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Introduction

You are welcome to Set Theory and Abstract Algebra. This course is a
3-credit course and it is offered at the undergraduate level.

This course consists of 2-modules of 4 units each. The prerequisite for
this course is MTH131 — Elementary Set Theory.

This Course Guide tells you briefly what the course is all about, what
materials you will be using and how you can walk your way through
these materials.

What You Will Learn in This Course

Set Theory and Abstract Algebra is course that is compulsory for all
B.Sc (Hons) Mathematics students, Computer Science Students and
Communications Technology Students. All Students in Education
Majoring in Mathematics as teaching subjects are required to pass this
course. This text is an informal axiomatic treatment of Set Theory and
Abstract Algebra.

The text contains expository treatment of fundamentals of Algebras.
Topics such as Sets and Functions, Groups Subgroups Lagrange’s
Theorem, Polynomial Rings, Special Integral Domains and Irreducibility
and Field Extensions are given expository treatments.

Each unit begins with clear statements of pertinent definitions principles
and relevant theorems, and further illustrated with some graded and
solved problems. The supplementary exercises are meant to illustrate the
work further.

Course Aims

The aim of the course can be summarized as follows:

o To introduce you to concept of Algebra at the University Level

o To expose you to idea of groups theory , subgroups and the
relevant theorems on groups

o To prepare you rigorously for more advance courses in algebra

Course Objectives

Set out below are the wider objectives of the course as a whole. On
successful completion of this course you should be able to:

o Explain the meaning of Groups ,Subgroups, Polynomial Rings
Integral Domain, Irreducibility and Field Extensions
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o Be able to give examples of groups subgroups, polynomial rings
. Solve related problems concerning these topics.

Working through this Course

To complete this course, you are required to read the study units, read
the recommended textbooks and other materials provided by the NOUN.

Assignment File

The assignment File contains details of the work you must submit to
your tutor for marking. It contains a more compact form of the Tutor-
marked

Assessment

There are two aspects of the assessment of the course. First are the tutor-
marked assignments; second there is a written examination. In tackling
the assignments, you are expected to apply information, knowledge and
techniques gathered during the course. The assignments must be
submitted to your tutor for formal assessment in accordance with the
stipulated deadlines.

How to Get the Most from the Course

In distance learning, the study units replace the lecturer. This is an
advantage over the conventional mode of learning; because it affords the
opportunity of reading and working through all the specially designed
materials at your pace, at a time and place that suit you best. Just as a
lecturer might give you an in-class exercise, your study units provide
exercises for you to do at appropriate points.

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and the course as a whole.
Next is a set of learning objectives. These objectives let you know what
you should be able to do by the time you have completed the unit. You
should use these objectives to guide your study. When you have
finished the unit you must go back and check whether you have
achieved the objectives. If you make a habit of doing this you will
significantly improve your chances of passing the course.

Exercises are interspersed within the units, and answers are given.
Working through these exercises will help you to achieve the objectives
of the unit and help you to prepare for the assignments and examination.
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The following is a practical strategy for working through the course.

1)
2)

3)

4)

5)

6)

Read this Course Guide thoroughly.
Organize a study schedule

Once you have created your own study schedule, do everything
you can to stick to it.

Work through the unit. The content of the unit itself has been
arranged to provide a sequence for you to follow.

Review the objectives for each study unit to confirm that you
have achieved a unit’s objectives; you can then start on the next
unit. Proceed unit by unit through the course and try to pace your
study so that you keep yourself on schedule.

When you have submitted an assignment to your tutor for
marking, do not wait for its return before starting on the next unit.
Keep to your schedule. When the assignment is returned, pay
particular attention to your tutor’s comments.
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MODULE 1

Unit 1 Sets and Functions
Unit 2 Groups

Unit 3 Subgroups

Unit 4 Lagrange’s Theorem

UNIT 1 SETS AND FUNCTIONS
CONTENTS
1.0 Introduction

2.0  Objectives
3.0 Main Content

3.1 Sets
3.2  Cartesian Products
3.3 Relation

3.4  Functions
3.5  Some Number Theory
3.5.1 Principle of Induction
3.5.2 Divisibility in Z
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In this unit we first discuss some ideas concerning sets and functions.
These concepts are fundamental to the study of any branch of
mathematics, in particular, algebra.

In MTH 131, we discuss some elementary number theory. The primary
aims of this section, is to discuss some few facts, that we will need in
the rest of the course. We also hope to:

Give you a glimpse of the elegance of number theory. It is this elegance
that led the mathematician Gauss to call number theory the ‘queen of
mathematics’.

We would like to repeat that this unit consists of very basic ideas that
will be used throughout the course. So go through it carefully.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

. use various operations on sets

o define Cartesian products of sets

o check if a relation is an equivalence relation or not, and find
equivalence classes

. define and use different kinds of functions

o state the principle of induction

o use the division algorithm and unique prime factorisation
theorem.

3.0 MAIN CONTENT
3.1 Sets

You must have used the word ‘set’ off and on in your conversations to
describe any collection. In mathematics the term set is used to describe
any well defined collection of objects, that is, every set should be so
described that given any object it should be clear whether the given
object belongs to the set or not.

For instance, the collection N of all natural numbers is well defined, and
hence is a set. But the collection of all rich people is not a set, because
there is no way of deciding whether a human is rich or not.

If S is set, an object a in the collection S is called an element of S. This

fact is expressed in symbols as ae S (read as “ais in S” or “a belongs to
S”). Ifaisnotin S, we write ae S. For example, 3e R the set of real

numbers. But. v/-1 ¢ R.
Elementary Group Theory

A set with no element in it is called the empty set, and is denoted by the
Greek ¢ (phi). For example, the set of all natural numbers less than 1

ISO.
There are usually two way of describing a non-empty set:

(1) Roster method, and (2) set builder method.
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Roster Method

In this method, we list all the elements of the set: within braces. For
instance, the collection of all positive divisors of 48 contains 1, 2, 3, 4,
6, 8, 12, 16, 24 and 48 as its elements. SO this set may be written as {1,
2,3,4,6,8,12, 16, 24, 48}.

In this description of a set, the following two conventions are followed:
Convection 1

The order in which the elements of the set are listed is not important.
Convention 2

No element is written more than once, that is, every element must be
written exactly once.

. . 1 1
For example, consider the set S of all integers between rEand 42.

Obviously, these integers are 2, 3 and 4. So we may write S = (2, 3, 4}.

We may also write S = (3, 2, 4}, but we must not write S = (2, 3, 2, 4}.
Why? Isn't this what Convention 2 says?

The roster method is sometimes used to list the elements of a large set
also. In this case we may not want to list all the elements of the set. We
list a few, enough to give an indication of the rest of the elements. For
example, the set of integers lying between 0 and 100 is {0, 1, 2... 100},
and the set of all integers is

Z={0, +1,+2,...... }.

Another method that we can use for describing a set is the

Set Builder Method

In this method we first try to find a property which characterises, the
elements of the set, that is, a property P which all the elements of the set
possess. Then we describe the set as:

{x | x has property P}, or as

{x: x has property P}.

This is to be read as “the set all x such that x has property P”. For
example, the set of all integers can also be written as
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Z ={x | xis an integer}.

Some other sets that you may be familiar with are

Q, the set of rational numbers = {% ‘ a,be Zbg O}.

R, the set of real numbers

C, the set of complex numbers = {a+ib | a, b € R}. (Here i =J-1))

Let us now see what subsets are.

Subsets

Consider the sets A = {1, 3, 4} and B = {1, 4}. Here every element of B
is also all element of A. in such a case, that is, when every element of a

set B is an element of a set A, we say that B is a subset of A, and we
write thisas B < A.

for every set A, A c A.
Also, for any set A, ¢ < A.

Now consider the set S = {1, 3,5, 15}and T=(2,3,5, 7}. IsS < T?
No, because not every element of Sis in T; for example, 1 € Sbhut 1¢
T. In this case we say that S is not a subset of T, and denote itby S & T.

‘3'denotes ‘there exists’, Note that if B is not a subset of A, there must
be an element of B which is not an element of A. In mathematical
notation this can be written as “3' x > B suchthatx ¢ A’.

We can now say that two sets A and B are equal (i.e., have precisely
the same elements) ifand only if A cBand B < A.

Sets and Functions

Try the following exercise now.

SELF ASSESSMENT EXERCISE 1
Which of the following statements are true?

@ NcZ (b) Zc N, (¢) {0} c {1, 2,3}, (d) {2, 4,6} {24,
8}.
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Let us now look at some operations on sets. We will briefly discuss the
operations of union, intersection and complementation on sets.

Union

If A and B are subsets of a set S, we can collect the elements of both to
get a new set. This is called their union. Formally, we define the union
of A and B to be the set of those elements of S which are in A or in B.

We denote the union of A and B by:

A UB. Thus,
AUB={x € S| x € Aorx e B}

For example, if A={1,2}and B={4, 6, 7},then AU B ={1, 2, 4, 6,
7}.

Again, if A=(1,2,3,4 and B=(2, 4, 6,8), AUB=(1, 2, 3,4, 6, 8).
Observe that 2 and 4 are in both A and B, but when we write A U B, we
write these elements only once, in accordance with Convention 2 given
earlier.

Can you see that, forany set A, A U A=A?

Try the following exercise now. While trying it remember that to show
that A « Byouneedtoshowthatx e A = x € B

SELF ASSESSMENT EXERCISE 2

Let A, B, C, be subsets of a set Such that A ¢ Cand B ¢ C.

Then show that:

a. AUBzC
b. AUB=BUA
c. AUG¢$=A

Now will extend the definition of union to define the union of more than
two sets.

If A, Ay, Ase........ A, are k subsets of a set S, then their union
AUAU ... UA is the set of elements which belong to at least one of
these sets. That is,

A UAU....... UA={x e $ xe Aforsomel=1,2...... K).
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If ¢ isa collection of subsets of a set S, then we can define the union of
all members of o by UA={x e A for some A € g}

Acgp
Now let us look at another way of obtaining a new set from two or more
given sets.
Intersection
If A and B are two subsets of a set S, we can collect the elements that
are common to both A and B. We call this set the intersection of A, and
B (denoted by A (1 B, So,
AN B:{X e S|X eAand x eB}
Thus, if P={1, 2, 3, 4} and Q= {2, 4, 6, 8}, then PN Q= {2, 4}.
Can you see that, for any set A, A NA=A?
Now suppose A = {1, 2} and B = (4, 6, 7). Then what is A (1B? We
observe that, in this case A and B have no common elements, and so A
N B =¢, the empty set.
When the intersection of two sets is ¢ , we say that the two sets are
disjoint (or mutually disjoint). For example, the sets {1, 4} and {0, 5,
7, 14} are disjoint.
Try this exercise now.
SELF ASSESSMENT EXERCISE 3
Let A and B be subsets of a set S. Show that

a. ANB=BNA
b AcB=ANB=A
c. ANdé=¢

Elementary Group Theory
The definition of intersection can be extended to any number of sets.

Thus, the intersection of k subsets A;, A,...... A ofasetSis
ANAN ..., Ac={x|e S x €A foreachi =1 2, .....k}.



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

k
We can shorten the expression A;(Ax() ....... Acto UA..
i=1

In general, if @ is a collection of subsets of a set S, then we can define
the intersection of all the members of by N A= {XeS xeAV

Acgp
A e p}

In the following exercise we give important properties of unions and
intersections of sets.

SELF ASSESSMENT EXERCISE 4

For any subsets, A, B, C of a set S, show that

AUBUC=AUBUC)
(ANB)NC=ANBNC)
AUBNC)=(AUUB)N(AUC)
ANBUC=(ANBUMKNC)

o0 o

SELF ASSESSMENT EXERCISE 5

State whether the following are true or false. If false, give a counter-
example.

IfAcBandB c C,thenA c C
If Az Band B ¢ A, then A and B are disjoint

Az AUB
IfFAUB=¢,then A=B=¢ .

o o o

Apart from the operations of unions and intersections, there is another
operation on sets, namely, the operation of taking differences.

Differences

Consider the sets A = {1, 2, 3} and B = {2, 3, 4}. Now the set of all
elements of A that are not in B is {1}. We call this set the difference
A\B. Similarly, the difference B \ A is the set of elements of B that are
not in A, that is, {4}. Thus, for any two subsets ‘A and B of a set S,
{xeX xeAandxeB}.

When we are working with elements and subsets of a single set X, we
say that the set X is the universal set. Suppose X is the universal set and
A < X. Then the set of all elements of X which are not in A is called

the complement of A and is denoted by A" A® or X \ A,
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Thus,

A° ={xe X|x ¢A}.

For example, if X = {a, b, p, g, r} and A= (a. p, q}, then A® ={b’, r}.
Try the following exercise now.

SELF ASSESSMENT EXERCISE 6

Why are the following statements true?

a. A and Afare disjoint, i.e., An A° = ¢
b. AU A° =X, where X is the universal set.
C. (A°)=A

And now we discuss one of the most important constructions in set
theory.

3.2 Cartesian Products

An interesting set that can be formed from two given sets is their
Cartesian product, named after a French philosopher and
mathematician Rene Descartes (1596 -1650). He also invented the
Cartesian coordinate system.

Let A and B be two sets. Consider the pair (a, b), in which the first
element is from A and the second from B. Then (a, b) is called an
ordered pair. In an ordered pair in order in which the two elements are
written is important.  Thus, (a, b) and (b, a) are different ordered
pairs. Two ordered pairs (a, b) and (c, d) are called equal, or the
same, ifa=cand b =d.

Definition

The Cartesian product A x B, of the sets A and B, is the set of all
possible ordered pairs (a, b), where a € A,b € B.

For example, if A={1,2,23}and B ={4, 6}, then AX B ={ (1, 4), (1,
6), (2,4), (2,6), (3,4), (3,6)}.

Also note that
BxA={4,1),4,2),(423),(6,1),(6,2),(6,3)}and AxB £Bx A.

Let us make some remarks about the Cartesian product here.
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Remarks:

I. AxB=¢ ifA=¢ orB=¢.

il. If A has m elements and B has n elements, then A x B has mn
elements. B x A also has mn elements. But the elements of B x A
need not be the same as the elements of A x B, as you have just
seen.

We can also define the Cartesian product of more than two sets in a

similar way. Thus, if A, Ay, Az ........ A, are n sets, we can define their
Cartesian product as

For example, if R is the set of all real numbers, then
RxR={(a;, &)| a1, ¢ R, a; € R}
RXxRXR={(a;, a, a) a, ¢ R, fori=1,2 3} and soon. Itis

customary to write
R*forRxRand R"forRx ......... x R (in times).

Now, you know that every point in a plane has two coordinates, x and .
Also, every ordered pair (X, y) of real numbers defines the coordinates
of a point in the plane. So, we can say that R* represents a plane. In fact,
R? is the Cartesian product of the x-axis and the y-axis. In the same way
R? represents three-dimensional space, and R" represents n-dimensional
space, for any n >1. Note that R represents a line.

Try the following exercises now.

SELF ASSESSMENT EXERCISE 7

IfA={2,5}B={2,3},find AxB,BxAand AxA.

SELF ASSESSMENT EXERCISE 8

If AxB={(7,2),(7,3),(7,4), (2 2), (2, 4)}, determine A and B.
SELF ASSESSMENT EXERCISE 9

Prove that (A U B)xC=(AxC) U (BxC)and (A B)xC==(AX
C) N (B xC).

Let us now look at certain subsets of Cartesian products.
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3.3 Relations

You are already familiar with the concept of a relationship between
people. For example, a parent-child relationship exists between A and B
if and only if Ais a parent of B or B is a parent of A.

In mathematics, relation R on a set S is a relationship between the
elements of S. If a € Sis related to b € S by means of relation, we
writtea R bor (a, b) € R =S x S. And this is exactly how we define a
relation on a set.

Definition

A relation R defined on a set S is a subset of S x S.

For example, if N is the set of natural and R is the relation’ is a multiple

of’ then 15 R 5, but not 5 R 15. That is, (15, 5) € R but (5, 15) ¢ R.
Here R < N X N.

Again, if Q is the set of all rational numbers and R is the relation ‘“is
greater than’, then 3 R 2 (because 3> 2).

The following exercise deals with relations.
SELF ASSESSMENT EXERCISE 10

Let N be the set of all natural numbers and R the relation {(a, a°) | a
N}. State whether the following are true or false:

a. 2R3, b. 3RY, C. 9R 3.
We now look at some particular kinds of relations.
Definition

A relation R defined on a set S is said to be

I reflexive if we have aRa ¥ a € S.
ii. symmetric ifaRb = bRaMa,b e S.
ii. transitive if aRb and bRc = aRc M a, b, ¢c € S.

To get used to these concepts, consider the following examples.

10
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Example 1

Consider the relation R on Z given by ‘aRb iff and only if a> b’.
Determine whether R is reflexive, symmetric and transitive.

Solution
Since a > a is not true, aRa is not true. Hence, R is not reflexive.

If a > b, then certainly b > a is not true. That is, aRb does not imply
bRa. Hence, it is into symmetric,

Since a > b and b > ¢ implies a > ¢, we find that aRb, bRc implies aRc.
Thus, R is transitive.

Example 2

Let S be a non-empty set. Let ¢ (S) denote the setof all S, i.e., o (S) =
{A: A c S} Wecall g (S) the power set of S.

Define the relation R on g (S) by
R={(A,B)| A/Be p(S)and A c B}.

Check whether R is reflexive, symmetric or transitive.
Solution
Since A c AV A e p (S), Ris reflexive.

If A < B, B need not be contained in A. (In fact, A < BandB c A <
A =B.) Thus, R is not symmetric.

If AcBand B < C,then A c CM A B, C € o(S). Thus, R is
transitive.

You may like to try the following exercises now.
SELF ASSESSMENT EXERCISE 11

The relation R < N x N is defined by (a, b) e, R if 5 divides (a-b). IsR
Reflexive? Symmetric? Transitive? ,

11
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SELF ASSESSMENT EXERCISE 12

Give examples to show why the relation in Self-Assessment Exercise 10
is not reflexive, symmetric or transitive.

The relationship in Self-Assessment Exercise 11 is reflexive, symmetric
and transitive. Such a relation is called an equivalence relation.

A very important property of an equivalence relation on a set S is that it
divides S into a number of mutually disjoint subsets, that is, it partitions
S. Let us see how this happens.

Let R be an equivalence relation on the set S. Let a € S. Then the set {b
e S| aRb} is called the equivalence class of a in S. It is just the set of
elements in S which are related to a. We denote it by [a}.

For instance, what is the equivalence class of 1 for R given in Self-
Assessment Exercise 11?

This is

[1] ={n |1Rn,n e N}
={n|n e Nand5 divides 1-n}
={n|n e Nand>5 divides n-1}
={1, 6, 11, 16, 21 ...},

Similarly,

[2] ={n]|n e Nand>5divides n-2}
={2,7,12, 17, 22,},

[38] =4{3,8,13,18,23..},

[4] =4{4,09, 14,19, 24},

[5] =415, 10, 15, 20, 25 ...},

[6] =4{1,6,11,16,21...},

[11 ={2,7,12, 17,22 ..},

Note that

I. [1] and [6] are not disjoint. In fact, [1] = [6]. Similarly, [2] = [7],
and so on.

I N =11] U[2] U [3] U [4] U [5], and the sets on the right hand
side are mutually disjoint.

We will prove these observations in general in the following theorem.

12
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Theorem 1

Let R be an equivalence relation on a set S. For a < S, let [a] denote the
equivalence class of a. then

a. a € [a],

b. b € [a] < [a] =[b],

C. S= Us[a]

d. ifa, b e S, then[a] N[b] = ¢ or [a] = [b].

Proof: a. Since R is an equivalence relation, it is reflexive.
~aRaMaes .. ae]a]

b. Firstly, assume that b € [a]. We will show that [a] < [b] and [b]
c [a]. For this, let x € [a]. Then xRa.

We also know that aRb. Thus, by transitivity of R, we have xRbD, i.e., X
e [b]. .. [a] < [b].

We can similarly show that [b] < [a].

. [a] = [b].
Conversely, assume that [a] = [b]. Thenb € [b]. .. b € [a].

C. Since [a] €« SMaeS U [a < S (see Self Assessment

aeS

Exercise 2).

Conversely, let x € S. Then e [X], X < [x] by (a) above. [X] is one of
the sets in the collection whose union is U [a].
aeS
Hence, x = U [a]. So, S < U [a].
aeS aeS

Thus,S < U [a]and U [a] < S, proving (c).
aeS aeS

d. Suppose [a] N [b]=d. Letx e [a] N [b].
Then x € [a] and x € [b]

= [X] = [a] and [x] = [b], by (b) above

= [a] = [b].

Note that in Theorem 1, distinct sets on the right hand side of (c) are
mutually disjoint because of (d). Therefore, (c) expresses S as a union of

13
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mutually disjoint subsets of S; that is we have a partition of S into
equivalence classes.

Let us look at some more examples of partitioning a set into equivalence
classes.

Examples 3

Let S be the set of straight lines in R x R. Consider the relation on S
given by ‘Ly R L, if Ly = L, or L, is parallel to L,’. Show that R is an
equivalence relation. What are the equivalence classes in S?

Solution

R is reflexive, symmetric and transitive. Thus, R is an equivalence
relation.

Now, take any line L, (see Fig. 1).

\\ L \ N L]_
o[\ X
\\ \ \\
\\ \ \\

Fig. 1: The equivalence class of L;

Let L be the line through (0, 0) and parallel to L;. Then Le [L;]. Thus,
[L] = [Li]. In this way the distinct through (0, 0) give distinct
equivalence classes into which S is partitioned. Each equivalence class
[L] consists of all the lines in the planes that are parallel to L.

Now for a nice self assessment exercise!

SELF ASSESSMENT EXERCISE 13

Show that ‘aRb if and only if |a] = |b|” is an equivalence relation on Z.
what are [0] and [1]?

14
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In the next section we will briefly discuss a concept that you may be
familiar with namely, functions.

3.4 Functions

Recall that a function f from a non-empty set A to a non-empty set B is a
rule which associates with every element of A exactly on element of B.
This is written as f: A — B. If f associates with a € A, the element b of
B, we write f(a) = b. Ais called the domain of f, and the set f(A) = {f(a)
| a € A} is called the range of f. The range of f is a subset of B, i.e.,
f(A) < B. B is called the codomain of f.

Note that
I. For each element of A, we associate some element of B.
ii. For each element of A, we associate only one element of B.

ii Two or more elements of A could be associated with the same
element of B.

For example, let A={1, 2,3}, B={1, 2,3,4,5,6, 7, 8,9, 10}. Define
f.A—>Bbyf(l)=1,1(2)=4,13)=9. Then f is a function with domain
A and range {1, 4, 9}. In this case we can also write f(x) = x* fro each x
e Aorf: A > B: f(x) =x% We will often use this notation for defining
any function.

If we defineg: A—>Bbyg(l) =1, 9(2) =1, 9g(3) =4, then g is also a
function. The domain of g remains the same, namely, A. but the range of
gis {1, 4}.

Remark

We can also consider a function f: A — B to be the subset {(a, f(a)) | a
A} of AxB.

Now let us look at functions with special properties.

Definition

A function f: A — B is called one-one (or injective) if f associates
different elements of A with different elements of B, i.e., ifa;, &, € A

and a; # a,, then f(a;) # f(ay). In other words, fis 1 -1 if f(a;) = f(ay) =
di; = ady.

15



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

In the examples given above, the function f is one-one. The function g is
not one-one because 1 and 2 are distinct elements of A, but g(1) = g(2).

Now consider another example of sets and functions.

Let A={1,2,3},B={p, q, r} Letf: A— B be defined by (1) = q, f(2)
=r, f(3) = p. then f is a function. Here the range of f = B = codomain of
f. This is an example of an onto function, as you shall see.

Definition

A function f: A — B is called onto (or surjective) if the range of fis B,
i.e., If, for each b € B, there is an a € A such that f (a) = b. In other

words, f is onto if f(A) = B.

For another important example of a surjective function, consider two
non-empty sets a and B. we define the function m;: Ax B —> A: w1 ((a,
b)) = a. my is called the projection of A x B onto A. You can see that the
range of =, is the whole of A. Therefore, m; is onto. Similarly, m,: AXx B
— B: p,((a, b)) = b, the projection of A x B onto B, is a surjective

function.

If a function is both one-one and onto, it is called bijective, or a
bijection. You will be using this type of function heavily in Block 2 of
this course.

Consider the following example that you will use again and again.

Example 4

Let A be any set. The function I A — A: Ix(a) = a is called the
identity function on A. Show that 14 is bijective.

Solution

Forany a € A, 1a(a) = a. Thus, the range of I, is the whole of A. That is,
| IS ONto.

I is also: because if a;, ay, € A such that a; # ay, then I (a;) # 1a(ay).
Thus, 14 is bijective.

If f: A — B is a bijection, then we also say that the sets A and B are
equivalent. Any set which is equivalent to the set {1, 2, 3......... n}, for

16
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some n € N, is called a finite set. A set that is not finite is called an
infinite set.

Convention

The empty set f is assumed to be finite.
Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 14

Let f: N — N be defined by f(n) = n + 5. Prove that f is one-one but not
onto.

SELF ASSESSMENT EXERCISE 15

Let f: Z — Z be defined by f(n) = n + 5. Prove that f is both one-one and
onto.

The next exercise deals with a function that you will often come across,
namely, the constant function f: A — B: f(a) = ¢, where ¢ is a fixed
element of B.

SELF ASSESSMENT EXERCISE 16

What must X be like for the constant function f: X — {c} to be
injective? Is f surjective?

Let us now see what the inverse image of a function is.
Definition

Let A and B be two sets and f: A — B be a function. Then, for any
subset S of B, the inverse image of S under f is the set.

f1(S)={a € A|f(a) € S}.
For example, 1,1 (A) ={a € A|la(a) € A}=A.
Again, for the function f in Self-Assessment Exercise 14,
f1({1,2,3)={n e N|f(n) € {1, 2, 3}}
={n e N|nt5 € {1, 2, 3}}
=¢, the empty set.

Butf*(N)={6,7,8, ...}

17
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We now give some nice theorems involving the inverse image of a
function.

Theorem 2

Let f : A — B be a function. Then,
a)  forany subset S of B, f(f*(S)) < S.
b)  forany subset X of A, X < F(f(X)).

Proof

We will prove (a) and you can prove (b) (see Self Assessment Exercise
17). Let b e f(f%(S)). Then, by definition, 3 a e £(S) such that b =
f(a). Buta € f'(S) = f(a) € S. Thatis, b € S. Thus, f(fF'(S) < S.

The theorem will be proved once you solve Self Assessment Exercise
17.

SELF ASSESSMENT EXERCISE 17
Prove (b) of Theorem 2.

SELF ASSESSMENT EXERCISE 18
Givenf: A—>BandS, T < B, show that
a. if S < T, then £1(S) < fX(T).

b.  fH(SUT)=F(S) U fFY(T)

c. fENT=F(S) N YT

Now let us look at the most important way of producing new functions
from given ones.

Composition of Functions

If f: A— B and g: C — D are functions and if the range of f is a subset
of C, there is a natural way of combining g and f to yield a new function
h: A — D. Let us see how.

For each x € A, h(x) is defined by the formula h(x) = g(f(x)).

Note that f(x) is in the range of f, so that f(x) € C. Therefore, g(f(x)) is

defined and is an element of D. This function h is called the
composition of g and f and is written as gof. The domain of gofis A

18
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and its codomain is D. In most cases that we will be dealing with we
will have B = C. Let us look at some examples.

Example 5

Let f: R > R and g: R = R be defined by f(x) = x* and g(x) = x + 1.
What is gof? What is fog?

Solution
We observe that the range of f is a subset of R, the domain of g.
Therefore, gof is defined. By definition, Mxe R,g-f(x) = g(f(x)) = f(x)

+1=x>+1.

Now, let us find fog. Again, it is easy to see that fog is defined. Mx e
R.fog(x) = f(g(x)) = (9(9))* = (x + 1)°.

So fogand gof are both defined. But gof # fog(1).)

Example 6

Let A={1,2,3},B={p, q,r}and C = {x, y}. Let f: A — B be defined
by f(1) = p, f(2) = p, f(3) =r. Let g: B — C be defined by g(p) = x, 9(q)
=y, g(r) = y. determine if fog and g-f can be defined.

Solution

For fog to be defined, it is necessary that the range of g should be a
subset of the domain of f. In this case the range of g is C and the domain

of fis A. As C is not a subset of A, fog cannot be defined.

Since the range of f, which is {p, r}, is a subset of B, the domain of g,
we see that gof is defined. Also gof: A — C is such that

g-f(1) = g(f(1)) = g(p) = x,

9-f(2) = 9(f(2)) = 9(p) = x,

g-f(3) = g(f(3)) = 9(n) =.

In this example note that g is surjective, and so is gof.
Now for an exercise on the composition of functions.

SELF ASSESSMENT EXERCISE 19

In each of the following questions, both f and g are functions from R —
R. Define fogand gof.

19
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a. f(X) =5%,9(X)=x+5
b. f(x) = 5x, g(x) = x/5
c. f(xX)=]|x], g(x)=x%

We now come to a theorem which shows us that the identity function
behaves like the number 1 € R does for multiplication. That is, if we
take the composition of any function f with a suitable identity function,
we get the same function f.

Theorem 3

Let A be a set. For every function f: A — A, we have folp = [pof =T,
Proof

Since both f and I are defined from A to A, both the compositions fola
and laof are defined. Moreover, M-xe A.,

fola(X) = f(1a(X)) = f(X), sO fola =T.

Also, Mx e A, Iaof(X) = Ia(f(X)) = f(X), SO lpaof =T1.

You can try the next self assessment exercise on the lines of this
theorem.

SELF ASSESSMENT EXERCISE 20
If Aand B are setsand g: B — A, prove that Iacg=gand golg =g.

In the case of real numbers, you know that given any real number x+# 0,
3y # 0 such that xy = 1. y is called the inverse of x. Similarly, we can

define an inverse function for a given function.
Definition

Let f: A — B be a given function. If there exists a function g: B > A
such that fog = Ig and gof = I, then we say that g is the inverse of f,
and we write g = f™.

For example, consider f: R — R defined by f(x) = x + 3. If we define g:
R— R by g(x) =x -3, then fog(x) =f(g(x)) =g(x) +3=(x-3) +3 =x
Mxe R. Hence, fog = Iz. You can also verify that gof = Iz. So g = ',

Note that in this example f adds 3 to x and g does the opposite — it

subtracts 3 from x. Thus, the key to filling the inverse of a given
function is: try to retrieve x from f(x).

20
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For example, let f: R —> R be defined by f(x) = 3x + 5. How can we
retrieve x from 3x + 5? The answer is “first subtract 5 and then divide

by 3”. So, we try g(x) :X'TS. And we find gof(x) = g(f(x)) = f(x)- 5
_ (3x+5)-5 _

=G =X

Also, fog(x) = 3(g(x)) +5 = [(X?)_S} +5=xM¥xe R.

Let’s see if you’ve understood the process of extracting the inverse of a
function.

SELF ASSESSMENT EXERCISE 21

What is the inverse of f: R = R: f(X) :%?

Do all functions have an inverse? No, as the following example shows.
Example 7

Let f: R —> R, be the constant function given by f(x) = 1 ¥xe R. What
Is the inverse.

Solution

If f has an inverse g: R &> R, we have fog = I, i.e. ¥ xe R, fog(Xx) =
X.

Now take x = 5. We should have fog (5) =5, i.e., f(g(5)) = 5. but f(g(5))
= ]_,

Since f(x) = 1 ¥ R x. So we reach a contradiction. Therefore, f has no
inverse.

In view of this example, we naturally ask for necessary and sufficient
conditions for f to have an inverse. The answer is given by the following
theorem.

Theorem 4

A function f: A — B has an inverse if and only if f is bijective.
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Proof

Firstly, suppose f is bijective. We shall define a function g: B — A and
prove that g = f™.

Let b € B. Since f is onto, there is some a € A such that f(a) = b. Since f
IS one-one, there is only one such a € A. We take this unique element a
of A as g(b). That is, given b € B, we define g(b) = a, where f(a) = b.

Note that, since f is onto, B = {f(a) | a € A}. Then, we are simply
defining g: B —» A by g(f(a)) = a. This automatically ensures that gof =
A

Now, let b € B and g(b) = a. Then f(a) = b, by definition of g.
Therefore, fog(b) = f(g(b)) = f(a) = b. Hence, fog = Ig.

So, fog = Ig and gof = I. This proves that g = f™.

Conversely, suppose f has an inverse and that g = f*. We must prove
that f is one-one and onto.

Suppose f(a;) = f(az). Then g(f(a1)) = g(f(az))-
= gof(ar) =gof(ay)

= a; = ay, because gof =l

So, f is one-one.

Next, given b € B, we have fog = Ig, so that f -g(b) = Ig(b) = b,
i.e., f(g(b)) = b. That is, f is onto.

Hence, the theorem is proved.

Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 22

Consider the following functions from R to R. For each determine
whether it has an inverse and, when the inverse exists, find it.

a.  f(x)=x*MxeR.
b. f(x) =0 M xe R.
C. f(x) =11x + 7 ¥ xe R.

Let us now discuss some elementary number theory.

22



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

3.5 Some Number Theory
In this section we will spell out certain factorization properties of

integers that we will use throughout the course. For this we first need to
present the principle of finite induction.

3.5.1 Principle of Induction

We will first state an axiom of the integers that we will often use
implicitly, namely, the well-ordering principle. We start with a
definition.

Definition

Let S be a non-empty subset of Z. An element a € S is called a least
element (or a minimum element) of Sifa<b ¥ x € S. For example, n
has a least element, namely, 1. But Z has no least element. In fact, many
subsets of Z, like 2Z, {-1, -2, -3, .....}, etc., don’t have least elements.
The following axiom tells us of some sets that have a least element.

Well-ordering Principle: Every non-empty subset of N has a least
element.

You may be surprised to know that this principle is actually equivalent
to the principle of finite induction, which we now state.

Theorem 5

Let S < € N such that

i. 1eS, and

ii. Wheneverk € S,thenk+1 € S
ThenS=N

This theorem is further equivalent to:

Theorem 6

Let S = N such that

i. 1eS, and

il. ifmeSMm<Kk thenk € S.
thenS=N
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We will not prove the equivalence of the well-ordering principle and
Theorems 5 and 6 in this course, since the proof is slightly technical.

Let us rewrite Theorem 5 and 6 in the forms that we will normally use.
Theorem 5’: Let P(n) be a statement about a positive integer n such that
i. P(1) is true, and
ii. if P(k) is true for some k € N, then P(k + 1) is true.
Then, P(n) is true for all n € N.
Theorem 6°: Let P(n) be a statement about a positive integer n such that
i. P(1) is true, and
ii. if P(m) is true for all positive integers m <k, then P(K) is true.
Then P(n) is true for all n € N.
The equivalence statements given above are very useful for proving a lot

of results in algebra. As we go along, we will often use the principle of
induction in whichever form is convenient. Let us look at an example.

Example 8
2 2
1
Prove that 1° + 2° +.............. +n= % for every n € N.
Solution
Let Sp= 1%+, +n®, and let P(n) be the statement that
. n? (n+1)>2
—
2 2
Since S, =2 X% p(1) is true.
) ) -1 2 .2
Now, suppose P(n— 1) is true, i.e., S1 = %
Then S, =13+ oo, +(-1)>°+n’
= Sn-l + n3
N2 a2
= % +n®, since P(n — 1) is true.

n2[(n- 1)® + 4n]
4
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_n’(n+1)°
4
Thus, P(n) is true.
Therefore, by the principle of induction, P(n) is true for all nin N.

Now, use the principle of induction to prove the following property of
numbers that you must have used time and again.

SELF ASSESSMENT EXERCISE 23

Fora,b e Randn e N, prove that (ab)" = a"b".

Let us now look at some factorization properties of integers.
3.5.2 Divisibility in Z

One of the fundamental ideas of number theory is the divisibility of
integers.

Definition
Let a, b € Z, a# 0. Then, we say that a divides b if there exists an

integer ¢ such that b = ac. We write this as a | b and say that a is a
divisor (or factor) of b, or b is divisible by a, or b is a multiple of a.

If a does not divide b we write a /b.

We give some properties of divisibility of integers in the following
exercise. You can prove them very easily.

SELF ASSESSMENT EXERCISE 24
Let a, b, ¢ be non-zero integers. Then

al0,+1l]a +ala

alb=ac|bc.

albandb|c=a]c.
albandb|a<=a=+h.
claandc|b=c|(ax+hy)¥Xx,y € Z

®oo0 o

We will now give a result, to prove which we use Theorem 5.
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Theorem 7

(Division Algorithm): Let a, b € Z, b > 0. Then there exists unique
integers q, r such thata=qb +r, where 0 < r <h.

Proof

We will first prove that q and r exist. Then we will show that they are
unique. To prove their existence, we will consider three different
situations: a=0,a>0,a<0.

Casel (a=0):Takeq=0,r=0.Thena=qgb +r.

Case 2 (a>0) : Let P(n) be the statement that n = gb + r for some g, r |
Z,0<r<h.

Now let us see if P(1) is true.
Ifb=1,wecantakeq=1,r=0,and thus,1=1.1+0.
Ifb#1,thentakeq=0,r=1,1ie,1=0b+ 1.

So, P(1) is true.

Now suppose P(n - 1) is true, i.e., (n—1) =q;b +r, forsome q, r; € Z,
0< ry<b.Butthenr; < b-1,1i.e,r; +1<b. Therefore,

q,b+(r,+2),if(r, +1) <b
n=1(q,+Yb+0,if r, +1=Db

This shows that P (n) is true. Hence, by theorem 5°, P(n) is true, for any
ne N.Thatis,fora>0,a=qb+r,q,re Z,0<r<h.

Case 3 (a<0): Here (-a) > 0. Therefore, by Case 2, we can write

(-ka)=gb+r,0<r<b

: _|(=q)b,if r'=0
£ 8= {(—q ~Db+(b-r),if0<r'<b

This proves the existence of the integers q, r with the required
properties.

26



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

Now letq’, r’ bein Zsuchthata=gb+randa=qg’b +r’, where 0 <r,
r’<b.Thenr-r =b(q’-q). Thus, b | (r—r’). But |r—r’| <b. Hence, r
-r=0,1e,r=rand g =q’. So we have proved the uniqueness of g
andr.

In the expression, a =qgb +r, 0 < r < b, r is called the remainder
obtained when a is divided by b.

Let us go back to discussing factors.
Definition

Leta,b € Z.c € Zis called a common divisor ofaand b ifc|aandc |
b.

For example, 2 is a common divisor of 2 and 4. From Self Assessment
Exercise 24(a) you know that 1 and -1 are common divisors of a and b,
for any a, b € Z. Thus, a pair of integers does have more than one
common divisor. This fact leads us to the following definition.

Definition

An integer d is said to be a greatest common divisor (g.c.d in short) of
two non-zero integers a and b if

I. d|aandd|b, and
ii. ifc|laandc|b, thenc]|d.

Note that if d and d” are two g.c.d s of a and b, then (ii) says that d | d’
and d’ | d. Thus, d = + d’ (see Self-Assessment Exercise 24). But then

only one of them is positive. This unique positive g.c.d. is denoted by
(a, b).

We will now show that (a, b) exists for any non-zero integers a and b.
You will also see how useful the well-ordering principle is.

Theorem 8
Any two non-zero integers a and b have a g.c.d, and (a, b) = ma + nb, for
somem, n e Z.

Proof

LetS={xa+yb|X,y € Z, (xa+yb) >0}
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Since a® + b*>0,a* +b? € S, i.e., S#f . But then, by the well-ordering
principle, S has a least d € S. Therefore, d > 0. So by the division
algorithm we can write

a=qd+r,0£ r<d. Thus,

r=a-qd=a-q(ma+nb)=(1-qgm)a+ (-q)b.

Now, if r # 0, then r € S, which contradicts the minimality of d in S.
Thus, r=0, i.e.,,a=qd, i.e., d|a. We can similarly show that d | b. Thus,
d is a common divisor of a and b.

Now, let ¢ be an integer such that c|aand c | b.

Then a = a;c, b = b,c for some a;, b; € Z.

But then d = ma + nb = ma;c + nb,c. Thus, ¢ | d. So we have shown that
disag.c.d. In fact, it is the unique positive g.c.d. (a, b).

For example, the g.c.d. is 2 and 10 is 2 = 1.2 + 0.10, and the g.c.d. of 2
and 3is1=(-1) 2+ 1(3).

Pair of integers whose g.c.d. is 1 have a special name.
Definition

If (a, b) = 1, then the two integers a and b are said to be relatively
prime (or co prime) to each other.

Using Theorem 8, we can say that a and b are co prime to each other
iff there exists m, a € Z such that 1 = ma + nb.

The next theorem shows us a nice property of relatively prime numbers.
Theorem 9

Ifa, b € Z, such that (a, b) =1and b | ac, thenb|c.

Proof

We know that 3 m, n € Z such that 1 = ma + nb. Then ¢ =c.1 = ¢c(ma
+nb) = mac + nbc.

Now, b |acand b | bc. .. b | (mac + nbc) (by Self-Assessment Exercise
24(c)). Thus, b | c.

Let us now discuss prime factorization.
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Definition

A natural number p ¢ 1) is called a prime if its only divisors are 1 and
p. If a natural number n (# 1) is not a prime, then it is called a composite
number.

For example, 2 and 3 are prime numbers, while 4 is a composite
number.

Note that, if p is a prime number and a € Z such that p / a, then (p, a) =
1.

Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 25

If p isa prime and p | ab, then show thatp|aorp|b.

SELF ASSESSMENT EXERCISE 26

If pisaprime and p| a;a; ...... an, then show that p a; for somei=1, ..., n.

Now consider the number 50. We can write 50 =2 x 5 x 5 as a product
of primes. In fact we can always express any natural number as a
product of primes. This is what the unique prime factorization theorem
says.

Theorem 10

(Unique Prime Factorisation): Every integer n > 1 can be written as n
P1, P2 eeereeenn. Pn, Where pi, .......... , Pn are prime numbers. This
representation is unique, except for the order in which the prime factors
occur.

Proof

We will first prove the existence of such a factorization. Let P (n) be the
statement that n + 1 is a product of primes. P (1) is true, because 2 is a
prime number itself.

Now let us assume that P (m) is true for all positive integers m < k. We
want to show that P (k) is true. If (k + 1) is a prime, P (k) is true. Ifk + 1
is not a prime, then we can write K + 1 = mym,, where 1 <m; <k + 1
and 1 <m, < k + 1. But then P (m; - 1) and P(m, — 1) are both true.

Thus, m; = pipo......... Pry My = Q102 evveennen. gs, Where py, p2... Pr, 01, 02,
......... , Qs are primes. Thus,
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K+21=pips...prq1 G2 .... Qs, I.€., P(K) is true. Hence, by Theorem 6’,
P(n) is true for every n € N.

Now let us show that the factorisation is unique.
Letn=pP2... Pt=01 0z .... 05, Where

P1, P2 --- Pty 1, Q2 --.. Os, are primes. We will use induction on t.

Ift=1,thenp;=0q: 0 ....... , §s. But py is a prime. Thus, its only factors
are 1 and itself. Thus, s =1 and p; = ;.

Now suppose t > 1 and the uniqueness holds for a product of t — 1
primes. Now p; | 010z -..... gs and hence, by Self-Assessment Exercise
26, p; | q; for some i. By re-ordering qg, ....., s We can assume that p; |
g:. But both p; and g, are primes. Therefore, p, = g; are primes.

Therefore, p; = q;. Butthen p, ...... Pt=0z -...... gs- So, by induction, t
—-1=s-1andp,, ....... , pr are the same as qs, ...... Qs in some order.

Hence, we have proved the uniqueness of the factorisation.

The primes that occur in the factorisation of a number may be repeated
in the factorisation 50 = 2 x 5 x 5. By collecting the same primes
together we can give the following corollary to Theorem 10.

Corollary: Any natural number n can be uniquely written as n =
p™ p,"2 op, ", Where fori=1, 2, ......... , I, each m; € N and each p;

isaprimewithl<p,<p,<....<p.

As an application of Theorem 10, we give the following important
theorem, due to the ancient Greek mathematician Euclid.

Theorem 11
There are infinitely many primes.
Proof

Assume that the set P of prime numbers is finite, say
P ={p1, P2 --.., Pn}. Consider the natural number

n=(pP2 -..... ,pn) +1

Now, suppose some p; | n. Then p; | (n — psp2 -..... In.. pn), 1., pi| 1, a
contradiction. Therefore, no p; divides n. But since n > 1, Theorem 10
says that n must have a prime factor. We reach a contradiction.
Therefore, the set of primes must be infinite.
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Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 27

Prove that \/B is rational for any prime p.
(Hint : Suppose /p is rational. Then \/B:%, where a, b el Z and we

can assume that (a, b) = 1. Now use the properties of prime numbers that
we have just discussed.)

Let us now summarise what we have done inn this unit.

40 CONCLUSION

In this unit, we have placed emphasis on some properties of sets and
subsets. We have also defined relations in general and equivalence
relations in particular.  The definitions of functions were also
considered. The summary of what we have considered in this unit are

given below, Please read carefully and master every bit of it in order for
you to follow the subsequent units.

5.0 SUMMARY

In this unit we have covered the following points.

o Some properties of sets and subsets.

o The union, intersection, difference and complements of sets.

o The Cartesian product of sets.

o Relation in general and equivalence relations in particular.

o The definition of a function, a 1-1 function, an onto function and
a bijective function.

o The composition of functions.

. The well-ordering principle, which states that every subset of N
has a least element.

o The principle of finite induction, which states that : If P(n) is a

statement about some n € N such that:

- P(1) is true, and
- if P(K) is true for some k € N, then P(k + 1) is true,
then P(n) is true for every n € N.

. The principle of finite induction can also be stated as:

If P(n) is a statement about some n N such that
- P(1) is true, and
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- if P(m) is true for every positive integer m <k, then P(K) is true,
then P(n) is true for every n € N,

Note that well-ordering principle is equivalent to the principle of finite
induction.

o Properties pf divisibility in Z, like the division algorithm and
unique prime factorisation.

ANSWER TO SELF ASSESSMENT EXERCISE 1

a T b) F ¢) F d T

ANSWER TO SELF ASSESSMENT EXERCISE 2

a. XxXeAUB=xeAorxeB=xeC,sinceAc CandB ¢
C.
b. xeAUBoxeAoxeBosxeBorxe AU xeBU

A .AUB=BUA

C. xeAU ¢ =>xeAorx edp = x € A, since ¢ has no element.
AU 6 c A
Also, Ae AU ¢,sincexe A=xe AU ¢.
JA=AU o

ANSWER TO SELF ASSESSMENT EXERCISE 3

a. You can do it on the lines of Self Assessment Exercise 2(b).
b. XeANB=xeAandx e B=x € A, since A c B.
~ANBCcA

Conversely, x e A= x € Aand x € Bsince A < B.
=XxeANB.
~AcANB.
~ANB=A

C. Use the fact that ¢ < A.
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ANSWER TO SELF ASSESSMENT EXERCISE 4

a. xe(AUB)UC <©xeAUBorxeC
S XxeAorxeBorx e C.
SxeAorxeBUC
<oxeAU BUCOC
~(AUB)UC=AU BUDC)

b. Try it on the same lines as (a).
C. BNCcB==AUBNC)cAUB.

Similarly, AUBNC)c AUC.
~AUBNC cc(AUBN(AUC)

Conversely, x e (AU B) N (AU C)
=>xeAUBandxe AUC
=>XeAorxeBandx e Aorx € C.
=>XeAorxeBNC
=>xeAUBNCOC
~(AUB)N(AUC)c AU BNO).

Thus, (c) is proved
d. Try it on the same lines as (c).

ANSWER TO SELF ASSESSMENT EXERCISE 5

a. T

b. F. For example, if A=10, 1] and B = [0, 2], then
A zB,B gz and A B=(0)#¢.

C. F, In fact, for any set A, A < B.

d. T.

e. T.

ANSWER TO SELF ASSESSMENT EXERCISE 6
a. x e Aiff x ¢ A°.

b. Since A and A° are subsets of X, A U A° c X.
Conversely, if x e X and x ¢A, then x eA°.
X cAUA
SX=AUA®

C. XeAoxe Ao xe (A). A=A
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ANSWER TO SELF ASSESSMENT EXERCISE 7
AxB={(2 2), (2 23), 5 2), (5 3)}
BxA={(2 2),32),(25),(3,5)}
AxA={(22),(25),(,2),(5,5)}
ANSWER TO SELF ASSESSMENT EXERCISE 8

The set of the first coordinates is A. ..A = {7, 2}.
The set of the second coordinates is B. ..B = {2, 3, 4}.

ANSWER TO SELF ASSESSMENT EXERCISE 9

x,y)e(AUB)XC <xeAUBandyeC
oXeAorxeBandy e C
< xeAandyeCorxeBandy e C
< (X, y) e AxCor(x,y) e BxC
< (X Yy) e (AxC) U (BxC).

You can similarly show that

(ANB)xC=(AxC)N (BxC).

ANSWER TO SELF ASSESSMENT EXERCISE 10
a. F b. T C. F
ANSWER TO SELF ASSESSMENT EXERCISE 11
Since 5 divides (a-a) =0Ma € N, R is reflexive.
If5|(a—Db),then5|(b-a). .., Ris symmetric.
If5]|(a—Db),then5|(b-c),then5|{(a—b)+(b-c)}, i.e.
5|(a-c). .., Ris transitive.

ANSWER TO SELF ASSESSMENT EXERCISE 12
2R 2isfalse

(2,4) e R,but(4,2) ¢ R.

(2,4) € R, (4,16) € R, but (2, 16) ¢ R.

ANSWER TO SELF ASSESSMENT EXERCISE 13
la| =|a] Ma e Z .., Risreflexive.

la| = [b| = |b| = [a] .., R is symmetric.
la| = |b|and |b| = |c| = [a] = |c|. .., R is transitive.
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.., Ris an equivalence relation.

[0]={a e Z|aR0}={a € Z | |a| = 0} = {O}.
[1] ={1, -1}.

ANSWER TO SELF ASSESSMENT EXERCISE 14
Forn,m e N,f(nN)=f(m) =>n+5=m+5=n=m.
s, fisl-1.

Since 1 ¢ f(N), f(N) #N..-., fis not surjective.
ANSWER TO SELF ASSESSMENT EXERCISE 15

fis1—1 (asin Self Assessment Exercise 14).
Foranyz € Z, f(z-5) =z. .., fis surjective, and hence, bijective.

ANSWER TO SELF ASSESSMENT EXERCISE 16

fX)=c ¥ xe X.

Suppose X has at least two elements, say x and y. Then f(x) = ¢ = f(y),
but x # y. That is, fis not 1 — 1. Therefore, if fis 1 — 1, then X consists

of only one element.
Since f(X) = {c}, fis surjective.
ANSWER TO SELF ASSESSMENT EXERCISE 17
X € X = f(x) € f(X) = x e f* (f(X))..., X < ! f(X)).
ANSWER TO SELF ASSESSMENT EXERCISE 18
a. xef'(S)ef(x) e SUT.
< fx) eSorf(x)eT
oxefl(S)orx ef' (T)
- FH(S) < £H(T).
b xefl(SUT)ef(x)eSUT
<fxX) e Sorf(x) e T
ox eft(S)orx e ()

o x eft(S) Uft (T)

c.) Do it on the lines of (b).
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ANSWER TO SELF ASSESSMENT EXERCISE 19
fogand gof are functions from R to R in all cases.

a. fog(X) =f(x+5)=5(x+5) ¥x € R
gof(X)=g(5x) =5x +5¥ x R,

b. fog(X) =gof(X) =x¥X € R.

c. fog(X)=x*=gof(X)M¥x e R.

ANSWER TO SELF ASSESSMENT EXERCISE 20
Show that 1o g(b) = g(b) and g-Ig(b) = g(b) ¥ b « B.
ANSWER TO SELF ASSESSMENT EXERCISE 21
g:R—->R:g(x)=3x.

ANSWER TO SELF ASSESSMENT EXERCISE 22

a. fisnot 1 -1, since f(1) = f(-1).
-, F* doesn’t exist.

b. f is not surjective, since f(R) # R.
-, F' doesn’t exist.

c.  fisbijective, .., f* exists.

LR R:fi(x)= XL,
11

ANSWER TO SELF ASSESSMENT EXERCISE 23

Let P(n) be the statement that (ab)" = a"b".

P(1) is true. Assume that P(n — 1) is true. Then

(ab)" = (ab)™* (ab) = (""" b"h)ab, since P(n -1) is true.
=a"" (b"a)b
=a"" (ab"™")b
=a'b".

~., P(n) is true

o, P(n)istrue ¥ n N.

ANSWER TO SELF ASSESSMENT EXERCISE 24

a. Sincea.0=0,a|0.
(x1)(xa)=a ..x1l]aand £ a]a
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b. alb=b=ad, forsomed  Z
= bc = (ac)d,
= ac | bc

C. b =ad, c=bhe, forsomed, e e Z

-, C=ade. ..,a|c.

d. alb=Db=ad, forsomed  Z
b|a—= a=be, forsomee  Z.
s.,a=ade=de=1,sincea#0.
S,e=x1 c,a==%bh

e. claandc|b=a=cd, b=ceforsomed, e Z.
s, forany X,y e Z, ax + by = c(dx + ey).
o, ¢ (ax + by).

ANSWER TO SELF ASSESSMENT EXERCISE 25
Suppose p | a. Then (p, a) = 1. ., by Theorem 9, p | b.

ANSWER TO SELF ASSESSMENT EXERCISE 26

Let P(n) be the statement thatp|a; a; ......... an
=plaforsomei=1,2,.......... , n.
P(1) is true.

Suppose P (m — 1) is true.

Now, letp |a1a; ......... am- Thenp|(a; .......... An1)an.

By Self Assessment Exercise 25, p|(a;az ......... am-1) OF P | anm.
., plaforsomei=1, ...... , m(since P(m — 1) is true).

., P(m) is true.

o, P(n)istrue ¥ n eN.

ANSWER TO SELF ASSESSMENT EXERCISE 27
Jp = % —a’=pb’=p|a’=p]|a since pisaprime.

Let a = pc. Then a® = pb® = p°c? = pb®* = pc? = b?
=p|b*=p|b.

-, pl(a b) =1, acontradiction.

<., |Jp is irrational.
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1.0 INTRODUCTION

In Unit 1 we have discussed some basic properties of sets and functions.
In this unit we are going to discuss certain sets with algebraic structures.
We call them groups.

The theory of groups is one of the oldest branches of abstract algebra. It
has many applications in mathematics and in the other sciences. Group
theory has helped in developing physics, chemistry and computer
science. Its own roots go back to the work of the eighteenth century
mathematicians Lagrange, Ruffini and Galois.

In this unit we start the study of this theory. We define groups and give
some examples. Then we give details of some properties that the
elements of a group satisfy. We finally discuss three well known and
often used groups. In future units we will be developing group theory
further.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

define and give examples of binary operations

define and give examples of abelian and non-abelian groups

use the cancellation laws and laws of indices for various groups
use basic properties of integers modulo n, permutations and
complex numbers.
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3.0 MAIN CONTENT
3.1 Binary Operations
You are familiar with the usual operations of addition and multiplication
in R, Q and C. these operations are examples of binary operations, a
term that we will now define.

Definition

Let S be an non-empty set. Any function* : S x S — S is called a
binary operation on S.

So, a binary operation associates a unique element of S to every ordered
pair of elements of S.

For a binary operation* on S and (a, b) € S x S, we denote * (a, b) by
a*b.

We will use symbols like +, -, x,®,o,* and A to denote binary
operations.

Let us look at some examples.

I. + and x are binary operations on Z. In fact, we have +(a, b) =a +
band x (a,b)=a” b¥Ma, b e Z Wewill normally denote a x b
by ab.

ii. Let o (S) be the set of all subsets of S. Then the operations U
and (N are binary operations on ¢ (S),since AU Band AN B
are in g (S) for all subsets A and B of S.

iii. Let X be a non-empty set and F(X) be the family of all functions
f. X —> X. Then the composition of functions is a binary
operation on F (X), since fog € F (X) " f, g € F (X).

We are now in a position to define certain properties that binary
operations can have.

Definition
Let * be a binary operation on a set S. We say that

I * isclosedonasubset Tof S, ifa*be TMabeT.
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ii. * is associative if, foralla,b,c € S, (a, * b) * c=a* (b * ¢).
iii. * is commutative if, foralla,b | S,a* b=b * a.

For example, the operations of addition and multiplication on R are
commutative as well as associative. But, subtraction is neither
commutative nor associative on R. Why? Isa—-b=b-aor(a-b)-c=
a- (b-c)Ma,b,ceR?No,forexample,1-2#2-1and (1-2)-3+#
1 — (2 — 3). Also subtraction is not closed on N < R, because 1 € N, 2
e Nbutl-2 ¢ N.

Note that a binary operation on S is always closed on S, but may not be
closed on a subset of S.

Try the following self assessment exercise now.
SELF ASSESSMENT EXERCISE 1

For the following binary operations defined on R, determine whether
they are commutative or associative. Are they closed on N?

1. X®Yy=Xx+y-5
2. X*y=2(x+y)
X-y
3. Ay=——=
XAy 5

forall x,y € R.

In calculations you must have often used the fact that a(b + ¢c) =ab + ac
and (b +c)a=Dbc +ba¥a, b, c e R. This fact says that multiplication
distributes over addition in R. In general, we have the following
definition.

Definition

If - and * are two binary operations on a set S, we say that * is
distributive over o ifMa,b,c e S, wehavea* (boc)=(a* b) - (a
*c)and(boc)*a=(b*a)o(c* a).

For example, leta * b= a;b Ma,beR. Thena(b* c)=a (_b”j -

2
ab+ ac

=ab * ac, and

(b * c)a= (b;cja: ba;ca =bha*caMab,ceR.
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Hence, multiplication is distributive over* .

For another example, go back to Self Assessment Exercise 4 of Unit 1.
What does it say? It says that the intersection of sets distributes over the
union distributes over the intersection of sets.

Let us now look deeper at some binary operations. You know that, for
anyae R,a+0=a,0+a=aanda+ (-a) =(-a) +a=0. We say that 0
Is the identity element for addition and (-a) is the negative or additive
inverse of a. In general, we have the following definition.

Definition

Let * be a binary operation on a set S. If there is an element e € S such
that Ma € S,a * e=aande * a=a, then e is called an identity
element for* .

Fora € S,wesay thatb € Sisaninverseofa,ifa* b=eandb * a=
e. In this case we usually write b = a™.

Before discussing examples of identity elements and inverses consider
the following result. In it we will prove the uniqueness of the identity
element for*, and the uniqueness of the inverse of an element with
respect to*, if it exists.

Theorem 1

Let * be a binary operation on a set S. Then

a. If * has an identity element, it must be unique.

b. if * is associative and s € S has an inverse with respect to *, it
must be unique.

Proof
a. Suppose a and e’ are both identity elements for* .
Thene=e * e', since e' is an identity element.
=e', since e is an identity element.
That is, e = e'. Hence, the identity element is unique.
b. Suppose there exista, b € Ssuchthats * a=e=a* sands* b

=e =D * s, e being the identity element for*. Then
a=a*c=a*(s*hb

=(a * s) * b, since * is associative.

=e*Db=h.

42



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

Thatis, a =b.
Hence, the inverse of s is unique.

This uniqueness theorem allows us to say the identity element and the
inverse, henceforth.

A binary operation may or may not have an identity element. For
example, the operation of addition on N has no identity element.

Similarly, an element may not have an inverse with respect to a binary
operation. For example, 2e€Z has no inverse with respect to
multiplication on Z, does it?

Let us consider the following examples now.
Example 1

If the binary operation®: R xR — Ris definedbya @ b=a+b -1,
prove that @ has an identity. If x € R, determine the inverse of x with
respect to @, if it exists.

Solution

We are looking for somee € Rsuchthata ® e=a=e ® aMa € R.
Sowewante € Rsuchthata+e—-1=aV¥a e R. Obviously, e = 1 will
satisfy this. Also, 1 @ a = a Ma € R. Hence, 1 is the identity element
of ®.

For X € R, if b is the inverse of x, we should have b & x = 1.
le,b+x-1=11e,b=2-x.Indeed,(2-X) ® x=(2-X)+x-1=
1.

Also, X ® (2-x)=x+2-x-1=1.50,x'=2-x.

Example 2

Let S be a non-empty set. Consider g (S), the set of all subsets of S. Are
Uand( commutative or associative operations on g (S)? Do identity
elements and inverses of elements of ¢ (S) exist with respect to these
operations?

Solution

Since AUB=BUAand ANB=BNAMA, B € o(S), the operations
of union and intersection or are associative operations on g (S). Self
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Assessment Exercise of Unit 1 also says that both operations are
associative. You can see that the empty set ¢ and the set are S the
identities of the operations of union and intersection, respectively. Since
S#¢,thereisno B € o (S)suchthat S U B =¢. In fact, for any A €
¢ (S) such that A# ¢, A does not have an inverse with respect to union.

Similarly, any proper subset of S does not have an inverse with respect
to intersection.

Try the following self assessment exercise now.
SELF ASSESSMENT EXERCISE 2

1. Obtain the identity element, if it exists, for the operations given in
Self Assessment Exercise 1.

2. For x e R, obtain x™* (if it exists) for each of the operations given
in Self Assessment Exercise 1.

When the set S under consideration is small, we can represent the way a
binary operation on S acts by a table.

Operation Table

Let S be a finite set and * be a binary operation on S. We can represent
the binary operation by a square table, called an operation table or a
Cayley table. The Cayley table is named after the famous mathematician
Arthur Cayley (1821 — 1895).

To write this table, we first list the elements of S vertically as well as
horizontally, in the same order. Then we write a * b in the table at the
table at the intersection of the row headed by a and the column headed
by b.

For example, if S = {-1, 0, 1} and the binary operation is multiplication,
denoted by then it can be represented by the following table.

(-1).(-1) (-1).0 (-1).1
-1 = =0 =1

0.(-1) 00 (1)1
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1.(-1) 1.0 1.1
1 =-1 =0 =

Conversely, if we are given a table, we can define a binary operation on
S. For example, we can define the operation * on S = {1, 2, 3} by the
following table.

* 1 2 3
1 1 2 3
2 3 1 2
3 2 3 1

From this table we see that, for instance, 1 * 2=2and 2 * 3=2.

Now 2 * 1 =3and1*2=2 ..2* 1#1 * 2. Thatis, * is not
commutative.

Again,(2* 1)* 3=3*3=1and2* (1 * 3) =2
(2% 1)*3£2* (1 * 3). .., * isnotassociative.

See how much information a mere table can give!

The following exercise will give you some practice in drawing Cayley
tables.

SELF ASSESSMENT EXERCISE 3

Draw the operation table for the set o (S) (ref. Example 2), where S =
{0, 1} and the operation in(.

Now consider the following definition.

Definition

Let * be a binary operation on a non-empty set S and let a,, .., ax+; € S.
We define the product a; * ...... * sy as follows:

Ifk=1,a; * a,isawell defined element in S.
Ifa; * ......... * a 1S defined, then
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ar* ... =@ * . * A)* Akt
We use this definition in the following result.

Theorem 2

Let a;, ........ , am+n De elements in a set S with an associative binary
operation* . Then

(al X * am) * (a.m+1 X * am+n) = a.]_ [, * am+n.

Proof

We use induction on n. That is, we will show that the statement is true
forn=1.

Then, assuming that is true for n — 1, we will prove it for n.

If n = 1, our definition above gives us

(al * * am) * (a.m+1 * o * am+n_1) = a.]_ * am+n 1

Then

(al * EEET * am) * (a.m+1 * o * am+n)

= (al * EEET * am) * ((am+1 * * am+n_1) * am+n)

=((@a* ..... * am) *(@m+1 * -oeor * @ment)) * @men, SINCE * IS @SSOCIative
=(@* ..... * @n+n1) ¥ @msn, DY INduction

=(a, * ..... * amn, by definition.

Hence, the result holds for all n.

We will use Theorem 2 quite often in this course, without explicitly
referring to it.

Now that we have discussed binary operations let us talk about groups.
3.2 Whatisa Group?

In this section we study some basic properties of an algebraic system
called a group. This algebraic system consists of a set with a binary

operation which satisfies certain properties that we have defined in Sec.
2.2. Let us see what this system is.
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Definition

Let G be a non-empty set and * be a binary operation on G. We say that
the pair (G,*) is a group if

G1l) * isassociative,

G2) G contains an identity element e for*, and

G3) every element in G has an inverse in G with respect to* .

We will now give some examples of groups.

Example 3

Show that (Z, +) is a group, but (Z,) is not.

Solution

+ IS an associative binary operation on Z. the identity element with
respect to + is 0, and the inverse of nay n € Z is (-n). Thus, (Z, +)
satisfies G1, G2 and G3.

Therefore, it is a group.

Now, multiplication in Z is associative and 1€ Z is the multiplicative
identity. But does every element in Z have a multiplicative? No. For
instance, 0 and 2 have no inverses with respect to “.”. Therefore, (Z,.) is

not a group.

Note that (Z,.) is a semi group since it satisfies G1. So, there exist semi
groups that aren’t groups!

The following self assessment exercise gives you two more examples of
groups.

SELF ASSESSMENT EXERCISE 4
Show that (Q, +) and (R, +) are groups.

Actually, to show that (G,*) is a group it is sufficient to show that *
satisfies the following axioms.

G1’) * isassociative.

G2’) Je e Gsuchthata* e=aMae G.
G3’) Givena € G, 3 b € Gsuchthata* b=e.
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What we are saying is that the two sets of axioms are equivalent. The
difference between them is the following:

In the first set we need to prove that e is a two-sided identity and that the
inverse b of any a € G satisfiesa * b=eand b * a = e. In the second
set we only need to prove that e is a one-sided identity and that the
inverse b of any a € G only satisfiesa * b =e.

In fact, these axioms are also equivalent to

G1”) * isassociative.

G2”) dee Gsuchthate * a=aV¥aeG.

G3”)Givena € G d b € Gsuchthatb * a=e.

Clearly, if * satisfies G1, G2 and G3, then it also satisfies G1’, G2’ and
G3’. The following theorem tells us that if * satisfies the second set of
axioms, then it satisfies the first set too.

Theorem 3

Let (G,*) satisfy G1’, G2” and G3’. Thene * a=a " a € G. Also,
givena € G,if 3 b € Gsuchthata * b=e,thenb * a=e. Thus, (G,*)
satisfies G1, G2 and G3.

To prove this theorem, we need the following result.

Lemma 1

Let (G,*) satisfy G1°, G2’ and G3’. If 3 a € G such thata * a = a, then
a=e.

Proof

By G3’ we know that 3 b € G such thata * b =e.

Now (a* a)*b=a* b=e.

Also,a *(a * b) =a* e =a. Therefore, by G1’,a=e.

Now we will use this lemma to prove Theorem 3.
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Proof to Theorem 3

G1 holds since G1 and G1’ are the same axioms. We will next prove
that G3 is true. Leta € G such thata * b =e. We will show thatb * a=
e. Now,

(b*a)*(b*a)=(b*@*b)*a=(b*e)*a=b*a.

Therefore, by Lemma 1, b *a = e. Therefore, G3 is true.

Now we will show that G2 holds. Leta € G. Then by G2’, fora € G, a
* e=a.since G3 holds, 3 b € Gsuchthata* b=b * a=e. Then
e*a=(@*b)*a=a*(b*a)=a*e=a.

That is, G2 also holds.

Thus, (G, *) satisfies G1, G2 and G3.

Now consider some more examples of groups.

Example 4

Let G ={+ 1, + i}, i=+- 1. Let the binary operation be multiplication.
Show that (G,>) is a group.

Solution

The table of the operation is

1 -1 I -1

1 1 -1 I -1
-1 -1 1 -1 I

i i -i -1 1
-1 -1 I 1 -1

This table shows us that a.1 = a ¥ a € G. Therefore, 1 is the identity
element. It also shows us that (G, satisfies G3’. Therefore, (G,) is a

group.
Note that G = {1, x, X, x°}, where x = i.

From Example 4 you can see how we can use Theorem 3 to decrease the
amount of checking we have to do while proving that a system is a

group.
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Note that the group in Example 4 has only 4 elements, while those in
Example 3 and Self Assessment Exercise 4 have infinitely many
elements. We have the following definitions.

Definition

If (G,*) is a group, where G is a finite set consisting of n elements, then
we say that (G,*) is a finite group of order n. If G is an infinite set,
then we say that (G,*) is an infinite group.

If * is a commutative binary operation we say that (G,*) is a
commutative group, or an abelian group. Abelian groups are named
after the gifted young Norwegian mathematician Niels Henrik Abel.

Thus, the group in Example 4 is a finite abelian group of order 4. The
groups in Example 3 and Self Assessment 4 are infinite abelian groups.

Now let us look at an example of a non-commutative (or non-abelian)
group. Before doing this example recalls that an m ©~ n matrix over a set
S is a rectangular arrangement of elements of S in m rows and n
columns.

Example 5

Let G be the set of all 2 x 2 matrices with non-zero determinant. That is,

o={%

Consider g with the usual matrix multiplication, i.e., for

A= a b and P = P4 inG, AP = @+ br aq +bs
c d rs cp + dr cqg+ds

a, b, c,d e R, ad-bc ;tO}

Show that (G,) is a group.
Solution

First we show that, is a binary operation, that is, A, Pe G = AP € G.
Now,
det(A. P) = det A. det P # 0, since det A # 0, det P # 0.

Hence, A.P € G forall A, PinG.
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. o - 10
We also know that matrix multiplication is associative and {O }

ab
is the multiplicative identity. Now, for A = { d} in G, the matrix

c
d -b
B=|ad-bc ad-bc | jssychthat det B= —L — = 0and AB
—C a ad- bc
ad—bc ad-bc

£

Thus, B = A™. (Note that we have used the axiom G3’ here, and not G3.)
This shows that the act set of all 2 x 2 matrices over R with non-zero
determinant forms a group under multiplication. Since

1 2] [0 1] [21

= and
2o s o)7la 3
[0 1] [1 2] _[3 4],
10/[34] [12

We see that this group is not commutative.

This group is usually denoted by GL,(R), and is called the general
linear group of order 2 over R. We will be using this group for
examples throughout Blocks 1 and 2.

And now another example of an abelian group.

Example 6

Consider the set of all translation of R?,
T={f,R*> Rif.,(x.y) = (x+a,y+b) for some fixed a,b e R}

Note that each element f,, in T is represented by a point (a, b) in R
Show that (T,o) is a group, where o denotes the composition of
functions.
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Solution

Let us see if o is a binary operation on T.

Now fapofen(X, y) = fap(x +c,y+d) = (X +c+a,y +d +b)
= fasc, pra(X, Y) for any (x, y) € R%.

cFapofed = farcpia € T.

Thus, o Is a binary operation on T.

NOW, fa‘bofo‘o = fa‘b¥ fa‘b (S T.

Therefore, fq( is the identity element.

Also, f,pof, 4 is the inverse of foo M f,,eT.

Thus, (T, o) satisfies G1’, G2’ and G3’, and hence is a group.

Note that f,pofeq = fogo fap M fapofeq € T. Therefore, (T,o) is abelian.

Try the following self assessment exercises now.

SELF ASSESSMENT EXERCISE 5

Let Q, R” and Z" denote the sets of non-zero rationals, reals and
integers. Are the following statements true? If not, give reasons.

1.  (Q,.)isan abelian group.

2. (R,.)isafinite abelian group.

3. (Z*, ) is agroup.

4, (Q,.),(R,.)and (Z,.) are semigroups.
SELF ASSESSMENT EXERCISE 6

Show that (G, *) is a non-abelian group,
where G = {(a,b)|a,beR,a=0} and * is defined on G by
(a, b) * (c, d) = (ac, bc + d).

We will now look at some properties that elements of a group satisfy.

3.3  Properties of Groups

In this section we shall give some elementary results about properties
that group elements satisfy. But first let us give some notational
conventions.
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Convention

Henceforth, for convenience, we will denote a group (G,*) by G, if
there is no danger of confusion. We will also denote a * b by ab, for a,
be G, and say that we are multiplying a and b. The letter e will
continue to denote the group identity.

Now let us prove a simple result.

Theorem 4

Let G be a group. Then

a. (@Y'=aforeverya e G.
b. (ab)*=b'a'foralla b e G.

Proof

a. By the definition of inverse,
@h*'@H=e=@"@""

But, aa™ a = calso. Thus, by Theorem 1 (b), (a*)" = a.

b. For a, beG, abeG. Therefore, (ab)* G and is the unique
element satisfying (ab) (ab)™ = (ab)™ (ab) = e.

However, (ab) (b™a™) = ((ab) bH)a™
= (a (b bHa)

Similarly, (b*a™) (ab) = e.

Thus, by uniqueness of the inverse we get (ab)* =b™ a™.
Note that, for agroup G, (ab)* =a* b* M a, b € G only is abelian.

You know that whenever ba = ca or ab = ac fora, b, cin R,

we can conclude that b = c. That is, we can cancel a. This fact is true for
any group.

Theorem 5

For a, b, cinagroup G,

a. ab =ac = b =c. (This is known as the left cancellation law.)
b. ba = ca = b =c. (This is known as the right cancellation law.)
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Proof
We will prove (a) and leave you to prove (b) (see Self Assessment 7).
a. Let ab = ac. Multiplying both sides on the left hand side by a™
G, we get
a’'(ab) = a’(ac)
— (a'a)b = (a'a)c
= eb = ec, e being the identity element.
=b=c.

Remember that by multiplying we can mean we are performing the
operation * .

SELF ASSESSMENT EXERCISE 7

Prove (b) of Theorem 5.

Now use Theorem 5 to solve the following self assessment exercise.
SELF ASSESSMENT EXERCISE 8

If in a group G, there exists an element g such that gx = g for all x € G,
then show that G = {e}.

We now prove another property of groups.
Theorem 6

For elements a, b in a group G, the equations ax = b and ya = b have
unique solutions in G.

Proof

We will first show that these linear equations do have solutions in G,
and then we will show that the solutions are unique.

Fora, b € G, consider a* b e G. We find that a(@™ b) = (aa )b = eb =
b. Thus, a™ b satisfies the equation ax = b, i.e., ax = b has a solution in
G.

But is this the only solution? Suppose Xi, X, are two solutions of ax = b
in G. then ax; = b = ax,. By the left cancellation law, we get x; = X,.
thus, a™ b is the unique solution in G.

Similarly, using the right cancellation law, we can show that ba™ is the
unique solution of ya=b in G.
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Now we will illustrate the property given in Theorem 6.

Example 7

2 3 15

Consider A = ,B= in GL; (R) (see Example 5).
1 2 0 4

Find the solution of AX = B.

Solution

From Theorem 6, we know that X = A™ B. Now,

2 -3
Atl= { L ) } (see Example 5).

-1 2 _2
L ATB= =X
-1 3

In the next example we consider an important group.

Example 8

Let S be a non-empty set. Consider ¢ (S) (see Example 2) with the

binary operation of symmetric differenceA, given by
A AB=(A\B)U (B\A)MA, B e A(S).

Show that (g (S), A) is an abelian group. What is the unique solution for

the equation Y A A = B?

Solution

A is an associative binary operation. This can be seen by using the fact

that
A\B=ANB,(ANB)Y=A"U B (AU B)=A°N Band that

U

and N are commutative and associative. A is also commutative since A

AB=BAAMA B e ¢(S).

Also, ¢ is the identity elementsince AA ¢ =AM A € p(S).

Further, any element is its own inverse, since AAA= ¢ M A € p(S).

Thus, (g (S), A) is an abelian group.
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For A, Bin (¢ (S), A) we want to solve Y A A = B. but we know that A
is its own inverse. So, by Theorem 6, Y = B A A™ = B A A is the unique

solution. What we have also proved is that (B A A) A A =B for any A,
Bin o A(S).

Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 9

Consider Z with subtraction as a binary operation. Is (Z, -) a group? Can
you obtain a solution fora—x=b¥Ma, b € Z?

And now let us discuss repeated multiplication of an element by itself.
Definition

Let G be a group. For a € G, we define

I. a =e.

i. a’=a"laifn>0

i a*=(@")" ifn>0.

n is called the exponent (or index) of the integral power a" of a.
Thus, by definition a' = a, a* = a.a, 8> = @°. a, and so on.

Note: When the notation used for the binary operation is addition, a"
becomes na. For example, for any a € Z,

na=0ifa=0,

na=a+a+...+a(ntimes)ifn>0;

na=(-a)+(-a)+ ... +(-a) (-ntimes) if n <O0.

Let us now prove some laws of indices for group elements.

Theorem 7

Let G be agroup. Forae Gandm, n € Z,

a. (an)-l — a-n — (a-l)n’
b ama"=a™"
C (am)n - amn
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Proof

We prove (a) and (b), and leave the proof of (c) to you (see Self
Assessment Exercise 10).

a. Ifn=0,clearly (@) =a" = (a%)",
Now suppose n > 0. Since aa™ e, we see that
e=e"=(aa™)"

= (aa™") (@) ....... (aa™) (n times)
=3a" (a)", since aand a* commute
so@t =@
Also, (@h)" = a™, by definition.
- @)= @""=a" whenn>0.
If n <0, then (-n) >0 and
@) =[E™M*
=[(@")"]", by the case n >0
= a'n
Also, (a")" = (@)™
=[@@")'T" ythecasen>0
=a".
So, in this case too,
(an)-l — a-n — (a-l)n.

b. Ifm=0o0rn=0,thena™" =a"a". Suppose m # 0 and n # 0.
We will consider 4 situations.

Case 1 (m >0 and n > 0): We prove the proposition by induction on n.

If n = 1, then a™.a = a™", by definition.

Now assume that a™.a"* = a

Then, a™a" = a"(@"*.a) = @".a"") a = a™"".a = a™". Thus, by the

principle of induction, (a) holds for all m >0 and n > 0.

Case 2(m<0andn<0): Then (-m) >0 and (-n) > 0. Thus, by Case 1,
a"a™=a™m = ™" Taking inverses of both the sides and using (a),
We get,

" =@"aMt =@M @M =a"a".

Case 3 (m >0, n < 0 such that m + n > 0): Then, by Case 1, a"".a" =
m+n

a". Multiplying both sides on the right by a" = (@™)™, we get a™" =
a".a".

Case 4 (m > 0, n < 0 such that m + n < 0): By Case 2, a™.a™" = a".
Multiplying both on the left by a" = (@™, we geta™" = a™.a".
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The cases when m < 0 and n > 0 are similar to Case 3 and 4. Hence, a™"
=a"a"forallae Gandm, n € Z.

To finish the proof of this theorem try self assessment exercise 10.
SELF ASSESSMENT EXERCISE 10
Now you can prove (c) of theorem 7.

(Hint: Prove, by induction on n, for the case n > 0.
Then prove for n <0.)

We will now study three important groups.

3.4 Three Groups

In this section we shall look at three groups that we will use as examples
very often throughout this course — the group of integers modulo n, the
symmetric group and the set of complex numbers.

3.4.1 Integers Modulo n

Consider the set of integers, Z, and n € Z and n € N. Let us define the
relation of congruence on Z by: a is congruent to b modulo n if n divides
a-b. We write this as a = b (mod n). For example, 4= 1 (mod n 3),
since 3 | (4 -1).

Similarly, (-5) =2 mod 7) and 30 = 0 (mod 6).

= is an equivalent relation (see Sec. 3.3 of Unit 1), and hence partitions
Z into disjoint equivalence classes called congruence classes modulo n.
We denote the class containing r by T.

Thus, T ={m € Z| m=r(mod n)}.

So an integer m belongs to T for somer, 0 <r <, iffn|(r—m), i.e.,, iffr
—m=kn, for some k € Z.

~T={r+kn | kI Z}

Now, if m > a, then the division algorithm says that m = ng + r for some
g,re Z,0<r< Thatis, m= r (modn), forsomer0, ....,n—1.

Therefore, all the congruence classes modulonare 0, 1, ...... , n- 1.
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LetZ,={0,1, 2, ....... , n- 1}. We define the operation + on Z, by @

Is this operation well defined? To check this, we have to see that if 7 =
band T =4dinZ,then a+ b =c+d.

+
wl

0 1 2

wl| Nl -l | ol

Now, a =b (mod n) and ¢ = d (mod n). Hence, there exist integers k; and
k, such thata-b =knand c-d=kyn. Butthen(a+c)-(b+d)=
(@a-b) +(c—d)=(k +k;)n.

at+c=b+d.

Thus, + is a binary operation on Z,,.

For example, 2 + 2 = 0 inZ,since 2 + 2=4=0 (mod 4).

To understand addition in Z,, try the following self assessment exercise.
SELF ASSESSMENT EXERCISE 11

Fill up the following operation table for + on Z,.

Now, let us show that (Z,, +) is a commutative group.

i. a+b=a+tb=b+ta=b+aMa,belZ,ie,
addition is commutative in Z,,.

ii. a+(b+t)=a+(b+c)=a+(b+tc)
=(atb)+c=(a+b)+T=(a+b)+TM3T, b, Tel,
I.e., addition is associative in Z,.

iii.h a+0=a=0+aVMaeZ,ie, 0 isthe identity for addition.

Iv. For € Z,,3n- a € Z,suchthata+ n-a=n"=0=n- a +3.

Thus, every element @ in Z, has an inverse with respect to addition.
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The properties (i) to (iv) show that (Z,, +) is an abelian group.
Try the following self assessment exercise now.
SELF ASSESSMENT EXERCISE 12

Describe the partition of Z determined by the relation ‘congruence
modulo 5°.

Actually we can also define multiplication on Z, bya.b = ab. Then,
ab=baMa,beZ.Also(ab)t=a(bt)¥a, b, T e Z.Thus,
multiplication in Z, is a commutative and associative binary operation.
Z, also has a multiplicative identity, namely, 1.

But (Z,,.) is not a group. This is because every element of Z,, for
example 0 does not have a multiplicative inverse.

But, suppose we consider the non-zero elements of Z,, that is, (Z,, .) Is
this a group? For example Z, = {T, 2, 3} is not a group because . is
not even a binary operation on Z;, since 2.2 = 0 ¢ Z,.But (Z,,.). is
an abelian group for any prime p.

SELF ASSESSMENT EXERCISE 13
Show that ( Z; ,.) is an abelian group.

(Hint: Draw the operation table.)
Let us now discuss the symmetric group.
3.4.2 The Symmetric Group

We will now discuss the symmetric group briefly. In MTH 312 we will
discuss this group in more detail.

Let X be a non-empty set. We have seen that the composition of
functions defines a binary operation on the set F(X) of all functions
from X to X. This binary operation is associative. Iy, the identity map, is
the identity in F (X).

Now consider the subset S(X) of F (X) given by

S(X) = {f € F (X) | fis bijective}.
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So f e S(X) iff f1: X — X exists. Remember that fof* = f1of = Iy. This
also shows that f* e S(X).

Thus, , is a binary operation on S(X).

Let us check that (S(X), o) is a group

I. o Is associative since (f, g) o h =1(g, h) ¥ 1, g, h €S(X).

il I « is the identity element because f, 1, =14, T M f € S(X).
iii.  f'isthe inverse of f, for any f € S(X).

Thus, (S(X), o) is a group. It is called the symmetric group on X.

If the set X is finite, say X = (1, 2,3 ...................,n), then we denote
S(X) by S,,, and each f S, is called a permutation on n symbols.

Suppose we want to construct an element f in S,. We can start by
choosing f(1). Now, (1) can be any one of the n symbols 1, 2, ....,n.
Having chosen (1), we can choose f(2) from the set {1, 2, ....n}\{f(1)},
i.e.,, in (n — 1) ways. This is because f is 1 — 1. Inductively, after
choosing f(i), we can choose f (I + 1) in (n - 1) ways. Thus, f can be
chosenin (1 x 2 X....X,) n 1 ways, i.e., S, contains an! Elements.

For our convenience, we represent f € S, by
1 2 i n
f(1) f(2) f(n)
1 4 .
For example, represents the function f:
2 4 31
{1, 2, 3,4} > {1, 2, 3, 4} (1) =2, f(2) = 4, f(3) =3, f(4) = 1. the

elements in the top row can be laced in any order as long as the order of
the elements in the bottom row is changed accordingly.

4
Thus, ( Jalso represents the same function f.

4 2 31

Try this exercise now.
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SELF ASSESSMENT EXERCISE 14

Consider Ss, the set of all permutations on 3 symbols. This has 3! (=6)
elements. One is the identify function, I. Another is G i 2) Can
you list the other four.

Now, while solving Self Assessment Exercise one of the elements you

123
must have obtained is f = )
2 31

Here f(1) = 2, f(2) = 3 and f(3) = 1, such a permutation is called a cycle.
In general we have the following definition.

Definition

We say that f € S, is a cycle of length r if there are x;....... Xein X =4
1,2, ... , N} such that f(x;) = x;+ 1 for 1 <i <r-1, (fx;) and f(t) =t for
t X, ..... Xr. In this case f is written as (X; ...X;),

For example, by f = (2 4 5 10) € S;o we mean f(2) = 4, f(4) =5, f(5) =
10, f(10) =2 and f(j) = for j #2, 4, 5,10.

o (12345678910
" l1435106 789 2

f € Sy fixes an element x if f(x) = x.

Note that, in the notation of a cycle, we don’t mention the elements that
are left fixed by the permutation. Similarly, the permutation.

(12345

isthecycle (12534)inS;,
2541 3} yele }in S

Now let us see how we calculate the composition of two permutations.
Consider the following example Ss,
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1 2345 12345
a°B:(2 5 4 3 1}(5 341 zj
(1 2 3 4 5
~ (oB@) ap(2) op3) ap(4) ocB(5)j

1 2 3 4 5
a(3) a3 a(4) ad) 0t(2)j

_ 1234 5}2(2,4)’

14325

Since 1, 3 and 4 are left fixed.

The following exercises will give you some practice in computing the
product of elements in S,,.

SELF ASSESSMENT EXERCISE 15
Calculate (1 3) o (1 2) in Ss.

SELF ASSESSMENT EXERCISE 16
Write the inverses of the following in S3:

a. 12
b. 132

Show that (1 2)o(1 3 2)]* # (1 2)" (1 3 2)*. (This shows that in
Theorem 4(b) we can’t write (ab)-1 = a-1b-1.)

And now let us talk of a group that you may be familiar with, without
knowing that it is a group.]

3.4.3 Complex Numbers

In this sub-section we will show that the set of complex numbers forms
a group with respect to addition. Some of you may not be acquainted
with some basic properties of complex numbers. We have placed these
properties in the appendix to this unit.

Consider the set C of all ordered pairs (x, y) of real numbers, i.e., we
take C=R xR.

Define addition (+) and multiplication (.) in C as follows:
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(X1, Y1) + (X2, ¥2) = (X1 X2 — y1 +Y>) and
(X1, Y1)« (X2, Y2) = (Xa X2 = Y1 Y2, X1 Y2 — X2 Y1)
for  (Xg,y1) and (Xo, y,) in C.

This gives us an algebraic system (C, +,.) called the system of complex
numbers. We must remember that two complex numbers (X;, y1) and
(X2, Yo) are equal iff X, = X, and y; = y».

You can verify that + and, are commutative and associative.

Moreover,

I. (0,)) is the additive identity.

Il For (x, y) in C, (-x, -y) s its additive inverse.

ii. (1, 0) is the multiplicative identity.

iv. If (x, y) (0, 0) in C, then either x* > 0 or y* > 0.

Hence, x* + y* > 0. Then

:(X. X N oy, X J

X2+y2 X2+y2’ X2+y2 X2+y2
= (1.0

Thus, (C, +) is a group and (C*,.) is a group. (AS usual, C* denotes the
set of non-zero complex numbers).

Now let us see what we have covered in this unit.

40 CONCLUSION

The study of groups in algebra is a fundamental requirement for any
students who want to major in pure mathematics. You are required to
pay attention to all the details in this unit.

50 SUMMARY

In this unit we have

. discussed various types of binary operations.
. defined and give examples of groups.
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. proved and used the cancellation laws and laws of indices for
group elements.
o discussed the group of integers modulo n, the symmetric group

and the group of complex numbers.

We have also provided an appendix in which we list certain basic fact
about complex numbers.

ANSWER TO SELF ASSESSMENT EXERCISE 1

1. a. X®Y=y®X, ¥XYe
Therefore, ® is commutative

X®Yy)®z=(x+y-5@®z=(x+y-5+z-5

=x+y+z-10
=X @ (y® 2)
Therefore, @ is associative.
@isnotclosedon Nsincel ® 1¢ N.
b. * |s commutative, not associative, closed on N.
C. A 1S not commutative, associative or closed on N.

ANSWER TO SELF ASSESSMENT EXERCISE 2

a. The identity element with respect to @ is 5.
Suppose e is the identity element for *

Thenx*e:x:Z(x+e):x:>c:-%,Whichdependsonx.

Therefore, there is no fixed element e in R for whichx *e=e * x
=X M x € R. Therefore, * has no identify element.

b. The inverse of x with respect to @ is 10-x. Since there is no

identity for the other operations, there is no question of obtaining
-1
X

ANSWER TO SELF ASSESSMENT EXERCISE 3

# () ={¢. (0). {1}, (0, 1)}

So, the table is

N 0 10} {1} S
¢ ¢ ¢ ¢ {1}
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10} ¢ 10} ¢ 10}
{1} ¢ ¢ {1} {1}
S o {0} {1} S

ANSWER TO SELF ASSESSMENT EXERCISE 4

Check that both of then satisfy G1, G2 and G3

ANSWER TO SELF ASSESSMENT EXERCISE 5

a. and (d) are true.

b. R* is an infinite abelian group.

C. (Z*,.) satisfies G1 and G2, but not G3. NO integer, apart from +-
1, has a multiplicative inverse.

ANSWER TO SELF ASSESSMENT EXERCISE 6

((a, b) * (c, d)) * (e, f)

= (ac,bc+d)* (e, 1)

= (ace, (bc +d) e +f)

= (@, b)*((c,d)* (e f))

Thus, * satisfies G1°.

(@ b)*(1,0)=(a b)¥(ab) e G.

Therefore, G3’ holds.

Therefore, (G, *) is a group.

ANSWER TO SELF ASSESSMENT EXERCISE 7
ba=ca= (ba)a’ = (ca)a’ =>b=c

ANSWER TO SELF ASSESSMENT EXERCISE 8
Letx € G. Thengx=g=ge. So, by Theorem5, x =e.
- G={e},

ANSWER TO SELF ASSESSMENT EXERCISE 9

(Z,-) 1s not a group since G1 is not satisfied.

Foranya, b € Z,a-(a-Db)=b. So, a- x has a solution for any a, b
Z.
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ANSWER TO SELF ASSESSMENT EXERCISE 10

When n = 0, the statement is clearly true. Now, let n > 0. We will apply
induction on n. For n = 1, the statement is true.

Now , let n > 0. We will apply induction on n. For n =1, the statement
IS true.
Now, assume that it is true for n — 1, that is, (@™)" - = ™"~ b,

Then, (@")"=@")" ' +1=@"" Y =a" by (b)
— am(n -1). am

— am(n+1+1)’ by (b)
=am.

So, (c)istrueMn>m e Z.

Now, letn < 0. Then (-n) > 0.

[@™) ™, by (a)

[(@™) ™", by the case n > 0
[(@™1"

a™, by (a).

. (@")"

Thus, ¥ m, n € Z, (c) holds.

ANSWER TO SELF ASSESSMENT EXERCISE 11

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

ANSWER TO SELF ASSESSMENT EXERCISE 12

Z is the disjoint union of the following 5 equivalence classes.

0={....., -10, -5, 0, 5,10, 15,......... }
I={i, =9, =4,1,6,11, oo, }
2={i, =8, =3, 2, 7,12, e, }
3={i, =7, =2,3,8,13 e, }
4={i., =6, =1, 4,9, 14, oo }
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ANSWER TO SELF ASSESSMENT EXERCISE 13

The operation table for on Zsis

Al Wl NI I -
wl| LI &I I NI
Nl B Rl wl| wl
I Nl wl| &I B

Nl wl| NI |

It shows that, is an associative and commutative binary operation of Z*.
1 is the multiplicative identity and every element has an inverse.

Thus, (Z*s,.) is an abelian group.

ANSWER TO SELF ASSESSMENT EXERCISE 14

12312 3)(123\(123
321/l132/l231)/I312
ANSWER TO SELF ASSESSMENT EXERCISE 15

f=(13),9=(12).
Thenf0g=1230123
321)(213

_ 1 2 3 J
fg(2) fo(®) fg(3)

(1 2 3
~r@ @ r(s)j

(1 2 3}2(1 2 9

2 31
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ANSWER TO SELF ASSESSMENT EXERCISE 16

123 ., (213
a. Letf=(12) = A :
2 13 123

just interchanging the rows.
~ft=(12).

b. (1321=(231).

123
Now, (12),(132) = (3 5 1)

3
Its inverse is
i3

1
j =(13).
On other hand,
(12)"5(132)75=(12),(123)=(23)#(13).
APPENDIX: COMPLEX NUMBERS

Any complex number can be denoted by an ordered pair of real numbers
(X, y). In fact, the set of complex numbers is

c={(xy)|xyeR}
Another way of representing (X, y) € Cis x + iy, where i =+/—1..
We call x the real part and y the imaginary part of x + iy.

The two representations agree if we denote (x, 0) by x and (0, 1) by i
.On doing so we can write

x+iy =(x,0)+(0,1) (y, 0)
=(x,0),+(0, ),

= (X, y),
and i*=(0, 1) (0,.1) = (-1, 0) = -1.

While working~ with complex numbers, We' will sometimes use the
notation x + iy and sometimes the fact that the elements of C can be
represented by points in R?,

You can see that
(Xi +1y1) + (X2 + 1y2) = (X1, Y1) + (X2, ¥2)
= (X1 + X2, X2 +Y2)
= (Xl + X2) + |(y1 + yz), and
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(Xi +1yy) (X2 +1y2) = (X1, Y1) + (X2, Y2)
= (X1X2 - Y1Y52, le_z)
= (X1X2) - Y1Y2) + i(X1y2 + X2¥1).), and

Now, given a complex number, we will define its conjugate.
Definition

For a complex number z = x + iy, the complex number x + i (-y) is
called the conjugate of z. It is also written as x -iy and is denoted by z .

For z. = x + 1y, we list the following properties.

I z+ Z is areal number. In fact, z + Z =.2 x.
. 2 Z =x* +y?% anon-negative real number.

.  z,+z,=27,+2,, forany z;, z; € C. This is because
(X, + X, +i(y; +Y,) = (X + %) —i(y1+Y2)

= (Xq - 1y1) + (X2 - 1y>)
=7,+27,.

v. 2,2,=2,.Z,, forany z;, z, ¢ C.
Let us now see another way of representing complex numbers.

Geometric Representation of Complex Numbers Y

We have seen that a complex number, z = x + iy is represented by the
point (X, y) in the plane. If O is the point (0, 0) and P is (x,y) (see
Fig.3), then we know that the distance OP = /x* +y?. This is callec
the modulus (or the absolute value) of the complex y number z and is

denoted by | z |. Note that /x> +y? 0 iff x=0and y = 0.

Now, let us denote | z | by r and the angle made by OP with the positive
x-axis by 6. Then 6 is called an argument of the non-zero complex:
number z. If 6 is an argument of z, then 0 + 2nx is also an argument of
z for all n € Z,. However, there is a unique value of these arguments
which lies in the interval [-wt,x]. It is called the principal argument of
X + 1y, and is denoted by Arg (x +iy).

From fig. 3 you can see that X = r cos6, y = sin® = r sin6 that is, z =
(rcos6, rsind) = r(cos@ + i sin@) = re™®.

This is called the polar form of the complex number (x + iy).
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Now, if z; = re™and z, =r,e", then

2,2, =T1,1,e' "%,

Thus, an argument of z; z, = an argument of z; + an argument of z,.

We can similarly show that if z, # 0,

z
An argument of —X = an argument of z; — an argument of z,.
2

In particular, if 6 is an argument of z (# 0), then (-6) is an argument of z°
We end by stating one of the important theorems that deals with
complex numbers.

De Moivre’s Theorem: If z = r(cosO + i sin®) and n € N, then z" = 1"
(cosnB +isinnd).

7.0 REFERENCES/FURTHER READING

Birkhaff and Melhnew: A Survey of Modern Algebra.
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1.0 INTRODUCTION

You have studied the algebraic structures of integers, rational numbers,
real numbers and, finally, complex numbers. You have noticed that, not
only is Z <« Q <« R < C. but the operations of addition and
multiplication coincide in these sets.

In this unit you will study more examples of subsets of groups which are
groups in their own right. Such structures are rightfully named
subgroups. In Sec. 3.3 we will discuss some of their properties also.

In Sec. 3.4 we will see some cases in which we obtain a group from a
few elements of the group. In particular, we will study cases of groups
that can be built up by a single element of the group.

Do study this unit carefully because it consists of basic concepts which
will be used again and again in the rest of the course.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define subgroups and check if a subset of a given group is a
subgroup or not

. check if the intersection. union and product of two subgroups is ;|
subgroup

. describe the structure and properties of cyclic groups.
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3.0 MAIN CONTENT
3.1 Subgroups

You may have already noted that the groups (Z,+), (Q,+) and (R,+) are
contained in the bigger group (C,+) of complex numbers, not just as
subsets but as groups. All these are examples of subgroups, as you will
see.

Definition

Let (G,*) be a group. A non-empty subset H of G is called a subgroup of
Gif

I. a*beHMa beH.ie.*isabinary operation on H.

ii. (H,*) is itself a group.

So, by definition, (Z,+) is a subgroup of (Q,+), (R,+) and (C,+).

Now, if (H, *) is a subgroup of (G,*), can the identity element in (H,*)
be different from the identify element in (G,*)? Let us see. If h is the
identity of (H,*), then for any a € H.

b*a=za*h=a However,a e Hc G.Thus.a*e=e*a=a. wheree
is the identity in G.

Thereforeh*a=¢e * a.
By right cancellation in (G,*). We get h =e.
Thus, whenever (H, *) is a subgroup of (G,*).e € H.

Now you may like to try the following exercise.
SELF ASSESSMENT EXERCISE 1
If (H, *) is a subgroup of (G,*), doesa ™ € H foreverya € H.,

Self Assessment Exercise 1 and the discussion before it allows us to
make the following remark.

Remark 1
(H,*) is a subgroup o! (G, *) if and only if

i e e H.
il. a,beH=a*beH
iii.h aeH=a'eH.

We would also like to make an important remark about notation here.

73



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

Remark 2

If (H,*) is a subgroup of (G,*), we shall just say that H is a subgroup
of G, provided that there is no confusion about the binary operations.
We will also denote this fact by H < G.

Now we discuss an important necessary and sufficient condition for a
subset to be a subgroup.

Theorem 1

Let H be a non-empty subset of a group G. Then H is a subgroup of G
iff

a,b e H=}ab™ e H.

Proof

Firstly, let us assume that H < G. Then, by Remark 1,a, b € H = a, b’
e H.

Conversely, since H# ¢ 3 a € H. But then, aa™ =e e H.
Again, foranyaeH,ea’ =a’ e H.

Finally, if: a,b € H, thena, b* € H. Thus, a(b")*=ab e H, i.e.,
H is closed under the binary operation of the group.

Therefore by Remark 1, H is a group.

Let us look at some examples of subgroups now. While going through
these you may realise the fact that a subgroup of an abelian group is
abelian.

Example 1

Consider the group (C*,.). Show that
S={z € C||z| = 1} is a subgroup of C*
Solution

S+#¢,since 1€ S. Also, forany z;,z;, € S,

1

|z, |
Hence, z; z,* € S. Therefore, by Theorem 1, S < C*.

2.2, | = |21 |22 = |24 =1.
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Example 2

Consider G = Myy3 (C), the set of all 2 x 3 matrices over C. Check that
(G,+) is an abelian group. Show that

[0

Solution

a, b, c e C} is a subgroup of G.

We define addition on G by
abc+pqr_a+p b + q C + r
def|l|stul|d+s e+t f+ul

You can see that + is binary operation on G. O = is the additive identity
and

-a —-b —c]. . abc
is the inverse of e G.
-d —-e —-f d e f

Since,a+b=baVMa, be C,+isalso abelian.
Therefore, (G,+) is an abelian group.

Now, since O € S, S# ¢. Also, for

[0 a b][0 d e

: € S, we see that
00 cllooOf
[0 a b__ 0de| [0a-db-e s 'ﬂi(f;\;()j@
00c|] |[00f] |0 0 c-f ' amber
~ S<G.
Example 3

Consider the set of all invertible 3 x 3 matrices over R, GL3 (R). That is,
A € GL;3(R) iff det (A) # 0. Show that SL; (R) = (A E GL3(R)| det(A)
1} is a subgroup of (GL3(R),.).
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Solution
The 3x3 identity matrix is in SL3(R). Therefore, SL3(R) # ¢.

Now, for A, B € SL3(R).

det (AB™) = det (A) det(B") = det (A) ———= 1, since det (A) =1and
det(B)

det (B) =I.

- AB™ € SL4(R)

.. SL3(R) < GL3(R).

Try the following exercise now.

SELF ASSESSMENT EXERCISE 2

Show that for any group G, {e} arid G are subgroups of G.
({e} is called the trivial subgroup.)

The next example is very important, and you may use it quite often.
Example 4

Any non-trivial subgroup of (Z, +) is of the form mZ; where m € N and
mZ={mt|te Z}={0, £m, £2m, £3m, }.

Solution

We will first show that mZ is a subgroup of Z. Then we will show that if
H is a subgroup of Z, H # {0}, then H = mZ, for some m € N.

Now, 0 € mZ. Therefore, mZ # ¢. Also, for mr, ms € mZ, mr-ms =
m(r-s) € mZ.

Therefore, mZ is a subgroup of Z.
Note that m is the least positive integer in mZ.
Now, let H # {0} be a subgroup of Z and S={i|i>0, i € H}.

Since H # {0}, there is a non-zero integer k in H. If k > 0, then k € S. If
k <0, then (-k) € S, since (-k) € H and (-k) > 0.

Hence, S # ¢.
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Clearly, S < N. Thus, by the well-ordering principle (Sec. 16.1) S has a
least element, say s. That is, s is the least positive integer that belongs to
H.

Now s Z — H. Why? Well, consider any element ste sZ.

Ift=0,thenst=0 e H.
Ift>0, thenst=s+s +..... + s (t times) € H.
Ift<O0, thenst=(-s) +(-s) + ...... + (-s) (-t times) € H.

Therefore, st e HMt e Z. That is, sZ < H.

Now, let m € H. By the division algorithm (see Sec. 1.6.2), m=ns +r
for somen,r € Z, 0<r<s. Thus, r = m -ns. But H is a subgroup of Z
and m, ns € H. Thus, r € H. By minimality of sin S, we must have r =
0,1.e., m=ns. Thus, H csZ.

So we have proved that H = sZ.

Before going to the next example, let us see what the nth roots of unity
are, that is; for which complex numbers z is z" = 1.

From Unit 2, you know that the polar form of a non-zero complex
number z € C is z = r(cosO + i sinB), where r = |z| and 6 ia an argument
of z. Moreover, if 0, is an argument of z; and 6, that of z,, then 6, + 6,
is an argument of z; z,. Using this we will try to find the nth roots of 1,
where n € N.

Thus, by De Moivre’s theorem,

1=2"=1"(cos n6+ i sin no), that is,
cos (0) +isin(0) =r" (cosnB) +isiNnNO). ......coevviniiiniiiiiniinnnnn, (1)

Equating the modulus of both the sides of (1), we getrn =1, i.e.,, r=1.
On comparing the arguments of both sides of (1), we see that 0 + 2nk (k
e Z) and n6 are arguments of the same complex number. Thus, nf can
take any one of the values 2k, k € Z. Does this mean that as k ranges

over Z and © ranges over 2Lk+isinzikz cos 27m +1isin 27m if and

n n n n

. 2nk  27mm
only if ——
n n

nt, i.e., K =m (mod n). Thus, corresponding to everyT in Z, we get an

=2mnt for some t € Z. This will happen if kK = m +

. 2nk . . 2mk
nth root of unity, z = cos 2 risin<t , 0 <r<n; and these are all the
n n

nth roots of unity.
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For example, if n = 6, we get the 6" roots of 1 as 20, Z1, Zo, Z3, Z4, and zs,
where z;, 26J +|sm—J,Jl 2, 3, 4, 5, 6. InFig.1you can see that

all these lie on the unlt circle (i.1., the circle of radius one with centre (0,
0)). They form the vertices of a regular hexagon.

Fig. 1: 6™ Roots of Unity

21 . . 2%
Now, let ® = cos— +isin—. Then all the nth roots of 1 are 1, , 032,
n n

....... , o™ since o), = cos 2™ +isin 2 for 0 <j<n-1 (using De
n n

Moivre’s theorem).

Let U, ={1, 0, ®°, ....... , "'} The following exercise shows you an
interesting property of the elements of U .

SELF ASSESSMENT EXERCISE 3

2 . . 2

Ifn>1and o= Cos—n+|S|n—Tc, then show that 1 + ® + ©*+ ®° +....+
n n

o™ =0.

Now we are in a position to obtain a finite subgroup of C*.

Example 5

Show that U < (C*,.).
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Solution
Clearly, U, # ¢. Now, leto', o ¢ U, .

Then, by the division algorithm, we can write i +j =g, +rforq, r € Z,
0<r<n-1 Buttheno' o'=0'"=0"""=(0") 0" =n" € U,, since

o"=1,ie 0" Thus, U, is closed under multiplication.

1 1

Finally, if o'c U,,then0<i<n-land o, 0" '=0"=1,ie, 0" "is
the inverse of ®' for all 1 <i<n. Hence, U, is a subgroup of C*.

Note that U is a finites group of order n and is a subgroup of an

infinite group, C*. So, for every natural number n we have a finite
subgroup of order n of C*.

Before ending this section we will introduces you a subgroup that you
will use off and on.

Definition

The centre of a group G, denoted by Z(G) =G, denoted by Z(G), is the
set Z(G)={g e G| Xg=gxM¥x e G.}.

Thus, Z(G) is the set of some elements of G that commute with every
element of G.

For example, if G is abelian, then Z(G) = G.
We will now show that Z(G) < G.
Theorem 2
The centre of any group G is a subgroup of G.
Proof
Since e € Z(G), Z(G) # ¢. Now,
a e Z(G) = ax ¥ xeG.
= x=a’xaMx e G, pre-multiplying by a™.
= x=a’=a' xM¥x e G, post-multiplying by a™.

—=a' e Z(G).

Also, for any a, b € Z(G) and for any x € G.
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(ab) x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab).
- ab e Z(G).

Thus, Z(G) is a subgroup of G.

The following exercise will give you some practice in obtaining the
centre of a group.

SELF ASSESSMENT EXERCISE 4

Show that Z(S3)) = (1).

(Hint: write the operation table for S3)

Let us now discuss some properties of subgroups.
3.2 Properties of Subgroups

Let us start with showing that the relation ‘is a subgroup of” is transitive.
The proof is very simple.

Theorem 3

Let G be a group, H be a subgroup of G and K be a subgroup of H.
Then k is a subgroup of G.

Proof

Since K<H,K#¢andab’e KMa, b e K. Therefore, K< G.

Let us look at subgroups of Z, in the context of Theorem 3.

Example 6

In Example 4 we have seen that any subgroup of Z is of the form mZ for
some m € N. Let mZ and kZ be two subgrougs of Z. Show that mZ is
a subgroup of kZ iff k | m.

Solution

We need to show that mZ < kZ< k|m. NowmZ c kZ< m e mZ
c kZ=m e kZ=m=krforsomer e Zk|m.

Conversely, suppose k | m.
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Then, m = kr for some r € Z. Now consider any n € mZ such that n =
mt.

Thenn=mt = (kr) t = k (rt) € kZ.

Hence, mZ c kZ

Thus, mZ < kZ iff k| m.

Now, you may like to try the next exercise.
SELF ASSESSMENT EXERCISE 5
Which subgroups of Z is 9Z a subgroup of?

We will now discuss the behaviour of subgroups under the operations of
intersection and union.

Theorem 4

If H and K are two subgroups of a group G, then HNK is also a
subgroup of G.

Proof
Since e € Hand e € K, where e is the identity of G, e € HNK.
Thus, HNK # ¢.

Now, let a, b € HNK. By Theorem 1, it is enough to show that ab?e
HNK. Now, since a, b € H, ab™e K. Similarly, since a, b € K, ab™e
K. Thus, ab® € HNK. Hence, HNK is a subgroup of G.

The whole argument of Theorem 4 remains valid if we take a family of
subgroups instead of just two subgroups. Hence, we have the following
result.

Theorem 4" if {H;}i<1 is a family of subgroups of a group G, then )

iel

H; is also a subgroup of G.

Now, do you think the union of two (or more) subgroups is again a
subgroup? Consider the two subgroups 2Z and 3Z of Z. Let S = 2Z
U3Z. Now, 3e€ 3Z =S,2 € 2Z S, but 1 =3 -2 is neither in 2Z nor

in 3Z. Hence, S is not a subgroup of (Z,+). Thus, if A and B are
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subgroups of G, AUB need not be a subgroup of G. But, if AcBisa

subgroup of G. The next exercise says that this is the only situation in
which AUB is a subgroup of G.

SELF ASSESSMENT EXERCISE 6

Let A and B be two subgroups of a group G. Prove that AUB is a
subgroup of G iff A cBorB cA.

(Hint: Suppose AcB and Bc A. Takea € A\ Band e B\ A. Then
show that abz AUB. Hence, AUB <G. Note that proving this

amounts to provingthat AUB<G=A c BorB c A

Let us now see what we mean by the product of two subsets of a group
G.

Definition
Let G be a group and A, B be non-empty subsets of G.
The product of Aand Bistheset AB={ab|a € A, b € B}.
For example, (22) (3Z) = {(2m) (3m) |m,n € Z}

={6mn|m,n e Z}

=6Z.
In this example we find that the product of two subgroups is a subgroup.
But is that always so? Consider the group
S1={1,(12),(13),(23),(123),(132)}, and its subgroups H = {1, (1
2)}and K={1, (1 3)}.

. _ 123 _
Remember, (1 2) is the permutation (2 . 3) and (1 2 3)is the
. (1 2 3
permutation )
233
Now HK ={l 1,12 (13), (1 2)°L (12)°(13)}
={1,(13),(12),(132)}

HK is not a subgroup of G, since it is not even closed under
composition. (Note that (13) - (12)=(1.23) ¢ HK))
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So, when will the product of two subgroups be a subgroup? The
following result answers this question.

Theorem 5

Let H and K be subgroups of a group G. Then HK is a subgroups of G
if HK = KH.

Proof

Firstly, assume that HK < G. We will show that HK = KH. Let hk €
HK. Then (hk)* =k* h™* € HK, since HK < G.

Therefore, k* h™ = k; h; for some h; e H, k; e K. But then hk = (k* h'y
"= k'h;*e KH. Thus, HKc KH.

Now, we will show that KH < HK. Let kh € KH. Then (kh)* = h* k*
e HK. But HK < G. Therefore, (kh)H)* € HK, that is, kh € HK. Thus,
KH < HK.

Hence, we have shown that HK = KH.
Conversely, assume that HK = KH. We have to prove that HK < G.
Since e = €* € HK, HK # ¢.

Now, let a, be HK. Then a = hk and b = h; k; for some h, h; € Hand k,
k| e K.

Then ab™ = (hK) (k;* h;Y)=h [ (kk, ;*) h{'].

Now (kk;*) h;* € KH = HK. Therefore, 3 h,k, € HK such that (kk ")
hl_l = h2k2.

+Then, ab™ = h(hyk,) = (hh,)k, € HK.

Thus, by Theorem 1, HK < G.

The following result is a nice corollary to Theorem 5.

Corollary: If H and K are subgroups or abelian group G, then HK.

Try the following exercise now.

SELF ASSESSMENT EXERCISE 7

Is AB a subgroup of Sy, where A={l, (14)}and B ={l, (1 2)}?
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The next topic that we will take up is generating sets.

3.3  Cyclic Groups

In this section we will briefly discuss generating sets, and then talk
about cyclic groups in detail.

Let G be any group and S a subset of G. Consider the family F of all
subgroups of G that contain S, that is,

F={H|H<GandS c H}.

We claim that F< ¢. Why Doesn’t G € F? Now, by Theorem 4', (1H is

HeF

a subgroup of G.

Note that

ii. (H is the smallest subgroup of G containing S. (Because if K is
HeF

a subgroup of G containing S, then K € F.
Therefore,(1H < K.)

HeF
These observations lead us to the following definition.
Definition

If S is a subset of a group G, then the smallest subgroup of G containing
S is called the subgroup generated by the set S, and is ‘written as <S>.

Thus,<S>=N{H|H<G,S & H}.

If S = ¢, then <S> = {e}.

If <S> = G, then we say that G is generated by the set S, and that Sis a
set of generators of G.

If the set S is finite, we say that G is finitely generated.

Before giving examples, we will give an alternative way of describing
<S>. This definition is much easier to work with than the previous one.

Theorem 6

If S is a non-empty subset of a group G, then
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<S> = {aflagz ..... a,<|a,eSforl i kn,,......n, Z.}

Proof

Let A= {aflagz ..... a,<|a,eSforl i kn,,.....,n, Z.}

Since a;...... , 8 € S < <S>and <S> is a subgroup of G, a™ e<S>.

Now, let us see why <S> < A. We will show that A is a subgroup
containing S. Then, by the definition of <S>, it will follow that <S> <
A.

Since any a € S can be writtenasa =a', S = A.
Since S/ Al .

Now let x,y € A. Then x = (aj*ajy’......a;*) (b"bj>.....oM )"l
= (arat.....a) (b, ™....bM") e A.

Thus, by Theorem 1, A is a subgroup of G. Thus, A is a subgroup of G
containing S. And hence, <S> < A.

This shows that <S> = A.
Note that, if (G, +) is a group generated by S, then any element of G is
of the formn;a; +nya + ........ nr ar, Where ag, a» ...., a- € Sand ng, Ny ny

e/

For example, Z is generated by the set of odd integers S = {1, £3,
15,....}. Letus see why. Letm e Z. Thenm =2 wherer >0 ands €
S. Thus, m e <5>. And hence, <S> =Z.

Try the following exercises now.

SELF ASSESSMENT EXERCISE 8

Show that S = {I} generates Z.

SELF ASSESSMENT EXERCISE 9

Show that a subset S of N generates the group Z of all integers iff there
exist

Si.... , SginSand n,, ..... N, in Z such that nys; + ...... + NSk =1.

(Hint: Apply Theorem 6.)
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SELF ASSESSMENT EXERCISE 10

Show that if S generatesagroup GandS < T < G, then<T>=G.
Self-Assessment Exercise 10 shows that a group can have many
generating sets. Self Assessment Exercise 8 gives an example of a group
that is generated by only one element. We give such a group a special
name.

Definition

A group G is called a cyclic group if G = < {a} > for some a € G. We
usually write < {a} > as < a>.

Note that<a>={a"|n e Z}.

A subgroup H of a group G is called a cyclic subgroup if it is a cyclic
group. Thus, < (12) > is a cyclic subgroup of Sz and 2Z = <2> is a cyclic
subgroup of Z.

We would like to make the following remarks here.

Remark 3

. If K< Ganda e K, then <a> K. This is because <a> is the
smallest subgroup of G containing

ii. All the elements of <a> = {a" | ne Z} may or may not be a
distinct. For example, takea=(12) € Ss.

Then < (1 2)> ={l, (1 2)}, since (1 2)*=1, (1 2)3 = (1 2), and so on.
SELF ASSESSMENT EXERCISE 11

Show that if G = {e}, then G = <e >.

SELF ASSESSMENT EXERCISE 12

Show that <a> = <a-1> forany a € G.

We will now prove a nice property of cyclic groups.

Theorem 7

Every cyclic group is abelian
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Proof

Let G=<a>={a"|n € Z}. Then, forany x, y in G there existm,n € Z
suchthat x =a™, y =a". But,thenxy =a™a*=a""=a"a" =yx. Thus,
xy = yx for all x, y. in G.

That is, G is abelian.

Note that Theorem 7 says that every cyclic group is abelian. But this
does not mean that every abelian group of is cyclic. Consider the
following example.

Example 7

Consider the set K, = {e, a, b, ab} and the binary operation of K, given
by the table.

. e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

A1B49—1925)

The table shows that (K, , .) is a group.

This group is called the Klein 4-group, after the pioneering German
group theorist Felix Klein.

Show that K4 is abelian but not cyclic.
Solution

From the table we can see that K, is abelian. If it were cyclic, it would
have to be generated by e, a,. b or ab. Now, < e > = {e}. Also, a' =a,a* =
e,a’> = a, and so on.

Therefore, <a > = {e, a}. Similarly, <b >={e, b} and<ab >={e, ab}.

Therefore, K4 can't be generated bye, a, b or ab.
Thus, K4 is not cyclic.

Use Theorem 7 to solve the following exercise.
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SELF ASSESSMENT EXERCISE 13

Show that S3 is not cyclic.

Now let us look at another nice property of cyclic groups.

Theorem 8

Any subgroup of a cyclic group is cyclic.

Proof

Let G = <x > be a cyclic group and H be a subgroup.

If H = {e}, then H = <e >, and hence, H is cyclic.

Suppose H = {e}. Then 3 n € Z such that x"e H, n = 0. Since H is a
subgroup, (x™™* = x™ e H. Therefore, there exists a positive integer
m(i.e., n or-n) such that x™ € H. Thus, thesetS={t e N|x'| € H}is
not empty. By the well-ordering principle (see Sec.) 1.6.1.) S has a least
element, say k. We will show that H = < x* >,

Now, <x* > — H, since x“ e H.

Conversely, let x" be an arbitrary element in H. By the division
algorithmn=mk + rwhere m,r € Z, 0 <r < k-l. But then X' = x" = x"~
"= X" x)™ e H, since x", x* . H. But k is the least positive integer
such that x* € H. Therefore, x" can be in H only if r = 0. And then, n =
mk and X" = (x)™ e < k*>. Thus, H < < x* >. Hence, H = < x*?, that
is, H is cyclic.

Using Theorem 8 we can immediately prove what we did in Example 4.
Now, Theorem 8 says that every subgroup of a cyclic group is cyclic.
But the converse is not true. That is, we can have groups whose proper
subgroups are all cyclic, without the group being cyclic. We give such
an example now.

Consider the group Sz, of all permutations on 3 symbols. Its proper
subgroups are subgroups are all cyclic, without the group being cyclic.

We give an example now.

Consider the group Ss, of all permutations on 3 symbols. Its proper
subgroups are

A=<1>
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B=<12>
C=<(@13)>
D=<(23)>
E =<123>

As you can see, all these are cyclic. But, by Self Assessment Exercise
you know that S; itself is not cyclic.

Now we state a corollary to Theorem 8, in which we write down the
important point made in the proof of Theorem 8.

Corollary: Let H #{e} be a subgroup of <a >. Then H = < a" >, where
n is the least positive integer such that a” € H.

Try the following exercises now.
SELF ASSESSMENT EXERCISE 14

Show that any non-abelian group must have a proper subgroup other
than {e}.

SELF ASSESSMENT EXERCISE 15

Obtain all the subgroups of Z,, which you know is <1>.
Let us now see what we have done in this unit.

4.0 CONCLUSION

Subgroups play important roles in group theory. In MTH 312 you will
be introduced to another important subgroups called the normal
subgroups which has a lot of application in some other sciences such as
Molecular Chemistry, You are to read carefully and master all the
materials in this unit.

50 SUMMARY
I
n this unit we have covered the following points.

o The definition and examples of subgroups.

o The intersection of subgroups is a subgroup.

o The union of two subgroups H and K is a subgroup if and only if
HcKorK c H.

o The product of two subgroups H and K is a subgroup if and only
if HK = KH.
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o The definition of a generating set.

. A cyclic group is abelian, but the converse need not be true.

. Any subgroup of a cyclic group is cyclic, but the converse need
not be true.

ANSWER TO SELF ASSESSMENT EXERCISE 1

1. Yes, because H is a group in its own right.

ANSWER TO SELF ASSESSMENT EXERCISE 2

2. {e}#.Alsoforanyee’=e e {e} ....., by Theorem 1, {e} < G.
G<¢. Alsoforanyx € G,x™" € G. i, fora, b € G.
A beG .. ab"eG. .G<G.

ANSWER TO SELF ASSESSMENT EXERCISE 3

Since ©" =1,(1-»") =0i.e,,
(1-o0)(l+o+o® +..+0" " =0.
Since @ #11+®° +.....+0" " =0.

ANSWER TO SELF ASSESSMENT EXERCISE 4

From Self Assessment Exercise 14 of Unit 2 recall the elements of S;.
On writing the operation table for S; you will find that only I commute
with every permutation in S;.

ANSWER TO SELF ASSESSMENT EXERCISE 5

The divisors of 9are 1, 3and 9
Thus, 9Z is a subgroup of Z, 3Z and itself only.

ANSWER TO SELF ASSESSMENT EXERCISE 6

We know that if A = BorB < A, then AUB is A or B, and hence, is a
subgroup of G.

Conversely, we will assume that Ac Band B < A, and conclude that
AUB £ G.
Since AcB, 3 a e Asuchthata ¢ B.

Since Bc A, 3 b e Bsuchthatb ¢ A.

Now, if ab € A, then ab =c, for some ¢c € A.
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Thenb =a™ ¢ e A, acontradiction. ..ab ¢ A. Similarly, ab ¢ B. ...ab
¢ AUB.

Buta e AUBandb € AUB. So, AUB £ G.

ANSWER TO SELF ASSESSMENT EXERCISE 7
AB={l,(14),(12),(124)

But, (12) ° (14) = (142) ¢ AB. .. AB£ S,
ANSWER TO SELF ASSESSMENT EXERCISE 8
Foranyne Z n=nle<{l}> .. Z=<{1}>
ANSWER TO SELF ASSESSMENT EXERCISE 9

Firstly, suppose Z=<S>.Thenl € <S>. .. 3s;,....,.5 € Sand
o TR Nk € Z such that ny$; +..... + NSk = 1.

Conversely, suppose3, sy, ....... Sk € Sand ny,...., Ny € Z such that
NyS; + NyS, +..... + NSk = 1.

Then, foranyn € Z, n=n.1=nny, Sy, + ..... + NS, € <S>,
S Z=<S>,

ANSWER TO SELF ASSESSMENT EXERCISE 10

We know that G = < S >. Therefore, forany g € G,

ST Sk € Sand ny,....., Nxe Zsuchthatg=s*......... Spkm
SinceS cT,s1eTY=1, ...,k

.. by Theorem 6, we see that G =< T >.

ANSWER TO SELF ASSESSMENT EXERCISE 11

Since G = {e}, Ja#einG. Sinccazeforanyr e Z. a=<e>.
L G#<e>,

ANSWER TO SELF ASSESSMENT EXERCISE 12

We will show that<a > c<a'>and<a™> < <a>.
Now, any elementof <a>isa"=(a') ", forn e Z
~a'e<al> n<a>c<al>

Similarly, <a’>=<a>.

<a>=<a’>.
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ANSWER TO SELF ASSESSMENT EXERCISE 13

Since S; is not abelian (e.g., (13) > (12) # (12)-(13)), by.
Theorem 7, S;can't be cyclic.

6.0 TUTOR-MARKED ASSIGNMENT

1. Let G be a non-abelian group. Then G # {e}. Therefore, 3a € G,
aze Then<a>G. G < <a>,since G is non-abelian. ... <a>
<G.

2. Since Z, is cyclic, all its Subgroups are cyclic.

Thus, its Subgroups are Z,, < 2 >, < 3 >and

7.0 REFERENCES/FURTHER READING
Blacksell: Topics in Algebra.

Birkhaffand Melhew (1972). Survey of Modern Algebra.
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UNIT 4 LAGRANGE'S THEOREM
CONTENTS
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2.0  Objectives
3.0 Main Content
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3.2 Lagrange’s Theorem
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In the previous unit we have discussed different subgroups. In this unit
we will see how a subgroup can partition a group into equivalence
classes. To do this we need to define the concept of cosets.

In Sec. 4.3 we use cosets to prove a very useful result about the number
of elements in a subgroup. The beginnings of this result were made in a
research paper on the solvability of algebraic equations by the famous
mathematician Lagrange. Today this elementary theorem is known as
Lagrange’s theorem, though Lagrange proved it for subgroups of S,
only.

While studying MTH 312 you will be using Lagrange’s theorem again
and again. So, make sure that you read this unit carefully.

2.0 OBJECTIVES

At the end of this unit, you should be able to::

) form left or right cosets of a subgroup
o partition a group into disjoint cosets of a group
o prove and use Lagrange’s theorem.

3.0 MAIN CONTENT
3.1 Cosets

In Sec. 3.3 we defined the product of two subsets of a group. We will
now look at the case when one of the subsets consists of a single
element only. In fact, we will look at the situation H{x) = {hx | h € H},
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where H is a subgroup of a group G and x € G. We will denote H{x} by
HXx.

Definition

Let H be a subgroup of a group G, and let x € G. We call the set,

{hx | h E H} a right coset of H in G. The element x is a representative
of Hx.

We can similarly define the left coset

xH {xh|hEH}

Note that, if the group operation is +, then the right and left cosets of H
in (G,+) represented} x € G are

H+x={h+x | he H}andx+ H={x+h | he H}, respectively.
Let us look at some examples.
Example 1

Show that H is a right as well as a left coset of a subgroup H in a group
G.

Solution

Consider the right coset of H in G represented by e, the identity of G.
Then

He={he |he H} ={h|h € H} =H.

Similarly, eH = H.

Thus, H is a right as well as left coset of H in G.
Example 2

What are the right cosets of 4Z in Z?"'

Solution
NowH=4Z={....,-8,-4,0,4,8,12, ...}
The, right cosets of H are

H + 0 = H, using Example 1.
H+1={...... ,-11,-7,-3,1,5)9, 13,..... }
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H+2={....., -10, -6, -2, 2, 6, 10, 14, .....}
H+3={....-9,-5,-1,3,7,11,15,.... }
H+4={.....,-8,-4,0,4,8,12,.....} =H

Similarly, you can see that H+5 = H+1, H+6 = H+2, and so on.

You can also check that H-1 = H+3, H-2= H+2, H-3 = H+1, and so on
Thus, the distinct right co sets are H, H+1, H+2 and H+3.

In general, the distinct right cosets of H (= nZ) in Z are H, H+I,

H+ (n-1). Similarly, the distinct left cosets of H (=nZ) in Z are H, 1 +H,
2+H ...... , (n-1) + H.

Before giving more examples of cosets, let us discuss some properties of
cosets.

Theorem 1

Let H be a subgroup of a group G and let x, y € G.

Then

a. X € HX

b. Hx=H< x e H.

C. Hx=H < xy™* e H.

Proof

a. Since x =ex and e € H, we find that x € Hx.

b. Firstly, let us assume that Hx = H. Then, since x € H x, X € H.

Conversely, let us assume that x € H. We will show that Hx < H
and H < Hx. Now any element of Hx is of the form hx, where h
e H. Thisis in H, since h € H and x € H. Thus, HXx < H.
Again, let he H. Then h = (hx™) x e Hx, since hx* e H.

.. H < HXx.
. H=HX.

C. Hx = Hy =< Hxy'=Hyy' =He=H < xy™ € H, by (b).

Conversely, Xy™* € H < Hxy™ = H < Hxyy = Hy < Hx = Hy.
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Thus, we have proved (c).

The properties listed in Theorem 1, are not only true for right cosets.
We make the following observations.

Note: Along the lines of the proof of Theorem 1, we can prove that if H
is a subgroup of Gand x,y € G,

a. X € XH.
b. XH=H< Xx e H.
c. xH=yHeXyeH.

Let us look at a few more examples of cosets.
Example 3

Let G=S;={l,(12),(13),(23),(123), (13 2) and H be the cyclic
subgroup of G generated by (1 2 3). Obtain the left cosets of H in G.

Solution
Two cosets are
H={l(123),(132)}and

(12H={(12),(12)°(123),(12)(132)}
={(12),(23), (13))

For the other cosets you can apply Theorem 1 to see that

(12)H=(23)H=(13)Hand
(123)H = (132)H.

Thus, the distinct left cosets of Hare H and (1 2)H.
Try the following exercise now.
SELF ASSESSMENT EXERCISE 1

Obtain the left and right cosets of H = < (1 2) > in S3. Show that Hx #
xH for some x € Ss.

Let us now look at the cosets of a very important group, the quaternion
group.

96



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

Example 4
Consider the following set of 8 2x2 matrices over C.

Qs ={=l, £A, £B, £C}’ where

o] g e e

You can check that the following relations hold between the elements of

Qsg:

I°=1,A>’=B°=C" =,
AB=C=-BA BC=A=-CB,CA=B=-AC.

Therefore, Qg is non-abelian group under matrix multiplication.

Show that the subgroup H = < A > has only two distinct right cosets in

Qs.
Solution

H=<A>={l, A A% A} ={l, A -I, -A},

Since A* =1, A° = A, and so on.

Therefore, HB = {B, C, -B, -C}, using the relations given above.
Using Theorem | (b), we see that

H=HI = HA = H(-I) = H(-A).

Using Theorem I(c), we see that

HB =HC= H(-B) = H(-C).

Therefore, H has only two distinct right co sets in Qg, H and HB.

The following exercise will help you to understand Qs.
SELF ASSESSMENT EXERCISE 2

Show that K = {l, -1} is a subgroup of Qg, Obtain all its right cosets in
Qs.

We will show that each group can be written as the union of disjoint

cosets of any of its subgroups. For this we define a relation on the
elements of G.
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Definition

Let H be a subgroup of a group G. We define a relation *~’ on G by x~y
iff xy'1 € H, where x, y € G. Thus, from Theorem 1 we see that X ~ y
iff Hx = Hy.

We will prove that this relation is an equivalence relation (see unit 1).
Theorem 2

Let H be a subgroup of a group G. Then the relation ~defined by ‘x ~y’
xy™ e H is an equivalence relation. The equivalence classes are the right
cosets of H in G.

Proof

We need to prove that ~is reflexive, symmetric and transitive.

Firstly, forany x € G, xx*=e € H, .. x ~ x, that s, ~ is reflexive.
Secondly, if x ~y forany x, y € G, then xy™ € H.

5. Xy =xy" e H, Thus, y ~ x. Thatis, ~ is symmetric.

Finally, fi X, y, z, € G such that x ~y and y ~ z, then xy™ € H and yz™*
e H.

Sy (yzh) =x(yly)zt=xzt e H, nx~z.
That is ~ is transitive.
Thus, ~ is an equivalence relation.
The equivalence class determined by x € Gis {x| ={y e G|y-x} =
{y € G|xy* e H}.

Now, we will show that [x] = Hx. So, let y € [x]. Then Hy = HXx, by
Theorem 1. Andsincey € Hy, y € Hx.

Therefore, [X] < Hx.
Now, consider any element hx of Hx. Then x(hx)* = xx™* h* =h™ e H.

Therefore, hx ~ x. That is, hx € [x]. This is true for any hx € Hx.
Therefore, H < G [X].

Thus, we have shown that [x] = Hx.
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Using Theorem 2 and Theorem 1 (d) of Unit I, we can make the
following remark.

Remark

If Hx and Hy are two right cosets of a subgroup H in G, then Hx = Hy
or HXNHy = ¢.

Note that what Theorem 2 and the remark above say is that any
subgroup H of a group G partitions G into disjoint right cosets.

On exactly the same lines as above we can state that

I. any two left cosets of H in G are identical or disjoint, and
ii. G is the disjoint union of the distinct left cosets of H in G.

So, for example, S3 =< (1 23) > U (1*2) < (1 2 3) > (using Example 3).
You may like to do the following exercises now.

SELF ASSESSMENT EXERCISE 3

Let H be a subgroup of a group G. Show that there is a one-to-one
correspondence between the elements of H and those of any right or left
coset of H.

(Hint: Show that the mapping f: H — Hx: f(h) = hx is a bijection.)
SELF ASSESSMENT EXERCISE 4

Write Z as a union of disjoint cosets of 5Z.

Using Self-Assessment Exercise 3 we can say that if H is a finite
subgroup of a group G, then the number of elements in every coset of

H is the same as the number of elements in H.

We will use this fact to prove an elementary theorem about the number
of cosets of a subgroup of a finite group 10, the next section.

3.2 LAGRANGE'S THEOREM
In this section we will first define the order of a finite group and then

show that the order of any subgroup divides the order of the group.
So let us start with a definition.
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Definition

The order of a finite group G is the number of elements in G. It is
denoted by o(G).

For example, 0(S3) = 6 and 0(A3z) = 3. Remember, A3 = {I, (1 23), (1
32)H

You can also see that o(Z,> = n. And, from Sec. 2.5.2 you know that
o(Sy>=n!.

Now, let G be a finite group and H be a subgroup of G. We define a
function f between the set of right cosets of H in G and the set of left
cosets of H in G by

f:{Hx | x e G} > {y H |ye G}: f (Hx) = x™H.
Now try Self-Assessment Exercise 5.

SELF ASSESSMENT EXERCISE 5

Check that f is a bijection.

Self-Assessment Exercise 5 allows us to say that there is a one-to-one
correspondence between the right cosets and the left cosets of H in G.
Thus, the number of distinct right cosets of H in G always equals the
number of distinct left cosets of H in G.

Definition

Let H be a subgroup of a finite group G. We call the number of distinct
of H in G the index of H in G, and denote it by | G : H|.

Thus, from Example 3 we see that | S;: Ag| = 2.

Note that, if we take H = {e}, then | G: {e} | = 0(G), since {e}g = {0} ¥
g € Gand {e}g={c}g' ifg=g’.

Now let us look at the order of subgroups. In Sec. 3.4 you saw that the
orders of the subgroups of S; are 1, 2, 3 and 6. All these divide 0(S3) =
6. This fact is part of a fundamental theorem about finite groups. Its
beginnings appeared in a paper in 1770, written by the famous French
mathematician Lagrange. He proved the result for permutation groups
only. The general result was probably proved by the famous
mathematician Evariste Galois in 1839.
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Theorem 3 (Lagrange)

Let H be a subgroup of a finite group G. Then o(G) = o(H) | G: H |.
Thus, o(H) divides o(G), and | G: H | divides o(G).

Proof

You know that we can write G as a union of disjoint right cosets of H in
G. So, if Hxy, Hx,, are all the distinct right cosets of if in G, we have

G =Hx;U Hx; U...... UHX oo @

From Self Assessment Exercise 3, we know that | Hx; | = | Hx,' = —
Hx; | =o(H).

Thus the total number of elements in the union on the right hand
(I) iselement o(H) +o(l ) +..... + o(H) (r times) =r o(H).

Therefore, (1) says that o(G) =r o(H)
=o(H) |G: H |."

Fig I: Joseph Laouds Lagrange (1736

You will see the power of Lagrange's theorem when we get di -
obtaining all the subgroup of a finite group.

For example, suppose we are asked to find all the subgroups of a group
G of order 35. Then the only possible subgroups are those of order 1, 5,
7 and 35. So, for example, we don't need to waste time looking for
subgroups of order 2 or 4.

In fact, we can prove quite a few nice results by using Lagrange's
theorem. Let us prove some results about the order of an element. But
first, let us define this phrase.

Definition

Let G be a group and g € G. Then the order of g is the order of the
cyclic subgroup < g >, if < g > is finite. We denote this finite number by
0(g). If < g > is an infinite subgroup of G, we say that g is of infinite
order.

Now, let g € G have finite order. Then the set {e, g, ¢ ...} is finite,
since G is finite. Therefore, all the powers of g can't be distinct.

Therefore, g' = g° for some r > s. Then
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g”° =,eand r-s e N. Thus, the set {t € N | gt = e} is non-empty. So, by
the well-ordering principle it has a least element Let n be the least
positive integer such that g" = e.

Then

<g>={e.g,0°9" '}
Therefore, o(g) =0<g>=n.

That is, o(g) is the least positive integer n such that g" = e.

(Note that. if g € (G, +), then o(g) is the least positive integer n such
thatg" =e.)

Now suppose g e G is of infinite order. Then, for m = n, g" = g".
(Because, if g"" = e, which shows that < g > is a finite group.) We will
use this fact while proving

Theorem 5

Try the following exercise now.

SELF ASSESSMENT EXERCISE 6

What are the orders of

0 1
a) 12)eS;, b) | €8, c) Ll O} € Qq,

d  3ez, e) 1eR?
Now Jet us prove an important result about the order of an element.
Theorem 4

Let G be a group and g € G be of order n. Then gm = e for some m €N
iff n|m.

Proof

We will first show that g™ e = n | m. For this & consider the set
S={reZ |g=¢}.

Now, n € S. Also, ifa, b e S, then g = e = g°. Hence, g* *=¢? (¢”)* =

e. Therefore.
a-b € S. Thus, S< Z.
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So, from Example 4 of Unit 3, we see that S = nZ. Remember, n is the
least positive integer in S!

Now if g" = e for some m € N, then m e S = nZ. Therefore, n | m.

Now let us show that n | m = g™ =e. Since n | m, m = nt for some t
Z: Then g™ = g™ = (g")" = €' = e. Hence, the theorem is proved.

We will now use Theorem 4 to prove a result about the orders of
elements in a cyclic group.

Theorem 5

Let G =< g > be 11 cyclic group.

a. If g is of infinite order then g™ is also of infinite order for every m
e ”Z.
b. If o(g) = n, then o(g™) = " vym= 1, ...., n-L.((n, m) is the
(n,m)
g.c.d. of nand m.)
Proof
a. An element is of .infinite order iff all its powers are distinct. We

know that all the powers of g™ are distinct. We have to show that
all the powers of g™ are distinct. If possible, let (g™"' = (g™)".
Then g™ = g™. But then mt = mw, and hence t = w. This shows
that the powers of g™ are all distinct, and hence g™ is of infinite
order.

b. Since o(g) = n, G={e, g,....., g" '} < gm >, being a subgroup of
G, must be of finite order. Thus, g™ is of finite order. Let o(gm) =
t. We will show that t n_
(n,m)
Now, g™ = (g™)'y=e = n| tm, by Theorem 4.

Let d = (n, m). We can then write n = n,d, m = m;d, where (m,; n)) =1.

n
(n,m)

Then nlﬂz
d

Now,n|tm=n|tmd = nd|tmd =n | tm;.

But (n,m)) = 1. Therefore, nj| t. .cooooiiiii e, @
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AISO, (gm)n1 :gmldn1 :gm1dl :gm1” :(gn)m1 =e™ =g,

Thus, by definition of o(g™) and Theorem 4, we have
L S 2

(1) and (2) show that
n

Using this result we know that 0 (4), in Zy, is 12 . 3.
(12,4)
The next exercise will give you some practice in using Theorem 5.
SELF ASSESSMENT EXERCISE 7
Find the orders of= 2,4, and 5¢ Zy.
The next exercise is a consequence of Lagrange’s theorem.

SELF ASSESSMENT EXERCISE 8

Let G be a finite group and x € G. Then, show that o(x) divides o(G).
In particular, show that X = e.

We use the result of Self-Assessment Exercise 8 to prove a simple but
important result of finite group theory.

Theorem 6

Every group of prime order is cyclic.

Proof

Let G be a group of prime order p. Since p=1, 3a € G such thata = e.
Now, by Self-Assessment Exercise and Theorem 4, o(a) | p. Therefore,

o(@=1loro(a)=p. Sincea =#e, 0(a)>2.

Thus, o(a) = p, i.e.,, 0(<a>)=p. So, <a><Gsuchthato(<a>) =
0(G). Therefore, <a>=G. Thatis, G is cyclic.

Using Theorem 3 and 6, we can immediately say that all the proper
subgroups of a group of order 35 are subgroups.
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Now let us look at groups of composite order.
Theorem 7

If G is a finite group such that o(G) is neither 1 nor a prime, then G has
non-trivial proper subgroups.

Proof

If G is not cyclic, then any a € G, a # e, generates a proper non-trivial
subgroup <a >.

Now suppose G is acyclic, say G = < x >, where o(X) = mn (m, n # 1).
Then, (x™)"=x™ =e. Thus, by Theorem 4, o(x™) < n < o(G).

Now, you can see Theorem 7 to solve the following exercise.

SELF ASSESSMENT EXERCISE 9

Obtain two trivial proper subgroups of Zg.

We will now prove certain important number theoretic results which
follow from Lagrange’s theorem.  Before going further, recall the

definition of ‘relatively prime’ from Sec. 1.6.2.

We first define the Euler phi-function, named after the Swiss
mathematician Leonard Euler (1707 — 1783).

Definition
We define the Euler phi-function ¢ : N — N as follows:

¢() =1, and
d(u) = number of natural numbers < n and relatively prime to n, for
n>2.

For example, ¢(2) =1 and ¢(6) = 2 (since the only positive integers < 6
and relatively prime to 6 are 1 and 5).

We will now prove a lemma, which will be needed to prove the theorem
that follows it. This lemma also gives us examples of subgroups of Z,,
for every

n>2.
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Lemmal: LetG={reZ |(r,n)=1},wheren>2. Then (G,.)isa

group,
where FS=rsM T, 5 e Z,. Further, o(G) = ¢ (n).

Proof
We first check that G is closed under multiplication.

Now, ,Se G=(r,n)=1and (s,n)=1=(rs,n) = 1.
—rs e G. Therefore, is a binary operation on G.

1 € G, and its identity.

Now, for T € G, (r, n) = 1.

= ar +bn=1forsome a, b, € Z (by Theorem 8 of Unit 1)
=n|ar

= ar =1 (mod n)

=ar = 1.

=a=rT"

Further, a € G, because if a and n have a common factor other than 1,
then this factor will divide ar + bn = 1. But that is not possible.

Thus, every element in G has an inverse.
Therefore, (G,.) is a group.

In fact, it is the group of the elements of Z, that have multiplication
inverse. Since G consist of all those T € G such thatr <nand (r,n) =1,

0(G) = ¢(n).

Lemma 1 and Lagrange’s theorem immediately give us the following
result due to the mathematician Euler and Pierre Fermat.

Theorem 8 (Euler-Fermat)

Leta € N and n > 2 such that (a, n) = 1.
Then, a*™ = 1 (mod n).

Proof
Since a € Z,and (a, n) =1, @ € G (of Lemma 1). Since o(G) = ¢(n),

we use Self-Assessment Exercise and find that a*™ = 1.
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Thus, a*™= 1 (mod n).
Now you can use Theorem 8 to solve the following exercises.

SELF ASSESSMENT EXERCISE 10

What is the remainder left on dividing 3*" by 23? (Note that ¢(23) = 22,
since each of the numbers 1, 2, ..., 22 are relatively prime to 23.)

SELF ASSESSMENT EXERCISE 11

Let a € N and p be a prime. Show that = 1 (mod p). (This result is
called Fermat’s little theorem. To prove it you will need to use the
fact that ¢(p) =

p-1.)

You have seen how important Lagrange’s theorem is. Now, is it true that
if

m | o(G), then G has a subgroup of order m? IF G is cyclic, it is true.
(You can prove this on the lines of the proof of Theorem 7.) But, if G is
not cyclic, the converse of Lagrange’s theorem is not true.

In Unit 7 we will show you that the subgroup
Ad={1,(123),(124),(132),(134),(142),(143),(234),(2423),
(12),
(34),(13),(24),(14),(23)}
of S4 has no subgroup of order 6, though 6 | 12 = 0(Ay).

Now let us summaries what we have done in this unit.

4.0 CONCLUSION

We have examined in this unit subgroup and cosets of a group. You
should read this unit carefully because it will useful in MTH 312 where
we shall be considering a class of subgroup called normal subgroup.

5.0 SUMMARY

In this unit we have covered the following points.

. The definition and examples of right and left cosets of a
subgroup.

. Two left (right) cosets of a subgroup are disjoint or identical.

o Any subgroup partitions a group into disjoint left (or right) cosets
of the subgroup.
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o The definition of the order of a group and the order of an element
of a group
o The proof of Lagrange’s theorem, which states that if H is a

group of a finite group G, then o(G) =o(H) |G:H|. But, ifm|
0(G), then G need not have a subgroup of order m.
o The following consequences of Lagrange’s theorem:

Q) Every group of prime order is cyclic.
i) a’™ =1(modn), wherea,ne N, (a n)=1andnz> 2.

ANSWER TO SELF ASSESSMENT EXERCISE 1
H=A{l, (12)},
Its left cosets are H, (1 2)H, (1 3)H, (23 )H, (1 2 3)H, (1 3 2)H.

Now, (12)H=H,(123)H=(13)H, (13 2)H =(2 3)h.
Thus, the distinct left cosets of H in Sz are H, (1 3)H, (2 3)H.

Similarly, the distinct right cosets of H in S; are
H, H(1 3), H(2 3).

Now, (1 3)H = {(1 3), (12 3)}and H(L 3), (1 3 2)}
S (L3)H=H(13).

You can also see that (2 3)H = H(2 3).
ANSWER TO SELF ASSESSMENT EXERCISE 2

Since ab’e K M a, b e K, we can apply Theorem 1 of Unit 3 to say that
K < Qs.

Now, K = KI = K(-I), KA = K(-A) = {A, -A}’

KB - K(-B) = {B, -B}, KC = K(-C) = {C, -C}

ANSWER TO SELF ASSESSMENT EXERCISE 3

Let Hx be a coset of H in G. Consider the function f: H — Hx: f(h) =
hx.

Now, for h, h’" by cancellation.

Therefore, fis 1 - 1.

F is clearly surjective. Thus, fis a bijection.

And hence, there is a one-to-one correspondence between the elements
of H and those of Hx.
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Similarly, the map f: H — Hx: f(h) = xh is a bijection.
Thus, the elements of H and xH are in one-to-one correspondence.

ANSWER TO SELF ASSESSMENT EXERCISE 4

The distinct cosets of 5Z inZare5Z,5Z+ 1,52+ 2,5Z + 3, 5Z + 4.
.. Z2=5ZJ5Z2+15Z +2J5Z + 3U5Z + 4.

ANSWER TO SELF ASSESSMENT EXERCISE 5

f is well defied because Hx = Hy = xy™* ¢ H= (xy)* e H
= yH'xtexHy™H

= f(Hx) = f(Hy)

fis 1 — 1 because f(Hx) = f(Hy) = x*H =y*H

= yx'e H=xy" € Hx = Hy.

F is surjective because any left coset of H in G is yH = f(Hy™).

Therefore, f is a bijection.
ANSWER TO SELF ASSESSMENT EXERCISE 6

i (12)#1,(12°=(12)°(12)=1..0(1 2)=2.
i.  1'=L . ()=1

ii. 2

iv. 32022-6=-233=9=1,43=12=0,-0(3)=4
V. Since < 1 > R is infinite, 1 is of infinite order.
ANSWER TO SELF ASSESSMENT EXERCISE 7

Z13 < 1>. Thus, using Theorem 5, we see that

o()=o(r,1)= i forany T e Zig
8,r)
5. 0(2)=9,0(4)=9,0(5) = 18.

ANSWER TO SELF ASSESSMENT EXERCISE 8

Since o(x) =o(< x >) and o(< x >) | 0o(G), o(x) | o(G).
Thus, using Theorem 4, x°© =e.

ANSWER TO SELF ASSESSMENT EXERCISE 9

0(Zs) =8 =2 x4
2 e Zgsuch that o(2)=4. Then< 2><Z,.
Similarly, 4 € Z,such that 0(4)=2. ..< 4 >< Z,.
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ANSWER TO SELF ASSESSMENT EXERCISE 10

We know that in Z,3, (3)** = 1,

thatis, 3% =1...3% =1

5 37=3%3M=32-27

Thus, 3* = 27 (mod 23).

Therefore, on dividing 3*' by 23, the remainder we get is 27.

ANSWER TO SELF ASSESSMENT EXERCISE 11

We get the result immediately by using Theorem 8 and the fact that ¢ (p)
=p-1

6.0 TUTOR-MARKED ASSIGNMENT
1. State and prove the Lagrange Theorem.
2. Show that every subgroup of a commutative group is normal. Is

the converse true? Justify your answer.

7.0 REFERENCES/FURTHER READING

Blacksell: Topics in Algebra.
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UNIT 1 THE BASICS
CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1 Integral Domains
3.2  Fields
3.3 Prime and Maximal Ideals
3.4 Field of Quotients
4.0  Conclusion
5.0 Summary
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1.0 INTRODUCTION

We are considering in this unit a special ring, whose specialties lay in
the property of their multiplication. We shall examine a type of ring
called Integral Domain. In MTH 312 we shall examine Rings into
details and also examine their mathematical structures.

Next, we will look at rings like Q, R, C, and Z, (where p is a prime
number). In these rings the non-zero elements form an abelian group
under multiplication. Such rings are called fields. These structures are
very useful, one reason being that we can “divide” in them.

Related to integral domains and fields are certain special ideals called
prime ideals and maximal ideals. In this unit we will also discuss them
and their corresponding quotient rings.

Finally, we shall see how to construct the smallest field that contains a
given integral domain. This is essentially the way that Q is constructed
from Z. we call such a field the field of quotients of the corresponding
integral domain.
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In this unit, we have tried to introduce you to a lot of new concepts. You
may need some time to grasp them. Don’t worry; take as much time as
you need. But by the time you finish it, make sure that you have attained
the following objectives. Only then will you be comfortable in the
remaining units of this course.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

check whether an algebraic system is an integral domain or not
obtain the characteristic of any ring

check whether an algebraic system is a field or not

define and identify prime ideals and maximal ideals

prove and use simple properties of integral domains and fields
construct or identify the field of quotients of an integral domain.

3.0 MAIN CONTENT

3.1 Integral Domains

You know that the product of two non-zero integers is a non-zero
integer, i.e., if m, n € Z such that m = 0, n £ 0, then mn = 0. Now

consider the ring Zs. We find that 2 = 0 and 3 £ 0, yet 2.0 = 0. So,
we find that the product of the non-zero elements 2and 3 in Z is zero.
As you will soon realize, this shows that é(andé) IS a zero divisor, i.e.,
0 is divisible by 2 (and 3).

So, let us see what a zero divisor s.
Definition

A non-zero element in a ring R is called a zero divisor in R if there
exists a non-zero element b in R such thatab =0

(Note that b will be a zero divisor~ too!)

Now do you agree that 2 is a zero divisor in Zg? What about 3 in Z,?

Since 3 x # 0 for every non-zero x in Z,, 3 is not a zero divisor in Z,.

Our short discussion may help you to do the following exercise.
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E1) LetneNandm|n,1<m<n. Then show that m is a zero
divisor in Z,.

Now let us look at an example of a zero divisor m C[0,1]. Consider the
function f € C[0,1] given by f(x) =

1
X—=,0<x<1/2
f(x)= 2
0,1/2<x<1

Let us define g: [0,1] -) R by

0,0 <xx1/2
g(x)=
x—1/2,1/2 <x<1

Then ge C[0.1], g £ 0 and (fg) (X) =0 Vv xe [0,1], Thus, fg is the zero
function. Hence, f is a zero divisor in C[0,1].

For another example, consider the Cartesian product of two non-trivial
rings A and B. For every a = 0 in A. (a.0) is a zero divisor in A x B, This
is because, for any b0 in B, (a.0) (0.b) = (0.0)

Now let us look al the ring ¢ (X), where X is a set with at least two
elements. Each non empty proper subset A of X is a zero divisor
because A.A° = AN A° =¢, the zero element of o (X).

Try these exercises now.
E 2) Listall the zero divisors m Z.
E 3) For Which rings with unity will | be a zero divisor?

E4) LetR bearinganda R be a zero divisor. Then show that every
element of the principal deal Ra is a zero divisor.

Let us now talk of a type of ring that is without zero divisors.
Definition
We call a non-zero ring R an integral domain if

) R is with identity and
i) R has no Zero divisors.
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Thus, an integral domain is a non-zero ring with identity in which the
product of two non-zero elements.

This kind of ring gets its name from the set of integer, one of its best
known examples. Other examples of domains that immediately come to
mind are Q.R and C. What about C[01,]? You have already seen that it
has zero divisors. Thus C[0.1] is not a domain

The next result gives us an important class of examples of integral
domains

Theorem 1
Zp is an integral domain iff p is a prime number,
Proof

Firstly, let us assume that p is a prime number. Then you know that Z,, is
a non-zero ring with identity. Let us see if it has zero divisors/ for this,

suppose a,beZ satisfy a,b=0 then ab=0, i.e., p | ab. Since p is a prime
number, using E 25 of Unit 1 we see that p | a or p | b. Thus, a =
a=0orb=0. What we have shown is that if a=0and b0, then ab=0.
Thus, Z, is the trivial ring, which is not a domain.

Conversely, we will show that if p is not a prime, then Z, is not a
domain. So, suppose p is not a prime. If p = 1, then Z, is the trivial ring,
which is not a domain.

If p is a composite number and m | p, then by E 1 you know that meZ,
is a zero divisor. Thus, Zp has zero divisors. Hence, it is not a domain.

Try this exercise now

E 5) Which of the following rings are not domains? Why?
Z4, 25,22, Z+1Z, R xR, {0}

Now consider a ring R. we know that the cancellation law for addition
holds in R, i.e whether a+b = a+c in R, then b = c. But, does ab = ac
imply b = c? it need not. For example, 0.1 =0.2in Z but 1#2. So, ifa =
0, ab = ac need not imply b = c. But, if a=0 and ab = ac, is it true that b
= ¢? We will prove that this is true for integral domains.
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Theorem 2

A ring R has no zero divisors if and only if the cancellation law for
multiplication holds in R (i.e., if a,b,ce R such that a =0, and ab = ac,
then b =c¢)

Proof

Let us first assume that R contains no zero divisors. Assume that
a,b,ceR such that a=0. Suppose ab = 0 for some beR. Thenab =0 =
a0. Using the cancellation law for multiplication, we get b = 0. So, a is
not a zero divisor, i.e., R has no zero divisors.

Using this theorem we can immediately say that the cancellation aw
holds for multiplication in an integral domain.

Now, you can use this property of domains to solve the following
exercises.

E6) Inadomain, show that the only solutions of the equation x* = x
arex=0and x = 1.

E 7) Prove that 0 is the only nilpotent element (see Example 9 of Unit
10) in a domain.

Now let us introduce a number associated with an integral domain, in
fact, with any ring. For this let us look at Z, first. We known that 4x =

OV xe Z4. Infact, 8x = 0 and 12 x = 0 also for any x e Z,.

But 4 is the least element of the set {n e N | nx = 0V xe Z,}. This shows
that 4 is the characteristics pf Z, as you will see now.

Definition

Let R be a ring. The least positive integer n such that nx = 0vxe R is

called the characteristic of R. If there is no positive integer n such that
nx= 0V xe R, then we say that the characteristic of R is zero.

We denote the characteristic of the ring R by char R.
You can see that char Z, = n and char Z = 0.

The following exercises will give you some practice in obtaining the
characteristic of a ring.
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E 8) Show that char ¢ (X) =2, where X is a non empty set.

E9) LetRbearingandchar R =m. What is char (R x R)

Now let us look at a nice result for integral domains. It helps in
considerably reducing our labour when we want to obtain the
characteristic of a domain.

Theorem 3

Let m be a positive integer and R be an integral domain. Then the
following conditions are equivalent.

a) m1=0.

b) ma=0foralla eR.
C) ma =0 forsomea = inR.

Proof

We will prove (a) = (b) = (c) = (8).
(@ = (b): We know that m | = 0.

Thus, for any a e R, ma = (la) ={ml) (a) =0a =0, i.e., (b) holds.

(b) = (c):Ifma=0 a 0V ae R, thenitis certainly true for some a =
OinR.

(c) = (@ :Letmil=0forsomea = 0inR. Then0=ma =m (1la) =
(m.)a. Asa = 0and R is without zero divisors, we get m1 = 0.

What Theorem 3'tells us is that to find the characteristic of a domain
we only need to look at the set {n,1 | n e N}.

Let us look at some examples.

1) char Q=0, since n.1=0 forany n < N.

i) Similarly, char R = 0 and char C = 0.

iili)  You have already seen that char Z, = n. Thus, for any positive
integer n, there exists a ring with characteristic n.

Now let us look at a peculiarly of the characteristic of a domain.
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Theorem 4

The characteristic of an integral domain is either zero or a prime
number.

Proof

Let R be a domain. We will prove that if the characteristic of R is not
zero, then it is a prime number. So suppose char R = m, where m =0. So

m lii the least positive integer such that m.1 = 0. We will show that m is
a prime number by supposing that it is not, and then proving that our
supposition is wrong.

So suppose m = st, where s,te N, 1 <s<mand1<t<m. Thenm.l=
0=(st). 1 =0 =(s.l) (t.1) = 0. As R is without zero divisors, we get s.I

=0ort1=0.But sandt are less than m. So, we reach a contradiction
to the fact that m = char R. Therefore, our assumption that m = st, where
1<s<m,1<t<miswrong. Thus, the only factors of m are 1 and
itself. That is, m is a prime number.

You can now use your knowledge of characteristics to solve the
following exercise

E 10) Let R be an integral domain of characteristic p. PrOve that

a) (a+b)"=aP+ b” and
(a-b)? = a’- bP for all a, beR."

b)  the subset { " |a R} is it subring of R.
C) themap ® : R - R: @ (a) = a" is a ring homomorphism.
d) if R is a finite integral domain, then ® is an isomorphism.

E 11) Let R be a ring with unity 1 and char R = m. Define f: Z—>R: f
(n) =n.1. Show that f is a homomorphism. What is Kerf?

E 12) Find the characteristic of Z; x Z4. Use this ring as an example to
show why Theorems 3 and 4 are only true for integral domains.

We will now see what algebraic structure we get after we impose certain
restrictions on the multiplication of a domain. If you have gone through
our course Linear Algebra, you will already be familiar with the
algebraic system that we are going to discuss, namely, a field.
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3.2 Field

Let (R, +,.) be a ring. We know that (R, +) is an abelian group. We also
know that the operation is commutative and associative. But (R,.) is not
an abelian group. Actually, even if R has identity, (R.,) will never be a
group since there is no element aeR such that a.0 = 1. But can (R\{0}.,)
be a group? It can, in some cases. For example, from Unit 2 you know
that Q* and R* are groups with respect to multiplication. This allows us
to say that Q and R are fields a term we will now define.

Definition
Arring (r, +.,) is called a field if (R\{0}.,) is an abelian group.

Thus, for a system (R, +.,) to be a field it must satisfy the ring axioms
R1 to R6 as well as the following axioms.

1) IS commutative,

i) R has identity (which we denote by 1) and 1= 0, and

iii)  every non-zero element x in R has a multiplicative inverse, which
we denote by x ™.

Just as a matter of information we would like to tell you that a ring that
satisfies only (ii) and (iii) above, is called a division ring or a shew
field or a non-commutative field. Such rings are very important in the
study of algebra, but we will not be discussing them in this course.

Let us go back to fields now. The notion of a field evolved during the
19" century through the research of the German mathematicians Richard
Dedekind and Leopold Kronecker in algebraic number theory. Dedekind
used the German word Korper, which assdfsdf field, for this concept.
This is why you will often find that a field is denoted by K.

As you may have realized, two of the best known examples of fields are
R and C. These were the fields that Dedekind considered. Yet another
example of a field is the following ring.

Example 1

Show that Q + ,/2Q ={a++/2b |a,beQ}is a field.
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Solution

From Unit 9 you know that F = Q + ,/2Q is a commutative ring with
identity 1 + +/2.0.
(a+m) _ 1 2—\/% a—\/%

a+2b  (a+~2b) (a—+2b) a’-2b?

a (=b)
_ 2 F
22 _9p? +2 22 _9p? ©

(Note that a®>-2b*#0, since /2 is not rational and either a=0 or b=0.)

Thus, every non-zero element has a multiplicative inverse. Therefore,
Q++/2Qis a field.

Can you think of an example of a ring that is not a field? Does every
non-zero integer have a multiplicative inverse in Z? No. Thus, Z is not a
field.

By now you have seen several examples of fields. Have you observed
that all of them happen to be integral domains also? This is not a
coincidence. In fact, we have the following result.

Theorem 5
Every field is an integral domain.
Proof
Let F be a field. Then F={0} and 1<F. we need to see if F has zero
divisors. So let a and b be elements of F such that ab = 0 and a=0 and F
is a field, a™ exists. Hence, b =1.b = (a*a) b = a™ (ab) =a™ 0 = 0. Hence,
ifa=0andab =0, wegetb=0.i.e., Fhas no zero divisors. Thus, F is a
domain.
Now you try these exercises!
E 13) Which of the following rings are not fields?

27,2725, 25, QxQ
E 14) Will a subring of a field be a field? Why?
Theorem 5 may immediately prompt you to ask if every domain is a

field. You have already seen that Z is a domain but not a field. But if we
restrict ourselves to finite domains, we find that they are fields.
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Theorem 6

Every finite integral domain is a field.

Proof

Let R ={a, =0, 1, =1, a...... ,2n} be a finite domain. Then R is
commutative also. To show that R is a field we must show that every
non-zero element of R has a multiplicative inverse.

So, let a = a; be a non-zero element of R (i.e., i1#0). Consider the
elements aai,..., aa,. For every j=0, aj=0; and since a=0, we get
aaj = 0.

Hence, the set {aa;, aay.....,aan} < {ay,......an}-

Also, aal, aa2,..., aa, are all distinct elements of the set {ay,......an},
since aaj = aax = aj = ak, using the cancellation law for multiplication.

Thus, {aay,....,aa } = {ay,.....a}.
In particular, a; = aaj, i.e., 1 = aaj for some j. thus, a is invertible in R.
hence every non-zero element of R has a multiplicative inverse. Thus, R

is a field.

Using this result we can now prove a theorem which generates several
examples of finite fields.

Theorem 7

Z, is a field if and only if n is a prime number.

Proof

From Theorem 1 you know that Z, is a domain if and only if n us a
prime number. You also know that Z, has only n elements. Now we can
apply Theorem 6 to obtain the result.

Theorem 7 unleashes a load of examples of fields: Z,, Z3, Zs, Z7, and so
on. Looking at these examples, and other examples of fields, can you

say anything about the characteristic of a field? In fact. Using Theorems
4 and 5 we can say that.
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Theorem 8
The characteristic of a field is either zero or a prime number.

So far the examples of finite fields that you have seen have consisted of
p elements, for some prime p. In the following exercise we give you an
example of a finite field for which this is not so.

E 15) Let R ={0,1,a,1+a}. Define + and in R as given in the following

Cayley tables
+ 0 1 a 1+a 0 1 a 1+a
0 0 1 a 1+a 0 0 0 0 0
1 1 0 1+a a and |1 0 1 a 1+a
a a 1+a O 1 a 0 a 1+a 1
1+a |1+a a 1 0 1+a |0 1+a 1 a

Show that R is a field. Find the characteristic of this field.
Let us now look at an interesting condition for a ring to be a field
Theorem 9

Let R be a ring with identity. Then R is a field if and only if Rand {0}
are the only ideals of R.

Proof

Let us first assume that R is a field. Let | be an ideal of R. If I = {0},
there exists a non-zero element x € I. As x=0 and R is a field, xy = 1
forsomey € R.Sincex e land lisan ideal, xy € I.i.e., 1 € .

Thus, by Theorem 4 of Unit 10, | = R. So, the only ideals of R are {0}
and R.

Conversely, assume that Rand {0} are the only ideals of R. Now, leta =
0 be an element of R. Then you know that the set Ra = {ra|re R} isa
non-zero ideal of R. Therefore, Ra = R. Now, 1 € R = Ra. Therefore, 1
= ba for some b € R, i.e., a® exists. Thus, every non-zero element of R
has a multiplicative inverse. Therefore, R is a field.

This result is very useful. You will be applying it again and again in the
rest of the units of this block.
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Using Theorem 9, we can obtain some interesting facts about field
homeomorphisms (i.e., ring homeomorphisms from one field to
another). We give them to you in the form of an exercise.

16) Letf: F — K be a field homomorphism. Show that either f is the
zero map or fis 1-1.

E 17) Let R be a ring isomorphic to a field F. Show that R must be a
field.

E 17 again goes to show that isomorphic algebraic structures must be
algebraically identical.

Now that we have discussed domains and fields, let us look at certain
ideals of a ring, with respect to which the. quotient rings are domains or
fields.

3.3  Prime and Maximal Ideals

In Z we know that if P is a prime number and p divides the product of
the integers a and b, then either p divides a or p divides b. In other
words, if ab e pZ, then either € pZ or b € pZ. Because of this property
we say that pZ is a prime ideal, a term we will define now.

Definition

A proper ideal P of a ring R is called a prime ideal of R if whenever ab
e Pfora, be R, theneitherae Porb e P.

You can see that {0} is a prime ideal of Z because abe {0}= a {0}
or be {0}, where a,b € Z.

Another example of a prime ideal is
Example 2

Let R be an integral domain. Show that I = {(0,x) | x € R) is a prime
ideal of R X R.

Solution
Firstly, you know that | is an ideal of R x R. Next, it is a proper ideal
since | #R x R. Now, let us check if I is a prime ideal or not. For this let

(ag,by), (a2,b2) € R x R such that (a;,by), (a,b,) € | Then (a;aby,by) =
(0,x) for some x (a,b,), (az,b,) € R .. a;a, =0, i.e.,at=0o0r a, =0,
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since R is a domain. Therefore (a;,b;) e | or (a;,b,) € I. Thus, | is a
prime ideal.

Try the following exercises now. They will help you get used to prime
ideals.

E 18) Show that the set I= {f € C[0,l] | f(0) = 0} is a prime ideal of
C[O,1].

E 19) Show that a ring R with identity is an integral domain if and only
if the zero ideal {0} is a prime Ideal of R.

Now we will prove the relationship between integral domains and prime
ideals.

Theorem 10

An ideal P of a ring R with identity is a prime ideal of R if and only if
the quotient ring R/P is an integral domain.

Proof

Let us first assume that P is a prime ideal of R. Since R has identity, so
has R/P. Now, let a+P and b+P be in R/P such that (a+P) (b+P) = P, the
zero element of R/P. Then ab+P =P, i.e., abeP. As P is a prime ideal of
R either acP or beP. So either a+P =P or b+P = P.

Thus, R/P has no zero divisors.
Hence, R/P is an integral domain.

Conversely, assume that R/P is an integral domain. Let a,be R such that
abeP.Thenab +P =P inR/P, i.e., (a+P) (b+P) =P in R/P. As R/P is an
integral domain, either a+P = P or b+P =P, i.e., either acP or beP. This
shows that P is a prime ideal of R.

Using Theorem 10 and Theorem 1 we can say that an ideal mZ of Z is
prime in m is a prime number. Can we generalize this relationship
between prime numbers and prime ideals in Z to any integral domain?
To answer this let us first try and suitably generalize the concepts of
divisibility and prime elements.

Definition
In aring R, we say that an element a divides an element b (and denote it

by a | b) if b = ra for some r € R. In this case we also say that a is a
factor of b, of a is a divisor of b.
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Thus, 3 divides 6 in Z7, since3. 2 =6.
Now let us see what a prime element is.
Definition

A non-zero element p of an integral domain R is called a prime element
if

) p does not have a multiplicative inverse, and
i) whenever a, beR and p | ab, thenp|aorp|b.

Can you say what the prime elements of Z are? They are precisely the
prime numbers and their negatives.

Now that we know what a prime element is, let us see if we can relate
prime ideals and prime elements in an integral domain.

Theorem 11

Let R be an integral domain. A non-zero element p € R is a prime
element if and only if Rp is a prime ideal of R.

Proof

Let us first assume that p is a prime element in R. Since p does not have
a multiplicative inverse, 1 ¢ Rp. Thus, Rp is a proper ideal of R. Now
leta, b € Rsuchthatab € Rp. Thenab =rp for somer € R.

= plab

= p|aorp]|b,since pisa prime element
= a=Xporb=xpforsomex e R
—aeRporbeRp

Thusab € Rp = eithera e Rporb € Rp, i.e., Rp is a prime ideal of R.
Conversely, assume that Rp is a prime ideal. Then Rp # R. Thus, 1 ¢
Rp, and hence, p does not have a multiplicative inverse. Now suppose p

divides ab, where a, b € R. Thenab =rp forsomer € R, i.e., ab € Rp.

As Rp is a prime ideal, either a € Rp or b € Rp. Hence, eitherp|aorp |
b. Thys, p is a prime element in R.

Theorem 11 is very useful for checking whether an element is a prime
element or not, or for findings out when a principal ideal is a prime
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ideal. For example, now we can use E 19 to say that O is a prime element
of R iff R is a domain.

Prime ideals have several useful properties. In the following exercises
we ask you to prove some of them

E 20) Letf: R ~ S be aring epimorphism with kernel N. Show that

a) if Jis a prime ideal in S, then f (J) is a prime ideal in R.
b) if 1 is a prime ideal in R containing N, then f(I) is a prime ideal in
S

C) the map O between the set of prime ideals of R that contain N and
the set of all prime ideals of S given by ¢ (1) = f(l) is a bijection.

E21) If Il and 12 are ideals of a ring such that neither Il ,nor 12
contains the other, then show that the ideal N1, I is, not prime.

Now consider the ideal 2Z in Z. Suppose the ideal nZ in Z is such that
2Z cnZ cZ. Thenn|2 -.n=+lorn=+2. ~.nZ=ZornZ =27

This shows that no ideal can lie between 2Z and Z. That is, 2Z is
maximal among the proper ideals of Z that contain it. So we say that it is
a "maximal ideal", Let us define this expression.

Definition

A proper ideal M of a ring R is called a maximal ideal if whenever | is
an ideal of R such that Mc | < R, theneitherI=Mor1=R.

Thus, a proper ideal M is a maximal ideal if there is no proper ideal of R
which contains it. An example that comes to mind immediately is the
zero ideal in any field F. This is maximal because you know that the
only other ideal of F is F. itself.

To generate more examples of maximal ideals, we can use the following
characterization of such ideal.

Theorem 12

Let R be a ring with identity. An ideal M in R is maximal if and only if
R/Mis a field

Proof

Let us first assume that M is a maximal ideal of R. We want to prove
that R/M is a field. For this it is e'lough to prove that R/M has no non-
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zero proper ideals (see theorem 9). So, let 1 be an ideal of R/M.
Consider the canonical homomorphismz: R — R/IM: n (r) =r + M.

Then, from Theorem 3 of Unit 11, you know that 7" (1) is an ideal of R
containing M, the kernel of 7. Since M is a maximal ideal of R, " (I) =
M or 5" (1) = R. Therefore, | = 5(n™* (1)) is either (M) or »(R), That
is, 1 ={0} or I = R/M, where 0 = 0+M = M. Thus, RIM is a field.

Conversely, let M be an ideal of R such that R/M is a field. Then the
only ideals of R/M are {0} and R/M. Let | be an ideal of R containing
M. Then, as above, (1) = {0} or, (I) = R/M.

- 1= (n(1) is M or R. Therefore, M is a maximal ideal of R.

Now look at the following consequence of Theorem 12 (and a few other
theorems t00).

Corollary

Every, maximal ideal of a ring with identity is a prime ideal.

We ask you to prove it in the following exercise.

E72) Prove the corollary given above.

Now, the corollary is a one-way statement. What about the converse?
That is, is every prime ideal maximal? What about the zero ideal in Z?
Since Z is a domain but not a field and Z = Z/{0}, Z/{0} is a domain but
not a field. Thus, {0} is a prime ideal but not a maximal ideal of Z.

Now let us use Theorem 12 to get some examples of maximal ideals.
Example 3

Show that an Idea mZ of Z is maximal iff m is a prime number.

Solution

From Theorem 7 you know that Z,, is a field iff m is a prime number.
You

Also know that Z/mZ = Zm. Thus, by E 17,Z/mZ is a field iff m is
prime. Hence, by Theorem 12,mZ is maximal in Z iff m is a prime
number.
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Example 4

Show that 2Z_,is a maximal ideal of Z;, ~Z/27. Thus by E 23 of Unit 11,
we see that Z;,/2Z,, = (Z2/122)/(2Z/12Z) =~ Z/2Z ~ Z, which is a field.

Now, {0,4,8}=42,, c2Z,, c Z,,.
Try the following exercises now

E 23) Show that {0,2,4,6,8} is maximal in Zy,.

E 24) Use Example 4 of Unit 11 to prove that the ideal
{fecod] | f(%):O} is maximal in C[0,1].

So, let us see what we have done in this section. We first introduced you
to a special ideal of a ring, called a prime ideal. Its speciality lies in the
fact that the quotient ring corresponding to it is an integral domain.

Then we discussed a special kind of prime ideal, i.e., a maximal ideal.
Why do we consider such an ideal doubly special? Because, the quotient
ring corresponding to it is a field, and a field is a very handy algebraic
structure to deal with.

Now, if we restrict our attention to domains, can you think of any other
method of obtaining a field from a domain? In the next section we look
at such a method.

3.4 Field of Quotients

Consider Z and Q. You know that every element of Q is of the form %,
wherea € Zand b € Z*. Actually, we can also denote %by the ordered

pair (a,b) € Z x Z*. Now, in Q we know that %:%iff ad = bc. Let use

put a similar relation on the elements of Z x Z*.

Now, we also know that the operations on Q are given by
a ¢ ad+bc ac ac_ac

Zi== nd==-="-vZ-ecqQ.
b d b d bd bd bd
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Keeping these in mind we can define operations on Z x Z*. Then we can
suitably define an equivalence relation on Z x Z* to get a field
isomorphic to Q.
We can generalise this procedure to obtain a field from any integral
domain. So, take an integral domain R. Let K be the following set of
ordered pairs:

K={(@b)|ab e Randb = 0}
We define a relation ~ in K by

(a,b) ~ (c.d) if ad = bc.

We claim that ~ is an equivalence relation. Let us see if this is so.

) (a,b) ~ (a,b) v(a,b) € K, since R is commutative. Thus, ~ is
reflexive.

i) Let (a,b), (c.d) e K such that (a,b) ~ (c.d). Then ad = bc, i.e., cb =
da. Therefore, (c,d) ~ (a,b). Thus, ~ is symmetric.

i) Finally, let (a,b), (c,d), (u,v) € K such that (a.b) ~ (c,d) and (c,d)
~ (u,v). Then ad = bc and cv = du. Therefore, (ad) v = (bc)v =
bdu, i.e.,, avd = bud. Thus, by the cancellation law for
multiplication (which is valid for a domain), we get av = bu, i.e.,
(a,b) ~ (u,v). Thus, ~ is transitive.

Hence, ~ is an equivalence relation.

Let us denote tlleequivalence class that contains (a,b) by [a,b]. Thus,
[a,b] ={(c,d)|c,d € R,d = 0 and ad = bc}

Let F be the set of all equivalence classes of K with respect to

Let us define + and in F as follows. (ltrilighthelpyou to keep in mind
the rules for adding and multiplying rational numbers.)

[a,b] + [c,d] = [ad+bc,bd] and

[a,b] [c,d] = [ac,bd].

Do you think + and are binary operations on F?

Note that b = 0 and d = O in the integral domain R imply bd = 0. So,

the right-hand sides of the equations given above are well defined
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equivalence classes. Thus, the sum and product of two elements in F is
again an element in F.

We must make sure that these operations are well defined.

So, let [a,b] =[a",b"] and [c¢",d"] = [c¢",d"]. We have to show that [a,b] +
[cd]=[a",b] +][c",d7],i.e:, [ad+bc,bd] = [a"d"+b"c",b"d].

Now, (ad+bc)b'd' -(a’d” + b’c”) bd

=ab’dd” + cd’bb’- a’bdd"- c"dbb”

= (ab’-a’b)dd" + (cd"-c"d) bb'

= (0)dd” + (0)bb” since (a,b) ~ (a",b") and (c,d) ~ (c",d").

=0.

Hence, [ad + bc,bd] =[a" d” + b'c’,b’d], i.e., + is well defined.

Now, let, us show that (a,b] .[c,d] =[a",b] . [¢",d"],

i.e., [ac,bd] =[a’c’,b"d].

Consider (ac) (a’c’,b"d")
=ab’cd” - ba'dc” =ba’cd” - ba’cd’, since ab” = ba” and cd” = dc”
=0

Therefore, [ac,bd} = [a’c",b"d"]. Hence, .is well defined.

We will now prove that F is a field.

) + is associative : For [a,b], [c,d], [u,v] € F,
([a,b] + [c,d]) + [u,v] = [ad+bc,bd] + [u,V]
[(ad+bc)v + ubd, bdv]
[adv + b(cv+ud), bdv]
[a,b] + [cv+ud,dv]
[a,b] + ([c,d] + [u,v})’

i) +is commutalive: For [a,b], [c,d] € F,
[a,b] + [c,d] = [ad + bc,bd] = [cd + da,db] = [c,d] + [a,b]

i) [0,1] is the additive identity for F: For [a,b] € F,
[0,1] + [a.b] = [0.b+l.a, I.b] = [a,b]
Iv)  The additive inverse of [a,b] € Fis [-a,b]:
[a,b] + [-a,b] = [ab-ab,b®] = [0,b*] = [0,1], since 0.1 = 0.b?,
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We would like you to prove the rest of the requirements for F to be a
field (see the following exercise).

E 25) Show that, in F is associative, commutative, distributive over +,
and [1, 1] is the multiplicative identity for F.

So we have put our heads together and proved that F is a field.

Now, let us definef: R — F: f(a) = la. I]. We want to show that f is a
homomorphism.

Firstly, fora, b R,
f(a+b) = [a+b,I] = [a,1] + [b,1]. , .

= f(a) + f(b), and

f(ab) = [ab,I] = [a,1]. [b,1] = f(a) .f(b).
Thus, f is a ring homomorphism.

Next, let a,b € R such that f(a) = f(b). Then [a, 1] = [b,I], i.e.,, a = b.
Therefore, fis1-1.

Thus, f is a homomorphism.
So, Im f =1f(R) is a subring of F which is isomorphic to R.
As you know, isomorphic structures are algebraically identical.

So, we can identify R with f(R), and think of R as a subring of F. Now,
any element of F is of the form

[a,b] = [a, 1] [1,b] = [a1] [b,1]" = f(a) f(b)™", where b = 0. Thus,
identifying X € R with f(x) e f(R), we can say that any element of. F is
of the form ab™, where a,b € R. b = 0.

All that we have discussed in this section adds up to the proof of the
following theorem.

Theorem 13

Let R be an integral domain. Then R can be embedded in a field F such
that every element of F has the form ab™ fora,b € R, b = 0.
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The field F whose existence we have just proved is called the field of
guotients (or the field of fractions) of R.

Thus, Q is the field of quotients of Z. What is the field of quotients of
R? The following theorem answers this question.

Theorem 14

Iff: R — K isahomomorphism of an integral domain R into a field K,
then there exists a homomorphism

g:F — K:g([a1]) = f(a), where F is the field of quotients of R.

We will not prove this result here, since it is a little technical. But let u~
look at this theorem closely. It says that the field of quotients of an
integral domain is the smallest field containing it. Thus, the field of
quotients of any field is the field itself. So, the field of quotients of R is
R and of Z, is Z,,, where p is a prime number.

Try these exercises now.

E 26) Is R the field of quotients of Z + J2 22 Or, is it C? Or, is it
Q++/2 Q? Why"?

E 27) At what stage of the construction of the field F in Theorem 13
was it crucial to assume that R is a domain?

Let us now wind up this unit with a summary of what we have done in
it.

5.0 SUMMARY

In this unit we have covered the following points.

o The definition and examples of an integral domain.

o The definition and examples of a field.

o Every field is a domain.

) A finite domain is a field.

o The characteristic of any domain or field is either zero or a prime
number.

o The definition and examples of prime and maximal ideals.

o The proof and use of the fact that a proper ideal | of a ring R with
identity is prime (or maximal) iff R/l is an integral domain (or a
field),

o Every maximal ideal is a prime ideal.
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All element p. of an integral domain R is prime iff the principal
ideal pR is a prime ideal or R.

Z, is a field iff n is a prime number.

The construction of the field of quotients of an Integral domain.

ANSWER TO SELFASSESSMENT EXERCISE

El)

E2)
E 3)

E 4)

E 5)

E 6)

E7)

E 8)

Let n = mr, wherer € N.
Thenmr=n=0in2Z,

Sincel<m<n, m=0. Similarly, r =0
Thus m e Z, IS a zero divisor.

Z has no zero divisors.

For none since 1 X =X = 0 Vx = 0in the ring.

Letb = O bein R such ab =0. Then, forany r € R, (ra)b =0
Thus, every element of Ra is a zero divisor

Z4, since 2 is a zero divisor.

2Z,since 1 ¢ 2Z.
R x R, since (1,0) is a zero divisor.

{0}, since a domain must be non-zero.

X=X = X(x-)=0 = x=0o0rx-1=0

= Xx=0o0orx=1.

Let R be a domain and X e R be nilpotent. ,

then x" =.0 .for some n e N. Since R has no zero divisors, this

implies that x = 0.

We want to show that 2A = ¢V Ac X, and that 2 is the least such

natural number. Firstly, for any A < X,
2A=AAA= (A\A U A\A) =4

Also, since X =¢, 1.X #¢. Thus, char p (X) = 1.

~.charp (X) =2
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E9) Letchar (RxR)=n.Weknow thatmr=0 Vv r € R,

Now, let (r,s) be any element of R x R.

Then m(r,s) = (mr,ms) = (0,0), sincer,s € R.

Thus,n <m

On the other hand, if r € R, then (r,0) e RxR

-.n(r,0) = (0,0).

i.e., (nr,0) = (0,0)

e, nr=0

This is true forany r € R.

~m <n.

Thus, (1) and (2) show that m =n, i.e., char R = char (R X R)

E 10a) By the binomial expansion (E Il of Unit 9),
(ath)’=a" +°C a" b+ ...... +PC,; ab®™* + bP

Sincep|"C, ¥ n=1,....,p","Cix=0 Vx e Rand vn=1,.....P".

Thus, PC,a" b =0=..="C; ab™*

- (a+b)’ =a” + bP.

You can similarly show that (a-b)? = a” —b",

b) LetS={a"|aec R}

Firstly, S = ¢.

Secondly, let & — g (a-b)’ € S. Then o =a°, p =b°forsome a,b € R.

Then o - = (a-b)’ € Sand ap = (ab)’ € S.

Thus, S is, a subring of R
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c) ¢ (ath)=(ath)’=a"+b"=¢ (a) + ¢ (b),
¢ (ab) = (ab)P = aPbP = ¢ (a) ¢ (b).

Thus, ¢ is a ring homomorphism.

¢ 1s 1-1 because .

¢ (@) =¢ (b). = a"=b" = (a-b)’ =0, from (a).
= a-b =0, since R is without zero divisors.

= a=h.

d) We have to show that if R is finite then O is surjective,
Let R have n elements. Since ¢ is 1-1, 1m ¢ also has n elements.

Also Im ¢ R. Thus, Im ¢ =R.
Hence, ¢ is surjective.

E 11) You Can easily show that f is a ring homomorphism.

Kerf={nezZ|n1=0}
=mZ,, since char R = m.

E 12) char (Z3 x Z4) = 1.c.m. of char Z3 and char Z, = 12.
Thus, the characteristic of Z; X Z4 is neither 0 nor a prime.
Note that Z; x Z, is not a domain, since it has several zero divisors.

Now let us see why Theorem 3 is not valid for Z3 x Z,.
Take (1,0)e Z3 X Zs. Then 3(1,0)=(0,0)e Z3 X Z4

But 3(1,0)%(0,0). Thus, Theorem 3(a) and Theorem 3(c) arc not
equivalent in this case

E 13) 2Zsince 2 € 2Z is not invertible in 2Z.

Z,since it is not a domain

Q x Q, since it is not a domain.

E 14) No. For example, Z is a subring of Q,Q is a field, but Z is not.

E 15) From the tables you can see that R is commutative with identity
and every non-zero element has an inverse: Thus, R is a field.

Also 2x=0 Vv X € Rand 1.x # 0 for some X E R.
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Thus, char R = 2.

E 16) Ker I is an ideal of F. Thus, by Theorem 9.
Ker f={0} or Kerf =F.

If Ker f = {0}, then fis 1-1.

If Ker f=F, thenf=0.

E 17) Let ¢ F —R be an isomorphism. Then ¢ (1) is the identity of 1m
¢ =R, Also, since F is commutative, so is R. Now, let e R. r =
O. Since ¢ isonto, 3 a € F such that ¢ (a) =r. Sincer = 0, 2
#0. Since F is a field, 3 b € F such that lib = 1.

Thus, ¢(ab) = ¢ (1), i.e., rg(b) = ¢ (1)i.e., r has a multiplicative inverse.
Thus, R is a field
18)  Firstly, 1 is an ideal of C[0,1]
(because f.g.e | = f-g, € |, and
Te C[0.1], fel =Tfel.)
Secondly, since any non-zero constant function is in
C[0,1] \I. I is a proper ideal.

Finally, let fg € J. Then f(0) g(0) =0 in R. Since R is a domain, we must
have f(0) =0org(0) =0, i.e.,felorg e |

Thus, I is a prime idela of C[0,1].

E 19) R is aring with identity. Thus, we need to show that R is without
zero divisor iff {0} is aprime ideal in R.

Now, {0} is a prime ideal in R

iffab e{0} => aec {O}orbe {0} fora,b e R
iffab=0=a=00rb=0

iff R is without zero divisors.

So, we have shown what we wanted to show
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E 20) a) From Theorem 3 of Unit 11, you know that f* (J) is an
ideal of R. Since f is syrjectiveand J = S, f* (J) € R

Now, leta,be R such thatab e f* (J)

= f(ab) € J.

= f(a) f(b) € J.

= f(a) € Jorf(b) e J, since Jis a prime ideal.

= aefl@)orbe f'().

Thus, £* (J) is a prime ideal in R

b) Firstly, since f is onto, you know that f(l) is an ideal of S. Also,
since 1 ¢ 1 and f(f(1)) = | (from Theorem 4 of Unit 11). F(1) ¢,
f(l). Thus, f(1) = S.

Finally, let x,y e Ssuch that xy e f(I)

Since S=1Imf, 3 a,b € R such that x = f(a) and y = f(b)

Then f(ab) = xy e f(1), i.e., ab € F(f(1)) = |

~aelorbelie,xef(l)ory e f(l)

Thus, f(1) is a prime ideal of S.

C) pisl-1:¢ ()=¢ ) = f(l) =fQ)

= 1 (f(1)) = £ (F(D)) 1 = J.

¢is onto: Let J be a prime ideal of S. Then f* (J) is a prime ideal of R
and ¢ (F'(3)) = f(f*(J)) = J (from Unit 11). Thus, J € Im 4.

E21) Letx e I\l andy e I,\ I;. Then xy e I, and xy < |, since I,
and |, are ideals.

2XyeliNbh.Butxe Iy N Lbandy ¢ 13N 1,
Thus, I; N1, is not prime.

E 22) Mis maximal in R
= R/M is a field, by Theorem 12
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= R/M is a domain, by Theorem 5

= M is prime in R, by Theorem 10

Thus, as in Example 4, {0,2,4,6,8 } is maximal in Z,.

E 24) In Unit 11 we have shown that this ideal in the kernel of the onto
homomorphism ¢:C[0,1] »R: ¢(f) :f(%).
~.C[0,1}/Ker ¢ ~ R, a field.

Thus, Ker ¢ is maximal in C[0,1].

E 25) You can prove all these properties by using the corresponding
properties of R.

E 26) Any element of the field of quotients F is of the form

a+by2

wherec+d+/2 20, abcde Z
c+d2

Now

a+by2 a+byV2c+dv2 ac—2bdj+\/§ bc — ad € Q4420
"c+dy2 c?-2d®  (c*-2d? c’-2d°

Thus,F <Q + \/EQ.

Also, any element of Q + /2Q is % +\/§§, a,b,c,d e Z, b=0,d=0

Now L& _ad+bey2 _ ad +bey2
2 T d bd bd+0+/2

with ad, bc, bd € Z

a C
Thus, = 2—¢cF.
|o+‘/—o|E

Hence, Q + V/2Qc F
Thus, F = Q + 4/20Q

E 27) If R is 'hot a domain, the relation -need not be transitive, and
hence, F is not defined.
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UNIT 2 POLYNOMIAL RINGS
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1.0 INTRODUCTION

In the past you must have come across expressions of the form x+1,
x?+2x+1, and so on. These are examples of polynomials. You have also
dealt with polynomials in the course Linear Algebra. In this unit we will
discuss sets whose elements are polynomials of the type ap + a; X +....+
a, X", where ap,a;...... ,a, are elements of a ring R. You will see that this
set, denoted by R [x], is a ring also.

You may wonder why we are talking of polynomial rings in a block on,
domains and fields. The reason for this is that we want to focus on a
particular case, namely, R [x], where R is a domain. This will turnout to
be a domain also, with 'a lot of useful properties. In particlllar, the ring
of polynomials over a field satisfies a division algorithm, which is
similar to the one satisfied by Z (see Sec. 1.6.2). We will prove this
property and use it to show how many roots any polynomial over a field
can have.

In the next two units we will continue to work with polynomials and
polynomial rings. So read this unit carefully and make sure that you
have achieved the following objectives.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o identify polynomials over a given ring

) prove and use the fact that R [x], the set of polynomials over a
ring R, is a ring

o relate certain properties of R[x] to those of R

o prove and use the division algorithm for F[x], where F is a field.
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3.0 MAIN CONTENT

3.1 Ring of Polynomials

As we have said above, you may already be familiar with expressions of
the type 1 + X, 2 + 3x + 4x x>-I, and so on. These are examples of
polynomials over the ring Z. Do these examples suggest to you what a
polynomial over any ring R is? Let's hope that your definition agrees
with the following one.

Definition

A polynomial over a ring R in the indeterminate x is an expression of
the form

ap’+ ax' + X +... + ax",
Where n is a non-negative integer and ap,ay, ..., a, € R.

While discussing polynomials we will observe the following
conventions. We will

i) write x° as1, so that we will write a, for agx°!lox\),

i) write x' as x.

iii)  write x"instead of 1.x™ (i.e., when a,, = 1).

iv)  omit terms of the type 0.x".

Thus, the polynomial 2 + 3x* - 1.x% is 2x° +0.x* + 3x* + (-1 )x°
Henceforth, whenever we use the word polynomial, we will mean a

polynomial in the indeterminate x. we will also be using the shorter
n

notation Y a,x' for the polynomial ay + a; X +...+ a, X".
i=0

Let us consider a few more basic definitions related to a polynomial.
Definition
Let ap + a; X + ...+ a, X" be a polynomial over a ring R. Each of a,

ai,...., ap IS a coefficient of this polynomial. If a, =0, we call a, the
leading coefficient of this polynomial.
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Ifa, =0=a, = ... = a,, we get the constant polynomial, a;. Thus, every
element of R is a constant polynomial.

In particular, the constant polynomial O is the zero polynomial.
It has no leading coefficient.

Now, there is a natural way of associating a non-negative integer with
any non-zero polynomial.

Definition

Let ap + a; X +... + a, X' be a polynomial over a ring R, where a, =#0.
Then we call the integer n the degree of this polynomial, and we write.

n
deg( X ax') =n,ifa, =0
i=0

We define the degree of the zero polynomial to be - «. Thus, deg 0 = -
o0,

Let us consider some examples.

) 3x* + 4x + 5 is a polynomial of degree 2, whose coefficients
belong to the ring of integers Z. Its leading coefficient is 3.

i) x* + 2x* + 6x + 8 is a polynomial of degree 4, with coefficients in
Z and leading coefficient 2. (Note that this polynomial can be
rewritten as 8 + 6x + x* + 2x%).

iii) LetRbearingandr € R, r = 0. Then r is a polynomial of
degree 0, with leading coefficient r.

Before giving more examples we would like to set up some notation
Notation

We will denote the set of all polynomials over a ring R by R[x]. (Please
note the use of the square brackets [ ]. Do not use any other kind of

brackets because R [x] and R (x) denote different sets).

n
Thus,R[x] =< X aix‘) a,eRVi=0,1,....... ,.. N, wheren>0,neZ
i=0
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We will also often denote a polynomial ag + a; X +...+ a, +" by f(x), p
(x), (x), etc.

Thus, an example of an element from Z, [x] isf(X) = 2 x> + 3x + 1

Here deg f(x) = 2, and the leading coefficient of f(x) is 2.

To check your understanding of what we have said so far, you can try
these exercises now.

E 1) Identify the polynomials from the following expressions. Which
of these are elements of Z[x]?

) XX +x'+xi+x+1

b) %+l+x+x2
X2 X

c) V3 x2+4/2x++/5

d) 1o ixslye ity
2 3 4

e)  x"+2x+3x?

f) -5.

It E 2) Determine the degree and the leading coefficient of the following
polynomials in R[X].

a) V2 x+7

b)  1-7x°+3x

) 1+xX+x'+0x

d) Lyileslye
3 5 7
e) 0.

Now, for any ring R, we would like to see if we can define operations on
the set R [x] so that it becomes a ring. For this purpose we define the
operations of addition and multiplication of polynomials.
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Definition

Let f(X) =29 + atX + .. + a, X" and g (X) = by + by X + .. + by, X" be two
polynomials in R[x]. let us assume that m > n. Then their sum f(x) +
g(x) is given by f(x) + g(x) = (ap + bg) + (ar + by) X + .. + (a, + by) X" +
b X" + ..+ bpx™,

m
= Y (a,+b)x' wherea, =0 for i > n.
i=0
For example, consider the two polynomials p(x),q(x) in Z[x] given by
p(x) =1+2x + 3x%, q(X) = 4 + 5x + 7X°
Then
p(x) + q(x) = (1+4) + (2+5)x + (3+0) x* + 7x® =5 + 7x + 3X* + 7X°,
Note that p (x) + q (X) € Z [x] and that
deg (p(x)*q(x)) = 3 = max(deg p(x), deg q(x)).
From the definition given above, it seems that deg (f(x)+g(x)) = max
(deg f (x), deg g (x)). But this is not always the case. For example,
consider p(x) =1 + x> and q (x) = 2 + 3x -x*in Z [X].
Then p(x) + q(x) = (1+2) + (0+3)x + (1-1)x* = 3 + 3x.
Here deg (p(x) + g (x)) = 1 < max (deg p(x), deg q(x)).
So, what we can say is that
deg (f(x) + g(x) ::; Max (deg f(x), deg g(x)
v f(x), 9(x) € R[x].
Now let us define the product of polynomials.
Definition

If f(X) = ap + aix + ..+ a, X" and g(x) = by + b; X + ..+ b,x" are two
polynomials in R [x], we define their product f(x). g(x) by

f(X) .g(X) = Co + C1X +.. + CanX™,

where ¢; = ajbg + a4 by + ...+ ay b; v 1=0,1,...,m + n.
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Note that a; = 0 for i > n and b; = 0 for i > m.

As an illustration, let us multiply the following polynomials in Z[x] :
p(x) =1-x+2x>, q(x) = 2 + 5x + 7x°.
Hereay=1,8=-1,8,=0,a3=2,bp=2,b;=5,b,=7.

5
Thus, p(x) g (x)= X ¢, x', where
i=0

Co = agho = 2,

C1 = aybo + agh; = 3,

Co = agho + asby + agh, =2,

C3 = azbg + b, + a;by+ aghs = - 3 (since by = 0),

C4 = a4bg + azhy + ab, + a;bs + agh, = 10 (since a; = 0 = by),

Cs = a5b0 + a4b1 + a3b2 + azb3 + a1b4 + aob5 =14 (Since as=0= b5),
So p(x), q(x) = 2 + 3x + 2x* = 3x° + 10x* + 14x°

Note that p(x), q(x) € Z[x], and deg (p(x) q(x)) =5 = deg p(x) + deg
q(x)

As another example, consider
P(X) =1 +2x, +2X,q(X) = 2 +32e Z[x].2 +
Then, p(X). q(X) = 2 + 4x+3x% +6X° = 2+ 4x+3x°.

Here, deg (p(x).q(x) = 2 < deg p (x) + deg q (x) (since deg p (x) = 1, deg
q(x) = 2).

In the next section we will show you that
deg (f(x) g(x) < deg f(x) + deg g(x)

Now try the following exercise. It will give you some practice in adding
and multiplying polynomials.
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E3) Calculate

a)  (2+3x+4X°) + (5x+x%inZ[x].

b)  ((6 + 2x?)+(@—2x+5x%) in Z7 [X].

c)  (1+x)@+2x+x?)in Z[x].

d (1 +x@Q+2x+x2)in Z3[x]

&) (2+x+x)BGx+x%)inZ[x]

By now you must have got used to addition and multiplication of
polynomials. We would like to prove that fur any ring R, R [x] is a ring
with respect to these operations. For this we must note that by definition,
+ and. are binary operations over R[x].

Now let us prove the following theorem. It is true for any ring,
commutative or not.

Theorem 1

If R is a ring, then so is R [x], where X is an indeterminate.
Proof

We need to establish the axioms RI -R6 of Unit 9 for (R[x], + ,.).
)] Addition is commutative: We need to show that
p(X) +a(x)=q(x)+p(x) forany p (x), q(x) € R[x].
Let p(X) = ag + a1X +...+ a,x", and

q(x) =bo+ by x +...+.b,x" be in R[X].

Then, p (X) + q(X) = Co + €1 X + ...+ X',

where ¢;= a; + bjand t = max(m,n).

Similarly,

q(x) + p(x) = dg+ dy X +...+ ds X',

Since addition is commutative inR, ¢, =d; V 1>0

So we have

p(x) +a (x) = a(x) + p(x).
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i) Addition is associative: Again, by using the associatively of
addition in R, we can show that if p (x),q(x), s(X) € R[x], then

{P(X)+a(x)} + s(x) = p(x) + (A(X)+ s(x)},

i)  Additive identity : The zero polynomial is the additive identity in
R [x]. This is because, for any p (x) = ap+ a; X + ...+ a,X" € R [X],

0+p(X)= (0 +ag) + (0 +a) x + ...+ (0 + a,) X"
=ap+at K+ ..+ ax".
=p(x)
iv)  Additive invers: For p (X) = ag + a;x +... + a,x" € R[x], consider

the polynomial

-p(X) = — ag— ar;X —...— a,X", —a; being the additive inverse of at in
R. Then

-p () + (-p(x)) = (a0 —a0) + (a1 —az) X + ...+ (&, —an)X"

=0+0X+0x+.,+0x

=0.
Therefore, -p (x) is the additive inverse of p ().
V) Multiplication is associative:
Let p(X) = ag+ ar X +...+ a,X",
q (X) = by + by X + ...+ bpx™,
and t (X) =do+dy X + ...+ dX, be in R [X]
Then
P (X), q(X) =Co + € X + ... + Cex°, where s = m+n and
Therefore,
{P(¥), (O} t (X) = o+ €1 X + ... +exX,
where t =s +r = m+n+r and

ey = Cdo + Cyg di + ...+ Cody
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= (akbo + ..+ aobk) do + (ak-lbo +...+ aobk-l)dl +... + aghody,

Similarly, we can show that the coefficient of x* (for any k > 0).in p(x)

{a (x) ()1}
iS akbodo + a1 (b1dg + bod)) + ...+ ag,(bkdo + by dy + ... + body)
= e k, by using the properties of + and in R.
Hence, {p(x), a(x)}, t(x) = p(x), {q (x), t (x)}
vi)  Multiplication distributes over addition:
Let p(X)=ag+aX+..+ax"
q(x) =bg + by X +...+ bypx™
and t(x) =dg+dy x+... +d, X be in R[x].
The coefficient of X in p (X). (q(x) +t (X)) is
Ck = ax (bo+do) + ax1 (by +dy) +... +ag (by + dy).
And the coefficient of X in p (x) q (X) + p (X) t(X) is
(akbotay.1b ... +aghy)+(akdg+ax.1d; +...+agdy),
= ax(botdy) + a (by+dy)+...+ag (btdy) = ck
This is true v k> 0.
Hence, p (x). {g (x) + t(x)} = p (x): a(x) + p (x) t (x).
Similarly, we can prove that
{a(x) +t1(x)}. p(x) = q(x) .p(x) + t(x) p(x)
Thus, R [Xx] isaring.
Note that the definitions and theorem in this section are true for any
ring. We have not restricted ourselves to commutative rings. But, the

case that we are really interested in is when R is a domain. In the next
section we will progress, towards this case.
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3.2  Some Properties of R[x]

In the previous section you must have realised the intimate relationship
between the operations on a ring R and the operations on R [x]. The next
theorem reinforces this fact.

Theorem 2

Let R be aring.

a) If R is commutative, ~0 is R [X].
b) If R has identity, so does R [x].

Proof

a) Let p (X) =ap + a; X +... + a,x" and

q(X)=ho+by X+ ..+ b,x"be in R [X].

Then p (X) g (X) =Cg + €1 X + ...+ CX°, where s =m + n and
Ck = akbo + ax.1b; +...+ aghy

= byag + bea + ...+ biagy + boay, since both addition and multiplication
are commutative in R.

= coefficient of x* in q (x) p(x).

Thus, for every > 0 the coefficients of xi in p(x) q(x) and q(x) p(x) are
equal

Hence, p (x) q(x) = a(x) p(x).

b) We know that R has identity 1. We will prove that the constant
polynomial 1 is the identity of R [x]. Take any

pP(X)=ay+aX+..+ax" € R[X].

Thenl.p (X) =Co+Cy X +... + ¢.X" (since deg 1 = 0),
where ¢y = ax1l+ a1 0+ a, 0+ ...+ a9 0= &

Thus 1P (X) =p (X)

Similarly, p () I = p(x)

This shows that 1 is the identity of R [xl.
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In the following exercise we ask you to check if the converse of
Theorem 2 is true.

E 4) IfRisaring such that R [x] is commutative and has identity, then
a) Is R commutative?

b) does R have identity

Now let us explicitly state a result which will help in showing us that R
Is a domain iff R [x] is a domain. This result follows just from the
definition of multiplication of polynomial

Theorem 3

Let R be a ring and f(x) and g (x) be two non-zero elements of R [x).
Then deg (f (X) g (X) < deg f(x) + deg g (x),

with equality if R is an integral domain.

Proof: Letf (X) =ap + a; X + ...+ a,X", a, = O,

and g (X) =bg + by X + ... + bX™, by, = 0.

Then deg f(x) = n, deg g (x) = m. We know that
f(X) g (X)=Co+Cy X + ... + Can X ™,

where Cy = aybg + ax.1b1 +... + aoby.

Since a n+1 , @ ns2,... and bmsg bmso, ... are all zero,
Cme+n = @b .

Now, if R is without zero divisors, then a,b,, =0, since a, = 0
and b, #0. Thus, in this case,

deg (f(x) g (x) = deg f(x) + deg g (x).

On the other hand, if R has zero divisors, it can happen that a,b, = O. In
this case,

deg (f (X) g (X) < m+n = deg f(x) + deg g(x).

Thus, our theorem is proved.
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The following result follows immediately from Theorem 3.

Theorem 4

R [x] is an integral domain <=> R is an integral domain.

Proof

From Theorem 2 and E 4 we know that R is a commutative ring with
identity iff R [x] is a commutative ring with identity. Thus, to prove this
theorem we need to prove that R is without zero divisors iff R [X] is
without zero divisors.

So let us first assume that R is without zero divisors.

Letp (X)=ap+ai X+ ... +a,x,and g (X) = b+ by X + ...+ bx™

be in R [Xx], where a, #0 and b, # O.

Then, in Theorem 3 we ha'/e seen that deg (p (X) g (X) =m+n > 0.
Thus, P (x) g (x) =0

Thus, R [x] is without zero divisors.

Conversely, let us assume that R [x] is without zero divisors. Let a and
be non-zero elements of R: Then they are non-zero elements of R [X]
also. Therefore, ab = 0. Thus, R is without zero divisors. So, we have
proved the theorem.

See if you can solve the following exercises now.

E 5) Which of the following polynomial rings are free from zero
divisors?

a)  R[x],whereR={a+b J-5|abe Z}

b)  Z7[X]

c) Zs [X]

d) R[x], where R = C [0,1]

E 6) LetR beadomain. Show that char R = char R [X].

E7) Let, R and S be commutative rings and f: R —+ S be a ring
homomorphism. Show that the map
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#:R[X] >S[X]: ¢ (aptarx + ..+ a, X)) =f(a) +f (@) x+ ... + f(a,)
x" is a homomorphism:

Now, you have seen that many properties of the ring R carry over to R
[x1. Thus, if F is a field, we 'should expect F[x] to be a field also. But
this is not so. F [x] can never be a field

This is because any polynomial of positive degree in F [X] does not have
a multiplicative inverse. Let us see why.

Let f (X) € F[x] and deg f (x) =n > 0. Suppose g (X) € F [x] such that
f(x) g (x) = 1. Then

0 =deg 1 =deg (f(x) g (x) = deg f(x) + deg g (x), since F [x] is a
domain.

=n+degg (x)>n>0.
We reach a contradiction.
Thus, F [x] cannot be a field.

But there are several very interesting properties of F [x], which are
similar to those of Z, the set of integers. In the next section we shall
discuss the properties of division in F [x]. You will see how similar they
are to the properties of Z that we have discussed in Sec. 1.6,2.

3.3  The Division Algorithm

In Sec. 1.6.2 we discussed various properties of divisibility in Z. In
particular, we proved the division algorithm for integers. We will now
do the same for polynomials over a field F.

Theorem 5 (Division Algorithm)

Let F be a field. I.-et f(x) and g(x) be two polynomials in F [x], with g(x)
#0. Then

a) there exist two polynomials q(x) and r (x) in F [X] such that
f(X) =q (x) g (x) +r (x), where deg r(x) < deg g (x).

b) the polynomials g (x) and r (x) are unique.
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Proof

a) If, deg f (x) < deg g (x), we can choose g (x) =0.
Then f, (x) = 0. g(x) + f (x), where deg f(x) < deg g (x).
Now, let us assume that deg f(x) > deg g (x).

Let f(x) = ag + a;x +... + a.x", a, =0, and
g(X) =bo + by x + ... + bpX™, bp=0, with n>m.

We shall apply the principle of induction (see Sec. 1.6.1) on deg f(x),
i.e,n.

Ifn=0, then m =0, since g(x) = 0. Now

f(X) = ag, g(X) = b, and hence

f(X) = (ag b+ 0 = q(x) g (X) + r (X), where q(x) = agho™ and r(x) = 0.
Thus,

f(x) = q(x) g(x) + r(x), where deg r(x) < deg g(x).

So the algorithm is true when n = 0. Let us assume that the algorithm is
valid for all polynomials of degree < n -1 and try to establish that it is
true for f(x). Consider the polynomial

fi () = f(x) anbm ™ X" g(x)

= (a9 + ap X +...+ apX") = (@b X" M +anbm T X+ +a,bnx")

Thus, the coefficient of X" in f, (x) is zero; and hence,

deg fi(x) < n-l.

By the induction hypothesis, there exist g, (x) and r (X) in

F[x] such that f, (x) = g, (X) g(x) + r(x), where deg r(x) < deg g(x).
Substituting the value of f;(x), we get

f(X)—anbm ' X" g(x) = da(X) g0 +r(x),

i.e., f(x) = b’ X"+ d1 (0} g(x)+r(x)
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-1 ,n-m
X

1 =q(x) g(x)+r(x), where g(x) = anbm
and deg r(x) < deg g(x).

+0)(X)

Therefore, the algorithm is true for f(x). and hence, for all polynomials
in F[x].

b) Now let us show that q(x) and r(x) are uniquely determined.

If possible, let

f(X) = g1(x) g(x)+ry(x) where deg r,(x) <deg g(x). and
f(X) = g2(x) g(x)+r2(x) where deg rx(x) <deg g(X).

Then

q1(x) g()+n(X) = ga(X) g(x)+r2(x), so that
{a(X)-02(X)} 9x) =r(x)-nx) (1)

Now if g1(X) = g2(x) then deg {q.(x) -g2(x)} > 0, so that
deg [{a(X) — 92(x)} 9(x)] > deg g(x).

On the other hand, deg {r»(x)-r.(x) } < deg g(x), since
deg ry(x) <deg g(x) and deg ry(x) < deg g(x).

But this contradicts Equation (1). Hence, Equation (1) will remain valid
only if q;(X) —g2(x) = 0. And then ry(x) —r(X) = 0,

,e., 41(X) = g2(Xx) and ry(x) = ra(X).

Thus we have proved the uniqueness of q(x) and r(x) in the expression
f(x) = a(x) g(x)+r(x).

Here q(x) is called the quotient and r(x) is called the remainder obtained
on dividing f(x) by g(x).

Now, what happens if we take g(x) of Theorem 5 to be a linear
polynomial? We get the remainder theorem. Before proving it let us set
up some notation.

Notation
Let R be aring and f(x) e R[x].Let
f(x)=ag+ax+...+a,I" R

Then, for all r e R, we define
f(r) = ag+asr+..+a," € R.
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That is, f(r) is the value of f(x) obtained by substituting r for x.
Thus, if f(x) = 1+x+x* e Z[x], then
f(2) = 1+2+4 = 7 and f(0) = 1+0+0 = 1.

Let us now prove the remainder theorem. which is a corollary to the
division algorithm.

Theorem 6 (Remainder Theorem)

Let F be a field. If f(x) € F[x] and be F, then here exists unique
polynomial q(x) € F[x] such that f(x) = (x-b) q(x)+f(b,).

Proof

Let g(x) = x-b. Then, applying the division algorithm to f(x) and g(x),
we can find unique g(x) and r(x) in F[x], such that
f(x) = q(x) 9g(x)+r(x)

= g(x) (x-b)+r(x), where deg r(x) < deg g(x) = 1.
Degr (x) <1, r (x) is an element of F, say a.

So, f(x) = (x-b) gq(x)+a.

Substituting b for x, we get

f(I) = (b-b) q(b) + a

=0.q(b)+ta=a

Thus, a = f(b).

Therefore, f(x) = (x-b) q(x)+f(b).

Note that deg f(x) = deg(x-b)+deg q(x) = 1 +deg q(x).
Therefore, deg q(x) = deg f(x)-I.

Let us apply the division algorithm in a few situations now.
Example 1
Express x*+x*+5x” -X as

(C+x+) g(x)+r(x) in Q[x].
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Solution

We will apply long division of polynomials to solve this problem.

x> + 4

X2 +x+1\/x4 +x3+5x% —x
x*+x3+x°
4x°%\,
4X% +4X+4
. 5x-4
Now, since the degree of the remainder -5x- 4 is less than deg (x*+x+ 1),
we stop the process, We get

X C+5x% -x = (XP+x+) (X°+4) -(5x+4).
Here the quotient is x*+4 and the remainder is -(5x+4).
Now you can try some exercises.

E 8) Express fas gp+r, where deg r < deg g, in each of the following
cases.

a) f=x4+1, g =X3in Q[X]

by f=x*+2x*-x+1 inZs[x]
) f=x*-1,g=x-1inR[X]

E9) You know that if p,g € Z, g = O, then g can be written as the
sum of an integer and a fraction % with | m | < | g |. What is the
analogous property, fur elements of F[x]?

Now, let us see what happens when the remainder in the expression f =
pg+r is zero

3.4 Roots of Polynomials
In Sec. 12.4 you have seen when we can say that an element in a ring

divides another element. Let us recall the definition in the context of
F[x], where F is a field.
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Definition
Let f(x) and g(x) be in F[x], where F IS a field and g (x) = 0. We say

that g(x) divides f(x)(or g(x) is a factor of f(x), or f(x) is divisible by
g(x) if there-exists q(x) € F[xl such that

f(x) = a(x) 9(x).
We write g(x) j f(x) for 'g(x) divides f(x), and g(x) ~ f(x) for 'g(x) does
not divide f(x).
Now, if f(x) e F[x] and g(x) € F[x], where g(x) = O, then does
Theorem say when g(x) | f(x)? It does, We find that g(x) | f(x) if r(x) =0

in Theorem 5.

In the following exercise we make an important, similar statement. You
can prove it by applying Theorem 6.

E 10) Let F be a field and f(x) € F[x] with deg f(x) > 1. Leta e F.
show that f(x) is divisible by x-a iff f(a) = 0.

This exercise leads us to the following definition.

Definition

Let F be a field and f(x) e F[x]. We say that an element a € F is a root
(or zero) of f(x) if f(a) = 0.

For example, 1 is a root of x*-1 e R[x], since 1>-1 = 0.
Similarly, - 1 is a root of f(x) = x3+x2+% X +% e Q[x], since- .

f(-1) = 141 - % +1 =0

N |-

Not that, in E 10 you have proved the following criterion for an element
to be a root of a polynomial:

Let f be a field and f (X) € F[x]. Then a € F is a root of f(x) if and only
if (x-a)[f(x).

We can generalize this criterion to define a root of multiplicity m of a
polynomial in F[x].
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Definition

Let F be a field and f(x) € F[x] We say that a € F is a root of
multiplicity m (where) m is a positive integer of

f(x) it (x -a)™ | f(x) but (x-a)™" x f(2).
For example, 3 is a root of multiplicity 2 of the polynomial (x-3)* (x+2)
QIx]; and (-2) is a root of multiplicity 1 of this polynomial.

Now is it easy to obtain all the roots of a given polynomial? Any linear
polynomial ax+b e F[x] will have only one root namely, -a'b. This is
because ax+b = 0 iff x = -ab.

In the case of a quadratic polynomial ax*+bx+c e F[x], you know that
its two roots are obtained by applying the quadratic formula.

_—b++/b® -4ac

X=
2a

For polynomials of higher degree we may be able to obtain some roots
by trial and error. For example, consider f(X) = x>-2x+1 e R[x], Then,
we try out X = 1 and find (1) = 0. So, we find that | is a zero of f(x). But
this method doesn't give us all the roots of f(x),.

Now you can try these exercises.

E 11) Find the roots of the following polynomials, along with their
multiplicity.

a)  f()= % xz-%x+3 e Q[X]

b) f(x)=x+x+1 e Z3[X]

) f)=x+2x*-2x-1€e Zs[X]

E 12) LetF be a field and a € F Define a function
¢ F[x] =>F: ¢ (f(x)) =f(a).

This function is the evaluation at a.

Show that

a) ¢ 1s an onto ring homomorphism.
b) ¢ b)=bVvbekF.
C) Ker ¢ =<x-a>
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So, what does the Fundamental Theorem of Homomorphism say in this
case?

As we have just seen; it is not easy to find all the roots of a given
polynomial. But we can give a definite result about the number of roots
of a polynomial.

Theorem 7

Let f(x) be a non-zero polynomial of degree n over a field F. Then f(x)
ha: at most n roots in F.

Proof
If n =0, then f(x) is anon-zero constant polynomial.
Thus, it has no roots, and hence, it has at most 0 (= n) roots in F.

So, let us assume that n > 1. We will use the principle of induction on n.
If deg t(x) =1, then

f(X) = ap + a; X, whereag a; € Fand a = 0.
So f(x) has only one root, namely, (-a;™ a)

Now assume that the theorem is true for all polynomials in F[x] of
degree < n. We will show that the number of roots of f(x), <n.

If f(x) has no root in F, then the number of root of f(x) in F is 0 < n. So,
suppose f(x) has aroot a  F.

Then f(x) = (x-a) g(x), where deg g(x) = n-I.

Hence, by the induction hypothesis g(x) has at most n-1 roots in F, say

a.....a,.; Now,

aiisarootof g(x) = 9g(a) =0 = f(a) = (a-a) g(@) =0

= gjisitroot of(x) v i=1,.., n-l.
Thus, each root of g(x) is It root of f(x).
Now, b € Fis a root off(x) iff f(b) =0, i.e., iff (b-a) g(b) =0, i.e., iff b-a
=0 or g(b) =0, since F is an integral domain. Thus, b is a root of f(x) iff

b =aor b isaroot of g(x). So, the only roots of f(x) are a and a;...,a,.1.
Thus, f(x) has at the most n roots, and so, the theorem is true for n.
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Hence, the theorem is true for all n > 1.

Using this result we know that, for example, x*-1  Q[x] can't have
more than 3 roots in Q.

In Theorem 7 we have not spoken about the roots being distinct. But an
obvious corollary of Theorem 7 is that

If f(X) e F[x] is of degree n, then f(x) has at most n distinct roots in
F.

We will use this result to prove the following useful theorem.

Theorem 8

Let f(x) and g(x) be two non-zero polynomials of degree, n over the
field F if there exist n+1 distinct elements a,,...,a,+1 In F such that f(a;) =
g(@ v i=1, ..., nt+l, then f(x) = g(x).

Proof

Consider the polynomial h(x) = f(x) -g(x)

Then deg h(x) < n, but it has n+1 distinct roots ag,..., @+1.

This is impossible, unless h(x) =0, i.e., f(x) = g(x).

We will now give you an example to show you that Theorem 7 (and
hence Theorem 8) need not be true for polynomials over a general ring.

Example 2

Prove that x> + 5 x e Z [x] has more roots than its degree. (Note that Z
is not a field.)

Solution

Since the ring is finite, it is easy for us to run through all its elements
and check which of them, are roots of

f(x) = x> + 5 x.

So, by substitution we find that

f0)=0="f(1)="f(2)=f(3)="f(4)="1(4).
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In fact, every element of Zg is a zero of f(x). Thus, f(x) has 6 zeros,
while deg f(x) =3.

Try these exercises now.

E 13) Let p be a prime number. Consider x*" - 1 ¢ Z,[x]. Use the fact
that Z, is a group of order p to show that every non-zero element
of Z,is aroot of x"*- 1.

Thus, show that x"* -1 = (x-1) (x-2) ..(x- p—1).

E 14) The polynomial x* + 4 can he factored into, linear factors in Zs

[x]:
Find this factorization.

So far, we have been saying that a polynomial of degree n over F has at
most n roots in F. If can happen that the polynomial has no root in F. for
example, consider the polynomial x*+1 e R[x]. From Theorem 7 you
know that it can have 2 roots in R, at the most. But as you know, this
has no roots in R (it has two roots, i and — i, in C).

We can find many other examples of such polynomials in R[x]. We call
such polynomials irreducible over R. We shall discuss them in detail in
the next two units.

4.0 CONCLUSION

Polynomial rings are very important class of rings in mathematics.
Hardily can we not come across polynomial expressions in our daily
mathematical endeavours, since we need to add or subtract two
mathematical algebraic expressions from each other. It is required of
you to read this unit carefully before you proceed to the next unit.

5.0 SUMMARY

In this unit we have covered the following points.

o The definition and examples of polynomials over a ring.

o The ring structure of R[x], where R is a ring.

o R is a commutative ring with identity iff R[x] is a commutative
ring with identity.

o R is an integral domain iff R[x] is an integral domain.
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6.0

®aoo0oC

The division algorithm in F[x], where F is a field, which states
that if f(x), g(x) € F[x], g(x) = O, then there exist unique q(x),
r(x) e F[x] with f(x) = q(x) g(x)+r(x) and deg r(x) < deg g(x).

a € Fisaroot of f(x) e F[x] iff (x-a) | f(x).

A non-zero polynomial of degree n over a field F can have at the
most n roots.

TUTOR-MARKED ASSIGNMENT
The polynomials are (a), (c), (d), (f).

(b) and (e) are not polynomials since they involve negative and
fractional powers of x.

(a) and (t) are in Z[X].

The degrees are 1,3,4.3, - o, respectively. The leading
coefficients of the first four are /2, =7, 1, % respectively, o has

no leading coefficient.

2+5x+3x°+(4+1)X° = 2+5x+3x°+5x°

(6+1)—2x+ 2x? +5x% =—2x + 2x> +5x°, since 7=0

1+3x+3x%+x°

1+x%,since3=0

10X+5X2+ T3 +x+x°

Every element of R is an element of R[x]. Therefore
multiplication in R is also commutative.

Also, the identity of R[x] is an element of R, and hence is the
identity of R.

(a) and (b)

We know that R[x] is a domain. Let char R = n. By Theorem 3 of
Unit 12 we know, that n is the least positive integer sucllthat n.l
= 0. Since 1 is also the identity of R[x], the same theorem of Unit
12 tells us that char R.

Let p(X) = ag+ax+...+a,X", q(X) = bp+byx+...+b,x" € R [X].

t

Then ¢ (p(X)+g(X)) =¢ ( = (ai+bi)xi), where t = max (m,n)
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t
)2 f(ai+bi)xi
=0

[f(a)+f(b)]X'

I
™M e~

I
™M ~

fla)x'+ X f(o)x'
0 i=0

= ¢ (p(x))+¢ (a(x)), since f(a;) = 0 = f(y)

Whenever a; = 0, b; = 0.

m+n
Also, ¢ (p(X)g(x)) = ¢ ( X cCixi), where ¢; = ajbo+aj.1b1+...+agb;
i=0
m+n
= 3 fle)x
i=0
m+n
= ¥ [f(a)f(bo) + f(ais) f(by) +...+(a0) f(by)]x'
i=0

since f is a ring homomorphism;

= ¢ (p(x) ¢ (a(x)).

Thus, ¢ is a ring homomorphism.

8a. f=xg+,g=xr=1I
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- X?4x-=-2
b) X+1 = -
VX +2x2 —x+1

x3 = x?

X2 —x+1
x> + X
—2x+1
—2x+1
3

Thus, f= (x*+x- 2)g+0, since 3=0.
c) f=(x*""Hg+0

0. Let f(x), g(x) e F[x], with g(x) = 0. By Theorem 5, f(x) = g(x)
g(x)+r(x) with deg r(x) < deg g(x). Now, this equality is still true
if we consider it over the field of fractions of F[x]. Then, we can
divide throughout by g(x), and get

T _
g(x)

q(x) +ﬂ, where deg r(x) < deg g(x).
9(x)

10. By Theorem 6,

f(x) = (x-a) q (x)+f(a)
Thus, f(x) = (x-a) q(x) iff f(a) =0, i.e.,
(x-a) | f(x) iff f(a) = 0.

11a. By the quadratic formula, the roots are 3 and 2, each with
multiplicity 1.
b.  x*x+1=(x-1)since-2=1inZ;,

Thus, 1 is the only zero, and its multiplicity is 2.

C. By trial, one zero is 1. Now, applying long division, we get
x*+2x%- 2x-1=(x-1) (x*+3x*+3x+1 )again, by trial and error
we find that x+1 is a factor of thus, x*+2 x*-2 x-1 = (x+1)*

This shows that 1 is a root of multiplicity 1. and -1 (=4 ) is a root of
multiplicity 3.
n m
12a. Letf(x)= X ax',g(xX)= X bx'.
i=0 i=0
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t
Then ¢ (fF(X)+g(X)) = ¢ ( X (ai+b;) X'), where t = max(m,n).

=0
t

= ¥ (a+b)a

i=0

t t

= ¥ aa+ Y bga
i=0 i=0
= f(a)+9(a)

= ¢ (f(Xx)+ ¢ (9(x)), and

m+n
¢ FX)g(X) = ¢ X (ab, +a_b, +...+a.b)x
i=0
m+n
= X (ajby +ab, +...+3,b,)a’
i=0
=f(a) 9(a)

= ¢ (f(x)) ¢ (9(x)).

Thus, ¢ is a homomorphism.

Now, given any element b e F, 3 the constant polynomial
f(x) eF[x] such that f(a) = b, i.e., (f(x)) = b.

Thus, ¢ is surjective.

b) This is what we have shown in the previous two lines.

C) f(x) € Ker ¢ iff ¢ (f(x))=0ifff(a)=0

iff (x-a) | f(x) iff f(xX) e <x-a>

Thus, Ker ¢ = <x-a>
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The Fundamental Theorem of Homomorphism says that
F[x]/<x-a> ~ F.
13.  (Z,.)isagroup and 0(Z,)=p-1)
Thus, by E 8 of Unit4, x"* =1V x e Z,
i.e., each of the p-1 elements of Z; is a root of x"*-1
Therefore, (x-1) ...(x- p—1) | (x**-1).

Since, x**-1 can have at most p-1 rots in Z,, we find that the (p-1)
elements of Z are yjr only rooyd of xP-1.

Thus, X"*-1 = (x-1)...(x- p—1).
14.  The polynomial x* +4 is the same as x* -1 in Zs[x],
since 4 =-1. Thus, applying the result in E 13, we get,

X+ 4= (x-1)(x-2) (x-3) (x-4)
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1.0 INTRODUCTION

In this unit we shall look lit three special kinds of integral domains.
These domains were mainly studied with a view to develop number
theory. Let us say a few introductory sentences about them.

In Unit 6 you saw that the division algorithm holds for F[x] where F is a
field. In Unit 1 you saw that it holds for Z. Actually, there are lots of
other domains for which this algorithm is true. Such integral domains
are called Euclidean domains. We shall discuss their properties in Sec.
7.2

In the next section we shall look at some domains which are
algebraically very similar to Z. These are the principal ideal domains, so
called because every ideal in them is principal.

Finally, we shall discuss domains in which every non-zero non-
invertible element can be uniquely factorised in a particular way. Such
domains are very appropriately called unique factorisation domains.
While discussing them we shall introduce you to irreducible elements of
a domain.

While going through the unit you will also see the relationship between

Euclidean domains, principal ideal domains and unique factorisation
domains.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

o check whether a function is a Euclidean valuation or not

. identify principal ideal domains

o identify unique factorisation domains

o obtain "the g.c.d of any pair of elements in a unique factorisation
domain

. prove and use the relationship between Euclidean domains

principal ideal domains and unique factorisation domains.
3.0 MAIN CONTENT

3.1 Euclidean Domain
In this course you have seen that Z and F[x] satisfy a division algorithm.
There are many other domains that have this property. In this section we
will introduce you to them and discuss some of their properties. Let us
start with a definition.
Definition
Let R be an integral domain. We say that a function d: R \ {0} —
NU{O} is
A Euclidean valuation on R if !.he following conditions are satisfied:
) d(@) <d(ab) v a, b € R\ {0}, and
i) foranya,b e R,b = 03 g.r € Rsuch that

a = bg+r, where r =0 or d(r) < d(b).

And then R is called a Euclidean domain.

Thus, a domain on which we can define a Euclidean valuation is a
Euclidean domain,

Let us consider an example.
Example 1

Show that Z1S a Euclidean domain.
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Solution

Define,d: Z — N U {0}: d(n) =|n|
Then, for any a,b € Z\{0},

d(ab) = [ab| = |a| |b| > |a| (since |b| > 1 for b =0)
=d(a),
i.e., d(a) < d(ab).

Further, the division algorithm in Z (see Sec.l. 6.2) says that if a, b € Z,
b = 0, then 3 q, r € Z such that

i.e.,a=bqg+r,.wherer=00r0 < |r| <|b|,

i.e, a=bq+r, where r =0 or d(r) < d(b).

Hence, d is a Euclidean valuation and Z is a Euclidean domain.
For other examples, try the following exercises.

E1) Let F be a field. Show that F, with the Euclidean valuation d
defined by d(a) =1 va e F\.{0}, is a Euclidean domain.

E 2) LetF be afield. Define the function
d: F[x]\ {0} — N U{0} : d(f(x)) = deg f(x).

Show that d is a Euclidean valuation on F[x], and hence, F[X] is a
Euclidean domain.

Let us now discuss .some properties of Euclidean domains. The first
property involves the concept of units. So let us define this concept.
Note that this definition is valid for any integral domain.

Definition

Let R be an integral domain. An element a € R is called a unit (or an
invertible element) in R, if we can find an element b € R, such that ab
=1, i.e., if a has a multiplicative inverse.

For example, both 1 and -1 are units in Z since 1.1 =1 and (-1).(-1) = 1.
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Caution

Note the difference between a unit in R and the unity in R. The unity is
the identity with respect to multiplication and is certainly a unit. But a
ring can have other units too, as you have just seen in the case of Z.
Now, can we obtain all the units in a domain? You know that every non-
zero element in a field F is invertible. Thus, the set of units of F is F \
{0}. Let us look at some other cases also.

Example 2

Obtain all the units in F[x], where F is a field.

Solution

Let f(x) e F[x] be a unit. Then 3 g(x) e F[x] such that f(x) g(x) = 1.
Therefore,

deg (f(x)g(x)):deg (1) =0, i.e.,

deg f(x)+deg g(x) = 0.

Since deg f(x) and deg g(x) are non-negative integers this equation can
hold only if deg f(x) = 0 = deg g(x). Thus, f(x) must be a non-zero
constant, i.e. an element of F\ {0}. Thus, the units of F[x] are the non-
zero element of F. That is, the units of F and F[x] coincide.

Example 3

Find all the unitsin R={a +bv/-5 |a,b e Z}.

Solution
Let a+b+/—5 be a unit in R. The there exists
C+d+/-5 e R such that
(atb+/-5) (c+d/-5) =1
=  (ac-5bd)+(bc+ad/-5) =1
= ac-5bd = land bc+ad =0

=  abc-5b%d = b and bc+ad =0
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= a(-ad)-5b’d = b, substituting be =-ad.

=2 (a®+5b%)d =-b

So, if b = 0, then (a*+5b°) | b, which is not possible.

~b=0.

Thus, the only units of R are the invertible elements of Z.

We have asked you to find these elements and other units in E 3 below

E 3) Find all the units in
a) Z, b)) Zs, ¢ Z+iZ.

E 4) LetR bean integral domain. Prove thatu € R is a unit iff
Ru=R

Now we are in' a position to discuss some very simple properties of a
Euclidean domain.

Theorem 1

Let R be a Euclidean domain with Euclidean valuation d. Then, for any
a e R\{0},d(a)=d(1) iffaisaunitinR.

Proof

Let us first assume that a that a € R\ {0} with d(a) = d(1)

By the division algorithm in R, 3 q,r € R such that 1 = ag+r,

where r =0 or d(r) < d(a) = d(1).

Now, if r= 0, d(r) = d(r.1) > d(1). Thus, d(d) d(1) can't happen.
Conversely, assume that is a unit in R. Let be R such that ab = 1. Then
d(a) < d(ab) = d(1). But we know that d(a) = d(a.1) > d(1). So, we must
have d(a) = d(1).

Using this theorem, we can immediately solve Example 2 since f(x) is a
unit in F[x] iff deg f(x) = deg (1) = 0.
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Similarly, Theorem 1 tells us that n e Z is a unit in Z iff |n| = |1| = 1.
Thus, the only unitin Z are 1 and (-1).

Now let us look at the ideals of a Euclidean domain.
Theorem 2

Let R be a Euclidean domain with Euclidean valuation. d. Then every
ideal | of R is of the form | = Ra for some a € R.

Proof

If 1 = {0}, then | = Ra, where a = 0. So let us assume that | ={0}. Then
I\ {0} is non-empty, Consider the set {d(a) | a € IN\{0}}. By the well
ordering principle (see Sec. 1.6.1) this set has a minimal element. Let
this be d(b), where b 1.\ {0}. We will show that | = Rb.

Since b e land I is an ideal of R,

Rbcl. (1)

Now take any a < I. Since I < Rand R is a Euclidean domain, we can.
find q,r € R such that

a=bqg +r, wherer =0 ord(r) <d(b).
Now, b e | =bq € I. Also, a € I. Therefore, r =a-bg < I.

But r =0 or d(r) < d(b). The way we have chosen d(b), d(r) < g(b) is not
possible.

Therefore, r =0, and hence, a =bqg  Rb.

Thus,l < Rb. ... 2

From (1) and (2) we get

1=Rb.

Thus, every ideal | of a Euclidean domain R with Euclidean valuation d
is principal, and is generated by a < |, where d(a) is a minimal element

of the set {d(x) | x eI\ {0}}.

So, for example, every ideal of Z is principal, a fact that you have
already proved in Unit 10.
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Now try the following exercises involving the ideals of a Euclidean
domain.

E 5) Show that every ideal of F[x] is principal, where F is a field.
E 6) Using Z as an example show that the set

S={a e R\ {0} |d@ >d} U{0} is not an ideal of the
Euclidean domain with Euclidean valuation d.

Theorem 2 leads us to a concept that we shall discuss now.

3.2 Principal Ideal Domain (PID)

In the previous section you have proved that every ideal of F[x] is
principal, where F is a field. There are several other integral domains,
apart from Euclidean domains, which have this property. We give such
rings a very appropriate name.

Definition

We call an integral domain R a principal ideal domain (PID, in short)
if every ideal in R is a principal ideal.

Thus, Z is a PID. Can you think of another example of a PID? What
about Q and Q[x]? In fact, by Theorem 2 all Euclidean domains are

PIDs. But, the converse is not true. That is, every principal Ideal domain
is not a Euclidean domain.

For example, the ring of all complex numbers of the form a+g(1+ iv/19),
where a, b € Z, is a principal ideal domain, but not it Euclidean domain.
The proof of this too technical for this course, so you can take our word
for it for the present!

Now let us look at an example of an integral domain that is not a PID.
Example 4

Show that Z[x] is not a PID.

Solution

You know that Z[x] is a domain, since Z is one. We will show that all
its ideals are not principal. Consider the ideal of Z[x] generated by 2 and
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X, 1.e., < 2,x>. We want to show that < 2, x > = <f(x)> for any f(x) e
Z[X).

On the contrary, suppose that 3f(x) € Z[x] such that <2,x> = <f(x)>.
Clearly, f(x) =0. Also, 3 g(x), h(x) € Z[x] such that

2 = 1(x) g(x) and x = f(x) h(x).

Thus, deg f(x) + deg g(x) =deg2=0 ... @
and deg f(x) + deg h(x) =degx=1 ... 2
(1) shows that deg h(x) =0, i.e., f(x) € Z, say f(x) =n.

Then (2) shows that deg h(x) = 1. Let h(x) = ax+b witha,b € Z
Then x = f(x) h(x) = n(ax+b)

Comparing the coefficients on either side of this equation, we see that na
=landnb=0.Thus, nisaunitin Z, thatis,n=+1

Therefore, 1e < f(x)> = <x,2>. Thus, we can write

1 = X (ag+agx*+ax’) + 2(bo+bix+...+0ex%), where aj,bjeZv1=0, 1....r
andj=0,1,....... S

Now, on comparing the constant term on either side we see that 1 = 2h,.
This can’t be true, since 2 is not invertible in Z. So we reach a
contradiction.

Thus, <x,2> is not a principal ideal.

Thus, Z[x] is not a P.1.D.

Now, try the following exercise.

E 7) Show that a subring of a PID need not be a PID.

E 8) Will any quotient ring of a PID be a PID? Why?

Remember that a PID must be an integral domain.

We will now discuss some properties of divisibility in PIDs. You may

recall from Unit 12 that if R is a ring and a,b € R, with a,b= 0, then a
divides b if there exists ¢ € R such that b = ac.
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Now we would like to generalize the definition of some terms that you
came across in Unit 1 in the context of Z.

Definition

Given two elements a and b in a ring R, we say that ¢ € R is a common
divisor ofaand b ifc|aandc|b.

An element d € R is a greatest common divisor (g.c.d. in short) of a,
be Rif

1) d|aandd|b, and

i) for any common divisor c of aand b, c | d.

We will show you that if the g.c.d of two elements exists, it is unique up
to units, i.e., if d and d” are two g.c.ds of a and, then d=ud’, for some
unit u. For this we need a result that you can prove in the following
exercise.

E9) LetR bean integral domain. Show that

a) uisaunitinRiffu|1.
b) fora,b e R,a|bandb|aiff aand b are associates in R.

So now let us prove the following result.
Theorem 3

Let R be an integral domain and a, be R. If a g.c.d of a and b exists,
then it is unique up to units.

Proof

So, let d and d” be two g.c.ds of a and b. Since d is a common divisor
and d” isag.c.d, we getd |d". Similarly, we getd” | d. Thus, by E 9 we
see that d and d” are associates in R. thus, the g.c.d of a and b is unique
up to units.

Theorem 3 allows us to say the g.c.d instead of a g.c.d. We denote the
g.c.d of a and b by (a,b). (This notation is also used for elements of R x
R. But there should be no cause for confusion. The context will clarify
what we are using the notation for).

How to we obtain the g.c.d of two elements in practice? How did we do
it in Z? we looked at the common factors of the two elements and their
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product turned out to be the required g.c.d. We will use the same method
in the following example.

Example 5

In Q[x] find the g.c.d of
p(x) = x*+3x — 10 and
q(x) =6x° - 10 x - 4
Solution

By the quadratic formula, we know that the roots of p(x) are 2 and — 5,
and the roots of g(x) are2and -1/ 3

Therefore, p(x) = (x-2) (x+5) and q(x) is the product of the common
factors of p(x) and q(x), which is (x-2).

Try this exercise now

E 10) Find the g.c.d of

a) 2and 6inZ/<8>

b)  x*+8x15 and x*+12x+35 in Z[x].

c)  x>-2x*+6x-5 and x*-2x+1 in Q[x].

let us consider the g.c.d of elements in a PID

Theorem 4

Let R be a PID and a, be R. Then (a,b) exists and is of the form ax+by
for some x,y € R.

Proof

Consider the dieal <a,b>. Since R is a PID, this ideal must be principal
also. Let d € R such that <a,b> = <d>. we will show that the g.c.d of a
and b is d.

Since a e<d>, d | a, Similarly, d | b.

Now suppose ¢ € R such thatc|aand c|b.

Since d e<a,b>, 3 X,y € R such that d = ax+by.

174



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

Sincec|aandc|b, c|(axt+by), i.e,c|d.
Thus, we have shown that d = (a,b), and d = ax+by for some x,y € R.

The fact that F[x] is a PID gives us the following corollary to Theorem
a.

Corollary

Let F be a field. Then any two polynomials f(x) and g(x) in F[x] have a
g.c.d which is of the form a(x) f(x) + b(x) g(x) for some a(x) e F[x].

For example, in 10 (c), (x-1) = % (x® —2x? +6x—5)+% (x* —=2x+1)

Now you can use Theorem 4 to prove the following exercise about
relatively prime elements in a PID, i.e., pairs of elements whose g.c.d is
1.

E 11) LetR be aPID and a,b,c € R such that a | bc. Show that if (a,b) =
1,thena]c.

(Hint: By Theorem 4, 3 x,y € R such that ax+by = 1).

Let us now discuss a concept related of a prime element of a domain
(see Sec. 12.4).

Definition

Let R be an Integral domain. We say that an element x € R IS
irreducible if

) X is not a unit, and
i) if x=ab witha,b € R, then ais a unit or b is a unit.

Thus, an element is irreducible if it cannot be factored in a non-trivial
way, i.e., its only factors are its associates and the units in the ring.

So, for example, the irreducible elements of Z are the prime, numbers
and their associates. This means that an element in Z is prime iff it is
irreducible.

Another domain in which we can find several examples is F[x}, where F

is a field. Let us look at the irreducible elements in E9(x), i.e., the
irreducible polynomials over R and C. Consider the following important
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theorem about polynomials in C[x]. You have already come across this
in the Linear Algebra course.

Theorem 5 (Fundamental Theorem of Algebra)

Any non-constant polynomial in C[x] has a rot in C. (In fact, it has all
its roots in C).

Does this tell us anything about the irreducible polynomials over C?
Yes. In fact, we can also write it as.

Theorem 5

A polynomial is irreducible in C[x] iff it is linear

Theorem 6

Any irreducible polynomial in R[x] has degree 1 or degree 2.

We will not prove these results here but we will use them often when
discussing polynomials over R or C. You can use them to solve the

following exercise.

E 12) Which of the following polynomials is irreducible? Give reasons
for your choice.

a)  x-2x+l e R[X]

b)  x*x+1 e C[X]

C) x-i e C[X]

d)  x>-3x*+2x+5 e R[X]

Let us now discuss the relationship betwee9 prime and irreducible
elements in a PID.

Theorem 7

In a PID an element is prime iff it is irreducible.

Proof

Let R be a PID and xeR be irreducible. Let x | ab, where a,beR.
Suppose x xa. Then (x,a) = 1, since the only factor of x is itself, up to

units. Thus, by E 11, x | b, Thus, X is prime.
To prove the converse, you must solve the following exercise.
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E 13) Let R be a domain and p € R be a prime element. Show that p is
irreducible.

(Hint: Suppose P = ab. Then p | ab. If p | a, then show that b must be a
unit.)

Now, why do you think we have said that Theorem,7 is true for a PID
only? From E 13 you can see that one way is true for any domain. Is the
other way true for any domain? That is, is every irreducible element of a
domain prime? You will get an answer to this question in Example 6.
Just now we will look at some uses of Theorem 7.

Theorem 7 allows us to give a lot of examples of prime elements of
F[x]. For example, any linear polynomial over F is irreducible, and
hence prime. In the next unit we will particularly consider irreducibility
(and hence primness) over Q[x]

Now we would like to prove a further analogy between prime elements
in a PID and prime numbers, namely, a result analogous to Theorem 10
of Unit For this we will first show a very interesting property of the
ideals of a PID. This property called the ascending chain condition,
says that any increasing chain of ideals in a PID must stop after a finite
number of steps.

Theorem 8

Let R be a PID and Iy,l,...... , be an infinite sequence of ideals of R
satisfying

I, I, <...ranass(
Then ImeN such that I, = Ins1 = Ineo=......

Proof

Consider the set | = IlUIZU....G In. We will prove that .1 is Firstly, |
n=1

#=g¢,sincel,=gand |, 1.

Secondly, ifa,b €1, thena <1, and be I for somer,s € N.

Assume r >s. Then Iy c |.. Therefore, a,b € I;, Since I, is an ideal of R,
abel,cl.Thus,a-bel Vv a,b el

Finally, letx e Randa € I. Thena e |, for somer € N.
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~Xa e |, < I. Thus, whenever x e Randa € I, xa € |.

Thus, 1'is n ideal of R. Since R is a PID, | = <a> for some a € R. Since a
el ,ael,forsome me N.

Then Icl,. But I, I. So we see that | = I,
Now, Iy, = lns2, and so on. Thus, In=lm+1 = Lneo=...

Now, for a moment let us go back to Sec. 12.4, where we discussed
prime ideals. Over there we said that an element peR is prime iff <p >
is a prime ideal of R. If R is a PID, we shall use Theorem 7 to make a
stronger statement.

Theorem 9

Let R be a PIP. An ideal < a > is a maximal ideal of R iff a is a prime
element of R.

Proof

If <a> is a maximal ideal of R, then it is a prime ideal of R. Therefore, a
is a prime element of R.

Conversely, let a be prime and let | be an ideal of R such that <a >~ I.
Since R is a PID, | = <b> for some b e R. We will show that b is a unit
in R; and hence, by E 4, <b>=R, i.e., | = R.

Now, <a> < <b> = a = bc for some ¢ € R. Since a is irreducible,
either is an associate of a or b is a unit in R. But if b is an associate of a,
then <b> = <a>, a contradiction. Therefore, b is a unit in R. Therefore,
1=R.

Thus, <a> is a maximal ideal of R.

What Theorem 9 says is ~hat the prime ideals and maximal ideals
coincide in a PID.

Try the following exercise now.

E 14) Which of the following ideal are maximal? Give reasons for your
choice.

a) <5>inZ,

b) <x*1>inQ]

c)  <x*x+1>inR[x],
d) <X >in Z[X].
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Now, take any integer n. then we can have n =0, orn=+ 1, or n has a
prime factor. This property of integers is true for the elements of any
PID, as you will see now.

Theorem 10

Let R be a ID and a be a non-zero non-invertible element of R. then
there is some prime element p in R such that p|a.

Proof
If a is prime, take p = a. otherwise, we write a = a;b; where neither a;

nor by is an associate of a. Then <a> < < a; >. If a; is prime take p = a;.

Otherwise, we can write a; = ab,, where neither a, nor b, is an associate
of a;. Then <a;> <= <a,>. Continuing in this way we get an increasing

chain

<a> c <q> c <> C...

By Theorem 8, this chain stops with some <a,>. Then a, with be prime,
since it doesn’t have any non-trivial factors. Take p = a,, and the
theorem is proved.

And now we are in a position to prove that any non-zero non-invertible
element of a PID can be uniquely written as a finite product of prime
elements (i.e., irreducible elements).

Theorem 11

Let R be a PID. Leta € Rsuch thata # 0 and a is not a unit. Then a =
P1P>...Pr, Where pg,pa,...,pr, are prime elements of R.

Proof

If a is a prime element, there is nothing to prove. If not, then p; | a for
some prime p; in R, by Theorem 10. Let a = p;a;. If a; is a prime, we are
through. Otherwise p,|a; for some prime p, in R. Let a; = p,a,. Then a =
p1p2a,. If @, is a prime, we are through. Otherwise we continue the
process. Note that since a; is a non-trivial factor of a, <a> < <a>.

Similarly, <a;> < <a,>. So, as the process continues we get an

increasing chain of ideals,
<a> < <a;> < <ay>

In the PID R. Just as in the proof of Theorem 10, this chain ends at <a,,>
for some m € N, and ay, is irreducible.
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Hence, the process stops after m steps, i.e., we can write a = p1p,... Pm,
where p; is a prime elementof R vi=1,..., m.

Thus, any non-zero non-invertible element in a PID can be factorised
into a product of Primes. What is interesting about this factorization is
the following result that you have already proved for Z in Unit 1.
Theorem 12

Let R. be a PID and a # 0 be non-invertible in R. Let a = P;P,...P, =
0102...0m, Where P; and g; are prime elements of R. Then n = m and each
P; is an associate of some gjfor L <i<n,1<j<m.

Before going into the proof of this result, we ask you to prove a property
of prime elements that you will need in the proof.

E 15) Use induction on n to prove that if p is a prime element in an
integral domain Rand if p|a;a,... a, (where a;,a,..., a,e R), then
p; for some i=1,2,...,n.

Now let us start the proof of Theorem 12.

Proof

Since p1p;...Pn = d102...Gm, P1lP1P2-- U

Thus, by E 15, pi|g; for some j = 1,...... ,m. By changing the order of the
Qi, If necessary, we can assume that j = 1, i.e., p1 | ;. Let g = pius.
Since q; is irreducible, u; must be a unit in R. So p; and q; are
associates. New we have

P1ps...pn = (P1U1) Q2...qm

Canceling p, from both sides, we get

P2Ps3...Pn = U1Q2...qm.

Now, if m > n, we can apply the same process to p,,ps, and so on.
Then we will get

1 =uyUy...U, Qnez...QqM.

This shows that q,.1 IS a unit. But this contradicts the fact that g,.; IS
irreducible.
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Thus, m<n.

Interchanging the roles of the ps and gs and by using a similar argument,
we getn<m.

Thus, n =m.

During the proof we have also shown that each p; is an associate of some
gi, and vice versa.

What Theorem 12 says is that any two prime factorizations of an
element in a PID are identical, apart from the order in which the
factors appear and apart from replacement of the factors by their
associates.

Thus, Theorems 11 and 12 say that every non-zero element in a PID R,
which is not a unit, can be expressed uniquely (upto associates) as a
product of a finite number of prime elements.

For example, xX* - 1 e R [x] can be written as (x-1) (x +1) or (x+1) (x-
1) or [%(x +1)] [2(x -1)] in R [x].

Now you can try the following exercise.

E 16) Give the prime factorization of 2x°-3 x+1 in Q[x] and Z,[x].

The property that we have shown for a PID in Theorems 11 and 12 is
true for several oilier domains also. Let us discuss such rings now.

3.3 Unique Factorisation Domain (UFD)

In this section we shall look at some details of a class of domains that
includes PIDs

Definition

We call an integral domain R a Unique Factorisation Domain (UFD,
in short) if every non-zero element-of R which is not a unit in R can be
uniquely expressed as a product of a finite number of irreducible:
elements of R.

Thus, if Risa UFD and a € R, with a = 0 and a being non-invertible,
then
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) a can be written as a product of a finite number of irreducible
elements, and

i) if a = pip2 Pn=002-.- Qm be two factorisations into irreducible,
then n = mand each p; is am associate of some g;, where 1 <1 <n,

1<j<m,

Can you think of an example of a UFD? Do Theorem 11 and 12 help?
Of course! In them we have proved that every PID is a UFD.

Thus, F[x] is a UFD for any field F.

Also, since any Euclidean domain is a PID, it is also a UFD. Of course,
in Unit 1 you directly proved that Z is a UFD. Why don’t you go
through that proof and then try and solve the following exercises.

E 17) Directly prove that F[x] is a UFD, for any filed F.

(Hint: Suppose you want to factorise f(x). Then use induction on
deg f(x).)

E 18) Give two different prime factorisations of 10 in Z:

So you have seen several examples of UFDs. Now we give you an
example of a domain which is not a UFD (and hence, neither a PID nor
a Euclidean domain).

Example 6

Show that Z[v/-5] = {a+b+/~5 |a,b € Z} is not a UFD.

Solution

Let us define a function

f: Z [-5] = NU {0}by f(a+b /-5 ) = a®+5b.

This function is the norm function, and is usually denoted by N.

You can check that this function has the property that
f(ap) = f(o) f(B) V a.p € Z [v/-51.

Now, 9 has two factorizations in Z[ +/-5], namely,
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9=3.3=(2++/-5) (2-/-5)

In Example 3, you have already shown that the only units of Z[+/-5]

are 1 and — 1. Thus, no two of 3, 2++/-5 and 2 - +/—5 are associates of
each other.

Also, each of them is irreducible. For suppose any one of them,
say 2++/—5, is reducible. Then

2++/—5= ap for some non-invertible a.p € Z[+/-5].
Applying the function f we see that

f(2+~/-5) = f(a) f(B),

i.e., 9 =f(a) f(B).

Since f(a), f(3) € N and «, B are not units, the only possibilities are f(co)

=3 =1(B).
So, if o = a+b+/—5, then a®+5b% = 3.

But, if b = 0, then a+ 5b* > 5; and if b = 0, then a? = 3 is not possible in
Z. So we reach a contradiction. Therefore, our assumption that 2++/—5
is reducible is wrong. That is, 2++/—51s irreducible.

Similarly, we can show that 3 and 2-+4-5 are irreducible. Thus, the
factorization of 9 as a product of irreducible elements is not unique.
Therefore, Z [+-5] is not a UFD.

From this example you can also see that an irreducible element need not
be a prime element. For example, 2+ +/+5 is irreducible and 2+ /+53.3,
but 2++/+5y3. Thus, 2++/+5 is not a prime element.

Now for an exercise

E 19) Give two different factorisations of 6 as a product of irreducible
elements in Z[v+5].

Now let us discuss some properties of a UFO. The first property says
that any two elements of a UFD have a g.c.d; and their g;c.d is the
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product of all their common factors. Here we will use the fact any
element a in a UFD R can be written as

n

A= plrlpzrz L pn

Where the p;s are distinct irreducible elements of R. For example, in
Z[x] we have x> — xX>~x+1= (x-1) (x+1) (x-1) = (x=1)* (x+1).

So, let us prove the following result.
Theorem 13

Any two elements of a UFD have a g.c.d.
Proof

Let R be a UFD and a.b eR.

Sn

Leta = p;"p,”...p.," and b = p;>'p,>....pn

Where py,pz,..., P are distinct irreducible elements of R and r; and spare
non-negative integers Vi = 1,2,...,n.

(If some P; does not occur in the factorisation of a, then the
corresponding r; = 0 Similarly, if some p; is not a factor of b, then the
corresponding s; = 0. For example, take 20 and 15 in Z. Then 20 = 2°x3°
x.5" and 15 = 2°x3'x.5%)

Now, lett;=min (r;,s) V1=1, 2,....,n.

Then d = p,"p,%...p," divides a as well as b, since tj<rjand ;< s V | =
1,2,.....n.

Now, let c | a and c | b. Then every irreducible factor of ¢ must be an
irreducible factor of a and of b, because of the unique factorisation

property.

Thus, ¢ = p,™p,™...pa™ where m; < rjand m; < s; VI = 1,2,...,n. Thus,
mi<tVv

Therefore, c | d.
Hence, d = (a,b).

This theorem tells us that the method we used for obtaining the g.c.d in
Example 5 and E 10 is correct.
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Now, let us go back to Example 6 for a moment. Over there we found a
non-UFD in which an irreducible element need not be a prime elemnt.
The following result says that this distinction between irreducible and
prime elements can only occur in a domain that is not a UFD

Theorem 14

Let R be a UFD. An element of R is prime iff it is irreducible.

Proof

By EI3 We know that every prime in R is irreducible. So let us prove the
converse.

Let a € R be irreducible and let a | bc, where b,ce R.

Consider (a,b). Since a is irreducible, (a,b)=1 or. (a.b) = a

If(a,b) =a, a|b.

If (a,b) =1, then a}b. Let bc = ad, where d € R.

Let b = p/* p%..pn™ and ¢ = qg;°'g.*%...0.>", be irreducible
factorizations of b and c. Since bc = ad and a is irreducible, a must be
one of the p;s or one of the g;s. Since ayb, a = p; for any i. Therefore, a =
q; for some j. That is, alc.

Thus, If (a,b) =1, thena|c

So, we have shown thata |bca|bora|c.

Hence, a is prime.

For the final property of UFDs that we are going to state, let us go back
of Example 4 for a moment. Over there we gave you an example of a
PID R, for which R [x] if R is a UFD. We state the following result.
Theorem 15

Let R be a UFD. Then R[x] isa UFD

We will not prove this result here, even though it is very useful to
mathematicians. But let us apply it. Y 011 can use it to solve the

following exercises.

E 20) Give an example of a UFD which is not a PID.
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E21) If pis an irreducible clement of a UFD R. then is it irreducible in
every quotient ring of R?

E 22) Is the quotient ring of a UFD a UFD? Why?
E 23) Is asubring of a UFD a UFD? Why?

Let us wind up this unit now, with a brief description of what we have
covered in it.

4.0 CONCLUSION

50 SUMMARY
In this unit we have discussed the following points.
1) The definition and examples of a Euclidean domain.

2) Z, any field and any polynomial ring over a field arc Euclidean
domains.

3) Units associates, factors, the g.c.d of two elements, prime
elements and irreducible elements in an integral domain.

4) The definition and examples of a principal ideal domain (PID).

5) Every Euclidean domain is a PID, but the converse is not true.
Thus, Z. F and F[x] are PIDs for any field F.

6) The g..c.d of any two elements a and b in a PID R exists and is of
the form ax+by for some x,y € R.

7) The Fundamental Theorem of Algebra: Any non-constant
polynomial over C has all its rootsln C.

8) In a PID every prime ideal is a maximal ideal.

9) The definition and examples of a unique factorisation domain
(UFD).

10)  Every PID is a UFD, but the converse is not true. Thus Z. F an~
F[x] are UFDs, for any field F
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11) In a UFD (and hence, in a PID) an clement is prime iff it is
irreducible

12)  Any two elements In a UFD have a g.c.d.

13) IfRisa UFD, thensois R [X]

ANSWER TO SELFASSESSMENT EXERCISE

1.  d:F\{0} > NU {0}: d(x) =1

Forany a, b € F\ {0},

d(ab) =1 =d(a).

~.d(a) =d(ab) v a,b € F\ {0}

Also, forany a,b € F, b #0,

a = (ab™®)b+0,

So, F trivially satisfies the second condition for a domain to be
Euclidean.

Thus, F is a Euclidean domain.
2. In Unit. 13, you have seen that
deg (f(x) g(x) = deg f(x)+deg g(x) V f(x),g(x) € F [x] \ {0}.
Now, use Theorem 5 of Unit 13, and you will have proved the result.
3a) meZisaunitiffdn e Zsuchthatmn=1,i.e.,iffm=+1.
b) Let mm e Zg be aunit. Then3 n e Zgsuch that mn =1
Thus, from Sec. 1.6.2 we see that m is a unit if the g.c.d of mand 6 is 1.
~m=1or5
C) Z/5Z is a field. Thus, the units are all its non-zer6 elements.

d) Let a+ib be a unit. Then 3 c+id € Z+iZ such that

(a+ib) (c+id) =1,
= (ac-bc)+(ad+bc)l =1
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= ac-bd =1 and ad+bc =0
=  b=0,asin Example 3.
Thus, a+ib =1 or-1, using,(a) above.

4, Let u € R be a unit. Then 3 v € R such that vu = 1. Thus, for any
reR,r=r.1=r(vw)=(rv)u € Ru.

Thus, R < Ru. .. R=Ru,

Conversely, let Ru=R. Since 1 € R =.Ru, 3 v € R such that
1 =vu. Thus, uisaunitinR.

5. Apply Theorem 2 to the Euclidean domain F[Xx].

6. LetR=Z. ThenS={n e Z*| |n|>1} U {0}
Then 2 € S, 3 € Sbut 2-3 ¢ Ssince |2-3| = 1.
Thus, S is not even a subring of R,

7. For example, Z[x] is a subring of Q[x], which is a PID. But Z[xl
is not a PID.

8. Z i1s it,PID. But Z/6Z is not even a domain. Thus, it is nota P1D.
9a. uisaunitiffuv=1forsomev e Riffu]|l
b. albandb|a

=> b =ac and a = bd for some b,d € R.

=> b = bdc

=> b=0ordc=1

If b =0, then a =0, and then a and b are associates.
If b=0, thendc =1. Thus, cisaunitand b = ac.

Therefore, a and bare associates.
Conversely, let a and b be associates in R, say a = bu, where u is a unit

in R. then b | a. Also, let v € R such that uv = 1. Then av = buv = b.
Thus, a | b.

10a. 2.
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b)  x*+8x+15 = (x+3) (X+5), X*+12x+35 = (X+5) (x+7)

Thus, their g.c.d is x+5

€)  XP-2x%+6x-5 = (X-1) (X*-x+5), X*-2x+1 11 (X-1)%,

Thus, their g.c.d is x-1.

11. 3 x,y € Rsuch that ax+by =1
Then ¢ = 1c = (ax+by) ¢ = acx+bcy
Since a|ac and a | bc, a | (acx+bcy)

12.  (c) is, because of Theorem

(@) isnot, since it is (x-1)°

(b)  isnot, because of Theorem 5'.

(d) isnot, because of Theorem 6.

13. Letp=ab. Thenp|ab=1p|aorp|b. supposep|a. Leta-pc.
Then p =ab =pcbh = p(1-ch) =0 = 1-cb =0, since R is a
domain and p = 0. Thus, bc = 1, i.e., b is a unit. Similarly, you
can show that if p | b, then a is a unit.

So, p=ab = aisaunitorbisaunit, i.e., pis irreducible.

14(a), (c), since 5 and Xx°+x+ 1 are irreducible in Z and R[x],

respectively.

(b)  isnot, using Theorem 9.

(d) isnot, since Z[x]/ <x> ~ Z, which is not a field.

15.  The result is clearly true for n = 1. Assume that it holds for all m
<n, i.e.,, whenever m<nand p | a a,...am then p | a; for some | =
1,2,....m.

Now let p | a a;...a,. Then p | (a a;...a5.1)an.

Since p is a prime element, we find that p | a a,...an1 0r p | a,

If p| & a,...an.1, then p | a;for some i = 1,...,n-l by our assumption.

Ifp+a;...an1, P|an.

Thus, in either case, p | a; for some i =1,....,
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So, our result is true for n.
Hence, it is true V n € N.
16.  2x° 3x+1=(2x-1) (x-1) in Q[x].
In Z, [x] the given polynomial is x+1,since 2 =0and-3 =1.
This polynonlial is linear, and hence, irreducible over Z,
Thus, its prime factorisation is just x+1 .
17.  Let f(x) be a non-zero non-unit in F[x] and let deg f(x) = n.
Then n > 0. We will prove that f(x) can be written as a product of
irreducible elements, by induction on n, If n = 1, then f(x) is linear, and
hence irreducible.
Now suppose that the result is true for polynomials of degree < n. Now
take f(x). If f(x) is irreducible, there is nothing to prove. Otherwise,
there is a prime f;(x) such that f;(x) | f(x). Let f(x) = f1(x)g:(x). Note that
deg f1(x) > 0.
Hence, deg 0:(x),< deg f(x). If gi(x) is prime, we are through. Otherwise
we can find a prime element f,(x) such that g,(x) = f2(x)g2(x). Then deg
g2(X) < deg gi(x). This process must stop after a finite number of steps,
since, each time we get polynomials of lower degree. Thus, we shall
finally get

f(x) = f1(x) f2(X)...Tn(X),

where each fy(x) is prime in F[x].

Now, to show that the factorization is unique you go along the lines of
the proof of Theorem 12. .’

18. 10=2x5=x2.
19. 6=23=(1+4/-5) (1-4/-5)

Using the norm function you should check that each of 2,3,1++/—~5and 1
- J=5are irreducible in Z [v/-5].

20.  Z[x].
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21.  No. For example, x is irreducible in Z[x]; but x is zero in Z[x]/<
X>~Z

22.  The quotient ring of a domain need not be a domain. For
example, Z is a UFD, but Z/<4> is not.

Also, even if the quotient ring is a domain, it may not be a UFD. For
example, Z[vV-5] ~ Z[x]/< X*+5 > is not a UFD, while Z[x] is

23.  No. For example, Z[+/-5] is a subring of C, a UFD. But Z[+/-5]
is not a UFD.
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UNIT 4 IRREDUCIBILITY AND FIELD EXTENSIONS
CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1  lrreducibility in Q[X]
3.2  Field Extensions
3.2.1 Prime Fields
3.2.2 Finite Fields
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In the previous unit we discussed various kinds of integral domains,
including unique factorization domains. Over there you saw that Z[X]
and Q[x] are UFDs. Thus, the prime and irreducible elements coincide
in these rings; In this unit we will give you a method for obtaining the
prime (or irreducible) elements of Z[x] and Q[x]. This is the Eisenstein
criterion, which can also be used for obtaining the irreducible elements
of any polynomial ring over a UFD.

After this we will introduce you to field extensions and subfields. We
will use irreducible polynomials for obtaining field extensions of a field
F from F[x]. We will also show you that every field it; a field extension
of Q or Zp for some prime p. Because of this we call Q and the Z,OS prim
fields. We will discuss these fields briefly.

Fig. 1: Evariste Galois (1811 -1832)
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Finally, we will.look at finite fields. These fields were introduced by the
young French mathematician Evariste Galois (Fig. 1) while he was
exploring number theory. We will discuss some properties of finite
fields which will show us how to classify them.

Before reading this unit we suggest that you go through the definitions
of irreducibility from Unit 14. We also suggest that you go through Units
3 and 4 of the Linear Algebra course if you want to understand the proof
of Theorem 7 of this unit. We have kept the proof optional. But once
you know what a vector space and its basis are, then the proof IS very.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o prove and use Eisenstein's criterion for irreducibility in Z[x] and
QIx]

) obtain field cxten5ionsof a field F from F[x]

o obtain the prime field of any field

o use the fact that finite field F has p" elements, where char F = p

and dim, F=n.

3.0 MAIN CONTENT
3.1 Irreducibility in Q[X]

In Module 3 Unit 4 we introduced you to irreducibility irredtlclble
polynomials in F[x], where F is a field. We also stated the Fundamental
Theorem of Algebra, which said that a polynomial over C is irreducible
iff it is linear. You also learnt that if a polynomial over R is irreducible,
it must have degree | or degree 2. Thus, anypolynomial over R of
degree more than 1 is reducible. And. using the quadratic formula, we
know which quadratic polynomials over R are irreducible.

Now let us look at polynomials over Q. Again, as for any field F, a
linear polynomial over Q is irreducible. Also, by using the quadratic
formula we can explicitly obtain the roots of any quadratic polynomial
over Q and hence figure out whether it is irreducible or not. But, can
you tell whether 2x"+3x° — 6x* + 3x® + 12 is irreducible over Q or not?
In two seconds we can tell you that it is irreducible, by using the
Eisenstein criterion. This criterion was will build up the theory for
proving this useful criterion.

Let us start with a definition.
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Definition

Let f(X) = ap + a;x +...+ a,X" € Z[x]. We define the content of f[x] to be
the g.c.d of the integers a, a,,..., an,

We say that f(x) is primitive if the content of f(x) is 1

For example, the content of 3x° + 6x+ 12 is the g.c.d.of 3,6 and 12, i.e.,
3. Thus, this polynomial is not primitive. But x> + 3x* + 4x -5 is
primitive, since the g.c.d of 1,0,0,3,4,-5 is 1.

You may like to try the following exercises now.

E 1) What are the contents of the following polynomials over Z?

a) 1+x+xX+x+x*

by 7x*-7

c) 5% -N)(x+2)

E 2) Prove that any Polynomial f(x) e Z[x] can be written as dg(x),
where d is the conter t

We will now prove that the product of primitive polynomials is a
primitive polynomial. This result is well known as Gauss’ lemma.

Theorem 1
Let f(x) and g(x) be primitive polynomials. Then so is f(x) g(x).
Proof
Let f(x) =ag + ax + ... a.Xx" € Z[x] and
g(x) =bg + bx + ...+ bx" € Z[x].where the
g.c.d of ay, a,..., a, is 1 and the g.cd of by by,..., by, is 1. Now
f(X) g(X) = Cot CiX +...+CmenX "
where ¢y = aghy+ aiby.; +...+axbo.
To prove the result we shall assume that it is false and then reach a

contradiction. So, suppose that f(x) g(x) is not primitive. Then the g.c.d
of Cg, Cy,..., Cmsn 1S greater than 1, and hence some prime p must divide it.
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Thus, p|ciVi=0,1,.., m+n. Since f(x) is primitive, p does not divide
some a;. Let r be the least integer such that p-J-a,. Similarly, let s be the
least integer such that p-bs.

Now consider

Cr+5 = a.obr+5+a.|br+51 + ...+ arbs + ...+ar+s bO

= s + (Agbrss + ADp4st ...+ Ay Dsiq + 1Dt + Brishy)

By our choice Of rand s, p | ag,..., p|a;, Pla., and p | bg, p | by,..., p|
Ds.. AlSO P | Cras

Therefore, p | Cr+5' (a.()br+5 +.. + ar-]_ b5+1 + a.r+1 b5.|+ . ar+5b0)
l.e., p|arbs
= p|a orp]|bssince p isa prime.

But p -} ar and p -} bs. So we reach a contradiction. Therefore, our
supposition is false. That is, our theorem is true.

Let us shift our attention to polynomials over Q now.

Consider any polynomial over Q, say f(x) = gx*" juéx2 +3x+%. If we

take the kem of all the denominators, i.e., of 2,5, 1 and 3, i.e., 30 and
multiply f(x) by it what do we get?

30f(x) = 45x° + 6x° + 90x + 10 € Z[X]

Using the same process, we can multiply any f(x) € Q[x] by a suitable
integer d so that df(x) € Z[x]. We will use this fact while relating
irreducibility in Q[x] with irreducibility in Z[x].

Theorem 2

If f(x) € Z[x] is irreducible in Z[x], then it is irreducible in Q[Xx].

Proof

Let us suppose that f(x) is not irreducible over Q[x]. Then we should
reach a contradiction. So let f(x) = g(x) h(x) in Q[x], where neither g(x)

nor h(x) is a unit, i.e., deg g(x) > 0, deg h(x) > 0. Since g(x) € Q[x], I m
e Z such that mg(x) € Z[x]. Similarly, 3 ne Z such that nh(x) € Z[x].
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Then,

mnf(x) = mg(x) nh(x) ... (¢D)

Now, let us use E2. By E2, f(x) = rf;(x), mg(x) = sg; (x), nh(x) = th; (x),
where r, s and t are the contents of f(x), mg (x) and nh (x) and fy(x),
g1(x), h1(x) are primitive polynomials of positive degree.

Thus, (1) gives us

Mnrfy(x) =stga(x) hy(x) (2

Since gi(x) and hy(x) are primitive, Theorem 1 says that g;(x) hy(x) is
primitive. Thus, the content of the right hand side polynomial in (2) is st.
But the content of the left hand side polynomial in (2) is mnr. Thus. (2)
says that mnr = st.

Hence, using the cancellation law in (2), we get f;(x) = g1(X) hy(X).

Therefore, f(x) = rfy(x) = (rgi(x)) hy(x) in Z[x], where neither rg;(x) nor
h;(x) is a unit. This contradicts the fact that f(x) is irreducible in Z[x].

Thus, our supposition is false. Hence, f(x) must be irreducible in Q[Xx].
What this result says is that to check irreducibility of a polynomial in
QI[x], it is enough to check it in Z[x]. And. for checking it in Z[x] we
have the terrific Eisenstein’s criterion that we mentioned at the
beginning of this section.

Theorem 3 (Eisenstein’s Criterion)

Let f(x) = ap + a1x + ... + a.Xx" e Z[x] Suppose that for some prime
number p,

i) f4an,

i) plagp|ay..., p|an, and

i) ptao

Then f(x) is irreducible in Z[x] (and hence in Q[X])

Proof

Can you guess our method of proof? By contradiction, once again! So

suppose f(x) is reducible in Z[x].
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Let f(x) = g(x) h(x),

Where g(x) = by + by X + ... + bx™, m> 0 and
h(X)=co+ciX+...+cX,r>0.
Thenn=degf=degg+degh=m+r, and
ac=byc+bicqg+...+becgVk=0,1...,n.

Now ay = boCo. We know that p | ag. Thus, p | beCo .. p bg Or p | Co. Since
p” -+ ao, p cannot divide both by and cq. Let us suppose that p | by and p -
Co.

Now let us look at a, = by, c,. Since p 4a,, we see that p +b,, and p +c..
Thus, we see that for some I, p 4Db;. Let k be the least integer such that p
}by. Note that 0 <k <m<n.

Therefore, p | a.

Now, a, = (bo Ck+ ... + by Cl) + by Co

Since p |ax and p | by,..., p | bk1, we see that p | ax — (DoCk + ... + Dy.1Cy),
i.e., p | bxCo. But p4-co. So we reach a contradiction.

Thus, f(x) must be irreducible in Z[x].

Let us illustrate the use of this criterion.

Example 1

Is 2x” + 3x> - 6x* + 3x* + 12 irreducible in Q[x]?

Solution

By looking at the coefficients we see that the prime number 3 satisfies
the conditions given in Eisenstein’s criterion. Therefore, the given
polynomial is irreducible in Q[x]

Example 2

Let p be a prime number. Is Q[x]/<x® — p > a field?
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Solution

From Unit 14 you know that for any field F, if f(x) is irreducible in F[x],
then <f(x)> is a maximal ideal of F[x].

Now, by Eisenstein’s criterion, x> — p is irreducible since p satisfies the
conditions given in Theorem 3. Therefore, <x* — p> is a maximal ldeal

of QI[x].

From Unit 12 you also know that if R is a ring, and M is a maximal ideal
of R. then R/M is a field.

Thus, Q[x] / <x® - p> is a field.

In this example we have brought out an important fact. We ask you to
prove it in the following exercise.

E3) For any n € N and prime number p, show that x" — p is
irreducible over Q[x].note that this shows us that we can obtain
irreducible polynomials of any degree over Q[Xx].

Now let us look at another example of an irreducible polynomial. While
solving this we will show you how Theorem 3 can be used indirectly.

Example 3
Let p be a prime number. Show that

f(x) = x*1 + xP%2+ .. + x + L is irreducible in Z[x]. f(x) is called the pth
cyclotomic polynomial.

Solution
To start with we would like you to note that f(x) = g(x) h(x) in Z[x] iff

f(x+1) = g(x+1) h(x+1) in Z[x]. Thus, f(x) is irreducible in Z[x] iff
f(x+1) is irreducible in Z[x].

p_
Now, f(x) = X" -1
x=1
p_
o = XL
= %(xp +PC x " +..+ PC_, x+1-1), (by the binomial theorem)

=xPT 4+ pxP? +PCxPP +.. +PCy X + 1.
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Now apply Eisenstein’s criterion taking p as the prime. We find that
f(x+1) is irreducible. Therefore, f(x) is irreducible.

You can try these exercises now.

E4) Ifay+ax+...+a, X e Z[x] is irreducible in Q[x], can you
always find a prime p that satisfies the conditions (i), (ii) and (iii)
of Theorem 3?

E5) Which of the following elements of Z[x] are irreducible over Q?
a)  x-12..

b) 8x% + 6x% -Ox+ 24 .

C) 5x +1

E 6) Letp be a prime integer. Let a be a non-zero non-unit square-free
integer, i.e., b4 a for any b € Z. Show that Z[x]/<x*+a> is an
integral domain.

E7) Show that xX* + ae Zplx] is not irreducible for any it" E Zp'
(Hint: Does E 13 of Unit 13 help?)

So far we have used the fact that if f(x) E Z[x] IS irreducible over. Z.
then it is also irreducible over Q, Do you think we can have a similar
relationship between irreducibility in Q[Xx] and R[x]? To answer this

consider f(x) = x*- 2. This is irreducible in Q[x], but f(x) = (x - 4/2) (X
+42)) in R[x]. Thus, we cannot extend irreducibility over Q to
irreducibility over R.

But we can generalise the fact that irreducibility in Z[x] implies
irreducibility in Q[x]. This is not only true for Z and Q); it is true for any
UFD R and its field of quotients F (see Sec. 12.5). Let us state this
relationship explicitly.

Theorem 4

Let R be a UFD with field of quotients F.

) If f(x) € R[X] is an irreducible primitive polynomial, then it is
also irreducible in F[x].
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i) (Eisenstein's Criterion) Let f(x) =ap + ax + ... + a, X" € R[X]
and p e R be a prime element such that p 4+ a,, p> 4 aand p | a;
for 0 <i<n. Then f(x) is irreducible in F[x].

The proof of this result is on the same lines as that of Theorems 2 and 3.

We will not be doing it here. But if you are interested, you should try

and prove the result yourself.

Now, we have already pointed out that if F is a field and f(x) is

irreducible over F, then F[x]/<f(x)> is a field. How is this field related to

F? That is part of what we will discuss in the next section.

3.2 Field Extensions

In this section we shall discuss subfields and field extensions. To start

with let us define these terms. By now the definition may be quite

obvious to you.

Definition

A non-empty subset S of a field F is caned a subfield of F if it is a field

with respect to the operations on F. If S=F, then S is called a proper

subfield of F.

A field K is called a field extension of F if F is a subfield of K. Thus, Q

is a subfield of R and R is a field extension of Q. Similarly, C is a field

extension of Q as well as of R.

Note that a non-empty subset S of a field F is a subfield of F iff

1) S is a subgroup of (F,+), and .

i) The 'set of all non-zero elements of S forms a subgroup of the
group of non-zero elements of F under multiplication.

Thus, by Theorem 1 of Unit 3, we have the following theorem.

Theorem 5

A non-empty subset S of a field F is a subfield of F if and only if

1) aeS,beS=abesS and

i) aeSbeSbz0ab’eS.

Why don't you use Theorem 5 to do the following exercise now.
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E 8) Show that

a) Q +1Q is a subfield of C
b) Z + /2 Z is not a subfield or R.

Now, let us look at a particular field extension of a field F. Since F[x] is
an integral domain, we can obtain its field of quotients (see Module 3

Unit 2). We denote this field by F(x). Then F is a subfield of F(x). Thus,
F(x) is a field extension of F. Its elements are expressions of the form

f(x)

——=, where f(x), g(x) € F[x} and g(x) # o.
9(x)

There is another way of obtaining a field extension of a field F from
F[x]. We can look at quotient rings of F[x] by its maximal ideals. You
know that an ideal is maximal in F[x] iff it is generated by an irreducible
polynomial over F. So, F[x]/<f(x), 1s a field iff f(x) is irreducible over
F.
Now, given any f(x) € F[x], such that deg f(x) > 0, we will show that
there is a field monomorphism from F into F[x]/<f(x). This will show
that F[x)/<f(x» contains an isomorphic copy of F; and hence, we can say
that it contains F.
So, let us define ¢ : F— F[X]/<f(x)>: ¢(a) = a + <f(x».
Then, ¢ (a+b) = ¢ (@) + ¢ (b), and
¢ (ab) = ¢ (a) ¢ (b)
Thus, ¢ is a ring homomorphism.
What is Ker ¢ ?).
Ker ¢ = {a € F|a+ <f(x)> = <f(x)>}

={a e F|a+ e <f(x)>}

={aeF[f(x)|a}

= {0}, sincedeg f>0and dega<O0.

Thus, ¢ is 1-1, and hence an inclusion.

Hence, F is embedded in F[x]/<f(x)>
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Thus, if f(x) is irreducible in F[x], then F[x]/<f(x)> is a field extension
of F.

Now for a related exercise!

E 9) Which of the following rings are field extension of Q?
a)  Q[xJ/<x’ + 10>,

by  R[x]/<x®+ 2>,

) Q

d)  Q[X]/<x?-5x + 6>.

Well, we have looked at field extensions of any field F. Now let us look
at certain fields, one of which F will be an extension of.

3.2.1 Prime Fields

Let us consider any field F. Can we say anything about what its
subfields look like? Yes, we can say something about one of its
subfields. Let us prove this very startling and useful fact. Before goillg
into the proof we suggest that you do a quick revision of Theorems 3. 4
alld 8 of Unit 12. Well, here’s the result.

Theorem 6

Every field contains a subfield isomorphic to Q or to Z,, for some prime
number p.

Proof
Let F be a field. Define a function
f:Z—>F:f(n)=nl=1+1+..+1(ntimes).

In E 11) of Module 3 Unit 2 you have shown that f is a ring
homomorphism and Ker f = pZ, where p is the characteristic of F.

New, from Theorem 8 of Unit 12 you know that char F = 0 or char F =
p, a prime. So let us look at these two cases separately.

Case 1
(Char F = 0): In this case f is one-one, .. Z = f(Z). Thus, f(Z) is an

integral domain contained in the field F. Since F is a field, it will also
contain the field of quotients of f(Z). This will be isomorphic to the field
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of quotients of Z, i.e., Q. Thus, F has a subfield which is isomorphic to

Q.

Case 2

(Char F = p, for some prime p) :
Since,pls a prime number, Z/pZ is a field.

Also, by applying the Fundamental Theorem of Homomorphism to f, we
get Z/pZ ~ 1(2).

Thus, f(Z) is isomorphic to Zp and is contained in F. Hence, F has
subfield isomorphic to Zp.

Let us reword Theorem 6 slightly. What it says is that :
Let F be a field.

1) If char F = 0, then F has a subfield isomorphic to Q.
i) If char F = p, then F has a subfield isomorphic to Z,,.

Because of this property of Q and Z, (where p is a prime number) we
call these fields prime fields.

Thus, the prime fields are Q, Z,, Z3, Zs etc.

We call the subfield isomorphic to a prime field (obtained in Theorem
6), the prime subfield of the given field.

Now, suppose a field F is an extension of a field K. Are the prime
subfields of K and F isomorphic or not? To' answer this let us look at
char K and char F. We want to know if char K = char F or not. Since F
~s a field extension of K, the unity of F and K is the same, namely, 1.
Therefore, the least positive integer "such that n.I = 0 is the same for F
as well as K. Thus, char K = char-F. Therefore, the prime subfields of K
and F are isomorphic.

So, now can you do the following exercises?
E 10) Show that the smallest subfield of any field is its prime subfield.

E 11) Let F be a field which has no proper subfields. Show that F is
isomorphic to a prime field.
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E 12) Obtain the prime subfields of R, Zs and the field given in E 15 of
Unit 12.

E 13) Show that given any field, if we know its characteristic then we
can obtain its prime subfield and vice versa.

A very important fact brought out by E 10 and E 11 is that: a field is a
prime field iff it has no proper subfields.

Now let us look at certain field extensions of the fields Z,.

You have dealt a lot with the finite fields Z,. Now we will look at field
extensions of these fields. You know that any finite F has characteristic
p, for some prime p. And then F is an extension of Z,. Suppose F
contains q elements. Then g must be a power of p. That is what we will
prove now.

Theorem 7

Let F be a finite field having q elements and characteristic p. Then q =
p", for some positive integer n.

The proof of this result uses the concepts of a vector space and its basis.
These are discussed in Block 1 of the Linear Algebra course. So, if you
want to go through the proof, we suggest that you quickly revise Units 3
and 4 of the Linear Algebra course. If you are not interested in the proof,
you may skip it.

Proof of Theorem 7

Since char F = p, F has a prime subfield which is isomorphic to Zp. We
lose nothing if we assume lhat the prime subfield is Z,. We first show
that F is a vector space over Zp with finite dimension.

Recall that a set V is a vector space over a field K if

) we can define a binary operation + on V such that (V. +) is an
abelian group,

i) we can define a ‘scalar multiplication’ : K x V — V such that vV
a,beKandv,w eV,

a. (v+w)=av+aw

(@a+b).v=av+byv
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(@b). V=a.(b.v)

lv=wv.

Now, we knowlhat (P, +)'is an abelian group. We also know that the
multiplication in F will satisfy till the conditions that the scalar
multiplication should satisfy. Thus, F is a vector space over Z,. Since F
is a finite field, it has a finite dimension over Z,. Let dim, F =n. Then

we can find a,,..., a, € F such that

F=2Zy+ Zpa + ..+ Zpa,.

We will show that F has p" elements.

Now, any element of F is of the form

b + bya, +...+ bya,, where by,..., b, € Z,,

Now, since 0(Z,) = p, b; can be anyone of its p elements.

Similarly, each of b,, bs, ... , b, has p choices. And, corresponding to
each of these choices we get a distinct element of F. Thus, the number of
elements in F is p x p X...xp(n times) = p".

The utility of this result is something similar to that of Lagrange’s
theorem. Using this result we know that, for instance, no field of order
26 exists. But does a field of order 25 exist? Does Theorem 7 answer
this question? It only says that a field of order 25 can exist. But it does
not say that it does exist. The following exciting result, the proof of
which is beyond the scope of this course, gives us the required answer.
This result was obtained by the American mathematician E.H. Moore in
1893.

Theorem 8
For any prime number p and ne N, there exists li field with p" elements.
Moreover, any two finite fields having the same number of elements, are
isomorphic
Now, you call utilize your knowledge of finite fields to solve tile

following exercises. The first exercise is a generalization of E 13 in Unit
13.
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E 14.

(Hint:

E 15)

E 16)

a)
b)
c)
d)

E 11)

Let F be a finite field with p" elements. Show that a®” =a V € F.
And hence,

" I1
show that x? - x = (X-a).
ackF

Note that (F \ {0},.) is a group of order p"-1.)

Let F be a finite field with p" elements. Define f : F — F : f(a) =
a". Show that f is anutomorphism of F of order n; i e., f is an
isomorphism such that fn =1, and f = 1 for r <n.

Let F be a field such that a € F iff ais a root of xX*’ —=x e

What is char F?
IsZcF?
IsQcF?
Is F < Q? Why?

Any two infinite fields are isomorphic. True or false? Why?
Remember that isomorphic structures must have the same
algebraic properties.

We close our discussion on field extensions now. Let us go over the
points that we have covered in this unit.

4.0

5.0

CONCLUSION

SUMMARY

We have discussed the following points in this unit.

1)

2)
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Gauss; lemma, i.e., the 'product of primitive polynomials is
primitive.

Eisenstein’s criterion for polynomials over Z and Q. This states
that if f(x) =ap + a; X + ... + a,x"e Z[x] and there is a prime p e
Z such that

plaVvi=0,1,..,n-1

p + a,, and

p2 + ao,
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3)

4)

5)

6)

7)

8)

9)

then f(x) is irreducible over Z (and hence over Q)

For any n € N, we can obtain an irreducible polynomial over Q
of degree n.

Definitions and examples of subfields and field extensions

Different ways of obtaining field extensions of a field F from
F[x].

Every field contains a subfield isomorphic to a prime field.
The prime fields are Q or Z,, for some prime p.

The number of elements in a finite field F is p", where char F = p
and dim, F=n.

Given a prime number p and n € N, there exists a field
containing p" elements. Any two finite fields with the same
number of elements are isomorphic.

If F is a finite field with p" elements, then xp" -x is a product of p"
linear polynomials over F.

Now we have reached the end of this unit as well as this course. We
hope that we have been able to give you a basic understanding of the
nature of groups, rings and fields. We also hope that you enjoyed going
through this course.

ANSWER TO SELFASSESSMENT EXERCISE

1.

2.

a) 1, b)7, ¢)5

Let f(xX) = ap + a; X + ... + a,x" and let the content of f(x) be d.
Leta;=db; V1=0,1, ..., n. Then the g.c.d of by,by,..., b, is 1.
Thus, g(x) = by + by x + ... + byx" is primitive. Also, f(x) = db, +
dby x + ... +db,x" = d(bg + by x + ... + bx") =d g(x).
fX)=x"-P=ay+a X+..+ax,

where ap=p,a=0=...=a,,a,=1

Thus,plaiVi=0,1,...,n-1 p*4ao ptan

So, by the Eisenstein criterion, f(x) is' irreducible over Q.

4.

Not necessarily
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For example, there is no p that satisfies the conditions for f(x) in
Example 3.

5.

All of them (a) and (b), because of Eisenstein's criterion; and (c),
because any linear polynomial is irreducible.

Since a= 0, + 1, 3 a prime q such that q | a. Also g° 4 a, since a is
square-free. Then, using q as the prime, we can apply Eisenstein's
criterion to find that x” + a is irreducible in Z[x]. Thus, it is a
prime element of Z[x]. Hence, <x” + a> is a prime ideal of Z[x].

Hence the result,

By E 13 of Unit 13 we know that a* = aVa e Zp. Now
consider

XP+ ae Z)x]

—a is a zero of this polynomial, since

(p-a)’)+a=p-a+a=p=02

Thus, xp + a is reducible over Zp.

8a.

Q +1Q is a non-empty subset of C.

Now, leta + ib and ¢ + id be in Q+iQ.

Then(a+ib)-(c+id)=(@a-c)+i(b-d) e Q+iQ.

Further, let ¢ + id = 0, so that ¢? + d? = 0.

Then (c +id) * =

Thus, (a +ib) (c +id)-1 = (a + ib)

c—id
c?+d?

(c—id)
c?+d?

_ (ac_bd)+i (ac—hd)
c’+d? c’+d?

eQ+iQ.

Thus, Q +1Q is a subfield of C.

b.)
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Z + /2 Z is not a field, and hence not a subfield of R.
9. (@), (b) and (c).

10. Let F be a field ~d K be a subfield of F. Then, .we have just seen
that both K and F have isomorphic prime subfields.

Thus, K contains the prime subfield of F.

Thus, we have shown that every subfield of F must contain its prime
subfields. Hence, this is the smallest subfield of F.

11. F must contain a prime subfield. But it contains no proper
subfield be its own prime subfield. That is, F must be isomorphic
to a prime field.

12.  Q, Zs, Z,, since their characteristic's are 0,5 and 2, respectively.

13.  F be afield. Firstly, let us assume that char F = p is known. Then,
by Theorem 6, we know the prime subfield of F. Conversely, let
K be the prime subfield of F. Then we know char K, and as
shown before E 10, char F = char K. So we know char F.

14.  Since (F\{0},.) is a group of order p" -1, a”" -1=1

vV ae F\{0}.
sap"=aVvaeF\ {0} Also 0" =0.

Thus, a* = aVaeF.

Now, x® - x e F[x] can have at the most p" roots in F (by Theorem 7 of
Unit 13).

Also, each of the p" elements of F is a root. Thus, these are all the roots

of x* - x.

. I
wxP-x= el:(x—ai)

15. f(a+b)=(a+b)P=a" +b" (using E 10 of Unit 12)
=f(a) + f(b).
f(ab) = (ah)P = a" b° = f(a) f(b).

fis1-1, by E 10(c) of Unit 12.
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Hence, Im f has the same number of elements as the domain of f, i.e., F.
Further, m1cF ... Imf=F, i.e, fisonto.

Hence, f is an automorphism.

Now, f'(a) = [f(a)]"= (@")"= a” =aVaeF.
L=l

Also, forr<n, f"(a) = a*

Now, we can't have a® = a Vv a e F, because this would mean that the

polynomial x* - x e F[x] has more than pf roots. This would contradict
Theorem 7 of Unit 13. Thus, f' (@) zaforsomea e F. ..f =l ifr<n.

Hence, o(f) = n.

E16) acFiffa” =aie,a”=a

a) Char F = 3.
b) No, since char Z, # char F.
C) No.

e) No, since F c Q = char F =char Q = 0.
17.  False.

For example, Q and R are both infinite, but Q has no proper subfields,
while R does. Thus, Q and R are not isomorphic.

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING
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