order of an element 
of a group 

• The proof of Lagrange’s theorem, which states that if H is a 
group of a finite group G, then o(G) = o(H)  | G : H |.  But, if m | 
o(G), then G need not have a subgroup of order m. 

• The following consequences of Lagrange’s theorem: 
 
 (i) Every group of prime order is cyclic. 
 (ii) aφ(n)  ≡ 1 (mod n), where a, n ∈ N, (a, n) = 1 and n ≥ 2. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 1 
 
H = {I, (1 2)}, 
 
Its left cosets are H, (1 2)H, (1 3 )H, (2 3 )H, (1 2 3)H, ( 1 3 2)H. 
 
Now, (1 2)H = H, ( 1 2 3)H = ( 1 3)H, ( 1 3 2)H = (2 3)h. 
Thus, the distinct left cosets of H in S3 are H, (1 3)H, (2 3)H. 
 
Similarly, the distinct right cosets of H in S3 are  
H, H(1 3), H(2 3). 
 
Now, (1 3)H = {(1 3), ( 1 2 3)} and H(1 3), (1 3 2)} 
∴ (1 3) H ≠ H( 1 3). 
 
You can also see that (2 3)H ≠ H(2 3). 
 
ANSWER TO SELF ASSESSMENT EXERCISE 2 
 
Since ab-1∈ K V a, b ∈ K, we can apply Theorem 1 of Unit 3 to say that 
K ≤ Q8. 
Now, K = KI = K(-I), KA = K(-A) = {A, -A}’ 
KB – K(-B) = {B, -B}, KC = K(-C) = {C, -C} 
 
ANSWER TO SELF ASSESSMENT EXERCISE 3 
 
Let Hx be a coset of H in G.  Consider the function f: H → Hx: f(h) = 
hx. 
Now, for h, h′ by cancellation. 
 
Therefore, f is 1 – 1. 
F is clearly surjective.  Thus, f is a bijection. 
And hence, there is a one-to-one correspondence between the elements 
of H and those of Hx. 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 109 

Similarly, the map f: H → Hx: f(h) = xh is  a bijection. 
Thus, the elements of H and xH are in one-to-one correspondence. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 4 
 
The distinct cosets of 5Z in Z are 5Z, 5Z + 1, 5Z + 2, 5Z + 3, 5Z + 4. 
∴ Z = 5Z5Z + 15Z + 25Z + 35Z + 4. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 5 
 
f is well defied because Hx = Hy ⇒ xy-1 ∈ H ⇒ (xy-1)-1 ∈ H 
⇒ (y-1)-1 x-1 ∈ x-1H y-1H 
⇒ f(Hx) = f(Hy) 
f is 1 – 1 because f(Hx) = f(Hy) ⇒ x-1H = y-1H 
⇒ yx-1∈ H ⇒ xy-1 ∈ Hx = Hy. 
F is surjective because any left coset of H in G is yH = f(Hy-1). 
 
Therefore, f is a bijection. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 6 
 
i. ( 1 2) ≠ 1, ( 1 2)2 = ( 1 2) ◦ ( 1 2) = I ∴ o ((1  2)) = 2. 
ii. 11 = I. ∴ (I) = 1. 
iii. 2 
iv. .4)3(o,0123,4,193,3,262,2,03 =======≠   
 v. Since < 1 > R is infinite, 1 is of infinite order. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 7 
 
Z18 < 1 >.  Thus, using Theorem 5, we see that  

o( )r = o( )1,r = 
)r,18(

18 , for any r ∈ Z18 

∴ o( 2 ) = 9, o( 4 ) = 9, o( 5 ) = 18. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 8 
 
Since o(x) = o(< x >) and o(< x >)  |  o(G), o(x)  |  o(G). 
Thus, using Theorem 4, xo(G) = e. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 9 
 
o(Z8) = 8 = 2 x 4. 
2∈ Z8 such that o( )2 = 4.  Then < .Z2 8<>  
Similarly, 8Z4∈ such that o )4( = 2. ∴< >4 < Z8. 
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ANSWER TO SELF ASSESSMENT EXERCISE 10 
 
We know that in Z23, 1 )3( )23( =φ  , 
that is, 322  = 131 44 =∴  .  
∴ 347 = 3-3, 344 = 27  =− ,33  
Thus, 347

 = 27 (mod 23). 
 
Therefore, on dividing 347 by 23, the remainder we get is 27. 
 
ANSWER TO SELF ASSESSMENT EXERCISE 11 
 
We get the result immediately by using Theorem 8 and the fact that φ (p) 
= p – 1. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. State and prove the Lagrange Theorem. 
2.  Show that every subgroup of a commutative group is normal. Is 

the converse true? Justify your answer. 
 
7.0 REFERENCES/FURTHER READING 
 
Blacksell: Topics in Algebra. 
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MODULE 2 
 
Unit 1  The Basics  
Unit 2  Polynomial Rings 
Unit 3  Special Integral Domains 
Unit 4  Irreducibility and Field Extensions 
 
 
UNIT 1 THE BASICS  
 
CONTENTS  
 
1.0 Introduction  
2.0 Objectives  
3.0 Main Content  

3.1 Integral Domains 
3.2 Fields 
3.3 Prime and Maximal Ideals 
3.4 Field of Quotients  

4.0 Conclusion  
5.0 Summary  
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings   
 
1.0 INTRODUCTION 
 
We are considering in this unit a special ring, whose specialties lay in 
the property of their multiplication. We shall examine a type of ring 
called Integral Domain. In MTH 312 we shall examine Rings into 
details and also examine their mathematical structures. 
 
Next, we will look at rings like Q, R, C, and Zp (where p is a prime 
number). In these rings the non-zero elements form an abelian group 
under multiplication. Such rings are called fields. These structures are 
very useful, one reason being that we can “divide” in them. 
 
Related to integral domains and fields are certain special ideals called 
prime ideals and maximal ideals. In this unit we will also discuss them 
and their corresponding quotient rings. 
 
Finally, we shall see how to construct the smallest field that contains a 
given integral domain. This is essentially the way that Q is constructed 
from Z. we call such a field the field of quotients of the corresponding 
integral domain. 
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In this unit, we have tried to introduce you to a lot of new concepts. You 
may need some time to grasp them. Don’t worry; take as much time as 
you need. But by the time you finish it, make sure that you have attained 
the following objectives. Only then will you be comfortable in the 
remaining units of this course. 
 
2.0 OBJECTIVES  
 
At the end of this unit, you should be able to:  
 
• check whether an algebraic system is an integral domain or not 
• obtain the characteristic of any ring 
• check whether an algebraic system is a field or not 
• define and identify prime ideals and maximal ideals 
• prove and use simple properties of integral domains and fields  
• construct or identify the field of quotients of an integral domain.  
 
3.0 MAIN CONTENT  
 
3.1 Integral Domains 
 
You know that the product of two non-zero integers is a non-zero 
integer, i.e., if m, n ∈ Z such that m = 0, n / 0, then mn ≠ 0. Now 

consider the ring Z6. We find that 
−

2  ≠ 
−

0  and 
−

3  / 
−

0 , yet 
−

2 .
−

0  = 
−

0 . So, 

we find that the product of the non-zero elements 
−

2 and 
−

3  in Z6 is zero. 

As you will soon realize, this shows that 
−

2 (and
−

3) is a zero divisor, i.e., 
−

0  is divisible by 
−

2  (and 
−

3). 
 
So, let us see what a zero divisor s. 
 
Definition  
 
A non-zero element in a ring R is called a zero divisor in R if there 
exists a non-zero element b in R such that ab = 0 
 
(Note that b will be a zero divisor~ too!) 
 

Now do you agree that 
_
2  is a zero divisor in Z6? What about 

_
3  in Z4? 

Since
_
3  x / 

_
0 for every non-zero x in Z4, 

_
3  is not a zero divisor in Z4. 

 
Our short discussion may help you to do the following exercise.  
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E 1)  Let n e N and m | n, 1 < m < n. Then show that 
_
m  is a zero 

divisor in Zn. 
 
Now let us look at an example of a zero divisor m C[0,1]. Consider the 
function f ∈ C[0,1] given by f(x) =  
 







≤≤

≤≤−=
12/1,0

2/10,
2
1

)(
x

xxxf  

 
Let us define g: [0,1] '-) R by 
 





≤≤−
≤≤

=
12/1,2/1

2/10,0
)(

xx
x

xg  

 
Then g∈ C[0.l], g / 0 and (fg) (x) = 0 ∈∀ x  [0,l], Thus, fg is the zero 
function. Hence, f is a zero divisor in C[0,1]. 
 
For another example, consider the Cartesian product of two non-trivial 
rings A and B. For every a ≠ 0 in A. (a.0) is a zero divisor in A x B, This 
is because, for any b / 0 in B, (a.0) (0.b) = (0.0) 
  
Now let us look al the ring ℘(X), where X is a set with at least two 
elements. Each non empty proper subset A of X is a zero divisor 
because A.Ac = A φ=∩ cA , the zero element of ℘(X). 
 
Try these exercises now. 
 
E 2)  List all the zero divisors m Z. 
 
E 3)  For Which rings with unity will I be a zero divisor? 
 
E 4)  Let R be a ring and a ∈R be a zero divisor. Then show that every 

element of the principal deal Ra is a zero divisor. 
 
Let us now talk of a type of ring that is without zero divisors. 
 
Definition 
 
We call a non-zero ring R an integral domain if  
 
i)  R is with identity and  
ii) R has no Zero divisors.  
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Thus, an integral domain is a non-zero ring with identity in which the 
product of two non-zero elements. 
This kind of ring gets its name from the set of integer, one of its best 
known examples. Other examples of domains that immediately come to 
mind are Q.R and C. What about C[01,]? You have already seen that it 
has zero divisors. Thus C[0.1] is not a domain  
 
The next result gives us an important class of examples of integral 
domains  
 
Theorem 1 
 
Zp is an integral domain iff p is a prime number,  
 
Proof 
 
Firstly, let us assume that p is a prime number. Then you know that Zp is 
a non-zero ring with identity. Let us see if it has zero divisors/ for this, 
suppose pZba ∈, satisfy 0, =ba  then a 0=b , i.e., p | ab. Since p is a prime 
number, using E 25 of Unit 1 we see that p | a or p | b. Thus, a = 

.00 == bora  What we have shown is that if 0≠a and 0≠b , then .0≠ba  
Thus, Zp is the trivial ring, which is not a domain.  
 
Conversely, we will show that if p is not a prime, then Zp is not a 
domain. So, suppose p is not a prime. If p = 1, then Zp is the trivial ring, 
which is not a domain. 
 
If p is a composite number and m | p, then by E 1 you know that ∈m Zp 
is a zero divisor. Thus, Zp has zero divisors. Hence, it is not a domain.  
 
Try this exercise now 
 
E 5) Which of the following rings are not domains? Why? 
 Z4, Z5, 2Z, Z + iZ, R x R, {0} 
 
Now consider a ring R. we know that the cancellation law for addition 
holds in R, i.e whether a+b = a+c in R, then b = c. But, does ab = ac 
imply b = c? it need not. For example, o.1 = 0.2 in Z but 1≠ 2. So, if a = 
0, ab = ac need not imply b = c. But, if a ≠ 0 and ab = ac, is it true that b 
= c? We will prove that this is true for integral domains. 
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Theorem 2 
 
A ring R has no zero divisors if and only if the cancellation law for 
multiplication holds in R (i.e., if a,b,c∈ R such that a ≠ 0, and ab = ac, 
then b = c) 
 
Proof 
 
Let us first assume that R contains no zero divisors. Assume that 
a,b,c∈R such that a ≠ 0. Suppose ab = 0 for some b∈R. Then ab = 0 = 
a0. Using the cancellation law for multiplication, we get b = 0. So, a is 
not a zero divisor, i.e., R has no zero divisors. 
 
Using this theorem we can immediately say that the cancellation aw 
holds for multiplication in an integral domain.  
 
Now, you can use this property of domains to solve the following 
exercises.  
 
E 6) In a domain, show that the only solutions of the equation x2 = x 

are x = 0 and x = 1. 
 
E 7) Prove that 0 is the only nilpotent element (see Example 9 of Unit 

10) in a domain. 
 
Now let us introduce a number associated with an integral domain, in 
fact, with any ring. For this let us look at Z4 first. We known that 4x = 

∈∀ x0 Z4. In fact, 8x = 0 and 12 x = 0 also for any x ∈ Z4. 
 
But 4 is the least element of the set {n ∈ N | nx = ∈∀ x0 Z4}. This shows 
that 4 is the characteristics pf Z4 as you will see now. 
 
Definition 
 
Let R be a ring. The least positive integer n such that nx = ∈∀ x0 R is 
called the characteristic of R. If there is no positive integer n such that 
nx= ∈∀ x0 R, then we say that the characteristic of R is zero. 
 
We denote the characteristic of the ring R by char R. 
 
You can see that char Zn = n and char Z = 0. 
 
The following exercises will give you some practice in obtaining the 
characteristic of a ring. 
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E 8) Show that char ℘(X) =2, where X is a non empty set. 
 
E 9)  Let R be a ring and char R = m. What is char (R x R) 
 
Now let us look at a nice result for integral domains. It helps in 
considerably reducing our labour when we want to obtain the 
characteristic of a domain. 
 
Theorem 3 
 
Let m be a positive integer and R be an integral domain. Then the 
following conditions are equivalent. 
 
a)  m 1 = 0. 
b)  ma = 0 for all a ∈ R. 
c)  ma = 0 for some a ≠ in R. 
 
Proof  
 
We will prove (a) ⇒  (b) ⇒  (c) ⇒  (a).  
(a) ⇒  (b): We know that m l = 0. 
 
Thus, for any a ∈ R, ma = (la) ={ml) (a) = 0a = 0, i.e., (b) holds. 
 
(b) ⇒  (c): If ma = 0  a ∈∀ a0  R, then it is certainly true for some a ≠  

0 in R. 
 
(c) ⇒  (a) : Let mil = 0 for some a ≠  0 in R. Then 0 = ma = m (1a) = 
(m.) a. As a ≠  0 and R is without zero divisors, we get m1 = 0. 
 
What Theorem 3'tells us is that to find the characteristic of a domain 
we on1y need to look at the set {n,1 | n ∈ N}. 
 
Let us look at some examples. 
 
i)  char Q=0, since n.1≠ 0 for any n ∈ N. 
ii) Similarly, char R = 0 and char C = 0. 
iii)  You have already seen that char Zn = n. Thus, for any positive 

integer n, there exists a ring with characteristic n. 
 
Now let us look at a peculiarly of the characteristic of a domain. 
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Theorem 4 
 
The characteristic of an integral domain is either zero or a prime 
number. 
 
Proof 
 
Let R be a domain. We will prove that if the characteristic of R is not 
zero, then it is a prime number. So suppose char R = m, where m ≠ 0. So 
m Iii the least positive integer such that m.1 = 0. We will show that m is 
a prime number by supposing that it is not, and then proving that our 
supposition is wrong. 
 
So suppose m = st, where s,t ∈ N, 1 < s < m and 1 < t < m. Then m.1 = 
0 ⇒ (st). l = 0 ⇒ (s.l) (t.1) = 0. As R is without zero divisors, we get s.l 
= 0 or t.1 = 0. But, s and t are less than m. So, we reach a contradiction 
to the fact that m = char R. Therefore, our assumption that m = st, where 
1 < s < m, 1 < t < m is wrong. Thus, the only factors of m are 1 and 
itself. That is, m is a prime number.  
 
You can now use your knowledge of characteristics to solve the 
following exercise 
 
E 10)  Let R be an integral domain of characteristic p. Pr0ve that 

 
a)  (a+b)p= ap+ bp and 

(a-b)p = ap- bp for all a, b∈R." 
 

b)  the subset { ap | a ∈R} is it subring of R. 
 

c)  the map Φ  : R →  R : Φ  (a) = ap is a ring homomorphism. 
 

d)  if R is a finite integral domain, then Φ is an isomorphism. 
 
E 11) Let R be a ring with unity 1 and char R = m. Define f: Z→R: f 

(n) = n.1. Show that f is a homomorphism. What is Kerf?  
 
E 12) Find the characteristic of Z3 x Z4. Use this ring as an example to 

show why Theorems 3 and 4 are only true for integral domains.  
 
We will now see what algebraic structure we get after we impose certain 
restrictions on the multiplication of a domain. If you have gone through 
our course Linear Algebra, you will already be familiar with the 
algebraic system that we are going to discuss, namely, a field. 
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3.2 Field  
 
Let (R, +,.) be a ring. We know that (R, +) is an abelian group. We also 
know that the operation is commutative and associative. But (R,.) is not 
an abelian group. Actually, even if R has identity, (R.,) will never be a 
group since there is no element a∈R such that a.0 = 1. But can (R\{0}.,) 
be a group? It can, in some cases. For example, from Unit 2 you know 
that Q* and R* are groups with respect to multiplication. This allows us 
to say that Q and R are fields a term we will now define.  
 
Definition 
 
A ring (r, +.,) is called a field if (R\{0}.,) is an abelian group.  
 
Thus, for a system (R, +.,) to be a field it must satisfy the ring axioms 
R1 to R6 as well as the following axioms. 
 
i) is commutative, 
ii) R has identity (which we denote by 1) and 1≠  0, and 
iii) every non-zero element x in R has a multiplicative inverse, which 

we denote by x-1. 
 
Just as a matter of information we would like to tell you that a ring that 
satisfies only (ii) and (iii) above, is called a division ring or a shew 
field or a non-commutative field. Such rings are very important in the 
study of algebra, but we will not be discussing them in this course. 
 
Let us go back to fields now. The notion of a field evolved during the 
19th century through the research of the German mathematicians Richard 
Dedekind and Leopold Kronecker in algebraic number theory. Dedekind 
used the German word Korper, which assdfsdf field, for this concept. 
This is why you will often find that a field is denoted by K. 
 
As you may have realized, two of the best known examples of fields are 
R and C. These were the fields that Dedekind considered. Yet another 
example of a field is the following ring. 
 
Example 1 
 
Show that Q + },|2{2 QbabaQ ∈+= is a field.  
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Solution 
 
From Unit 9 you know that F = Q + Q2 is a commutative ring with 
identity 1 + .0.2  

F
b

b
b

a

ba
ba

baba
b

ba
ba

∈
−
−

+
−

=

−
−

=
−+

−
=

+
=+

2222

22

22
)(2

22

2
2

)2()2(
22

2
1)2(

 

 
(Note that a2-2b2≠ 0, since 2 is not rational and either a≠ 0 or b≠ 0.) 
 
Thus, every non-zero element has a multiplicative inverse. Therefore, 
Q+ Q2 is a field. 
 
Can you think of an example of a ring that is not a field? Does every 
non-zero integer have a multiplicative inverse in Z? No. Thus, Z is not a 
field.  
 
By now you have seen several examples of fields. Have you observed 
that all of them happen to be integral domains also? This is not a 
coincidence. In fact, we have the following result. 
 
Theorem 5 
 
Every field is an integral domain. 
 
Proof 
 
Let F be a field. Then F≠ {0} and 1∈F. we need to see if F has zero 
divisors. So let a and b be elements of F such that ab = 0 and a≠ 0 and F 
is a field, a-1 exists. Hence, b =1.b = (a-1a) b = a-1 (ab) = a-1 0 = 0. Hence, 
if a≠ 0 and ab = 0, we get b = 0. i.e., F has no zero divisors. Thus, F is a 
domain. 
 
Now you try these exercises! 
 
E 13) Which of the following rings are not fields? 
 2Z, Z5, Z6, Q x Q 
E 14) Will a subring of a field be a field? Why? 
 
Theorem 5 may immediately prompt you to ask if every domain is a 
field. You have already seen that Z is a domain but not a field. But if we 
restrict ourselves to finite domains, we find that they are fields.  
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Theorem 6 
 
Every finite integral domain is a field. 
 
Proof 
 
Let R = {a0 = 0, 11 = 1, a2……,2n} be a finite domain. Then R is 
commutative also. To show that R is a field we must show that every 
non-zero element of R has a multiplicative inverse. 
 
So, let a = ai be a non-zero element of R (i.e., i≠ 0). Consider the 
elements aa1,…, aan. For every j ≠ 0, aj≠ 0; and since a ≠ 0, we get 
aaj≠ 0. 
 
Hence, the set {aa1, aa2…..,aan} ⊆  {a1,…..,an}. 
 
Also, aa1, aa2,…, aan are all distinct elements of the set {a1,…..,an}, 
since aaj = aak ⇒  aj = ak, using the cancellation law for multiplication. 
 
Thus, {aa1,….,aan} = {a1,….,an}. 
 
In particular, a1 = aaj, i.e., 1 = aaj for some j. thus, a is invertible in R. 
hence every non-zero element of R has a multiplicative inverse. Thus, R 
is a field.  
 
Using this result we can now prove a theorem which generates several 
examples of finite fields. 
 
Theorem 7 
 
Zn is a field if and only if n is a prime number. 
 
Proof 
 
From Theorem 1 you know that Zn is a domain if and only if n us a 
prime number. You also know that Zn has only n elements. Now we can 
apply Theorem 6 to obtain the result. 
 
Theorem 7 unleashes a load of examples of fields: Z2, Z3, Z5, Z7, and so 
on. Looking at these examples, and other examples of fields, can you 
say anything about the characteristic of a field? In fact. Using Theorems 
4 and 5 we can say that. 
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Theorem 8 
 
The characteristic of a field is either zero or a prime number. 
 
So far the examples of finite fields that you have seen have consisted of 
p elements, for some prime p. In the following exercise we give you an 
example of a finite field for which this is not so. 
E 15) Let R = {0,1,a,1+a}. Define + and in R as given in the following 

Cayley tables  
 
+ 0 1 a 1+a  . 0 1 a 1+a 

0 0 1 a 1+a  0 0 0 0 0 

1 1 0 1+a a and 1 0 1 a 1+a 

a a 1+a 0 1  a 0 a 1+a 1 

1+a 1+a a 1 0  1+a 0 1+a 1 a 

 
Show that R is a field. Find the characteristic of this field.  
 
Let us now look at an interesting condition for a ring to be a field  
 
Theorem 9  
 
Let R be a ring with identity. Then R is a field if and only if Rand {0} 
are the only ideals of R. 
 
Proof 
 
Let us first assume that R is a field. Let I be an ideal of R. If I ≠  {0}, 
there exists a non-zero element x ∈ I. As x ≠ 0 and R is a field, xy = 1 
for some y ∈ R. Since x ∈ I and I is an ideal, xy ∈ I. i.e., 1 ∈ I. 
  
Thus, by Theorem 4 of Unit 10, I = R. So, the only ideals of R are {0} 
and R. 
 
Conversely, assume that Rand {0} are the only ideals of R. Now, let a ≠  
0 be an element of R. Then you know that the set Ra = {ra | r∈ R} is a 
non-zero ideal of R. Therefore, Ra = R. Now, 1 ∈ R = Ra. Therefore, 1 
= ba for some b ∈ R, i.e., a-1 exists. Thus, every non-zero element of R 
has a multiplicative inverse. Therefore, R is a field. 
. 
This result is very useful. You will be applying it again and again in the 
rest of the units of this block. 
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Using Theorem 9, we can obtain some interesting facts about field 
homeomorphisms (i.e., ring homeomorphisms from one field to 
another). We give them to you in the form of an exercise. 
 
16)  Letf: F →  K be a field homomorphism. Show that either f is the 

zero map or f is 1-1. 
 
E 17)  Let R be a ring isomorphic to a field F. Show that R must be a 

field. 
 
E 17 again goes to show that isomorphic algebraic structures must be 

algebraically identical. 
 
Now that we have discussed domains and fields, let us look at certain 
ideals of a ring, with respect to which the. quotient rings are domains or 
fields. 
 
3.3  Prime and Maximal Ideals 
  
In Z we know that if P is a prime number and p divides the product of 
the integers a and b, then either p divides a or p divides b. In other 
words, if ab ∈ pZ, then either ∈ pZ or b ∈ pZ. Because of this property 
we say that pZ is a prime ideal, a term we will define now. 
 
Definition  
 
A proper ideal P of a ring R is called a prime ideal of R if whenever ab 
∈ P for a, b∈ R, then either a ∈ P or b ∈ P. 
 
You can see that {0} is a prime ideal of Z because ab∈ {0}⇒  a ∈ {0} 
or b∈ {0}, where a,b ∈ Z. 
 
Another example of a prime ideal is 
 
Examp1e 2  
 
Let R be an integral domain. Show that I = {(0,x) | x ∈ R) is a prime 
ideal of R x R.  
 
Solution  
 
Firstly, you know that I is an ideal of R x R. Next, it is a proper ideal 
since I ≠ R x R. Now, let us check if I is a prime ideal or not. For this let 
(a1,b2), (a2,b2) ∈ R x R such that (a1,b2), (a2,b2) ∈ I Then (a1a2b1,b2) = 
(0,x) for some x (a1,b2), (a2,b2) ∈  R ∴ a1a2 = 0, i.e., at = 0 or a2 = 0, 
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since R is a domain. Therefore (a1,b1) ∈ I or (a1,b2) ∈ I. Thus, I is a 
prime ideal.  
 
Try the following exercises now. They will help you get used to prime 
ideals. 
 
E 18) Show that the set I= {f ∈ C[0,l] | f(0) = 0} is a prime ideal of 

C[0,l]. 
E 19) Show that a ring R with identity is an integral domain if and only 

if the zero ideal {0} is a prime Ideal of R. 
 
Now we will prove the relationship between integral domains and prime 
ideals. 
 
Theorem 10 
 
An ideal P of a ring R with identity is a prime ideal of R if and only if 
the quotient ring R/P is an integral domain. 
 
Proof 
 
Let us first assume that P is a prime ideal of R. Since R has identity, so 
has R/P. Now, let a+P and b+P be in R/P such that (a+P) (b+P) = P, the 
zero element of R/P. Then ab+P = P, i.e., ab∈P. As P is a prime ideal of 
R either a∈P or b∈P. So either a+P = P or b+P = P. 
 
Thus, R/P has no zero divisors. 
 
Hence, R/P is an integral domain. 
 
Conversely, assume that R/P is an integral domain. Let a,b∈ R such that 
ab∈P. Then ab + P = P in R/P, i.e., (a+P) (b+P) = P in R/P. As R/P is an 
integral domain, either a+P = P or b+P = P, i.e., either a∈P or b∈P. This 
shows that P is a prime ideal of R. 
 
Using Theorem 10 and Theorem 1 we can say that an ideal mZ of Z is 
prime in m is a prime number. Can we generalize this relationship 
between prime numbers and prime ideals in Z to any integral domain? 
To answer this let us first try and suitably generalize the concepts of 
divisibility and prime elements.  
 
Definition  
 
In a ring R, we say that an element a divides an element b (and denote it 
by a | b) if b = ra for some r ∈ R. In this case we also say that a is a 
factor of b, of a is a divisor of b. 
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Thus, 3  divides 6  in Z7, since 62.3 = . 
 
Now let us see what a prime element is. 
 
Definition 
 
A non-zero element p of an integral domain R is called a prime element 
if 
 
i) p does not have a multiplicative inverse, and  
 
ii) whenever a, b∈R and p | ab, then p | a or p | b. 
 
Can you say what the prime elements of Z are? They are precisely the 
prime numbers and their negatives. 
 
Now that we know what a prime element is, let us see if we can relate 
prime ideals and prime elements in an integral domain.  
 
Theorem 11 
 
Let R be an integral domain. A non-zero element p ∈ R is a prime 
element if and only if Rp is a prime ideal of R.  
 
Proof 
 
Let us first assume that p is a prime element in R. Since p does not have 
a multiplicative inverse, 1 ∉ Rp. Thus, Rp is a proper ideal of R. Now 
let a, b ∈ R such that ab ∈ Rp. Then ab = rp for some r ∈ R. 
 
⇒  p | ab 
⇒  p | a or p | b, since p is a prime element  
⇒  a = xp or b = xp for some x ∈ R 
⇒  a ∈ Rp or b ∈ Rp 
 
Thus ab ∈ Rp ⇒  either a ∈ Rp or b ∈ Rp, i.e., Rp is a prime ideal of R.  
 
Conversely, assume that Rp is a prime ideal. Then Rp ≠  R. Thus, 1 ∉ 
Rp, and hence, p does not have a multiplicative inverse. Now suppose p 
divides ab, where a, b ∈ R. Then ab = rp for some r ∈ R, i.e., ab ∈ Rp. 
 
As Rp is a prime ideal, either a ∈ Rp or b ∈ Rp. Hence, either p | a or p | 
b. Thys, p is a prime element in R. 
 
Theorem 11 is very useful for checking whether an element is a prime 
element or not, or for findings out when a principal ideal is a prime 
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ideal. For example, now we can use E 19 to say that 0 is a prime element 
of R iff R is a domain. 
 
Prime ideals have several useful properties. In the following exercises 
we ask you to prove some of them  
 
E 20)  Let f: R ~ S be a ring epimorphism with kernel N. Show that 
 
a)  if J is a prime ideal in S, then f (J) is a prime ideal in R. 
b)  if 1 is a prime ideal in R containing N, then f(l) is a prime ideal in 

S. 
c)  the map 0 between the set of prime ideals of R that contain N and 

the set of all prime ideals of S given by φ  (I) = f(I) is a bijection. 
 
E 21)  If II and 12 are ideals of a ring such that neither II ,nor 12 

contains the other, then show that the ideal  I1 I2 is, not prime. 
 
Now consider the ideal 2Z in Z. Suppose the ideal nZ in Z is such that 
2Z ⊆nZ ⊆Z. Then n | 2 ∴n = ±  l or n = ± 2. ∴nZ = Z or nZ = 2Z. 
 
This shows that no ideal can lie between 2Z and Z. That is, 2Z is 
maximal among the proper ideals of Z that contain it. So we say that it is 
a "maximal ideal", Let us define this expression. 
 
Definition  
 
A proper ideal M of a ring R is called a maximal ideal if whenever I is 
an ideal of R such that M⊆  I ⊆  R, then either I = M or 1 = R. 
 
Thus, a proper ideal M is a maximal ideal if there is no proper ideal of R 
which contains it. An example that comes to mind immediately is the 
zero ideal in any field F. This is maximal because you know that the 
only other ideal of F is F. itself. 
 
To generate more examples of maximal ideals, we can use the following 
characterization of such ideal. 
 
Theorem 12 
 
Let R be a ring with identity. An ideal M in R is maximal if and only if 
R/M is a field  
 
Proof 
 
Let us first assume that M is a maximal ideal of R. We want to prove 
that R/M is a field. For this it is e'1ough to prove that R/M has no non-
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zero proper ideals (see theorem 9). So, let 1 be an ideal of R/M. 
Consider the canonical homomorphismη : R →  R/M: η  (r) = r + M. 
Then, from Theorem 3 of Unit 11, you know that η -1 (I) is an ideal of R 
containing M, the kernel of η . Since M is a maximal ideal of R, η -1 (I) = 
M or η -1 (I) = R. Therefore, I = η (η -1 (I)) is either η (M) or η (R), That 
is, I = { 0 } or I = R/M, where 0 = 0+M = M. Thus, RIM is a field. 
 
Conversely, let M be an ideal of R such that R/M is a field. Then the 
only ideals of R/M are { 0 } and R/M. Let I be an ideal of R containing 
M. Then, as above, η  (I) = { 0 } or, η (I) = R/M. 
 
∴I =η -1 (η (I)) is M or R. Therefore, M is a maximal ideal of R. 
 
Now look at the following consequence of Theorem 12 (and a few other 
theorems too). 
 
Corollary 
 
Every, maximal ideal of a ring with identity is a prime ideal. 
 
We ask you to prove it in the following exercise. 
 
E72)  Prove the corollary given above.  
 
Now, the corollary is a one-way statement. What about the converse? 
That is, is every prime ideal maximal? What about the zero ideal in Z? 
Since Z is a domain but not a field and Z = Z/{0}, Z/{0} is a domain but 
not a field. Thus, {0} is a prime ideal but not a maximal ideal of Z. 
 
Now let us use Theorem 12 to get some examples of maximal ideals. 
 
Example 3 
 
Show that an Idea mZ of Z is maximal iff m is a prime number. 
 
Solution  
 
From Theorem 7 you know that Zm is a field iff m is a prime number. 
You  
Also know that Z/mZ ~ Zm. Thus, by E 17,Z/mZ is a field iff m is 
prime. Hence, by Theorem 12,mZ is maximal in Z iff m is a prime 
number.  
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Example 4 
 
Show that 122Z is a maximal ideal of Z12 ~ Z/27. Thus by E 23 of Unit 11, 
we see that Z12/ 122Z  ~ (Z/12Z)/(2Z/12Z) ~ Z/2Z ~ Z2, which is a field. 
Therefore, 122Z = ( 10,8,6,4,2,0 ) is maximal in Z12 
 
Now, .24}8,4,0{ 121212 ZZZ


⊂⊂=  

Try the following exercises now  
 
E 23) Show that { 8,6,4,2,0 } is maximal in Z10. 
 
E 24) Use Example 4 of Unit 11 to prove that the ideal 

{f }0)
2
1(|]1,0[ =∈ fC is maximal in C[0,1]. 

 
So, let us see what we have done in this section. We first introduced you 
to a special ideal of a ring, called a prime ideal. Its speciality lies in the 
fact that the quotient ring corresponding to it is an integral domain.  
 
Then we discussed a special kind of prime ideal, i.e., a maximal ideal. 
Why do we consider such an ideal doubly special? Because, the quotient 
ring corresponding to it is a field, and a field is a very handy algebraic 
structure to deal with.  
 
Now, if we restrict our attention to domains, can you think of any other 
method of obtaining a field from a domain? In the next section we look 
at such a method.  
 
3.4 Field of Quotients  
 
Consider Z and Q. You know that every element of Q is of the form 

b
a , 

where a ∈ Z and b ∈ Z*. Actually, we can also denote 
b
a by the ordered 

pair (a,b) ∈ Z x Z*. Now, in Q we know that 
d
c

b
a
= iff ad = bc. Let use 

put a similar relation on the elements of Z x Z*. 
 
Now, we also know that the operations on Q are given by 

.Q∈∀=
+

=+
d
c

b
a

db
ca

d
c

b
aand

db
bcad

d
c

b
a  
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Keeping these in mind we can define operations on Z x Z*. Then we can 
suitably define an equivalence relation on Z x Z* to get a field 
isomorphic to Q. 
 
We can generalise this procedure to obtain a field from any integral 
domain. So, take an integral domain R. Let K be the following set of 
ordered pairs: 
 

K = {(a,b) | a,b ∈ R and b ≠  0} 
 
We define a relation ~ in K by 
 

(a,b) ~ (c.d) if ad = bc. 
 

We claim that ~ is an equivalence relation. Let us see if this is so. 
 
i) (a,b) ~ (a,b) ∀ (a,b) ∈ K, since R is commutative. Thus, ~ is 

reflexive. 
 
ii) Let (a,b), (c.d) ∈ K such that (a,b) ~ (c.d). Then ad = bc, i.e., cb = 

da. Therefore, (c,d) ~ (a,b). Thus, ~ is symmetric. 
 
iii) Finally, let (a,b), (c,d), (u,v) ∈ K such that (a.b) ~ (c,d) and (c,d) 

~ (u,v). Then ad = bc and cv = du. Therefore, (ad) v = (bc)v = 
bdu, i.e., avd = bud. Thus, by the cancellation law for 
multiplication (which is valid for a domain), we get av = bu, i.e., 
(a,b) ~ (u,v). Thus, ~ is transitive. 

 
Hence, ~ is an equivalence relation. 
 
Let us denote tl1eequivalence class that contains (a,b) by [a,b]. Thus, 
[a,b] = {(c,d) | c,d ∈ R,d ≠  0 and ad = bc} 
 
Let F be the set of all equivalence classes of K with respect to  
 
Let us define + and in F as follows. (Itri1ighthelpyou to keep in mind 
the rules for adding and multiplying rational numbers.)  
 
[a,b] + [c,d] = [ad+bc,bd] and  
 
[a,b] [c,d] = [ac,bd]. 
 
Do you think + and are binary operations on F?  
 
Note that b ≠  0 and d ≠  0 in the integral domain R imply bd ≠  0. So, 
the right-hand sides of the equations given above are well defined 
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equivalence classes. Thus, the sum and product of two elements in F is 
again an element in F. 
 
We must make sure that these operations are well defined. 
 
So, let [a,b] = [a´,b´] and [c´,d´] = [c´,d´]. We have to show that [a,b] + 
[c,d] = [a´,b´] + [c´,d´], i.e:, [ad+bc,bd] = [a´d´+b´c´,b´d´]. 
 
Now, (ad+bc)b'd' -(a´d´ + b´c´) bd 
 
= ab´dd´ + cd´bb´- a´bdd´- c´dbb´ 
 
= (ab´-a´b)dd´ + (cd´-c´d) bb' 
 
= (0)dd´ + (0)bb´ since (a,b) ~ (a´,b´) and (c,d) ~ (c´,d´). 
 
= 0. 
 
Hence, [ad + bc,bd] = [a´ d´ + b´c´,b´d´], i.e., + is well defined. 
 
Now, let, us show that (a,b] .[c,d] = [a´,b´] . [c´,d´], 
 
i.e., [ac,bd] = [a´c´,b´d´]. 
 
Consider (ac) (a´c´,b´d´) 
 

= ab´cd´ - ba´dc´ = ba´cd´ - ba´cd´, since ab´ = ba´ and cd´ = dc´ 
 
= 0 
 

Therefore, [ac,bd} = [a´c´,b´d´]. Hence, .is well defined. 
 
We will now prove that F is a field. 
 
i)  + is associative : For [a,b], [c,d], [u,v] ∈ F, 

([a,b] + [c,d]) + [u,v] = [ad+bc,bd] + [u,v] 
= [(ad+bc)v + ubd, bdv]  
= [adv + b(cv+ud), bdv] 
= [a,b] + [cv+ud,dv] 
= [a,b] + ([c,d] + [u,v})' 

 
ii)  +is commuta1ive: For [a,b], [c,d] ∈ F, 

[a,b] + [c,d] = [ad + bc,bd] = [cd + da,db] = [c,d] + [a,b] 
 

iii)  [0,1] is the additive identity for F: For [a,b] ∈ F, 
[0,1] + [a.b] = [0.b+l.a, l.b] = [a,b]  

iv)  The additive inverse of [a,b] ∈ F is [-a,b]:  
[a,b] + [-a,b] = [ab-ab,b2] = [0,b2] = [0,1], since 0.1 = 0.b2, 
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We would like you to prove the rest of the requirements for F to be a 
field (see the following exercise).  
 
E 25)  Show that, in F is associative, commutative, distributive over +, 

and [1, 1] is the multiplicative identity for F. 
 
So we have put our heads together and proved that F is a field.  
 
Now, let us define f : R →  F : f(a) = la. I]. We want to show that f is a 
homomorphism. 
 
Firstly, for a, b ∈ R, 
 
f(a+b) = [a+b,l] = [a,1] + [b,1]. , .. 
 
= f(a) + f(b), and 
 
f(ab) = [ab,l] = [a,1]. [b,1] = f(a) .f(b).  
 
Thus, f is a ring homomorphism. 
 
Next, let a,b ∈ R such that f(a) = f(b). Then [a, 1] = [b,I], i.e., a = b. 
Therefore, f is 1 – 1. 
 
Thus, f is a homomorphism. 
 
So, 1m f = f(R) is a subring of F which is isomorphic to R. 
 
As you know, isomorphic structures are algebraically identical.  
 
So, we can identify R with f(R), and think of R as a subring of F. Now, 
any element of F is of the form  
 
[a,b] = [a, 1] [1,b] = [a,1] [b,1]-1 = f(a) f(b)-1, where b ≠  0. Thus, 
identifying x ∈ R with f(x) ∈ f(R), we can say that any element of. F is 
of the form ab-l, where a,b ∈ R. b ≠  0. 
 
All that we have discussed in this section adds up to the proof of the 
following theorem. 
 
Theorem 13 
 
Let R be an integral domain. Then R can be embedded in a field F such 
that every element of F has the form ab-1 for a, b ∈ R, b ≠  0.  
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The field F whose existence we have just proved is called the field of 
quotients (or the field of fractions) of R. 
 
Thus, Q is the field of quotients of Z. What is the field of quotients of 
R? The following theorem answers this question. 
 
Theorem 14  
 
If f : R →  K is a homomorphism of an integral domain R into a field K, 
then there exists a homomorphism 
 
g : F →  K : g([a,1]) = f(a), where F is the field of quotients of R. 
 
We will not prove this result here, since it is a little technical. But let u~ 
look at this theorem closely. It says that the field of quotients of an 
integral domain is the smallest field containing it. Thus, the field of 
quotients of any field is the field itself. So, the field of quotients of R is 
R and of Zp is Zp, where p is a prime number.  
 
Try these exercises now. 
 
E 26)  Is R the field of quotients of Z + 2 Z? Or, is it C? Or, is it 

Q+ 2 Q? Why'?  
 
E 27)  At what stage of the construction of the field F in Theorem 13 

was it crucial to assume that R is a domain?  
 
Let us now wind up this unit with a summary of what we have done in 
it.  
 
5.0 SUMMARY 
 
In this unit we have covered the following points. 
 
• The definition and examples of an integral domain. 
• The definition and examples of a field.  
• Every field is a domain. 
• A finite domain is a field. 
• The characteristic of any domain or field is either zero or a prime 

number.  
• The definition and examples of prime and maximal ideals. 
• The proof and use of the fact that a proper ideal I of a ring R with 

identity is prime (or maximal) iff R/I is an integral domain (or a 
field), 

• Every maximal ideal is a prime ideal.  
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• All element p. of an integral domain R is prime iff the principal 
ideal pR is a prime ideal or R. 

• Zn is a field iff n is a prime number. 
• The construction of the field of quotients of an Integral domain.  
 
ANSWER TO SELFASSESSMENT EXERCISE  
 
E1)  Let n = mr, where r ∈ N. 
 

Then nZinnrm 0==  
 

Since 1 < m < n, 0≠m . Similarly, 0≠r  
 

Thus ∈m Zn IS a zero divisor. 
 
E 2) Z has no zero divisors. 
 
E 3) For none since 1 x = x 00 ≠∀≠ x in the ring. 
 
E 4) Let b ≠  0 be in R such ab = 0. Then, for any r ∈ R, (ra)b = 0 

Thus, every element of Ra is a zero divisor 
 
E 5)  Z4, since 2 is a zero divisor. 
 

2Z, since 1 ∉ 2Z. 
R x R,  since (1,0) is a zero divisor.  

 
{0}, since a domain must be non-zero. 

 
E 6)  x2= x ⇒  x(x-l) = 0 ⇒  x = 0 or x-l = 0 
 

⇒  x = 0 or x = 1. 
 
E 7)  Let R be a domain and x ∈ R be nilpotent. , 

then xn =.0 .for some n ∈ N. Since R has no zero divisors, this 
implies that x = 0. 

 
E 8)  We want to show that 2A = ⊆∀ Aφ X, and that 2 is the least such 

natural number. Firstly, for any A ⊆  X, 
2A = A ∆  A =  (A \ A)   (A \ A) = φ  
 

Also, since X φ≠ , 1.X φ≠ . Thus, char ℘ (X) ≠  1. 
 
℘∴char (X) = 2 
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E9) Let char (R x R) = n. We know that mr =0 ∀  r ∈ R. 
 
Now, let (r,s) be any element of R x R. 
 
Then m(r,s) = (mr,ms) = (0,0), since r,s  ∈ R. 
 
Thus, n ≤  m  
 
On the other hand, if r ∈ R, then (r,0) ∈ R x R 
 
∴n(r,0) = (0,0). 
 
i.e., (nr,0) = (0,0) 
 
i.e., nr = 0 
 
This is true for any r ∈ R.  
 
∴m ≤  n. 
 
Thus, (1) and (2) show that m = n, i.e., char R = char (R X R)  
 
E 10a)  By the binomial expansion (E II of Unit 9), 
 

(a+b)p = ap + pC1 ap-1 b + …… + pCp-1 abp-1 + bp 

 
Since p | pCn ∀  n = 1,….., p-1, pCnx = 0 ∀x ∈ Rand ∀n = 1,….,P-l. 

 
Thus, pC1 ap-1 b = 0 = .. = pC1 abp-1  

 
∴(a+b)p = ap + bp. 

 

You can similarly show that (a-b)p = ap –bp, 
 
 b)  Let S = {ap | a ∈ R}  
 
Firstly, S φ≠ . 
 
Secondly, let βα −  (a-b)p ∈ S. Then α  = ap, β  = bp for some a,b ∈ R. 

 
Then βα − = (a-b)p ∈ S and αβ = (ab)p ∈ S.  

 
Thus, S is, a subring of R 
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c) φ  (a+b) = (a+b)p = ap + bp = φ  (a) + φ  (b),  
φ (ab) = (ab)P = aPbP = φ  (a) φ  (b).  
Thus, φ  is a ring homomorphism. 
φ  is 1-1 because . 
φ  (a) = φ  (b). ⇒  ap = bp ⇒  (a-b)p = 0, from (a). 
⇒  a-b = 0, since R is without zero divisors. 
⇒  a = b. 
 
d)  We have to show that if R is finite then 0 is surjective, 
Let R have n elements. Since φ  is 1-1, 1m φ  also has n elements. 
Also 1m ⊆φ  R. Thus, Im φ  = R. 
Hence, φ  is surjective. 

 
E 11)  You Can easily show that f is a ring homomorphism. 

 
Ker f = {n∈Z | n.1 = 0} 

= mZ4, since char R = m. 
 

E 1 2)  char (Z3 x Z4) = 1.c.m. of char Z3 and char Z4 = 12. 
 

Thus, the characteristic of Z3 x Z4 is neither 0 nor a prime. 
 

Note that Z3 x Z4 is not a domain, since it has several zero divisors. 
 

Now let us see why Theorem 3 is not valid for Z3 x Z4. 
 

Take ( ∈)0,1  Z3 x Z4. Then 3 ∈= )0,0()0,1(  Z3 x Z4 
 
But 3 ).0,0()0,1( ≠  Thus, Theorem 3(a) and Theorem 3(c) arc not 
equivalent in this case 
 
E 13)  2Z since 2 ∈ 2Z is not invertible in 2Z. 
 
Zn since it is not a domain 

 
Q x Q, since it is not a domain. 
 
E 14) No. For example, Z is a subring of Q,Q is a field, but Z is not. 
 
E 15)  From the tables you can see that R is commutative with identity 

and every non-zero element has an inverse: Thus, R is a field. 
 
Also 2x = 0 ∀  x ∈ Rand 1.x ≠  0 for some x E R.  
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Thus, char R = 2. 
 
E 16) Ker I is an ideal of F. Thus, by Theorem 9. 
 
Ker f = {0} or Ker f = F. 
 
If Ker f = {0}, then f is 1-1. 
 
If Ker f = F, then f = 0. 

 
E 17)  Let →Fφ R be an isomorphism. Then φ (1) is the identity of 1m 

φ  = R, Also, since F is commutative, so is R. Now, let ∈ R. r ≠  
O. Since φ  is onto, ∃  a ∈ F  such that φ  (a) = r. Since r ≠  0, 2 
≠ 0. Since F is a field, ∃  b ∈ F such that lib = 1.  

 
Thus, φ (ab) = φ (1), i.e., rφ (b) = φ (1)i.e., r has a multiplicative inverse. 
 
Thus, R is a field  

 
18)  Firstly, 1 is an ideal of C[0,1] 
 

(because f.g.∈ I ⇒  f-g, ∈ I, and 
 
T∈ C[0.I], f∈I ⇒Tf∈I.) 
 
Secondly, since any non-zero constant function is in 
 
C[0,1] \I. I is a proper ideal. 
 
Finally, let fg ∈ J. Then f(0) g(0) = 0 in R. Since R is a domain, we must 
have f(0) = 0 or g(0) = 0, i.e., f ∈ I or g ∈ I 
 
Thus, I is a prime idela of C[0,1]. 

 
E 19) R is a ring with identity. Thus, we need to show that R is without 

zero divisor iff {0} is aprime ideal in R. 
 
Now, {0} is a prime ideal in R 
 
iff ab ∈{0} ⇒  a ∈ {0} or b ∈ {0} for a, b ∈ R 
 
iff ab = 0 ⇒  a = 0 or b = 0 
 
iff R is without zero divisors. 

 
So, we have shown what we wanted to show 
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E 20) a) From Theorem 3 of Unit 11, you know that f-1 (J) is an 
ideal of R. Since f is syrjective and J ≠  S, f-1 (J) ∈ R 

 
Now, let a,b∈ R such that ab ∈ f-1 (J) 
 
⇒   f(ab) ∈ J. 
 
⇒   f(a) f(b) ∈ J. 
 
⇒   f(a) ∈ J or f(b) ∈ J, since J is a prime ideal. 
 
⇒   a ∈ f-1 (J) or b ∈ f-1 (J). 
 
Thus, f-1 (J) is a prime ideal in R 
 
b) Firstly, since f is onto, you know that f(I) is an ideal of S. Also, 

since 1 ∉ 1 and f-1(f(I)) = I (from Theorem 4 of Unit 11). F(1) ∉, 
f(I). Thus, f(I) ≠  S. 

 
Finally, let x,y ∈ S such that xy ∈ f(I) 
 
Since S = Im f, ∃  a,b ∈ R such that x = f(a) and y = f(b) 
 
Then f(ab) = xy ∈ f(I), i.e., ab ∈ f-1(f(I)) = I 
 
∴ a ∈ I or b ∈ I, i.e., x ∈ f(I) or y ∈ f(I) 
 
Thus, f(I) is a prime ideal of S. 
 
c) φ  is 1 – 1 : φ  (I) = φ  (J) ⇒  f(I) = f(J) 

 
⇒  f1- (f(I)) = f-1 (f(I)) I = J. 

 
φ is onto: Let J be a prime ideal of S. Then f-1- (J) is a prime ideal of R 
and φ  (f-1(J)) = f(f-1(J)) = J (from Unit 11). Thus, J ∈ Im φ . 
 
E 21) Let x ∈ I1\ I2 and y ∈ I2 \ I1. Then xy ∈ I1 and xy ∈ I2, since I1 

and I2 are ideals. 
 
∴xy ∈ I1   I2. But x ∉ I1   I2 and y ∉ I1   I2 

 
Thus, I1  I2 is not prime. 
 
E 22)  M is maximal in R 
⇒  R/M is a field, by Theorem 12 
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⇒R/M is a domain, by Theorem 5 
 

⇒  M is prime in R, by Theorem 10 
 

E 23)  { 8,6,4,2,0 } = 2 Z10 and Z10/ 2 Z10 ~ Z2, a field. 
 
Thus, as in Example 4, { 8,6,4,2,0 } is maximal in Z10. 

 
E 24) In Unit 11 we have shown that this ideal in the kernel of the onto 

homomorphism φ :C[0,1] →R: φ (f) = f (
2
1 ). 

 
∴C[0,l]/Ker φ  ~ R, a field. 
 

Thus, Ker φ  is maximal in C[0,1]. 
 

E 25) You can prove all these properties by using the corresponding 
properties of R. 

 
E 26)  Any element of the field of quotients F is of the form 

,02,
2
2

≠+
+
+ dcwhere

dc
ba  a,b,c,d ∈ Z. 

 

.2,

2
2

2
2
2

2
22,

2
2Now, 222222

QQ

QQ

+⊆

+∈







−
−

+







−
−

=
−

++
=

+
+

FThus

dc
adbc

dc
bdac

dc
dcba

dc
ba

 

Also, any element of Q + ,22
d
c

b
ais +Q  a,b,c,d ∈ Z, b≠ 0, d≠ 0 

 

Now 
20
222

2
1

+
+

=
+

=+
db

bcad
db
bcad

d
c with ad, bc, bd ∈ Z 

 

Thus, .2 F
d
c

b
a

∈+  

 
Hence, Q + F⊆Q2  

 
Thus, F = Q + Q2  

 
E 27)  If R is 'hot a domain, the relation -need not be transitive, and 

hence, F is not defined. 
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UNIT 2  POLYNOMIAL RINGS  
 
CONTENTS  
 
1.0 Introduction  
2.0 Objectives 
3.0 Main Content  

3.1 Ring of Polynomials 
3.2 Some Properties of R [x] 
3.3 The Division Algorithm  
3.4 Roots of Polynomials  

4.0 Conclusion  
5.0 Summary  
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading  
 
1.0 INTRODUCTION  
 
In the past you must have come across expressions of the form x+1, 
x2+2x+1, and so on. These are examples of polynomials. You have also 
dealt with polynomials in the course Linear Algebra. In this unit we will 
discuss sets whose elements are polynomials of the type a0 + a1 x +….+ 
an xn, where a0,a1……,an are elements of a ring R. You will see that this 
set, denoted by R [x], is a ring also. 
 
You may wonder why we are talking of polynomial rings in a block on, 
domains and fields. The reason for this is that we want to focus on a 
particular case, namely, R [x], where R is a domain. This will turnout to 
be a domain also, with 'a lot of useful properties. In particlI1ar, the ring 
of polynomials over a field satisfies a division algorithm, which is 
similar to the one satisfied by Z (see Sec. 1.6.2). We will prove this 
property and use it to show how many roots any polynomial over a field 
can have. 
 
In the next two units we will continue to work with polynomials and 
polynomial rings. So read this unit carefully and make sure that you 
have achieved the following objectives. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• identify polynomials over a given ring 
• prove and use the fact that R [x], the set of polynomials over a 

ring R, is a ring 
• relate certain properties of R[x] to those of R 
• prove and use the division algorithm for F[x], where F is a field.  
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3.0 MAIN CONTENT  
 
3.1 Ring of Polynomials 
 
As we have said above, you may already be familiar with expressions of 
the type 1 + x, 2 + 3x + 4x x5-l, and so on. These are examples of 
polynomials over the ring Z. Do these examples suggest to you what a 
polynomial over any ring R is? Let's hope that your definition agrees 
with the following one.  
 
Definition 
 
A polynomial over a ring R in the indeterminate x is an expression of 
the form  
 
a0x0 + alxl + a2x2 +... + anxn, 
 
Where n is a non-negative integer and a0,a1, ..., an ∈ R. 
 
While discussing polynomials we will observe the following 
conventions. We will  
 
i)  write x0 as1, so that we will write a0 for a0x0!lox\), 
 
ii) write x1 as x. 
 
iii)  write xm instead of l.xm (i.e., when am = 1). 
 
iv) omit terms of the type 0.xm. 
 
Thus, the polynomial 2 + 3x2 - l.x3 is 2x0 +0.x1 + 3x2 + (-1 )x3 
 
Henceforth, whenever we use the word polynomial, we will mean a 
polynomial in the indeterminate x. we will also be using the shorter 

notation i
i xa

i

n

0=
∑  for the polynomial a0 + a1 x +…+ an xn. 

 
Let us consider a few more basic definitions related to a polynomial. 
 
Definition 
 
Let a0 + a1 x + …+ an xn be a polynomial over a ring R. Each of a0 
a1,…., an is a coefficient of this polynomial. If an ≠ 0, we call an the 
leading coefficient of this polynomial. 
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If a1 = 0 = a2 = … = an, we get the constant polynomial, a0. Thus, every 
element of R is a constant polynomial. 
 
In particular, the constant polynomial 0 is the zero polynomial. 
 
It has no leading coefficient. 
 
Now, there is a natural way of associating a non-negative integer with 
any non-zero polynomial. 
 
Definition 
 
Let a0 + a1 x +… + an xn be a polynomial over a ring R, where an ≠ 0. 
Then we call the integer n the degree of this polynomial, and we write. 
 

0,)
0

(deg ≠=
=
∑ n

i
i aifnxa

i

n
 

 
We define the degree of the zero polynomial to be - ∞ . Thus, deg 0 = - 
∞ . 
 
Let us consider some examples. 
 
i) 3x2 + 4x + 5 is a polynomial of degree 2, whose coefficients 

belong to the ring of integers Z. Its leading coefficient is 3. 
ii) x2 + 2x4 + 6x + 8 is a polynomial of degree 4, with coefficients in 

Z and leading coefficient 2. (Note that this polynomial can be 
rewritten as 8 + 6x + x2 + 2x4). 

iii) Let R be a ring and r ∈ R, r ≠  0. Then r is a polynomial of 
degree 0, with leading coefficient r.  

 
Before giving more examples we would like to set up some notation  
 
Notation  
 
We will denote the set of all polynomials over a ring R by R[x]. (Please 
note the use of the square brackets [ ]. Do not use any other kind of 
brackets because R [x] and R (x) denote different sets). 
 








∈≥=∀∈









=
∑= ZnwherenniRaxa

i

n
xRThus i

i
i ,0,.,.......,.1,0)

0
][,  
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We will also often denote a polynomial a0 + a1 x +…+ an +n by f(x), p 
(x), q(x), etc. 
 
Thus, an example of an element from Z4 [x] is f(x) = 132 2 ++ xx  
 
Here deg f(x) = 2, and the leading coefficient of f(x) is .2  
 
To check your understanding of what we have said so far, you can try 
these exercises now. 
 
E 1) Identify the polynomials from the following expressions. Which 

of these are elements of Z[x]?  
 

a) x6 + x5 + x4 + x2 + x + 1 
 

b) 2
2

12 xx
xx

+++  

 
c) 523 2 ++ xx  

 

d) 32

4
1

3
1

2
11 xxx +++  

 
e) x1/2 + 2x3/2 + 3 x 5/2 

 

f) -5. 
 

 
It E 2) Determine the degree and the leading coefficient of the following 
polynomials in R[x].  
 
a)  72 +x  
 
b)  1- 7x3 + 3x 
 
c)  1 + x3 + x4 + 0.x5 
 

d)  32

7
1

5
1

3
1 xxx ++   

 
e)  0.  
 
Now, for any ring R, we would like to see if we can define operations on 
the set R [x] so that it becomes a ring. For this purpose we define the 
operations of addition and multiplication of polynomials.  
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Definition  
 
Let f(x) = 20 + a1x + .. + an xn and g (x) = b0 + b1 x + .. + bm xm be two 
polynomials in R[x]. let us assume that m > n. Then their sum f(x) + 
g(x) is given by f(x) + g(x) = (a0 + b0) + (a1 + b1) x + .. + (an + bn) xn + 
bn+1xn+1 + .. + bmxm. 
 

= .0,)(
0

1 niforawherexba
i

m

i
i

i >=+
=
∑  

For example, consider the two polynomials p(x),q(x) in Z[x] given by 
p(x) =1+2x + 3x2, q(x) = 4 + 5x + 7x3 

 
Then 
 
p(x) + q(x) = (1+4) + (2+5)x + (3+0) x2 + 7x3 = 5 + 7x + 3X2 + 7X3. 
 
Note that p (x) + q (x) ∈ Z [x] and that 
 
deg (p(x)+q(x)) = 3 = max(deg p(x), deg q(x)). 
 
From the definition given above, it seems that deg (f(x)+g(x)) = max 
(deg f (x), deg g (x)). But this is not always the case. For example, 
consider p(x) = 1 + x2 and q (x) = 2 + 3x -x2 in Z [x]. 
 
Then p(x) + q(x) = (1+2) + (0+3)x + (1-1)x2 = 3 + 3x. 
 
Here deg (p(x) + q (x)) = 1 < max (deg p(x), deg q(x)). 
 
So, what we can say is that 
 
deg (f(x) + g(x) ::; Max (deg f(x), deg g(x) 
 
∀  f(x), g(x) ∈ R [x]. 
 
Now let us define the product of polynomials. 
 
Definition  
 
If f(x) = a0 + aix + ..+ an xn and g(x) = b0 + bi x + ..+ bmxm are two 
polynomials in R [x], we define their product f(x). g(x) by 
 
f(x) .g(x) = c0 + c1x +.. + cm+nxm+n, 
 
where ci = aib0 + ai-1 b1 + ...+ a0 bi ∀  i=0,1,...,m + n. 
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Note that ai = 0 for i > n and bi = 0 for i > m. 
 
As an illustration, let us multiply the following polynomials in Z[x] : 
 
p(x) = 1 -x + 2x3 , q(x) = 2 + 5x + 7x2. 
 
Here a0 = 1, ai = -1, a2 = 0, a3 = 2, b0 = 2, b1 = 5, b2 = 7. 
 

Thus, p(x) q (x) = ,
0

5
i

i xc
i =
∑  where 

 
c0 = a0b0 = 2, 
 
c1 = a1b0 + a0b1 = 3, 
 
c2 = a2b0 + a1b1 + a0b2 = 2, 
 
c3 = a3b0 + a2b1 + a1b2+ a0b3 = - 3 (since b3 = 0), 
 
c4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4 = 10 (since a4 = 0 = b4), 
 
c5 = a5b0 + a4b1 + a3b2 + a2b3 + a1b4 + a0b5 = 14 (since a5 = 0 = b5), 
So p(x), q(x) = 2 + 3x + 2x2 – 3x3 + 10x4 + 14x5 

 
Note that p(x), q(x) ∈ Z[x], and deg (p(x) q(x)) = 5 = deg p(x) + deg 
q(x) 
 
As another example, consider  
 
p(x) = ,21 x+  + 2x, q(x) = ].[32 6

2 xZx ∈+ 2 +  
 
Then, p(x). q(x) = .3426342 232 xxxxx ++=+++  
 
Here, deg (p(x).q(x) = 2 < deg p (x) + deg q (x) (since deg p (x) = 1, deg 
q(x) = 2). 
 
In the next section we will show you that 
 
deg (f(x) g(x) < deg f(x) + deg g(x) 
 
Now try the following exercise. It will give you some practice in adding 
and multiplying polynomials. 
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E3)  Calculate 
 
a)  (2 + 3x2 + 4x3) + (5x + x3) in Z [x]. 
b)  ( )521()26( 32 xxx +−++ in Z7 [x]. 
c)  ( )21()1 2xxx +++ in Z[x]. 
d) ( )21()1 2xxx +++ in Z3 [x] 
e)  (2 + x + x2) (5x + x3) in Z[x] 
 
By now you must have got used to addition and multiplication of 
polynomials. We would like to prove that fur any ring R, R [x] is a ring 
with respect to these operations. For this we must note that by definition, 
+ and. are binary operations over R[x]. 
 
Now let us prove the following theorem. It is true for any ring, 
commutative or not. 
 
Theorem 1  
 
If R is a ring, then so is R [x], where x is an indeterminate. 
 
Proof 
 
We need to establish the axioms RI -R6 of Unit 9 for (R[x], + ,.). 
 
i)  Addition is commutative: We need to show that 

 
p (x) + q (x) = q (x) + p(x) for any p (x) , q (x) ∈ R [x]. 

 
Let p(x) = a0 + a1x +...+ anxn, and 
 
q(x) =b0 + b1 x +...+.bmxm be in R[x]. 
 
Then, p (x) + q(x) = c0 + c1 x + ...+ ctxt , 

 
where ci = ai + bi and t = max(m,n). 

 
Similarly, 

 
q(x) + p(x) = d0 + d1 x +...+ ds xs, 
 
Since addition is commutative in R, c1 = d1 ∀  i > 0 

 
So we have  

 
p(x) + q (x) = q(x) + p(x). 
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ii)  Addition is associative: Again, by using the associatively of 
addition in R, we can show that if p (x),q(x), s(x) ∈ R[x], then 
 
{p(x)+q(x)} + s(x) = p(x) + (q(x)+ s(x)}, 
 

iii)  Additive identity : The zero polynomial is the additive identity in 
R [x]. This is because, for any p (x) = a0+ a1 x + ...+ anxn ∈ R [x], 

 
0+p(x)= (0 +a0) + (0 + al) x + ...+ (0 + an) xn 
 

= a0 + at K + ...+ anxn. 
 
= p(x) 

iv)  Additive invers: For p (x) = a0 + a1x +... + anxn ∈ R[x], consider 
the polynomial  

 
-p(x) = – a0 – a1x –…– anxn, –ai being the additive inverse of at in 
R. Then 
 
-p (x) + (-p(x)) = (a0 –a0) + (a1 –a1) x + ...+ (an –an)xn 

 
= 0 + 0 x + 0.x2 + .., + 0.xn 
= 0. 

 
Therefore, -p (x) is the additive inverse of p (x).  

 
v)  Multiplication is associative: 
 
Let p(x) = a0 + a1 x +...+ anxn, 

 
q (x) = b0 + b1 x + ...+ bmxm, 

 
and t (x) = d0 + d1 x + ...+ drxr, be in R [x] 

 
Then 

 
p (x), q(x) = c0 + cl x + … + csxs, where s = m+n and 

 
Therefore, 

 
{p(x), q(x)} t (x) = e0 + e1 x + … + etxt, 

 
where t = s + r = m+n+r and  

 
ek = ckd0 + ck-1 d1 + ...+ c0dk 
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= (akb0 + ...+ a0bk) d0 + (ak-1b0 +...+ a0bk-1)d1 +... + a0b0dk, 
 

Similarly, we can show that the coefficient of xk (for any k > 0).in p(x) 
{q (x) t(x)1} 

 
is akb0d0 + ak-1 (b1d0 + b0dl) + ...+ a0,(bkd0 + bk-1 d1 + … + b0dk)  

 
= e k, by using the properties of + and in R. 

 
Hence, {p(x), q(x)}, t(x) = p(x), {q (x), t (x)} 

 
vi) Multiplication distributes over addition: 
 
Let  p(x) = a0 + al x + ...+ anxn. 

 
q(x) =b0 + b1 x +...+ bmxm 

 
and  t(x) = d0 + d1 x +… + d, xr be in R[x]. 

 
The coefficient of xk in p (x). (q(x) +t (x)) is 

 
ck = ak (b0+d0) + ak-1 (b1 +d1) +... + a0 (bk + dk). 

 
And the coefficient of xk in p (x) q (x) + p (x) t(x) is 

 
(akb0+ak-1b1+…+a0bk)+(akd0+ak-1d1 +…+a0dk), 
 
=   ak(b0+d0) + ak-l (b1+d1)+…+a0 (bk+dk) = ck 

 
This is true ∀  k > 0. 
 
Hence, p (x). {q (x) + t (x)} = p (x): q(x) + p (x) t (x). 

 
Similarly, we can prove that 

 
{q(x) + t(x)}. p(x) = q(x) .p(x) + t(x) p(x)  

 
Thus, R [x] is a ring. 

 
Note that the definitions and theorem in this section are true for any 
ring. We have not restricted ourselves to commutative rings. But, the 
case that we are really interested in is when R is a domain. In the next 
section we will progress, towards this case.  
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3.2 Some Properties of R[x] 
 
In the previous section you must have realised the intimate relationship 
between the operations on a ring R and the operations on R [x]. The next 
theorem reinforces this fact. 
 
Theorem 2 
 
Let R be a ring. 
 
a)  If R is commutative, ~o is R [x]. 
b)  If R has identity, so does R [x]. 
 
Proof  
 
a)  Let p (x) = a0 + at x +... + anxn and 
 
q (x) = b0 + b1 x + ...+ bmxm be in R [x]. 
 
Then p (x) q (x) = c0 + c1 x + ...+ csxs, where s = m + n and 
 
ck = akb0 + ak-1b1 +...+ a0bk 
 
= bka0 + bk-1al + ...+ b1ak-1 + b0ak, since both addition and multiplication 
are commutative in R.  
 
= coefficient of xk in q (x) p(x).  
 
Thus, for every > 0 the coefficients of xi in p(x) q(x) and q(x) p(x) are 
equal 
 
Hence, p (x) q(x) = q(x) p(x). 
 
b)  We know that R has identity I. We will prove that the constant 

polynomial 1 is the identity of R [x]. Take any 
 
p (x) = a0 + a1 x + ...+ anxn ∈ R [x]. 
 
Then I. p (x) = c0 + c1 x + ... + cnxn (since deg 1 = 0), 
 
where ck = ak 1 + ak-1 0 + ak-2 0 + ...+ a0 0= ak 
 
Thus 1 P (x) = p (x) 
 
Similarly, p (x) l = p(x) 
This shows that 1 is the identity of R [xl. 
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In the following exercise we ask you to check if the converse of 
Theorem 2 is true. 
 
E 4) If R is a ring such that R [x] is commutative and has identity, then  
 
a)  is R commutative? 
 
b)  does R have identity  

 
Now let us explicitly state a result which will help in showing us that R 
is a domain iff R [x] is a domain. This result follows just from the 
definition of multiplication of polynomial 
 
Theorem 3 
 
Let R be a ring and f(x) and g (x) be two non-zero elements of R [x). 
Then deg (f (x) g (x) < deg f(x) + deg g (x),  
 
with equality if R is an integral domain. 
 
Proof: Let f (x) = a0 + al x + ...+ anxn, an ≠  0,  
 
and g (x) = b0 + b1 x + ... + bmxm, bm ≠  0. 
 
Then deg f(x) = n, deg g (x) = m. We know that 
 
f (x) g (x)= c0 +c1 x + ... + cm+n x m+n, 
 
where Ck = akb0 + ak-1b1 +... + a0bk. 
 
Since a n+1 , a n+2,… and bm+1 bm+2, … are all zero, 
 
cm+n = anbm . 
 
Now, if R is without zero divisors, then anbm ≠ 0, since an ≠  0 
 
and bm ≠ 0. Thus, in this case, 
 
deg (f(x) g (x) = deg f(x) + deg g (x). 
 
On the other hand, if R has zero divisors, it can happen that anbm = O. In 
this case,  
 
deg (f (x) g (x) < m+n = deg f(x) + deg g(x). 
 
Thus, our theorem is proved. 
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The following result follows immediately from Theorem 3. 
 
Theorem 4 
 
R [x] is an integral domain <=> R is an integral domain. 
 
Proof  
 
From Theorem 2 and E 4 we know that R is a commutative ring with 
identity iff R [x] is a commutative ring with identity. Thus, to prove this 
theorem we need to prove that R is without zero divisors iff R [x] is 
without zero divisors. 
 
So let us first assume that R is without zero divisors. 
 
Let p (x) = a0 + a1 x + … + anxn, and q (x) = b0 + bl x + ...+ bmxm 

 
be in R [x], where an ≠ 0 and bm ≠  0. 
 
Then, in Theorem 3 we ha'/e seen that deg (p (x) q (x) = m + n > 0. 
 
Thus, P (x) q (x) ≠ 0 
 
Thus, R [x] is without zero divisors. 
 
Conversely, let us assume that R [x] is without zero divisors. Let a and 
be non-zero elements of R: Then they are non-zero elements of R [x] 
also. Therefore, ab ≠  0. Thus, R is without zero divisors. So, we have 
proved the theorem. 
 
See if you can solve the following exercises now. 
 
E 5)  Which of the following polynomial rings are free from zero 

divisors? 
 
a)  R[x], where R = {a+ b |5−  a,b ∈ Z} 
b)  Z7 [x] 
c)  Z6 [x] 
d)  R[x], where R = C [0,1] 
 
E 6)  Let R be a domain. Show that char R = char R [x]. 
 
E 7)  Let, R and S be commutative rings and f: R →+ S be a ring 

homomorphism. Show that the map 
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φ : R [ x] →S [x] : φ  (a0+a1x + ...+ an xn) = f (a0) + f (al) x + … +, f(an) 
xn is a homomorphism: 
 
Now, you have seen that many properties of the ring R carry over to R 
[x1. Thus, if F is a field, we 'should expect F[x] to be a field also. But 
this is not so. F [x] can never be a field 
 
This is because any polynomial of positive degree in F [x] does not have 
a multiplicative inverse. Let us see why. 
 
Let f (x) ∈ F [x] and deg f (x) = n > 0. Suppose g (x) ∈ F [x] such that 
 
f(x) g (x) = 1. Then 
 
0 = deg 1 = deg (f(x) g (x) = deg f(x) + deg g (x), since F [x] is a 
domain. 
 

= n +deg g (x) > n > 0. 
 

We reach a contradiction. 
 
Thus, F [x] cannot be a field. 
 
But there are several very interesting properties of F [x], which are 
similar to those of Z, the set of integers. In the next section we shall 
discuss the properties of division in F [x]. You will see how similar they 
are to the properties of Z that we have discussed in Sec. 1.6,2. 
 
3.3 The Division Algorithm  
 
In Sec. l.6.2 we discussed various properties of divisibility in Z. In 
particular, we proved the division algorithm for integers. We will now 
do the same for polynomials over a field F. 
 
Theorem 5 (Division Algorithm)  
 
Let F be a field. I.-et f(x) and g(x) be two polynomials in F [x], with g(x) 
≠ 0. Then  
 
a)  there exist two polynomials q(x) and r (x) in F [x] such that 
 

f (x) = q (x) g (x) + r (x), where deg r(x) < deg g (x). 
 

b)  the polynomials q (x) and r (x) are unique. 
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Proof 
 
a)  If, deg f (x) < deg g (x), we can choose q (x) = 0. 
 
Then f, (x) = 0. g(x) + f (x), where deg f(x) < deg g (x). 

 
Now, let us assume that deg f(x) > deg g (x). 

 
Let f(x) = a0 + a1x +… + anxn, an ≠ 0, and 
       g(x) = b0 + b1 x + … + bmxm, bm≠ 0, with n > m. 

 
We shall apply the principle of induction (see Sec. 1.6.1) on deg f(x), 
i.e., n. 
 
If n = 0, then m = 0, since g(x) ≠  0. Now 
 
f(x) = a0, g(x) = b0, and hence 
 
f(x) = (a0 b0 + 0 = q(x) g (x) + r (x), where q(x) = a0b0

-1 and r(x) = 0. 
 
Thus, 
 
f(x) = q(x) g(x) + r(x), where deg r(x) < deg g(x). 
 
So the algorithm is true when n = 0. Let us assume that the algorithm is 
valid for all polynomials of degree < n -1 and try to establish that it is 
true for f(x). Consider the polynomial 
 
f1 (x) = f(x) anbm

-1 xn-m g(x) 
 
= (a0 + a1 x +…+ anxn) – (anbm

-1b0xn-m+anbm
-1b1xn-m+1 +…+anbmxn) 

 
Thus, the coefficient of xn in fl (x) is zero; and hence, 
 
deg fl(x) < n–l. 
 
By the induction hypothesis, there exist ql (x) and r (x) in 
 
F[x] such that fl (x) = ql (x) g(x) + r(x), where deg r(x) < deg g(x). 
 
Substituting the value of f1(x), we get 
 
f(x)–anbm

-l xn-m g(x) = q1(x) g(x)+r(x),  
 
i.e., f(x) = {anbm

-l xn-m + q1(x)} g(x)+r(x) 
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1 = q(x) g(x)+r(x), where q(x) = anbm
-1 xn-m+ql(x) 

and deg r(x) < deg g(x).  
 
Therefore, the algorithm is true for f(x). and hence, for all polynomials 
in F[x]. 
 
b)  Now let us show that q(x) and r(x) are uniquely determined.  
 
If possible, let 

 
f(x) = q1(x) g(x)+r1(x) where deg rl(x) <deg g(x). and 
f(x) = q2(x) g(x)+r2(x) where deg r2(x) <deg g(x).  

 
Then  

 
q1(x) g(x)+rl(x) = q2(x) g(x)+r2(x), so that 
{q1(x)-q2(X)} g(x) = r2(x)-rl(x)   ………(1) 

 
Now if q1(x) ≠  q2(x) then deg {q1(x) -q2(x)} > 0, so that 
deg [{ql(x) – q2(x)} g(x)] > deg g(x). 

 
On the other hand, deg {r2(x)-r1(x) } < deg g(x), since 
deg r2(x) <deg g(x) and deg r1(x) < deg g(x). 

 
But this contradicts Equation (1). Hence, Equation (l) will remain valid 
only if q1(x) –q2(x) = 0. And then r2(x) –r1(x) = 0, 
 
i,e., q1(x) = q2(x) and rl(x) = r2(x). 
 
Thus we have proved the uniqueness of q(x) and r(x) in the expression 
f(x) = q(x) g(x)+r(x). 
 
Here q(x) is called the quotient and r(x) is called the remainder obtained 
on dividing f(x) by g(x). 
 
Now, what happens if we take g(x) of Theorem 5 to be a linear 
polynomial? We get the remainder theorem. Before proving it let us set 
up some notation. 
 
Notation 
 
Let R be a ring and f(x) ∈R[x].Let 
f(x)=a0+alx+...+anrn∈R 
Then, for all r ∈ R, we define 
f(r) = a0+a1r+...+anrn ∈ R. 
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That is, f(r) is the value of f(x) obtained by substituting r for x. 
 
Thus, if f(x) = 1+x+x2 ∈ Z[x], then  
 
f(2) = 1+2+4 = 7 and f(0) = 1+0+0 = 1. 

 
Let us now prove the remainder theorem. which is a corollary to the 
division algorithm. 
 
Theorem 6 (Remainder Theorem) 
 
Let F be a field. If f(x) ∈ F[x] and b∈ F, then here exists unique 
polynomial q(x) ∈ F[x] such that f(x) = (x-b) q(x)+f(b,). 
 
Proof 
 
Let g(x) = x-b. Then, applying the division algorithm to f(x) and g(x), 
we can find unique q(x) and r(x) in F[x], such that  
f(x) = q(x) g(x)+r(x) 
 
= q(x) (x-b)+r(x), where deg r(x) < deg g(x) = 1. 
 
Deg r (x) < 1, r (x) is an element of F, say a.  
 
So, f(x) = (x-b) q(x)+a. 
 
Substituting b for x, we get 
 
f(l) = (b-b) q(b) + a 
 
= 0.q(b)+a = a 
 
Thus, a = f(b). 
 
Therefore, f(x) = (x-b) q(x)+f(b). 
 
Note that deg f(x) = deg(x-b)+deg q(x) = 1 +deg q(x). 
 
Therefore, deg q(x) = deg f(x)–l. 
 
Let us apply the division algorithm in a few situations now. 
 
Example 1 
 
Express x4+x3+5x2 -x as 
 
(x2+x+l) q(x)+r(x) in Q[x]. 
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Solution 
 
We will apply long division of polynomials to solve this problem. 
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Now, since the degree of the remainder -5x- 4 is less than deg (x2+x+ I), 
we stop the process, We get 
 
x4+x3+5x2 -x = (x2+x+l) (x2+4) -(5x+4). 
 
Here the quotient is x2+4 and the remainder is -(5x+4). 
 
Now you can try some exercises. 
 
E 8) Express f as gp+r, where deg r < deg g, in each of the following 

cases. 
 
a) f = x4+1, g = x3 in Q[x] 
b) f = x3 + 2 x2 – x + 1  in Z3 [x] 
c) f = x3 – 1, g = x – 1 in R[x] 
 

E 9)  You know that if p,q ∈ Z, q ≠  0, then 
q
p  can be written as the 

sum of an integer and a fraction 
q
m  with | m | < | q |. What is the 

analogous property, fur elements of F[x]? 
 
Now, let us see what happens when the remainder in the expression f = 
pg+r is zero 
 
3.4 Roots of Polynomials  
 
In Sec. 12.4 you have seen when we can say that an element in a ring 
divides another element. Let us recall the definition in the context of 
F[x], where F is a field. 
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Definition 
 
Let f(x) and g(x) be in F[x], where F IS a field and g (x) ≠  0. We say 
that g(x) divides f(x)(or g(x) is a factor of f(x), or f(x) is divisible by 
g(x) if there-exists q(x) ∈ F[xl such that 
 

f(x) = q(x) g(x). 
 

 
We write g(x) j f(x) for 'g(x) divides f(x), and g(x) ~ f(x) for 'g(x) does 
not divide f(x). 
 
Now, if f(x) ∈ F[x] and g(x) ∈ F[x], where g(x) ≠  0, then does 
Theorem say when g(x) | f(x)? It does, We find that g(x) | f(x) if r(x) = 0 
in Theorem 5. 
 
In the fol1owing exercise we make an important, similar statement. You 
can prove it by applying Theorem 6. 
 
E 10)  Let F be a field and f(x) ∈ F[x] with deg f(x) > 1. Let a ∈ F. 
 

show that f(x) is divisible by x-a iff f(a) = 0. 
 
This exercise leads us to the following definition.  
 
Definition 
 
Let F be a field and f(x) ∈ F[x]. We say that an element a ∈ F is a root 
(or zero) of f(x) if f(a) = 0. 
 
For example, 1 is a root of x2-1 ∈ R[x], since 12-1 = 0.  
 

Similarly, - 1 is a root of f(x) = x3+x2+
2
1  x +

2
1
∈ Q [x], since- . 

f(-1) = 1+1 - 
2
1  +

2
1  = 0. 

 
Not that, in E 10 you have proved the following criterion for an element 
to be a root of a polynomial: 
 
Let f be a field and f (x) ∈ F[x]. Then a ∈ F is a root of f(x) if and only 
if (x-a)|f(x). 
 
We can generalize this criterion to define a root of multiplicity m of a 
polynomial in F[x]. 
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Definition 
 
Let F be a field and f(x) ∈ F[x] We say that a ∈ F is a root of 
multiplicity m (where) m is a positive integer of  
 
f(x) it (x -a)m | f(x) but (x-a)m+l x f(1). 
For example, 3 is a root of multiplicity 2 of the polynomial (x-3)2 (x+2) 
Q[x]; and (-2) is a root of multiplicity 1 of this polynomial. 
 
Now is it easy to obtain all the roots of a given polynomial? Any linear 
polynomial ax+b ∈ F[x] will have only one root namely, -a-lb. This is 
because ax+b = 0 iff x = -a-lb. 
 
In the case of a quadratic polynomial ax2+bx+c ∈ F[x], you know that 
its two roots are obtained by applying the quadratic formula. 
 

a
acbbx

2
42 −±−

=  

 
For polynomials of higher degree we may be able to obtain some roots 
by trial and error. For example, consider f(X) = x5-2x+1 ∈ R[x], Then, 
we try out x = 1 and find f(1) = 0. So, we find that l is a zero of f(x). But 
this method doesn't give us all the roots of f(x),. 
 
Now you can try these exercises. 
 
E 11) Find the roots of the following polynomials, along with their 

multiplicity. 
 

a)  f(x) = 
2
1  x2 - 

2
1  x + 3 ∈ Q[x] 

b)  f(x) = x2+ x + 1  ∈ Z3 [x] 
c)  f(x) = x4+ 2 x3 - 2 x-1 ∈ Z5 [x]  
 
E 12)  Let F be a field and a ∈ F Define a function 
 

φ  :F[x] →F: φ  (f(x)) = f(a). 
 

This function is the evaluation at a. 
 

Show that 
 

a)  φ  is an onto ring homomorphism. 
b)  φ  (b) = b ∀  b ∈ F. 
c)  Ker φ  = < x - a>  
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So, what does the Fundamental Theorem of Homomorphism say in this 
case? 

 
As we have just seen; it is not easy to find all the roots of a given 
polynomial. But we can give a definite result about the number of roots 
of a polynomial. 
 
Theorem 7 
 
Let f(x) be a non-zero polynomial of degree n over a field F. Then f(x) 
ha: at most n roots in F. 
 
Proof 
 
If n = 0, then f(x) is anon-zero constant polynomial.  
 
Thus, it has no roots, and hence, it has at most 0 (= n) roots in F. 
 
So, let us assume that n > 1. We will use the principle of induction on n. 
If deg t(x) = 1, then  
 
f(x) = a0 + a1 x, where a0 al ∈ F and al ≠  0. 
 
So f(x) has only one root, namely, (-a1

-1 a0) 
 
Now assume that the theorem is true for all polynomials in F[x] of 
degree < n. We will show that the number of roots of f(x), < n. 
 
If f(x) has no root in F, then the number of root of f(x) in F is 0 < n. So, 
suppose f(x) has a root a ∈ F. 
 
Then f(x) = (x-a) g(x), where deg g(x) = n-l. 
 
Hence, by the induction hypothesis g(x) has at most n-1 roots in F, say 
al,...,an-1 Now, 
 

a1 is a root of g(x) ⇒  g(ai) = 0 ⇒  f(ai) = (ai-a) g(a) = 0 
 
 ⇒  ai is it root of(x) ∀  i = 1,..., n-l. 
 

Thus, each root of g(x) is It root of f(x). 
 
Now, b ∈ F is a root off(x) iff f(b) = 0, i.e., iff (b-a) g(b) = 0, i.e., iff b-a 
= 0 or g(b) = 0, since F is an integral domain. Thus, b is a root of f(x) iff 
b = a or b is a root of g(x). So, the only roots of f(x) are a and a1…,an-1.  
Thus, f(x) has at the most n roots, and so, the theorem is true for n.  
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Hence, the theorem is true for all n > 1. 
 
Using this result we know that, for example, x3-1 ∈ Q[x] can't have 
more than 3 roots in Q. 
 
In Theorem 7 we have not spoken about the roots being distinct. But an 
obvious corollary of Theorem 7 is that 
 
if f(x) ∈ F[x] is of degree n, then f(x) has at most n distinct roots in 
F. 
 
We will use this result to prove the following useful theorem. 
 
Theorem 8  
 
Let f(x) and g(x) be two non-zero polynomials of degree, n over the 
field F if there exist n+1 distinct elements al,...,an+1 in F such that f(ai) = 
g(a) ∀  i = 1, ..., n+1, then f(x) = g(x). 
 
Proof 
 
Consider the polynomial h(x) = f(x) -g(x)  
 
Then deg h(x) < n, but it has n+1 distinct roots a1,..., an+1. 
 
This is impossible, unless h(x) = 0, i.e., f(x) = g(x). 
 
We will now give you an example to show you that Theorem 7 (and 
hence Theorem 8) need not be true for polynomials over a general ring.  
 
Example 2  
 
Prove that x3 + ∈x5 Z6 [x] has more roots than its degree. (Note that Z6 
is not a field.) 
 
Solution 
 
Since the ring is finite, it is easy for us to run through all its elements 
and check which of them, are roots of  

f(x) = x3 + 5  x. 
 

So, by substitution we find that 
 
f(0) = 0 = f(1 ) = f( 2 ) =f( 3 ) = f( 4 ) = f( 4 ). 
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In fact, every element of Z6 is a zero of f(x). Thus, f(x) has 6 zeros, 
while deg f(x) =3. 
 
Try these exercises now. 
 
E 13)  Let p be a prime number. Consider xp-l - ∈1  Zp[x]. Use the fact 

that Zp is a group of order p to show that every non-zero element 
of Zp is a root of xp-1 - 1 . 

 
Thus, show that xp-1 - 1  = (x -1 ) (x - 2 ) ...(x- 1−p ). 
 
E 14)  The polynomial x4 + 4  can he factored into, linear factors in Z5 

[x]: 
 
Find this factorization. 

 
So far, we have been saying that a polynomial of degree n over F has at 
most n roots in F. If can happen that the polynomial has no root in F. for 
example, consider the polynomial x2+1 ∈ R[x]. From Theorem 7 you 
know that it can have 2 roots in R, at the most. But as you know, this 
has no roots in R (it has two roots, i and – i, in C). 
 
We can find many other examples of such polynomials in R[x]. We call 
such polynomials irreducible over R. We shall discuss them in detail in 
the next two units. 
 
4.0 CONCLUSION  
 
Polynomial rings are very important class of rings in mathematics. 
Hardily can we not come across polynomial expressions in our daily 
mathematical endeavours, since we need to add or subtract two 
mathematical algebraic expressions from each other. It is required of 
you to read this unit carefully before you proceed to the next unit.  
 
5.0 SUMMARY 
 
In this unit we have covered the following points.  
 
• The definition and examples of polynomials over a ring. 
• The ring structure of R[x], where R is a ring. 
• R is a commutative ring with identity iff R[x] is a commutative 

ring with identity. 
• R is an integral domain iff R[x] is an integral domain. 
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• The division algorithm in F[x], where F is a field, which states 
that if f(x), g(x) ∈ F[x], g(x) ≠  0, then there exist unique q(x), 
r(x) ∈ F[x] with f(x) = q(x) g(x)+r(x) and deg r(x) < deg g(x). 

• a ∈ F is a root of f(x) ∈ F[x] iff (x-a) | f(x). 
• A non-zero polynomial of degree n over a field F can have at the 

most n roots. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
 1.  The polynomials are (a), (c), (d), (f). 
 

(b) and (e) are not polynomials since they involve negative and 
fractional powers of x. 
 
(a) and (t) are in Z[x].  
 

 2.  The degrees are 1,3,4.3, - ∞ , respectively. The leading 

coefficients of the first four are ,2 = 7, 1, 
7
1 , respectively, o has 

no leading coefficient. 
 
3a.  2+5x+3x2+(4+1)x3 = 2+5x+3x2+5x3 
b. ( 07sin,522522)16 3232 =++−=++−+ cexxxxxx  
c. 1+3x+3x2+x3 
d. 03sin,1 3 =+ cex  
e. 10x+5x2+7x3+x4+x5 
 
4.  Every element of R is an element of R[x]. Therefore 

multiplication in R is also commutative. 
Also, the identity of R[x] is an element of R, and hence is the 
identity of R. 
 

 5.  (a) and (b) 
 
 6.  We know that R[x] is a domain. Let char R = n. By Theorem 3 of 

Unit 12 we know, that n is the least positive integer sucl1that n.l 
= 0. Since 1 is also the identity of R[x], the same theorem of Unit 
12 tells us that char R. 

 
7.  Let p(x) = a0+a1x+...+anxn, q(x) = b0+b1x+...+bmxm ∈ R [x]. 
 

Then φ  (p(x)+q(x)) = φ  (
0=

∑
i

t
(ai+bi)xi), where t = max (m,n) 
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= 
0=

∑
i

t
f(ai+bi)xi 

 

= 
0=

∑
i

t
[f(ai)+f(bi)]xi 

 

= 
0=

∑
i

t
f(ai)xi+

0=
∑

i

t
f(bi)xi 

 
= φ  (p(x))+φ  (q(x)), since f(ai) = 0 = f(bj) 

 
 Whenever ai = 0, bj = 0. 
 

 Also, φ  (p(x)q(x)) = φ  (
0=

∑
+

i

nm
cixi), where ci = aib0+ai-1b1+…+a0bi 

 

= 
0=

∑
+

i

nm
f(ci)xi 

= 
0=

∑
+

i

nm
 [f(ai)f(b0) + f(ai-1) f(b1) +…+(a0) f(bi)]xi 

 
since f is a ring homomorphism; 

 
= φ  (p(x)) φ  (q(x)). 

 
Thus, φ  is a ring homomorphism. 
 
8a.  f = x.g+l, q = x, r = l 
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Thus, f = (x2 + x - 2 ) g + 0 , since 03 = . 
 
c) f = (x2 + x + 1)g + 0 
 
9. Let f(x), g(x) ∈ F[x], with g(x) ≠  0. By Theorem 5, f(x) = g(x) 

q(x)+r(x) with deg r(x) < deg g(x). Now, this equality is still true 
if we consider it over the field of fractions of F[x]. Then, we can 
divide throughout by g(x), and get 

 

 
)(
)()(

)(
)(

xg
xrxq

xg
xf

+= , where deg r(x) < deg g(x). 

 
10. By Theorem 6, 
 
f(x) = (x-a) q (x)+f(a) 
Thus, f(x) = (x-a) q(x) iff f(a) = 0, i.e., 
(x-a) | f(x) iff f(a) = 0. 
 
11a.  By the quadratic formula, the roots are 3 and 2, each with 

multiplicity 1. 
b. x2+x+ 1 = (x-1 )2, since - 2 = 1 in Z3 
 
Thus, 1 is the only zero, and its multiplicity is 2. 
 
c.  By trial, one zero is 1. Now, applying long division, we get 

x4+ 2 x3 - 2 x-1 =(x-1 ) (x3+ 3x2+3x+1 )again, by trial and error 
we find that x+1 is a factor of thus, x4+ 2 x3- 2 x-1 = (x+1 )3 

 
This shows that 1  is a root of multiplicity 1. and -1  (= 4 ) is a root of 
multiplicity 3. 

 12a.  Let f(x) = i
i

i
i xb

i

m
xgxa

i

n

0
)(,

0 =
∑=

=
∑ .  
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Then φ  (f(x)+g(x)) = φ  
0

(
=
∑

i

t
(ai+bi) xi), where t = max(m,n). 

 

  = 
0=

∑
i

t
(ai + bi)ai 

= 
0=

∑
i

t
aiai+

0=
∑

i

t
biai 

 

= f(a)+g(a) 
 

= φ  (f(x))+ φ  (g(x)), and 
 

φ  (f(x) g(x)) = 















+++

=
∑
+

−
i

iii xbababa
i

nm
)...(

0
0110φ  

 

= i
iii abababa

i

nm
)...(

0
0110 +++

=
∑
+

−  

 
= f(a) g(a) 

 
= φ  (f(x)) φ  (g(x)). 

 
Thus, φ  is a homomorphism. 

 
Now, given any element b ∈ F, ∃  the constant polynomial  

 
f(x) ∈F[x] such that f(a) = b, i.e., (f(x)) = b. 

 
Thus, φ  is surjective. 

 
b) This is what we have shown in the previous two lines. 

 
c) f(x) ∈ Ker φ  iff φ  (f(x)) = 0 iff f(a) = 0 

 
iff (x-a) | f(x) iff f(x) ∈ <x-a> 
 
Thus, Ker φ  = <x-a> 
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The Fundamental Theorem of Homomorphism says that 
 

F[x]/<x-a> ~ F. 
 
13. 1)(,.)( ** −= pZoandgroupaisZ pp ) 
 
Thus, by E 8 of Unit 4, xp-1 = ,1 *

pZx ∈∀  
 

i.e., each of the p-1 elements of *
pZ  is a root of xp-1-1  

 
Therefore, (x-1 ) …(x- 1−p ) | (xp-1-1 ). 

 
Since, xp-1-1 can have at most p-1 rots in Zp, we find that the (p-1) 
elements of *

pZ are yjr only rooyd of xp-1-1 . 
 

Thus, xp-1-1 = (x-1 )…(x- 1−p ). 
 
14. The polynomial x4 + 4   is the same as x4 -1  in Z5[x], 

 
since 4  = -1 . Thus, applying the result in E 13, we get, 

 
x4+ 4 = (x-1 ) (x- 2 ) (x-3 ) (x- 4 ) 
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UNIT 3 SPECIAL INTEGRAL DOMAINS  
 
CONTENTS  
 
1.0 Introduction  
2.0 Objectives 
3.0 Main Content 

3.1 Euclidean Domain 37 
3.2 Principal Ideal Domain (PID)  
3.3 Unique Factorization Domain (UFD) 

4.0 Conclusion  
5.0  Summary  
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading  
 
1.0 INTRODUCTION  
 
In this unit we shall look lit three special kinds of integral domains. 
These domains were mainly studied with a view to develop number 
theory. Let us say a few introductory sentences about them. 
 
In Unit 6 you saw that the division algorithm holds for F[x] where F is a 
field. In Unit 1 you saw that it holds for Z. Actually, there are lots of 
other domains for which this algorithm is true. Such integral domains 
are called Euclidean domains. We shall discuss their properties in Sec. 
7.2 
 
In the next section we shall look at some domains which are 
algebraically very similar to Z. These are the principal ideal domains, so 
called because every ideal in them is principal. 
 
Finally, we shall discuss domains in which every non-zero non-
invertible element can be uniquely factorised in a particular way. Such 
domains are very appropriately called unique factorisation domains. 
While discussing them we shall introduce you to irreducible elements of 
a domain. 
 
While going through the unit you will also see the relationship between 
Euclidean domains, principal ideal domains and unique factorisation 
domains. 
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2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• check whether a function is a Euclidean valuation or not 
• identify principal ideal domains 
• identify unique factorisation domains 
• obtain "the g.c.d of any pair of elements in a unique factorisation 

domain 
• prove and use the relationship between Euclidean domains 

principal ideal domains and unique factorisation domains. 
 
3.0 MAIN CONTENT  
 
3.1 Euclidean Domain 
 
In this course you have seen that Z and F[x] satisfy a division algorithm. 
There are many other domains that have this property. In this section we 
will introduce you to them and discuss some of their properties. Let us 
start with a definition. 
 
Definition 
 
Let R be an integral domain. We say that a function d: R \ {0} →  
NU{0} is 
A Euclidean valuation on R if !.he following conditions are satisfied: 
 
i) d(a) < d (ab) ∀  a, b ∈ R \ {0}, and 
 
ii)  for any a, b ∈ R, b ≠  0 ∃  q. r ∈ R such that 

 
a = bq+r, where r = 0 or d(r) < d(b). 

 
And then R is called a Euclidean domain. 
 
Thus, a domain on which we can define a Euclidean valuation is a 
Euclidean domain, 
 
Let us consider an example. 
 
Example 1  
 
Show that Z1S a Euclidean domain.  
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Solution 
 
Define, d: Z →  N   {0}: d(n) = | n | 
Then, for any a,b ∈ Z\{0}, 
 

d(ab) = |ab| = |a| |b| > |a| (since |b| > 1 for b ≠ 0) 
 
= d(a), 
 

i.e., d(a) < d(ab). 
 
Further, the division algorithm in Z (see Sec.l. 6.2) says that if a, b ∈ Z, 
b ≠  0, then ∃  q, r ∈ Z such that 
 
i.e., a = bq+r,. where r= 0 or 0 < |r| < |b|, 
 
i.e, a = bq+r, where r = 0 or d(r) < d(b).  
 
Hence, d is a Euclidean valuation and Z is a Euclidean domain. 
 
For other examples, try the following exercises.  
 
E 1)  Let F be a field. Show that F, with the Euclidean valuation d 

defined by d(a) = 1 ∀ a ∈ F\.{0}, is a Euclidean domain. 
 
E 2)  Let F be a field. Define the function 
 

d: F[x] \ {0} →  N  {0} : d(f(x)) = deg f(x). 
 

Show that d is a Euclidean valuation on F[x], and hence, F[x] is a 
Euclidean domain. 

 
Let us now discuss .some properties of Euclidean domains. The first 
property involves the concept of units. So let us define this concept. 
Note that this definition is valid for any integral domain. 
 
Definition  
 
Let R be an integral domain. An element a ∈ R is called a unit (or an 
invertible element) in R, if we can find an element b ∈ R, such that ab 
= 1, i.e., if a has a multiplicative inverse. 
 
For example, both 1 and -1 are units in Z since 1.1 = 1 and (-1).(-1) = 1. 
 
 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 168 

Caution 
 
Note the difference between a unit in R and the unity in R. The unity is 
the identity with respect to multiplication and is certainly a unit. But a 
ring can have other units too, as you have just seen in the case of Z. 
 
Now, can we obtain all the units in a domain? You know that every non-
zero element in a field F is invertible. Thus, the set of units of F is F \ 
{0}. Let us look at some other cases also. 
 
Example 2  
 
Obtain all the units in F[x], where F is a field. 
 
Solution 
 
Let f(x) ∈ F[x] be a unit. Then ∃  g(x) ∈ F[x] such that f(x) g(x) = 1. 
Therefore, 
 
deg (f(x)g(x)):deg (1) = 0, i.e., 
 
deg f(x)+deg g(x) = 0. 
 
Since deg f(x) and deg g(x) are non-negative integers this equation can 
hold only if deg f(x) = 0 = deg g(x). Thus, f(x) must be a non-zero 
constant, i.e. an element of F\ {0}. Thus, the units of F[x] are the non-
zero element of F. That is, the units of F and F[x] coincide. 
 
Example 3  
 
Find all the units in R = {a +b 5−  | a,b ∈ Z}. 
 
Solution 
 
Let a+b 5−  be a unit in R. The there exists 
 
C+d 5− ∈ R such that 
 
 (a+b 5− ) (c+d 5− ) = 1 
 
 (ac-5bd)+(bc+ad 5− ) = 1 
 
 ac-5bd = 1and bc+ad = 0 
 
 abc-5b2d = b and bc+ad = 0 
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 a(-ad)-5b2d = b, substituting be =-ad. 
 
 (a2+5b2)d =-b 
 
So, if b ≠  0, then (a2+5b2) | b, which is not possible. 
 
∴b = 0. 
 
Thus, the only units of R are the invertible elements of Z. 
 
We have asked you to find these elements and other units in E 3 below 
 
E 3) Find all the units in 
 
 a) Z, b) Z6, c) Z+iZ. 
 
E 4) Let R be an integral domain. Prove that u ∈ R is a unit iff 
 
 Ru = R 
 
Now we are in' a position to discuss some very simple properties of a 
Euclidean domain. 
 
Theorem 1 
 
Let R be a Euclidean domain with Euclidean valuation d. Then, for any 
a ∈ R \ {0}, d(a) = d(1) iff a is a unit in R. 
 
Proof  
 
Let us first assume that a that a ∈ R \ {0} with d(a) = d(1) 
 
By the division algorithm in R, ∃  q,r ∈ R such that 1 = aq+r, 
 
where r = 0 or d(r) < d(a) = d(1). 
 
Now, if r≠  0, d(r) = d(r.1) > d(1). Thus, d(d) d(1) can't happen.  
 
Conversely, assume that is a unit in R. Let be R such that ab = 1. Then 
d(a) < d(ab) = d(1). But we know that d(a) = d(a.1) > d(1). So, we must 
have d(a) = d(1). 
 
Using this theorem, we can immediately solve Example 2 since f(x) is a 
unit in F[x] iff deg f(x) = deg (1) = 0. 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 170 

Similarly, Theorem 1 tells us that n ∈ Z is a unit in Z iff |n| = |1| = 1. 
Thus, the only unit in Z are 1 and (-1). 
 
Now let us look at the ideals of a Euclidean domain. 
 
Theorem 2 
 
Let R be a Euclidean domain with Euclidean valuation. d. Then every 
ideal I of R is of the form I = Ra for some a ∈ R. 
 
Proof 
 
If I = {0}, then I = Ra, where a = 0. So let us assume that I ≠ {0}. Then 
I\ {0} is non-empty, Consider the set {d(a) | a ∈ I\{0}}. By the well 
ordering principle (see Sec. 1.6.1) this set has a minimal element. Let 
this be d(b), where b ∈ I.\ {0}. We will show that I = Rb. 
 
Since b ∈ I and I is an ideal of R, 
 
Rb ⊆  I.   …….(1) 
 
Now take any a ∈ I. Since I ⊆  Rand R is a Euclidean domain, we can. 
find q,r ∈ R such that 
 
a = bq + r, where r = 0 or d(r) < d(b).  
 
Now, b ∈ I ⇒bq ∈ I. Also, a ∈ I. Therefore, r =a -bq ∈ I. 
 
But r = 0 or d(r) < d(b). The way we have chosen d(b), d(r) < q(b) is not 
possible. 
 
Therefore, r = 0, and hence, a = bq ∈ Rb. 
 
Thus, I ⊆  Rb.        .....(2) 
 
From (I) and (2) we get 
 
1= Rb. 
 
Thus, every ideal I of a Euclidean domain R with Euclidean valuation d 
is principal, and is generated by a ∈ I, where d(a) is a minimal element 
of the set {d(x) | x ∈I \ {0}}. 
 
So, for example, every ideal of Z is principal, a fact that you have 
already proved in Unit 10. 
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Now try the following exercises involving the ideals of a Euclidean 
domain. 
 
E 5)  Show that every ideal of F[x] is principal, where F is a field. 
 
E 6)  Using Z as an example show that the set 
 

S = {a ∈ R \ {0} | d(a) >d(l)}  {0} is not an ideal of the 
Euclidean domain with Euclidean valuation d. 

 
Theorem 2 leads us to a concept that we shall discuss now. 
 
3.2 Principal Ideal Domain (PID) 
 
In the previous section you have proved that every ideal of F[x] is 
principal, where F is a field. There are several other integral domains, 
apart from Euclidean domains, which have this property. We give such 
rings a very appropriate name.  
 
Definition 
 
We call an integral domain R a principal ideal domain (PID, in short) 
if every ideal in R is a principal ideal. 
 
Thus, Z is a PID. Can you think of another example of a PID? What 
about Q and Q[x]? In fact, by Theorem 2 all Euclidean domains are 
PlDs. But, the converse is not true. That is, every principal Ideal domain 
is not a Euclidean domain.  
 

For example, the ring of all complex numbers of the form a+ ),191(
2

ib
+  

where a, b ∈ Z, is a principal ideal domain, but not it Euclidean domain. 
The proof of this too technical for this course, so you can take our word 
for it for the present! 
 
Now let us look at an example of an integral domain that is not a PID. 
 
Example 4  
 
Show that Z[x] is not a PID. 
 
Solution 
 
You know that Z[x] is a domain, since Z is one. We will show that all 
its ideals are not principal. Consider the ideal of Z[x] generated by 2 and 
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x, i.e., < 2,x>. We want to show that < 2, x > ≠  <f(x)> for any f(x) ∈ 
Z[x). 
 
On the contrary, suppose that ∃ f(x) ∈ Z[x] such that <2,x> = <f(x)>. 
Clearly, f(x) ≠ 0. Also, ∃  g(x), h(x) ∈ Z[x] such that 
 
2 = f(x) g(x) and x = f(x) h(x). 
 
Thus, deg f(x) + deg g(x) = deg 2 = 0    ……… (1) 
 
and deg f(x) + deg h(x) = deg x = 1   ……..  (2) 
 
(1) shows that deg h(x) = 0, i.e., f(x) ∈ Z, say f(x) = n. 
 
Then (2) shows that deg h(x) = 1. Let h(x) = ax+b with a,b ∈ Z 
 
Then x = f(x) h(x) = n(ax+b) 
 
Comparing the coefficients on either side of this equation, we see that na 
= 1 and nb = 0. Thus, n is a unit in Z, that is, n = + 1  
 
Therefore, 1∈ < f(x)> = <x,2>. Thus, we can write  
 
1 = x (a0+a1x4+a1xr) + 2(b0+b1x+…+bsxs), where a1,bj∈Z∀ I = 0, 1…..r 
and j = 0, 1,…….,s 
 
Now, on comparing the constant term on either side we see that 1 = 2b0. 
This can’t be true, since 2 is not invertible in Z. So we reach a 
contradiction. 
 
Thus, <x,2> is not a principal ideal. 
 
Thus, Z[x] is not a P.I.D. 
 
Now, try the following exercise. 
 
E 7) Show that a subring of a PID need not be a PID. 
 
E 8) Will any quotient ring of a PID be a PID? Why? 
 
Remember that a PID must be an integral domain. 
 
We will now discuss some properties of divisibility in PIDs. You may 
recall from Unit 12 that if R is a ring and a,b ∈ R, with a,b≠  0, then a 
divides b if there exists c ∈ R such that b = ac. 
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Now we would like to generalize the definition of some terms that you 
came across in Unit 1 in the context of Z. 
 
Definition 
 
Given two elements a and b in a ring R, we say that c ∈ R is a common 
divisor of a and b if c | a and c | b. 
 
An element d ∈ R is a greatest common divisor (g.c.d. in short) of a, 
b∈ R if 
 
i) d | a and d | b, and 

 
ii) for any common divisor c of a and b, c | d. 
 
We will show you that if the g.c.d of two elements exists, it is unique up 
to units, i.e., if d and d` are two g.c.ds of a and, then d=ud`, for some 
unit u. For this we need a result that you can prove in the following 
exercise. 
 
E 9) Let R be an integral domain. Show that 
 
a) u is a unit in R iff u | 1. 
b) for a, b ∈ R, a | b and b | a iff a and b are associates in R. 
 
So now let us prove the following result. 
 
Theorem 3 
 
Let R be an integral domain and a, b∈ R. If a g.c.d of a and b exists, 
then it is unique up to units. 
 
Proof 
 
So, let d and d` be two g.c.ds of a and b. Since d is a common divisor 
and d` is a g.c.d, we get d | d`. Similarly, we get d` | d. Thus, by E 9 we 
see that d and d` are associates in R. thus, the g.c.d of a and b is unique 
up to units. 
 
Theorem 3 allows us to say the g.c.d instead of a g.c.d. We denote the 
g.c.d of a and b by (a,b). (This notation is also used for elements of R x 
R. But there should be no cause for confusion. The context will clarify 
what we are using the notation for). 
 
How to we obtain the g.c.d of two elements in practice? How did we do 
it in Z? we looked at the common factors of the two elements and their 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 174 

product turned out to be the required g.c.d. We will use the same method 
in the following example.  
 
Example 5 
 
In Q[x] find the g.c.d of  
 
p(x) = x2+3x – 10 and  
 
q(x) = 6x2 – 10 x – 4  
 
Solution  
 
By the quadratic formula, we know that the roots of p(x) are 2 and – 5, 
and the roots of q(x) are 2 and – 1 / 3 
 
Therefore, p(x) = (x-2) (x+5) and q(x) is the product of the common 
factors of p(x) and q(x), which is (x-2). 
 
Try this exercise now 
 
E 10) Find the g.c.d of  
 
a) 2 and 6 in Z / <8> 
b) x2+8x15 and x2+12x+35 in Z[x]. 
c) x3-2x2+6x-5 and x2-2x+1 in Q[x]. 
 
let us consider the g.c.d of elements in a PID 
 
Theorem 4 
 
Let R be a PID and a, b∈ R. Then (a,b) exists and is of the form ax+by 
for some x,y ∈ R. 
 
Proof 
 
Consider the dieal <a,b>. Since R is a PID, this ideal must be principal 
also. Let d ∈ R such that <a,b> = <d>. we will show that the g.c.d of a 
and b is d. 
 
Since a ∈<d>, d | a, Similarly, d | b. 
 
Now suppose c ∈ R such that c | a and c | b. 
 
Since d ∈<a,b>, ∃  x, y ∈ R such that d = ax+by. 
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Since c | a and c | b, c | (ax+by), i.e., c | d. 
 
Thus, we have shown that d = (a,b), and d = ax+by for some x,y ∈ R. 
 
The fact that F[x] is a PID gives us the following corollary to Theorem 
a. 
 
Corollary 
 
Let F be a field. Then any two polynomials f(x) and g(x) in F[x] have a 
g.c.d which is of the form a(x) f(x) + b(x) g(x) for some a(x) ∈ F[x]. 
 

For example, in 10 (c), (x–1) = )12(
5

)()562(
5
1 223 +−

−
+−+− xxxxxx  

 
Now you can use Theorem 4 to prove the following exercise about 
relatively prime elements in a PID, i.e., pairs of elements whose g.c.d is 
1. 
 
E 11) Let R be a PID and a,b,c ∈ R such that a | bc. Show that if (a,b) = 

1, then a | c. 
 
(Hint: By Theorem 4, ∃  x,y ∈ R such that ax+by = 1). 

 
Let us now discuss a concept related of a prime element of a domain 
(see Sec. 12.4). 
 
Definition  
 
Let R be an Integral domain. We say that an element x ∈ R IS 
irreducible if  
 
i)  x is not a unit, and  
 
ii)  if x = ab with a,b ∈ R, then a is a unit or b is a unit. 
 
Thus, an element is irreducible if it cannot be factored in a non-trivial 
way, i.e., its only factors are its associates and the units in the ring.  
 
So, for example, the irreducible elements of Z are the prime, numbers 
and their associates. This means that an element in Z is prime iff it is 
irreducible. 
 
Another domain in which we can find several examples is F[x}, where F 
is a field. Let us look at the irreducible elements in E9(x), i.e., the 
irreducible polynomials over R and C. Consider the following important 
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theorem about polynomials in C[x]. You have already come across this 
in the Linear Algebra course. 
 
Theorem 5 (Fundamental Theorem of Algebra) 
 
Any non-constant polynomial in C[x] has a rot in C. (In fact, it has all 
its roots in C). 
 
Does this tell us anything about the irreducible polynomials over C? 
Yes. In fact, we can also write it as. 
 
Theorem 5 
 
A polynomial is irreducible in C[x] iff it is linear 
 
Theorem 6 
 
Any irreducible polynomial in R[x] has degree 1 or degree 2. 
 
We will not prove these results here but we will use them often when 
discussing polynomials over R or C. You can use them to solve the 
following exercise. 
 
E 12) Which of the following polynomials is irreducible? Give reasons 

for your choice. 
 

a) x2-2x+1 ∈ R[x] 
b) x2+x+1 ∈ C[x] 
c) x-i ∈ C[x] 
d) x3-3x2+2x+5 ∈ R[x] 
 
Let us now discuss the relationship betwee9 prime and irreducible 
elements in a PID. 
 
Theorem 7 
 
In a PID an element is prime iff it is irreducible. 
 
Proof 
 
Let R be a PID and x∈R be irreducible. Let x | ab, where a,b∈R. 
Suppose x ×a. Then (x,a) = 1, since the only factor of x is itself, up to 
units. Thus, by E 11, x | b, Thus, x is prime.  
To prove the converse, you must solve the following exercise. 
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E 13)  Let R be a domain and p ∈ R be a prime element. Show that p is 
irreducible. 

 
(Hint: Suppose P = ab. Then p | ab. If p | a, then show that b must be a 

unit.) 
 
Now, why do you think we have said that Theorem,7 is true for a PID 
only? From E 13 you can see that one way is true for any domain. Is the 
other way true for any domain? That is, is every irreducible element of a 
domain prime? You will get an answer to this question in Example 6. 
Just now we will look at some uses of Theorem 7.  
 
Theorem 7 allows us to give a lot of examples of prime elements of 
F[x]. For example, any linear polynomial over F is irreducible, and 
hence prime. In the next unit we will particularly consider irreducibility 
(and hence primness) over Q[x] 
 
Now we would like to prove a further analogy between prime elements 
in a PID and prime numbers, namely, a result analogous to Theorem l0 
of Unit For this we will first show a very interesting property of the 
ideals of a PID. This property called the ascending chain condition, 
says that any increasing chain of ideals in a PID must stop after a finite 
number of steps.  
 
Theorem 8 
 
Let R be a PID and I1,I2……, be an infinite sequence of ideals of R 
satisfying  
 
I1 ....2 ⊆⊆ I r an ass( 
 
Then ∈∃m N such that Im = Im+1 = Im+2=…… 
 
Proof 
 

Consider the set I = 
∞

=1
21 ....

n
II   In. We will prove that .I is Firstly, I 

.sin, 11 IIandIce ⊆≠≠ φφ  
 
Secondly, if a,b ∈I, then a ∈I, and b∈ Is for some r,s ∈ N.  
 
Assume r > s. Then Is ⊆  Ir. Therefore, a,b ∈ Ir, Since Ir is an ideal of R, 
a-b ∈ Ir ⊆  I. Thus, a-b ∈ I ∀  a, b ∈I. 
 
Finally, let x ∈ R and a ∈ I. Then a ∈ Ir for some r ∈ N. 
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∴xa ∈ Ir ⊆  I. Thus, whenever x ∈ R and a ∈ I, xa ∈ I.  
 
Thus, I is n ideal of R. Since R is a PID, I = <a> for some a ∈ R. Since a 
∈ I, a ∈ Im for some m∈ N. 
 
Then I⊆ Im. But Im⊆  I. So we see that I = Im. 
 
Now, Im = Im+2, and so on. Thus, Im=Im+1 = 1m+2=… 
 
Now, for a moment let us go back to Sec. 12.4, where we discussed 
prime ideals. Over there we said that an element p∈R is prime iff < p > 
is a prime ideal of R. If R is a PID, we shall use Theorem 7 to make a 
stronger statement.  
 
Theorem 9 
 
Let R be a PIP. An ideal < a > is a maximal ideal of R iff a is a prime 
element of R.  
  
Proof 
 
If <a> is a maximal ideal of R, then it is a prime ideal of R. Therefore, a 
is a prime element of R.  
 
Conversely, let a be prime and let I be an ideal of R such that < a > ~ I. 
Since R is a PID, I = <b> for some b e R. We will show that b is a unit 
in R; and hence, by E 4, <b>=R, i.e., I = R. 
 
Now, <a> ⊆  <b> ⇒  a = bc for some c ∈ R. Since a is irreducible, 
either is an associate of a or b is a unit in R. But if b is an associate of a, 
then <b> = <a>, a contradiction. Therefore, b is a unit in R. Therefore, 
1= R. 
 
Thus, <a> is a maximal ideal of R. 
 
What Theorem 9 says is ~hat the prime ideals and maximal ideals 
coincide in a PID. 
 
Try the following exercise now. 
 
E 14) Which of the following ideal are maximal? Give reasons for your 

choice. 
 
a)  < 5 > in Z, 
b)  < x2-1 > in Q [ 
c)  <x2+x+1 > in R[x], 
d)  < x > in Z[x]. 
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Now, take any integer n. then we can have n = 0, or n = + 1, or n has a 
prime factor. This property of integers is true for the elements of any 
PID, as you will see now. 
 
Theorem 10 
 
Let R be a ID and a be a non-zero non-invertible element of R. then 
there is some prime element p in R such that p|a. 
 
Proof 
 
If a is prime, take p = a. otherwise, we write a = a1b1, where neither a1 
nor b1 is an associate of a. Then <a> 

×
⊂  < a1 >. If a1 is prime take p = a1. 

Otherwise, we can write a1 = a2b2, where neither a2 nor b2 is an associate 
of a1. Then <a1> 

×
⊂  <a2>. Continuing in this way we get an increasing 

chain 
 
<a> 

×
⊂  <a1> 

×
⊂  <a2> 

×
⊂… 

 
By Theorem 8, this chain stops with some <an>. Then an with be prime, 
since it doesn’t have any non-trivial factors. Take p = an, and the 
theorem is proved. 
 
And now we are in a position to prove that any non-zero non-invertible 
element of a PID can be uniquely written as a finite product of prime 
elements (i.e., irreducible elements). 
 
Theorem 11 
 
Let R be a PID. Let a ∈ R such that a ≠  0 and a is not a unit. Then a = 
p1p2…pr, where p1,p2,…,pr, are prime elements of R. 
 
Proof 
 
If a is a prime element, there is nothing to prove. If not, then p1 | a for 
some prime p1 in R, by Theorem 10. Let a = p1a1. If a1 is a prime, we are 
through. Otherwise p2|a1 for some prime p2 in R. Let a1 = p2a2. Then a = 
p1p2a2. If a2 is a prime, we are through. Otherwise we continue the 
process. Note that since a1 is a non-trivial factor of a, <a> 

×
⊂  <a1>. 

Similarly, <a1> 
×
⊂  <a2>. So, as the process continues we get an 

increasing chain of ideals,  
<a> 

×
⊂  <a1> 

×
⊂  <a2> 

×
⊂  

 
In the PID R. Just as in the proof of Theorem 10, this chain ends at <am> 
for some m ∈ N, and am is irreducible. 
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Hence, the process stops after m steps, i.e., we can write a = p1p2… pm, 
where pi is a prime element of R ∀ i = 1,…, m. 
 
Thus, any non-zero non-invertible element in a PID can be factorised 
into a product of Primes. What is interesting about this factorization is 
the following result that you have already proved for Z in Unit 1. 
 
Theorem 12 
 
Let R. be a PID and a ≠  0 be non-invertible in R. Let a = P1P2...Pn = 
q1q2...qm, where Pi and qj are prime elements of R. Then n = m and each 
Pi is an associate of some qj for 1 < i < n, 1 < j < m. 
 
Before going into the proof of this result, we ask you to prove a property 
of prime elements that you will need in the proof. 
 
E 15)  Use induction on n to prove that if p is a prime element in an 

integral domain Rand if p|a1a2... an (where a1,a2,…, an∈ R), then 
pi for some i= 1,2,...,n. 

 
Now let us start the proof of Theorem 12. 
 
Proof 
 
Since p1p2…pn = q1q2…qm, p1|p1p2…qm. 
 
Thus, by E 15, p1|qj for some j = 1,……,m. By changing the order of the 
qi, if necessary, we can assume that j = 1, i.e., p1 | q1. Let q1 = p1u1. 
Since q1 is irreducible, u1 must be a unit in R. So p1 and q1 are 
associates. New we have  
 
P1p2…pn = (p1u1) q2…qm 
 
Canceling p1 from both sides, we get 
 
p2p3…pn = u1q2…qm. 
 
Now, if m > n, we can apply the same process to p2,p3, and so on. 
 
Then we will get  
 
1 = u1u2…un qn+1…qm. 
 
This shows that qn+1 is a unit. But this contradicts the fact that qn+1 is 
irreducible. 
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Thus, m < n. 
 
Interchanging the roles of the ps and qs and by using a similar argument, 
we get n < m. 
 
Thus, n = m. 
 
During the proof we have also shown that each pi is an associate of some 
qi, and vice versa. 
 
What Theorem 12 says is that any two prime factorizations of an 
element in a PID are identical, apart from the order in which the 
factors appear and apart from replacement of the factors by their 
associates. 
 
Thus, Theorems 11 and 12 say that every non-zero element in a PID R, 
which is not a unit, can be expressed uniquely (upto associates) as a 
product of a finite number of prime elements.  
 
For example, x2 – 1 ∈ R [x] can be written as (x–1) (x +1) or (x+1) (x–

1) or [
2
1 (x +1)] [2(x -1)] in R [x]. 

 
Now you can try the following exercise.  
 
E 16)  Give the prime factorization of 2x2–3 x+1 in Q[x] and Z2[x]. 
 
The property that we have shown for a PID in Theorems 11 and 12 is 
true for several oilier domains also. Let us discuss such rings now.  
 
3.3 Unique Factorisation Domain (UFD) 
 
In this section we shall look at some details of a class of domains that 
includes PIDs 
 
Definition 
 
We call an integral domain R a Unique Factorisation Domain (UFD, 
in short) if every non-zero element-of R which is not a unit in R can be 
uniquely expressed as a product of a finite number of irreducible: 
elements of R. 
 
Thus, if R is a UFD and a ∈ R, with a ≠  0 and a being non-invertible, 
then 
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i)  a can be written as a product of a finite number of irreducible 
elements, and  

 
ii)  if a = p1p2 pn=qlq2… qm be two factorisations into irreducible, 

then n = m and each pi is am associate of some qj, where 1 < I < n, 
1 < j < m. 

 
Can you think of an example of a UFD? Do Theorem 11 and 12 help? 
Of course! In them we have proved that every PID is a UFD. 
 
Thus, F[x] is a UFD for any field F. 
 
Also, since any Euclidean domain is a PID, it is also a UFD. Of course, 
in Unit 1 you directly proved that Z is a UFD. Why don’t you go 
through that proof and then try and solve the following exercises. 
 
E 17) Directly prove that F[x] is a UFD, for any filed F. 
  
 (Hint: Suppose you want to factorise f(x). Then use induction on 

deg f(x).) 
 
E 18)  Give two different prime factorisations of 10 in Z:  
 
So you have seen several examples of UFDs. Now we give you an 
example of a domain which is not a UFD (and hence, neither a PID nor 
a Euclidean domain).  
 
Example 6 
 
Show that Z[ 5− ] = {a+b 5−  | a,b ∈ Z} is not a UFD. 
 
Solution  
 
Let us define a function  
 
f: Z [ 5− ] → NU {0}by f(a+b 5− ) = a2+5b2.  
 
This function is the norm function, and is usually denoted by N. 
 
You can check that this function has the property that  
 
f(αβ) = f(α) f(β) ∀ α,β ∈ Z [ 5− ]. 
 
Now, 9 has two factorizations in Z[ 5− ], namely,  
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9 = 3.3 = (2+ 5− ) (2- 5− ) 
 
In Example 3, you have already shown that the only units of Z[ 5− ] 
are 1 and – 1. Thus, no two of 3, 2+ 5−  and 2 - 5−  are associates of 
each other. 
 
Also, each of them is irreducible. For suppose any one of them, 
 
say 2+ 5− , is reducible. Then  
 
2+ 5− = αβ for some non-invertible α,β ∈ Z[ 5− ].  
 
Applying the function f we see that  
 
f(2+ 5− ) = f(α) f(β), 
 
i.e., 9 = f(α) f(β). 
 
Since f(α), f(β) ∈ N and α, β are not units, the only possibilities are f(α) 
= 3 = f(β).  
 
So, if α = a+b 5− , then a2+5b2 = 3. 
 
But, if b ≠ 0, then a2 + 5b2 > 5; and if b = 0, then a2 = 3 is not possible in 
Z. So we reach a contradiction. Therefore, our assumption that 2+ 5−  
is reducible is wrong. That is, 2+ 5− is irreducible.  
 
Similarly, we can show that 3 and 2- 5−  are irreducible. Thus, the 
factorization of 9 as a product of irreducible elements is not unique. 
Therefore, Z [ 5− ] is not a UFD.  
 
From this example you can also see that an irreducible element need not 
be a prime element. For example, 2+ 5+  is irreducible and 2+ 5+ |3.3, 
but 2+ 5+ χ3. Thus, 2+ 5+  is not a prime element. 
 
Now for an exercise  
 
E 19) Give two different factorisations of 6 as a product of irreducible 

elements in Z[ 5+ ]. 
 
Now let us discuss some properties of a UFO. The first property says 
that any two elements of a UFD have a g.c.d; and their g;c.d is the 
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product of all their common factors. Here we will use the fact any 
element a in a UFD R can be written as 
 
A = p1

r1p2
r2…pn

rn 
 
Where the pis are distinct irreducible elements of R. For example, in 
Z[x] we have x3 – x2–x+1= (x-1) (x+1) (x–1) = (x–1)2 (x+1). 
 
So, let us prove the following result.  
 
Theorem 13 
 
Any two elements of a UFD have a g.c.d. 
 
Proof 
 
Let R be a UFD and a.b ∈R.  
 
Let a = p1

r1p2
r2…pn

rn and b = p1
S1p2

S2…pn
Sn  

 
Where p1,p2,…, pn are distinct irreducible elements of R and ri and spare 
non-negative integers ∀ i =  1,2,…,n. 
 
(If some Pi does not occur in the factorisation of a, then the 
corresponding ri = 0 Similarly, if some pi is not a factor of b, then the 
corresponding si = 0. For example, take 20 and 15 in Z. Then 20 = 22x30 
x.51 and 15 = 20 x31x.51)  
 
Now, let ti = min (ri,si) ∀ I = 1, 2,….,n. 
 
Then d = p1

t1p2
t2…pn

tn divides a as well as b, since ti < ri and ti < si ∀ I = 
1,2,….,n. 
 
Now, let c | a and c | b. Then every irreducible factor of c must be an 
irreducible factor of a and of b, because of the unique factorisation 
property. 
 
Thus, c = p1

m1p2
m2…pn

mn where mi < ri and mi < si ∀I = 1,2,…,n. Thus, 
mi < ti ∀  
 
Therefore, c | d.  
 
Hence, d = (a,b). 
 
This theorem tells us that the method we used for obtaining the g.c.d in 
Example 5 and E 10 is correct. 
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Now, let us go back to Example 6 for a moment. Over there we found a 
non-UFD in which an irreducible element need not be a prime elemnt. 
The following result says that this distinction between irreducible and 
prime elements can only occur in a domain that is not a UFD 
 
Theorem 14  
 
Let R be a UFD. An element of R is prime iff it is irreducible. 
 
Proof 
 
By EI3 We know that every prime in R is irreducible. So let us prove the 
converse.  
 
Let a ∈ R be irreducible and let a | bc, where b,c∈ R. 
 
Consider (a,b). Since a is irreducible, (a,b)=1 or. (a.b) = a 
 
If(a,b) = a, a | b. 
 
If (a,b) = 1, then a  | b. Let bc = ad, where d ∈ R.  
 
Let b = p1

r1 p2
r2…pm

rm and c = q1
S1q2

S2…qn
Sn, be irreducible 

factorizations of b and c. Since bc = ad and a is irreducible, a must be 
one of the pis or one of the qis. Since aχb, a ≠ pi for any i. Therefore, a = 
qj for some j. That is, a|c. 
 
Thus, If (a,b) =1 , then a |c  
 
So, we have shown that a | bc a | b or a | c. 
 
Hence, a is prime. 
 
For the final property of UFDs that we are going to state, let us go back 
of Example 4 for a moment. Over there we gave you an example of a 
PID R, for which R [x] if R is a UFD. We state the following result.  
 
Theorem 15 
 
Let R be a UFD. Then R[x] is a UFD 
 
We will not prove this result here, even though it is very useful to 
mathematicians. But let us apply it. Y 011 can use it to solve the 
following exercises. 
 
E 20)  Give an example of a UFD which is not a PID.  
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E21)  If p is an irreducible clement of a UFD R. then is it irreducible in 

every quotient ring of R? 
 
E 22)  Is the quotient ring of a UFD a UFD? Why? 
 
E 23) Is a subring of a UFD a UFD? Why? 
 
Let us wind up this unit now, with a brief description of what we have 
covered in it. 
 
4.0 CONCLUSION  
 
 
 
5.0 SUMMARY 
 
In this unit we have discussed the following points. 
 
1)  The definition and examples of a Euclidean domain. 
 
2)  Z, any field and any polynomial ring over a field arc Euclidean 

domains. 
 
3)  Units associates, factors, the g.c.d of two elements, prime 

elements and irreducible elements in an integral domain. 
 
4)  The definition and examples of a principal ideal domain (PID). 
 
5)  Every Euclidean domain is a PID, but the converse is not true. 

Thus, Z. F and F[x] are PIDs for any field F. 
 
6) The g..c.d of any two elements a and b in a PID R exists and is of 

the form ax+by for some x,y ∈ R. 
 
7) The Fundamental Theorem of Algebra: Any non-constant 

polynomial over C has all its roots1n C.  
 
8)  In a PID every prime ideal is a maximal ideal. 
 
9)  The definition and examples of a unique factorisation domain 

(UFD).  
 
10)  Every PID is a UFD, but the converse is not true. Thus Z. F an~ 

F[x] are UFDs, for any field F 
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11)  In a UFD (and hence, in a PID) an clement is prime iff it is 
irreducible  

12)  Any two elements In a UFD have a g.c.d.  
 
13) If Ris a UFD, then so is R [x] 
 
ANSWER TO SELFASSESSMENT EXERCISE 
 
 1. d : F \ {0} → N  {0}: d(x) = 1 
 
For any a, b ∈ F \ {0}, 

 
d(ab) = 1 = d(a). 

 
∴d(a) = d(ab) ∀ a,b ∈ F \ {0} 

 
Also, for any a,b ∈ F, b ≠ 0, 

 
a = (ab-1)b+0, 

 
So, F trivially satisfies the second condition for a domain to be 
Euclidean. 

 
Thus, F is a Euclidean domain.  
 
2.  In Unit. 13, you have seen that 

 
deg (f(x) g(x) = deg f(x)+deg g(x) ∀ f(x),g(x) ∈ F [x] \ {0}. 

 
Now, use Theorem 5 of Unit 13, and you will have proved the result. 
 
3a) m ∈ Z is a unit iff ∃ n ∈ Z such that mn = 1,i.e., iff m = + l. 
 
b) Let m m ∈ Z6 be a unit. Then ∃ n  ∈ Z6 such that m n  =1  

 
Thus, from Sec. 1.6.2 we see that m is a unit if the g.c.d of m and 6 is 1. 

 
∴ m = 1 or 5  

 
c)  Z/5Z is a field. Thus, the units are all its non-zer6 elements. 

 
d)  Let a+ib be a unit. Then ∃ c+id ∈ Z+iZ such that 

 
(a+ib) (c+id) = 1, 
⇒ (ac-bc)+(ad+bc)I = 1 
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⇒ ac-bd = 1 and ad+bc = 0 
⇒ b = 0, as in Example 3. 

Thus, a+ib = l or-1, using,(a) above. 
 
4.  Let u ∈ R be a unit. Then ∃ v ∈ R such that vu = 1. Thus, for any 

r ∈ R, r = r. 1 = r(vu) = (rv)u ∈ Ru. 
 

Thus, R ⊆ Ru. ∴ R = Ru, 
 

Conversely, let Ru = R. Since 1 ∈ R =.Ru, ∃ v ∈ R such that 
 

1 = vu. Thus, u is a unit in R. 
 
5.  Apply Theorem 2 to the Euclidean domain F[x].  
 
6.  Let R=Z. Then S = {n ∈ Z* |  | n | > 1} U {0} 
 

Then 2 ∈ S, 3 ∈ S but 2-3 ∉ S since |2-3| = 1. 
 
Thus, S is not even a subring of R, 

 
7.  For example, Z[x] is a subring of Q[x], which is a PID. But Z[xl 

is not a PID. 
 
8.  Z is it,PID. But Z/6Z is not even a domain. Thus, it is not a P1D. 
 
9a. u is a unit iff uv = 1 for some v ∈ R iff u | 1 

 
b. a | b and b | a 
 

=> b = ac and a = bd for some b,d ∈ R. 
=> b = bdc 
=> b = 0 or dc = 1 

 
If b = 0, then a = 0, and then a and b are associates. 
If b ≠ 0, then dc = 1. Thus, c is a unit and b = ac.  

 
Therefore, a and bare associates.  

 
Conversely, let a and b be associates in R, say a = bu, where u is a unit 
in R. then b | a. Also, let v ∈ R such that uv = 1. Then av = buv = b.  
Thus, a | b. 

 
10a.  2 . 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 189 

b)  x2+8x+15 = (x+3) (x+5), x2+12x+35 = (x+5) (x+7) 
 

Thus, their g.c.d is x+5 
 

c)  x3-2x2+6x-5 = (x-I) (x2-x+5), x2-2x+1 ::: (x-1)2, 
 

Thus, their g.c.d is x-1. 
 
11. ∃ x,y ∈ R such that ax+by = 1 
 

Then c = 1c = (ax+by) c = acx+bcy  
 
Since a | ac and a | bc, a | (acx+bcy) 

  
12.  (c) is, because of Theorem  
 
(a)  is not, since it is (x-1)2  
(b)  is not, because of Theorem 5'.  
(d)  is not, because of Theorem 6.  
  
13.  Let p = ab. Then p | ab ⇒ p | a or p | b. suppose p | a. Let a – pc. 

Then p = ab = pcb ⇒ p(1-cb) = 0 ⇒ 1 – cb = 0, since R is a 
domain and p ≠ 0. Thus, bc = 1, i.e., b is a unit. Similarly, you 
can show that if p | b, then a is a unit.  

 
So, p = ab ⇒ a is a unit or b is a unit, i.e., p is irreducible.  
 

14(a),  (c), since 5 and x2+x+ 1 are irreducible in Z and R[x], 
respectively.  

(b) is not, using Theorem 9. 
(d)  is not, since Z[x]/ <x> ~ Z, which is not a field.  
 
15.  The result is clearly true for n = 1. Assume that it holds for all m 

< n, i.e., whenever m < n and p | al a2...am then p | ai for some I = 
1,2,…,m. 

 
Now let p | al a2...an. Then p | (al a2...an-1)an.  
 
Since p is a prime element, we find that p | al a2...an-1 or p | an 
 
If p | al a2...an-1, then p | ai for some i = 1,…,n-l by our assumption.  

 
If p  |  a1…an-1, p | an. 
 
Thus, in either case, p | ai for some i = 1,….,  
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So, our result is true for n.  
 

Hence, it is true ∀ n ∈ N.  
 
16.  2x2_3x+1 = (2x-l) (x-1) in Q[x].  
 
In Z2 [x] the given polynomial is x+1 , since 2  = 0 and - 3  = 1 .  

 
This po1ynonlial is linear, and hence, irreducible over Z2 

 
Thus, its prime factorisation is just x+1 . 
 
17.  Let f(x) be a non-zero non-unit in F[x] and let deg f(x) = n.  

 
Then n > 0. We will prove that f(x) can be written as a product of 
irreducible elements, by induction on n, If n = 1, then f(x) is linear, and 
hence irreducible.  

 
Now suppose that the result is true for polynomials of degree < n. Now 
take f(x). If f(x) is irreducible, there is nothing to prove. Otherwise, 
there is a prime f1(x) such that f1(x) | f(x). Let f(x) = f1(x)g1(x). Note that 
deg f1(x) > 0. 

 
Hence, deg g1(x),< deg f(x). If g1(x) is prime, we are through. Otherwise 
we can find a prime element f2(x) such that gl(x) = f2(x)g2(x). Then deg 
g2(x) < deg gl(x). This process must stop after a finite number of steps, 
since, each time we get polynomials of lower degree. Thus, we shall 
finally get  

 
f(x) = f1(x) f2(x)…fm(x),  
 
where each f1(x) is prime in F[x].  
  

Now, to show that the factorization is unique you go along the lines of 
the proof of Theorem 12. .'   
 
18. 10 = 2 x 5 = x 2. 
 
19. 6 = 2.3 = (1+ 5− ) (1- 5− )  
 
Using the norm function you should check that each of 2,3,1+ 5− and 1 
- 5− are irreducible in Z [ 5− ]. 
 
20. Z[x]. 
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21. No. For example, x is irreducible in Z[x]; but x  is zero in Z[x]/< 
x > ~ Z. 

22. The quotient ring of a domain need not be a domain. For 
example, Z is a UFD, but Z/<4> is not. 

 
Also, even if the quotient ring is a domain, it may not be a UFD. For 
example, Z[ 5− ] ~ Z[x]/< x2+5 > is not a UFD, while Z[x] is 
 
23. No. For example, Z[ 5− ] is a subring of C, a UFD. But Z[ 5− ] 

is not a UFD. 
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UNIT 4  IRREDUCIBILITY AND FIELD EXTENSIONS  
 
CONTENTS 
 
1.0 Introduction  
2.0 Objectives  
3.0 Main Content  

3.1 Irreducibility in Q[x] 
3.2 Field Extensions  
 3.2.1 Prime Fields  
 3.2.2 Finite Fields  

4.0 Conclusion  
5.0 Summary  
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading  
 
1.0 INTRODUCTION  
 
In the previous unit we discussed various kinds of integral domains, 
including unique factorization domains. Over there you saw that Z[x] 
and Q[x] are UFDs. Thus, the prime and irreducible elements coincide 
in these rings; In this unit we will give you a method for obtaining the 
prime (or irreducible) elements of Z[x] and Q[x]. This is the Eisenstein 
criterion, which can also be used for obtaining the irreducible elements 
of any polynomial ring over a UFD. 
 
After this we will introduce you to field extensions and subfields. We 
will use irreducible polynomials for obtaining field extensions of a field 
F from F[x]. We will also show you that every field it; a field extension 
of Q or Zp for some prime p. Because of this we call Q and the Zp

S prim 
fields. We will discuss these fields briefly. 
 

 
Fig. 1: Evariste Galois (1811 – 1832) 
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Finally, we wil1.look at finite fields. These fields were introduced by the 
young French mathematician Evariste Galois (Fig. l) while he was 
exploring number theory. We will discuss some properties of finite 
fields which will show us how to classify them. 
 
Before reading this unit we suggest that you go through the definitions 
of irreducibility from Unit l4. We also suggest that you go through Units 
3 and 4 of the Linear Algebra course if you want to understand the proof 
of Theorem 7 of this unit. We have kept the proof optional. But once 
you know what a vector space and its basis are, then the proof IS very. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• prove and use Eisenstein's criterion for irreducibility in Z[x] and 

Q[x] 
• obtain field cxten5ionsof a field F from F[x] 
• obtain the prime field of any field 
• use the fact that finite field F has pn elements, where char F = p 

and 
PZdim F= n. 

 
3.0 MAIN CONTENT  
 
3.1 Irreducibility in Q[x] 
 
In Module 3 Unit 4 we introduced you to irreducibility irredt1clble 
polynomials in F[x], where F is a field. We also stated the Fundamental 
Theorem of Algebra, which said that a polynomial over C is irreducible 
iff it is linear. You also learnt that if a polynomial over R is irreducible, 
it must have degree l or degree 2. Thus, anypo1ynomial over R of 
degree more than 1 is reducible. And. using the quadratic formula, we 
know which quadratic polynomials over R are irreducible.  
 
Now let us look at polynomials over Q. Again, as for any field F, a 
linear polynomial over Q is irreducible. Also, by using the quadratic 
formula we can explicitly obtain the roots of any quadratic polynomial 
over Q and hence figure out whether it is irreducible or not. But, can 
you tell whether 2x7+3x5 – 6x4 + 3x3 + 12 is irreducible over Q or not? 
In two seconds we can tell you that it is irreducible, by using the 
Eisenstein criterion. This criterion was will build up the theory for 
proving this useful criterion. 
 
Let us start with a definition.  
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Definition 
 
Let f(x) = a0 + a1x +...+ anxn ∈ Z[x]. We define the content of f[x] to be 
the g.c.d of the integers a0, al,…, an,  
 
We say that f(x) is primitive if the content of f(x) is 1 
 
For example, the content of 3x2 + 6x+ 12 is the g.c.d. of 3,6 and  12, i.e., 
3. Thus, this polynomial is not primitive. But x5 + 3x2 + 4x -5 is 
primitive, since the g.c.d of 1,0,0,3,4,-5 is 1. 
 
You may like to try the following exercises now. 
 
E 1)  What are the contents of the following polynomials over Z? 
 
a) 1 + x + x2 + x3 + x4 

 
b) 7x4 - 7  

 
c)  5(2x2 -l)(x+ 2) 
 
E 2)  Prove that any Polynomial f(x) e Z[x] can be written as dg(x), 

where d is the conter t 
 
We will now prove that the product of primitive polynomials is a 
primitive polynomial. This result is well known as Gauss’ lemma. 
 
Theorem 1 
 
Let f(x) and g(x) be primitive polynomials. Then so is f(x) g(x). 
 
Proof  
 
Let f(x) = a0 + alx + ... anxn ∈ Z[x] and 
 

g(x) = b0 + blx + ...+ bmxm ∈ Z[x].where the  
 
g.c.d of a0, a1,…, an is 1 and the g.cd of b0 b1,…, bm is 1. Now  
 

f(x) g(x) = c0+ c1x +…+cm+nxm+n 

 
where ck = a0bk+ albk-1 +...+akb0. 
 
To prove the result we shall assume that it is false and then reach a 
contradiction. So, suppose that f(x) g(x) is not primitive. Then the g.c.d 
of c0, c1,..., cm+n is greater than 1, and hence some prime p must divide it. 
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Thus, p | ci ∀ i = 0, 1,..., m+n. Since f(x) is primitive, p does not divide 
some ai. Let r be the least integer such that p | ar. Similarly, let s be the 
least integer such that p | bs. 
 
Now consider 
 
cr+s  =  a0br+s+albr+s1 + ...+ arbs + ...+ar+s b0 
 
= arbs + (a0br+s + albr+s-l+ … + ar-l bs+1 + ar+1bs-1+…+ ar+sb0) 
 
By our choice Of r and s, p | a0,…, p | a1, P | ar-1, and p | b0, p | bl,…, p | 
bs-l. Also  p | cr+s  
 
Therefore, p | cr+s - (a0br+s +... + ar-1 bs+1 + ar+1 bs-l+ ...+ ar+sb0) 
 
i.e., p | ar bs  
 
⇒ p | ar or p | bs since p is a prime. 
 
But p  |  ar and p  |  bs. So we reach a contradiction. Therefore, our 
supposition is false. That is, our theorem is true. 
 
Let us shift our attention to polynomials over Q now. 
 

Consider any polynomial over Q, say f(x) = 
3
13

5
1

2
3 23 +++ xxx . If we 

take the kcm of all the denominators, i.e., of 2,5, 1 and 3, i.e., 30 and 
multiply f(x) by it what do we get?  
 
30f(x) = 45x3 + 6x2 + 90x + 10 ∈ Z[x] 
 
Using the same process, we can multiply any f(x) ∈ Q[x] by a suitable 
integer d so that df(x) ∈ Z[x]. We will use this fact while relating 
irreducibility in Q[x] with irreducibility in Z[x]. 
 
Theorem 2 
 
If f(x) ∈ Z[x] is irreducible in Z[x], then it is irreducible in Q[x]. 
 
Proof 
 
Let us suppose that f(x) is not irreducible over Q[x]. Then we should 
reach a contradiction. So let f(x) = g(x) h(x) in Q[x], where neither g(x) 
nor h(x) is a unit, i.e., deg g(x) > 0, deg h(x) > 0. Since g(x) ∈ Q[x], ∃ m 
∈ Z such that mg(x) ∈ Z[x]. Similarly, ∃ n∈ Z such that nh(x) ∈ Z[x].  
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Then, 
 
mnf(x) = mg(x) nh(x)  ……………(1) 
 
Now, let us use E2. By E2, f(x) = rf1(x), mg(x) = sg1 (x), nh(x) = th1 (x), 
where r, s and t are the contents of f(x), mg (x) and nh (x) and f1(x), 
g1(x), h1(x) are primitive polynomials of positive degree. 
 
Thus, (1) gives us 
 
Mnrf1(x) = stg1(x) h1(x)  ……………(2) 
 
Since g1(x) and h1(x) are primitive, Theorem 1 says that g1(x) h1(x) is 
primitive. Thus, the content of the right hand side polynomial in (2) is st. 
But the content of the left hand side polynomial in (2) is mnr. Thus. (2) 
says that mnr = st.  
 
Hence, using the cancellation law in (2), we get f1(x) = g1(x) h1(x).  
 
Therefore, f(x) = rf1(x) = (rg1(x)) h1(x) in Z[x], where neither rg1(x) nor 
h1(x) is a unit. This contradicts the fact that f(x) is irreducible in Z[x].  
 
Thus, our supposition is false. Hence, f(x) must be irreducible in Q[x].  
 
What this result says is that to check irreducibility of a polynomial in 
Q[x], it is enough to check it in Z[x]. And. for checking it in Z[x] we 
have the terrific Eisenstein’s criterion that we mentioned at the 
beginning of this section.  
 
Theorem 3 (Eisenstein’s Criterion)  
 
Let f(x) = a0 + a1x + ... + anxn ∈ Z[x] Suppose that for some prime 
number p, 
  
i)  f | an,  
 
ii)  p | a0 p | a1,…, p | an-1, and  
 
iii) p2 | a0 
 
Then f(x) is irreducible in Z[x] (and hence in Q[x])  
 
Proof  
 
Can you guess our method of proof? By contradiction, once again! So 
suppose f(x) is reducible in Z[x]. 
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Let f(x) = g(x) h(x), 
 
Where g(x) = b0 + b1 x + ... + bmxm, m> 0 and  
 
h (x) = c0 + c1 x + … + crxr, r > 0. 
 
Then n = deg f = deg g + deg h = m + r, and 
 
ak = b0 ck + b1 ck-1 + … + bk c0 ∀ k = 0, 1 …, n. 
 
Now a0 = b0c0. We know that p | a0. Thus, p | b0c0 ∴ p b0 or p | c0. Since 
p2  |  a0, p cannot divide both b0 and c0. Let us suppose that p | b0 and p  | 
c0. 
 
Now let us look at an = bm cr. Since p  | an, we see that p  | bm and p  | cr. 
Thus, we see that for some I, p  | bi. Let k be the least integer such that p  
| bk. Note that 0 < k < m < n. 
 
Therefore, p | ak. 
 
Now, ak = (b0 ck + … + bk-1 c1) + bk c0. 
 
Since p | ak and p | b0,…, p | bk-1, we see that p | ak – (b0ck + … + bk-1c1), 
i.e., p | bkc0. But p | c0. So we reach a contradiction.  
 
Thus, f(x) must be irreducible in Z[x]. 
 
Let us illustrate the use of this criterion. 
 
Example 1 
 
Is 2x7 + 3x5 – 6x4 + 3x3 + 12 irreducible in Q[x]? 
 
Solution 
 
By looking at the coefficients we see that the prime number 3 satisfies 
the conditions given in Eisenstein’s criterion. Therefore, the given 
polynomial is irreducible in Q[x] 
 
Example 2 
 
Let p be a prime number. Is Q[x]/<x3 – p > a field? 
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Solution   
 
From Unit 14 you know that for any field F, if f(x) is irreducible in F[x], 
then <f(x)> is a maximal ideal of F[x]. 
 
Now, by Eisenstein’s criterion, x3 – p is irreducible since p  satisfies the 
conditions given in Theorem 3. Therefore, <x3 – p> is a maximal Ideal 
of Q[x]. 
 
From Unit 12 you also know that if R is a ring, and M is a maximal ideal 
of R. then R/M is a field. 
 
Thus, Q[x] / <x3 – p> is a field. 
 
In this example we have brought out an important fact. We ask you to 
prove it in the following exercise. 
 
E 3) For any n ∈ N and prime number p, show that xn – p is 

irreducible over Q[x].note that this shows us that we can obtain 
irreducible polynomials of any degree over Q[x]. 

 
Now let us look at another example of an irreducible polynomial. While 
solving this we will show you how Theorem 3 can be used indirectly. 
 
Example 3 
 
Let p be a prime number. Show that  
 
f(x) = xp-1 + xp-2 + … + x + 1 is irreducible in Z[x]. f(x) is called the pth 
cyclotomic polynomial. 
 
Solution 
 
To start with we would like you to note that f(x) = g(x) h(x) in Z[x] iff 
f(x+1) = g(x+1) h(x+1) in Z[x]. Thus, f(x) is irreducible in Z[x] iff 
f(x+1) is irreducible in Z[x]. 

Now, f(x) = 
1
1

−
−

x
x p

 

 

∴ f(x+1) = 
x

x p 11 −+  
 

= ),11...(1
1

1
1 −++++ −

− xCxCx
x p

pppp (by the binomial theorem) 

 
= xp-1 + pxp-2 + pC2xp-3 +… + pCp-2 x + p. 
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Now apply Eisenstein’s criterion taking p as the prime. We find that 
f(x+1) is irreducible. Therefore, f(x) is irreducible. 
 
You can try these exercises now. 
 

E 4) If a0 + a1x + … + an xn ∈ Z[x] is irreducible in Q[x], can you 
always find a prime p that satisfies the conditions (i), (ii) and (iii) 
of Theorem 3? 

 
E 5)  Which of the following elements of Z[x] are irreducible over Q? 
 
a) x2-12 .. 
 
b)  8x3 + 6x2 -9x+ 24 . 
 
c)  5x + 1 
 
E 6)  Let p be a prime integer. Let a be a non-zero non-unit square-free 

integer, i.e., b2 /  a for any b ∈ Z. Show that Z[x]/<xp+a> is an 
integral domain. 

 
E 7)  Show that xP + a∈ Zplx] is not irreducible for any it" E Zp' 

(Hint: Does E 13 of Unit 13 help?) 
 
So far we have used the fact that if f(x) E Z[x] IS irreducible over. Z. 
then it is also irreducible over Q, Do you think we can have a similar 
relationship between irreducibility in Q[x] and R[x]? To answer this 
consider f(x) = x2- 2. This is irreducible in Q[x], but f(x) = (x - )2  (x 
+ )2 ) in R[x]. Thus, we cannot extend irreducibility over Q to 
irreducibility over R.  
 
But we can generalise the fact that irreducibility in Z[x] implies 
irreducibility in Q[x]. This is not only true for Z and Q; it is true for any 
UFD R and its field of quotients F (see Sec. 12.5). Let us state this 
relationship explicitly. 
 
Theorem 4 
 
Let R be a UFD with field of quotients F. 
 
i)  If f(x) ∈ R[x] is an irreducible primitive polynomial, then it is 

also irreducible in F[x]. 
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ii)  (Eisenstein's Criterion) Let f(x) = a0 + alx + … + an xn ∈ R[x] 
and p ∈ R be a prime element such that p  |  an, p2  |  a0 and p | ai 
for 0 < i < n. Then f(x) is irreducible in F[x]. 

 
The proof of this result is on the same lines as that of Theorems 2 and 3. 
We will not be doing it here. But if you are interested, you should try 
and prove the result yourself.  
 
Now, we have already pointed out that if F is a field and f(x) is 
irreducible over F, then F[x]/<f(x)> is a field. How is this field related to 
F? That is part of what we will discuss in the next section. 
 
3.2  Field Extensions 
 
In this section we shall discuss subfields and field extensions. To start 
with let us define these terms. By now the definition may be quite 
obvious to you. 
 
Definition 
 
A non-empty subset S of a field F is caned a subfield of F if it is a field 
with respect to the operations on F. If S≠ F, then S is called a proper 
subfield of F. 
 
A field K is called a field extension of F if F is a subfield of K. Thus, Q 
is a subfield of R and R is a field extension of Q. Similarly, C is a field 
extension of Q as well as of R. 
 
Note that a non-empty subset S of a field F is a subfield of F iff  
 
i)  S is a subgroup of (F,+), and . 
ii)  The 'set of all non-zero elements of S forms a subgroup of the 

group of non-zero elements of F under multiplication. 
 
Thus, by Theorem 1 of Unit 3, we have the following theorem. 
 
Theorem 5 
 
A non-empty subset S of a field F is a subfield of F if and only if 
 
i)  a ∈ S, b ∈ S ⇒ a-b ∈ S, and 
 
ii)  a ∈ S, b ∈ S, b ≠ 0 ab-l ∈ S. 
 
Why don't you use Theorem 5 to do the following exercise now.  
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E 8) Show that 
 
a) Q + iQ is a subfield of C 
b) Z + 2 Z is not a subfield or R.  
 
Now, let us look at a particular field extension of a field F. Since F[x] is 
an integral domain, we can obtain its field of quotients (see Module 3 
Unit 2). We denote this field by F(x). Then F is a subfield of F(x). Thus, 
F(x) is a field extension of F. Its elements are expressions of the form 

)(
)(

xg
xf , where f(x), g(x) ∈ F[x} and g(x) ≠ o. 

 
There is another way of obtaining a field extension of a field F from 
F[x]. We can look at quotient rings of F[x] by its maximal ideals. You 
know that an ideal is maximal in F[x] iff it is generated by an irreducible 
polynomial over F. So, F[x]/<f(x), 1s a field iff f(x) is irreducible over 
F. 
 
Now, given any f(x) ∈ F[x], such that deg f(x) > 0, we will show that 
there is a field monomorphism from F into F[x]/<f(x). This will show 
that F[x)/<f(x» contains an isomorphic copy of F; and hence, we can say 
that it contains F.  
 
So, let us defineφ : F→ F[x]/<f(x)>: φ (a) = a + <f(x». 
 
Then, φ  (a+b) = φ  (a) + φ  (b), and 
 
φ  (ab) = φ  (a) φ  (b) 
 
Thus, φ  is a ring homomorphism. 
 
What is Ker φ  ?). 
 
Ker φ  = {a ∈ F | a + <f(x)> = <f(x)>} 
 
 = {a ∈ F | a + ∈ <f(x)>} 
 

= {a ∈ F | f(x) | a} 
 

= {0}, since deg f > 0 and deg a < 0. 
 

Thus, φ  is 1-1, and hence an inclusion.  
 
Hence, F is embedded in F[x]/<f(x)> 
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Thus, if f(x) is irreducible in F[x], then F[x]/<f(x)> is a field extension 
of F. 
 
Now for a related exercise! 
 
E 9)  Which of the following rings are field extension of Q? 
 
a)  Q[x]/<x3 + 10>, 
b)  R[x]/<x2 + 2>, 
c)  Q, 
d)  Q[x]/<x2-5x + 6>. 
 
Well, we have looked at field extensions of any field F. Now let us look 
at certain fields, one of which F will be an extension of. 
 
3.2.1 Prime Fields 
 
Let us consider any field F. Can we say anything about what its 
subfields look like? Yes, we can say something about one of its 
subfields. Let us prove this very startling and useful fact. Before goi1lg 
into the proof we suggest that you do a quick revision of Theorems 3. 4 
al1d 8 of Unit 12. Well, here’s the result.  
 
Theorem 6 
 
Every field contains a subfield isomorphic to Q or to Zp, for some prime 
number p. 
 
Proof 
 
Let F be a field. Define a function  
 
f : Z → F : f(n) =  n.1 = 1 + 1 + … + 1 (n times). 
 
In E 11) of Module 3 Unit 2 you have shown that f is a ring 
homomorphism and Ker f = pZ, where p is the characteristic of F. 
 
New, from Theorem 8 of Unit 12 you know that char F = 0 or char F = 
p, a prime. So let us look at these two cases separately. 
 
Case 1  
 
(Char F – 0): In this case f is one-one, ∴ Z = f(Z). Thus, f(Z) is an 
integral domain contained in the field F. Since F is a field, it will also 
contain the field of quotients of f(Z). This will be isomorphic to the field 
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of quotients of Z, i.e., Q. Thus, F has a subfield which is isomorphic to 
Q. 
 
Case 2  
 
(Char F = p, for some prime p) :  
 
Since,p1s a prime number, Z/pZ is a field. 
 
Also, by applying the Fundamental Theorem of Homomorphism to f, we 
get Z/pZ ~ f(Z). 
 
Thus, f(Z) is isomorphic to Zp and is contained in F. Hence, F has 
subfield isomorphic to Zp. 
 
Let us reword Theorem 6 slightly. What it says is that : 
 
Let F be a field. 
 
i) If char F = 0, then F has a subfield isomorphic to Q. 
ii) If char F = p, then F has a subfield isomorphic to Zp. 
 
Because of this property of Q and Zp (where p is a prime number) we 
call these fields prime fields. 
 
Thus, the prime fields are Q, Z2, Z3, Z5 etc. 
 
We call the subfield isomorphic to a prime field (obtained in Theorem 
6), the prime subfield of the given field. 
 
Now, suppose a field F is an extension of a field K. Are the prime 
subfields of K and F isomorphic or not? To' answer this let us look at 
char K and char F. We want to know if char K = char F or not. Since F 
~s a field extension of K, the unity of F and K is the same, namely, 1. 
Therefore, the least positive integer "such that n.l = 0 is the same for F 
as well as K. Thus, char K = char-F. Therefore, the prime subfields of K 
and F are isomorphic. 
 
So, now can you do the following exercises? 
 
E 10)  Show that the smallest subfield of any field is its prime subfield. 
 
E 11) Let F be a field which has no proper subfields. Show that F is 

isomorphic to a prime field.  
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E 12) Obtain the prime subfields of R, Zs and the field given in E 15 of 
Unit 12. 

 
E 13) Show that given any field, if we know its characteristic then we 

can obtain its prime subfield and vice versa. 
 
A very important fact brought out by E 10 and E 11 is that: a field is a 
prime field iff it has no proper subfields. 
 
Now let us look at certain field extensions of the fields Zp. 
 
You have dealt a lot with the finite fields Zp. Now we will look at field 
extensions of these fields. You know that any finite F has characteristic 
p, for some prime p. And then F is an extension of Zp. Suppose F 
contains q elements. Then q must be a power of p. That is what we will 
prove now. 
 
Theorem 7  
 
Let F be a finite field having q elements and characteristic p. Then q = 
pn, for some positive integer n.  
 
The proof of this result uses the concepts of a vector space and its basis. 
These are discussed in Block 1 of the Linear Algebra course. So, if you 
want to go through the proof, we suggest that you quickly revise Units 3 
and 4 of the Linear Algebra course. If you are not interested in the proof, 
you may skip it. 
 
Proof of Theorem 7  
 
Since char F = p, F has a prime subfield which is isomorphic to Zp. We 
lose nothing if we assume 1hat the prime subfield is Zp. We first show 
that F is a vector space over Zp with finite dimension. 
 
Recall that a set V is a vector space over a field K if 
 
i) we can define a binary operation + on V such that (V. +) is an 

abelian group,  
 
ii)  we can define a ‘scalar multiplication’ : K x V → V such that ∀ 

a, b ∈ K and v,w ∈ V, 
 
a. (v + w) = a.v +a.w 
 
(a + b). v =a.v + b.v 
 



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 205 

(ab). V = a. (b. v) 
 
1.v = v. 
Now, we know1hat (P, +)'is an abelian group. We also know that the 
multiplication in F will satisfy till the conditions that the scalar 
multiplication should satisfy. Thus, F is a vector space over Zp. Since F 
is a finite field, it has a finite dimension over Zp. Let pZdim F = n. Then 
we can find al,…, an ∈ F such that 
 
F = Zpal + Zpa2 + ..+ Zpan. 
 
We will show that F has pn elements. 
 
Now, any element of F is of the form 
 
blal + b2a2 +...+ bnan, where bl,..., bn ∈ Zp, 
 
Now, since o(Zp) = p, b1 can be anyone of its p elements. 
 
Similarly, each of b2, b3, ... , bn has p choices. And, corresponding to 
each of these choices we get a distinct element of F. Thus, the number of 
elements in F is p x p x…xp(n times) = pn. 
 
The utility of this result is something similar to that of Lagrange’s 
theorem. Using this result we know that, for instance, no field of order 
26 exists. But does a field of order 25 exist? Does Theorem 7 answer 
this question? It only says that a field of order 25 can exist. But it does 
not say that it does exist. The following exciting result, the proof of 
which is beyond the scope of this course, gives us the required answer. 
This result was obtained by the American mathematician E.H. Moore in 
1893. 
 
Theorem 8  
 
For any prime number p and n∈ N, there exists Ii field with pn elements. 
Moreover, any two finite fields having the same number of elements, are 
isomorphic 
 
Now, you call utilize your knowledge of finite fields to solve tile 
following exercises. The first exercise is a generalization of E 13 in Unit 
13. 
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E 14. Let F be a finite field with pn elements. Show that npa = a ∀ ∈ F. 
And hence, 

 

show that npx - x = 
Fai ∈

Π
 (x-ai). 

 
(Hint: Note that (F \ {0},.) is a group of order pn-l.) 
 
E 15) Let F be a finite field with pn elements. Define f : F → F : f(a) = 

aP. Show that f is anutomorphism of F of order n; i e., f is an 
isomorphism such that f n = I, and fr ≠ 1 for r < n. 

 
E 16) Let F be a field such that a ∈ F iff a is a root of x27 – x ∈  
 
a)  What is char F?  
b)  Is Z ⊂ F? 
c)  Is Q ⊆ F? 
d)  Is F ⊆ Q? Why? 
 
E 11)  Any two infinite fields are isomorphic. True or false? Why? 

Remember that isomorphic structures must have the same 
algebraic properties. 

 
We close our discussion on field extensions now. Let us go over the 
points that we have covered in this unit. 
 
4.0 CONCLUSION  
 
5.0 SUMMARY  
   
We have discussed the following points in this unit. 
 
1) Gauss; lemma, i.e., the 'product of primitive polynomials is 

primitive. 
 
2)  Eisenstein’s criterion for polynomials over Z and Q. This states 

that if f(x) = a0 + a1 x + ... + anxn∈ Z[x] and there is a prime p ∈ 
Z such that  

 
i)  p | ai ∀ i = 0,.1, ..., n-1. 

 
ii)  p  |  an, and  

 
iii) p2  |  a0, 
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then f(x) is irreducible over Z (and hence over Q) 
 
3)  For any n ∈ N, we can obtain an irreducible polynomial over Q 

of degree n. 
 
4)  Definitions and examples of subfields and field extensions 
 
5) Different ways of obtaining field extensions of a field F from 

F[x]. 
 
6) Every field contains a subfield isomorphic to a prime field. 
 

The prime fields are Q or Zp, for some prime p. 
 
7) The number of elements in a finite field F is pn, where char F = p 

and 
PZdim F = n. 

8)  Given a prime number p and n ∈ N, there exists a field 
containing pn elements. Any two finite fields with the same 
number of elements are isomorphic. 

 
9)  If F is a finite field with pn elements, then xpn -x is a product of pn 

linear polynomials over F. 
 
Now we have reached the end of this unit as well as this course. We 
hope that we have been able to give you a basic understanding of the 
nature of groups, rings and fields. We also hope that you enjoyed going 
through this course. 
 
ANSWER TO SELFASSESSMENT EXERCISE  
 
1. a) 1,  b) 7, c) 5 
 
2. Let f(x) = a0 + a1 x + … + anxn and let the content of f(x) be d. 

Let ai = dbi ∀ I = 0, 1, …, n. Then the g.c.d of b0,b1,…, bn is 1. 
Thus, g(x) = b0 + b1 x + … + bnxn is primitive. Also, f(x) = db0 + 
db1 x + … +dbnxn = d(b0 + b1 x + … + bnxn) = d g(x). 

 
3.  f(x) = xn – P = a0 + al x + … + anxn,  
 

where a0 = p, al = 0 = … = an-1, an = 1  
 
Thus, p | ai ∀ i = 0, 1, … , n – l, p2  | a0, p  | an. 
 
So, by the Eisenstein criterion, f(x) is' irreducible over Q. 
 
4. Not necessarily 
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For example, there is no p that satisfies the conditions for f(x) in 
Example 3.  
 
5.  All of them (a) and (b), because of Eisenstein's criterion; and (c), 

because any linear polynomial is irreducible. 
 
6.  Since a ≠ 0, ± 1, ∃ a prime q such that q | a. Also q2  |  a, since a is 

square-free. Then, using q as the prime, we can apply Eisenstein's 
criterion to find that xp + a is irreducible in Z[x]. Thus, it is a 
prime element of Z[x]. Hence, <xP + a> is a prime ideal of Z[x]. 

 
Hence the result, 
 

7.  By E 13 of Unit 13 we know that a P = a∀ a  ∈ Zp. Now 
consider 

 
Xp + a∈ Zp[x] 
 

ap −  is a zero of this polynomial, since  
 
( ap − )p + a  = ap −  + a  = p = 0  Zp 

 
Thus, xP + a  is reducible over Zp. 

 
8a.  Q + iQ is a non-empty subset of C. 
 
Now, let a + ib and c + id be in Q+iQ. 

 
Then (a + ib) -(c + id) = (a – c) + i (b – d) ∈ Q + iQ.  
 
Further, let c + id ≠ 0, so that c2 + d2 ≠ 0. 
 

Then (c + id) – 1  = 22 dc
idc

+
−  

 

Thus, (a + ib) (c + id)-1 = (a + ib) 22

)(
dc
idc

+
−  

 

= .)()(
2222 QQ i

dc
bdaci

dc
bdac

+∈
+
−

+
+
−  

 
Thus, Q + iQ is a subfield of C. 

 
b.) 2 ∈ Z + 2 Z but 2–1  ∉ Z + 2 Z. Therefore,  



MTH 211                                                SET THEORY AND ABSTRACT ALGEBRA 
 

 209 

Z + 2 Z is not a field, and hence not a subfield of R.  
 
9.  (a), (b) and (c). 
 
10.  Let F be a field ~d K be a subfield of F. Then, .we have just seen 

that both K and F have isomorphic prime subfields. 
 
Thus, K contains the prime subfield of F. 

 
Thus, we have shown that every subfield of F must contain its prime 
subfields. Hence, this is the smallest subfield of F. 
 
11.  F must contain a prime subfield. But it contains no proper 

subfield be its own prime subfield. That is, F must be isomorphic 
to a prime field. 

 
12.  Q, Z5, Z2, since their characteristic's are 0,5 and 2, respectively.  
 
13.  F be a field. Firstly, let us assume that char F = p is known. Then, 

by Theorem 6, we know the prime subfield of F. Conversely, let 
K be the prime subfield of F. Then we know char K, and as 
shown before E 10, char F = char K. So we know char F. 

 

14.  Since (F\{0},.) is a group of order pn -1, nPa  -1 = 1  
 

∀ a ∈ F \ {0}. 
∴ apn = a ∀ a ∈ F\ {0}. Also nP0 = 0. 

 

Thus, nPa  =  a ∀ a ∈ F. 
 
Now, nPx  - x ∈ F[x] can have at the most pn roots in F (by Theorem 7 of 
Unit 13). 
 
Also, each of the pn elements of F is a root. Thus, these are all the roots 
of nPx  - x. 
 

∴ nPx - x = 
Fai ∈

Π
(x – ai) 

 
15. f(a + b) = (a + b)P = aP + bP (using E 10 of Unit 12) 
 

= f(a) + f(b). 
 

f(ab) = (ah)P = aP bP = f(a) f(b). 
 
f is 1 – 1, by E 10(c) of Unit 12. 
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Hence, Im f has the same number of elements as the domain of f, i.e., F. 
Further, Im 1 ⊆ F ∴ Im f = F, i.e., f is onto. 
 
Hence, f is an automorphism. 
 
Now, fn(a) = [f(a)]n = (ap)n = nPa  = a ∀ a ∈ F. 

 
∴ fn = I. 

 
Also, for r < n, f r (a) = rPa  
 
Now, we can't have rPa  = a ∀ a ∈ F, because this would mean that the 
polynomial nPx - x ∈ F[x] has more than pf roots. This would contradict 
Theorem 7 of Unit 13. Thus, fr (a) ≠ a for some a ∈ F. ∴fr ≠ I if r < n. 
 
Hence, o(f) = n. 

 
E 16) a ∈ F iff a27 = a, i.e., a33 = a 
 
a)  Char F = 3. 
b)  No, since char Z2 ≠ char F. 
c)  No. 
e) No, since F ⊆ Q ⇒ char F = char Q = 0. 
 
17.  False.  
 
For example, Q and R are both infinite, but Q has no proper subfields, 
while R does. Thus, Q and R are not isomorphic. 

 
6.0 TUTOR-MARKED ASSIGNMENT  
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