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INTRODUCTION 
 

Linear algebra is a branch of mathematics that deals with linear equations 

and their representations in the vector space using matrices. In other 

words, the study of linear vectors and functions is what linear algebra is 

all about. It is one of the most important mathematical issues. The 

majority of contemporary geometrical ideas are based on linear algebra. 

Engineering and physics both rely heavily on linear algebra since it makes 

it easier to simulate a wide range of natural events. The three most critical 

elements of this topic are vector spaces, matrices, and linear equations. 

The many concepts related to linear algebra will be covered in more detail 

in this article. 

 

Students are introduced to the fundamentals of linear algebra in 

elementary linear algebra. Simple matrix operations, different 

computations that can be performed on a system of linear equations, and 

certain characteristics of vectors are all included in this. The following 

list of key terms related to basic linear algebra includes 

 

Scalars – A scalar is a quantity that only has magnitude and not direction. 

It is an element that is used to define a vector space. In linear algebra, 

scalars are usually real numbers. 

 

Vectors – A vector is an element in a vector space. It is a quantity that 

can describe both the direction and magnitude of an element. 

 

Vector Space – The vector space consists of vectors that may be added 

together and multiplied by scalars. 

 

Matrix – A matrix is a rectangular array wherein the information is 

organized in the form of rows and columns. Most linear algebra properties 

can be expressed in terms of a matrix. 

 

Matrix Operations – These are simple arithmetic operations such 

as addition, subtraction, and multiplication that can be conducted on 

matrices. 

 

COURSE COMPETENCIES 
 

The Course  

As a 3-credit unit course, 11 study units grouped into 4 modules of 4 units 

in module 1, 3 units in module 2, 2 units in module 3 and 2 units in module 

4.  

 

A quick synopsis of the entire course materials is provided in this course 

guide. Vector spaces and linear transformations, which are primarily 

https://www.cuemath.com/numbers/real-numbers/
https://www.cuemath.com/geometry/vectors/
https://www.cuemath.com/algebra/solve-matrices/
https://www.cuemath.com/numbers/addition/
https://www.cuemath.com/numbers/subtraction/
https://www.cuemath.com/numbers/multiplication/
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concerned with finite dimensional vector spaces over the set of real 

numbers, ℝ, or set of complex numbers, ℂ, are the two basic building 

blocks of linear algebra. 

 

Adding vectors and multiplying them by numbers or scalars gives 

required linear combinations. The study of certain mappings between two 

vector spaces, called linear transformations are also initiated in this 

course. 

 

We shall also demonstrate how a linear transformation can be used to 

obtain a matrix associated with it, and vice versa. Additionally, by 

focusing on the corresponding matrix, certain aspects of a linear 

transformation can be analyzed more clearly. You will find, for instance, 

that it is frequently simpler to extract a matrix’s characteristic roots than 

a linear transformation. 

 

WORKING THROUGH THIS COURSE 
 

You are required to read the study units, set books and other materials 

provided by the National Open University to complete the course. You 

will also need to work through practical and self- assessed exercises and 

submit assignments for assessment purposes. The course will take you 

about 60 hours to complete at the end of which you will write a final 

examination. 

 

This course consists of the following eleven study units: 

Having gone the course content, what then is a matrix?  

 

STUDY UNITS 

 

Module 1  Vector Spaces 

 

Unit 1  Vector Spaces                            

Unit 2  Linear Combinations  

Unit 3  Linear Transformation I 

Unit 4  Linear Transformation II 

 

Module 2  Matrices  

 

Unit 1  Matrices I  

Unit 2  Matrices II 

Unit 3  Matrices III 
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Module 3  Determinants                                      

 

Unit 1  Determinants I                                          

Unit 2  Determinants II              

 

Module 4  Eigenvalues and Eigenvectors  

 

Unit 1  Eigenvalues and Eigenvectors  

Unit 2  Characteristic and Minimal Polynomials  

 

The first four units deal with vector spaces and linear transformation 

which are the two fundamental elements that form the basis of linear 

algebra which is an area of mathematics that deals with the common 

features of algebraic systems made up of sets, as well as a logical concept 

of a “linear combination” of element in the set. The remaining seven units 

involve matrix theory which occupies an important position in pure as 

well as applied mathematics.  

 

Each study unit involves specific objectives, how to study the reading 

materials, references to set books and other related sources and summaries 

of vital points and ideas. The units direct you to work on exercises related 

to the require reading and to carry out solutions to some exercises where 

appropriate. A number of self-tests are associated with each unit. These 

tests give you an indication of your progress. The exercises as well as the 

tutor-marked assignments will help you in achieving the stated learning 

outcomes of each unit and of the course.  

 

PRESENTATION SCHEDULE 
 

The weekly activities are presented in Table 1 while the required hours of 

study and the activities are presented in Table 2. This will guide your 

study time. You may spend more time in completing each module or unit. 

 

Table I: Weekly Activities 

Week  Activity 

1  Orientation and Course Guide 

2  Module 1 Unit 1 

3  Module 1 Unit 2 

4  Module 1 Unit 3 

5 Module 1 Unit 4 

6 Module 2 Unit 1  

7 Module 2 Unit 2 

8 Module 2 Unit 3 

9 Module 3 Unit 1 

10 Module 3 Unit 2 
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11 Module 4 Unit 1 

12 Module 4 Unit 2 

13 Response to Exercises 

14 Revisions 

15  Examination 

 

The activities in Table I include facilitation hours (synchronous and 

asynchronous), class works and assignments. How do you know the hours 

to spend on each? A guide is presented in Table 2. 

 

Table 2: Required Minimum Hours of Study 

S/N  Activity  

Hour 

per 

Week 

Hour per 

Semester 

1  
Synchronous Facilitation (Video 

Conferencing) 
2  26 

2  

Asynchronous Facilitation (Read and 

respond to posts including Facilitator’s 

comments, self-study) 

4  52 

3  
Assignments, mini-project, laboratory 

practical and portfolios 
1  13 

Total   7 91 

 

ASSESSMENT 
 

Table 3 presents the mode you will be assessed. 

 

Table 3: Assessment 

S/N  Method of Assessment  Score (%) 

3  Computer-Based Tests 30 

4  Final Examination  70 
 Total 100 

 

ASSIGNMENTS 
 

Take the assignment and click on the submission button to submit. The 

assignment will be scored, and you will receive feedback. 

 

EXAMINATION 
 

Finally, the examination will help to test the cognitive domain. The test 

items will be mostly application, and evaluation test items that will lead 

to creation of new knowledge/idea. 
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HOW TO GET THE MOST FROM THE COURSE 
 

To get the most in this course, you: 

 Need a personal laptop. The use of mobile phone only may not 

give you the desirable environment to work. 

 Need regular and stable internet. 

 Need to install the recommended software. 

 Must work through the course step by step starting with the 

programme orientation. 

 Must not plagiarize or impersonate. These are serious offences that 

could terminate your studentship. Plagiarism check will be used to 

run all your submissions. 

 Must do all the assessments following given instructions. 

 Must create time daily to attend to your study. 

 

FACILITATION 
 

There will be two forms of facilitation–synchronous and asynchronous. 

The synchronous will be held through video conferencing according to 

weekly schedule. 

  

During the synchronous facilitation: 

 There will be two hours of online real time contact per week 

making a total of 26 hours for thirteen weeks of study time. 

 At the end of each video conferencing, the video will be uploaded 

for view at your pace. 

 You are to read the course material and do other assignments as 

may be given before video conferencing time. 

 The facilitator will concentrate on main themes. 

 The facilitator will take you through the course guide in the first 

lecture at the start date of facilitation. 

 

For the asynchronous facilitation, your facilitator will: 

 Present the theme for the week. 

 Direct and summarise forum discussions. 

 Coordinate activities in the platform. 

 Score and grade activities when need be. 

 Support you to learn. In this regard personal mails may be sent. 

 Send you videos and audio lectures, and podcasts if need be. 

 

Read all the comments and notes of your facilitator especially on your 

assignments, participate in forum discussions. This will give you 

opportunity to viiiocialize with others in the course and build your skill 

for teamwork. You can raise any challenge encountered during your 

study. To gain the maximum benefit from course facilitation, prepare a 
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list of questions before the synchronous session. You will learn a lot from 

participating actively in the discussions. 

 

LEARNER SUPPORT 
 

You will receive the following support: 

 Technical Support: There will be contact number(s), email 

addresses and chat bot on the Learning Management System 

(LMS) where you can chat or send message to get assistance and 

guidance any time during the course. 

 

 24/7 communication: You can send personal mail to your 

facilitator and the study centre at any time of the day. You will 

receive answer to you mails within 24 hours. There is also 

opportunity for personal or group chats at any time of the day with 

those that are online. 

 

 You will receive guidance and feedback on your assessments, 

academic progress, and receive help to resolve challenges facing 

your studies. 

 

COURSE INFORMATION   
 

Course Code:  MTH212 

Course Title:  Linear Algebra 

Credit Unit:             3 units 

Course Status:         Compulsory  

 

Course Blub: This is a basic course designed to help students master the 

contents of a first course in Linear Algebra. Its availability, make it widely 

used for self-study especially independent student in an online 

programme. The materials in this course are standard in that the topic 

covered are vector spaces, linear maps and transformations, matrices, 

determinants, and eigenvalues and eigenvectors. Another standard is the 

audience’ friendly attribute of the material as well as the numerous 

examples following each topic  

Semester:             Second Semester  

Course Duration:  13 Weeks     

Required Hours for Study: 91 hours  
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MODULE 1 
 

This module shall define the mathematical object which experience has 

shown to be the most useful abstraction of this type of algebraic system. 

There are two aspects to linear algebra. Abstractly, it is the study of vector 

spaces over fields and their linear maps and bi-linear forms. Concretely, 

it is matrix theory, since matrices occur in all parts of mathematics and its 

applications and the diagonalization of a real symmetric matrix is a skill 

that is required of everyone working in the mathematical sciences or 

associated fields. Therefore, it is important to discuss both the abstract 

and concrete aspects in a course of this kind, even when applications are 

not covered in great length. 

 

Unit 1  Vector Spaces 

Unit 2  Linear Combination 

Unit 3  Linear Transformation I 

Unit 4  Linear Transformation II 

 

 

UNIT 1    VECTOR SPACES 
 

Unit Structure 

  

1.1    Introduction  

1.2    Learning Outcomes  

1.3    Vector Spaces 

1.3.1   Definitions and Examples of Vector Space 

1.3.2   Spaces Associated with Vector Spaces 

1.3.3   Definitions and Examples of Vector Subspace 

1.4 Summary 

1.5  References/Further Readings 

 

1.1  Introduction 

 

Vector spaces and linear transformations are two fundamental elements 

that form the basis of linear algebra. The strength of mathematics 

typically comes from the ability to abstractly formulate a wide range of 

situations, and that is exactly what shall be done throughout this module. 

The area of mathematics known as linear algebra deals with the common 

features of algebraic systems made up of sets, as well as a logical concept 

of a "linear combination" of element in the set. 

 

Vector spaces, linear maps, and bi-linear forms are dealt with on the 

theoretical side. Vector spaces over a field F are particularly alluring 



MTH 212           LINEAR ALGEBRA 

2 

 

algebraic objects, since each vector space is completely determined by a 

single number, its dimension (unlike groups, for example, whose structure 

is much more complicated). On the practical side,the subject only 

concerns matrix. A matrix must be used to express any calculation 

involving a linear map or a bilinear form. As a result, matrices can 

represent a variety of objects. 

 

  1.2   Learning Outcomes 
 

By the end of this unit, you will be able to:  

 

 Define vector space over a field 

 Define vector subspace  

 Cite examples of vector spaces and subspaces 

 State and prove theorems involving vector spaces and subspaces 

 

 1.3    Vector Spaces 

  

1.3.1  Definitions and Examples of Vector Space 

 

This unit will mainly be concerned with finite dimensional vector spaces 

over the set of real numbers, ℝ, or set of complex numbers, ℂ. 

 

Note that the real and complex numbers have the property that any pair 

of elements can be added, subtracted or multiplied. Division is also 

allowed by a non-zero element. Such sets in mathematics are called field, 

thus the sets of rational numbers, Q, real numbers, R, and complex 

numbers, C, are examples of field and they have infinite number of 

elements. But, in mathematics, we do have fields that have only finitely 

many elements. For example, consider the sets 𝑍4 = {0,1,2,3} and 𝑍5 =
{0,1,2,3,4}.  
 

In 𝑍4,𝑍5, we define addition and multiplication, respectively, as 

          

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

            and              

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

          and           

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

 

 

Then, we see that the elements of both 𝑍4and 𝑍5 can be added, subtracted 

and multiplied.  
 

Thus, 𝑍4and 𝑍5 indeed behave like a field. So, in this module, F will 

represent a field. 
 

Examples of fields are the set of complex numbers, the set of real 

numbers, the set of rational numbers, and even the finite set of “binary 

numbers”, {0,1}. 
 

Definition 1.3.1: A field is an algebraic system consisting of a non-empty 

set F equipped with two binary operations + (addition) and · 

(multiplication) satisfying the conditions: 
 

(Recall from MTH103 that the vectors in 𝑅2and 𝑅3satisfy the conditions) 

1)  Vector Addition: To every pair𝑢, 𝑣 ∈ 𝑅3, there corresponds a 

unique element 𝑢 + 𝑣 ∈ 𝑅3 
(Called the addition of vectors) such that 

a) 𝑢 + 𝑣 = 𝑣 + 𝑢 (Commutative law) 

b) (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤)   (Associative Law) 

c) 𝑅3 has a unique element, denoted 0 , called the zero vector 

that satisfies 𝑢 + 0 = 𝑢, for every 𝑢 ∈ 𝑅3 (called the 

additive identity). 

d) For every𝑢 ∈ 𝑅3, there is an element 𝑤 ∈ 𝑅3 that 

satisfies𝑢 + 𝑤 = 0. 
 

2)  Scalar Multiplication: For each 𝑢 ∈ 𝑅3 and𝛼 ∈ 𝑅, there 

corresponds a unique element  

𝛼 ⋅ 𝑢 ∈ 𝑅3 (Called the scalar multiplication) such that 

a) 𝛼 ⋅ (𝛽 ⋅ 𝑢) = (𝛼 ⋅ 𝛽) ⋅ 𝑢, for every 𝛼, 𝛽 ∈ 𝑅 and 𝑢 ∈ 𝑅3 
b) 1 ⋅ 𝑢 = 𝑢 for every 𝑢 ∈ 𝑅3; where 1 ∈ 𝐼𝑅. 

 

3)  Distributive Laws: Relating vector addition with scalar 

multiplication 

For any 𝛼, 𝛽 ∈ 𝑅 and𝑢, 𝑣 ∈ 𝑅3; the following distributive laws 

hold: 

a) 𝛼 ⋅ (𝑢 + 𝑣) = (𝛼 ⋅ 𝑢) + (𝛼 ⋅ 𝑣) 
b) (𝛼 + 𝛽) ⋅ 𝑢 = (𝛼 ⋅ 𝑢) + (𝛽 ⋅ 𝑣) 
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For the above properties to hold for any collection of vectors, we have the 

following definitions: 

 

Definition 1.3.2: A vector space 𝑉 over 𝐹, denoted by 𝑉(𝐹) or in short 

𝑉 (if the field 𝐹is clear from the context), is a non-empty set, in which 

vector addition, scalar multiplication can be defined.  

 

In other words, a vector space is composed of three objects; - a set and 

two operations. 

 

Further, with these definitions, the properties of vector addition, scalar 

multiplication and distributive laws (see items 1, 2 and 3 above) are 

satisfied. 

 

Remarks: 
A. The elements of F are called scalars. 

B. The elements of 𝑉 are called vectors. 

C. The zero element of 𝐹is denoted by 𝟎 whereas the zero element of 

𝑉 is also denoted by 0 

D. Note that the condition 1d) above implies that for every𝑢 ∈ 𝑉, the 

vector 𝑤 ∈ 𝑉 such that𝑢 + 𝑤 = 0holds, is unique.  

i. For if, 𝑤1, 𝑤2 ∈ 𝑉with𝑢 + 𝑤𝑖 = 0, for 𝑖 = 1,2. 

then by commutativity of vector addition, we see that  

𝑤1 = 𝑤1 + 0 = 𝑤1 + (𝑢 + 𝑤2) = (𝑤1 + 𝑢) + 𝑤2
= 0 + 𝑤2 = 𝑤2 

ii. Hence, we represent this unique vector by −𝑢 and call it the 

additive inverse. 

E. If 𝑉 is a vector space over 𝑅then 𝑉is called a real vector space. 

F. If 𝑉 is a vector space over 𝐶 then 𝑉is called a complex vector 

space. 

G. In general, a vector space over 𝑅or 𝐶is called a linear space.  

 

For better understanding of the conditions given above, the following 

theorem and proof are presented: 

 

Theorem 1.3.1: Let V  be a vector space over F. Then, 

i. 𝑢 + 𝑣 = 𝑢 implies 𝑣 = 0 

ii. 𝛼 ⋅ 𝑢 = 0 if and only if either 𝑢 = 0or 𝛼 = 0 

iii. (−1) ⋅ 𝑢 = −𝑢, for every 𝑢 ∈ 𝑉. 

 

Proof: 

Part 1: By Condition 1d) and Remarks D above, for each 𝑢 ∈ 𝑉there 

exists −𝑢 ∈ 𝑉 such that  −𝑢 + 𝑢 = 0.   

Hence 𝑢 + 𝑣 = 𝑢 implies 0 = −𝑢 + 𝑣 = −𝑢 + (𝑢 + 𝑣) = (−𝑢 + 𝑢) +
𝑣 = 0 + 𝑣 = 𝑣 
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Part 2: As 0 = 0 + 0, using Condition 3, 𝛼 ⋅ 0 = 𝛼 ⋅ (0 + 0) = (𝛼 ⋅ 0) +
(𝛼 + 0) 
By Part 1, 𝛼 ⋅ 0 = 0 for any 𝛼 ∈ 𝐹 

Similarly, 0 ⋅ 𝑢 = (0 + 0) ⋅ 𝑢 = (0 ⋅ 𝑢) + (0 ⋅ 𝑢)  implies 0 ⋅ 𝑢 = 0, for 

any 𝑢 ∈ 𝑉. 

Now, suppose 𝛼 ⋅ 𝑢 = 0. 

If 𝛼 = 0 then the proof is over.  

Assume that 𝛼 ≠ 0, 𝛼 ∈ 𝐹, then, (𝛼)−1 ∈ 𝐹 and using   

1 ⋅ 𝑢 = 𝑢1 ⋅ 𝑢 = 𝑢 for every vector 𝑢 ∈ 𝑉 (see Condition 2b), we have 

0 = (𝛼)−1 ⋅ 0 = (𝛼)−1 ⋅ (𝛼 ⋅ 𝑢) = ((𝛼)−1 ⋅ 𝛼) ⋅ 𝑢 = 1 ⋅ 𝑢 = 𝑢 

Thus, if 𝛼 ≠ 0 and 𝛼 ⋅ 𝑢 = 0 then 𝑢 = 0. 
 

Part 3:  

As 0 = 0 ⋅ 𝑢 = (1 + (−1)) ⋅ 𝑢 = 𝑢 + (−1) ⋅ 𝑢,  

Then, (−1) ⋅ 𝑢 = −𝑢 

The following is one of the two most important definitions in the entire 

course. 
 

Definition 1.3.3: 
Suppose that V  is a set upon which we have defined two operations: (i) 

vector addition, which combines two elements of V and is denoted by (+), 
and (ii) scalar multiplication, which combines a complex number C with 

an element of V and is denoted by (⋅). Then V, along with the two 

operations, is a vector space over C if the following ten properties hold: 

i. Additive Closure 

ii. If 𝑢, 𝑣 ∈ 𝑉, then 𝑢 + 𝑣 ∈ 𝑉 

iii. Scalar Closure 

iv. If 𝛼 ∈ 𝐶and 𝑢 ∈ 𝑉 then 𝛼 ⋅ 𝑢 ∈ 𝑉 

v. Commutativity 

vi. If 𝑢, 𝑣 ∈ 𝑉, then 𝑢 + 𝑣 = 𝑣 + 𝑢 

vii. Additive Associativity 

viii. If 𝑢, 𝑣, 𝑤 ∈ 𝑉, then 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤 

ix. Zero Vector 

x. There is a vector,0, called the zero vector, such that 𝑢 + 0 = 𝑢, for 

all 𝑢 ∈ 𝑉. 

xi. Additive Inverses 

xii. If 𝑢 ∈ 𝑉, then there exists a vector −𝑢 ∈ 𝑉 such that 𝑢 + (−𝑢) =
0 

xiii. Scalar Multiplication Associativity: 

xiv. If 𝛼, 𝛽 ∈ 𝐶and 𝑢 ∈ 𝑉, then 𝛼 ⋅ (𝛽 ⋅ 𝑢) = (𝛼 ⋅ 𝛽) ⋅ 𝑢. 

xv. Distributivity across Vector Addition: 

xvi. If 𝛼 ∈ 𝐶and 𝑢, 𝑣 ∈ 𝑉, then 𝛼 ⋅ (𝑢 + 𝑣) = 𝛼 ⋅ 𝑢 + 𝛼 ⋅ 𝑣. 

xvii. Distributivity across Scalar Addition: 

xviii. If 𝛼, 𝛽 ∈ 𝐶 and 𝑢 ∈ 𝑉, then (𝛼 + 𝛽) ⋅ 𝑢 = 𝛼 ⋅ 𝑢 + 𝛽 ⋅ 𝑣. 

xix. One:  If 𝑢 ∈ 𝑉, then 1 ⋅ 𝑢 = 𝑢. 
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The objects in 𝑉 are called vectors, no matter what else they might really 

be, simply by virtue of being elements of a vector space.  

 

Examples 

1.  The Euclidean plane 𝑹𝟐 is a real vector space. In other words, 

two vectors can be added together as well as multiply a vector by 

a scalar (a real number).  

 

There are two approaches to explain these definitions. 

a) The geometric definition: Think of a vector as an arrow starting at 

the origin and ending at a point of the plane, then addition of two 

vectors is done by the parallelogram law (see Figure 1.3.1). The 

scalar multiple 𝑎𝑣 is the vector whose length is |𝑎| times the length 

of v, in the same direction if 𝑎 > 0 and in the opposite direction if 

𝑎 < 0. 

 

 

 

 

 

 

 

                                Figure 1.3.1: The Parallelogram Law 

 

b) The algebraic definition: The points of the plane are represented 

by Cartesian coordinates (x, y) such that a vector v is just a pair (x, 

y) of real numbers. Now we define addition and scalar 

multiplication by 

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1, 𝑦2) 
𝑎(𝑥, 𝑦) = (𝑎𝑥, 𝑎𝑦) 

Let’s check that the rules for a vector space are really satisfied, for 

instance, we check the law 

𝑎(𝑣 + 𝑤) = 𝑎𝑣 + 𝑎𝑤. 
Let (𝑥1, 𝑦1) + (𝑥2, 𝑦2) 
Then, 𝑎(𝑣 + 𝑤) = 𝑎[(𝑥1, 𝑦1) + (𝑥2, 𝑦2)] 
                           = 𝑎(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)  
                    = (𝑎𝑥1 + 𝑎𝑥2, 𝑎𝑦1 + 𝑎𝑦2)  
                    = (𝑎𝑥1, 𝑎𝑦1) + (𝑎𝑥2, 𝑎𝑦2)  
                    = 𝑎𝑣 + 𝑎𝑤. 

 

In the algebraic definition, we say that the operations of addition and 

scalar multiplication are coordinate-wise, that is, two vectors can be 

added coordinate by coordinate, and similarly for scalar multiplication. 

The generalized form of this example using coordinates is given by the 

next example: 
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2.  The n-tuple, 𝑭𝒏: 

Let 𝑛 be any positive integer and 𝐹 be any field, and let 𝑉 = 𝐹𝑛, 

be the set of all n-tuples of elements of 𝐹. Then V is a vector space 

over 𝐹 where the operations are defined coordinate-wise: 

Let 𝛼 = (𝑥1 + 𝑥2, … , 𝑥𝑛) of scalars 𝑥𝑖 and 𝛽 = (𝑦1 + 𝑦2, … , 𝑦𝑛)  
with 𝑦𝑖 ∈ 𝐹.  

The sum of 𝛼and 𝛽 is defined by  

𝛼 + 𝛽 = (𝑥1 + 𝑥2, … , 𝑥𝑛) + (𝑦1 + 𝑦2, … , 𝑦𝑛)
= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛) 

The scalar multiplication condition would be 𝑐𝛼 =
(𝑐𝑥1, 𝑐𝑥2, … , 𝑐𝑥𝑛) 
The product of a scalar 𝑐 and vector 𝛼 is defined by 𝑐𝛼 =
(𝑐𝑥1, 𝑐𝑥2, … , 𝑐𝑥𝑛) 
 

The fact that the vector addition and scalar multiplication satisfy 

conditions (1) and (2), it is easy to verify, using the similar 

properties of addition and multiplication of elements of F. 

 

3.  The space of (𝒎 × 𝒏) matrices 𝑭𝒎×𝒏 

Let 𝐹 be any field and let 𝑚 and 𝑛 be positive integers. Let 𝐹𝑚×𝑛 

be the set of all (𝑚 × 𝑛) 
matrices over the field F.  

i. The sum of two vectors A and B in 𝐹𝑚×𝑛 is defined by 

(𝐴 + 𝐵)𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 

ii. The product of a scalar c and the matrix (𝐴 + 𝐵)𝑖𝑗 is 

defined by 

𝑐(𝐴 + 𝐵)𝑖𝑗 = 𝑐𝐴𝑖𝑗 + 𝑐𝐵𝑖𝑗 

 

Self-Assessment: From what you just read, can you recount the definition 

of vector space over C and some of its properties? 

 

1.3.2  Spaces Associated with Vector Spaces 
 

A)  The space of functions from a set to a field: 

Definition 1.3.4: Let 𝐹 be any field and 𝑆 be any non-empty set. 

Let 𝑉 be the set of all functions from the set 𝑆 into 𝐹, then, 

i. The sum of two vectors 𝑓and 𝑔 in 𝑉 is the vector 𝑓 + 𝑔, 

i.e., the function from 𝑆 into 𝐹 is defined by (𝑓 + 𝑔)(𝑠) =
𝑓(𝑠) + 𝑔(𝑠) 

ii. The product of the scalar c and the function f is the 

function 𝑐𝑓defined by 

(𝑐𝑓)(𝑠) = 𝑐𝑓(𝑠) 
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B)  The space of polynomial functions over a field F 

Definition 1.3.5: Let 𝐹 be a field and let 𝑉 be the set of all 

functions f from 𝐹 into 𝐹 which have a rule of the form: 𝑓(𝑥) =
𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 +⋯+ 𝑐𝑛𝑥
𝑛, where 𝑐0, 𝑐1, 𝑐2, … 𝑐𝑛 are fixed 

scalars in 𝐹(independent of 𝑥). A function of this type is called a 

polynomial function on 𝐹.  

 

N.B: Let addition and scalar multiplication be defined as in definition 

3.2.1.  

One must observe here that if 𝑓and 𝑔are polynomial functions and 𝑐 ∈ 𝐹, 

then 𝑓 + 𝑔 and 𝑐𝑓are again polynomial functions. 

 

Definition 1.3.6: Let 𝑅𝑛 = {(𝑎1, … , 𝑎𝑛)
𝑇: 𝑎𝑖 ∈ 𝑅, 1 ≤ 𝑖 ≤ 𝑛};𝑢 =

(𝑎1, … , 𝑎𝑛)
𝑇, 𝑣 = (𝑏1, … , 𝑏𝑛)

𝑇 ∈ 𝑉 and 𝛼 ∈ 𝑅, we define 𝑢 + 𝑣 =
(𝑎1 + 𝑏1, … , 𝑎𝑛 + 𝑏𝑛)

𝑇and 𝛼 ⋅ 𝑢 = (𝛼𝑎1, … , 𝛼𝑎𝑛)
𝑇 (called component-

wise operations), then, V is a real vector space.  

The vector space 𝑅𝑛 is called the real vector space of n-tuples. 

 

Definition 1.3.7: Let 𝑚, 𝑛 ∈ 𝑁and 𝑀𝑚+𝑛(𝐶) = {𝐴𝑚×𝑛 = [𝑎𝑖𝑗] ∈ 𝐶}, 

then, with the usual addition and scalar multiplication of matrices, 

𝑀𝑚+𝑛(𝐶) is a complex vector space.  

If 𝑚 = 𝑛, the vector space 𝑀𝑚+𝑛(𝐶) is denoted by 𝑀𝑛(𝐶). 
 

Definition 1.3.8: Let 𝑆 be a non-empty set and let 𝑅𝑆 = {𝑓} such that 𝑓 

is a function from 𝑆 to 𝑅. For 𝑓, 𝑔 ∈ 𝑅𝑆 and 𝛼 ∈ 𝑅, define (𝑓 + 𝛼𝑔)(𝑥) =
𝑓(𝑥) + 𝛼𝑔(𝑥) for all 𝑥 ∈ 𝑆, then, 𝑅𝑆 is a real vector space. 

In particular, for 𝑆 = 𝑁, observe that 𝑅𝑁 consists of all real sequences 

and forms a real vector space. 

 

Let 𝐶(𝑅, 𝑅) = {𝑓: 𝑅 → 𝑅}, such that 𝑓 is continuous.  

Then 𝐶(𝑅, 𝑅) is a real vector space, where (𝑓 + 𝛼𝑔)(𝑥) = 𝑓(𝑥) +
𝛼𝑔(𝑥)∀𝑥 ∈ 𝑅. 

 

1.3.3  Definition and Examples of Vector Subspace 
 

Definition 1.3.9: A subspace is a vector space that is contained within 

another vector space. In other words, every subspace is a vector space in 

its own right, but it is also defined relative to some other (larger) vector 

space.  

 

The principal definition of subspace is presented below: 

 

Definition 1.3.10: Suppose that V and W are two vector spaces that have 

identical definitions of vector addition and scalar multiplication, and that 

W is a subset of V, that is, 𝑊 ⊆ 𝑉, then W is a subspace of V. 
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Let us look at an example of a vector space inside another vector space. 

 

Vector Subspace 

Definition 1.3.12: Let V be a vector space over F. Then, a non-empty 

subset W of V is called a subspace of V if W is also a vector space with 

vector addition and scalar multiplication in W coming from that in V 

(compute the vector addition and scalar multiplication in V and then the 

computed vector should be an element of W). 

 

Theorem 1.3.2: Let 𝑉(𝐹) be a vector space and 𝑊 ⊆ 𝑉,𝑊 ≠ ∅. Then, 

W  is a subspace of V if and only if 𝛼𝑢 + 𝛽𝑣 ∈ 𝑊 whenever 𝛼, 𝛽 ∈ 𝐹 and 

𝑢, 𝑣 ∈ 𝑊. 

 

Proof:  Let W be a subspace of 𝑉 and let 𝑢, 𝑣 ∈ 𝑊. As 𝑢, 𝑣 ∈ 𝑊 is a 

subspace, the scalar 𝛼, 𝛽 ∈ 𝐹and 𝛼𝑢 + 𝛽𝑣 ∈ 𝑊. 

Now, we assume that 𝛼𝑢 + 𝛽𝑣 ∈ 𝑊, whenever 𝛼, 𝛽 ∈ 𝐹 and 𝑢, 𝑣 ∈ 𝑊.  

To show, 𝑊 is a subspace of 𝑉: 

i. Taking 𝛼 = 0 and 𝛽 = 0 ⇒ 0 ∈ 𝑊. So, W is non-empty. 

ii. Taking 𝛼 = 1 and 𝛽 = 1, we see that 𝑢 + 𝑣 ∈ 𝑊, for every 𝑢, 𝑣 ∈
𝑊. 

iii. Taking 𝛽 = 0, we see that 𝛼𝑢 ∈ 𝑊, for every 𝛼 ∈ 𝐹and 𝑢 ∈ 𝑊. 

iv. Hence, using Theorem 1.3.1(iii) above, −𝑢 = (−1)𝑢 ∈ 𝑊. 

v. The commutative and associative laws of vector addition hold as 

they hold in 𝑉. 

vi. The conditions related with scalar multiplication and the 

distributive laws also hold as they hold in 𝑉. 

 

Theorem 1.3.3: A non-empty subset 𝑊of 𝑉 is a subspace of 𝑉if and only 

if for each pair of vectors 𝛼, 𝛽 ∈ 𝑊and each scalar 𝑐 ∈ 𝐹 the vector 𝑐𝛼 +
𝛽 ∈ 𝑊. 

 

Proof: 

Suppose that 𝑊is a non-empty subset of 𝑉 such that 𝑐𝛼 + 𝛽 ∈ 𝑊 for all 

vector 𝛼, 𝛽 ∈ 𝑊and all scalars 𝑐 ∈ 𝐹.  

Since 𝑊 is non-empty, there is a vector 𝜙 ∈ 𝑊, which implies that 
(−1)𝜙 + 𝜙 = 0 is in W.  

If 𝛼 is any vector in 𝑊, and 𝑐, any scalar, the vector 𝑐𝛼 = 𝑐𝛼 + 0 is in 

𝑊.  

In particular, (−1)𝛼 = −𝛼  is in W.   

Also, if 𝛼, 𝛽 ∈ 𝑊, then 𝛼 + 𝛽 = 1𝛼 + 𝛽 is in 𝑊. 

Thus, 𝑊 is a subspace of  𝑉. 

Conversely, if 𝑊is a subspace of 𝑉, 𝛼, 𝛽 ∈ 𝑊and 𝑐 is a scalar, certainly 

𝑐𝛼 + 𝛽 ∈ 𝑊. 
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Examples: 

1. If 𝑉 is any vector space and 𝑉 is a subspace of 𝑉; the subset 

consisting of the zero vector alone is a subspace of 𝑉, called the 

zero subspace of 𝑉. 

2. In 𝐹𝑛, the set of n-tuples 𝑥1, 𝑥2, … , 𝑥𝑛with 𝑥𝑖 = 0 is a subspace; 

however, the set of n-tuples with 𝑥1 = 1 + 𝑥2 is not a subspace 
(𝑛 ≥ 2). 

3. The space of polynomial functions over the field 𝐹is a subspace of 

the space of all functions from 𝐹 into 𝐹. 

4. An 𝑛 × 𝑛 (square) matrix 𝐴over the field 𝐹is symmetric if 𝐴𝑖𝑗 =

𝐴𝑗𝑖, for each 𝑖 and 𝑗. The symmetric matrices form a subspace of 

the space of all 𝑛 × 𝑛 matrices over 𝐹. 

5. An 𝑛 × 𝑛 (square) matrix 𝑨 over the field C of complex numbers 

is Hermitian (or self-adjoint) if 𝐴𝑗𝑘 = �̄�𝑘𝑗for each 𝑗, 𝑘, the bar 

denoting complex conjugation.  

 

Definition 1.3.13: A 2 × 2 matrix is Hermitian if and only if it has the 

form  

[
𝑧 𝑥 + 𝑖𝑦

𝑥 − 𝑖𝑦 𝑤
], where 𝑥, 𝑦, 𝑧, 𝑤, are real numbers.  

The set of all Hermitian matrices is not a subspace of the space of all 𝑛 ×
𝑛matrices over 𝑪. If 𝐴 is Hermitian, its diagonal entries 𝐴11, 𝐴22, … , 𝐴𝑛𝑛 

are all real numbers, but the diagonal entries of 𝐴𝑖𝑗are in general not real. 

On the other hand, it is easily verified that the set of 𝑛 × 𝑛complex 

Hermitian matrices is a vector space over the field R of real numbers (with 

the usual operations). 

 

Theorem 1.3.4: The solution space of a system of homogeneous linear 

equations: 

Let A be an 𝑚 × 𝑛 matrix over F, then the set of all 𝑛 × 1 (column) 

matrices 𝑋 over 𝐹 such that 𝐴𝑋 =  0 is a subspace of the space of all 𝑛 ×
1 matrices over F.  

To prove this, we must show that 𝐴(𝑐𝑋 + 𝑌) = 0 when 𝐴𝑋 =  0, 𝐴𝑌 =
 0, and c is an arbitrary scalar in F.     

This follows immediately from the following general fact. 

 

Lemma: If A is an 𝑚 × 𝑛 matrix over F and B, C are 𝑛 × 𝑝 matrices over 

F then 

𝐴(𝑑𝐵 + 𝐶) = 𝑑(𝐴𝐵) + 𝐴𝐶 for each scalar 𝑑 ∈ 𝐹 

 

Proof:  

[𝐴(𝑑𝐵 + 𝐶)]𝑖𝑗 =∑𝐴𝑖𝑘(𝑑𝐵 + 𝐶)𝑘𝑗
𝑘
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=∑(𝑑𝐴𝑖𝑘𝐵𝑘𝑗 + 𝐴𝑖𝑘𝐶𝑘𝑗)

𝑘

 

= 𝑑∑𝐴𝑖𝑘𝐵𝑘𝑗
𝑘

+∑𝐴𝑖𝑘𝐶𝑘𝑗
𝑘

 

= 𝑑(𝐴𝐵)𝑖𝑗 + (𝐴𝐶)𝑖𝑗 

= [𝑑(𝐴𝐵) + 𝐴𝐶]𝑖𝑗 

Similarly, one can show that (𝑑𝐵 + 𝐶)𝐴 = 𝑑(𝐵𝐴) + 𝐶𝐴, if the matrix 

sums and products are defined. 

 

Theorem 1.3.5: Let V be a vector space over the field 𝐹. The intersection 

of any collection of subspaces of 𝑉 is a subspace of 𝑉. 

 

Proof:  

Let {𝑊𝑎} be a collection of subspaces of 𝑉, and let 𝑊 = ⋂ 𝑊𝑎𝑎  be their 

intersection.  

Recall that W is defined as the set of all elements belonging to every 𝑊𝑎. 

Since each 𝑊𝑎is a subspace, each contains the zero vector. Thus, the zero 

vector is in the intersection 𝑊, and 𝑊 is non-empty.  

Let 𝛼 and 𝛽 be vectors in 𝑊 and let 𝑐 be a scalar. 

 

By definition of W, both 𝛼and 𝛽belong to each 𝑊𝑎, and because each 𝑊𝑎 

is a subspace, the vector 𝑐𝛼 + 𝛽  is in every 𝑊𝑎. Thus(𝑐𝛼 + 𝛽) is again 

in W. 

Thus, by Theorem 1.3.1, W is a subspace of V.  

From Theorem 1.3.2, it follows that if S is any collection of vectors in V, 

then there is a smallest subspace of V which contains S, that is, a subspace 

which contains S and which is contained in every other subspace 

containing S. 

 

SELF- ASSESSMENT EXERCISE 

 

i. By Definition 1.3.3, show that the ten properties hold using the two 

operations on a vector space over 𝐶. 

ii. Enumerate any three (3) examples of vector space. 

 

  1.4  Summary 

 

In this unit we have covered the following points: 

 

 A vector space is composed of three objects, a set and two 

operations which satisfy some properties 
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 The Euclidean plane𝑅2, the n-tuple, 𝐹𝑛 and the space of (𝑚 × 𝑛) 

matrices 𝐹𝑚×𝑛 are examples of vector spaces 

 A subspace is a vector space that is contained within another vector 

space. 

 

A vector space 𝑉 over the field 𝐹, denoted by 𝑉(𝐹), is a non-empty set, 

in which vector addition, scalar multiplication can be defined. 

 

The vector space 𝑅𝑛 is called the real vector space of n-tuples. 

A non-empty subset W of a vector space V over F is called a subspace of 

V if W is also a vector space with vector addition and scalar multiplication 

in W coming from that in V. 

The intersection of any collection of subspaces of V is a subspace of V. 

 

  1.5  References/Further Readings 

 

Robert A. Beezer (2014). A First Course in Linear Algebra Congruent 

Press, Gig Harbor, Washington, USA 3(40). 

 

Arbind K Lal Sukant Pati (2018). Linear Algebra through Matrices. 

 

Peter J. Cameron (2008). Notes on Linear Algebra. 
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UNIT 2 LINEAR COMBINATIONS     

 

Unit Structure 

  

2.1  Introduction  

2.2  Learning Outcomes  

2.3  Linear Combinations 

2.3.1  Linear Combination of Column Vectors 

2.3.2  Linear Combination and Consistency of a System 

2.3.3  Linear Span 

2.3.4  Finite and Infinite Dimensional 

2.4  Linear Independence 

     2.4.1  Linearly Independent Vectors 

     2.4.2  Properties of Linear Independence 

2.5  Summary  

2.6  References/Further Reading  

 

2.1  Introduction 

 

The heart of linear algebra is in two operations, both with vectors. We add 

vectors to obtain v +w and multiply them by numbers or scalars c and d 

to get 𝑐𝑣 and 𝑑𝑤.Combining those two operations (adding 𝑐𝑣 to 𝑑𝑤) 

gives the linear combination 𝑐𝑣 + 𝑑𝑤. 

 

Linear combinations are all-important in this subject! Sometimes, one 

particular combination is required, the specific choice c = 2 and d = 1 that 

produces 𝑐𝑣 + 𝑑𝑤 = (4,5). 
 

Other times, we require all the combinations of v and w (coming from all 

c and d), the vectors cv lie along a line. When w is not on that line, the 

combinations 𝑐𝑣 + 𝑑𝑤fill the whole two-dimensional plane ("two-

dimensional" because linear algebra allows higher-dimensional planes). 

For four vectors 𝑢, 𝑣, 𝑤, 𝑧 in four-dimensional space and their 

combinations: 

 

 𝑐𝑢 + 𝑑𝑣 + 𝑒𝑤 + 𝑗𝑧 are likely to fill the space but not always.  

The vectors and their combinations could even lie on one line. 
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  2.2  Learning Outcomes 

 

By the end of this unit, you will be able to: 

 

 Define Linear Combination of Column Vectors 

 Form Linear Combinations given different scalars 

 Define Finite dimension of a Vector Space 

 Define Consistency of a System 

 Obtain the Solution(s) of a system containing a linear combination 

of the columns 

 Define Linear Span of a Collection of Vectors 

 

  2.3  Linear Combinations 

  

2.3.1  Linear Combinations of Column Vectors 

 

Definition 2.3.1: Given n vectors 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛 from the column 

vector 𝐶𝑚 and n-scalars 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛, their linear combination is the 

vector 𝛼1𝑢1 + 𝛼2𝑢2 + 𝛼3𝑢3 +⋯+ 𝛼𝑛𝑢𝑛. 

 

The definition above combines an equal number of scalars and vectors 

using the two operations (scalar multiplication and vector addition), thus 

forming a single vector of the same size as the original vectors.  

 

Example 1: Linear combinations in 𝐶5 
Let  𝛼1 = −1𝛼2 = −3𝛼3 = 4𝛼4 = 2 and  

𝑢1 =

[
 
 
 
 
1
−2
0
1
5 ]
 
 
 
 

𝑢2 =

[
 
 
 
 
3
−2
4
−3
1 ]
 
 
 
 

𝑢3 =

[
 
 
 
 
2
1
−2
0
4 ]
 
 
 
 

𝑢4 =

[
 
 
 
 
3
6
−4
−1
1 ]
 
 
 
 

 

Their linear combination is 

𝛼1𝑢1 + 𝛼2𝑢2 + 𝛼3𝑢3 + 𝛼4𝑢4

= (−1)

[
 
 
 
 
1
−2
0
1
5 ]
 
 
 
 

+ (−3)

[
 
 
 
 
3
−2
4
−3
1 ]
 
 
 
 

+ (4)

[
 
 
 
 
2
1
−2
0
4 ]
 
 
 
 

+ (2)

[
 
 
 
 
3
6
−4
−1
1 ]
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=

[
 
 
 
 
−1
2
0
−1
−5]
 
 
 
 

+

[
 
 
 
 
−9
6
−12
9
−3 ]

 
 
 
 

+

[
 
 
 
 
8
4
−8
0
16]
 
 
 
 

+

[
 
 
 
 
6
12
−8
−2
2 ]
 
 
 
 

=

[
 
 
 
 
4
24
−28
6
10 ]
 
 
 
 

 

 

Other different linear combinations can be formed given different scalars, 

for instant, given 𝛽1 = 2;𝛽2 = −1;𝛽3 = −3 ; 𝛽4 = 0 

We can form a linear combination given by 

𝛽1𝑢1 + 𝛽2𝑢2 + 𝛽3𝑢3 + 𝛽4𝑢4

= (2)

[
 
 
 
 
1
−2
0
1
5 ]
 
 
 
 

+ (−1)

[
 
 
 
 
3
−2
4
−3
1 ]
 
 
 
 

+ (−3)

[
 
 
 
 
2
1
−2
0
4 ]
 
 
 
 

+ (0)

[
 
 
 
 
3
6
−4
−1
1 ]
 
 
 
 

 

=

[
 
 
 
 
4
−4
0
2
10]
 
 
 
 

+

[
 
 
 
 
−3
2
−4
3
−1]
 
 
 
 

+

[
 
 
 
 
−6
−3
6
0
−12]

 
 
 
 

+

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

=

[
 
 
 
 
−5
−5
2
5
−3]
 
 
 
 

 

 

2.3.2 Linear Combination and Consistency of a System 

 

Definition 2.3.2: A system 𝐴𝑥 = 𝐵 is consistent if it has a solution and 

inconsistent if it has no solution. The consistency of the system 𝐴𝑥 = 𝐵 

leads to the idea that the vector B is a linear combination of the columns 

of A. 

Example 2: Let 𝐴 = [
1 1
1 2
1 3

] and 𝐵 = [
2
3
4
]. Then, [

2
3
4
] = [

1
1
1
] + [

1
2
3
] 

This implies that [
2
3
4
] is a linear combination of the vectors in 𝑃 =

{[
1
1
1
] , [
1
2
3
]} 

Similarly, the vector [
8
13
18
] is a linear combination of the vectors in P as                  

[
8
13
18
] = 3 [

1
1
1
] + 5 [

1
2
3
] = 𝐴 [

3
5
] 

Thus, a formal definition of linear combination is given below: 

 

Definition 2.3.3: Let V be a vector space over F and let𝑃 = {𝑢1, … , 𝑢𝑛} ⊆
𝑉. Then, a vector𝑢 ∈ 𝑉 is called a linear combination of elements of P 
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if we can find 𝛼1, … , 𝛼𝑛, such that 𝑢 = 𝛼1𝑢1 + 𝛼2𝑢2 +⋯+ 𝛼𝑛𝑢𝑛 =
∑ 𝛼𝑖𝑢𝑖
𝑛
𝑖−1 . 

Or equivalently, any vector of the form ∑ 𝛼𝑖𝑢𝑖
𝑛
𝑖−1 where 𝛼1, …+ 𝛼𝑛 ∈ 𝐹 

is said to be a linear combination of the elements of P. 

Thus, the system 𝐴𝑥 = 𝐵 has a solution, meaning that B is a linear 

combination of the columns of A. 

Or equivalently, B is a linear combination means the system 𝐴𝑥 = 𝐵 has 

a solution.  
 

So, recall that when we were solving a system of linear equations, we 

looked at the point of intersections of lines or plane etc. But here it leads 

us to the study of whether a given vector is a linear combination of a given 

set P or not? Or in the language of matrices, is B a linear combination of 

columns of the matrix A or not? 
 

Examples 3: 

a) Is (4, 5, 5) a linear combination of (1, 0, 0), (2, 1, 0) and (3, 3, 1)? 
 

Solution:  

Let 𝐴 = [
1 2 3
0 1 3
0 0 1

] and 𝐵 = [
4
5
5
] 

9 [
1
0
0
] + (-10) [

2
1
0
] + 5 [

3
3
1
] = [

4
5
5
] 

Hence (4, 5, 5) a linear combination of (1, 0, 0), (2, 1, 0) and (3, 3, 1) and  

= [
1 2 3
0 1 3
0 0 1

] [
9
−10
5
] = [

4
5
5
] 

𝐴 [
9
−10
5
] = [

4
5
5
] of the form 𝐴𝑥 = 𝐵 

 Thus, 𝑥 = [9 −10 5]𝑇 is a solution.                     

 

b) Find condition(s) on 𝑥, 𝑦, 𝑧 ∈ 𝑅 such that 

i. (𝑥, 𝑦, 𝑧) is a linear combination of (1, 2, 3), (−1, 1, 4) and 

(3, 3, 2). 
ii. (𝑥, 𝑦, 𝑧) is a linear combination of (1, 2, 1), (1, 0, −1) and 

(1, 1, 0). 
iii. (𝑥, 𝑦, 𝑧) is a linear combination of (1, 1, 1), (1, 1, 0) and (1, 1, 0). 
 

Solution: 

i.[
1
2
3
] + [

−1
1
4
] + [

3
3
2
] = [

3
6
9
] 
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ii.[
1
2
1
] + [

1
0
−1
] + [

1
1
0
] = [

3
3
0
] 

iii.[
1
1
1
] + [

1
1
0
] + [

1
1
0
] = [

3
3
1
] 

 

Self-Assessment: Now, in simple sentences, give a simple description of 

linear combination of column vectors  

 

2.3.3  Linear Span 

 

Definition 2.3.4: Let V be a vector space over F and S a subset of V. We 

now look at ’linear span' of a collection of vectors. So, here we 

ask;“What is the largest collection of vectors that can be obtained as linear 

combination of vectors from S” Or equivalently, what is the smallest 

subspace of V that contains S?

 
 

Example 4

 
Let𝑆 = {(1,0,0), (1,2,0)} ⊆ 𝑅3. Let us find the largest possible subspace 

of 𝑅3 which contains vectors of the form 𝛼(1,0,0), 𝛽(1,2,0) and 
(1,0,0), (1,2,0) for all possible choices of𝛼, 𝛽 ∈ 𝑅. Note that     

a. 𝑙1 = {𝛼(1,0,0): 𝛼 ∈ 𝑅} gives the x-axis. 

b. 𝑙2 = {𝛽(1,2,0): 𝛽 ∈ 𝑅} gives the line passing through (0, 0, 0) and 

(1, 2, 0). 

 

So, we want the largest subspace of 𝑅3 that contains vectors which are 

formed as sum of any two points on the two lines 𝑙1and 𝑙2 , or the smallest 

subspace of 𝑅3 that contains S?  

 

2.3.4  Finite and Infinite Dimensional 

 

Definition 2.3.5: Let V be a vector space over F and 𝑆 ⊆ 𝑉, then 

1. the linear span of S, denoted by Ls(S), is defined as 

𝐿𝑠(𝑆) = {𝛼1𝑢1 +⋯+ 𝛼𝑛𝑢𝑛 | 𝛼1 ∈ 𝐹, 𝑢𝑖 ∈ 𝑆 for 1 ≤ 𝑖 ≤ 𝑛}. 
This implies that Ls(S) is the set of all possible linear combinations 

of finitely many vectors of S. If S is an empty set, we define 

𝐿𝑠(𝑆) = {0}. 
2. V is said to be finite dimensional if there exists a finite set S such 

that V = L(S). 

3. If there does not exist any finite subset S of V such that V = L(S) 

then V is called infinite dimensional. 

 

  



MTH 212           LINEAR ALGEBRA 

18 

 

Example 5:  

For each set S given below, determine Ls(S). 

a) 𝑆 = {(1,0)𝑇 , (0,1)𝑇} ⊆ 𝑅2. 
 

Solution: 𝐿𝑠(𝑆) = {𝑎(1,0)𝑇 + 𝑏(1,0)𝑇|𝑎, 𝑏 ∈ 𝑅} = {(𝑎, 𝑏)𝑇|𝑎, 𝑏 ∈
𝑅} = 𝑅2. 
Thus, 𝑅2is finite dimensional. 

b) 𝑆 = {(1,1,1)𝑇 , (2,1,3)𝑇}. What does L(S) represent in𝑅3? 

 

Solution:  

𝐿𝑠(𝑆) = {𝑎(1,1,1)𝑇 + 𝑏(2,1,3)𝑇|𝑎, 𝑏 ∈ 𝑅} = {(𝑎 + 2𝑏, 𝑎 + 𝑏, 𝑎 +
3𝑏)𝑇|𝑎, 𝑏 ∈ 𝑅}. 
Note that L(S) represents a plane passing through the points          
(0,0,0)𝑇 , (1,1,1)𝑇𝑎𝑛𝑑(2,1,3)𝑇.   

To obtain the equation of the plane, we proceed as follows: 

Find conditions on x, y and z such that {(𝑎 + 2𝑏, 𝑎 + 𝑏, 𝑎 + 3𝑏) =
(𝑥, 𝑦, 𝑧)}. 
Or equivalently, find conditions on x, y and z such that 𝑎 + 2𝑏 = 𝑥;   𝑎 +
𝑏 = 𝑦 and       

   𝑎 + 3𝑏 =  𝑧 has a solution for all 𝑎, 𝑏 ∈ 𝑅.  

The Row-Reduced Echelon Form(RREF) of the augmented matrix equals  

[

1 0 2𝑦 − 𝑥
0 1 𝑥 − 𝑦
0 0 𝑧 + 𝑦 − 2𝑥

] 

Thus, the required condition on x, y and z is given by 𝑧 + 𝑦 − 2𝑥 = 0.  

Hence, 𝐿𝑠(𝑆) = {𝑎(1,1,1)𝑇 + 𝑏(2,1,3)𝑇|𝑎, 𝑏 ∈ 𝑅} = {(𝑥, 𝑦, 𝑧)𝑇 ∈
𝑅3|2𝑥 − 𝑦 − 𝑧 = 0}. 
Verify that if 𝑇 = 𝑆 ∪ {(1,1,0)𝑇}, then 𝐿𝑠(𝑇) = 𝑅3.  
Hence, 𝑅3 is finite dimensional. 

In general, for every fixed 𝑛 ∈ 𝑁, 𝑅𝑛is finite dimensional as 𝑅𝑛 =
𝐿𝑠({𝑒1, … 𝑒𝑛}). 
 

c) 𝑆 = {1 + 2𝑥 + 3𝑥2, 1 + 𝑥 + 2𝑥2, 1 + 2𝑥 + 𝑥3} 
 

Solution:  

To understand Ls(S), we need to find condition(s) on 𝛼, 𝛽, 𝛾, 𝛿such that 

the linear system: 

𝑎(1 + 2𝑥 + 3𝑥2) + 𝑏(1 + 𝑥 + 2𝑥2) + 𝑐(1 + 2𝑥 + 𝑥3) = 𝛼 + 𝛽𝑥 +
𝛾𝑥2 + 𝛿𝑥3  
in the unknowns a, b, c is always consistent.  

An application of Gauss-Jordan Elimination (GJE) method gives 𝛼 + 𝛽 −
𝛾 − 3𝛿 = 0 as the required condition.  

Thus, 

𝐿𝑠(𝑆) = {𝛼 + 𝛽𝑥 + 𝛾𝑥2 + 𝛿𝑥3 ∈ 𝑅[𝑥]: 𝛼 + 𝛽 − 𝛾 − 3𝛿 = 0}.  
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Note that, for every fixed 𝑛 ∈ 𝑁, 𝑅[𝑥; 𝑛]is finite dimensional as 𝑅[𝑥; 𝑛] =
𝐿𝑠({1, 𝑥, … 𝑥𝑛}). 

d) 𝑆 = {[
1 0 0
0 1 0
0 0 1

] , [
0 1 1
1 1 2
1 2 0

] , [
0 1 2
1 0 2
2 2 4

]} ⊆ 𝑀3(𝑅). 

 

Solution: To get the equation, we need to find conditions on 𝑎𝑖𝑗′𝑠 such 

that the system  

                 [

𝛼 𝛽 + 𝛾 𝛽 + 2𝛾
𝛽 + 𝛾 𝛼 + 𝛽 2𝛽 + 2𝛾
𝛽 + 2𝛾 2𝛽 + 2𝛾 𝛼 + 2𝛾

] = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

]  

in the unknowns 𝛼, 𝛽, 𝛾 is always consistent. 

Now, verify that the required condition equals 

𝐿𝑠(𝑆) = {𝐴 = [𝑎𝑖𝑗] ∈ 𝑀3(𝑅): 𝐴 = 𝐴
𝑇 , 𝑎11 =

𝑎22 + 𝑎33 − 𝑎13
2

, 𝑎12

=
𝑎22 − 𝑎33 + 3𝑎13

4
, 𝑎23 =

𝑎22 − 𝑎33 + 3𝑎13
2

} 

In general, for each fixed 𝑚, 𝑛 ∈ 𝑁, the vector space 𝑀𝑚,𝑛(𝑅) is finite 

dimensional   

𝑀𝑚,𝑛(𝑅) = 𝐿𝑠({𝑒𝑖𝑗: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}). 
The vector space R over Q is infinite dimensional. 

 

Definition 2.3.6: Let S be a set of vectors in a vector space V. The 

subspace spanned by S is defined to be the intersection W of all subspaces 

of V which contain S.  

When S is a finite set of vectors, 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑛}, we shall simply call 

W the subspace spanned by the vectors 𝛼1, 𝛼2, … , 𝛼𝑛. 

 

Theorem 2.3.1: The subspace spanned by a non-empty subset S of a 

vector space V is the set of all linear combinations of vectors in S. 

 

Proof: Let W be the subspace spanned by S. Then each linear combination 

𝛼 = 𝑥1𝛼1 + 𝑥2𝛼2 +⋯+ 𝑥𝑚𝛼𝑚 of vectors 𝛼1, 𝛼2, … , 𝛼𝑚in S is clearly in 

W.  

Thus, W contains the set L of all linear combinations of vectors in S.  

The set L, on the other hand, contains S and is non-empty. 

If 𝛼, 𝛽 belong to L then 𝛼is a linear combination, 𝛼 = 𝑥1𝛼1 + 𝑥2𝛼2 +
⋯+ 𝑥𝑚𝛼𝑚 of vectors 𝛼𝑖in S, and 𝛽is a linear combination 𝛽 = 𝑦1𝛽1 +
𝑦2𝛽2 +⋯+ 𝑦𝑛𝛽𝑛 of vectors 𝛽𝑗 in S  

For each scalar c, 𝑐𝛼 + 𝛽 = ∑ (𝑐𝑥𝑖)𝛼𝑖
𝑚
𝑖=1 + ∑ 𝑦𝑗𝛽𝑗

𝑛
𝑗=1  

Hence 𝑐𝛼 + 𝛽belongs to L.  

Thus, L is a subspace of V. 
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Now we have shown that L is a subspace of V which contains S, and also 

that any subspace which contains S contains L. It follows that L is the 

intersection of all subspaces containing S, that is, that L is the subspace 

spanned by the set S. 

 

Definition 2.3.7: If 𝑆1, 𝑆2, … , 𝑆𝑘  are subsets of a vector space V, the set of 

all sums 𝛼1 + 𝛼2 +⋯+ 𝛼𝑘 of vectors 𝛼𝑖 in 𝑆𝑖 is called the sum of the 

subsets 𝑆1, 𝑆2, … , 𝑆𝑘 and is denoted by 𝑆1 + 𝑆2 +⋯+ 𝑆𝑘or ∑ 𝑆𝑖
𝑘
𝑖=1  

If 𝑊1,𝑊2, … ,𝑊𝑘are subspaces of V, then the sum is easily seen to be a 

subspace of V which contains each of the subspaces 𝑊𝑖. From this it 

follows, as in the proof of Theorem 3, that W is the subspace spanned by 

the union of 𝑊1,𝑊2, … ,𝑊𝑘. 

 

Example 6: Let F be a subfield of the field C of complex numbers. 

Suppose     

              𝛼1 = (1,2,0,3,0), 𝛼2 = (0,0,1,4,0), 𝛼3 = (0,0,0,0,1). 
By Theorem 2.3.1, a vector 𝛼 is in the subspace W of 𝐹5spanned by 

𝛼1, 𝛼2, 𝛼3 if and only if there exist scalars 𝑐1, 𝑐2, 𝑐3 in F such that 𝛼 =
𝑐1𝛼1 + 𝑐2𝛼2 + 𝑐3𝛼3. 
Thus, W consists of all vectors of the form 𝛼 = 𝑐1, 2𝑐1, 𝑐2, 3𝑐1 + 4𝑐2, 𝛼3, 
where 𝑐1, 𝑐2, 𝑐3 are arbitrary scalars in F.  

Alternatively, W can be described as the set of all 5-tuples 𝛼 =
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) with 𝑥𝑖 in F such that 𝑥2 = 2𝑥1 and 𝑥4 = 3𝑥1 + 4𝑥3 
Thus (− 3, − 6, 1, 5, 2) is in W, whereas (2, 4, 6, 7, 8) is not. 

 

2.4  Linear Independence 

 

2.4.1  Linearly Independent Vectors 

 

Definition 2.4.1: 

 (a) Let V be a vector space over the field K, and let 𝑆 = {𝑣1, … , 𝑣𝑛} be a 

non-empty subset of containing vectors in V. The vectors 𝑣1, 𝑣2… , 𝑣𝑛 are 

linearly independent if, whenever there exists scalars 𝑐1, … , 𝑐𝑛 satisfying 

𝑐1𝑣1 + 𝑐2𝑣2…+ 𝑐𝑛𝑣𝑛 = 0, then necessarily 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0𝑛. 

(b) The vectors 𝑣1, 𝑣2… , 𝑣𝑛are spanning if, for every vector𝑣 ∈ 𝑉, we can 

find scalars 𝑐1, 𝑐2… , 𝑐𝑛 ∈ 𝐾  such that 𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2…+ 𝑐𝑛𝑣𝑛. 

In this case, we write  𝑉 = (𝑣1, 𝑣2… , 𝑣𝑛). 
(c) The vectors 𝑣1, 𝑣2… , 𝑣𝑛form a basis for V if they are linearly 

independent and spanning. 

 

Remarks:  

 Linear independence is a property of a list of vectors.  

 A list containing the zero vector is never linearly independent.  

 Also, a list in which the same vector occurs more than once is never 

linearly independent. 
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Definition 2.4.2: Let V be a vector space over the field K, then V is finite 

dimensional if vectors 𝑣1, 𝑣2… , 𝑣𝑛 ∈ 𝑉can be found to form a basis for 

V. 

 

Proposition: The following three conditions are equivalent for the 

vectors 𝑣1, 𝑣2… , 𝑣𝑛of the vector space V over K: 

a) 𝑣1, 𝑣2… , 𝑣𝑛is a basis; 

b) 𝑣1, 𝑣2… , 𝑣𝑛is a maximal linearly independent set (that is, if we add 

any vector to the list, then the result is no longer linearly 

independent); 

c) 𝑣1, 𝑣2… , 𝑣𝑛is a minimal spanning set (that is, if we remove any 

vector fromthe list, then the result is no longer spanning). 

 

2.4.2  Properties of Linear Independence: 

 

Theorem 2.4.1 (The Exchange Lemma) Let V be a vector space over K. 

Suppose that the vectors 𝑣1, 𝑣2… , 𝑣𝑛are linearly independent, and that the 

vectors 𝑤1, 𝑤2… ,𝑤𝑚 are linearly independent, where 𝑚 > 𝑛. Then we 

can find a number 𝑖 with 1 ≤ 𝑖 ≤ 𝑚 such that the vectors 𝑣1, … , 𝑣𝑛, 𝑤𝑖 are 

linearly independent. 

 

A lemma about systems of equations would be used to prove this theorem. 

Lemma: Given a system    

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑚𝑥𝑚 = 0
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑚𝑥𝑚 = 0

⋮
⋮

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑚𝑥𝑚 = 0

     . . . . . . . . . . . . . (∗) 

of homogeneous linear equations, where the number n of equations is 

strictly less than the number m of variables, there exists a non-zero 

solution (𝑥1, … , 𝑥𝑚) (that is,𝑥1, … , 𝑥𝑚 are not all zero). 

 

Proof: 

This is proved by induction on the number of variables. If the coefficients 

𝑎11, 𝑎21… , 𝑎𝑛1 of 𝑥1 are all zero, then putting 𝑥1 = 1and the other 

variables zero gives a solution.  

 

If one of these coefficients is non-zero, then we can use the corresponding 

equation to express 𝑥1 in terms of the other variables, obtaining (𝑛 − 1) 
equations in (𝑚 − 1) variables.  

By hypothesis,  𝑛 − 1 < 𝑚 − 1.  

So, by the induction hypothesis, these new equations have a non-zero 

solution.  

 



MTH 212           LINEAR ALGEBRA 

22 

 

Computing the value of 𝑥1 gives a solution to the original equations. 

Now we turn to the proof of the Exchange Lemma.  

 

Let us argue for a contradiction by assuming that the result is false; that 

is, assume that none of the vectors iw can be added to the list 

(𝑣1, 𝑣2… , 𝑣𝑛) to produce a larger linearly independent list, this means 

that, for all j, the list (𝑣1, … , 𝑣𝑛, 𝑤𝑖) is linearly dependent.  

So, there are coefficients 𝑐1, … , 𝑐𝑛, 𝑑, not all zero, such that 𝑐1𝑣1 +⋯+
𝑐𝑛𝑣𝑛 + 𝑑𝑤𝑖 = 0. 

 

We cannot have 𝑑 = 0; for this would mean that we had a linear 

combination of 𝑣1, 𝑣2… , 𝑣𝑛 equal to zero, contrary to the hypothesis that 

these vectors are linearly independent.  

 

So, we can divide the equation through by d, and take 𝑤𝑖 to the other side, 

to obtain (changing notation slightly) 

𝑤𝑖 = 𝑎1𝑖𝑣1 + 𝑎2𝑖𝑣2 +⋯+ 𝑎𝑛𝑖𝑣𝑛 =∑𝑎𝑗𝑖𝑣𝑗

𝑛

𝑗=1

            (𝑖) 

We do this for each value of  𝑖 =  1, . . . , 𝑚. 
Now take a non-zero solution to the set of equations (𝑖) above: that is, 

∑𝑎𝑗𝑖𝑥𝑖

𝑚

𝑖=1

= 0;     𝑗 =  1, . . . , 𝑛              (𝑖𝑖) 

Multiplying the formula for 𝑤𝑖 by 𝑥𝑖and adding, we obtain 

𝑥1𝑤1 +⋯+ 𝑥𝑚𝑤𝑚 =∑(∑𝑎𝑗𝑖𝑥𝑖

𝑚

𝑖=1

)

𝑛

𝑗=1

𝑣𝑗 = 0                                  (𝑖𝑖𝑖) 

But the coefficients are not all zero, so this means that the vectors 
(𝑤1, 𝑤2… ,𝑤𝑚) are not linearly dependent, contrary to hypothesis. 

So, the assumption that no 𝑤𝑖can be added to (𝑣1, 𝑣2… , 𝑣𝑛) in order to 

obtain a linearly independent set must be wrong, and the proof is 

complete. 

 

Definition 2.4.3: Let B be a subset of a set A. Then, B is said to be a 

maximal subset of A having property P if 

1. B has property P 

2. No proper superset of B in A has property P. 

 

Example 7:  Let T = {2, 3, 4, 7, 8, 10, 12, 13, 14, 15}. Then, a maximal 

subset of T of consecutive integers is S = {2, 3, 4}.  

Other maximal subsets are {7, 8}, {10} and {12, 13, 14, 15}. Note that 

{12, 13} is not maximal. Why? 
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Definition 2.4.4: Let V be a vector space over F. Then, S is called a 

maximal linearly independent subset of V if 

1. S is linearly independent and 

2. no proper superset of 𝑆 ∈ 𝑉 is linearly independent. 
 

Example 8: 

a. In 𝑅3, the set 𝑆 = {𝑒1, 𝑒2} is linearly independent but not maximal 

as 𝑆 ∪ {(1,0,0)𝑇} is a linearly independent set containing S. 

b. In 𝑅3, set 𝑆 = {(1,0,0)𝑇 , (1,1,0)𝑇 , (1,1, −1)𝑇} is a maximal 

linearly independent set as S is linearly independent and any 

collection of four or more vectors from 𝑅3 is linearly dependent.  

c. Is the set {1, 𝑥, 𝑥2, … } a maximal linearly independent subset of 

𝐶[𝑥] over 𝐶 ? 

d. Is the set {1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} a maximal linearly independent 

subset of 𝑀𝑚,𝑛(𝐶) over 𝐶? 
 

Theorem 2.4.2: 

 Let 𝑉 be a vector space over 𝐹 and 𝑆 a linearly independent set in 𝑉. 

Then, 𝑆 is maximal linearly independent if and only if 𝐿𝑠(𝑆)  =  𝑉. 
 

Proof: Let 𝑣 ∈ 𝑉. As 𝑆 is linearly independent, using Corollary, the set 

𝑆 ∪ {𝑣} is linearly independent if and only if 𝑣 ∈ 𝑉\𝐿𝑠(𝑆) .  
Thus, the required result follows. 

 

Let 𝑉 = 𝐿𝑠(𝑆) for some set S with |𝑆| = |𝑇|. Then, using the Theorem 2, 

we see that if 𝑇 ⊆ 𝑉 is linearly independent then |𝑇| ≤ 𝑘. Hence, a 

maximal linearly independent subset of V can have at most k vectors. 

Thus, we arrive at the following important result. 
 

Theorem 2.4.3: Let 𝑉 be a vector space over 𝐹 and let 𝑆 and 𝑇 be two 

finite maximal linearly independent subsets of V. Then, |𝑆| = |𝑇|. 
Proof: By Theorem 2, S and T are maximal linearly independent if and 

only if  

𝐿𝑠(𝑆) = 𝑉 = 𝐿𝑠(𝑇). 
Now, use the previous paragraph to get the required result. 

Let V be a finite dimensional vector space. Then, by Theorem 3.4.6, the 

number of vectors in any two maximal linearly independent set is the 

same.  
 

We would now use this number to now define the dimension of a vector 

space. 
 

Definition 2.4.5: Let V be a finite dimensional vector space over F. Then, 

the number of vectors in any maximal linearly independent set is called 

the dimension of V, denoted𝑑𝑖𝑚(𝑉). 
By convention,𝑑𝑖𝑚({0}) = 0 
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Examples 9: 

a. As {1} is a maximal linearly independent subset of R, dim(R) = 1. 

b. As {𝑒1, … , 𝑒𝑛} is a maximal linearly independent subset 

in𝑅𝑛, 𝑑𝑖𝑚(𝑅𝑛) = 𝑛.  

c. As {𝑒1, … , 𝑒𝑛} is a maximal linearly independent subset in 𝐶𝑛 over 

C, 𝑑𝑖𝑚(𝐶𝑛) = 𝑛. 

d. Using 9c, {𝑒1, … , 𝑒𝑛, 𝑖𝑒1, … , 𝑖𝑒𝑛} is a maximal linearly independent 

subset in 𝐶𝑛 over 𝑅. Thus, as a real vector space, 𝑑𝑖𝑚(𝐶𝑛) = 2𝑛. 

e. As {𝑒1𝑗|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} is a maximal linearly independent 

subset of 𝑀𝑚,𝑛(𝐶) over C, 𝑅𝑛, 𝑑𝑖𝑚 (𝑀𝑚,𝑛(𝐶)) = 𝑚𝑛. 

 

SELF-ASSESSMENT EXERCISE(S) 

 

1.  Use different sets of scalars to construct different vectors. You 

might build a few new linear combinations of 𝑢1, 𝑢2, 𝑢3, 𝑢4 

2. Let𝑆 = {(1,1,1,1)𝑇 , (1, −1,1,2)𝑇 , (1,1, −1,1)𝑇} ⊆ 𝑅4. Does 

(1, −1,1,2)𝑇 ∈ 𝐿𝑠(𝑆)? 
           Determine conditions on x, y, z and u such that (𝑥, 𝑦, 𝑧, 𝑢)𝑇 ∈

𝐿𝑠(𝑆) 
3.   Prove that if two vectors are linearly dependent, one of them is a 

scalar multiple of the other.  

4.  Are the vectors:  

             𝑎1 = (1,1,2,4), 𝑎2 = (2,−1, −5,2), 𝑎3 = (1, −1,−4,0), 𝑎4 =
(2,1,1,6) linearly independent in 𝑅4? 

5.  Find a basis for the subspace of 𝑅4 spanned by the four vectors of 

Exercise 2 above. 

6.  Show that the vectors 𝑎1 = (1,0, −1), 𝑎2 = (1,2,1), 𝑎3 =
(0,−3,2)form a basis for 𝑅3. Express each of the standard basis 

vectors as linear combinations of 𝑎1, 𝑎2 and 𝑎3. 
7.  Find three vectors in 𝑅3which are linearly dependent, and are such 

thatany two of them are linearly independent. 

 

  2.5 Summary 

 

The largest collection of vectors that can be obtained as linear 

combination of vectors is called ’linear span and that {1} is a maximal 

linearly independent subset of R, dim(R) = 1. 

 

Also, if V be a vector space over F and S a linearly independent set in V, 

then, S is maximal linearly independent if and only if Ls(S) = V. 
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The subspace spanned by 𝑆 is defined to be the intersection 𝑊 of all 

subspaces of 𝑉 which contain 𝑆. 

 

The vector 𝛼1𝑢1 + 𝛼2𝑢2 + 𝛼3𝑢3 +⋯+ 𝛼𝑛𝑢𝑛 is the linear combination 

of n-vectors 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛 from the column vector 𝐶𝑚 and n-scalars 

𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛 
 

The number of vectors in any maximal linearly independent set of a finite 

dimensional vector space V over F is called the dimension of V. 

 

 2.6 References/Further Readings 

 

Robert A. Beezer (2014). A First Course in Linear Algebra. Congruent 

Press Gig Harbor, Washington, USA 3(40). 
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UNIT 3  LINEAR TRANSFORMATIONS I 
 

Unit Structure 

  

3.1  Introduction  

3.2  Learning Outcomes  

3.3  Linear Transformations 

    3.3.1  Spaces Associated with a Linear Transformation 

    3.3.2  The Range Space and the Kernel 

    3.3.3  Rank and Nullity  

    3.3.4  Some Types of Linear Transformations  

3.4  Theorems of Vector Spaces 

     3.4.1  Isomorphism Theorems of Vector Spaces 

     3.4.2  Homomorphism Theorems of Vector Spaces 

3.5  Summary 

3.6  References/Further Reading  

 

 3.1  Introduction 

 

You have already learnt about vector space and several concepts related 

to it. In this unit we initiate the study of certain mappings between two 

vector spaces, called linear transformations. The importance of these 

mappings can be realized from the fact that, in the calculus of several 

variables, every continuously differentiable function can be replaced, to a 

first approximation, by a linear one. This fact is a reflection of a general 

principle that every problem on the change of some quantity under the 

action of several factors can be regarded, to a first approximation, as a 

linear problem. It often turns out that this gives an adequate result. Also, 

in physics it is important to know how vectors behave under a change of 

the coordinate system. This requires a study of linear transformations.  

 

In this unit we study linear transformations and their properties, as well 

as two spaces associated with a linear transformation and their properties, 

as well as two spaces associated with a linear transformation, and their 

dimensions. Then, we prove the existence of linear transformations with 

some specific properties, as discuss the notion of an isomorphism between 

two vector spaces, which allows us to say that all finite-dimensional 

vector spaces of the same dimension are the “same”, in a certain sense.  

 

Finally, we state and prove the Fundamental Theorem of Homomorphism 

and some of its corollaries, and apply them to various situations. 
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 3.2  Learning Outcomes 

 

By the end of this unit, you should be able to:  

 

 Verify the linearity of certain mappings between vector spaces;  

 Construct linear transformations with certain specified properties;  

 Define the Range and the Kernel of Linear Transformation 

 Calculate the rank and nullity of a linear operator;  

 Prove and apply the Rank Nullity Theorem;  

 Define an isomorphism between two vector spaces;  

 Show that two vector spaces are isomorphic if and only if they have 

the same dimension;  

 Prove and use the fundamental theorem of homomorphism.  

 

 3.3  Linear Transformations  
 

By now you are familiar with vector spaces 𝑅2 and 𝑅3. Now consider the 

mapping 

𝑓: 𝑅2 → 𝑅3|𝑓(𝑥, 𝑦) = (𝑥, 𝑦, 0). 𝑓 is a well-defined function.  

Also notice that 

i. 𝑓((𝑎, 𝑏) + (𝑐, 𝑑)) = 𝑓((𝑎 + 𝑐, 𝑏 + 𝑑)) = (𝑎 + 𝑐, 𝑏 + 𝑑, 0) =
(𝑎, 𝑏, 0) + (𝑐, 𝑑, 0)for (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑅2 and 

ii. For any 𝛼 ∈ 𝑅 and (𝑎, 𝑏) ∈ 𝑅2, 𝑓((𝛼𝑎, 𝛼𝑏)) = (𝛼𝑎, 𝛼𝑏, 0) =

𝛼𝑓((𝑎, 𝑏)).  
 

So, we have a function 𝑓 between two vector spaces such that (𝑖) and (𝑖𝑖) 
above hold true.  

 i.  says that the sum of two plane vectors is mapped under 𝑓 to the 

sum to sum of their images under 𝑓.  

ii.  says that a line in the plane 𝑅2 is mapped under 𝑓 to a line in 𝑅2.  
Properties i) and ii) together say that 𝑓is linear, a term that we now 

define.  

 

Definition 3.3.1: Let U and V be vector spaces over a field F. A linear 

transformation (or linear operator) from U to V is a function𝑇:𝑈 → 𝑉, 

such that  

𝑳𝑻𝟏: 𝑇(𝑢1 + 𝑢2) = 𝑇(𝑢1) + 𝑇(𝑢2), for 𝑢1, 𝑢2 ∈ 𝑈 and  

𝑳𝑻𝟐:𝑇(𝛼𝑢) = 𝛼𝑇(𝑢) for 𝛼 ∈ 𝐹 and 𝑢 ∈ 𝑈.  

Conditions (𝑖) and (𝑖𝑖) above can be combined to give the following 

equivalent condition.  

𝑳𝑻𝟑: 𝑇(𝛼1𝑢1 + 𝛼2𝑢2) = 𝛼1𝑇(𝑢1) + 𝛼2𝑇(𝑢2), for 𝛼1, 𝛼2 ∈ 𝐹𝑢1, 𝑢2 ∈ 𝑈. 
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What we are saying is that [𝐿𝑇1and 𝐿𝑇2] implies 𝐿𝑇3. This can be easily 

shown as follows:  

We will show that 𝐿𝑇3 → 𝐿𝑇1; 𝐿𝑇3 → 𝐿𝑇2.  
Now, 𝐿𝑇3is true for all 𝛼1, 𝛼2 ∈ 𝐹.  

Therefore, it is certainly true for𝛼1 = 𝛼2, that is, 𝐿𝑇1 holds.  

Now, to show that𝐿𝑇2 is true,  

Consider 𝑇(𝛼𝑢) for any𝛼 ∈ 𝐹and𝑢 ∈ 𝑈.  

We have 𝑇(𝛼𝑢) = 𝑇(𝛼𝑢 + 0 ⋅ 𝑢) = 𝛼𝑇(𝑢) + 0 ⋅ 𝑇(𝑢) = 𝛼𝑇(𝑢), thus 

proving that 𝐿𝑇2 holds.  

You can try and prove the converse now, that is, what the following 

exercise is all about!  

E1) Show that the conditions 𝐿𝑇1and 𝐿𝑇2together imply 𝐿𝑇3. 

 

Before going further, let us note two properties of any linear 

transformation, 𝑇:𝑈 → 𝑉, which follow from 𝐿𝑇1(or 𝐿𝑇2or 𝐿𝑇3).  

𝑳𝑻𝟒:𝑇(0) = 0.  

Let’s see why this is true.  

Since (0) = 𝑇(0 + 0) = 𝑇(0) + 𝑇(0) , by 𝐿𝑇1, we subtract 𝑇(0) from 

both sides to get  

           𝑇(0)  =  0.  

𝑳𝑻𝟓:𝑇(−𝑢) = −𝑇(𝑢) for all 𝑢 ∈ 𝑈. Why is this so?  

Well, since, 0 = 𝑇(0) = 𝑇(𝑢 –  𝑢) = 𝑇(𝑢) + 𝑇(−𝑢); 
We have 𝑇(−𝑢) = −𝑇(𝑢).  
 

E2) Can you show how 𝐿𝑇4and 𝐿𝑇5 will follow from 𝐿𝑇2? 

Now let us look at some common linear transformations. 

Example 1: Consider the vector space U over a field F, and the function 

𝑇:𝑈 → 𝑉, defined by 𝑇(𝑢) = 𝑢 for all 𝑢 ∈ 𝑈. Show that T is a linear 

transformation. (This transformation is called the identity 

transformation, and is denoted by 𝐼𝑢, or just𝐼, if the underlying vector 

space is understood).  

 

Solution: For any 𝛼, 𝛽 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈, we have  

𝑇(𝛼𝑢1  + 𝛽𝑢2) = 𝛼𝑢1  + 𝛽𝑢2 =  𝛼𝑇(𝑢1)  + 𝛽𝑇(𝑢2) 
Hence, 𝐿𝑇3 holds, and T is a linear transformation.  

 

Example 2: Let 𝑇: 𝑈 → 𝑉be defined by 𝑇(𝑢) = 0for all 𝑢 ∈ 𝑈. Check 

that T is a linear transformation. (It is called the Null or Zero 

Transformation, and is denoted by 0).  

Solution: For any 𝛼, 𝛽 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈,  

we have 𝑇(𝛼𝑢1  + 𝛽𝑢2) = 0 =  𝛼 ∙ 0 + 𝛽 ∙ 0 

Therefore, T is linear transformation.  

Example 3: Consider the function 𝑃𝑟1: 𝑅𝑛 → 𝑅, defined by 

𝑃𝑟1[(𝑥1, … , 𝑥𝑛)] = 𝑥𝑖. Show that this is a linear transformation. (This is 

called the projection on the first coordinate).  
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Similarly, we can define 𝑃𝑟𝑖: 𝑅𝑛 → 𝑅 by 𝑃𝑟𝑖[(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 … , 𝑥𝑛)] = 𝑥𝑖 
to be the projection on the 𝑖𝑡ℎcoordinate for 𝑖 = 2,… , 𝑛.  

For instance, 𝑃𝑟2: 𝑅3 → 𝑅 by 𝑃𝑟2[(𝑥, 𝑦, 𝑧)] = 𝑦 

Solution: We will use 𝐿𝑇3 to show that projection is a linear operator. 

For 𝛼, 𝛽 ∈ 𝑅 and (𝑥1, ………𝑥𝑛), (𝑦1, ………𝑦𝑛) ∈  𝑅𝑛, we have  

P𝑃𝑟1[∝ (𝑥1, …… , 𝑥𝑛) + 𝛽(𝑦1, …… , 𝑦𝑛)] = 𝑃𝑟1(𝛼𝑥1 + 𝛽𝑦1, 𝛼𝑥2 +
𝛽𝑦2, …… , 𝛼𝑥𝑛 + 𝛽𝑦𝑛) 

= 𝛼𝑥1 + 𝛽𝑦1 
= 𝛼𝑃𝑟1[𝑥1, ⋯⋯ , 𝑥𝑛] + 𝛽𝑃𝑟1[(𝑦1, ⋯⋯ , 𝑦𝑛)] 

Thus 𝑃𝑟1 (and similarly 𝑃𝑟𝑖) is a linear transformation.  

 

Before going to the next example, we make a remark about projections.  

Remark: Consider the function𝑃: 𝑅3 → 𝑅2: 𝑃(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦), this is a 

projection from 𝑅3 on to the xy-plane. Similarly, the functions f and g, 

from𝑅3 → 𝑅2, defined by 𝑓(𝑥, 𝑦, 𝑧) = (𝑥, 𝑧), and 𝑔(𝑥, 𝑦, 𝑧) = (𝑦, 𝑧)are 

projections from 𝑅3onto the 𝑥𝑧-plane and the 𝑦𝑧-plane, respectively. 

In general, any function 𝜃: 𝑅𝑛 → 𝑅𝑚(𝑛 >  𝑚), which is defined by 

dropping any (𝑛 –  𝑚) coordinate, is a projection map.  

Now let us see another example of a linear transformation that is very 

geometric in nature.  

 

Example 4: Let 𝑇: 𝑅2 → 𝑅2 be defined by 𝑇(𝑥, 𝑦) = (𝑥,−𝑦) ∀ 𝑥, 𝑦 ∈ 𝑅. 

Show that T is a linear transformation. (This is the reflection in the x-axis 

that we show in Fig. 2). 

 

                            y 

                             P(2,1)             

 

 

                             0                                                 x 

                                               Q(-2,1) 

Fig 2: Q is the reflection of P in the X-axis.  

 

Solution: For 𝛼, 𝛽 ∈ 𝑅 and (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑅
2, we have  

𝑇[𝛼(𝑥1, 𝑦1) + 𝛽(𝑥2, 𝑦2)] = 𝑇(𝛼𝑥1 + 𝛽𝑥1, 𝛼𝑦1 + 𝛽𝑦2) 
= (𝛼𝑥1 + 𝛽𝑥2, −𝛼𝑦1 − 𝛽𝑦2) 
= 𝛼(𝑥1, −𝑦1) + 𝛽(𝑥2, −𝑦2) 
= 𝛼𝑇(𝑥1, 𝑦1) + 𝛽𝑇(𝑥2, 𝑦2) 

Therefore, T is a linear transformation.  

So, far we have given examples of linear transformations. Now, we give 

an example of a very important function which is not linear. This 

example’s importance lies in its geometric applications.  
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Example 5: Let 𝑢0be a fixed non-zero vector in U. Define 𝑇:𝑈 → 𝑈by 

𝑇(𝑢) = 𝑢 + 𝑢0, ∀𝑢 ∈ 𝑈.Show that T is not a linear transformation. (T is 

called the translation by𝑢0. See Fig 3 for a geometrical view). 

 

Solution: T is not a linear transformation since 𝐿𝑇4 does not hold.  

This is because 𝑇(0) = 𝑢0 ≠ 0  
                  y 

                4               𝐴′                  𝐵′ 
 

                  3     A 

 

                2                                   𝐷′ 
 

                1        C                  D 

 

                     0      1        2        3        4           x 

Fig. 3: 𝑨′𝑩′𝑪′𝑫′ is the transformation of ABCD by (1,1). 

 

Now, try the following Exercises.  

E3)Let 𝑇: 𝑅2 → 𝑅2 be the reflection in the y-axis. Find an expression for 

T as in Example 4.  

Is T a linear operator? 

E4) For a fixed vector(𝑎1,𝑎2, 𝑎3)in𝑅3, define the mapping 𝑇: 𝑅3 → 𝑅 by  

𝑇(𝑥1,𝑥2, 𝑥3) = a1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3. Show that T is a linear 

transformation.  

Note that 𝑇(𝑥1,𝑥2, 𝑥3) is the dot product of (𝑥1,𝑥2, 𝑥3) and (𝑎1,𝑎2, 𝑎3). 

E5) Show that the map 𝑇: 𝑅3 → 𝑅3 defined by  

𝑇(𝑎1,𝑎2, 𝑎3) = (𝑥1 + 𝑥2 − 𝑥3, 2𝑥1 − 𝑥2, 𝑥2 + 2𝑥3) is a linear operator. 

Let us consider the real vector space 𝑃𝑛 of all polynomials of degree less 

than or equal to n.  

E6) Let 𝑓 ∈ 𝑃𝑛be given by 𝐹(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝑎2𝑥
2……+ 𝛼𝑛𝑥

𝑛, 𝛼𝑖 ∈
𝑅 ∀𝑖.  
We define (𝐷𝑓)(𝑥) = 𝛼1 + 2𝛼2𝑥 + ⋯…+ 𝑛𝛼𝑛𝑥

𝑛−1. Show that 𝐷:𝑃𝑛 is 

a linear transformation. (Observe that 𝐷𝑓 is nothing but the derivative of 

f and D is called the differentiation operator). 

There is also the concept of a quotient space. 

We now define a very useful linear transformation, using this concept.  

Example 6: Let W be a subspace of a vector space U over a field F. W 

gives rise to the quotient space U/W. Consider the map 𝑇:𝑈 →
𝑈/𝑊defined by 𝑇(𝑢) = 𝑢 +𝑊. Show that T is a linear transformation.  

Solution: For any 𝛼, 𝛽 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈, we have  

𝑇(𝛼𝑢1  + 𝛽𝑢2) = 𝛼𝑢1  + 𝛽𝑢2 +𝑊 

= (𝛼𝑢1 +𝑊) + (𝛽𝑢2 +𝑊) 
=  𝛼(𝑢1 +𝑊) + 𝛽(𝑢2 +𝑊) 

 

𝐶′ 

B 
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=  𝛼𝑇(𝑢1)  + 𝛽𝑇(𝑢2) 
Thus, T is a linear transformation.  

Now solve the following exercise.  

 

Example 7: Let 𝑢1 = (1, – 1), 𝑢2 = (2,−1), 𝑢3 = (4, – 3), 𝑣1 =
(1,0), 𝑣2 = (0, 1) and𝑣3 = (1, 1) be six vectors in 𝑅2. 
Can you define a linear transformation 𝑇: 𝑅2 → 𝑅2 such that(𝑢1) =
𝑣𝑖  , 𝑖 =  1,2,3 ? 
(Hint: Note that 2𝑢1 + 𝑢2 = 𝑢3 and 𝑣1 + 𝑣2 = 𝑣3). 
You have already seen that a linear transformation 𝑇:𝑈 →  𝑉 must satisfy 

𝑇(𝛼1𝑢1 + 𝛼2𝑢2) = 𝛼1𝑇(𝑢1) + 𝛼2𝑇(𝑢2), for 𝛼1, 𝛼2 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈.  

More generally, we can show that,  

𝑳𝑻𝟔: 𝑻(𝜶𝟏𝒖𝟏 +⋯+ 𝜶𝒏𝒖𝒏) = 𝜶𝟏𝑻(𝒖𝟏) + ⋯+ 𝜶𝒏𝑻(𝒖𝒏);where 𝛼 ∈ 𝐹 

and 𝑢𝑖 ∈ 𝑈. 

This shall be shown by induction, that is, we assume the above relation 

for 𝑛 = 𝑚, and prove it for 𝑚 + 1. 

Now,  𝑇(𝛼1𝑢1 +⋯𝛼𝑚𝑢𝑚 + 𝛼𝑚+1𝑢𝑚+1)  =  𝑇(𝑢 + 𝛼𝑚+1𝑢𝑚+1) 
where,𝑢 = 𝛼1𝑢1 +⋯+ 𝛼𝑚𝑢𝑚 

=  𝑇(𝑢) + 𝛼𝑚+1𝑇(𝑢𝑚+1), Since the result holds for 𝑛 = 2 

=  𝑇(𝛼1𝑢1 +⋯𝛼𝑚𝑢𝑚) + 𝛼𝑚+1𝑇(𝑢𝑚+1)  
= 𝛼1𝑇(𝑢1) + ⋯+ 𝑇(𝛼𝑚)𝑇(𝑢𝑚) + 𝛼𝑚+1𝑇(𝑢𝑚+1) 

Since we have assumed the result for 𝑛 = 𝑚.  

Thus, the result is true for 𝑛 = 𝑚 + 1. Hence, by induction, it holds true 

for all n.  

 

Let us now come to a very important property of any linear transformation 

𝑇:𝑈 → 𝑉.  

In the earlier unit, we mentioned that every vector space has a basis. Thus, 

U has a basis.  

We will now show that T is completely determined by its values on a basis 

of U. More precisely, we have: 

 

Theorem 3.1: Let S and T be two linear transformations from U to V, 

where, 𝑑𝑖𝑚1 𝑈 =  𝑛. Let (𝑒1, …… , 𝑒𝑛) be a basis of U. Suppose 𝑆(𝑒𝑖)for 

𝑖 = 1,… , 𝑛. Then, 𝑆(𝑢) = 𝑇(𝑢) for all 𝑢 ∈ 𝑈. 

 

Proof: Let 𝑢 ∈ 𝑈. Since (𝑒1, …… , 𝑒𝑛)is a basis of U, u can be uniquely 

written as: 

𝑢 = 𝛼1𝑒1 + ……+ 𝛼𝑛𝑒𝑛, where the 𝛼𝑖 are scalars.  

Then, 𝑆(𝑢)  = 𝑆(𝛼1𝑒1 + ……+ 𝛼𝑛𝑒𝑛) 
                     = 𝛼1𝑆(𝑒1) + ……+ 𝛼𝑛𝑆(𝑒𝑛) by LT6  

                     = 𝛼1𝑇(𝑒1) + ……+ 𝛼𝑛𝑇(𝑒𝑛)  
                     = 𝛼1(𝛼1𝑒1 + ……+ 𝛼𝑛𝑒𝑛) by LT6  

                     =  𝑇(𝑢).   
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What we have just proved is that once we know the values of T on a basis 

of U, then we can find 𝑇(𝑢) for any 𝑢 ∈ 𝑈.  

Note: Theorem 3.1 is true even when U is not finite -dimensional.  

The proof, in this case, is on the same lines as above.  

Let us see how the idea of Theorem 3.1 helps us to prove the following 

useful result.  

 

Theorem 3.2: Let V be a real vector space and 𝑇: 𝑅 → 𝑉 be a linear 

transformation. Then there exists 𝑣 ∈ 𝑉 such that 𝑇(𝛼) = 𝛼𝑣 , ∀𝛼 ∈ 𝑅.  

 

Proof: A basis for R is (1).  

Let 𝑇(1) = 𝑉 ∈ 𝑉, then, for any 𝛼 ∈ 𝑅, 𝑇(𝛼) = 𝛼𝑇(1) = 𝛼𝑣; 

𝑇(𝛼) is a vector space of dimension one, whose basis is [T(1)].  

 

Now try the following exercise, for which you will need Theorem 3.1.  

 

E8) We define a linear operator 𝑇: 𝑅2 → 𝑅2: 𝑇(1,0) = (0,1) and 

𝑇(0,5) = (1,0).  
What is i) 𝑇(3,5)and ii)𝑇(5,3)? 

 

Now we shall prove a very useful theorem about linear transformations, 

which is linked to Theorem 3.1  

 

Theorem 3.3: Let (𝑒1  … . , 𝑒𝑛) be a basis of U and let 𝑣1  … . , 𝑣𝑛be any n 

vectors in V. Then there exists one and only one linear transformation 

𝑇:𝑈 → 𝑉 such that  

𝑇(𝑒1) = 𝑣1;   𝑖 =  1, … , 𝑛. 

 

Proof: Let 𝑢 ∈ 𝑈. Then u can be uniquely written as 𝑢 = 𝛼1𝑒1  +  ……+
 𝑇𝛼𝑛𝑒𝑛. 

Define 𝑇(𝑢)  =  𝛼1𝑣1  +  … .+ 𝛼𝑛𝑣𝑛 

T defines a mapping from U to V such that 𝑇(𝑒1) =  𝑣1for all 𝑖 = 1, … , 𝑛 

Let us now show that T is linear, 

Let a, b be scalars and 𝑢, 𝑢′ ∈ 𝑈. Then there exist scalars 

𝛼1, … , 𝛼𝑛, 𝛽1, … , 𝛽𝑛 such that 𝑢 = 𝛼1𝑒1 +⋯+ 𝛼𝑛𝑒𝑛 and 𝑢′ = 𝛽1𝑒1 +
⋯+ 𝛽𝑛𝑒𝑛 

Then, 𝑎𝑢 + 𝑏𝑢′ = (𝑎𝛼1  + 𝑏𝛽1)𝑒1  + ⋯+ (𝑎𝛼𝑛  + 𝑏𝛽𝑛)𝑒𝑛 

Hence, 𝑇(𝑎𝑢 + 𝑏𝑢′) = (𝑎𝛼1  + 𝑏𝛽1)𝑣1 + ⋯+ (𝑎𝛼𝑛  + 𝑏𝛽𝑛)𝑣𝑛  =
𝑎(𝛼1𝑣1 +⋯+ 𝛼𝑛𝑣𝑛)  +  𝑏(𝛽1𝑣1 +⋯+ 𝛽𝑛𝑣𝑛) = 𝑎𝑇(𝑢) + 𝑏𝑇(𝑢′) 
Therefore, T is a linear transformation with the property that 𝑇(𝑒𝑖) = 𝑣𝑖 
for all 𝑖 Theorem 3.1 now implies that T is the only linear transformation 

with the above properties.  

Let us now see how Theorem 3.3 can be used. 
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Example 8: 𝑒1 = (1,0,0), 𝑒2 = (0,1,0) and 𝑒1 = (0,0,1) form the 

standard basis of 𝑅3.      Let (1,2), (2,3) and (3,4) be three vectors in 𝑅2. 
Obtain the linear transformation 𝑇: 𝑅3 → 𝑅2such that 𝑇(𝑒1) = (1,2), T(𝑒2) 
= (2,3) and T(𝑒3) = (3,4).  

 

Solution: By Theorem 3.3, we know that 𝑇: 𝑅3 → 𝑅2 such that T(𝑒1) = 

(1,2), T(𝑒2) = (2,3), and T(𝑒3) = (3,4). We want to know what 𝑇(𝑥) is, for 

any 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅
3. 

Now, 𝑋 = 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3 
Hence, 𝑇(𝑋) = 𝑥1𝑇(𝑒1) + 𝑥2𝑇(𝑒2) + 𝑥3𝑇(𝑒3) 
                      = 𝑥1(1,2) + 𝑥2(2,3) + 𝑥3(3,4)  
                       = (𝑥1+2𝑥2 + 3𝑥3, 2𝑥1 +  3𝑥2 + 4𝑥3)  
Therefore, 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑥1+2𝑥2 + 3𝑥3, 2𝑥1 +  3𝑥2 + 4𝑥3) is the 

definition of the linear transformation T.  

 

E9) Consider the complex field ℂ. It is a vector space over ℝ, 

a) What is its dimension over ℝ? Give a basis of ℂover ℝ.  

b) Let 𝛼, 𝛽 ∈ 𝑅. Give the linear transformation which maps the basis 

elements of ℂ obtained in (a), onto α and 𝛽, respectively.  

Let us now look at some vector spaces that are related to a linear operator.  

 

3.3.1  Spaces Associated with a Linear Transformation  
 

In Unit 1, you found that given any function, there is a set associated with 

it, namely, it’s range. We will now consider two sets which are associated 

with any linear transformation, T. These are the range and the kernel of 

T.  

 

3.3.1.1   The Range Space and the Kernel  
 

Let U and V be vector spaces over a field F. Let 𝑇: 𝑈 → 𝑉be a linear 

transformation. We shall define the range of T as well as the Kernel of T. 

At first, you will see them as sets.  

We will prove that these sets are also vector spaces over F.  

 

Definition 3.3.2: The range of T, denoted by 𝑹(𝑻), is the set {𝑇(𝑥): 𝑥 ∈
𝑈} such that the kernel (or null space) of T denoted by Ker T, is the set 
{𝑥 ∈ 𝑈: 𝑇(𝑥) = 0}. 
Note that 𝑅(𝑇) ⊆ 𝑉and 𝐾𝑒𝑟 𝑇 ⊆ 𝑈.  

To clarify these concepts, consider the following examples: 

 

Example 9: Let 𝐼: 𝑈 → 𝑉be the identity transformation (see Example1). 

Find 𝑅(𝐼) and 𝐾𝑒𝑟 𝐼.  
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Solution: 𝑅(𝐼) = {𝐼(𝑣): 𝑣 ∈ 𝑉} = {𝑣: 𝑣 ∈ 𝑉} = 𝑉.  

Also, 𝐾𝑒𝑟 𝐼 = {𝑣 ∈ 𝑉: 𝐼(𝑣) = 0} = {𝑣 ∈ 𝑉: 𝑣 = 0} = {0} 
 

Example 10: Let 𝑇: 𝑅3 → 𝑅 be defined by (𝑥1, 𝑥2, 𝑥3) = 3𝑥1 + 𝑥2 +
2𝑥3. Find 𝑅(𝑇) and 𝐾𝑒𝑟 𝑇.  

 

Solution: 𝑅(𝑇) = {𝑥 ∈ 𝑅: 𝑥1, 𝑥2, 𝑥3 ∈ 𝑅with 3𝑥1 + 𝑥2 + 2𝑥3 = 𝑥} 
For example, 0 ∈ 𝑅(𝑇), Since 0 = 3.0 + 0 + 2.0 = 𝑇(0,0,0) 

Also, 𝐼 ∈ 𝑅(𝑇), since 𝐼 = 3 ∙ 1
3
+ 0 + 2 ∙ 0 = 𝑇(1

3
, 0,0), or 𝐼 = 3 ∙ 0 +

1 + 2 ∙ 0 = 𝑇(0,1,0) or  𝐼 = 3.0 + 1 + 2.0 = 𝑇(0, 1, 0); or 𝐼 =

 𝑇(0, 0,½) 𝑜𝑟 𝐼 =  𝑇 (
1

6
,
1

2
, 0).  

Now can you see that R(T) is the whole real line R? 

This is because, for any 𝛼 ∈ 𝑅, 𝛼 = 𝛼 ∙ 1 = 𝛼𝑇(𝛼
3
, 0,0) = 𝑇(𝛼

3
, 0,0) ∈

𝑅(𝑇) 
𝐾𝑒𝑟 𝑇 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝑅

3: 3𝑥1 + 𝑥2 + 2𝑥3 = 0} 
For example, (0,0,0) ∈ ker 𝑇, but(1, 0, 0) ∉ 𝐾𝑒𝑟 𝑇 .  

Therefore, 𝐾𝑒𝑟 𝑇 ≠ 𝑅3. In fact, Ker T is the plane 3𝑥1 + 𝑥2 + 2𝑥3 = 0 

in 𝑅3.  
 

Example 11: Let𝑇: 𝑅3 → 𝑅3 be defined by 

𝑇(𝑥1, 𝑥2, 𝑥3) = 𝑥1 − 𝑥2 + 2𝑥3, 2𝑥1 + 𝑥2, −𝑥1 − 2𝑥2 + 2𝑥3 
Find 𝑅(𝑇) and 𝐾𝑒𝑟 𝑇. 

 

Solution: To find 𝑅(𝑇), we must find conditions on 𝑦1, 𝑦2, 𝑦3 ∈ 𝑅so that 
(𝑦1, 𝑦2, 𝑦3) ∈ 𝑅(𝑇), i.e., we must find some (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅

3 so that 

(𝑦1, 𝑦2, 𝑦3) = 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑥1 − 𝑥 + 2𝑥3, 2𝑥1 + 𝑥2, 𝑥1 − 2𝑥2 + 2𝑥3) 
This means  

           𝑥1 − 𝑥2 + 2𝑥3 = 𝑦1           ……………. (1)  

          2𝑥1 + 𝑥2 = 𝑦2                     ……………. (2)  

          −𝑥1 − 2𝑥2 + 2𝑥3 = 𝑦3         ……………. (3)  

Subtracting 2 times (1) from (2) and adding (1) and (3) to obtain 

           3𝑥2 − 4𝑥3 = 𝑦2 − 2𝑦1     ………………… (4)  

         −3𝑥2 + 4𝑥3 = 𝑦1 + 𝑦3       ………………… (5)  

Adding Equations (4) and (5) we get  

              𝑦2 − 2𝑦1 + 𝑦1 + 𝑦3 = 0, that is, 𝑦2 + 𝑦3 = 𝑦1 

Thus,  (𝑦1, 𝑦2, 𝑦3) ∈ 𝑅(𝑇) ⇒ 𝑦2 + 𝑦3 = 𝑦1.  
On the other hand, if 𝑦2 + 𝑦3 = 𝑦1, we can choose  

          𝑥3 = 0 ;         𝑥2 =
𝑦2−2𝑦1

3
 ;      𝑥1 = 𝑦1 +

𝑦2−2𝑦1

3
 

Then, we see that 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑦1, 𝑦2, 𝑦3) 
Thus, 𝑦2 + 𝑦3 = 𝑦1 ⇒ (𝑦1, 𝑦2, 𝑦3) ∈ 𝑅(𝑇) 
Hence, 𝑅(𝑇) = {(𝑦1, 𝑦2, 𝑦3) ∈ 𝑅

3: 𝑦2 + 𝑦3 = 𝑦1} 
Now (𝑥1, 𝑥2, 𝑥3) ∈ 𝐾𝑒𝑟 𝑇 if and only if the following equations are true:  

                      𝑥1 − 𝑥2 + 2𝑥3 = 𝑦1  
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                      2𝑥1 + 𝑥2 = 𝑦2  
gives 

                    −𝑥1 − 2𝑥2 + 2𝑥3 = 𝑦3 + 2𝑥3 = 0  

                                  2𝑥1 + 𝑥2 = 0  

                         −𝑥1 − 2𝑥2 + 2𝑥3 = 0  

Of course,  𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0 is a solution.  

 

Are there other solutions?  

 

To answer this, we proceed as in the first part of this example.  

We see that 3𝑥2 + 4𝑥3 = 0 ⇒⇒ 𝑥3 =
3

4
𝑥2 

Also, 2𝑥1 + 𝑥2 = 0 ⇒⇒ 𝑥1 = −
1

2
𝑥2 

Thus, we can give arbitrary values to 𝑥2 and calculate 𝑥1and 𝑥3 in terms 

of 𝑥2. 

Therefore, 𝐾𝑒𝑟𝑇 = {(−𝛼
2
, 𝛼, (3

4
)𝛼): 𝛼 ∈ 𝑅}. 

In this example, we see that finding 𝑅(𝑇) and 𝐾𝑒𝑟 𝑇 amounts to solving 

a system of equations. In subsequent unit, you will learn a systematic way 

of solving a system of linear equations by the use of matrices and 

determinants.  

The following exercises will help you in getting used to 𝑅(𝑇) and 𝐾𝑒𝑟 𝑇.  

E10) Let 𝑇 be the zero-transformation given in Example 2. Find 𝐾𝑒𝑟𝑇 

and 𝑅(𝑇). Does 𝐼 ∈ 𝑅(𝑇)? 

E11) Find 𝑅(𝑇) and 𝐾𝑒𝑟𝑇 for each of the following operators: 

     a) 𝑇: 𝑅3 → 𝑅2: 𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦) 
     b) 𝑇: 𝑅3 → 𝑅: 𝑇(𝑥, 𝑦, 𝑧) = 𝑧 

      c) 𝑇: 𝑅3 → 𝑅3: 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2 + 𝑥3, 𝑥1 + 𝑥2 + 𝑥3, 𝑥1 +
𝑥2 + 𝑥3)).  
(Note that the operators in (a) and (b) are projections onto the 𝑥𝑦-plane 

and the 𝑧-axis, respectively). 

Now that you are familiar with the sets 𝑅(𝑇) and 𝐾𝑒𝑟𝑇, we will prove 

that they are vector spaces.  

 

Theorem 3.4: Let U and V be vector spaces over a field F. Let 𝑇: 𝑈 → 𝑉 

be a linear transformation. Then Ker T is a subspace of U and R(T) is a 

subspace of V.  

 

Proof: Let 𝑥1, 𝑥2 ∈ 𝐾𝑒𝑟𝑇 ⊆ 𝑈 and 𝛼1, 𝛼2 ∈ 𝐹.  

Now, by definition, 𝑇(𝑥1) = 𝑇(𝑥2) = 0  
Therefore, 𝛼1𝑇(𝑥1) + 𝛼2𝑇(𝑥2) = 0 

But 𝛼1𝑇(𝑥1) + 𝛼2𝑇(𝑥2) = 𝑇(𝛼1𝑥1 + 𝛼2𝑥2) 
Hence, 𝑇(𝛼1𝑥1 + 𝛼2𝑥2) = 0 

This means that 𝛼1𝑥1 + 𝛼2𝑥2 ∈ 𝐾𝑒𝑟𝑇.  

Thus, by Theorem 3.2.3 of Unit 1, KerT is a subspace of U.  
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Let 𝑦1, 𝑦2 ∈ 𝑅(𝑇) ⊆ 𝑉, and 𝛼1, 𝛼2 ∈ 𝐹, then, by definition of R(T), there 

exist 𝑥1, 𝑥2 ∈ 𝑈 such that 𝑇(𝑥1) = 𝑦1and 𝑇(𝑥2) = 𝑦2 

So, 𝛼1𝑦1 + 𝛼2𝑦2 = 𝛼1𝑇(𝑥1) + 𝛼2𝑇(𝑥2) 
                            = 𝑇(𝛼1𝑥1 + 𝛼2𝑥2)  
Therefore, 𝛼1𝑦1 + 𝛼2𝑦2 ∈ 𝑅(𝑇), which proves that 𝑅(𝑇) is a subspace of 

𝑉.  

Now that we have proved that 𝑅(𝑇) and 𝐾𝑒𝑟 𝑇 are vector spaces, you 

know, from Unit 1, that they must have a dimension. We shall study these 

dimensions now.  

     

3.3.1.2  Rank and Nullity  
 

Consider any linear transformation, 𝑇: 𝑈 → 𝑉, assuming that dim𝑈 is 

finite. Then KerT, being a subspace of 𝑈, has finite dimension and 

dim(𝐾𝑒𝑟𝑇) ≤ dim𝑈.  

Also note that 𝑅(𝑇) = 𝑇(𝑈), the image of U under T, a fact you will need 

to use in solving the following exercise.  

E12) Let {𝑒1,⋯ , 𝑒𝑛} be a basis of U. Show that 𝑅(𝑇) is generated by 
{𝑇(𝑒1),… , 𝑇(𝑒1)}.  
From E12), it is clear that, if dim𝑈 = 𝑁, then dim 𝑅(𝑇)  ≤  𝑛.  

Thus, 𝑑𝑖𝑚 𝑅(𝑇) is finite, and the following definition is meaningful.  

 

Definition 3.3.3: The rank of T is defined to be the dimension of R(T), 

the range space of T.  

The nullity of T is defined to be the dimension of Ker T, the kernel (or 

the null space) of T.  

Thus, 𝒓𝒂𝒏𝒌 (𝑻)  =  𝑑𝑖𝑚 𝑅(𝑇) and 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑇)  =  𝑑𝑖𝑚 𝐾𝑒𝑟 𝑇.  

We have already seen that 𝑟𝑎𝑛𝑘 (𝑇)  ≤  𝑑𝑖𝑚𝑈and 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑇)  ≤
 dim𝑈.  

 

Example 12: Let 𝑇: 𝑈 → 𝑉be the zero-transformation given in example 

2. What are the rank and nullity of T?  

Solution: In Exercise 11, you saw that R(T) = (0) and Ker T = U,  

Therefore, rank (T) = 0 and nullity (T) = dim𝑈. 

Note that rank (T) + nullity (T) = dim𝑈, in this case.  

 

E13) If T is the identity operator on V, find rank (T) and nullity (T). 

 

E14) Let D be the differentiation operator in E6). Give a basis for the 

range space of D and for Ker D. What are rank (D) and nullity (D)? 

 

In the above example and exercises you will find that for 𝑇:𝑈 → 𝑉, then 

 rank (T) + nullity (T) = dim𝑈.  

In fact, this is the most important result about rank and nullity of a linear 

operator. We shall now state and prove this result.  
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Theorem 3.5: Let U and V be vector spaces over a field F and dim𝑈 = 𝑛 

andlet𝑇:𝑈 → 𝑉be a linear operator. Then rank (T) + nullity (T) = n.  

 

Proof: Let 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑇)  =  𝑚, that is, 𝑑𝑖𝑚 𝐾𝑒𝑟 𝑇 =  𝑚, Let 
{𝑒1,⋯ , 𝑒𝑚}be a basis of Ker T. We know that Ker T is a subspace of U, 

thus, by a theorem in Unit 1, we can extend this basis to obtain a 

basis(𝑒1,⋯ , 𝑒𝑚, 𝑒𝑚+1, ⋯ 𝑒𝑛)of U.  

We shall show that {T(𝑒𝑚+1),…… , T(𝑒𝑛) }is a basis of R(T).  

Then, our result will follow because dim R(T) will be n – m = n – nullity 

(T).  

Let us first prove that {T(𝑒𝑚+1), ……, T(𝑒𝑛)} spans, or generates, R(T).  

Let 𝑦 ∈ 𝑅(𝑇), then, by definition of R(T), there exists 𝑥 ∈ 𝑈 such that 

𝑇(𝑥) = 𝑦.  

Let = 𝑐1𝑒1 +⋯+ 𝑐𝑚𝑒𝑚 + 𝑐𝑚+1𝑒𝑚+1 +⋯+ 𝑐𝑛𝑒𝑛; 𝑐𝑖 ∈ 𝐹 for all 𝑖. 
Then, 𝑦 = 𝑇(𝑥) = 𝑐1𝑇(𝑒1) + ⋯+ 𝑐𝑚𝑇(𝑒𝑚) + 𝑐𝑚+1𝑇(𝑒𝑚+1) + ⋯+
𝑐𝑛𝑇(𝑒𝑛) 
Because 𝑇(𝑒1) = ⋯ = 𝑇(𝑒𝑚) = 0, since 𝑇(𝑒1) ∈ 𝐾𝑒𝑟𝑇 T for all𝑖 =
1,… . ,𝑚.  

Therefore, any𝑦 ∈ 𝑅(𝑇) is a linear combination of {T(𝑒𝑚+1), ……, 

T(𝑒𝑛)}.  

Hence, R(T) is spanned by {T(𝑒𝑚+1), ……, T(𝑒𝑛)}.  

It remains to show that the set {T(𝑒𝑚+1), ……, T(𝑒𝑛)} is linearly 

independent.  

For this, suppose there exist 𝑎𝑚+1, ⋯ , 𝑎𝑛 with 𝑎𝑚+1𝑇(𝑒𝑚+1) + ⋯+
𝑎𝑛𝑇(𝑒𝑛) = 0. 

Then, 𝑇(𝑎𝑚+1𝑒𝑚+1 +⋯+ 𝑎𝑛𝑒𝑛) = 0 

Hence, (𝑎𝑚+1𝑒𝑚+1 +⋯+ 𝑎𝑛𝑒𝑛) ∈ 𝐾𝑒𝑟𝑇, which is generated by 
{𝑒1,⋯ , 𝑒𝑚}.  
Therefore, there exist 𝑒1, ⋯ , 𝑒𝑚 ∈ 𝐹 such that 

𝑎𝑚+1𝑒𝑚+1 +⋯+ 𝑎𝑛𝑒𝑛 = 𝑎1𝑒1 +⋯+ 𝑎𝑚𝑒𝑚 

⟹ (−𝑎1)𝑒1 +⋯+ (−𝑎𝑚)𝑒𝑚 + 𝑎𝑚+1𝑒𝑚+1 +⋯+ 𝑎𝑛𝑒𝑛 = 0 

Since {𝑒1,⋯ , 𝑒𝑚}is a basis of U, it follows that this set is linearly 

independent.  

Hence, −𝑎1 = 0, ⋯⋯ ,−𝑎𝑚 = 0, 𝑎𝑚+1 = 0,⋯⋯ , 𝑎𝑛 = 0.  

In particular, 𝑎𝑚+1 = ⋯⋯ = 𝑎𝑛 = 0, which we wanted to prove.  

Therefore, dim𝑅(𝑇) = 𝑛 –𝑚 = 𝑛 – nullity (T), that is, rank (T) + nullity 

(T) = n.  

Let us see how this theorem can be useful.  

 

Example 13: Let 𝑇: 𝑅3 → 𝑅 be the map given by 𝐿(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧. 

What is nullity (L)?  

 

Solution: In this case it is easier to obtain 𝑅(𝐿), rather than Ker L.  

Since 𝐿(1,0,0) = 1 ≠ 0, 𝑅(𝐿) ≠ {0}, and hence dimR(L) ≠ {0}.  
Also, R(L) is a subspace of R.  
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Thus, 𝑑𝑖𝑚 𝑅(𝐿) ≤  𝑑𝑖𝑚 𝑅 = 1.  

Therefore, the only possibility for 𝑑𝑖𝑚 𝑅(𝐿) is dim 𝑅(𝐿) = 1.  

By Theorem 5, 𝑑𝑖𝑚 𝐾𝑒𝑟 𝐿 + 𝑑𝑖𝑚 𝑅(𝐿) = 3.  

Hence, 𝑑𝑖𝑚 𝐾𝑒𝑟 𝐿 = 3 – 1 = 2. That is, nullity(L) = 2.  

E15)Give the rank and nullity of each of the linear transformations in E11. 

E16) Let 𝑈 and 𝑉 be real vector spaces and 𝑇:𝑈 → 𝑉be a linear 

transformation, where 𝑑𝑖𝑚 𝑈 = 1. Show that 𝑅(𝑇) is either a point or a 

line. 

Before ending this section, we will prove a result that links the rank (or 

nullity) of the composite of two linear operators with the rank (or nullity) 

of each of them.  

 

Theorem 3.6: Let V be a vector space over a field F. Let S and T be linear 

operators from V to V. Then  

          a) 𝑟𝑎𝑛𝑘 (𝑆𝑇) 𝑚𝑖𝑛 (𝑟𝑎𝑛𝑘 (𝑆), 𝑟𝑎𝑛𝑘 (𝑇)) 

          b)𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑆𝑇) ≥ 𝑚𝑎𝑥 (𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑆), 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑇)) 

 

Proof: We shall prove (a) 

Note that (𝑆𝑇)(𝑣) = 𝑆(𝑇(𝑣)) for any 𝑣 ∈ 𝑉 

Now, for any 𝑦 ∈ 𝑅(𝑆𝑇), ∃  𝑣 ∈ 𝑉 such that,  

                 𝑌 = (𝑆𝑇)(𝑣) = 𝑆(𝑇(𝑣))             …………………… (1) 

Now, (1) ⟹ 𝑦 ∈ 𝑅(𝑆) 
Therefore, 𝑅(𝑆𝑇) ⊆ 𝑅(𝑆) 
This implies that 𝑟𝑎𝑛𝑘(𝑆𝑇) ≤ 𝑟𝑎𝑛𝑘(𝑆).  
Again, (1) ⟹ 𝑦 ∈ 𝑆(𝑅(𝑇)), since 𝑇(𝑣) ∈ 𝑅(𝑇).  
∴ 𝑅(𝑆𝑇) ⊆ 𝑆(𝑅(𝑇)), so that 𝑑𝑖𝑚 𝑅(𝑆𝑇) ≤ 𝑑𝑖𝑚 𝑆(𝑅(𝑇)) ≤
𝑑𝑖𝑚 𝑅(𝑇)(since 𝑑𝑖𝑚 𝐿(𝑈) ≤ 𝑈 for any linear operator (0).  

Therefore, 𝑟𝑎𝑛𝑘 (𝑆𝑇) ≤ 𝑟𝑎𝑛𝑘 (𝑇).  
Thus, 𝑟𝑎𝑛𝑘 (𝑆𝑇) ≤ 𝑚𝑖𝑛 (𝑟𝑎𝑛𝑘 (𝑆), 𝑟𝑎𝑛𝑘 (𝑅)).  
The proof of this theorem will be complete, once you solve the following 

exercise.  

E17) Prove (b) of Theorem 6 using the Rank Nullity Theorem 

Next to be discussed are some linear operators that have special 

properties.  

 

3.3.2  Some Types of Linear Transformations  
 

Let us recall, from basic mathematics, that there can be different types of 

functions, some of which are one-one, onto or invertible. We can also 

define such types of linear transformations as follows:  
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Definition 3.3.4: Let 𝑇:𝑈 ⟶ 𝑉 be a linear transformation.  

a) T is called one-one (or injective) if, for 𝑢1, 𝑢2 ∈ 𝑈 with 𝑢1 ∉ 𝑢2, we 

have 𝑇(𝑢1) ∉ 𝑇(𝑢2). If T is injective, we also say T is 1 – 1.  

Note that T is 1 – 1 if𝑇(𝑢1) = 𝑇(𝑢2) ⟹ 𝑢1 = 𝑢2.  
b) T is called onto (or surjective) if, for each 𝑣 ∈ 𝑉, ∃  𝑢 ∈ 𝑈such that 

𝑇(𝑢) = 𝑣, that is 𝑅(𝑇) = 𝑉.  

Can you think of examples of such functions? The identity operator is 

both one-one and onto. Why is this so? Well, 𝐼: 𝑉 → 𝑉 is an operator such 

that, if 𝑣1, 𝑣2 ∈ 𝑉with 𝑣1 ≠ 𝑣2 then 𝐼(𝑣1) ≠ 𝐼(𝑣2).  Also, 𝑅(𝐼) = 𝑉, so 

that I is onto.  

E18) Show that the zero operator 0: 𝑅 → 𝑅 is not one – one 

 

Theorem 3.7: 𝑇:𝑈 → 𝑉is one-one if and only if 𝐾𝑒𝑟𝑇 = (0).  
 

Proof: First assume T is one – one.  

Let 𝑢 ∈ 𝐾𝑒𝑟 𝑇, then 𝑇(𝑢) = 0 = 𝑇(0).  
This means that 𝑢 = 0. thus, 𝐾𝑒𝑟 𝑇 = (0).  
Conversely, let 𝐾𝑒𝑟 𝑇 =  (0). Suppose 𝑢1, 𝑢2 ∈ 𝑈 with 𝑇(𝑢1) =
𝑇(𝑢2) ⟹ 𝑇(𝑢1 − 𝑢2) = 0, 

⇒ 𝑢1 − 𝑢2 ∈ 𝐾𝑒𝑟𝑇 ⇒ 𝑢1 − 𝑢2 = 0 ⇒ 𝑢1 = 𝑢2. Therefore, T is 1 – 1. 

 

Suppose now that T is a one – one and onto linear transformation from a 

vector space U to a vector space V. Then, from Unit 1 (Theorem 4), we 

know that 𝑇−1 exists. But is 𝑇−1linear? The answer to this question is 

‘yes’, as is shown in the following theorem. 

 

Theorem 3.8: Let U and V be vector spaces over a field F. Let 𝑇: 𝑈 → 𝑉 

be a none-one and onto linear transformation. Then,  𝑇−1: 𝑈 → 𝑉 is a 

linear transformation 

In fact, 𝑇−1is also 1 – 1 and onto.  

 

Proof: Let 𝑦1, 𝑦2 ∈ 𝑉 and 𝛼1, 𝛼2 ∈ 𝐹. Suppose𝑇−1(𝑦1) = 𝑥1and 

𝑇−1(𝑦2) = 𝑥2, then, by definition, 𝑦1 = 𝑇(𝑥1) and 𝑦2 = 𝑇(𝑥2). 
Now, 𝛼1𝑦1 + 𝛼2𝑦2 = 𝛼1𝑇(𝑥1) + 𝛼2𝑇(𝑥2) = 𝑇(𝛼1𝑥1 + 𝛼2𝑥2) 
Hence, 𝑇−1(𝛼1𝑦1 + 𝛼2𝑦2) = 𝛼1𝑥1 + 𝛼2𝑥2 = 𝛼1𝑇

−1(𝑦1) + 𝛼2𝑇
−1(𝑦2). 

This shows that 𝑇−1is a linear transformation.  

We will now show that 𝑇−1 is 1 -1, for this, suppose 𝑦1, 𝑦2 ∈ 𝑉such that 

𝑇−1(𝑦1) = 𝑇
−1(𝑦2) Let 𝑥1 = 𝑇

−1(𝑦1) and 𝑥2 = 𝑇
−1(𝑦2).  

Then 𝑇(𝑥1) = 𝑦1and 𝑇(𝑥2) = 𝑦2.  

We know that 𝑥1 = 𝑥2. Therefore, 𝑇(𝑥1) = 𝑇(𝑥2), that is, 𝑦1 = 𝑦2.  
Thus, we have shown that 𝑇−1(𝑦1) = 𝑇

−1(𝑦2) ⇒ 𝑦1 = 𝑦2, proving that 

𝑇−1is 1 – 1.  

𝑇−1is also surjective because, for any 𝑢 ∈ 𝑈, ∃  𝑇(𝑢) = 𝑣 ∈ 𝑉such that 

𝑇−1(𝑣) = 𝑢. 
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Theorem 8 says that a one-one and onto linear transformation is 

invertible, and the inverse is also a one-one and onto linear 

transformation.  

 

This theorem immediately leads us to the following definition.  

 

3.4  Theorems of Vector Spaces 

     

3.4.1  Isomorphism Theorems of Vector Spaces 

 

Definition 3.4.1: Let U and V be vector spaces over a field F, and let 

𝑇:𝑈 → 𝑉 be a one-one and onto linear transformation. The T is called an 

Isomorphism between U and V. In this case we say that U and V are 

isomorphic vector spaces. This is denoted by 𝑈 ≈ 𝑉.  

 

An obvious example of an isomorphism is the identity operator. Can you 

think of any other? The following exercise may help.  

E19) Let 𝑇: 𝑅3 → 𝑅3| 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦, 𝑧). Is𝑇an isomorphism? 

Why? Define 𝑇−1, if it exists. 

E20) Let 𝑇: 𝑅3 → 𝑅2| 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧). Is T an isomorphism? 

In all these exercises and examples, have you noticed that if T is an 

isomorphism between U and V then 𝑇−1is an isomorphism between V and 

U?  

Using these properties of an isomorphism we can get some useful results, 

like the following:  

 

Theorem 3.9: Let 𝑇: 𝑈 → 𝑉be an isomorphism. Suppose {𝑒1,⋯ , 𝑒𝑛}is a 

basis of U. then {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)} is a basis of V.  

 

Proof: First we show that the set {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}spans 
{𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}. Since T is onto, 𝑅(𝑇) = 𝑉. Thus, from E12) you know 

that {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}spans 𝑉.  

Let us now show that {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}is linearly independent.  

Suppose there exist scalars 𝑐1, … , 𝑐𝑛, such that 𝑐1𝑇(𝑒1)  + ⋯+
𝑐𝑛𝑇(𝑒𝑛) = 0 ………(1) 

We must show that 𝑐1 = ⋯ = 𝑐𝑛 = 0 

Now, (1) implies that 𝑇(𝑐1𝑒1 +⋯+ 𝑐𝑛𝑒𝑛 ) = 0  
Since T is one-one and 𝑇(0) = 0, we conclude that 𝑐1𝑒1 +⋯+ 𝑐𝑛𝑒𝑛 =
0.  

But {𝑒1,⋯ , 𝑒𝑛} is linearly independent 

Therefore, 𝑐1 = ⋯ = 𝑐𝑛 = 0 

Thus, we have shown that{𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)} is a basis of 𝑉.  

 

Remark: The argument showing the linear independence of 
{𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}in the above theorem can be used to prove that any one-
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one linear transformation 𝑇: 𝑈 → 𝑉maps any linearly independent subset 

of 𝑈onto a linearly independent subset of 𝑉(see E22).  

We now give an important result equating ‘isomorphism’ with ‘1-1’ and 

with ‘onto’ in the finite-dimensional case.  

 

Theorem 3.10: Let 𝑇: 𝑈 → 𝑉be a linear transformation where 𝑈, 𝑉 are of 

the same finite dimension. Then the following statements are equivalent.  

a) T is 1 – 1  

b) T is onto.  

c) T is an isomorphism.  

 

Proof: To prove the result we shall prove 𝑎) ⟹ 𝑏) ⟹ 𝑐) ⟹ 𝑎).  
Let 𝑑𝑖𝑚𝑈 = 𝑑𝑖𝑚𝑉 = 𝑛.  

Now a) implies that 𝐾𝑒𝑟 𝑇 = 0 (from Theorem 3.7),  

Hence, nullity(𝑇) = (0) 
Therefore, by Theorem 3.5, 𝑟𝑎𝑛𝑘(𝑇) = 𝑛, that is, 𝑑𝑖𝑚𝑅(𝑇) = 𝑛 =
𝑑𝑖𝑚𝑉.  

But 𝑅(𝑇) is a subspace of 𝑉, thus, by the remark following Theorem 3.2, 

we get R (𝑇) = 𝑉, that is, 𝑇 is onto, i.e., b) is true, so 𝑎) ⇒ 𝑏).  
Similarly, if b) holds then 𝑟𝑎𝑛𝑘 (𝑇) = 𝑛, and hence, nullity (𝑇) = 0.  

Consequently, 𝐾𝑒𝑟 𝑇 = {0}, and 𝑇 is one-one.  

Hence, 𝑇 is one-one and onto, that is𝑇 is an isomorphism.  

Therefore, b) implies c).  

That a) follows from 9c) is immediate from the definition of an 

isomorphism.  

Hence, our result is proved.  

Caution: Theorem 10 is true for finite-dimensional spaces 𝑈 and 𝑉, of 

the same dimension. It is not true, otherwise.  

Consider the following counter-example.  

 

Example 14: (To show that the spaces have to be finite-dimensional): 

Let 𝑉 be the real vector space of all polynomials. Let 𝐷: 𝑉 → 𝑉 be defined 

by 

       𝐷(𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑟𝑥
𝑟−1) = 𝑎1 + 2𝑎2𝑥 + ⋯+ 𝑟𝑎𝑟𝑥

𝑟−1.  

Then show that D is onto but not 1-1.  

 

Solution: Note that 𝑉 has infinite dimension, a basis being {1, 𝑥, 𝑥, … }. 
   𝐷 is onto because any element of 𝑉 is of the form 𝑎0 + 𝑎1𝑥 + ⋯+
𝑎𝑛𝑥𝑛 = 𝐷 

    𝐷 is not 1–1 because, for example, 1 ≠ 0 but 𝐷(1) = 𝐷(0) = 0.  

The following exercise shows that the statement of Theorem 10 is false if 

dim U ≠ dim V.  

E21) Define a linear operator 𝑇: 𝑅3 → 𝑅2 such that T is onto but T is not 

1 - 1.  

Note that 𝑑𝑖𝑚𝑅3 ≠ 𝑑𝑖𝑚𝑅2 
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Let us use Theorems 3.9 and 3.10 to prove our next result.  

 

Theorem 3.11: Let 𝑇: 𝑉 → 𝑉 be a linear transformation and let 

{𝑒1, … , 𝑒𝑛} be a basis of V. Then 𝑇 is one-one and onto if and only if 
{𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}is linearly independent.  

 

]Proof: Suppose 𝑇 is one-one and onto. Then 𝑇 is an isomorphism 

Hence, by Theorem 3.9, {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}is a basis.  

Therefore, {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)} is linearly independent.  

Conversely, suppose {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)}is linearly independent. Since 

{𝑒1, … , 𝑒𝑛} is a basis of V, 𝑑𝑖𝑚𝑉 = 𝑛. Therefore, any linearly 

independent subset of n vectors is a basis of 𝑉. Hence, {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)} 
is a basis of𝑉.  

Then, any element 𝑣 of 𝑉 is of the form 𝑣 = ∑ 𝑐1
𝑛
𝑖=1 𝑇(𝑒1) = 𝑇∑ 𝑐1𝑒1

𝑛
𝑖=1  

where 𝑐1, … , 𝑐𝑛 are scalars.  

Thus, 𝑇 is onto, and we can use Theorem 3.10 to say that 𝑇 is an 

isomorphism.  

Here are some exercises now.  

E22)Let 𝑇: 𝑈 → 𝑉 be a one-one linear transformation and let {𝑢1, … , 𝑢𝑘} 
be a linearly independent subset of 𝑈. 

     a) show that the set {𝑇(𝑒1),⋯ , 𝑇(𝑒𝑛)} is linearly independent.  

     b) Is it true that every linear transformation maps every linearly 

independent set of vectors into a linearly independent set?  

     c) Show that every linear transformation maps a linearly dependent set 

of vectors onto a linearly dependent set of vectors.  

E23) Let 𝑇: 𝑅3 → 𝑅3be defined by 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥3, 𝑥2 +
𝑥3, 𝑥1 + 𝑥2). Is T invertible? If yes, find a rule for 𝑇−1 like the one which 

defines T. 

 

We have seen, in Theorem 3.9, that if 𝑇: 𝑈 → 𝑉 is an isomorphism, then 

𝑇 maps a basis of 𝑈 onto a basis of 𝑉. Therefore, 𝑑𝑖𝑚𝑈 = 𝑑𝑖𝑚𝑉. In other 

words, if 𝑈 and 𝑉 are isomorphic then 𝑑𝑖𝑚𝑈 = 𝑑𝑖𝑚 𝑉.  

The natural question arises whether the converse is also true. That is, if 

𝑑𝑖𝑚𝑈 = 𝑑𝑖𝑚𝑉, both being finite, can we say that 𝑈 and 𝑉 are 

isomorphic? The following theorem shows that this is indeed the case.  

 

Theorem 3.12: Let 𝑈 and 𝑉 be finite-dimensional vector spaces over 𝐹. 

the 𝑈 and 𝑉 are isomorphic if and only if 𝑑𝑖𝑚 𝑈 = 𝑑𝑖𝑚 𝑉.  

 

Proof: We have already seen that if 𝑈 and 𝑉are isomorphic then 𝑑𝑖𝑚𝑈 =
 𝑑𝑖𝑚𝑉. Conversely, suppose 𝑑𝑖𝑚 𝑈 = 𝑑𝑖𝑚 𝑉 = 𝑛.  

We shall show that 𝑈 and 𝑉are isomorphic. Let {𝑒1, … , 𝑒𝑛} be a basis of 

𝑈 and {𝑓1, … , 𝑓𝑛} be a basis of 𝑉.  

By Theorem 3.3, there exists a linear transformation 𝑇: 𝑈 → 𝑉 such that 

𝑇(𝑓1) = 𝑓𝑖; 𝑖 = 1,⋯ , 𝑛 



MTH 212           LINEAR ALGEBRA 

43 

 

We shall show that 𝑇 is 1-1.  

Let 𝑢 = 𝑐1𝑒1 +⋯+ 𝑐𝑛𝑒𝑛 be such that 𝑇(𝑢 ) = 0 

Then, 0 = 𝑇(𝑢 ) = 𝑐1𝑇(𝑒1) + ⋯+ 𝑐𝑛𝑇(𝑒𝑛) = 𝑐1𝑓1 +⋯+ 𝑐𝑛𝑓𝑛 

Since {𝑓1, … , 𝑓𝑛} is a basis of 𝑉, we conclude that 𝑐1 = ⋯ = 𝑐𝑛 = 0.  

Hence, 𝑢 = 0.  

Thus, Ker T = (0) and, by Theorem 3.7, 𝑇 is one – one.  

Therefore, by Theorem 3.10, 𝑇 is an isomorphism, and 𝑈 = 𝑉.  

An immediate consequence of this theorem follows:  

 

Corollary: Let 𝑉 be a real (or complex) vector space of dimension 𝑛. 

Then 𝑉 is isomorphic to 𝑅 (or 𝐶) respectively.  

 

Proof: Since 𝑑𝑖𝑚𝑅𝑛 = 𝑛 = 𝑑𝑖𝑚𝑅𝑉, we get 𝑉 ≈ 𝑅𝑛.  

Similarly, if 𝑑𝑖𝑚𝑐𝑉 = 𝑛, then 𝑉 ≈ 𝑐𝑛.  

 

Remark: Let 𝑉 be a vector space over 𝐹 and let𝐵 = {𝑒1, … , 𝑒𝑛}be a basis 

of 𝑉. Each 𝑣 ∈ 𝑉 can be uniquely expressed as 𝑣 = ∑ 𝛼𝑖
𝑛
𝑖=1 𝑒𝑖. Recall that, 

𝛼1, … , 𝛼𝑛are called the coordinates of 𝑣 with respect to 𝐵. 

Define 𝜃: 𝑉 → 𝐹𝑛|𝜃(𝑣) = (𝛼1, … , 𝛼𝑛). Then 𝜃 is an isomorphism from 𝑉 

to 𝐹𝑛. This is because 𝜃 is 1 -1, since the coordinates of 𝑣 with respect to 

𝐵 are uniquely determined. 

Thus, 𝑉 ≈ 𝐹𝑛.  

We end this section with an exercise.  

E24) Let 𝑇: 𝑈 → 𝑉be a one-one linear mapping. Show that 𝑇 is onto if 

and only if 𝑑𝑖𝑚𝑈 = 𝑑𝑖𝑚𝑉. (Of course, you must assume that 𝑈 and 𝑉 are 

finite dimensional spaces). 

Now let us look at isomorphism between quotient spaces.  

 

3.4.2  Homomorphism Theorems of Vector Spaces 
 

Linear transformations are also called vector space homomorphisms. 

There is a basic theorem which uses the properties of homomorphisms to 

show the isomorphism of certain quotient spaces. It is simple to prove, 

but is very important because it is always being used to prove more 

advanced theorems on vector spaces. (In the Abstract Algebra course, we 

will prove this theorem in the setting of groups and rings). 

 

Theorem 3.13: Let V and W be vector spaces over a field 𝐹 and 𝑇: 𝑉 →
𝑊 be a linear transformation. Then 𝑉/𝑲𝒆𝒓𝑻 ≈ 𝑹(𝑻) . 
 

Proof: You know that Ker T is a subspace of 𝑉, so that V/Ker T is a well-

defined vector space over 𝐹. Also,  𝑅(𝑇) = {𝑇(𝑣): 𝑉 ∈ 𝑉}.  
To proof the theorem, let us define 𝑉/𝐾𝑒𝑟 𝑇 → 𝑅(𝑇) by 𝜃(𝑣 + 𝐾𝑒𝑟 𝑇) =
𝑇(𝑣) 
Firstly, we must show that 𝜃 is a well-defined function, that is, if  
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𝑣 + 𝐾𝑒𝑟𝑇 = 𝑣 + 𝐾𝑒𝑟𝑇, then (𝑣 + 𝐾𝑒𝑟 𝑇) = 𝜃(𝑣 + 𝐾𝑒𝑟 𝑇), 
that is, 𝑇(𝑣) = 𝑇(𝑣).  
Now, 𝑣 + 𝐾𝑒𝑟 𝑇 = 𝑣′ + 𝐾𝑒𝑟𝑇 ⟹ (𝑣 – 𝑣′) ∈ 𝐾𝑒𝑟𝑇 

            𝑇(𝑣 − 𝑣′) = 0 ⟹ 𝑇(𝑣) = 𝑇(𝑣′) and hence, 𝜃 is well defined. 

Next, we check that 𝜃 is a linear transformation.  

For this, let 𝑎, 𝑏 ∈ 𝐹 and 𝑣, 𝑣′ ∈ 𝑉, then, 

             𝜃{𝑎(𝑣 + 𝐾𝑒𝑟 𝑇) + 𝑏(𝑣′ + 𝐾𝑒𝑟𝑇)} = 𝜃(𝑎𝑣 + 𝑏𝑣′ + 𝐾𝑒𝑟𝑇)  
                                                                       = 𝑇(𝑎𝑣 + 𝑏𝑣′)   
                  = 𝑎𝑇(𝑣) + 𝑏𝑇(𝑣′), since 𝑇 is linear.  

                  = 𝑎(𝑣 + 𝐾𝑒𝑟𝑇) + 𝑏(𝑣 + 𝐾𝑒𝑟𝑇).   
Thus, 𝜃 is a linear transformation. 

We shall end the proof by showing that 𝜃 is an isomorphism. 

𝜃 is 1-1, because 

𝜃(𝑣 + 𝐾𝑒𝑟 𝑇) = 𝜃 ⟹ 𝑇(𝑣) = 0 ⟹ 𝑣 ∈ 𝐾𝑒𝑟𝑇 ⟹ 𝑣 + 𝐾𝑒𝑟 𝑇
= 0 (𝑖𝑛 𝑉/𝐾𝑒𝑟 𝑇). 

Thus, 𝐾𝑒𝑟 𝜃 = {0}. 
𝜃 is onto (because any element of 𝑅(𝑇) is 𝑇(𝑣) = (𝑣) = (𝑣 + 𝐾𝑒𝑟 𝑇)) 
So, we have proved that 𝜃 is an isomorphism.  

This proves that 𝑉/𝐾𝑒𝑟 𝑇 = 𝑅(𝑇). 
Let us consider an immediate useful application of Theorem 3.13.  

 

Example 14:  Let V be a finite-dimensional space and let S and T be linear 

transformations from V to V. Show that 𝑅𝑎𝑛𝑘(𝑆𝑇) =
𝑟𝑎𝑛𝑘(𝑇)– 𝑑𝑖𝑚(𝑅(𝑇) ∩ 𝐾𝑒𝑟 𝑆). 
 

Solution:  We have
𝑇       𝑆

𝑉 → 𝑉 → 𝑉
 , ST is the composition of the operators S 

and T which you have studied in elementary mathematics courses.  Now, 

we apply Theorem 3.13 to the homomorphism 𝜃: 𝑇(𝑣) →

𝑆𝑇(𝑣): 𝜃(𝑇(𝑣)) = (𝑆𝑇)(𝑣) 

Now, 𝐾𝑒𝑟𝜃 = {𝑥 ∈ 𝑇(𝑉)|𝑆(𝑥) = 0} = 𝐾𝑒𝑟 𝑆 ∩ 𝑇(𝑉) = 𝐾𝑒𝑟 𝑆 ∩ 𝑅(𝑇).  
Also 𝑅(𝜃) = 𝑆𝑇(𝑉), since any element of 𝑆𝑇(𝑉) is (𝑆𝑇)(𝑣) = 𝜃(𝑇(𝑣)).   

Thus, 
𝑇(𝑉)

𝐾𝑒𝑟 𝑆∩𝑇(𝑉)
≈ 𝑆𝑇(𝑉) 

Therefore, 𝑑𝑖𝑚
𝑇(𝑉)

𝐾𝑒𝑟 𝑆∩𝑇(𝑉)
≈ 𝑑𝑖𝑚 𝑆𝑇(𝑉) 

That is, 𝑑𝑖𝑚 𝑇(𝑉) − 𝑑𝑖𝑚(𝐾𝑒𝑟 𝑆 ∩ 𝑇(𝑉)) = 𝑑𝑖𝑚 𝑆𝑇(𝑉), which is what 

we had to show. 

E25) Using Example 14 and the Rank Nullity Theorem, show that  

𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) = 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) + 𝑑𝑖𝑚(𝑅(𝑇) ∩ 𝐾𝑒𝑟 𝑆) 
Now let us see another application of Theorem 3.13. 

Example 15:  Show that 𝑅3/𝑅 ≈ 𝑅2.  
 

Solution:  Note that we can consider R as a subspace of 𝑅3 for the 

following reason:  
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Any element 𝑎 ∈ 𝑅 is equated with the element (𝛼, 0,0) of 𝑅3.   
Now, we define a function 𝑓: 𝑅3 → 𝑅2|𝑓(𝛼, 𝛽, 𝛾) = (𝛽, 𝛾), then f is a 

linear transformation and 𝐾𝑒𝑟 𝑓 = {(𝛼, 0,0)|𝛼 ∈ 𝑅} ≈ 𝑅.  

Also, 𝑓 is onto, since any element (𝛼, 𝛽) of 𝑅2 is 𝑓(0, 𝛼, 𝛽).   
Thus, by Theorem 13, 𝑅3 ∕ 𝑅 ≈ 𝑅2.  
Note:  In general, for any 𝑛 ≥ 𝑚, 𝑅𝑛 ∕ 𝑅𝑚 ≈ 𝑅𝑛−𝑚.  

Similarly, 𝐶𝑛−𝑚 ≈ 𝐶𝑛 ∕ 𝐶𝑚 for 𝑛 ≥ 𝑚.   

The next result is a corollary to the Fundamental Theorem of 

Homomorphism. But, before studying it, read unit 1 for definition of the 

sum of spaces.  

 

Corollary 1:  Let A and B be subspaces of a vector space V. then 𝐴 +
𝐵/𝐵 ≈ 𝐴/𝐴 ∩ 𝐵. 

 

Proof:  we define a linear function 𝑇: 𝐴 →
𝐴+𝐵

𝐵
by 𝑇(𝑎) = 𝑎 + 𝐵 

𝑇is well defined because𝑎 + 𝐵 is an element of  
𝑎+𝐵

𝐵
(since 𝑎 = 𝑎 + 0 ∈

𝐴 + 𝐵 ). 

T is a linear transformation because, for 𝛼1, 𝛼2 ∈ 𝐹 and 𝑎1, 𝑎2 ∈ 𝐴, we 

have 

𝑇(𝛼1𝑎1 + 𝛼2𝑎2) = 𝛼1𝑎1 + 𝛼2𝑎2 + 𝐵 = 𝛼1(𝑎1 + 𝐵) + 𝛼2(𝑎2 + 𝐵) 
= 𝛼1𝑇(𝑎1) + 𝛼2𝑇(𝑎2) 

Now we will show that T is surjective. Any element of
𝐴+𝐵

𝐵
 is of the form 

𝑎 + 𝑏 + 𝐵, where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. 

Now,  𝑎 + 𝑏 + 𝐵 = 𝑎 + 𝐵 + 𝑏 + 𝐵 = 𝑎 + 𝐵 + 𝐵, since 𝑏 ∈ 𝐵 

= 𝑎 + 𝐵 , since B is the zero element of
𝐴+𝐵

𝐵
 

= 𝑇(𝑎)  which proves that T is surjective. 

                   ∴ 𝑅𝑇 =
𝐴+𝐵

𝐵
   

We will now prove that 𝐾𝑒𝑟 𝑇 = 𝐴 ∩ 𝐵: 

𝑎 ∈ 𝐾𝑒𝑟 𝑇 , then 𝑎 ∈ 𝐴 and𝑇(𝑎) = 0 . This means that 𝑎 + 𝐵 = 𝐵, the 

zero element of 
𝐴+𝐵

𝐵
 . 

Hence, 𝑏 ∈ 𝐵(by E23), therefore, 𝑎 ∈ 𝐴 ∩ 𝐵. 

Thus, 𝐾𝑒𝑟 𝑇 ⊆ 𝐴 ∩ 𝐵.  On the other hand, 𝑎 ∈ 𝐴 ∩ 𝐵 ⟹ 𝑎 ∈ 𝐴 and 𝑎 ∈
𝐵 ⟹ 𝑎 ∈ 𝐴 and𝑎 + 𝐵 = 𝐵 ⟹ 𝑎 ∈ 𝐴and 𝑇(𝑎) = 𝑇(0) = 0 

⟹ 𝑎 ∈ 𝐾𝑒𝑟𝑇. 

This proves that 𝐴 ∩ 𝐵 = 𝐾𝑒𝑟 𝑇.  

Now using Theorem 3.13, we get  

                𝐴/𝐾𝑒𝑟 𝑇 ≈ 𝑅(𝑇)  
That is, 𝐴/(𝐴 ∩ 𝐵) ≈ (𝐴 + 𝐵)/𝐵. 

E26) Using the corollary above, show that 𝐴⨁𝐵/𝐵 ≈ 𝐴, (⨁ denotes the 

direct sum of defined in earlier).  

There is yet another interesting corollary to the Fundamental Theorem of 

Homomorphism.   
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Corollary 2:  Let W be a subspace of a vector space V.  Then, for any 

subspace U of V containing W, 
𝑉∕𝑊

𝑈∕𝑊
≈ 𝑉 ∕ 𝑈. 

 

Proof:  To start with let us define a function 𝑇: 𝑉/𝑊 → 𝑉/𝑈: 𝑇(𝑉 +
𝑈) = 𝑉 + 𝑈.  

Now try E27. 

E27 a) Check that T is well defined 

   b) Prove that T is a linear transformation 

   c) What are the spaces Ker T and R(T)? 

 

SELF-ASSESSMENT EXERCISE(S) 

 

E1) For any 𝛼1, 𝛼2 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈, we know that 𝛼1𝑢1 ∈ 𝑈 and 

𝛼2𝑢2 ∈ 𝑈.  

Therefore,  by LT1.  

                                            𝑇(𝛼1𝑢1 + 𝛼2𝑢2) = 𝑇(𝛼1𝑢1) + 𝑇(𝛼2𝑢2)  
                                                                      = 𝛼1𝑇(𝑢1) + 𝛼2𝑇(𝑢1)              
(by LT2) 

Thus, LT3 is true.  

 

E2) By LT2, 𝑇(0, 𝑢) = 0 ∙ 𝑇(𝑢) for any 𝑢 ∈ 𝑈, thus, 𝑇(0) = 0.  

Similarly, for any 𝑢 ∈ 𝑈, 𝑇(−𝑢) = 𝑇((−1)𝑢) = (−1)𝑇(𝑢) = −𝑇(𝑢). 
 

E3)𝑇(𝑥, 𝑦) = (−𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑅. (See the geometric view in Fig.4) T is 

a linear operator.  

This can be proved the same way as we did in Example4. 

                                                y 

 

               Q(-1,2)                       2                                   P(1,2) 

 

 

                                      -1         0           1                 x 

                                                  Fig.4: Q is the reflection of 1 in the y-axis 

 

E4)𝑇((𝑥1, 𝑥2, 𝑥3) + (𝑦1, 𝑦2, 𝑦3)) = 𝑇(𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3) 
= 𝑎1(𝑥1 + 𝑦1) + 𝑎2(𝑥2 + 𝑦2) + 𝑎3(𝑥3 + 𝑦3) 

= (𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3) + (𝑎1𝑦1 + 𝑎2𝑦2 + 𝑎3𝑦3) 
= 𝑇(𝑥1, 𝑥2, 𝑥3) + 𝑇(𝑦1, 𝑦2, 𝑦3) 

Also, for any 𝛼 ∈ 𝑅, 

𝑇(𝛼(𝑥1, 𝑥2, 𝑥3)) = 𝑎1𝛼𝑥1 + 𝑎2𝛼𝑥2 + 𝑎3𝛼𝑥3 
= 𝛼(𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3) = 𝛼𝑇(𝑥1, 𝑥2, 𝑥3) 

Thus, LT1 and LT2 hold for T. 

E5) Required to show that the map 𝑇: 𝑅3 → 𝑅3defined by 

𝑇(𝑎1,𝑎2, 𝑎3) = (𝑥1 + 𝑥2 − 𝑥3, 2𝑥1 − 𝑥2, 𝑥2 + 2𝑥3) is a linear operator. 
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We will check if LT1 and LT2 hold firstly 

𝑇((𝑥1, 𝑥2, 𝑥3) + (𝑦1, 𝑦2, 𝑦3)) = 𝑇(𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3) 
= (𝑥1 + 𝑦1 + 𝑥2 + 𝑦2 − 𝑥3 − 𝑦3, 2𝑥1 + 2𝑦1 − 𝑥2 − 𝑦2, 𝑥2 + 𝑦2 + 2𝑥3

+ 2𝑦3) 
= (𝑥1 + 𝑥2 − 𝑥3, 2𝑥1 − 𝑥2, 𝑥2 + 2𝑥3)

+ (𝑦1 + 𝑦2 − 𝑦3, 2𝑦1 − 𝑦2 + 2𝑦3) 
= 𝑇(𝑥1, 𝑥2, 𝑥3) + 𝑇(𝑦1, 𝑦2, 𝑦3) 

Which shows that LT1 holds. 

Also, for any 𝛼 ∈ 𝑅, 

𝑇(𝛼(𝑥1, 𝑥2, 𝑥3)) = 𝑇(𝛼𝑥1, 𝛼𝑥2, 𝛼𝑥3) 
= (𝛼𝑥1 + 𝛼𝑥2 − 𝛼𝑥3, 2𝛼𝑥1 − 𝛼𝑥2, 𝛼𝑥2 + 2𝛼𝑥3) 

= 𝛼(𝑥1 + 𝑥2 − 𝑥3, 2𝑥1 − 𝑥2, 𝑥2 + 2𝑥3) = 𝛼𝑇(𝑥1, 𝑥2, 𝑥3) 
Shows that LT2 holds 

E6) Let us consider the real vector space 𝑃𝑛of all polynomials of degree 

less or equal to n. We want to show that𝐷(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐷(𝑓) + 𝛽𝐷(𝑔), 
for any 𝛼, 𝛽 ∈ 𝑅 and 𝑓, 𝑔 ∈ 𝑃𝑛 

Let 𝑓 ∈ 𝑃𝑛be given by 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2……+ 𝑎𝑛𝑥

𝑛, and 

𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2……+ 𝑏𝑛𝑥

𝑛𝑎𝑖 , 𝑏𝑖 ∈ 𝑅 i .  

Then (𝛼𝑓 + 𝛽𝑔)(𝑥) = (𝛼𝑎0 + 𝛽𝑏0) + (𝛼𝑎1 + 𝛽𝑏1)𝑥 + ⋯+ (𝛼𝑎𝑛 +
𝛽𝑏𝑛) 

∴ [𝐷(𝛼𝑓 + 𝛽𝑔)](𝑥)
= (𝛼𝑎0 + 𝛽𝑏1) + 2(𝛼𝑎2 + 𝛽𝑏2)𝑥 + ⋯
+ 𝑛(𝛼𝑎𝑛 + 𝛽𝑏𝑛)𝑥

𝑛−1 

= 𝛼(𝑎1 + 2𝑎2𝑥 + ⋯…+ 𝑛𝑎𝑛𝑥
𝑛−1) + 𝛽(𝑏1 + 2𝑏2𝑥 + ⋯…+ 𝑛𝑏𝑛𝑥

𝑛−1) 
Thus, 𝐷(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐷𝑓 + 𝛽𝐷𝑔 , showing that D is a linear map. 

E7) No, because, if T exists, then 

𝑇(2𝑢1 + 𝑢2) = 2𝑇(𝑢1) + 𝑇(𝑢2) 
But 2𝑢1 + 𝑢2 = 𝑢3 
On the other hand, 2𝑇(𝑢1) + 𝑇(𝑢2) = 2𝑣1 + 𝑣2 = (2,0) + (0,1) 

= (2,0) ≠ 𝑣3 
Thus, LT3 is violated; hence, no such T exists. 

E8) Note that {(1,0), (0,5)} is a basis for 𝑅2 
        Now, (3,5) = 3(1,0) + (0,5) 
∴ 𝑇(3,5) = 3𝑇(1,0) + 𝑇(0,5) = 3(0,1) + (1,0) = (1,3)    …………… 

(i) 

       Similarly, (5,3) = 5(1,0) +
3

5
(0,5) 

∴ 𝑇(5,3) = 5𝑇(1,0) +
3

5
𝑇(0,5) = 5(0,1) +

3

5
(1,0) = (

3

5
, 5)  …………. 

(ii) 

        From (i) and (ii), we see that 𝑇(5,3) ≠ 𝑇(3,5) 

E9) a) 𝑑𝑖𝑚𝑅𝐶 = 2, a basis being {1, 𝑖}, 𝑖 = √−1 

b)  Let 𝑇: 𝐶 → 𝑅 be such that 𝑇(1) = 𝛼 and 𝑇(𝑖) = 𝛽 

Then, for any element𝑥 + 𝑖𝑦 ∈ 𝐶(𝑥, 𝑦 ∈ 𝑅) 
We have 𝑇(𝑥 + 𝑖𝑦) = 𝑥𝑇(1) + 𝑦𝑇(𝑖) = 𝑥𝛼 + 𝑦𝛽 
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Thus, T is defined by 𝑇(𝑥 + 𝑖𝑦) = 𝑥𝛼 + 𝑦𝛽 ∀ 𝑥 + 𝑖𝑦 ∈ 𝐶 

E10)𝑇:𝑈 → 𝑉 such that 𝑇(𝑈) = 0 ∀ 𝑢 ∈ 𝑈 

∴ 𝐾𝑒𝑟𝑇 = {𝑢 ∈ 𝑈|𝑇(𝑈) = 0} = 𝑈 

𝑅(𝑇) = {𝑇(𝑢)|𝑢 ∈ 𝑈} = {0} 
∴ 1 ∉ 𝑅(𝑇) 

E11) a)  𝑅(𝑇) = {𝑇(𝑥, 𝑦, 𝑧)|(𝑥, 𝑦, 𝑧) ∈ 𝑅3} = {(𝑥, 𝑦)|(𝑥, 𝑦, 𝑧) ∈ 𝑅3} =
𝑅2 

𝐾𝑒𝑟𝑇 = {(𝑥, 𝑦, 𝑧)|𝑇(𝑥, 𝑦, 𝑧) = 0} = {(𝑥, 𝑦, 𝑧)|(𝑥, 𝑦) = (0,0)} 
= {(0,0, 𝑧)|𝑧 ∈ 𝑅} 

          Therefore, Ker T is the z-axis. 

b) 𝑅(𝑇) = {𝑧|(𝑥, 𝑦, 𝑧) ∈ 𝑅3} = 𝑅 

     𝐾𝑒𝑟𝑇 = {(𝑥, 𝑦, 0)|𝑥, 𝑦 ∈ 𝑅} = 𝑥𝑦 −plane in 𝑅3. 
     Because, for any 𝑥 ∈ 𝑅, (𝑥, 𝑥, 𝑥) = 𝑇(𝑥, 0,0) 
     Therefore, RT is generated by {(1,1,1)} 
𝐾𝑒𝑟𝑇 = {(𝑥1, 𝑥2, 𝑥3)|𝑥1 + 𝑥2 + 𝑥3 = 0}, which is the plane 𝑥1 + 𝑥2 +
𝑥3 = 0 in 𝑅3.   
E12) Any element of 𝑅(𝑇) is of the form 𝑇(𝑢), 𝑢 ∈ 𝑈. Since {𝑒1, 𝑒2, 𝑒3} 
generates 𝑈, ∃ scalars 𝛼1, 𝛼2, ⋯ , 𝛼𝑛such that𝑢 = 𝛼1𝑒1 + 𝛼2𝑒2 +⋯+
𝛼𝑛𝑒𝑛 

Then 𝑇(𝑢) = 𝛼1𝑇(𝑒1) + 𝛼2𝑇(𝑒2) + ⋯+ 𝛼𝑛𝑇(𝑒𝑛), that is, 𝑇(𝑢) is in the 

linear span of {𝑇(𝑒1), 𝑇(𝑒2),⋯ , 𝑇(𝑒𝑛)}. 
∴ {𝑇(𝑒1), 𝑇(𝑒2),⋯ , 𝑇(𝑒𝑛)} generates 𝑅(𝑇). 
E13)𝑇: 𝑉 → 𝑉: 𝑇(𝑣0 = 𝑣).  
Since 𝑅(𝑇) = 𝑉 and 𝐾𝑒𝑟𝑇 = (0), we see that 𝑟𝑎𝑛𝑘(𝑇) = 𝑑𝑖𝑚𝑉, 

𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) = 0 

E14) 𝑅(𝐷) = {𝑎1 + 2𝑎2𝑥 + ⋯+ 𝑛𝑎𝑛𝑥
𝑛−1|𝑎1,⋯ , 𝑎𝑛 ∈ 𝑅} 

                  𝑅(𝐷) ⊆ 𝑃𝑛−1 . 
          But any element 𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑛−1𝑥

𝑛−1 in 𝑃𝑛−1 is 

𝐷 (𝑏0𝑥1 +
𝑏1
2
𝑥2 +⋯+

𝑏𝑛−1
𝑛
𝑥𝑛) ∈ 𝑅(𝐷) 

Therefore, 𝑅(𝐷) = 𝑃𝑛−1 
Hence, a basis for 𝑅(𝐷) is {1, 𝑥,⋯ , 𝑥𝑛−1} and 𝑟𝑎𝑛𝑘(𝐷) = 𝑛 

𝐾𝑒𝑟𝐷 = {𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛𝑥
𝑛|𝑎1 + 2𝑎2𝑥 + ⋯+ 𝑛𝑎𝑛𝑥

𝑛−1 = 0, 𝑎𝑖
∈ 𝑅 ∀ 𝑖} 

= {𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛𝑥
𝑛|𝑎1 = 0, 𝑎2 = 0,⋯ , 𝑎𝑛 = 0, 𝑎𝑖 ∈ 𝑅 ∀ 𝑖} 

= {𝑎0|𝑎0 = 𝑅} = 𝑅 

Therefore, a basis for Ker D is {1}. 
⟹ 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐷) = 1. 

E15) a) We have shown that 𝑅(𝑇) = 𝑅2. 
             ∴ 𝑅𝑎𝑛𝑘(𝑇) = 2   Therefore, 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) − 𝑑𝑖𝑚 𝑅 = 3– 2 = 1.  

     b) 𝑅𝑎𝑛𝑘(𝑇) = 1, 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) = 2 

     c) 𝑅(𝑇) is generated by {(1,1,1)}, 
         ∴ 𝑅𝑎𝑛𝑘(𝑇) = 1   and 𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) = 2. 

E16) Now, 𝑟𝑎𝑛𝑘(𝑇) + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) = 𝑑𝑖𝑚𝑈 = 1 
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Also, 𝑟𝑎𝑛𝑘(𝑇) ≥ 0, 

Therefore, the only values 𝑟𝑎𝑛𝑘(𝑇) can take are 0 and 1.   

If 𝑟𝑎𝑛𝑘(𝑇) = 0, then, 𝑑𝑖𝑚𝑅(𝑇) = 0.  

Thus, 𝑅(𝑇) = {0}, that is, 𝑅(𝑇) is a point.  

 If 𝑟𝑎𝑛𝑘(𝑇) = 1, then 𝑑𝑖𝑚𝑅(𝑇) = 1, That is, 𝑅(𝑇) is a vector space over 

𝑅 generated by a single element, v, say. Then 𝑅(𝑇) is the line 𝑅𝑣 =
{𝛼𝑣|𝛼 ∈ 𝑅} 
E17) By Theorem 5, 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) = 𝑑𝑖𝑚𝑉– 𝑟𝑎𝑛𝑘(𝑆𝑇).   
By (a) of Theorem 6, we know that  

–  𝑟𝑎𝑛𝑘(𝑆𝑇) − 𝑟𝑎𝑛𝑘(𝑆) and – 𝑟𝑎𝑛𝑘(𝑆𝑇)– 𝑟𝑎𝑛𝑘(𝑇).   
∴ 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) ≥ 𝑑𝑖𝑚𝑉– 𝑟𝑎𝑛𝑘(𝑆) and 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) ≥ 𝑑𝑖𝑚𝑉– 𝑟𝑎𝑛𝑘(𝑇). 
Thus, 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) ≥ 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆) and 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) ≥ 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇).   
That is, 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) ≥ 𝑚𝑎𝑥 {𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆), 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇)}.  
E18) Since 1 ∉ 2, but 0(1) = 0(2) = 0, we find that 0 is not 1– 1. 

E19) Firstly note that T is a linear transformation.   

Secondly, T is 1-1 because 𝑇(𝑥, 𝑦, 𝑧) = 𝑇(𝑥′, 𝑦′, 𝑧′)(𝑥, 𝑦, 𝑧) = (𝑥′, 𝑦′, 𝑧′) 
Thirdly, T is onto because any (𝑥, 𝑦, 𝑧) ∈ 𝑅3 can be written as 𝑇(𝑥 −
𝑦, 𝑦, 𝑧) 
therefore, T is an isomorphism and𝑇−1: 𝑅3 → 𝑅3 exists and is defined by 

𝑇−1(𝑥, 𝑦, 𝑧) = (𝑥 – 𝑦, 𝑦, 𝑧).  
E20) T is not an isomorphism because T is not 1-1, since (1, −1,1) ∈
𝐾𝑒𝑟 𝑇.  

E21) The linear operator in E11) (a) suffices.  

E22) a) Let 𝛼1, ⋯ , 𝛼𝑘 ∈ 𝐹 such that 𝛼1𝑇(𝑢1) + ⋯+ 𝛼𝑘𝑇(𝑢𝑘) = 0 

⟹ 𝑇(𝛼1𝑢1 +⋯+ 𝛼𝑘𝑢𝑘) = 0 = 𝑇(0) 
                  ⇒ 𝛼1𝑢1 +⋯+ 𝛼𝑘𝑢𝑘 = 0, since T is 1-1 

                ⟹ 𝛼1 = 0,⋯ , 𝛼𝑘 = 0 , since {𝑢1, ⋯ , 𝑢𝑘} is linearly 

independent 

              ∴ {𝑇(𝑢1),⋯ , 𝑇(𝑢𝑘)} is linearly independent. 

b) No. For example, the zero operator maps every linearly independent 

set to {0}, which  is not linearly independent.  

c) Let 𝑇:𝑈 → 𝑉 be a linear operator, and {𝑢1, ⋯ , 𝑢𝑛} be a linearly 

dependent set of vectors  in U.  We have to show that {𝑇(𝑢1),⋯ , 𝑇(𝑢𝑘)} 
is linearly dependent.   

Since {𝑢1, ⋯ , 𝑢𝑛}is linearly dependent, there exists scalars 𝛼1, ⋯ , 𝛼𝑛, not 

all zero, such that 𝛼1𝑢1 +⋯+ 𝛼𝑛𝑢𝑛 = 0.  

Then 𝛼1𝑇(𝑢1) + ⋯+ 𝛼𝑘𝑇(𝑢𝑘) = 𝑇(0) = 0, so that {𝑇(𝑢1),⋯ , 𝑇(𝑢𝑘)} is 

linearly dependent.  

E23) T is a linear transformation now, if (𝑥, 𝑦, 𝑧) ∈ 𝐾𝑒𝑟 𝑇, then 

𝑇(𝑥, 𝑦, 𝑧) = (0,0,0).   
∴ 𝑥 + 𝑦 = 0 = 𝑦 + 𝑧 = 𝑥 + 𝑧 ⟹ 𝑥 = 0 = 𝑦 = 𝑧 

⇒ 𝐾𝑒𝑟 𝑇 = {(0,0,0)} 
⟹ T is 1 – 1, therefore, by Theorem 10, T is invertible.  

 To define 𝑇−1: 𝑅3 → 𝑅3 suppose T−1(𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐). 
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  Then 𝑇(𝑎, 𝑏, 𝑐) = (𝑥, 𝑦, 𝑧) 
⟹ (𝑎 + 𝑏, 𝑏 + 𝑐, 𝑎 + 𝑐) = (𝑥, 𝑦, 𝑧) 
⟹ 𝑎 + 𝑏 = 𝑥, 𝑏 + 𝑐 = 𝑦, 𝑎 + 𝑐 = 𝑧 

⟹ 𝑎 =
𝑥 + 𝑧– 𝑦

2
;  𝑏 =  

𝑥 + 𝑦– 𝑧

2
;  𝑐 =  

𝑦 + 𝑧 − 𝑥

2
 

⟹ 𝑇−1 (
𝑥+𝑧–𝑦

2
,
𝑥+𝑦–𝑧

2
,
𝑦+𝑧−𝑥

2
) for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

E24)𝑇:𝑈 → 𝑉 is 1 -1.  Suppose T is onto. Then T is an isomorphism and 

𝑑𝑖𝑚 𝑈 = 𝑑𝑖𝑚 𝑉, by Theorem 3.12. Conversely suppose 𝑑𝑖𝑚 𝑈 =
𝑑𝑖𝑚 𝑉.  Then T is onto by theorem 10.  

E25) The Rank Nullity Theorem and Example 14 give     

𝑑𝑖𝑚 𝑉– 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) = 𝑑𝑖𝑚 𝑉– 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇)– 𝑑𝑖𝑚(𝑅(𝑇) ∩ 𝐾𝑒𝑟 𝑆) 
⟹ 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑆𝑇) = 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) + 𝑑𝑖𝑚 (𝑅(𝑇) ∩ 𝐾𝑒𝑟 𝑆) 

E26) In the case of the direct sum 𝐴⊕ 𝐵, we have 𝐴 ∩ 𝐵 = {0} 

         Therefore, 
𝐴⨁𝐵

𝐵
≈ 𝐴 

E27) a)  𝑣 +𝑊 = 𝑣′ +𝑊 ⟹ 𝑣 − 𝑣′ ∈ 𝑊 ⊆ 𝑈 ⟹ 𝑣 − 𝑣′ ∈ 𝑈 ⟹ 𝑣 +
𝑈 = 𝑣′ + 𝑈 

⟹ 𝑇(𝑣 +𝑊) = 𝑇(𝑣′ +𝑊) 
             ∴ 𝑇 is well defined. 

b)     For any 𝑣 +𝑊, 𝑣 +𝑊 in 𝑉/𝑊 and scalar 𝑎, 𝑏, we have  

𝑇(𝑎(𝑣 +𝑊) + 𝑏(𝑣′ +𝑊)) = 𝑇(𝑎𝑣 + 𝑏𝑣′ +𝑊) = 𝑎𝑣 + 𝑏𝑣′ + 𝑈 

= 𝑎(𝑣 + 𝑈) + 𝑏(𝑣′ + 𝑈) 
= 𝑎𝑇(𝑣 +𝑊) + 𝑏𝑇(𝑣′ +𝑊) 

∴T is a linear operator.   

 

c) 𝐾𝑒𝑟 𝑇 = {𝑣 +𝑊|𝑣 + 𝑈 = 𝑈}, since U is the “zero” for 𝑉/𝑈.   

 = {𝑣 +𝑊|𝑣 ∈ 𝑈} = 𝑈/𝑊 

 𝑅(𝑇) = {𝑣 + 𝑈|𝑣 ∈ 𝑉} = 𝑉/𝑈.  

 

  3.6  Summary 

 

In this unit, we have covered the following points that: 

(1) A linear transformation from a vector space 𝑈 over 𝐹 to a vector space 

𝑉 over F is a function 𝑇:𝑈 → 𝑉 such that,  

LT1:  𝑇(𝑢1 + 𝑢2) = 𝑇(𝑢1) + 𝑇(𝑢2) ∀ 𝑢1, 𝑢2 ∈ 𝑈, and  

LT2: (𝛼𝑢) = 𝛼𝑇(𝑢), for 𝛼 ∈ 𝐹 and 𝑢 ∈ 𝑈.  

These conditions are equivalent to the single condition  

LT3:  𝑇(𝛼𝑢 + 𝛽𝑢) = 𝛼𝑇(𝑢1) + 𝛽𝑇(𝑢2) for 𝛼, 𝛽 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈.  

(2) Given a linear transformation,  𝑇: 𝑈 → 𝑉.  

i. The Kernel of 𝑇 is the vector space {𝑢 ∈ 𝑈|𝑇(𝑢) = 0}, denoted by 

𝐾𝑒𝑟 𝑇 

ii. The range of 𝑇 is the vector space {𝑇(𝑢)|𝑢 ∈ 𝑈}, denoted by 𝑟(𝑇) 
iii. The rank of 𝑇 = 𝑑𝑖𝑚1𝑅(𝑇) 
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iv. The nullity of  𝑇 = 𝑑𝑖𝑚1𝐾𝑒𝑟 𝑇.  

(3) Let U and V be finite-dimensional vector spaces over 𝐹 and 𝑇:𝑈 → 𝑉 

be a linear transformation. Then, 𝑟𝑎𝑛𝑘(𝑇) + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 (𝑇) = 𝑑𝑖𝑚 𝑈.  

(4) Let 𝑇:𝑈 → 𝑉 be a linear transformation then 𝑇 is one-one if    

𝑇(𝑢1) = 𝑇(𝑢2) ⟹ 𝑢1 = 𝑢2 ∀ 𝑢1, 𝑢2 ∈ 𝑈 

i. 𝑇 is onto if, for any 𝑣 ∈ 𝑉 ∃ 𝑢 ∈ 𝑈 such that 𝑇(𝑢) = 𝑣.  

ii. 𝑇 is an isomorphism (or is invertible) if it is one-one and onto, and 

then 𝑈 and V are called isomorphic spaces. This is denoted by 𝑈 ≈
𝑉.  

(5) 𝑇: 𝑈 → 𝑉 is  

i. one-one if and only if 𝐾𝑒𝑟 𝑇 = (0) 
ii. onto if and only if 𝑅(𝑇) = 𝑉 

(6) Let 𝑈and 𝑉 be finite-dimensional vector spaces with the same 

dimension.  

Then 𝑇:𝑈 → 𝑉 is 1-1 iff 𝑇 is onto iff 𝑇 is an isomorphism  

(7) Two finite dimensional vector spaces 𝑈 and 𝑉 are isomorphic if and 

only if          𝑑𝑖𝑚 𝑈 =  𝑑𝑖𝑚 𝑉. 
(8) Let 𝑉 and 𝑊 be vector spaces over a field 𝐹, and 𝑇: 𝑉 → 𝑊 be a linear 

transformation.  

Then 𝑉/𝐾𝑒𝑟 𝑇 ≈ 𝑅(𝑇).  
 

Let U and V be vector spaces over a field F. A linear transformation (or 

linear operator) from U to V is a function 𝑇: 𝑈 → 𝑉 which satisfies some 

conditions, LT1 to LT6. 

 

We have defined the range of T as well as the Kernel of T and have been 

seen as sets.  

 

We have also proved that these sets are vector spaces over F.  

 

In general, any function 𝜃: 𝑅𝑛 → 𝑅𝑚(𝑛 >  𝑚), which is defined by 

dropping any (𝑛–𝑚) coordinate, is a projection map.  
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UNIT 4  LINEAR TRANSFORMATION II  

 

Unit Structure  

 

4.1  Introduction  

4.2  Learning Outcomes  

4.3  Main Content      

    4.3.1  The Vector Space 𝐿(𝑈, 𝑉) 
    4.3.2  The Dual Space  

    4.3.3  Composition of Linear Transformations  

    4.3.4  Minimal Polynomial Theorems  

4.4  Summary 

4.5  References/Further Readings  

 

 4.1  Introduction 

 

In the last unit you were introduced to linear transformations and their 

properties.  We shall now show that the set of all linear transformations 

form a vector space U to a vector space V, forms a vector space itself, and 

its dimension is dim U (dim V).  In particular, we define and discuss the 

dual space of a vector space.  

 

In Unit 1, we defined the composition of two functions.  Over here we 

shall discuss the composition of two linear transformations and show that 

it is again a linear operator.  Note that we use the terms ‘linear 

transformation’ interchangeably.  

 

Finally, we shall study polynomials with coefficients from a field F, in a 

linear operator 𝑇: 𝑉 → 𝑉.  It shall be seen that every such T satisfies a 

polynomial equation 𝑔(𝑥) = 0,  that is, if we substitute T for x in g(x), we 

get the zero transformation. The minimal polynomial of an operator shall 

then be defined and some of its properties discussed.  These ideas will 

crop up again in Module 4 Unit 2.  

 

It is advisable that you revise Units 1 to 3 before going further.  

 

4.2  Learning Outcomes 

  

By the end of this unit, you will be able to: 

   

 Prove and use the fact that 𝐿(𝑈, 𝑉) is a vector space of dimension 

(𝑑𝑖𝑚𝑈)(𝑑𝑖𝑚𝑉);  
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 Use dual bases, whenever convenient; 

 Obtain the composition of two linear operators, whenever possible; 

 Obtain the minimal polynomial of a linear transformation 𝑇: 𝑉 →
𝑉 in some simple cases; 

 Obtain the inverse of an isomorphism 𝑇: 𝑉 → 𝑉if its minimal 

polynomial is known.  

 

 4.3  Main Content  

 

4.3.1  The Vector Space 𝑳(𝑼, 𝑽) 
 

By now you must be quite familiar with linear operators, as well as vector 

spaces. In this section we consider the set of all linear operators from one 

vector space to another, and show that it forms a vector space.  

Let 𝑈, 𝑉 be vector spaces over a field F. Consider the set of all linear 

transformations from 𝑈 to 𝑉. We denote this set by 𝐿(𝑈, 𝑉). 
 

We will now define addition and scalar multiplication in 𝐿(𝑈, 𝑉) so that 

𝐿(𝑈, 𝑉) becomes a vector space.  

 

Suppose 𝑆, 𝑇 ∈ 𝐿(𝑈, 𝑉) (that is, S and T are linear operators from U to V). 

Also, define 

(𝑆 + 𝑇): 𝑈 → 𝑉 by (𝑆 + 𝑇)(𝑢) = 𝑆(𝑢) + 𝑇(𝑢) ∀ 𝑢 ∈ 𝑈. 

 Now, for 𝛼1, 𝛼2 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈, we have  

        (𝑆 + 𝑇)(𝑎1𝑢1 + 𝑎2𝑢2) = 𝑆(𝛼1𝑢1 + 𝛼2𝑢2) + 𝑇(𝛼1𝑢1 + 𝛼2𝑢2)   
                                              = 𝛼1𝑆(𝑢1) + 𝛼2𝑆(𝑢2) + 𝛼1𝑇(𝑢1) +
𝛼2𝑇(𝑢2)  
                                              = 𝛼1(𝑆(𝑢1) + 𝑇(𝑢1)) + 𝛼2(𝑆(𝑢2) +
𝑇(𝑢2))  
                                              = 𝛼1(𝑆 +  𝑇)(𝑢1) + 𝛼2(𝑆 + 𝑇)(𝑢2)  
Hence, (𝑆 + 𝑇) ∈ 𝐿(𝑈, 𝑉).  
Next, suppose 𝑆 ∈ 𝐿(𝑈, 𝑉) and 𝛼 ∈ 𝐹. We define 𝛼𝑆:𝑈 → 𝑉 as follows: 

(𝛼𝑆)(𝑢) = 𝛼𝑆(𝑢) ∀ 𝑢 ∈ 𝑈.  Is 𝛼𝑆 a linear operator?   

To answer this take 𝛽1, 𝛽2 ∈ 𝐹 and 𝑢1, 𝑢2 ∈ 𝑈.   

Then, (𝛼𝑆)(𝛽1𝑢1 + 𝛽2𝑢2) = 𝛼𝑆(𝛽1𝑢1 + 𝛽2𝑢2) 
= 𝛼(𝛽1𝑆(𝑢1) + 𝛽2𝑆(𝑢2))  
= 𝛽1(𝛼𝑆)(𝑢1) + 𝛽2(𝛼𝑆)(𝑢2) 

Hence, 𝛼𝑆 ∈ 𝐿(𝑈, 𝑉).  
So, we have successfully defined addition and scalar multiplication on 

𝐿(𝑈, 𝑉).  
E1) Show that the set 𝐿(𝑈, 𝑉)is a vector space over F with respect to the 

operations of addition and multiplication by scalars defined above.  

(Hint: The zero vector in this space is the zero transformation). 
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Notation:  For any vector space V we denote 𝐿(𝑈, 𝑉)by 𝐴(𝑉). 
Let U and V be vector spaces over F of dimensions m and n, respectively.  

We have already observed that 𝐿(𝑈, 𝑉)is a vector space over F. therefore, 

it must have a dimension.  

We now show that the dimension of 𝐿(𝑈, 𝑉) is 𝑚𝑛.  

 

Theorem 4.1:  Let U, V be vector spaces over a field F of dimensions m 

and n, respectively, then 𝐿(𝑈, 𝑉)is a vector space of dimension 𝑚𝑛.  

 

Proof:  Let {𝑒1, … . 𝑒𝑚} be a basis of U and {𝑓1, … . 𝑓𝑛} be a basis of V.  

By Theorem 3 of Unit 3, there exists a unique linear transformation 𝐸11 ∈
𝐿(𝑈, 𝑉), such that  

        𝐸11(𝑒1) = 𝑓1, 𝐸11(𝑒2) = 0,⋯⋯ , 𝐸11(𝑒𝑚) = 0 

Similarly, 𝐸12 ∈ 𝐿(𝑈, 𝑉) such that   

        𝐸12(𝑒1) = 0, 𝐸12(𝑒2) = 𝑓1, ⋯⋯ , 𝐸12(𝑒𝑚) = 0 

In general, there exist 𝐸𝑖𝑗 ∈ 𝐿(𝑈, 𝑉) for 𝑖 = 1,… . , 𝑛;  𝑗 = 1,… . ,𝑚, such 

that 

        𝐸𝑖𝑗(𝑒𝑗) = 𝑓𝑖 and 𝐸𝑖𝑗(𝑒𝑘) = 0 for 𝑗 ≠ 𝑘.  

To get used to these 𝐸𝑖𝑗, try the following exercise before continuing the 

proof. 

E2) Clearly define 𝐸2𝑚, 𝐸32and 𝐸𝑚𝑛. 

Now, let us go on with the proof of Theorem 1.  

If 𝑢 = 𝑐1𝑒1  +  … . +𝑐𝑚𝑒𝑚, where 𝑐𝑖𝐹 ∀ 𝑖, then 𝐸𝑖𝑗(𝑢) = 𝑐𝑗𝑓𝑖.  

We complete the proof by showing that {𝐸𝑖𝑗: 𝑖 = 1, . . . , 𝑚} is a basis of 

𝐿(𝑈, 𝑉).  
Let us first show that set is linearly independent over F. for this, suppose  

                       ∑ ∑ 𝑐𝑖𝑗𝐸𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 = 0                                   …………….. (i) 

where 𝑐𝑖𝑗 ∈ 𝐹. we must show that 𝑐𝑖𝑗 = 0 for all 𝑖, 𝑗.   

(i) implies that  

∑ ∑ 𝑐𝑖𝑗𝐸𝑖𝑗(𝑒𝑘)
𝑚
𝑗=1

𝑛
𝑖=1 = 0 ∀ 𝑘 = 1,⋯ ,𝑚              …………….. (ii) 

Thus, by definition of 𝐸𝑖𝑗′s, we obtain 

              ∑ 𝑐𝑖𝑘𝑓𝑖
𝑛
𝑗=1 = 0                                    ……………………... (iii) 

But, {𝑓1, … . 𝑓𝑛}is a basis for V thus, 𝑐𝑖𝑘 = 0 for all 𝑖 = 1,… . , 𝑛.  

But this is true for all 𝑘 = 1,… . ,𝑚.  

Hence, we conclude that 𝑐𝑖𝑗 = 0 ∀ 𝑖, 𝑗.   

Therefore, the set of 𝐸𝑖𝑗’s is linearly independent.  

 

Next, we show that the set {𝐸𝑖𝑗|𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚} spans 𝐿(𝑈, 𝑉).  

Suppose 𝑇 ∈ 𝐿(𝑈, 𝑉).  
Now, for each j such that 1 ≤ 𝑗 ≤ 𝑚, 𝑇(𝑒𝑗) ∈ 𝑉.   

Since {𝑓1, … . 𝑓𝑛} is a basis of V, there exist scalars 𝑐𝑖𝑗 , ⋯ , 𝑐𝑖𝑛 such that 

                      𝑇(𝑒𝑗) = ∑ 𝑐𝑖𝑗𝑓𝑖
𝑛
𝑖=1                  ………………  (i) 

we shall prove that 
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                    𝑇 = ∑ ∑ 𝑐𝑖𝑗𝐸𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1                 ……………… (ii) 

By Theorem 3.1 of Unit 3 it is enough to show that, for each k with 1 ≤
𝑘 ≤ 𝑚, 

               𝑇(𝑒𝑘) = ∑ ∑ 𝑐𝑖𝑗𝐸𝑖𝑗(𝑒𝑘)
𝑚
𝑗=1

𝑛
𝑖=1        ........................ (iii) 

Now, ∑ ∑ 𝑐𝑖𝑗𝐸𝑖𝑗(𝑒𝑘)
𝑚
𝑗=1

𝑛
𝑖=1 = ∑ 𝑐𝑖𝑘𝑓𝑖

𝑛
𝑖=1 = 𝑇(𝑒𝑘) by (ii), this implies (iii). 

Thus, we have proved that the set of 𝑚𝑛 elements {𝐸𝑖𝑗|𝑖 = 1,… , 𝑛, 𝑗 =

1,… ,𝑚} is a basis for 𝐿(𝑈, 𝑉).  
Let us see some ways of using this theorem. 

 

Example 1:  Show that 𝐿(𝑅2, 𝑅) ≈ 𝑅2 is a plane.  

 

Solution: 𝐿(𝑅2, 𝑅) is a real vector space of dimension 2 x 1 = 2.  

Thus, by 10 of Unit 3 Theorem;  𝐿(𝑅2, 𝑅) ≈ 𝑅2, the real plane.  

 

Example 2:  Let 𝑈, 𝑉 be vector spaces of dimensions m and n, 

respectively.  Suppose W is a subspace of V of dimension 𝑝(≤ 𝑛). 
Let 𝑋 = {𝑇 ∈ 𝐿(𝑈, 𝑉): 𝑇(𝑢) ∈ 𝑊  ∀  𝑢 ∈ 𝑈}. Is X a subspace of 𝐿(𝑈, 𝑉)? 

If yes, find its dimension.  

 

Solution: 𝑋 = {𝑇 ∈ 𝐿(𝑈, 𝑉)|𝑇(𝑈) ⊆ 𝑊} = 𝐿(𝑈,𝑊).  Thus, X is also a 

vector space.   

Since it is a subset of 𝐿(𝑈, 𝑉), it is a subspace of 𝐿(𝑈, 𝑉).  By Theorem 

1, 𝑑𝑖𝑚𝑋 = 𝑚𝑝. 

E3) What can be a basis for 𝐿(𝑅2, 𝑅)and for 𝐿(𝑅, 𝑅2)?  

Notice that both these spaces have the same dimension over R. 

After having looked at 𝐿(𝑈, 𝑉), we now discuss this vector space for the 

particular case when 𝑉 = 𝐹.  

 

4.3.2  The Dual Space  
 

The vector space 𝐿(𝑈, 𝑉), discussed in Unit 2, has a particular name when 

𝑉 = 𝐹.  

 

Definition 4.3.1:  Let U be a vector space over F.  Then the space 

𝐿(𝑈, 𝐹)is called the dual space of 𝑈∗, and is denoted by U.  

In this section we shall study some basic properties of U*. The elements 

of U have a specific name, which we now give.    

 

Definition 4.3.2: A linear transformation 𝑇: 𝑈 → 𝐹 is called a linear 

functional. Thus, a linear functional on U is a function 𝑇:𝑈 → 𝐹 such 

that 

 𝑇(𝛼1𝑢1 + 𝛼2𝑢2) = 𝛼1𝑇(𝑢1) + 𝛼2𝑇(𝑢2), for 𝛼1, 𝛼2 ∈ 𝐹 and 𝛼1, 𝛼2 ∈ 𝑈.  
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For example, the map, 𝑓: 𝑅3 → 𝑅|𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3, 

where 𝑎1, 𝑎2, 𝑎3 ∈ 𝑅 are fixed, is a linear functional on 𝑅3.  You have 

already seen this in Unit 3 (E4).  

We now come to a very important aspect of the dual space.  

We know that the space V*, of linear functional on V, is a vector space.  

Also, if dim V = m, then dim V* = m, by Theorem 1 (Remember, dim F 

= 1).  

Hence, we see that dim V = dim V*.   

From Theorem 12 of unit 3, it follows that the vector spaces V and, V* 

are isomorphic. 

We now construct a special basis for V*.   

Let {𝑒1, … . 𝑒𝑛} be a basis for V, by Theorem3 of Unit 3, for each 𝑖 =
1,… ,𝑚, there exists a unique linear functional 𝑓𝑖 on V such that 

𝑓𝑗(𝑒𝑗) = 𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

where, 𝛿𝑖𝑗 is the Kronecker delta function. 

We shall prove that the linear functional 𝑓1, … . 𝑓𝑚, constructed above, 

form a basis of V*.  

Since dim V = dim V* = m, it is enough to show that the set {𝑓1, … . 𝑓𝑚} 
is linearly independent. For this we suppose 𝑒1, … . 𝑒𝑚 ∈ 𝐹 such that 

𝑐1𝑓1  + ⋯+ 𝑐𝑚𝑓𝑚 = 0.  

We must show that 𝑐𝑖 = 0, for all 𝑖. 
Now, ∑ 𝑐𝑗𝑓𝑗

𝑛
𝑗=1 = 0 

⇒ ∑ (𝑐𝑗𝑓𝑗(𝑒𝑖))
𝑛
𝑗=1 = 0   for each 𝑖 

⟹∑𝑐𝑗 (𝑓𝑗(𝑒𝑖))

𝑛

𝑗=1

= 0 ∀ 𝑖 

⟹∑𝑐𝑗𝛿𝑖𝑗

𝑛

𝑗=1

= 0 ∀ 𝑖  ⟹ 𝑐𝑖 = 0 ∀ 𝑖 

Thus, the set {𝑓1, … . 𝑓𝑚}is a set of m linearly independent elements of a 

vector space V* of dimension m, Thus, from Unit 3 (Theorem 3.5, 

Corrolary 1), it forms a basis of V*.  

 

Definition 4.3.3:  The basis {𝑓1, … . 𝑓𝑚}of V* is called the dual basis of 

the basis {𝑒1, … . 𝑒𝑚} of V.   

We now come to the result that shows the convenience of using a dual 

basis.  

 

Theorem 4.2:  Let V be a vector space over F of dimension n, {𝑒1, … . 𝑒𝑛} 
be a basis of V and {𝑓1, … . 𝑓𝑛} be the dual basis of {𝑒1, … . 𝑒𝑛}.Then, for 

each 𝑓 ∈ 𝑉 ∗,  𝑓 = ∑ 𝑓(𝑒𝑗)𝑓𝑖
𝑛
𝑖=1  and, for each 𝑣 ∈ 𝑉,𝑣 = ∑ 𝑓𝑖

𝑛
𝑖=1 (𝑣)𝑒𝑖 

Proof:  Since {𝑓1, … . 𝑓𝑛} is a basis of V*, for 𝑓 ∈ 𝑉 ∗ there exist 

scalars𝑐1, … . 𝑐𝑛 such that   
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𝑓 =∑𝑐𝑖

𝑛

𝑖=1

𝑓𝑖 

Therefore, 𝑓(𝑒𝑗) = ∑ 𝑐𝑖
𝑛
𝑖=1 𝑓𝑖(𝑒𝑗) 

=∑𝑐𝑗𝛿𝑖𝑗

𝑛

𝑗=1

 

                                                                  = 𝑐𝑗  

This implies that 𝑐𝑖 = 𝑓(𝑒𝑖  ) ∀ 𝑖 = 1,… , 𝑛,  therefore, 𝑓 = ∑𝑓𝑖. 
Similarly, for 𝑣 ∈ ∑𝑉, there exist scalars 𝑎1, … . 𝑎𝑛 such that 

𝑣 =∑𝑎𝑖

𝑛

𝑖=1

𝑒𝑖 

Hence, 𝑓𝑗(𝑣) = ∑ 𝑎𝑖
𝑛
𝑖=1 𝑓𝑖(𝑒𝑗) 

=∑𝑎𝑗𝛿𝑖𝑗

𝑛

𝑖=1

 

= 𝑎𝑗 

and we obtain 

𝑣 =∑𝑓𝑖

𝑛

𝑖=1

(𝑣)𝑒𝑖 

Let us see an example of how this theorem works. 

Example 3: Consider the basis 𝑒1 = (1,0, –  1), 𝑒2 = (1,1,0) of 𝐶3 over 

C.  Find the dual basis of {𝑒1, 𝑒2, 𝑒3}.  
Solution:  Any element of 𝐶3 is 𝑣 = (𝑧1, 𝑧2, 𝑧3), 𝑧𝑖 ∈ 𝐶.  Since 
{𝑒1, 𝑒2, 𝑒3}is a basis, we have 𝛼1, 𝛼2, 𝛼3 ∈ 𝐶. Since   

𝑉 = {𝑧1, 𝑧2, 𝑧3} = 𝛼1𝑒1 + 𝛼2𝑒2 + 𝛼3𝑒3 
= (𝛼1 + 𝛼2 + 𝛼3, 𝛼2 + 𝛼3, −𝛼1 + 𝛼2) 

Thus, 𝛼1 + 𝛼2 + 𝛼3 = 𝑧1 

𝛼2 + 𝛼3 = 𝑧2 

−𝛼1 + 𝛼2 = 𝑧3 
 These equations can be solved to get 

α1 = z1 − z2 
α2 = z1 − z2 + 𝑧3 

α3 = 2z2 − z1 − 𝑧3 

Now, by Theorem 2,𝑣 = 𝑓1(𝑣)𝑒1 + 𝑓2(𝑣)𝑒2 + 𝑓3(𝑣)𝑒3, where {𝑓1, 𝑓2, 𝑓3} 
is the dual basis.   

Also, 𝑣 = 𝛼1𝑒1 + 𝛼2𝑒2 + 𝛼3𝑒3.  
Hence, 𝑓1(𝑣) = 𝛼1, 𝑓2(𝑣) = 𝛼2, 𝑓3(𝑣) = 𝛼3 ∀ 𝑣 ∈ 𝐶

3.  

Thus, the dual basis of {𝑒1, 𝑒2, 𝑒3} is {𝑓1, 𝑓2, 𝑓3}, where 𝑓1, 𝑓2, 𝑓3 will be 

defined as follows:  

𝑓1(𝑧1, 𝑧2, 𝑧3) = α1 = z1 − z2 
𝑓1(𝑧1, 𝑧2, 𝑧3) = α2 = z1 − z2 + 𝑧3 
𝑓1(𝑧1, 𝑧2, 𝑧3) = α3 = 2z2 − z1 − 𝑧3 
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E5) What is the dual basis for the basis {1, 𝑥, 𝑥2} of the space 𝑃2 =
{𝑎0 + 𝑎𝑖𝑥 + 𝑎2𝑥

2|𝑎𝑖 ∈ 𝑅}? 

 

4.3.2.1 The Dual of the Dual Space 
 

Let V be an n-dimensional vector space. It has already been shown that V 

and V* are isomorphic because dim V = dim V*.  

The dual of V* is called the second dual of V denoted by V**.   

Let us show that 𝑉 ≈ 𝑉 ∗∗.  
Now any element of V** is a linear transformation from V* to F.   

Also, for any 𝑣 ∈ 𝑉 and 𝑓 ∈ 𝑉 ∗, 𝑓(𝑣) ∈ 𝐹.  

So, we define a mapping 𝜑:𝑉 → 𝑉 ∗∗ : 𝑣 → 𝜑𝑣, where (𝜑𝑣)(𝑓) =
𝑓(𝑣)∀𝑓 ∈ 𝑉 ∗ and 𝑣 ∈ 𝑉. (Over here we will use 𝜑(𝑣) and 𝜑𝑣 

interchangeably).   

Note that, for any 𝑣 ∈ 𝑉, 𝜑𝑣 is a well-defined mapping from 𝑉 ∗→ 𝐹.  

We have to check that it is a linear mapping.  

Now, for 𝑐1, 𝑐2 ∈ 𝐹 and 𝑓1, 𝑓2 ∈ 𝑉 ∗.  
            (𝜑𝑣)(𝑐1𝑓1 + 𝑐2𝑓2) = (𝑐1𝑓1 + 𝑐2𝑓2)(𝑣)  
                                           = 𝑐1𝑓1(𝑣) + 𝑐2𝑓2(𝑣)  
                                           = 𝑐1(𝜑𝑣)(𝑓1) + 𝑐2(𝜑𝑣)(𝑓2)  
Therefore, 𝜑𝑣 ∈ 𝐿(𝑉 ∗, 𝐹) = 𝑉 ∗∗, ∀ 𝑣 

Furthermore, the map 𝜃: 𝑉 → 𝑉 ∗∗ is linear.   

This can be seen as follows:  

For 𝑐1, 𝑐2 ∈ 𝐹 and 𝑣1, 𝑣2 ∈ 𝑉.  

                 𝜃(𝑐1𝑣1 + 𝑐2𝑣2)(𝑓) = 𝑓(𝑐1𝑣1 + 𝑐2𝑣2)  
                                                 = 𝑐1𝑓(𝑣1) + 𝑐2𝑓(𝑣2)  

= 𝑐1(𝜃𝑣1)(𝑓) + 𝑐2𝑓(𝜃𝑣2)(𝑓) 
= (𝑐1𝜃𝑣1 + 𝑐2𝜃𝑣2)(𝑓) 

This is true ∀  𝑓 ∈ 𝑉 ∗.   
Thus, 𝜃(𝑐1𝑣1 + 𝑐2𝑣2) = 𝑐1𝜃(𝑣1) + 𝑐2𝜃(𝑣2).  
Now that we have shown that 𝜃 is linear, we want to show that it is 

actually an isomorphism.  We will show that 𝜃 is 1-1.   

By Theorem 3.7 of Unit 3, it suffices to show that 𝜃(𝑣) = 0 implies 𝑣 =
0.   

Let {𝑓1, ⋯ , 𝑓𝑛}be the dual basis of a basis {𝑒1,⋯ , 𝑒𝑛} of 𝑉. 

By Theorem 2, we have 𝑣 = ∑ 𝑓𝑖
𝑛
𝑖=1 (𝑣)𝑒𝑖 

Now, 𝜃(𝑣) = 0 ⟹ (𝜃𝑣)(𝑓𝑖) = 0 ∀ 𝑖 = 0,1,⋯ , 𝑛 

Hence, it follows that 𝜃 is 1-1, thus, 𝜃 is an isomorphism (Unit 3, Theorem 

3.10).  

What we have just proved is the following theorem.  

Theorem 4.3: The map 𝜃: 𝑉 → 𝑉 ∗∗, defined by (𝜑𝑣)(𝑓) = 𝑓(𝑣) ∀ 𝑣 ∈
𝑉 and𝑓 ∈ 𝑉 ∗, is an isomorphism.  

We now give an important corollary to this theorem.  
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Corollary: Let 𝜓 be a linear functional on 𝑉* (i.e., 𝜓 ∈ 𝑉 ∗∗). Then there 

exists a unique 𝑣 ∈ 𝑉  such that  𝜓(𝑓) = 𝑓(𝑣) for all 𝑓 ∈ 𝑉*.  

 

Proof:  By Theorem 3, since 𝜃is an isomorphism, it is onto and 1-1, thus, 

there exists a unique 𝑣 ∈ 𝑉 such that 𝜃(𝑣) = 𝜓.  This by definition, 

implies that 𝜃(𝑣)(𝑓) = (𝑣)(𝑓) = 𝑓(𝑣) for all 𝑓 ∈ 𝑉*.  

 

Now, use the second dual try to prove the following exercise.  

E6) Show that each basis of 𝑉 ∗ is the dual of some basis of 𝑉. 

In the following section we look at the composition of linear operators, 

and the vector space𝐴(𝑣), where 𝑉 is a vector space over 𝐹. 

 

4.3.3  Composition of Linear Transformations  

 

Do you remember the definition 𝑓 the composition of functions, which 

you studied in Unit 1?  Let us now consider the particular case of the 

composition of two linear transformations.  Suppose 𝑇:𝑈 → 𝑉 → 𝑊, 

defined by 𝑆0𝑇(𝑢) = 𝑆(𝑇(𝑢)) ∀ 𝑢 ∈ 𝑈.  

 

This is diagrammatically represented in Fig. 1.  

 

 

                                  

 

 

 

                                       T                                   S 

 

 

 

                                                       SoT 

                                    Fig 1: SoT is the composition of S and T 

 

The first question which comes to our mind is whether 𝑆 ∘ 𝑇 is linear.  The 

affirmative answer is given by the following result.  

 

Theorem 4.4: Let 𝑈, 𝑉,𝑊 be vector spaces over F. Suppose 𝑆 ∈ 𝐿(𝑉,𝑊) 
and 𝑇 ∈ 𝐿(𝑈, 𝑉).  Then 𝑆 ∘ 𝑇 ∈ 𝐿(𝑈,𝑊). 
 

Proof: All we need to prove is the linearity of the map 𝑆 ∘ 𝑇. Let 𝛼1, 𝛼2 ∈
𝐹 and 𝑢1, 𝑢2 ∈ 𝑈.  Then  

             𝑆 ∘ 𝑇(𝛼1𝑢1 + 𝛼2𝑢2) = 𝑆(𝑇(𝛼1𝑢1 + 𝛼2𝑢2))  

                                               = 𝑆(α1T(u1) + 𝛼2𝑇(𝑢2)), since T is linear     

U 

V 
W 
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                                              = 𝛼1𝑆(𝑇(𝑢1)) + 𝛼2𝑆(𝑇(𝑢2)), since S is 

linear    

                                              = α1𝑆 ∘ 𝑇(𝑢1) + α2𝑆 ∘ 𝑇(𝑢2)  
This shows that 𝑆 ∘ 𝑇 ∈ 𝐿(𝑈,𝑊). 
 

Try the following exercises now  

E7) Let 𝐼 be the identity operator on 𝑉. Show that 𝑆 ∘ 𝐼 = 𝐼 ∘ 𝑆 = 𝑆 for 

all 𝑆 ∈ 𝐴(𝑉).  
E8) Prove that 𝑆 ∘ 0 = 0 ∘ 𝑆 = 0 for all 𝑆 ∈ 𝐴(𝑉), where 0 is the null 

operator. 

 Let’s now make an observation.  

 

Remark: Let 𝑆: 𝑉 → 𝑉 be an invertible linear transformation (ref. unit 3), 

that is an isomorphism.  Then, by Unit 3, Theorem 3.8,  𝑆−1 ∈ 𝐿(𝑉, 𝑉) =
𝐴(𝑉).  
Since 𝑆−1 ∘ 𝑆(𝑣) = 𝑣 and 𝑆 ∘ 𝑆−1(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉.  

𝑆 ∘ 𝑆−1 = 𝑆−1 ∘ 𝑆 = 𝐼, where 𝐼, denotes the identity transformation on V.   

This remark leads us to the following interesting result.  

 

Theorem 4.5: Let V be a vector space over a field F. A linear 

transformation 𝑆 ∈ 𝐴(𝑉) is an isomorphism if an only if there exists 𝑇 ∈
𝐴(𝑉) such that 𝑆 ∘ 𝑇 = 𝐼 = 𝑇 ∘ 𝑆.  

 

Proof:  Let us first assume that S is an isomorphism.  Then, the remark 

above tells us that there exists𝑆−1 ∈ 𝐴(𝑉) such that 𝑆 ∘ 𝑆−1 = 𝐼 = 𝑆−1 ∘
𝑆.   

Thus, we have 𝑇(= 𝑆−1) such that 𝑆 ∘ 𝑇 = 𝑇 ∘ 𝑆 = 𝐼.  
 

Conversely, suppose T exists in 𝐴(𝑉), such that 𝑆 ∘ 𝑇 = 𝐼 = 𝑇 ∘ 𝑆. Show 

that S is 1-1 and onto. 

We first show that S is 1 -1, that is, Ker S = {0}.   

Now, 𝑥 ∈ 𝐾𝑒𝑟 𝑆 ⟹ 𝑆(𝑥) = 0 ⟹ 𝑇 ∘ 𝑆(𝑥) = 𝑇{0} = 0 ⟹ 𝐼(𝑥) =
0 ⟹ 𝑥 = 0.   

Thus, Ker S = {0}.  

Next, we show that S is onto, that is, for any 𝑣 ∈ 𝑉, ∃  𝑢 ∈ 𝑉 such that 

𝑆(𝑢) = 𝑣. Now, for any 𝑣 ∈ 𝑉, 𝑣 = 𝐼(𝑣) = 𝑆𝑇(𝑣) = 𝑆(𝑇(𝑣)) = 𝑆(𝑢), 
where 𝑢 = 𝑇(𝑣) ∈ 𝑉. thus, S is onto.  

Hence, S is 1-1 and onto, that is, S is an isomorphism.  

 

Use Theorem 4.5 to solve the following exercise. 

 

E9) Let 𝑆(𝑥1, 𝑥2) = (𝑥1, 𝑥2) and 𝑇(𝑥1, 𝑥2) = (−𝑥1, 𝑥2).Find 𝑆 ∘ 𝑇 and 

𝑇 ∘ 𝑆. Is S(orT) invertible? 

Now, let us look at some examples involving the composite of linear 

operators.  
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Example 4: Let 𝑇: 𝑅2 → 𝑅2 and 𝑆: 𝑅3 → 𝑅2 be defined by  

𝑇(𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥1 + 𝑥2) and 𝑆(𝑥1, 𝑥2, 𝑥3) = (𝑥1, 𝑥2).  Find 𝑆 ∘ 𝑇and 

𝑇 ∘ 𝑆.  

 

Solution:  First, note that 𝑇 ∈ 𝐿(𝑅2, 𝑅3) and 𝑆 ∈ 𝐿(𝑅3, 𝑅2). 
Therefore,𝑆 ∘ 𝑇and𝑇 ∘ 𝑆 are both well defined linear operators.   

Now, 𝑆 ∘ 𝑇(𝑥1, 𝑥2, 𝑥3) = 𝑆(𝑇(𝑥1, 𝑥2)) = 𝑆(𝑥1, 𝑥2, 𝑥1 + 𝑥2) = (𝑥1, 𝑥2).   
Hence 𝑆 ∘ 𝑇= the identity transformation of 𝑅2 = 𝐼𝑅2 .  

Now, 𝑇 ∘ 𝑆(𝑥1, 𝑥2, 𝑥3) = 𝑇(𝑆(𝑥1, 𝑥2, 𝑥3)) = 𝑇(𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑥1 +
𝑥2).   
In this case 𝑆 ∘ 𝑇 ∈ 𝐴(𝑅2), while 𝑇 ∘ 𝑆 ∈ 𝐴(𝑅3).   
Clearly, 𝑆 ∘ 𝑇 ≠ 𝑇 ∘ 𝑆.  

Also, note that 𝑆 ∘ 𝑇 = 𝐼, but 𝑇 ∘ 𝑆 ≠ 𝐼.  
 

Remark:  Even if 𝑆 ∘ 𝑇 and 𝑇 ∘ 𝑆 both being to 𝐴(𝑉), 𝑆 ∘ 𝑇 may not be 

equal to 𝑇 ∘ 𝑆.               Such an example is given below.  

 

Example 5: Let 𝑆, 𝑇 ∈ 𝐴(𝑅2), be defined by 𝑇(𝑥1, 𝑥2) = (𝑥1 − 𝑥2, 𝑥1 −
𝑥2) and 

𝑆(𝑥1, 𝑥2) = (0, 𝑥2).  Show that  𝑆 ∘ 𝑇 ≠ 𝑇 ∘ 𝑆.  

 

Solution:  You can check that  𝑆 ∘ 𝑇(𝑥1, 𝑥2) = (0, 𝑥1 − 𝑥2) and  𝑇 ∘
𝑆(𝑥1, 𝑥2) = (𝑥1 − 𝑥2).   
Thus, there exists (𝑥1, 𝑥2) ∈ 𝑅

2 such that 𝑆 ∘ 𝑇(𝑥1, 𝑥2) ≠ 𝑇 ∘ 𝑆(𝑥1, 𝑥2) 
(For instance, 𝑆 ∘ 𝑇(1,1) ≠ 𝑇 ∘ 𝑆(1,1)).   
That is, 𝑆 ∘ 𝑇 ≠ 𝑇 ∘ 𝑆.  

 

Note: Before checking whether 𝑆 ∘ 𝑇 is a well-defined linear operator, 

you must be sure that both S and T are well defined linear operators. 

Now try to solve the following exercise.   

E10) Let 𝑇(𝑥1, 𝑥2) = (0, 𝑥1, 𝑥2) and 𝑆(𝑥1, 𝑥2, 𝑥3) = (𝑥1, 𝑥2, 𝑥2 + 𝑥3). 
Find 𝑆 ∘ 𝑇 and 𝑇 ∘ 𝑆.          When is 𝑆 ∘ 𝑇 = 𝑇 ∘ 𝑆 ? 

E11) Let 𝑇(𝑥1, 𝑥2) = (2𝑥1, 𝑥1 + 𝑥2)for (𝑥1, 𝑥2) ∈ 𝑅
2 and 

            𝑆(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 2𝑥2, 3𝑥1 − 𝑥2, 𝑥3) for (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅
3.   

          Are 𝑆 ∘ 𝑇 and 𝑇 ∘ 𝑆 defined ?  If yes, find them. 

E12) Let 𝑈, 𝑉,𝑊, 𝑍 be vector spaces over 𝐹. Suppose 𝑇 ∈ 𝐿(𝑈, 𝑉), 𝑆 ∈
𝐿(𝑉,𝑊) and 

          𝑅 ∈ 𝐿(𝑊, 𝑍).  Show that (𝑅 ∘ 𝑆) ∘ 𝑇 = 𝑅 ∘ (𝑆 ∘ 𝑇). 
E13) Let 𝑆, 𝑇 ∈ 𝐴(𝑉) and S be invertible.  

          Show that 𝑟𝑎𝑛𝑘(𝑆𝑇) = 𝑟𝑎𝑛𝑘(𝑇𝑆) = 𝑟𝑎𝑛𝑘(𝑇)(𝑆𝑇). 
So far, we have discussed the composition of linear transformation and 

seen that if 𝑆, 𝑇 ∈ 𝐴(𝑉), then 𝑆 ∘ 𝑇𝐴(𝑉), where V is a vector space of 

dimension n.   
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Thus, we have introduced another binary operation (Unit 1) in 𝐴(𝑉), 
namely, the composition of operators, denoted by o.  

Remember, we already have the binary operations given in the previous 

unit. 

In the following theorem, we state some simple properties that involve all 

these operations.  

 

Theorem 4.6: Let 𝑅, 𝑆, 𝑇 ∈ 𝐴(𝑉) and let 𝛼 ∈ 𝐹. Then  

a) 𝑅 ∘ (𝑆 + 𝑇) = 𝑅 ∘ 𝑆 + 𝑅 ∘ 𝑇 and (𝑆 + 𝑇) ∘ 𝑅 = 𝑆 ∘ 𝑅 + 𝑇 ∘ 𝑅. 

b) 𝛼(𝑆 ∘ 𝑇) = 𝛼𝑆 ∘ 𝑇 = 𝑆 ∘ 𝛼𝑇.  

 

Proof: 

 a) For any 𝑣 ∈ 𝑉,  

𝑅 ∘ (𝑆 + 𝑇) = 𝑅((𝑆 + 𝑇)(𝑣))  
= 𝑅(𝑆(𝑣) + 𝑇(𝑣)) = (𝑅 ∘ 𝑆)(𝑣) + (𝑅 ∘ 𝑇)(𝑣) 

= (𝑅 ∘ 𝑆 + 𝑅 ∘ 𝑇)(𝑣)  
Hence, 𝑅 ∘ (𝑆 + 𝑇) = 𝑅 ∘ 𝑆 + 𝑅 ∘ 𝑇.  

Similarly, we can prove that (𝑆 + 𝑇) ∘ 𝑅 = 𝑆 ∘ 𝑅 + 𝑇 ∘ 𝑅 

b)  For any 𝑣 ∈ 𝑉,  

           𝛼(𝑆 ∘ 𝑇)(𝑣) = 𝛼 (𝑆(𝑇(𝑣)))  

                               = (𝛼𝑆)(𝑇(𝑣)) = (𝛼𝑆 ∘ 𝑇)(𝑣)  

Therefore, 𝛼(𝑆 ∘ 𝑇) = 𝛼𝑆 ∘ 𝑇.  

Similarly, we can show that 𝛼(𝑆 ∘ 𝑇) = 𝑆 ∘ 𝛼𝑇.  

 

Notification:  Subsequently, we shall be writing 𝑆𝑇 in place of 𝑆 ∘ 𝑇.   

Thus, 𝑆𝑇(𝑢) = 𝑆(𝑇(𝑢)) = (𝑆 ∘ 𝑇)𝑢.   

Also, if 𝑇 ∈ 𝐴(𝑉), then 𝑇0 = 𝐼, 𝑇1 = 𝑇, 𝑇2 = 𝑇 ∘ 𝑇 and, in general,  

                                      𝑇𝑛 = 𝑇𝑛−1 ∘ 𝑇 = 𝑇 ∘ 𝑇𝑛−1  
The properties of 𝐴(𝑉), stated in theorems 4.1 and 4.6 are very important 

and will be used implicitly again and again.  To get used to 𝐴(𝑉) and the 

operations in it, try the following exercises.   

E14) Consider 𝑆, 𝑇: 𝑅2 → 𝑅2 defined by 𝑆(𝑥1, 𝑥2) = (𝑥1, −𝑥2) and 

𝑇(𝑥1, 𝑥2) = (𝑥1 + 𝑥2, 𝑥2 − 𝑥3).  What are 𝑆 + 𝑇, 𝑆𝑇, 𝑇𝑆, 𝑆 ∘ (𝑆 − 𝑇) and 

(𝑆– 𝑇) ∘ 𝑆 ? 

 

E15) Let  𝑆 ∈ 𝐴(𝑉), 𝑑𝑖𝑚𝑉 = 𝑛 and 𝑟𝑎𝑛𝑘(𝑆) = 𝑟 and  

         Let 𝑀 = {𝑇 ∈ 𝐴(𝑉)|𝑆𝑇 = 0},   𝑁 = {𝑇 ∈ 𝐴(𝑉)|𝑇𝑆 = 0} 
a) Show that M and N are subspaces of 𝐴(𝑉).  
b) Show that 𝑀 = 𝐿(𝑉, 𝐾𝑒𝑟 𝑆).  
c) What is 𝑑𝑖𝑚 𝑀 ? 

 

By now you must have got used to handling the elements of 𝐴(𝑉).  The 

next section deals with polynomials that are related to these elements.  
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4.3.4  Minimal Polynomial Theorem 
 

Recall that a polynomial in one variable x over F is of the form 

                        𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛𝑥
𝑛, where 𝑎0, 𝑎1, ⋯ , 𝑎𝑛 ∈ 𝐹.  

If 𝑎𝑛 ≠ 0, then 𝑝(𝑥) is said to be of degree 𝒏.  

If 𝑎𝑛 = 1, then 𝑝(𝑥) is called a monic polynomial of degree 𝒏.   

For example, 𝑥2 + 5𝑥 + 6 is a monic polynomial of degree 2.   

The set of all polynomials in 𝑥 with coefficients in F is denoted by 𝐹[𝑥].  
Definition 4.3.4:  For a polynomial p, as above, and an operator 𝑇 ∈
𝐴(𝑉), we define 

                            𝑝(𝑇) = 𝑎0𝐼 + 𝑎1𝑇 +⋯+ 𝑎𝑛𝑇
𝑛.  

Since each of 𝐼, 𝑇, … , 𝑇𝑛 ∈ 𝐴(𝑉), we find 𝑃(𝑇) ∈ 𝐴(𝑉).  We say 𝑃(𝑇) ∈
𝐹[𝑇].  If q is another polynomial in x over F, then 𝑃(𝑇)𝑞(𝑇) = 𝑞(𝑇) =
𝑃(𝑇), that is, 𝑃(𝑇) and 𝑞(𝑇) commute with each other.  This can be seen 

as follows:  

Let  𝑞(𝑇) = 𝑏0𝐼 + 𝑏1𝑇 +⋯+ 𝑏𝑚𝑇
𝑚.  

Then 𝑃(𝑇)𝑞(𝑇) = (𝑎0𝐼 + 𝑎1𝑇 +⋯+ 𝑎𝑛𝑇
𝑛)(𝑏0𝐼 + 𝑏1𝑇 +⋯+ 𝑏𝑚𝑇

𝑚) 
                          = 𝑎0𝑏0𝐼 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑇 + ⋯+ 𝑎𝑛𝑏𝑚𝑇

𝑛+𝑚  

                          = (𝑏0𝐼 + 𝑏1𝑇 +⋯+ 𝑏𝑚𝑇
𝑚)(𝑎0𝐼 + 𝑎1𝑇 +⋯+ 𝑎𝑛𝑇

𝑛)  
                          = 𝑞(𝑇)𝑃(𝑇)  
E16) Let 𝑝, 𝑞 ∈ 𝐹[𝑥] such that  𝑝(𝑇) = 0, 𝑞(𝑇) = 0.  Show that  (𝑝 +
𝑞)(𝑇) = 0.  

          Note that (𝑝 + 𝑞)(𝑥) means 𝑝(𝑥) + 𝑞(𝑥). 
 

E17) Check that (2𝐼 + 3𝑆 + 𝑆3) commutes with (𝑆 + 2𝑆4), for 𝑆 ∈
𝐴(𝑅𝑛) 
We now go on to prove that given any 𝑇 ∈ 𝐴(𝑉) we can find a polynomial 

𝑔 ∈ 𝐹[𝑥] such that   

𝑔(𝑇) = 0, that is,  𝑔(𝑇)(𝑣) = 0 ∀ 𝑣 ∈ 𝑉.  

 

Theorem 4.7:  Let V be a vector space over F of dimension 𝑛 and 𝑇 ∈
𝐴(𝑉).  Then there exists a non-zero polynomial 𝑔 over 𝐹 such that 

𝑔(𝑇) = 0 and the degree of 𝑔 is at most 𝑛2.  
 

Proof:  We have already seen that 𝐴(𝑉) is a vector space of dimension 

𝑛2.   

Hence, the set {𝐼, 𝑇, 𝑇2, ⋯ , 𝑇𝑛
2
} of 𝑛2 + 1 vectors of 𝐴(𝑉), must be 

linearly dependent (ref.  Unit 2, Theorem 2.7).  Therefore, there must exist 

𝑎0, 𝑎1, ⋯ , 𝑎𝑛2 ∈ 𝐹 (not all zero) such that 

            𝑎0𝐼 + 𝑎1𝑇 +⋯+ 𝑎𝑛2𝑇
𝑛2 = 0.  

Let 𝑔 be the polynomial of degree at most 𝑛2, such that (𝑇) = 0.  

The following exercise will help you in getting used to polynomials in 𝑥 

and 𝑇.  
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E18) Give an example of polynomials 𝑔(𝑥) and ℎ(𝑥) in 𝑟[𝑥], for which 

𝑔(𝐼) = 0 and 

        ℎ(0) = 0, where 𝐼 and 0 are the identity and zero transformations in 

𝐴(𝑅). 
 

E19) Let 𝑇 ∈ 𝐴(𝑉)then we have a map 𝜃 from 𝐹[𝑥] to 𝐴(𝑉) given by 

𝜃(𝑝) = 𝑝(𝑇) show that, for 𝑎, 𝑏 ∈ 𝐹 and 𝑝, 𝑞 ∈ 𝐹[𝑥],  
a) 𝜃(𝑎𝑝 + 𝑏𝑞) = 𝑎(𝑝) + 𝑏(𝑞) 
b) 𝜃(𝑝𝑞) = 𝜃(𝑝)𝜃(𝑞). 
In Theorem 4.7, we have proved that there exists some 𝑔 ∈ 𝐹[𝑥] with 

𝑔(𝑇) = 0.  

But, if  𝑔(𝑇) = 0, then (𝑔)(𝑇) = 0, for any 𝛼 ∈ 𝐹.   

Also, if 𝑑𝑒𝑔 𝑔 ≤ 𝑛2.  Thus, there are infinitely many polynomials that 

satisfy the conditions in theorem 4.7.  But if we insist on some more 

conditions on the polynomial 𝑔, then we end up with one and only one 

polynomial which will satisfy these conditions and the conditions in 

Theorem 4.7.   

 

Theorem 4.8:  Let 𝑇 ∈ 𝐴(𝑉), then there exists a unique monic 

polynomial 𝑝 of smallest degree such that 𝑝(𝑇) = 0.  

 

Proof: Consider the set 𝑆 = {𝑔 ∈ 𝐹[𝑥]|𝑔(𝑇) = 0}.  
This set is non-empty since, by Theorem 4.7, there exists a non-zero 

polynomial 𝑔, of degree at most 𝑛2, such that 𝑔(𝑇) = 0.  

Now consider the set 𝐷 = {𝑑𝑒𝑔𝑓|𝑓 ∈ 𝑆}.   
Then 𝐷 is a subset of 𝑁 ∪ {0}, and therefore, it must have a minimum 

element, 𝑚.   

Let ℎ ∈ 𝑆 such that 𝑑𝑒𝑔 ℎ = 𝑚, then ℎ(𝑇) = 0 and 𝑑𝑒𝑔 ℎ ≤
𝑑𝑒𝑔 𝑔 ∀ 𝑔 ∈ 𝑆.   

If ℎ = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑚𝑥
𝑚, 𝑎𝑚 ≠ 0, then 𝑝 = 𝑥𝑚−1ℎ is a monic 

polynomial such that 𝑝(𝑇) = 0. 

Also, 𝑑𝑒𝑔 𝑝 = 𝑑𝑒𝑔 ℎ ≤ 𝑑𝑒𝑔 𝑔 ∀ 𝑔 ∈ 𝑆.  

Thus, we have shown that there exists a monic polynomial 𝑝, of least 

degree, such that 

𝑝(𝑇) = 0.  

 

We now show that 𝑝 is unique, that is, if 𝑞 is any monic polynomial of 

smallest degree such that 𝑞(𝑇) = 0, then 𝑝 = 𝑞.  But this is easy.   

Firstly, since 𝑑𝑒𝑔 𝑝 = 𝑑𝑒𝑔 𝑔 ∀ 𝑔 ∈ 𝑆, 𝑑𝑒𝑔 𝑝 ≤ 𝑑𝑒𝑔 𝑞.  

Similarly, 𝑑𝑒𝑔 𝑞 ≤ 𝑑𝑒𝑔 𝑝.  ∴ 𝑑𝑒𝑔 𝑝 = 𝑑𝑒𝑔 𝑞.  

Now, suppose 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛𝑥

𝑛 and 

                        𝑞(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑛−1𝑥
𝑛−1 + 𝑏𝑛𝑥

𝑛  

Since 𝑝(𝑇) = 0 and 𝑞(𝑇) = 0, we get (𝑝– 𝑞)(𝑇) = 0.   

But,  𝑝– 𝑞 = (𝑎– 𝑏) + … +….  
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Hence, (𝑝 –  𝑞) is a polynomial of degree strictly less than the degree of 

𝑝, such that (𝑝– 𝑞)(𝑇) = 0.   

That is, 𝑝– 𝑞𝑆 with 𝑑𝑒𝑔 (𝑝– 𝑞) < 𝑑𝑒𝑔 𝑝.  

This is a contradiction to the way we chose 𝑝, unless 𝑝𝑞 = 0, that is, 𝑝 =
𝑞.  

P is the unique polynomial satisfying the conditions of Theorem 4.8.  

This theorem immediately leads us to the following definition.  

 

Definition 4.3.5:  For 𝑇 ∈ 𝐴(𝑉), the unique monic polynomial 𝑝 of 

smallest degree such that 𝑝(𝑇) = 0 is called the minimal polynomial of 

T.  

Note that the minimal polynomial 𝑝, of 𝑇, is uniquely determined by the 

following three properties.  

1) 𝑝 is a monic polynomial over 𝐹 

2) 𝑝(𝑇) = 0 

3) if 𝑔 ∈ 𝐹(𝑥) with 𝑔(𝑇) = 0, then 𝑑𝑒𝑔 𝑝 ≤ 𝑑𝑒𝑔 𝑔.  

Consider the following example and exercises.  

 

Example 6:  For any vector space 𝑉, find the minimal polynomials for 𝐼, 
the identity transformation, and 0, the zero transformation.  

 

Solution:  Let 𝑝(𝑥) = 𝑥– 1 and 𝑞(𝑥) = 𝑥.  Then 𝑝 and 𝑞 are monic such 

that 𝑝(𝐼) = 0 and 𝑞(0) = 0.  Clearly no non-zero polynomials of smaller 

degree have the above properties.  Thus 𝑥– 1 and 𝑥 are the required 

polynomials.  

E20) Define 𝑇: 𝑅3 → 𝑅3|𝑇(𝑥1, 𝑥2, 𝑥3) = (0, 𝑥1, 𝑥2). Show that the 

minimal polynomial of 𝑇 is 𝑥3. 
E21) Define 𝑇: 𝑅𝑛 → 𝑅𝑛|𝑇(𝑥1, ⋯ , 𝑥𝑛−1).  What is the minimal 

polynomialof T?  

Does E20 help you? 

E22) Let 𝑇: 𝑅3 → 𝑅3 be defined by 𝑇(𝑥1, 𝑥2, 𝑥3) = (3𝑥1, 𝑥1 − 𝑥2, 2𝑥1 +
𝑥2 + 𝑥3). 
Show that (𝑇2– 𝐼)(𝑇– 3𝐼) = 0.  What is the minimal polynomial of  𝑇 ? 

We will now state and prove a criterion by which we can obtain the 

minimal polynomial of linear operator T, once we know any polynomial 

𝑓 ∈ 𝐹[𝑥] with 𝑓(𝑇) = 0.  It says that the minimal polynomial must be a 

factor of any such 𝑓.  

 

Theorem 4.9: Let 𝑇 ∈ 𝐴(𝑉) and let 𝑝(𝑥) be the minimal polynomial of 

𝑇.  Let 𝑓(𝑥) be any polynomial such that𝑓(𝑇) = 0.Then there exists a 

polynomial g(x)such that 𝑓(𝑥) = 𝑝(𝑥)𝑔(𝑥).  
Proof:  The division algorithm states that given 𝑓(𝑥) and 𝑝(𝑥), there exist 

polynomials 𝑔(𝑥) and ℎ(𝑥) such that 𝑓(𝑥) = 𝑝(𝑥)𝑔(𝑥) + ℎ(𝑥), where 

ℎ(𝑥) = 0 or 𝑑𝑒𝑔 ℎ (𝑥) < 𝑑𝑒𝑔 𝑝(𝑥).  Now, 0 = 𝑓(𝑇) = 𝑝(𝑇)𝑔(𝑇) +
ℎ(𝑇) = ℎ(𝑇), since 𝑝(𝑇) = 0. 
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Therefore, if ℎ(𝑥) ≠ 0, then ℎ(𝑇) = 0, and 𝑑𝑒𝑔 ℎ(𝑥) < 𝑑𝑒𝑔 𝑝(𝑥).  
This contradicts the fact that 𝑝(𝑥) is the minimal polynomial of 𝑇.  

Hence, ℎ(𝑥) = 0 and we get 𝑓(𝑥) = 𝑝(𝑥)𝑔(𝑥).  
Using this theorem, can you obtain the minimal polynomial of T in E22 

more easily? Now we only need to check if  𝑇 − 𝐼, 𝑇 +  𝐼 or  𝑇 –  3𝐼 are 

0.  

 

Remark: If 𝑑𝑖𝑚 𝑉 = 𝑛 and 𝑇 ∈ 𝐴(𝑉), we have seen that the degree of 

the minimal polynomial 𝒑 of 𝑇 ≤ 𝑛2.    
We will study a systematic method of finding the minimal polynomial of 

𝑇, and some applications of this polynomial.  But now we will only 

illustrate one application of the concept of the minimal polynomial by 

proving the following theorem.  

 

Theorem 4.10:  Let 𝑇 ∈ 𝐴(𝑉), then 𝑇 is invertible if and only if the 

constant term in the minimal polynomial of T is not zero.  

 

Proof:  Let 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚𝑥

𝑚 be the minimal 

polynomial of 𝑇. Then,  𝑎0𝐼 + 𝑎1𝑇 +⋯+ 𝑎𝑚−1𝑇
𝑚−1 + 𝑎𝑚𝑇

𝑚 = 0 

          𝑇(𝑎1𝐼 + 𝑎2𝑇 +⋯+ 𝑎𝑚−1𝑇
𝑚−2 + 𝑇𝑚−1) = −𝑎0𝐼         

……………………. (1) 

Firstly, we will show that if 𝑇−1 exists, then 𝑎0 ≠ 0.   

On the contrary, suppose 𝑎0 = 0. 

Then (1) implies that  𝑇(𝑎1𝐼 + 𝑎2𝑇 +⋯+ 𝑎𝑚−1𝑇
𝑚−2 + 𝑇𝑚−1) = 0.   

Multiplying both sides by 𝑇−1 on the left, we get 

                   𝑎1𝐼 + 𝑎2𝑇 +⋯+ 𝑎𝑚−1𝑇
𝑚−2 + 𝑇𝑚−1 = 0  

This equation gives us a monic polynomial 𝑞(𝑥) = 𝑎1 +⋯+ 𝑥
𝑚−1 such 

that 𝑞(𝑇) = 0 and 𝑑𝑒𝑔 𝑞 < 𝑑𝑒𝑔 𝑝.  

This contradicts the fact that 𝑝 is the minimal polynomial of 𝑇.   

Therefore, if  𝑇−1 exists the constant term in the minimal polynomial of 

T cannot be zero.  

 

Conversely; suppose the constant term in the minimal polynomial of T is 

not zero, that is, 𝑎 ≠ 0.  Then dividing equation (1) on both sides by 

(−𝑎0), we get   

𝑇((−𝑎1/𝑎0)𝐼 + ⋯+ (−𝐼/𝑎0) 𝑇
𝑚−1) = 𝐼 

 Let  𝑆 = (−𝑎1/𝑎0)𝐼 + ⋯+ (−𝐼/𝑎0) 𝑇
𝑚−1,  

 Then we have 𝑆𝑇 = 𝐼 and 𝑇𝑆 = 𝐼.   
This shows, by Theorem 4.5, that 𝑇−1 exists and 𝑇−1 = 𝑆.  

E23) Let 𝑃𝑛 be the space of all polynomials of degree ≤ 𝑛. Consider the 

linear operator 

𝐷: 𝑃2 → 𝑃2 given by 𝐷(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2) = 𝑎1 + 2𝑎2𝑥.  

(Note that D is just the differentiation operator.)  

Show that 𝐷4 = 0.  What is the minimal polynomial of D?  Is D 

invertible? 
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E24) Consider the reflection transformation given in Unit 3, Example 4, 

find its minimal polynomial.  Is T invertible?  If so, find its inverse. 

E25) Let the minimal polynomial of 𝑆 ∈ 𝐴(𝑉) be 𝑥𝑛, 𝑛 ≥ 𝐼.  Show that 

there exists 𝑣0 ∈ 𝑉 such that the set {𝑣0, 𝑆(𝑣0), … . , 𝑆
𝑛−1(𝑣0)} is linearly 

independent. 

We shall now end the unit by summarizing what we have covered in it.  

 

SELF-ASSESSMENT EXERCISE(S) SOLUTIONS 

 

Solutions/Answers  

E1) We have to check that VS1 – VS10 are satisfied by 𝐿(𝑈, 𝑉).   
        We have already shown that VS1 and VS6 are true. 

VS2: For any 𝐿,𝑀,𝑁 ∈ 𝐿(𝑈, 𝑉), we have ∀  𝑢 ∈ 𝑈,  

[(𝐿 + 𝑀) + 𝑁](𝑢) = (𝐿 + 𝑀)(𝑢) + 𝑁(𝑢) 
= [𝐿(𝑢) + 𝑀(𝑢)] + 𝑁(𝑢) 

= 𝐿(𝑢) + [𝑀(𝑢) + 𝑁(𝑢)], since addition is associative in 𝑉.  

= [𝐿 + (𝑀 + 𝑁)](𝑢) 
∴ (𝐿 + 𝑀) + 𝑁 = 𝐿 + (𝑀 + 𝑁) . 
VS3:0:𝑈 → 𝑉: 0(𝑢) = 0 ∀ 𝑢 ∈ 𝑈 is the zero element of 𝐿(𝑈, 𝑉).     
VS4:  For any 𝑆 ∈ 𝐿(𝑈, 𝑉), (−1)𝑆 = −𝑆, is the additive inverse of 𝑆.  

 

VS5: Since addition is commutative in𝑉, 𝑆 + 𝑇 = 𝑇 +
𝑆   ∀  𝑆, 𝑇 𝑖𝑛 𝐿(𝑈, 𝑉). 
 

VS7:∀ 𝛼 ∈ 𝐹 and 𝑆, 𝑇 ∈ 𝐿(𝑈, 𝑉),  
 𝛼(𝑆 + 𝑇) = (𝛼𝑆 + 𝛼𝑇)(𝑢)  ∀  𝑢 ∈ 𝑈, 

∴ 𝛼(𝑆 + 𝑇) = 𝛼𝑆 + 𝛼𝑇.  

 

VS8: ∀ 𝛼, 𝛽 ∈ 𝐹 and 𝑆, 𝑇 ∈ 𝐿(𝑈, 𝑉), then 

          (𝛼 + 𝛽)𝑆 = 𝛼𝑆 + 𝛽𝑆.  

 

VS9: ∀ 𝛼, 𝛽 ∈ 𝐹 and 𝑆 ∈ 𝐿(𝑈, 𝑉), (𝛼𝛽)𝑆 = 𝛼(𝛽𝑆).  
 

VS10: ∀  𝑆 ∈ 𝐿(𝑈, 𝑉), 1 ∙ 𝑆 = 𝑆.  

 

E2) 𝐸2𝑚(𝑒𝑚) = 𝑓2 and 𝐸2𝑚(𝑒𝑖) = 0 for 𝑖 ≠ 𝑚.  

       𝐸32(𝑒𝑖) = 𝑓3 and 𝐸23(𝑒𝑖) = 0 for 𝑖 = 2. 

          𝐸𝑚𝑛(𝑒𝑖) = {
𝑓𝑚, 𝑖𝑓 𝑖 = 𝑛
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

E3) Both spaces have dimension 2 over 𝑅.  

      A basis for 𝐿(𝑅2, 𝑅) is {𝐸11, 𝐸12}, where, 

i.𝐸11 = (1,0) = 1 

ii.𝐸11 = (0,1) = 0 

iii.𝐸12 = (1,0) = 0 

iv.𝐸12 = (0,1) = 1 
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       A basis for 𝐿(𝑅, 𝑅2) is {𝐸11, 𝐸21}, where, 

i.𝐸11(1) = (1,0) 
ii.𝐸11(0) = (0,1) 

iii.𝐸21(0) = (1,0) 
iv.𝐸12(1) = (0,1) 

 

E4) Let 𝑓: 𝑅3 → 𝑅 be any linear functional.  Let 𝑓(1,0,0) = 𝑎1, 
𝑓(0,1,0) = 𝑎2, 𝑓(0,0,1) = 𝑎3.  Then, for any 𝑥 ⇋ (𝑥1,  𝑥2,  𝑥3), we have 

𝑥 = 𝑥1(1,0,0) +  𝑥2(0,1,0) +  𝑥3(0,0,1), 
∴ 𝑓(𝑥) = 𝑥1𝑓(1,0,0) +  𝑥2𝑓(0,1,0) +  𝑥3𝑓(0,0,1)  

= 𝑎1𝑥1 + 𝑎2 𝑥2 + 𝑎3 𝑥3 
 

E5) Let the dual basis be {𝑓1,  𝑓2,  𝑓3}.  
 Then, for any 𝑣 ∈ 𝑃2, 𝑣 = 𝑓1(𝑣) ∙ 1 + 𝑓2(𝑣) ∙ 𝑥 + 𝑓3(𝑣) ∙ 𝑥2 

:. If 𝑣 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2, then 𝑓1(𝑣) = 𝑎0, 𝑓2(𝑣) = 𝑎1, 𝑓3(𝑣) = 𝑎2.   

That is, 𝑓1(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2) = 𝑎0, 𝑓2(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2) = 𝑎1, 𝑓3(𝑎0 +
𝑎1𝑥 + 𝑎2𝑥

2) = 𝑎2, for any (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2) ∈ 𝑃2.  

E6) Let {𝑓1, ⋯ ,  𝑓𝑛} be a basis of V*.  Let its dual basis be {𝜑1, ⋯ ,  𝜑𝑛}, 
 𝜑𝑖 ∈ 𝑉 ∗∗. Let 𝑒𝑖 ∈ 𝑉 such that 𝜃(𝑒𝑖) = 𝜑𝑖 (ref. Theorem 3) for 𝑖 =
1,… . , 𝑛.   

Then {𝑒1, … . , 𝑒𝑛} is a basis of V, since 𝜃−1 is an isomorphism and maps 

a basis to {𝑒1, … . , 𝑒𝑛}. 
Now, 𝑓𝑖(𝑒𝑗) = 𝜃(𝑒𝑗)(𝑓𝑖) = 𝜑𝑗(𝑓𝑖) = 𝛿𝑗𝑖, by definition of a dual basis.  

∴ {𝑓1, ⋯ ,  𝑓𝑛}is the dual of {𝑒1, … . , 𝑒𝑛}. 
E7) For any 𝑆 ∈ 𝐴(𝑉) and for any 𝑣 ∈ 𝑉,    

𝑆 ∘ 𝐼(𝑣) = 𝑆(𝑣) and 𝐼 ∘ 𝑆(𝑣) = 𝐼(𝑆(𝑣)) = 𝑆(𝑣).   
∴ 𝑆 ∘ 𝐼 = 𝑆 = 𝐼 ∘ 𝑆.  

E8) For any 𝑆 ∈ 𝐴(𝑉) and for any 𝑣 ∈ 𝑉,    

𝑆 ∘ 0(𝑣) = 𝑆(0) = 0, and  0 ∘ 𝑆(𝑣) = 0(𝑆(𝑣)) = 0.   

∴ 𝑆 ∘ 0 = 0 ∘ 𝑆 = 0.  

 

E9)𝑆 ∈ 𝐴(𝑅), 𝑇 ∈ 𝐴(𝑅2). 
𝑆 ∘ 𝑇(𝑥1, 𝑥2) = 𝑆(−𝑥2, 𝑥1) = (𝑥1, 𝑥2) 

𝑇 ∘ 𝑆(𝑥1, 𝑥2) = 𝑇(𝑥1, −𝑥2) = (𝑥1, 𝑥2)  ∀ (𝑥1, 𝑥2) ∈ 𝑅
2.  

∴ 𝑆 ∘ 𝑇 = 𝑇 ∘ 𝑆 = 𝐼, and hence, both S and T are invertible.  

E10)𝑇 ∈ 𝐿(𝑅2, 𝑅3), 𝑆 ∈ 𝐿(𝑅3, 𝑅2). 
∴ 𝑆 ∘ 𝑇 ∈ 𝐴(𝑅), 𝑇 ∘ 𝑆 ∈ 𝐴(𝑅3).   
∴ 𝑆 ∘ 𝑇 and 𝑇 ∘ 𝑆 can never be equal.  

 Now 𝑆 ∘ 𝑇(𝑥1, 𝑥2) = 𝑆(0, 𝑥1, 𝑥2) = (𝑥1, 𝑥1 + 𝑥2) ∀ (𝑥1, 𝑥2) ∈ 𝑅
2 

Also, 𝑇 ∘ 𝑆(𝑥1, 𝑥2, 𝑥3) = 𝑇(𝑥1 + 𝑥2, 𝑥2 + 𝑥3) 
= (0, 𝑥1 + 𝑥2, 𝑥2 + 𝑥3) (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅

3.   

 

E11) Since 𝑇 ∈ 𝐴(𝑅2) and 𝑆 ∈ 𝐴(𝑅3), 𝑆 ∘ 𝑇 and 𝑇 ∘ 𝑆 are not defined.  
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E12) Both (𝑅 ∘ 𝑆) ∘ 𝑇 and 𝑅 ∘ (𝑆 ∘ 𝑇) are in 𝐿(𝑈, 𝑍).   
          For any 𝑢 ∈ 𝑈, [(𝑅 ∘ 𝑆) ∘ 𝑇](𝑢) = (𝑅 ∘ 𝑆)[𝑇(𝑢)] 
                     = 𝑅[𝑆(𝑇(𝑢))] = 𝑅[𝑆 ∘ 𝑇)(𝑢)] = [𝑅 ∘ (𝑆 ∘ 𝑇)](𝑢).  
      ∴ (𝑅 ∘ 𝑆) ∘ 𝑇 = 𝑅 ∘ (𝑆 ∘ 𝑇).  
E13) By Unit 3, Theorem 3.6, 𝑟𝑎𝑛𝑘 (𝑆 ∘ 𝑇) ≤ 𝑟𝑎𝑛𝑘 (𝑇).  
       Also, 𝑟𝑎𝑛𝑘 (𝑇) = 𝑟𝑎𝑛𝑘(𝐼 ∘ 𝑇) = 𝑟𝑎𝑛𝑘((𝑆−1 ∘ 𝑆) ∘ 𝑇) 
                               = 𝑟𝑎𝑛𝑘 (𝑆−1 ∘ (𝑆 ∘ 𝑇)) ≤ 𝑟𝑎𝑛𝑘(𝑆 ∘ 𝑇) (by Theorem 

3.6).    

       Thus, 𝑟𝑎𝑛𝑘 (𝑆 ∘ 𝑇) ≤ 𝑟𝑎𝑛𝑘 (𝑇) ≤ 𝑟𝑎𝑛𝑘(𝑆 ∘ 𝑇).    
        ∴ 𝑟𝑎𝑛𝑘 (𝑆 ∘ 𝑇) = 𝑟𝑎𝑛𝑘 (𝑇).    
      Similarly, you can show that rank (𝑇 ∘ 𝑆) = 𝑟𝑎𝑛𝑘 (𝑇).  
 

E14) (𝑆 + 𝑇)(𝑥, 𝑦) = (𝑥,−𝑦) + (𝑥 + 𝑦, 𝑦– 𝑥) = (2𝑥 + 𝑦– 𝑥) 
              𝑆 ∘ 𝑇(𝑥, 𝑦) = 𝑆(𝑥 + 𝑦, 𝑦 − 𝑥) = (𝑥 + 𝑦, 𝑥– 𝑦)  
              𝑇 ∘ 𝑆(𝑥, 𝑦) = 𝑇(𝑥,−𝑦) = (𝑥– 𝑦,−(𝑥 + 𝑦 ))  
   [𝑆 ∘ (𝑆 − 𝑇)](𝑥, 𝑦) = 𝑆(−𝑦, 𝑥– 2𝑦) = (−𝑦, 2𝑦– 𝑥)  
      [(𝑆– 𝑇) ∘ 𝑆](𝑥, 𝑦) = (𝑆– 𝑇)(𝑥, −𝑦) = (𝑥, 𝑦)– (𝑥– 𝑦,−(𝑥 + 𝑦))  
                                   = (𝑦, 2𝑦 + 𝑥) ∀ (𝑥, 𝑦) ∈ 𝑅2.  
 

E15) a) We first show that if 𝐴, 𝐵 ∈ 𝑀 and 𝛼, 𝛽 ∈ 𝐹, then (𝛼𝐴 + 𝛽𝐵) ∈
𝑀. 

       Now, 𝑆(𝛼𝐴 + 𝛽𝐵) = 𝑆 ∘ 𝛼𝐴 + 𝑆 ∘ 𝛽𝐵, by Theorem 4.6.    

                                = 𝛼(𝑆 ∘ 𝐴) + 𝛽(𝑆 ∘ 𝐵), again, by Theorem 6   

                                = 𝛼0 + 𝛽0, since 𝐴, 𝐵 ∈ 𝑀 

                                = 0    
      ∴ 𝛼𝐴 + 𝛽𝐵 ∈ 𝑀 and 𝑀 is a subspace of 𝐴(𝑉). 
       Similarly, you can show that 𝑁 is a subspace of 𝐴(𝑉).  
 

       

         b)  For any 𝑇 ∈ 𝑀,   𝑆𝑇(𝑣) = 0 ∀  𝑣 ∈ 𝑉.   

             ∴ 𝑇(𝑣) ∈ 𝐾𝑒𝑟 𝑆  ∀  𝑣 ∈ 𝑉.   

             ∴ 𝑅(𝑇), the range of 𝑇, is a subspace of 𝐾𝑒𝑟 𝑆.  

             ∴  𝑇𝐿(𝑉, 𝐾𝑒𝑟 𝑆)   
            ∴ 𝑀 ⊆ 𝐿(𝑉, 𝐾𝑒𝑟 𝑆)  
         Conversely, for any 𝑇 ∈ 𝐿(𝑉, 𝐾𝑒𝑟 𝑆), 𝑇 ∈ 𝐴(𝑉) such that 

𝑆(𝑇(𝑣)) = 0 ∀ 𝑣 ∈ 𝑉.  

               𝑆𝑇 =  0   

           ∴ 𝑇 ∈ 𝑀, ∴ 𝐿(𝑉, 𝐾𝑒𝑟 𝑆) ⊆ 𝑀  

           ∴ We have proved that 𝑀 = 𝐿(𝑉, 𝐾𝑒𝑟 𝑆). 
           ∴ 𝑑𝑖𝑚 𝑀 = (𝑑𝑖𝑚 𝑉)(𝑛𝑢𝑙𝑙𝑖𝑡𝑦 𝑆),   by Theorem 4.1  

                          = 𝑛(𝑛 –  𝑟) by the Rank Nullity Theorem.  

 

E16)(𝑝 + 𝑞)(𝑇) = 𝑝(𝑇) + 𝑞(𝑇) = 0 + 0 = 0. 
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E17) (2𝐼 + 3𝑆 + 𝑆3)(𝑆 + 2𝑆4) = (2𝐼 +  3𝑆 + 𝑆3)𝑆 + (2𝐼 + 3𝑆 +
𝑆3)(2𝑆4)   

= 2𝑆 + 3𝑆2 + 𝑆4 + 4𝑆𝑆4 + 6𝑆5 + 2𝑆7 
= 2𝑆 + 3𝑆2 + 5𝑆4 + 6𝑆5 + 2𝑆7 

Also, (𝑆 + 2𝑆4)(2𝐼 + 3𝑆 + 𝑆3) = 2𝑆 + 3𝑆2 + 5𝑆4 + 6𝑆5 + 2𝑆7 

∴  (𝑆 + 2𝑆4)(2𝐼 + 3𝑆 + 𝑆3) = (2𝐼 + 3𝑆 + 𝑆3)(𝑆 + 2𝑆4).  
 

E18) Consider 𝑔(𝑥) = 𝑥– 1 ∈ 𝑅[𝑥]   
Then,  𝑔(𝐼) = 𝐼 − 1𝐼 =  0.   

Also, if ℎ(𝑥) = 𝑥, then ℎ(0) = 0.   

Notice that the degrees of 𝑔 and ℎ are both 𝐼 ≤ 𝑑𝑖𝑚 𝑅3.  

 

E19) Let 𝑝 = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛𝑥
𝑛, 𝑞 = 𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑚𝑥

𝑚.  

a) Then 𝑎𝑝 +  𝑏𝑞 = 𝑎(𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛𝑥
𝑛) + 𝑏(𝑏0 + 𝑏1𝑥 + ⋯+

𝑏𝑚𝑥
𝑚) 
= 𝑎𝑎0 + 𝑎𝑎1𝑥 + ⋯+ 𝑎𝑎𝑛𝑥

𝑛 + 𝑏𝑏0 + 𝑏𝑏1𝑥 + ⋯+ 𝑏𝑏𝑚𝑥
𝑚 

∴ 𝜙(𝑎𝑝 + 𝑏𝑞)
= 𝑎𝑎0𝐼 + 𝑎𝑎1𝑇 +⋯+ 𝑎𝑎𝑛𝑇

𝑛 + 𝑏𝑏0𝐼 + 𝑏𝑏1𝑇 +⋯
+ 𝑏𝑏𝑚𝑇

𝑚 

= 𝑎𝑝(𝑇) + 𝑏𝑞(𝑇) = 𝑎𝜙(𝑝) + 𝑏𝜙(𝑞)  
 

b)  𝑝𝑞 = (𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛𝑥
𝑛)(𝑏0 + 𝑏1𝑥 + ⋯+ 𝑏𝑚𝑥

𝑚) 
      = 𝑎0𝑏0 + (𝑎1𝑏0 + 𝑎0𝑏1)𝑥 + ⋯+ 𝑎𝑛𝑏𝑚𝑥

𝑛+𝑚  

∴ 𝜙(𝑝𝑞) = 𝑎0𝑏0𝐼 + (𝑎1𝑏0 + 𝑎0𝑏1)𝑇 + ⋯+ 𝑎𝑛𝑏𝑚𝑇
𝑛+𝑚  

               = (𝑎0𝐼 + 𝑎1𝑇 +⋯+ 𝑎𝑛𝑇
𝑛)(𝑏0𝐼 + 𝑏1𝑇 +⋯+ 𝑏𝑚𝑇

𝑚)  
               = 𝜙(𝑝)𝜙(𝑞). 
 

E20) Let 𝑇 ∈ 𝐴(𝑅3) and𝑝(𝑥) = 𝑥3,then p is a monic polynomial.   

Also, 𝑝(𝑇)(𝑥1, 𝑥2, 𝑥3) = 𝑇
3(𝑥1, 𝑥2, 𝑥3) 

                                     = 𝑇2(0, 𝑥1, 𝑥2) = 𝑇(0,0, 𝑥1)  
                                     = (0,0, 0)   ∀   (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅

3  

                        ∴ 𝑝(𝑇) = 0  

We must also show that no monic polynomial q of smaller degree exists 

such that 𝑞(𝑇) = 0.  

Suppose 𝑞 = 𝑎 + 𝑏𝑥 + 𝑥2 and 𝑞(𝑇) = 0 

Then (𝑎𝐼 + 𝑏𝑇 + 𝑇2)(𝑥1, 𝑥2, 𝑥3) = (0, 0, 0)  
            ⟺ 𝑎(𝑥1, 𝑥2, 𝑥3) + 𝑏(0, 𝑥1, 𝑥2) + (0,0, 𝑥1) = (0, 0, 0)   
            ⟺ 𝑎𝑥1 = 0, 𝑎𝑥2 + 𝑏𝑥1 = 0, 𝑎𝑥3 + 𝑏𝑥2 + 𝑥1 =
0 ∀ (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅

3  

            ⟺ 𝑎 = 0, 𝑏 = 0, 𝑥1 = 0  

But 𝑥1 can be non-zero 

Therefore, 𝑞 does not exist 

Hence,𝑝 is a minimal polynomial of 𝑇.  
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E21) Consider 𝑝(𝑥) = 𝑥𝑛, then 𝑝(𝑇) = 0 and no non-zero polynomial q 

of lesser degree exists such that 𝑞(𝑇) = 0.  This can be checked in the 

solution of E20.   

E22)(𝑇2– 𝐼)(𝑇– 3𝐼)(𝑥1, 𝑥2, 𝑥3) = (𝑇
2 –  𝐼)((3𝑥1, 𝑥1 − 𝑥2, 2𝑥1 + 𝑥2 +

𝑥3) − (3𝑥1, 3𝑥2, 3𝑥3)) 
                           = (𝑇2 –  𝐼)(0, 𝑥1 − 4𝑥2, 2𝑥1 + 𝑥2 − 2𝑥3)  
                           = 𝑇(0, 𝑥1 − 4𝑥2, 3𝑥1 − 3𝑥2 − 2𝑥3) − (0, 𝑥1 −
4𝑥2, 2𝑥1 + 𝑥2 − 2𝑥3)  
                           = (0,0, 0)   ∀   (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅

3  

Therefore, (𝑇2– 𝐼)(𝑇– 3𝐼) = 0 

Suppose ∃  𝑞 = 𝑎 + 𝑏𝑥 + 𝑥2such that 𝑞(𝑇) = 0 

Then 𝑞(𝑇)𝑎(𝑥1, 𝑥2, 𝑥3) = (0,0, 0)  ∀  (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅
3 

This means that 

                       𝑎 + 3𝑏 + 9 = 0, 

                      (𝑏 + 2)𝑥1 + (𝑎 + 𝑏 + 1)𝑥2 = 0,  
                      (2𝑏 + 9)𝑥1 + 𝑏𝑥2 + (𝑎 + 𝑏 + 1)𝑥3 = 0.  

 Eliminating a and b, we find that these equations can be solved provided 

            5𝑥1 − 2𝑥2 − 4𝑥3 = 0 

But they should be true for any (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅
3 

Therefore, the equations can’t be solved, and q does not exist. 

Hence, the minimal polynomial of T is (𝑥2 –  𝐼)(𝑥 –  3).  
E23) 𝐷4(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2) = 𝐷3(𝑎1 + 2𝑎2𝑥) 
                                             = 𝐷2(2𝑎2) = 𝐷(0)  
                                     = 0  ∀ (𝑥1, 𝑥2, 𝑥3) ∈ 𝑝

2  

                            ∴ 𝐷4 = 0.  

The minimal polynomial of D can be D,  𝐷2, 𝐷3 or 𝐷4.  
Check that 𝐷3 = 0, but 𝐷2 ≠ 0.  :.  

The minimal polynomial of D is 𝑝(𝑥) = 𝑥3.   
Since p has no non-zero constant term, then D is not an isomorphism.   

E24) 𝑇: 𝑅2 → 𝑅2|𝑇(𝑥, 𝑦) = (𝑥,−𝑦).  Check that 𝑇2 − 𝐼 = 0. 

       Therefore, the minimal polynomial p must divide 𝑥2– 𝐼.   
       ⟹ 𝑃(𝑥) can be 𝑥– 1, 𝑥 + 1 or 𝑥2– 1.   

  Since 𝑇– 𝐼 ≠ 0 and 𝑇 + 𝐼 ≠ 0, we see that 𝑝(𝑥) = 𝑥2– 1.    

  By Theorem 4.10, T is invertible.   

  Now 𝑇2 − 𝐼 = 0 

  Therefore,𝑇(−𝑇) = 1, hence,𝑇 − 1 = −𝑇.  

E25) Since the minimal polynomial of S is 𝑥𝑛, 𝑆𝑛 = 0 and 𝑆𝑛−1 ≠ 0, then 

∃ 𝑣0 ∈ 𝑉 such that  𝑆𝑛−1(𝑣0) ≠ 0.   

Let 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 ∈ 𝐹, such that   𝑎1𝑣0 + 𝑎2𝑆(𝑣0) + ⋯+ 𝑎𝑛𝑆
𝑛−1(0) = 0  

……… (1) 

Then, applying 𝑆𝑛−1 to both sides of this equation, we have 

         𝑎1𝑆
𝑛−1(𝑣0) + ⋯+ 𝑎𝑛𝑆

2𝑛−1(𝑣0) = 0,                           

…………………….. (2) 

      ⇒ 𝑎1𝑆
𝑛−1(𝑣0) = 0, since 𝑆𝑛 = 0, 𝑆𝑛+1 = ⋯ = 𝑆2𝑛−1 

      ⟹ 𝑎1 = 0  
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 Now (1) reduces to 𝑎2𝑆(𝑣0) + ⋯+ 𝑎𝑛𝑆
𝑛−1(𝑣0) = 0. 

Applying 𝑆n−2 to both sides we get 𝑎2 = 0.  

 In this way we get 𝑎1 = 0 ∀  𝑖 = 1,… , 𝑛. 

Therefore, the set {𝑣0, 𝑆(𝑣0),⋯ , 𝑆
𝑛−1(𝑣0)} is linearly independent.  

 

We conclude that the composition of two linear transformations is a linear 

operator.   

 

Note that we use the terms ‘linear transformation’ interchangeably.  

In a linear operator 𝑇: 𝑉 → 𝑉, T satisfies a polynomial equation 𝑔(𝑥) =
0, that is, if we substitute 𝑇 for 𝑥 in 𝑔(𝑥), we get the zero transformation.  

 

 4.5  SUMMARY  
 

In this unit we covered the following points.  

 

i. 𝐿(𝑈, 𝑉) the vector space of all linear transformations from 𝑈 to 𝑉 

is of dimension (𝑑𝑖𝑚 𝑈)(𝑑𝑖𝑚 𝑉).  
ii. The dual space of a vector space V is 𝐿(𝑈, 𝐹) = 𝑉 ∗, and is 

isomorphic to 𝑉.  

iii. If {𝑒1, … . . ,  𝑒𝑛} is a basis of 𝑉 and {𝑓1, … . ,  𝑓𝑛} is its dual basis, 

iv. then 𝑓 = ∑ 𝑓(𝑒𝑖)
𝑛
𝑖=1 𝑓𝑖∀𝑓 ∈ 𝑉 ∗  and 𝑣 = ∑ 𝑓𝑖(𝑣)

𝑛
𝑖=1 𝑒𝑖   ∀  𝑣 ∈ 𝑉. 

v. Every vector space is isomorphic to its second dual.  

vi. Suppose 𝑆 ∈ 𝐿(𝑉,𝑊) and 𝑇 ∈ 𝐿(𝑈, 𝑉).  Then their composition 

𝑆 ∘ 𝑇 ∈ 𝐿(𝑈,𝑊).  
vii. 𝑆 ∈ 𝐴(𝑉) = 𝐿(𝑉, 𝑉) is an isomorphism if and only if there exists 

𝑇 ∈ 𝐴(𝑉) such that 𝑆 ∘ 𝑇 = 𝐼 = 𝑇 ∘ 𝑆.  

viii. For 𝑇 ∈ 𝐴(𝑉) there exists a non-zero polynomial 𝑔 ∈ 𝐹[𝑥], of 

degree at most 𝑛2, such that 𝑔(𝑇) = 0, where 𝑑𝑖𝑚 𝑉 = 𝑛.  

ix. The minimal polynomial of 𝑇 and 𝑓 is a polynomial 𝑝, of smallest 

degree such that 𝑝(𝑇) = 0.  

x. If 𝑝 is the minimal polynomial of 𝑇 and 𝑓 is a polynomial such that 

𝑓(𝑇) = 0, then there exists a polynomial 𝑔(𝑥) such that 𝑓(𝑥)𝑔(𝑥).  
xi. Let 𝑇 ∈ 𝐴(𝑉).Then 𝑇−1exists if and only if the constant term in 

the minimal polynomial of 𝑇 is not zero.  

 

 4.6  References/Further Readings 

 

Robert A. Beezer (2014). A First Course in Linear Algebra. Congruent 

Press Gig Harbor, Washington, USA 3(40). 
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MODULE 2  

 

You have studied Vector Spaces in Module One. A simple means of 

representing them, namely, by matrices (plural form of ‘matrix’) shall be 

studied in this module. We shall show that, given a linear transformation, 

a matrix associated to it can be obtained, and vice versa. Also, certain 

properties of a linear transformation can be studied more easily if the 

associated matrix is studied instead. For example, you shall see that it is 

often easier to obtain the characteristic roots of a matrix than of a linear 

transformation.  

 

The units under this module include: 

 

Unit 1  Matrices I 

Unit 2  Matrices II 

Unit 3  Matrices III 

 

 

UNIT 1  MATRICES I  

 

Unit Structure 

 

1.1  Introduction  

1.2  Learning Outcomes  

1.3  Matrices  

    1.3.1 Matrix Description 

    1.3.2  Algebra of Matrices  

    1.3.3  Matrix of a Linear Transformation  

    1.3.4  Matrix Scalar Multiplication 

    1.3.5  Vector Space Properties of Matrices 

    1.3.6  Dimension of 𝑀𝑚𝑛(𝐹) over F 

    1.3.7  New Matrices from Old  

    1.3.8  Theorems involving some types of Matrices  

    1.3.9  Matrix Multiplication  

1.3.9.1 Matrix of the Composition of Linear    

Transformations  

        1.3.9.2 Properties of a Matrix Product  

1.4  Summary 

1.5  References/Further Readings  

 

1.1  Introduction 

 

Matrices were introduced by the English Mathematician, Arthur Cayley, 

in 1858. He came upon this notion in connection with linear substitutions. 
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Matrix theory now occupies an important position in pure as well as 

applied mathematics. In physics, one comes across such terms as matrix 

mechanics, scattering matrix, spin matrix, annihilation and creation 

matrices. In economics we have the input-output matrix and the payoff 

matrix; in statistics we have the transition matrix; and in engineering, the 

stress matrix, strain matrix, and many other matrices. 

 

Matrices are intimately connected with linear transformations. In this unit 

we will bring out this link. We will first define matrices and derive 

algebraic operations on matrices from the corresponding operations on 

linear transformations. We will also discuss some special types of 

matrices. One type, a triangular matrix, will be used often in the 

subsequent units.  

 

To realize the deep connection between matrices and linear 

transformations, you should go back to the exact sport in Units 1 and 2 to 

which frequent references are made.  

 

This unit may take you a little longer to study, than previous ones, but 

don’t let that worry you. The material in it is actually very simple.  

 

  1.2  Learning Outcomes 
 

By the end of this unit, you will be able to:  

 

 Define and give examples of various types of matrices;  

 Obtain a matrix associated to a given linear transformation  

 Define a linear transformation, if you know its associated matrix;  

 Evaluate the sum, difference, product and scalar multiples of 

matrices;  

 Obtain the transpose and conjugate of a matrix;  

 

  1.3  Matrices 

     

1.3.1  Matrix Description 

 

Consider the following system of three simultaneous equations in four 

unknowns: 

                                 

𝑎 − 3𝑏 + 2𝑐 − 𝑑 = 0
1

2
𝑎 + 𝑏 − 2𝑑 = 0

3𝑏 − 4𝑐 = 0

  



MTH 212           LINEAR ALGEBRA 

77 

 

The coefficients of the unknowns, 𝑥, 𝑦, 𝑧 and 𝑡 can be arranged in rows 

and columns to form a rectangular array as follows: 

[

1 −3 2 −1
1

2
1 0 −1

0 3 −4 0

]

(Coefficients of the first equation )

 (Coefficients of the second equation )

(Coefficients of the third equation )
 

 

Such a rectangular array (or arrangement) of numbers is called a matrix. 

A matrix is usually enclosed within square brackets [ ] or round brackets 

( ). 

[

1 −3 2 −1
1

2
1 0 −1

0 3 −4 0

] 

 

The numbers appearing in the various positions of a matrix are called the 

entries (or elements) of the matrix. Note that the same number may 

appear at two or more different positions of a matrix. For example, 1 

appears in 3 different positions in the matrix given above.  

 

In the matrix above, the three horizontal rows of entries have 4 elements 

each. These are called the rows of this matrix. The four vertical rows of 

entries in the matrix, having 3 elements each, are called its columns. 

Thus, this matrix has three rows and four columns described as a matrix 

of size 3 x 4 (“3 by 4” or “3 cross 4”), or simply a “3 x 4” matrix. The 

rows are counted from top to bottom and the columns are counted from 

left to right. Thus, the first row is (1, -3, 2, -1), the second row is (½, 1, 0, 

1), and the third row is (0, 3, -4, 0).  

Similarly, the first column is [

1
1

2

0

], The second column is [

1
1

2

0

], and the third 

column is [

1
1

2

0

] 

Note that each row is a (1 × 4) matrix and each column is a (3 × 1) 
matrix, 

We shall now define a matrix of any size. 

Let us see what we mean by a matrix of size (𝑚 × 𝑛), where 𝑚 and 𝑛 are 

any two natural numbers. 

 

Definition 1.3.1: Let F be a field. A rectangular array of 𝑚𝑛 elements of 

F arranged in 𝑚 rows and 𝑛 columns is called a matrix of size (𝑚 × 𝑛); 
or an (𝑚 × 𝑛) matrix, over F.  
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[
 
 
 
 
𝒂𝟏𝟏 𝒂𝟏𝟐 … … 𝒂𝟏𝒏
𝒂𝟐𝟏 𝒂𝟐𝟐 … … 𝒂𝟐𝒏
⋮ ⋮ … … ⋮
⋮ ⋮ … … ⋮
𝒂𝒎𝟏 𝒂𝒎𝟐 … … 𝒂𝒎𝒏]

 
 
 
 

 

 

You must remember that the 𝑚𝑛 entries need not be distinct.  

The element at the intersection of the 𝑖𝑡ℎ row and the 𝑗𝑡ℎcolumn is called 

the (𝑖, 𝑗)𝑡ℎelements. 

For example, in the (𝑚 × 𝑛) matrix above, the (2, 𝑛)𝑡ℎelements is 𝑎2𝑛 

which is the intersection of the 2𝑛𝑑row and the 𝑛𝑡ℎ column . 

A brief notation for this matrix is [𝑎𝑖𝑗]𝑚𝑛, or simply [𝑎𝑖𝑗]. 

Matrices are also denoted by capital letters A, B, C, etc.  

The set of all𝑚 × 𝑛matrices over 𝐹 is denoted by𝑀𝑚×𝑛(𝐹), thus, 

[1, √2] ∈ 𝑀1×2(𝐹). 
If 𝑚 =  𝑛, the matrix is called a square matrix.  

In an (𝑚 × 𝑛) matrix, each row is a (1 × 𝑛) matrix and is also called a 

row vector.  

Similarly, each column is an (𝑚 × 1) matrix and is also called a column 

vector.  

Let us look at a situation in which a matrix can arise.  

 

Example 1:  

In the B.Sc.(Hons.) Mathematics Programme of the National Open 

University of Nigeria (N.O.U.N.), there are 25 male and 11 female 

students in Year I; 18 male and 10 female students in Year II; 15 male 

and 8 female students in Year III and 12 male and 6 female students in 

Year IV. How does this information give rise to a matrix?  

 

Solution:  

One of the ways in which we can arrange this information in the form of 

a matrix is as follows:  

𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉

[
25 18 15 12
11 10 8 6

]

(𝐵. 𝑆𝑐. )

𝑀𝑎𝑙𝑒
𝐹𝑒𝑚𝑎𝑙𝑒

             This is a (2 × 4) matrix.  

Another way could be the (4 × 2) matrix 

𝑀 𝐹

[

25 11
18 10
15 8
12 6

]

𝐵. 𝑆𝑐. 𝐼
𝐵. 𝑆𝑐. 𝐼𝐼
𝐵. 𝑆𝑐. 𝐼𝐼𝐼
𝐵. 𝑆𝑐. 𝐼𝑉

 

Either of these matrix representations immediately shows us how many 

male/female students are in any of the classes.  

To get used to matrices and their elements, you can try the following 

exercises. 
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Suppose 𝐴 = [
1 3 5
8 4 1
−1 0 2

], 𝐵 = (
1 3 7 −2
8 4 1 0
−1 0 2 5

), 

                  𝐶 = (
3 1 5 −2
4 8 1 0
0 −1 2 5

),  𝐷 = (
2 1 7
0 4 3
−1 8 1

) 

a) Obtain the (2,3)𝑡ℎ elements of matrices A,B,C and D 

b) State the major difference(s) between matrices A and B 

c) Enumerate the differences and similarities observed in B and C 

d) What are the elements in the fourth row of B? 

 

1.3.2  Algebra of Matrices 

 

Definition 1.3.2: The 𝑚 × 𝑛 matrix, 𝛰 = 𝛰𝑚×𝑛, defined by [𝛰]𝑖𝑗 = 0, for 

all 1 ≤ 𝑖 ≤ 𝑚,          1 ≤ 𝑗 ≤ 𝑛 is known as zero matrix. 

 

Matrix Equality 

Definition 1.3.3: The 𝑚 × 𝑛 matrices A and B are said to be equal 

(written as 𝐴 = 𝐵) provided [𝐴]𝑖𝑗 = [𝐵]𝑖𝑗    for all 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤

𝑛. 

Two matrices are said to be equal if  

i. They have the same size, that is, they have the same number of 

rows as well as the same number of columns and, 

ii. Their elements, at all the corresponding positions, are the same.  

iii. The following example will clarify what we mean by equal 

matrices. 

 

Example 2: 

            If   (
1 0
2 3

) = (
𝑥 𝑦
𝑧 3

), then 𝑥 = 1, 𝑦 = 0, 𝑧 = 2 

 

Remark: Firstly, both matrices are of the same size, namely, (2 × 2) and 

for these matrices to be equal the corresponding elements of both must be 

equal for all 𝑖, 𝑗. 
 

Matrix Addition (or Subtraction) 

Given the 𝑚 × 𝑛 matrices A and B, define the sum (or difference) of A 

and B as an 𝑚 × 𝑛 matrix, written as 𝐴 ± 𝐵 and defined by 

[𝐴 ± 𝐵]𝑖𝑗 = [𝐴]𝑖𝑗 ± [𝐵]𝑖𝑗;   1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

So, matrix addition takes two matrices of the same size and combines 

them (in a natural way) to create a new matrix of the same size. 
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Definition 1.3.4: Let A and B be the following two m x n matrices 

      𝐴 =

(

 
 

𝑎11 𝑎12 ⋯ ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ ⋯ 𝑎2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ ⋯ 𝑎𝑚𝑛)

 
 

 and 𝐵 =

(

 
 

𝑏11 𝑏12 ⋯ ⋯ 𝑏1𝑛
𝑏21 𝑏22 ⋯ ⋯ 𝑏2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝑏𝑚1 𝑏𝑚2 ⋯ ⋯ 𝑏𝑚𝑛)

 
 

 

Then the sum of A and B is defined to be the matrix 

𝐴 + 𝐵 =

(

 
 

𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯ ⋯ 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏11 𝑎22 + 𝑏22 ⋯ ⋯ 𝑎2𝑛 + 𝑏2𝑛

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 ⋯ ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛)

 
 

 

In other words, 𝐴 + 𝐵 is the m x n matrix whose (𝑖, 𝑗)𝑡ℎ element is the 

sum of the (𝑖, 𝑗)𝑡ℎ element of 𝐴 and the (𝑖, 𝑗)𝑡ℎelement of 𝐵.  

Let us see an example of how two matrices are added. 

Example 3:  

Let 𝐴 = (
1 0 5
2 −3 4

) and 𝐵 = (
7 3 1
−1 6 2

) 

Then 𝐴 + 𝐵 = (
1 0 5
2 −3 4

) + (
7 3 1
−1 6 2

) 

                     = (
1 + 7 0 + 3 5 + 1

2 + (−1) −3 + 6 4 + 2
) = (

8 3 6
1 3 6

)  

Also, 𝐴 − 𝐵 = (
1 − 7 0 − 3 5 − 1

2 − (−1) −3 − 6 4 − 2
) = (

−6 −3 4
3 −9 2

) 

 

1.3.3  Matrix of a Linear Transformation  

 

We shall now obtain a matrix that corresponds to a given linear 

transformation and see how easy it is to go from matrices to linear 

transformations, and back.   

 

Let 𝑈 and 𝑉 be vector spaces over a field 𝐹, of dimensions 𝑛 and 𝑚, 

respectively.   

Let 𝐵1 = {𝑒1, … , 𝑒𝑛} be an ordered basis of 𝑈, and 𝐵2 = {𝑓1, . . , , 𝑓𝑚} be 

an ordered basis of 𝑉, (By an ordered basis we mean that the order in 

which the elements of the basis are written is fixed. Thus, an ordered 

basis {𝑒1, 𝑒2} is not equal to an ordered basis {𝑒2, 𝑒1}).   
 

Given a linear transformation 𝑇: 𝑈 → 𝑉, we will associate a matrix to it.  

For this, we consider 𝑇(𝑒1),… , 𝑇(𝑒𝑛), which are all elements of 𝑉 and 
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hence, they are linear combinations of 𝑓1, . . , , 𝑓𝑚.  Thus, there exist 𝑚𝑛 

scalars 𝛼𝑖𝑗, such that   

𝑇(𝑒1) = 𝛼11𝑓1 + 𝛼21𝑓2+. . . +𝛼𝑚1𝑓𝑚
⋮

𝑇(𝑒𝑗) = 𝛼1𝑗𝑓1 + 𝛼2𝑗𝑓2+. . . +𝛼𝑚𝑗𝑓𝑚
⋮

𝑇(𝑒𝑛) = 𝛼1𝑛𝑓1 + 𝛼2𝑛𝑓2+. . . +𝛼𝑚𝑛𝑓𝑚

 

From these 𝑛 equations we form an 𝑚 × 𝑛 matrix whose first column 

consists of the coefficients of the first equation; second column consists 

of the coefficients of the second equation, and so on.  This 

matrix

(

 
 

𝛼11 𝛼12 ⋯ ⋯ 𝛼1𝑛
𝛼11 𝛼22 ⋯ ⋯ 𝛼2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝛼𝑚1 𝛼𝑚2 ⋯ ⋯ 𝛼𝑚𝑛)

 
 

 

is called the matrix of 𝑇 with respect to the bases 𝐵1 and 𝐵2. Notice that 

the coordinate vector of  𝑇(𝑒𝑗) is the 𝑗𝑡ℎ column of 𝐴.  

We use the notation [𝑇]𝐵1,𝐵2for this matrix.   

Thus, to obtain[𝑇]𝐵1,𝐵2 we consider 𝑇(𝑒𝑗) ∀ 𝑒𝑗 ∈ 𝐵1, and write them as 

linear combinations of the elements of 𝐵2.  
If 𝑇 ∈ 𝐿(𝑉, 𝑉), 𝐵 is a basis of 𝑉 and we take 𝐵1 = 𝐵2 = 𝐵, then [𝑇]𝐵,𝐵 is 

called the matrix of 𝑇 with respect to the basis 𝐵, and can also be written 

as [𝑇]𝐵.  

 

Remark:  Why do we insist on order bases?  What happens if we 

interchange the order of the elements in 𝐵 to {𝑒𝑛, … , 𝑒𝑛−1} ?  The matrix 

[𝑇]𝐵1,𝐵2 also changes, the last column becoming the first column now.  

Similarly, if we change the positions of the 𝑓𝑖’s in 𝐵2, the rows of 

[𝑇]𝐵1,𝐵2will get interchanged.  

 

Thus, to obtain a unique matrix corresponding to 𝑇, we must insist on 𝐵1 
and 𝐵2 being ordered bases.  Henceforth, while discussing the matrix of 

a linear mapping, we will always assume that our bases are ordered bases.  

We will now give an example, followed by some exercises. 

 

Example 4:   Consider the linear operator 𝑇: 𝑅3: 𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦).  
Choose bases 𝐵1 and 𝐵2 of 𝑅3 and 𝑅2, respectively.  Then obtain [𝑇]𝐵1,𝐵2.  

 

Solution: Let 𝐵1 = {𝑒1, 𝑒2, 𝑒3}, where 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 =
(0, 0, 1) and 𝐵2 = {𝑓1, 𝑓2}, where 𝑓1 = {1,0), 𝑓2 = {0,1),  
Note that 𝐵1 and 𝐵2 are the standard bases of 𝑅3 and 𝑅2, respectively.  

                 𝑇(𝑒1) = (1,0) = 𝑓1 = 1 ∙ 𝑓1 + 0 ∙ 𝑓2  
                 𝑇(𝑒2) = (0,1) = 𝑓2 = 0 ∙ 𝑓1 + 1 ∙ 𝑓2  
                 𝑇(𝑒3) = (0,0) = 0 ∙ 𝑓1 + 0 ∙ 𝑓2.    
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Thus, [𝑇]𝐵1,𝐵2 = (
1 0 0
0 1 0

) 

E1) Choose two other bases 𝐵′1 and 𝐵′2 of 𝑅3 and 𝑅2, respectively.  (In 

Module 1 Unit 4, you came across a lot of bases of both these vector 

spaces). For 𝑇 in the example above, give the matrix [𝑇]𝐵′1,𝐵′2. 

What E1 shows us is that the matrix of a transformation depends on the 

bases that we use for obtaining it.  The next two exercises also being out 

the same fact.  

E2) Write the matrix of the linear transformation 

𝑇: 𝑅3 → 𝑅2: 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 2𝑦 + 2𝑧, 2𝑥 +  3𝑦 + 4𝑧) with respect to 

the standard bases of 𝑅3 and 𝑅2. 
E3) What is the matrix of 𝑇, in E5, with respect to the bases     𝐵′1 =
{(1, 0, 0), (0, 1, 0), (1, −2, 1)}and     𝐵′2 = {(1,2), (2,3)}? 

The next exercise is about an operator that you have come across often  

 

E4) Let 𝑉 be the vector space of polynomials over 𝑅 of degree < 3, in the 

variable 𝑡.   
Let 𝐷:𝑉 → 𝑉 be the differential operator given in Unit 2 (E3, when n = 

3). Show that the matrix of 𝐷 with respect to the basis {1, 𝑡, 𝑡2, 𝑡3} is 

(

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

). 

 

So far, given a linear transformation, we have obtained a matrix from it.  

This works the other way also.  That is, given a matrix we can define a 

linear transformation corresponding to it.  

Example 5:  Describe 𝑇: 𝑅3 → 𝑅3 such that  [𝑇]𝐵 = (
1 2 4
2 3 1
3 1 2

) 

where B is the standard basis of 𝑅3 
Solution:  Let  𝐵 = {𝑒1, 𝑒2, 𝑒3}, Now, we are given that   

               𝑇(𝑒1) = 1 ∙ 𝑒1 + 2 ∙ 𝑒2 + 3 ∙ 𝑒3  
               𝑇(𝑒2) = 2 ∙ 𝑒1 + 3 ∙ 𝑒2 + 1 ∙ 𝑒3  
               𝑇(𝑒3) = 4 ∙ 𝑒1 + 1 ∙ 𝑒2 + 2 ∙ 𝑒3.    
You know that any element of 𝑅3  is (𝑥, 𝑦, 𝑧) = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 
Therefore, 𝑇(𝑥, 𝑦, 𝑧) = 𝑇(𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3) 
𝑥𝑇(𝑒1) + 𝑦𝑇(𝑒2) + 𝑧𝑇(𝑒3), since T is linear 

= 𝑥(𝑒1 + 2𝑒2 + 3𝑒3) + 𝑦(2𝑒1 + 3𝑒2 + 𝑒3) + 𝑧(4𝑒1 + 𝑒2 + 2𝑒3) 
                       = (𝑥 + 2𝑦 + 4𝑧)𝑒1 + (2𝑥 + 3𝑦 + 𝑧)𝑒2 + (3𝑥 + 𝑦 +
2𝑧)𝑒3  
                       = (𝑥 + 2𝑦 + 4𝑧, 2𝑥 + 3𝑦 + 𝑧, 3𝑥 + 𝑦 + 2𝑧)  
   ∴ 𝑇: 𝑅3 → 𝑅3 is defined by 

    𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 2𝑦 + 4𝑧, 2𝑥 + 3𝑦 + 𝑧, 3𝑥 + 𝑦 + 2𝑧) 
Try the following exercises now.  
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E5) Describe 𝑇: 𝑅3 → 𝑅2such that [𝑇]𝐵1,𝐵2 = (
1 1 0
0 1 1

) where 𝐵1 and 

𝐵2 are the standard bases of 𝑅3and 𝑅2, respectively. 

E6) Find the linear operator 𝑇: ℂ → ℂ whose matrix, with respect to the 

basis {1, 𝑖} is (
0 −1
1 0

). 

(Note that ℂ, the field of complex numbers, is a vector space over R, of 

dimension 3)   

Now we are in a position to define the sum of matrices and multiplication 

of a matrix by a scalar. 

 

1.3.4  Matrix Scalar Multiplication 

 

In Unit 3 of Module 1, you have studied about the sum and scalar 

multiples of linear transformations.  In the following theorem we will see 

what happens to the matrices associated with the linear transformations 

that are sums or scalar multiples of given linear transformations.   

 

Theorem 1.1: Let 𝑈 and 𝑉 be vector spaces over 𝐹, of dimensions 𝑛 and 

𝑚, respectively.  Let 𝐵1 and 𝐵2 be arbitrary bases of 𝑈 and 𝑉, 

respectively.   

(Let us abbreviate [𝑇]𝐵1,𝐵2 to [𝑇] during this theorem.) Let 𝑆, 𝑇 ∈ 𝐿(𝑈, 𝑉) 

and 𝛼 ∈ 𝐹. Suppose [𝑆] = [𝑎𝑖𝑗], [𝑇] = [𝑏𝑖𝑗], then  [𝑆 + 𝑇] = [𝑎𝑖𝑗 + 𝑏𝑖𝑗] 

and [𝛼𝑆] = [𝛼𝑎𝑖𝑗] 

 

Proof:  Suppose 𝐵1 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛} and 𝐵2 = {𝑓1, 𝑓2. ⋯ , 𝑓𝑚}.  Then all 

the matrices to be considered here will be of size 𝑚 × 𝑛.  

Now, by our hypothesis,    

𝑆(𝑒𝑗) = ∑ 𝑎𝑖𝑗𝑓𝑖
𝑚
𝑖=1   ∀ 𝑗 = 1,⋯ , 𝑛   and  𝑇(𝑒𝑗) = ∑ 𝑏𝑖𝑗𝑓𝑖

𝑚
𝑖=1   ∀ 𝑗 =

1,⋯ , 𝑛. 

Therefore, (𝑆 + 𝑇)(𝑒𝑗) = 𝑆(𝑒𝑗) + 𝑇(𝑒𝑗)              (by definition of S + T) 

=∑𝑎𝑖𝑗𝑓𝑖

𝑚

𝑖=1

+∑𝑏𝑖𝑗𝑓𝑖

𝑚

𝑖=1

 

=∑(𝑎𝑖𝑗 + 𝑏𝑖𝑗)𝑓𝑖

𝑚

𝑖=1

 

Thus, by definition of the matrix with respect to 𝐵1 and 𝐵2, we get [𝑆 +
𝑇] =  𝑎𝑖𝑗 + 𝑏𝑖𝑗. 

Given the 𝑚 × 𝑛 matrix 𝐴 and a scalar 𝛼 in set of complex number, the 

scalar multiple of 𝐴 is an 𝑚 × 𝑛 matrix, written as 𝛼𝐴 and defined by 

[𝛼𝐴]𝑖𝑗 = 𝛼[𝐴]𝑖𝑗 ;   1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

Now, (𝛼𝑆)(𝑒𝑗) = 𝛼 (𝑆(𝑒𝑗)) (by definition of αS) 
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= 𝛼∑𝑎𝑖𝑗𝑓𝑖

𝑚

𝑖=1

=∑(𝛼𝑎𝑖𝑗)𝑓𝑖

𝑚

𝑖=1

 

Thus, [𝛼𝑆] = [𝛼𝑎𝑖𝑗] 

From example above, if 𝛼 = 5 and 𝐴 = (
1 0 5
2 −3 4

), then  

𝛼𝐴 = 5 (
1 0 5
2 −3 4

) = (
5(1) 5(0) 5(5)

5(2) 5(−3) 5(4)
) = (

5 0 25
10 −15 20

) 

 

1.3.5  Vector Space Properties of matrices 

 

Now that matrix addition and scalar multiplication have been defined, a 

number of properties of each operation can be stated and proved, as well 

as a few properties that relate how they interact. This will ultimately lead 

us to prove that the set of all 𝑚 × 𝑛 matrices over 𝐹 is a vector space over 

𝐹. 

 

Theorem 1.2: Vector Space Properties of Matrices 

Suppose that 𝑀𝑚𝑛 is the set of all 𝑚 × 𝑛 matrices with addition and scalar 

multiplication as defined.  

i. Additive Closure of Matrices 

ii. If 𝐴, 𝐵 ∈ 𝑀𝑚𝑛, then𝐴 + 𝐵 ∈ 𝑀𝑚𝑛. 

iii. Scalar Closure of Matrices 

iv. If 𝛼 ∈ ℂ and𝐴 ∈ 𝑀𝑚𝑛, then𝛼𝐴 ∈ 𝑀𝑚𝑛 

v. Commutativity of Matrices 

vi. If 𝐴, 𝐵 ∈ 𝑀𝑚𝑛, then 𝐴 + 𝐵 = 𝐵 + 𝐴. 

vii. Additive Associativity of Matrices 

viii. If 𝐴, 𝐵, 𝐶 ∈ 𝑀𝑚𝑛, then  𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶. 

ix. Zero Matrix 
x. There is a matrix, 0, called the zero matrix, such that A + 0 = A for 

all𝐴 ∈ 𝑀𝑚𝑛 

xi. Additive Inverses of Matrices 

xii. If 𝐴 ∈ 𝑀𝑚𝑛, then there exists a matrix (−𝐴) ∈ 𝑀𝑚𝑛, so that 𝐴 +
(−𝐴) = 0. 

xiii. Scalar Multiplication Associativity of Matrices 

xiv. If 𝛼, 𝛽 ∈ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑁𝑜. and 𝐴 ∈ 𝑀𝑚𝑛, then 𝛼(𝛽𝐴) = (𝛼𝛽)𝐴 

xv. Distributivity across Matrix Addition of Matrices 

xvi. If 𝛼, 𝛽 ∈ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑁𝑜. and 𝐴 ∈ 𝑀𝑚𝑛, then 𝛼(𝐴 + 𝐵) = 𝛼𝐴 + 𝛼𝐵 

xvii. Distributivity across Scalar Addition of Matrices 

xviii. If 𝛼, 𝛽 ∈ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑁𝑜. and 𝐴 ∈ 𝑀𝑚𝑛, then (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴. 

xix. One Matrices 

xx. If 𝐴 ∈ 𝑀𝑚𝑛, then 1𝐴 = 𝐴 
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Proof: 
While some of these properties seem very obvious, they all require proof. 

However, the proofs are not very interesting, and a bit tedious.  

We will prove one version of distributivity very carefully, and you can 

test your proof-building skills on some of the others. 

For any 𝑖, 𝑗;   1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 

[(𝛼 + 𝛽)𝐴]𝑖𝑗 = (𝛼 + 𝛽)[𝐴]𝑖𝑗               (Matrix Scalar Multiplication) 

                      = 𝛼[𝐴]𝑖𝑗 + 𝛽[𝐴]𝑖𝑗          (Distributivity in Complex 

Numbers) 

                      = [𝛼𝐴]𝑖𝑗 + [𝛽𝐴]𝑖𝑗           (Matrix Scalar Multiplication) 

                      = [𝛼𝐴 + 𝛽𝐴]𝑖𝑗                (Matrix Addition) 

These properties imply that 𝑀𝑚𝑛(𝐹) is a vector space over 𝐹. 

Now that we have shown that 𝑀𝑚𝑛(𝐹)  is a vector space over 𝐹, we know 

it must have a dimension.  

 

1.3.6  Dimension of 𝑴𝒎𝒏(𝑭) over F 

 

The following theorem shall be proved to explain the dimension of 

𝑀𝑚𝑛(𝐹) over 𝐹.  But, before you go further, check whether you remember 

the definition of a vector space isomorphism (Unit 3).  

 

Theorem 1.3:  Let 𝑈 and 𝑉 be vector spaces over 𝐹 of dimensions 𝑛 and 

𝑚, respectively.  Let 𝐵1 and 𝐵2 be a pair of bases of 𝑈 and 𝑉, respectively. 

The mapping                𝜙: 𝐿(𝑈, 𝑉) → 𝑀𝑚𝑛(𝐹), given by 𝜙(𝑇) = [𝑇]𝐵1,𝐵2 

is a vector space isomorphism.  

 

Proof:  The fact that 𝜙 is a linear transformation follows from Theorem 

1.1.   

We proceed to show that the map is also 1-1 and onto.   

For the rest of the proof, we shall denote [𝑆]𝐵1,𝐵2by [𝑆] only, and take 

𝐵1 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛} and 𝐵2 = {𝑓1, 𝑓2. ⋯ , 𝑓𝑚}. 
𝜙 is 1-1: Suppose 𝑆, 𝑇 ∈ 𝐿(𝑈, 𝑉) be such that 𝜙(𝑆) = 𝜙(𝑇).  
Then [𝑆] = [𝑇].  

Therefore,  𝑆(𝑒𝑗) + 𝑇(𝑒𝑗) ∀ 𝑒𝑗 ∈ 𝐵1.   

Thus, by Unit 3 (Theorem, 3.1), we have 𝑆 = 𝑇. 

𝜙 is on 0: if 𝐴 ∈ 𝑀𝑚𝑛(𝐹) we want to construct 𝑇 ∈ 𝐿(𝑈, 𝑉) such that 

𝜙(𝑇) = 𝐴.  

 Suppose 𝐴 = [𝑎𝑖𝑗].  Let 𝑣1, … , 𝑣𝑛 ∈ 𝑉 such that 

𝑣1 =∑𝑎𝑖𝑗𝑓𝑖

𝑚

𝑖=1

;  𝑗 = 1,⋯ , 𝑛 

Then, by Theorem 3.3 of Unit 3, there exists a linear transformation 𝑇 ∈
𝐿(𝑈, 𝑉) such that 
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𝑇(𝑒𝑗) = 𝑣1 =∑𝑎𝑖𝑗𝑓𝑖

𝑚

𝑖=1

 

Thus, by definition, 𝜙(𝑇) = 𝐴 

Therefore, 𝜙 is a vector space isomorphism. 

A corollary to this theorem gives us the dimension of 𝑀𝑚𝑛(𝐹).  
 

Corollary:  Dimension of 𝑀𝑚𝑛(𝐹) = 𝑚𝑛.  

Proof:  Theorem 1.2 tells us the 𝑀𝑚𝑛(𝐹) is isomorphic 𝑡𝑜 𝐿(𝑈, 𝑉). 
Therefore, 𝑑𝑖𝑚𝐹𝑀𝑚𝑛(𝐹)  =  𝑑𝑖𝑚𝐹(𝐿(𝑈, 𝑉) (by Theorem 12 of Unit 5) =
 𝑚𝑛, from Unit 6 (Theorem 1).    

Why do you think we chose such a roundabout way for obtaining dim 

𝑀𝑚𝑛(𝐹)?   

We could as well have tried to obtain mn linearly independent m x n 

matrices and show that they generate 𝑀𝑚𝑛(𝐹).  But that would be quite 

tedious (see E16).  Also, we have done so much work on 𝐿(𝑈, 𝑉) so why 

not use that!  And, doesn’t the way we have used seem neat?  

 Now, let’s look at for some exercises related to Theorem 1.2.  

E7) At most, how many matrices can there be in any linearly independent 

subject of 𝑀2×3(𝐹)? 

E8) Are the matrices [1, 0] and [1, -1] linearly independent over R? 

E9) Let 𝐸𝑖𝑗 be an 𝑚 × 𝑛 matrix whose (𝑖, 𝑗)𝑡ℎ element is 1 and the other 

elements are 0.  Show that {𝐸𝑖𝑗 : ≤ 𝑖 ≤  𝑚;  1 ≈≤ 𝑗 ≤ ℎ} is a basis of 

𝑀𝑚𝑛(𝐹) over F.  

Conclude that  𝑑𝑖𝑚𝐹𝑀𝑚𝑛(𝐹) = 𝑚𝑛. 

Now we move on to the next section, where we see some ways of getting 

new matrices from given ones. 

 

1.3.7  New Matrices from Old  

 

Transpose of a Matrix 

Definition 1.3.5: Given a 𝑚 × 𝑛 matrix 𝐴, its transpose is the 𝑛 × 𝑚 

matrix 𝐴𝑇 given by  

       [𝐴𝑇]𝑖𝑗 = [𝐴]𝑗𝑖 ; for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

Example 5: 

Given a 3 × 4 matrix  𝐺 = [
3 1 2 −4
0 −2 5 7
−1 6 8 2

] , the transpose of matrix 

G would be obtained by interchanging (rewriting or swapping) the 

columns by the rows, thus, 

𝐺𝑇 = [

3 0 −1
1 −2 6
2 5 8
−4 7 2

] which is a 4 × 3 matrix. 



MTH 212           LINEAR ALGEBRA 

87 

 

Definition 1.3.6: In the case where a matrix is equal to its transpose, that 

is, given a matrix A, then 𝐴 = 𝐴𝑇, we have a symmetric matrix.  

A square matrix B such that 𝐵𝑇 = −𝐵, is called a skew–symmetric 

matrix  

Example 6:  𝐴 = (
1 2
2 1

), then 𝐴𝑇 = (
1 2
2 1

) 

𝐵 = (
0 2
2 0

), then 𝐵𝑇 = (
0 −2
2 0

) = −(
0 2
−2 0

) = −𝐵 

 

Informally, a matrix is symmetric if we can “flip” it about the main 

diagonal (upper-left corner, running down to the lower-right corner) and 

have it look unchanged. 

 

Example 7: 

Consider any (2 × 2)matrix A. Calculate 𝐴 + 𝐴𝑇and 𝐴 − 𝐴𝑇. Which of 

them is symmetric and which is skew-symmetric? 

Solution: 𝐴 = (
3 4
2 1

), then 𝐴𝑇 = (
3 2
4 1

) 

    𝐴 + 𝐴𝑇 = (
3 + 3 4 + 2
2 + 4 1 + 1

) = (
6 6
6 2

)                This is a (2 × 2) 

symmetric matrix 

    𝐴 − 𝐴𝑇 = (
3 − 3 4 − 2
2 − 4 1 − 1

) = (
0 2
−2 0

)         This is a (2 × 2) skew-

symmetric matrix. 

For a (3 × 3)matrix A 

𝐴 = (
1 2 4
2 3 1
3 4 5

), then 𝐴𝑇 = (
1 2 3
2 3 4
4 1 5

) 

           𝐴 + 𝐴𝑇 = (
1 + 1 2 + 2 4 + 3
2 + 2 3 + 3 1 + 4
3 + 4 4 + 1 5 + 5

) = (
2 4 7
4 6 5
7 5 10

) (3 × 3) 

Symmetric matrix 

          𝐴 − 𝐴𝑇 = (
1 − 1 2 − 2 4 − 3
2 − 2 3 − 3 1 − 4
3 − 4 4 − 1 5 − 5

) = (
0 0 1
0 0 −3
−1 3 0

) (3 × 3) 

Skew-symmetric matrix  

 

NOTE: For a matrix to be symmetric it has to be a square matrix, that 

is, the number of rows must be equal to the number of columns. 

 

Example 8: 

If matrix 𝐻 = [

6 3 −7 8
3 1 4 −2
−7 4 0 1
8 −2 1 5

] = 𝐻𝑇, then H is symmetric 
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1.3.8  Theorems Involving Some Types of Matrices 

 

Theorem 1.4: Suppose that A is a symmetric matrix. Then A is square. 

Proof: 

Suppose A is a 𝑚 × 𝑛matrix. 

Because A is symmetric, we know by the definition symmetric matrix that 

𝐴 = 𝐴𝑇.  

So, in particular, matrix equality requires that 𝐴 and 𝐴𝑇 must have the 

same size.  

But the size of 𝐴𝑇 is 𝑛 ×𝑚 and because 𝐴 has m rows and 𝐴𝑇 has n rows, 

we conclude that 𝑚 = 𝑛, hence A must be square by the definition of a 

square matrix. 

 

Theorem 1.5: Suppose that A and B are 𝒎× 𝒏 matrices, 

then(𝑨 + 𝑩)𝑻 = 𝑨𝑻 + 𝑩𝑻. 

Proof: 

The statement to be proved is an equality of matrices, for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤
𝑗 ≤ 𝑛 

     [(𝐴 + 𝐵)𝑇]𝑖𝑗 = [𝐴 + 𝐵]𝑗𝑖                      (Transpose of a matrix) 

                           = [𝐴]𝑗𝑖 + [𝐵]𝑗𝑖                 (Matrix addition) 

                           = [𝐴𝑇]𝑖𝑗 + [𝐵
𝑇]𝑖𝑗             (Transpose of a matrix) 

                           = [𝐴𝑇 + 𝐵𝑇]𝑖𝑗                  (Matrix addition) 

Since the matrices (𝐴 + 𝐵)𝑇and 𝐴𝑇 + 𝐵𝑇agree at each entry, then the 

definition of matrix equality tells us the two matrices are equal.  

 

Theorem 1.6: Let 𝛼 ∈ 𝐶 and A is an 𝑚 × 𝑛 matrix, then (𝛼𝐴)𝑇 = 𝛼𝐴𝑇 

Proof: 

The statement to be proved is an equality of matrices, for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤
𝑖 ≤ 𝑛 

       [(𝛼𝐴)𝑇]𝑗𝑖 = [𝛼𝐴]𝑖𝑗               (Transpose of a matrix) 

                        = 𝛼[𝐴]𝑗𝑖               (Matrix Scalar Multiplication) 

                        = 𝛼[𝐴𝑇]𝑗𝑖             (Transpose of a matrix) 

                        = [𝛼𝐴𝑇]𝑗𝑖              (Matrix Scalar Multiplication) 

Since the matrices [𝛼𝐴]𝑇and 𝛼𝐴𝑇agree at each entry, definition of matrix 

equation is used which implies that the two matrices are equal.  

 

Theorem 1.7: Suppose that A is a 𝑚 × 𝑛matrix. Then (𝐴𝑇)𝑇 = 𝐴 

Proof: 

For  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

[(𝐴𝑇)𝑇]𝑖𝑗 = [𝐴
𝑇]𝑗𝑖             (Transpose of a matrix)   

                = [𝐴]𝑖𝑗               (Transpose of a matrix)   

Since the matrices (𝐴𝑇)𝑇and 𝐴 agree at each entry, by the definition of 

matrix equality, the two matrices are equal.  
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Definition 1.3.7: Let 𝐴 be 𝑚 × 𝑛 matrix. Then the conjugate of 𝐴, 

written as �̄� is an 𝑚 × 𝑛 matrix defined by  

[𝐴]
𝑖𝑗
= [𝐴]𝑖𝑗 

If A is a matrix over the complex field C, then the matrix obtained by 

replacing each entry of A by its complex conjugate is called the conjugate 

of A, and is denoted by 𝐴.  

Three properties of conjugates, which are similar to those of the transpose, 

are 

i. 𝐴 + 𝐵 = 𝐴 + 𝐵 

ii. (𝐴) = 𝐴 

iii. (𝐴𝑇) = (𝐴)
𝑇
 

 

Example 9: 

If 𝐴 = [
3 − 𝑖 2 1 + 4𝑖
−3 − 5𝑖 3 − 2𝑖 𝑖

],  then �̄� =

[
3 + 𝑖 2 1 − 4𝑖
−3 + 5𝑖 3 + 2𝑖 −𝑖

] 

 

Theorem 1.8: Suppose that A and B are 𝑚 × 𝑛matrices. Then𝐴 + 𝐵 =

𝐴 + 𝐵 

Proof:  

For 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

[𝐴 + 𝐵]
𝑖𝑗
= [𝐴 + 𝐵]𝑖𝑗                          (Complex conjugate of a matrix) 

                 = [𝐴]𝑖𝑗 + [𝐵]𝑖𝑗                    (Matrix addition) 

                 = [𝐴]𝑖𝑗 + [𝐵]𝑖𝑗                    (Addition of complex conjugate) 

                 = [𝐴]
𝑖𝑗
+ [𝐵]

𝑖𝑗
                    (Complex conjugate of a matrix) 

                 = [𝐴 + 𝐵]
𝑖𝑗

                          (Matrix addition) 

 

Example 10: Let 𝐵 = [
1 − 𝑖 2 − 3𝑖 4 + 𝑖
−3 2𝑖 2 − 𝑖

], then  𝐵 =

[
1 + 𝑖 2 + 3𝑖 4 − 𝑖
−3 −2𝑖 2 + 𝑖

] 

 

Theorem 1.9: Conjugate of the Conjugate of a Matrix 

Suppose that A is a 𝑚 × 𝑛 matrix, then(𝐴) = 𝐴. 

 

Example 11: From example 10 above, 

If �̄� = [
3 + 𝑖 2 1 − 4𝑖
−3 + 5𝑖 3 + 2𝑖 −𝑖

], then 

 �̄� = [
3 − 𝑖 2 1 + 4𝑖
−3 − 5𝑖 3 − 2𝑖 𝑖

] = 𝐴 
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Theorem 1.10: Matrix Conjugation and Transposes 

Suppose that B is an 𝑚 × 𝑛 matrix, then (𝐴𝑇) = (𝐴)
𝑇
. 

 

Example 12: 

From example, 𝐴𝑇 = [
3 − 𝑖 −3 − 5𝑖
2 3 − 2𝑖

1 + 4𝑖 𝑖
], then 

                        𝐴𝑇 = [
3 + 𝑖 −3 + 5𝑖
2 3 + 2𝑖

1 − 4𝑖 −𝑖
] 

Also, from example, (𝐴)
𝑇
= [

3 + 𝑖 −3 + 5𝑖
2 3 + 2𝑖

1 − 4𝑖 −𝑖
] 

Hence,   (𝐴𝑇) = (𝐴)
𝑇
 

 

Definition 1.3.8: A square matrix A for which 𝐴
𝑇
= 𝐴 is called a 

Hermitian matrix.  

A square matrix A is called a Skew-Hermitian matrix if  𝐴
𝑇
= −𝐴. 

For example, the matrix  

Let 𝐷 = [
1 1 + 𝑖
1 − 𝑖 2

], then  𝐷 = [
1 1 − 𝑖
1 + 𝑖 2

] and  

𝐷
𝑇
= [

1 1 + 𝑖
1 − 𝑖 2

] = 𝐷  

Hence D is a Hermitian matrix 

𝐹 = [
𝑖 1 + 𝑖

−1 + 𝑖 0
] then 𝐹 = [

−𝑖 1 − 𝑖
−1 − 𝑖 0

] and                         

𝐹
𝑇
= [

−𝑖 −1 − 𝑖
1 − 𝑖 0

] = − [
𝑖 1 + 𝑖

−1 + 𝑖 0
] = −𝐹  

Hence F is a Skew-Hermitian matrix. 

Note: For a real matrix A, A is Hermitian if A is symmetric.  

Similarly, A is skew-Hermitian if A is skew-symmetric. 

 

Diagonal Matrix  
Definition 1.3.9: Let U and V be vector spaces over F of dimension n 

such that                𝐵1 = {𝑒1, . . . , 𝑒𝑛} and 𝐵2 = {𝑓1, . . . , 𝑓𝑛} are based of U 

and V, respectively. Also let  𝑑1, . . . , 𝑑𝑛 ∈ 𝐹.  

Consider the transformation 𝑇: 𝑈 → 𝑉/𝑇(𝑎1𝑒1+. . . +𝑎𝑛𝑒𝑛) =
𝑎1𝑑1𝑓1+. . . +𝑎𝑛𝑑𝑛𝑓𝑛 then 𝑇(𝑒1) = 𝑑1𝑓1,  𝑇(𝑒2) = 𝑑2𝑓2, . . . , 𝑇(𝑒𝑛) =
𝑑𝑛𝑓𝑛, such a matrix is called a diagonal matrix. 

 Let us see what this means: 

[𝑇](𝐵1 ⋅ 𝐵2) = (

𝑑1 0 ⋯ 0
0 𝑑2 ⋯ 0
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 𝑑𝑛

) 
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Let 𝐴[𝑎11] be a square matrix, the entries 𝑎11, 𝑎12, . . . , 𝑎𝑚𝑛 are called the 

diagonal entries of 𝐴. This is because they lie along the diagonal, from 

left to right, of the matrix.  

All the other entries of A are called the off-diagonal entries of A.  

A square matrix whose off-diagonal entries are zero (i.e., 𝑎𝑖𝑗 = 0, ∀ 𝑖 ≠

𝑗) is called a diagonal matrix.  

The diagonal matrix above is denoted by 𝒅𝒊𝒂𝒈(𝒅𝟏, 𝒅𝟐, . . . , 𝒅𝒏).  
 

Note: The 𝑑𝑖′𝑠 may or may not be zero.  

If all the 𝑑𝑖′𝑠 are zero, the (𝑛 × 𝑛)zero matrix is obtained, which 

corresponds to the zero operator.  

If 𝑑𝑖 = 1,  𝑖 = 1, . . . , 𝑛, the (𝑛 × 𝑛) identity matrix, 𝐼𝑛 (or I, when the size 

is understood). 

If 𝛼 ∈ 𝐹, the linear operator 𝛼𝐼: 𝑅𝑛 → 𝑅𝑛 such that 𝛼𝐼(𝑣) = 𝛼𝑣 for all 

𝑣 ∈ 𝑅𝑛, is called a Scalar operator. Its matrix with respect to any basis 

is 𝛼𝐼 = 𝑑𝑖𝑎𝑔(𝛼, 𝛼, . . . , 𝛼). Such a matrix is called a Scalar matrix which 

is a diagonal matrix whose diagonal entries are all equal.  

 

Triangular Matrix  

Definition 1.3.10: Let 𝐵 = {𝑒1, 𝑒2, . . , 𝑒𝑛} be a basis of a vector space V.  

Let 𝑆 ∈ 𝐿(𝑉, 𝑉) be an operator such that  

𝑆(𝑒1) = 𝑎11𝑒1
𝑆(𝑒2) = 𝑎12𝑒1 + 𝑎22𝑒2
⋮ ⋮ ⋮
⋮ ⋮ ⋮

𝑆(𝑒𝑛) = 𝑎1𝑛𝑒1 + 𝑎2𝑛𝑒2 + ⋯ + 𝑎𝑛𝑛𝑒𝑛

 

Then, the matrix of S with respect to B is 

(

 
 

𝑎11 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎22 … … 𝑎2𝑛
⋮ ⋮ … … ⋮
⋮ ⋮ … … ⋮
0 0 0 … 𝑎𝑛𝑛)

 
 

 

A square matrix A such that 𝑎𝑖𝑗 = 0  ∀𝑖 > 𝑗 is called an Upper 

Triangular Matrix.  

 

 

Example 13: 

(
1 3
0 2

); (
1 0
0 0

); (
1 0
0 1

) are all upper triangular, while (
0 3
0 0

) is 

strictly upper triangular.  

 

Note that every strictly upper triangular matrix is an upper triangular 

matrix.  
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Definition 1.3.11: Let 𝑇: 𝑉 → 𝑉 be an operator such that 𝑇(𝑒𝑗) is a linear 

combination of 𝑒𝑗 , 𝑒𝑗+1, . . . , 𝑒𝑛∀ 𝑗. 

The matrix of T with respect to B is 

(

 
 

𝑏11 0 0 ⋯ 0
𝑏21 𝑏22 … … 0
⋮ ⋮ … … ⋮
⋮ ⋮ … … ⋮
𝑏𝑛1 𝑏𝑛2 𝑏𝑛3 … 𝑏𝑛𝑛)

 
 

; 𝑏𝑖𝑗 =

0  ∀𝑖 < 𝑗, such a matrix is called a Lower Triangular Matrix.  

If 𝑏𝑖𝑗 = 0  ∀𝑖 ≤ 𝑗, then B is said to be a Strictly Lower Triangular 

Matrix.  

The matrix   

(

 
 

0 0 0 0 0
5 0 0 0 0
3 −1 0 0 0
−2 4 2 0 0
1 0 3 −1 0)

 
 

 is a strictly lower triangular 

matrix.  

 

Of course, it is also lower triangular!  

Remark: Given (3 × 3) upper triangular matrix, say  𝐺 = (
1 2 3
0 4 5
0 0 6

) , 

its transpose is            

𝐺𝑇 = (
1 0 0
2 4 0
3 5 6

) is a lower triangular matrix 

In fact, for any (𝑛 × 𝑛)upper triangular matrix A, its transpose is a lower 

triangular matrix, and vice versa. 

 

Class work:  

1. If an upper triangular matrix A is symmetric, then show that it must 

be a diagonal           matrix. 

2. Show that the diagonal entries of a skew-symmetric matrix are all 

zero, but the converse is not true. 

 

1.3.9  Matrix Multiplication  
 

We have already discussed scalar multiplication. Now we see how to 

multiply two matrices. Again, the motivation for this operation comes 

from linear transformations.  

      

1.3.9.1 Matrix of the Composition of Linear Transformations  
 

Let U, V and W be vector spaces over F, of dimension p, n and m, 

respectively.  Let 𝐵1, 𝐵2, 𝐵3 be bases of these respective spaces. Let 𝑇 ∈
𝐿(𝑈, 𝑉) and 𝑆 ∈ 𝐿(𝑉,𝑊). Then (𝑆𝑇) ∈ 𝐿(𝑈,𝑊) 
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Suppose [𝑇]𝐵1 ⋅ 𝐵2 = 𝐵 = [𝑏𝑗𝑘]𝑛×𝑝and [𝑆]𝐵2 ⋅ 𝐵3 = 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛 

What is then the matrix [𝑆𝑇]𝐵1 ⋅ 𝐵3? 
To answer this, let 𝐵1 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}; 𝐵2 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}; 𝐵3 =
{𝑔1, 𝑔2, . . . , 𝑔𝑛} 
Since  𝑇(𝑒𝑘) = ∑ 𝑏𝑗𝑘𝑓𝑗

𝑛
𝑗=1 ; for all 𝑘 = 1,2, . . . , 𝑝  and  

𝑆(𝑓𝑗) = ∑ 𝑎𝑗𝑘𝑔𝑗
𝑚
𝑖=1 ;  for all 𝑗 = 1,2, . . . , 𝑛 

𝑆 ∘ 𝑇(𝑒𝑘) = 𝑆(𝑇(𝑒𝑘)) = 𝑆∑ 𝑏𝑗𝑘𝑓𝑗
𝑛
𝑗=1 = 𝑏1𝑘𝑆(𝑓1) + 𝑏2𝑘𝑆(𝑓2) + ⋯+

𝑏𝑛𝑘𝑆(𝑓𝑛) 

= 𝑏1𝑘∑𝑎11𝑔𝑖

𝑚

𝑖=1

+ 𝑏2𝑘∑𝑎12𝑔𝑖

𝑚

𝑖=1

+⋯+ 𝑏𝑛𝑘∑𝑎1𝑛𝑔𝑖

𝑚

𝑖=1

 

           = ∑ (𝑎𝑖1𝑏1𝑘 + 𝑎𝑖2𝑏2𝑘+. . . +𝑎𝑖𝑛𝑏𝑛𝑘)𝑔𝑖
𝑚
𝑖=1     (Collection of the 

coefficients of 𝑔𝑖) 
Thus, [𝑆𝑇]𝐵1 ⋅ 𝐵3 = [𝑐𝑖𝑘]𝑚×𝑝; where 𝑐𝑖𝑘 = ∑ 𝑎𝑖𝑗𝑏𝑗𝑘

𝑚
𝑖=1  

Matrix [𝑐𝑖𝑘] is defined as the product 𝐴𝐵  

Let 𝐴 = [𝑎𝑖𝑘]𝑚×𝑛, 𝐵 = [𝑏𝑖𝑘]𝑚×𝑛be two matrices over F, of sizes 𝑚 × 𝑛 

and 𝑛 × 𝑝, respectively.  

We define 𝐴𝐵 to be the 𝑚 × 𝑝 matrix 𝐶 whose (𝑖, 𝑘)𝑡ℎentry is  

𝑐𝑖𝑘 =∑𝑎𝑖𝑗𝑏𝑗𝑘

𝑛

𝑖=1
𝑗=1

= 𝑎𝑖1𝑏1𝑘 + 𝑎𝑖2𝑏2𝑘+. . . +𝑎𝑖𝑛𝑏𝑛𝑘 

In order to obtain the (𝑖, 𝑘)𝑡ℎelement of 𝐴𝐵, take the 𝑖𝑡ℎrow of matrix A 

and the 𝑘𝑡ℎ column of B which are both n-tuples.  

Multiply their corresponding elements and add up all these products.  

For example, if the 2nd row of 𝐴 = [1 2 3] and the 3rd column of 𝐵 =

[
1
5
6
], then the (2,3)𝑡ℎentry of  𝐴𝐵 = 1 × 4 + 2 × 5 + 3 × 6 = 32 

Note that two matrices A and B can only be multiplied if the number of 

columns of 𝐴 equals the number of rows of 𝐵.  

The following illustration may help in explaining what we do to obtain 

the product of two matrices:              

            𝐴𝐵 =

(

 
 
 

𝑎11 𝑎12 … 𝑎1𝑗 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑗 … 𝑎2𝑛
⋮ ⋮ … ⋮ … ⋮
⋮ ⋮ … ⋮ … ⋮
⋮ ⋮ … ⋮ … ⋮
𝑎𝑚1 𝑎𝑚2 … … … 𝑎𝑚𝑛)

 
 
 

(

 
 
 
 

𝑏11 𝑏12 … 𝑏1𝑘 … 𝑏1𝑝
𝑏21 𝑏22 … 𝑏2𝑘 … 𝑏2𝑝
⋮ ⋮ … ⋮ … ⋮
⋮ ⋮ … ⋮ … ⋮
⋮ ⋮ … ⋮ … ⋮
𝑏𝑛1 𝑏𝑛2 ⋯ 𝑏𝑛𝑘 ⋯ 𝑏𝑛𝑝)
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                     =

(

 
 
 

𝑐11 𝑐12 … 𝑐1𝑘 … 𝑐1𝑝
𝑐21 𝑐22 … 𝑐2𝑘 … 𝑐2𝑝
⋮ ⋮ … ⋮ … ⋮
⋮ ⋮ … 𝑐𝑖𝑘 … 𝑐𝑖𝑝
⋮ ⋮ … ⋮ … ⋮
𝑐𝑚1 𝑐𝑚2 … 𝑐𝑚𝑘 … 𝑐𝑚𝑝)

 
 
 

  

where 𝑐𝑖𝑘 = ∑𝑎𝑖𝑗𝑏𝑗𝑘 

 

Note: This is a very new kind of operation so take your time in trying to 

understand it.  

To get you used to matrix multiplication we consider the product of a row 

and a column matrix.  

Let 𝐴 = [𝑎1 𝑎2 … 𝑎𝑛] be (1 × 𝑛) matrix and 𝐵 = [

𝑏1
𝑏2
⋮
𝑏𝑛

] be (𝑛 × 1) 

matrix.  

The product 𝐴𝐵 = [𝑎1𝑏1 + 𝑎2𝑏2 +⋯…+ 𝑎𝑛𝑏𝑛] which is a (1 ×
1)matrix 

Example 14: Let 𝐴 = [−1 2 0 3] and 𝐵 = [

3
1
4
−2

].  

𝐴𝐵 = [(−1)(3) + (2)(1) + (0)(4) + (3)(−2)] = (−3 + 2 + 0 − 6)
= (−7) 

 

Example 15: Let 𝐶 = [
1 −5 2
−2 6 1
3 0 −4

] and 𝐷 = [
2 −3
−4 0
3 1

]. 

𝐶𝐷 = [
1 ⋅ 2 + (−5)(−4) + 2.3 1(−3) + (−5)0 + 2.1
(−2) ⋅ 2 + 6(−4) + 1.3 (−2)(−3) + 6.0 + 1.1

3.2 + 0(−4) + (−4)3 3(−3) + 0.0 + 1(−4)1

]

= [
28 −1
−25 7
−6 −13

] 

 

Notice that DC is not defined because the number of columns of 𝐷 = 2 ≠ 

number of rows of 𝐶 = 3.  

Note that; if CD is defined,  𝐷𝐶 may not necessarily be defined.  

In fact, even if CD and DC are both defined it is possible that 𝐶𝐷 ≠ 𝐷𝐶. 

Consider the following example: 

𝐶 = [
3 2 4
1 −1 0

] and 𝐷 = [
2 3
1 0
−1 1

] 
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𝐶𝐷 = [
3 ⋅ 2 + 2 ⋅ 1 + 4(−1) 3 ⋅ 3 + 2 ⋅ 0 + 4 ⋅ 1

1 ⋅ 2 + (−1)1 + 0(−1) 1 ⋅ 3 + (−1)0 + 0 ⋅ 1
]

= [
4 13
1 3

] 

𝐷𝐶 = [

2 ⋅ 3 + 3 ⋅ 1 2 ⋅ 2 + 3(−1) 2 ⋅ 4 + 3 ⋅ 0

1 ⋅ 3 + 0 ⋅ 1 1 ⋅ 2 + 0(−1) 1 ⋅ 4 + 0 ⋅ 0
(−1)3 + 1 ⋅ 1 (−1)2 + 1(−1) (−1)4 + 1 ⋅ 0

]

= [
9 1 8
3 2 4
−2 −3 −4

] 

From example above, 𝐶𝐷 is a 2x2 matrix while 𝐷𝐶 is a 3x3 matrix.  

𝐶𝐷 and 𝐷𝐶 are defined but of different dimensions, thus 𝐶𝐷 ≠ 𝐷𝐶. 

Another point of difference between multiplication of numbers and matrix 

multiplication is that 𝐴 ≠ 0, 𝐵 ≠ 0 but 𝐴𝐵 can be zero.   

Example 16: If 𝐴 = (
1 1
1 1

), 𝐵 = (
1 0
−1 0

) 

𝐴𝐵 = (
1 ⋅ 1 + 1(−1) 1 ⋅ 0 + 0 ⋅ 0
1 ⋅ 1 + 1(−1) 1 ⋅ 0 + 1 ⋅ 0

) = (
0 0
0 0

) 

So, you see that the product of two non-zero matrices can be zero.  

 

Let’s check if BA is equal to AB: 

𝐵𝐴 = (
1 ⋅ 1 + 0 ⋅ 1 1 ⋅ 1 + 0 ⋅ 1
(−1)1 + 0 ⋅ 1 (−1)0 + 1 ⋅ 1

) = (
1 1
−1 1

) 

This shows that AB is necessarily not equal to BA;  

 

Hence matrix multiplication is not commutative. 

The following exercises will give you some practice in matrix 

multiplication. 

 

Exercise: 

1) If 𝐶 = (
1 1 0
0 1 0

), 


















00

11

10

D .  Find (i) 𝐶 + 𝐷 (ii) 𝐶𝐷 (iii) 𝐷𝐶   

(iv) Is 𝐶𝐷 = 𝐷𝐶? 

2) Let𝐴 = (
1 1
0 1

), 𝐵 = (
1 0
1 1

). Calculate i) (𝐴 + 𝐵)2 ii) 𝐴2 +

2𝐴𝐵 + 𝐵2  iii) Is i) = ii) 

Hint:𝐴2 = 𝐴 ⋅ 𝐴 

 

1.3.9.2 Properties of a Matrix Product  
 

We will now state 5 properties concerning matrix multiplication. (Their 

proofs could get a little technical, and we prefer not to give them here).  
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i. Associative Law: If A, B, C are 𝑚 × 𝑛, 𝑛 × 𝑝and 𝑝 × 𝑞matrices, 

respectively, over F, then (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶), i.e., matrix 

multiplication is associative.  

ii. Distributive Law: If A is an 𝑚 × 𝑛matrix and B, C are 𝑛 ×
𝑝matrices, then  

iii. 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶.  

iv. Similarly, if, A and B are 𝑚 × 𝑛matrices, and C is an 𝑛 × 𝑝matrix, 

then  

v. (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶.  

vi. Multiplicative identity: Given the identity matrix 𝐼𝑛, which acts 

as the multiplicative identity for matrix multiplication. We have 

𝐴𝐼𝑛 = 𝐴, 𝐴𝐼𝑚 = 𝐴, for every 𝑚 × 𝑛 matrix 𝐴.  

vii. If 𝑎 ∈ 𝐹, and A, B are 𝑚 × 𝑛 and 𝑛 × 𝑝 matrices over F, 

respectively then 

viii. 𝛼(𝐴𝐵)  =  (𝛼𝐴) 𝐵 =  𝐴 (𝛼𝐵)  
ix. If 𝐴, 𝐵 are 𝑚 × 𝑛, 𝑛 × 𝑝matrices over F, respectively, then 

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇.  

 

(This says that the operation of taking the transpose of a matrix is anti-

commutative). 

 

These properties can help you in solving the following examples.  

 

Example 17: 

a. For 𝐴 = (
3 −4
−1 0
2 −2

) and 𝐵 = (
−1 3 −6
2 4 0

). Show that 

2(𝐴𝐵) = (2𝐴)𝐵 

b. Show that (𝐴 + 𝐵)𝑇 = 𝐴2 + 𝐴𝐵 + 𝐵𝐴 + 𝐵2 for any two 𝑛 ×
𝑛matrices 𝐴 and 𝐵. 

 

Solution: 

a. 2𝐴𝐵 = 2(
3 −4
−1 0
2 −2

) (
−1 3 −6
2 4 0

) 

= 2(
3(−1) + (−4)2 3(3) + (−4)4 3(−6) + (−4)0
(−1)(−1) + 0 ⋅ 2 (−1)3 + 0 ⋅ 4 (−1)(−6) + 0 ⋅ 0

2(−1) + (−2) ⋅ 2 2 ⋅ 3 + (−2) ⋅ 4 2(−6) + (−2) ⋅ 0

) 

                = 2 [
−11 −7 −18
1 −3 6
−6 −2 −12

] 

                       = [
−22 −14 −36
2 −6 12
−12 −4 −24

] 
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Also, (2𝐴)𝐵 = (
6 −8
−2 0
4 −4

) (
−1 3 −6
2 4 0

) 

= (
6(−1) + (−8)2 6(3) + (−8)4 6(−6) + (−8)0
(−2)(−1) + 0 ⋅ 2 (−2)3 + 0 ⋅ 4 (−2)(−6) + 0 ⋅ 0

4(−1) + (−4) ⋅ 2 4 ⋅ 3 + (−4) ⋅ 4 4(−6) + (−4) ⋅ 0

) 

                        = [
−6 − 16 18 − 32 −36 − 0
2 + 0 −6 + 0 12 + 0
−4 − 8 12 − 16 −24 − 0

]  

                        = [
−22 −14 −36
2 −6 12
−12 −4 −24

]  

Hence 2(𝐴𝐵) = (2𝐴)𝐵 

Now; attempt (b) part of the example 

Now we shall go on to introduce you to the concept of an invertible 

matrix. 

 

Solutions /Answers to Exercises 

 

E1) Suppose 𝐵′1 = {(1,0,1), (0,2, −1)} and 𝐵′2 = {0,1), (1,0)} 
      Then 𝑇(1,0,1) = (1) = 0 ∙ (0,1) + 1 ∙ (1,0) 
            𝑇(0,2, −1) = (0,2) = 2 ∙ (0,1) + 0 ∙ (1,0)   
              𝑇(1,0,0) = (1,0) = 0 ∙ (0,1) + 1 ∙ (1,0)  

               [𝑇]𝐵′1𝐵′2 = (
0 2 0
1 0 1

)  

 

E2) 𝐵1 = {𝑒1, 𝑒2, 𝑒3} and 𝐵2 = {𝑓1, 𝑓2} are the standard bases (given in 

Example 3).   

         𝑇(𝑒1) = 𝑇(1,0,0) = (1,2) = 𝑓1 + 2𝑓2  

         𝑇(𝑒2) = 𝑇(0,1,0) = (2,3) = 2𝑓1 + 3𝑓2  

         𝑇(𝑒3) = 𝑇(0,0,1) = (2,4) = 2𝑓1 + 4𝑓2  

        [𝑇]𝐵1𝐵2 = (
1 2 2
2 3 4

)  

 

E3) 𝑇(1,0,0) = (1,2) = 1 ∙ (1,2) = 0 ∙ (2,3) 
       𝑇(0,1,0) = (2,3) = 0 ∙ (1,2) + 1 ∙ (2,3)  
    𝑇(1,−2,1) = (−1,0) = 3 ∙ (1,2) − 2 ∙ (2,3)  

       [𝑇]𝐵′1𝐵′2 = (
1 0 3
0 1 −2

)  

 

E4) Let 𝐵 = {1, 𝑡, 𝑡2, 𝑡3}.   
      Then, 𝐷(1) = 0 = 0 ∙ 1 + 0 ∙ 𝑡 + 0 ∙ 𝑡2 + 0 ∙ 𝑡3 
                 𝐷(𝑡) = 1 = 1 ∙ 1 + 0 ∙ 𝑡 + 0 ∙ 𝑡2 + 0 ∙ 𝑡3  
                𝐷(𝑡2) = 2𝑡 = 0 ∙ 1 + 2 ∙ 𝑡 + 0 ∙ 𝑡2 + 0 ∙ 𝑡3  
                𝐷(𝑡3) = 3𝑡2 = 0 ∙ 1 + 2 ∙ 𝑡 + 3 ∙ 𝑡2 + 0 ∙ 𝑡3  
     Therefore, [𝐷]𝐵 is the given matrix.  
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E5) We know that   

                𝑇(𝑒1) = 𝑓1  
                𝑇(𝑒2) = 𝑓1 + 𝑓2  
                𝑇(𝑒3) = 𝑓2  
Therefore, for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3.  
          𝑇(𝑥, 𝑦, 𝑧) = 𝑇(𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3) = 𝑥𝑇(𝑒1) + 𝑦𝑇(𝑒2) + 𝑧𝑇(𝑒3)    
                           = 𝑥𝑓1 + 𝑦(𝑓1 + 𝑓2) + 𝑧𝑓2 = (𝑥 + 𝑦)𝑓1 + (𝑦 + 𝑧)𝑓2  
That is, 𝑅: 𝑅3 → 𝑅2: 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑦 + 𝑧) 
 

E6) We are given that   

                 𝑇(1) = 0 ∙ 1 + 1 ∙ 𝑖 = 𝑖    
                  𝑇(𝑖) = (−1) ∙ 1 + 0 ∙ 1 = −1    
Therefore, for any 𝑎 + 𝑖𝑏 ∈ 𝐶, we have   

         𝑇(𝑎 + 𝑖𝑏) = 𝑎𝑇(1) + 𝑏𝑇(𝑖) = 𝑎𝑖– 𝑏  
 

E7) Since 𝑑𝑖𝑚 𝑀2×3(𝑅) is 6, any linearly independent subset can have 6 

elements, at most.  

 

E8) Let  𝛼, 𝛽 ∈ 𝑅 such that 𝛼[1,0] + 𝛽[1,−1] = [0,0]   Then 𝛼 +
𝛽,−𝛽 = [0, 0].  
         Thus, 𝛼 = 0, 𝛽 = 0.   

     Therefore, the matrices are linearly independent. 

 

SELF-ASSESSMENT EXERCISE(S) 

 

a. Show that (𝐴 + 𝐵)𝑇 = 𝐴2 + 𝐴𝐵 + 𝐵𝐴 + 𝐵2 for any two 𝑛 ×
𝑛matrices 𝐴 and 𝐵. 

b. Let 𝐴 = (
2 −1 0
1 0 −3
0 0 0

) and 𝐵 = (
1 −4 0
2 0 3
4 0 −2

). Find (𝐴𝐵)𝑇 

and 𝐵𝑇𝐴𝑇, are they equal? 

c. Let A, B be two symmetric n x n matrices over F. Show that AB is 

symmetric if and only if AB = BA. 

d. Let A, B be two diagonal n x n matrices over F. Show that AB is 

also a diagonal matrix. 

e. Is the matrix [
1 0
2 −1

] invertible? If so, find its inverse 

 

Conclusion 

 

Matrix theory has been seen to occupy a very important position in pure 

and applied mathematics as well as in economics where the use of input-

output matrix for solving some national economy problems. 
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Matrices have been seen to be intimately connected with linear 

transformations.  

 

Algebraic operations on matrices were derived from the corresponding 

operations on linear transformations. We will also discuss. One type, a 

triangular matrix, which is one of the special types of matrices, was 

considered.  

 

   1.4  Summary  

 

We briefly sum up what has been done in this unit.  

 

1)  The term “matrices” have been defined and described and the 

method of associating matrices with linear transformations was 

explained.  

2)  Sums of matrices and multiplication of matrices by scalars have 

been showed with numerical examples.  

3)  The proof of 𝑀𝑚×𝑛(𝐹) as a vector space of dimension𝑚𝑛 over F 

was explained 

4)  the transpose of a matrix, the conjugate of a complex matrix, the 

conjugate transpose of a complex matrix, a diagonal matrix, 

identity matrix, scalar matrix and lower and upper triangular 

matrices have been defined. 

5)  Multiplication of matrices was defined and its connection with the 

composition of linear transformations has been shown. Some 

properties of the matrix product were also listed and applied.  
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UNIT 2  MATRICES II 

 

Unit Structure 

 

2.1  Introduction  

2.2  Learning Outcomes 

2.3  Invertible Matrices  

    2.3.1  Inverse of a Matrix 

    2.3.2  Matrix of Change of Basis 

    2.3.3  The Invertible Matrix Theorem 

2.4  Summary 

2.5  References/Further Readings  

 

 2.1  Introduction 

 

The last unit has introduced us to the basic descriptions and definitions of 

a matrix and various types of matrices, as well as discussing the method 

of associating matrices with linear transformations along with some 

theorems.  

 

In this unit, invertible matrices shall be defined, discussed and 

determined. The meaning of the matrix of a change of basis shall be 

highlighted and shown to be invertible. Theorems relating invertible 

matrices with change of bases shall be stated and proved.  

 

 2.2  Learning Outcomes 

 

 Determine if a given matrix is invertible;  

 Obtain the inverse of a matrix;  

 Discuss the effect that the change of basis has on the matrix of a 

linear transformation. 

 State the invertible theorem  

 State and prove the conditions for a matrix to be invertible. 
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  2.3  Invertible Matrices 

 

2.3.1  Inverse of a Matrix  
 

Just as we defined the operations on matrices by considering them on 

linear operators first, we give a definition of invertibility for matrices 

based on considerations of invertibility of linear operators.  

 

It may help you to recall what we mean by an invertible linear 

transformation. 

 

A linear transformation 𝑇:𝑈 → 𝑉 is invertible if  

(a) T is 1 – 1 and onto, or, equivalently,  

(b) There exists a linear transformation 𝑆: 𝑉 → 𝑈 such that 𝑆 ∘ 𝑇 = 𝐼𝑢, 𝑇 ∘
𝑆 = 𝐼𝑣 .  
In particular, 𝑇 ∈ (𝑉, 𝑉) is said to be invertible if there exist 𝑆 ∈ 𝐿(𝑉, 𝑉) 
such that            𝑆𝑇 = 𝑇𝑆 = 𝐼.  
We have the following theorem involving the matrix of an invertible 

linear operator.  

 

Theorem 2.1: Let 𝑉 be an n-dimensional vector space over a field 𝐹, and 

𝐵 be a basis of 𝑉.  

Let 𝑇 ∈ (𝑉, 𝑉),𝑇 is invertible if there exists 𝐴 ∈ 𝑀𝑛(𝐹) such that 
[𝑇]𝐵𝐴 = 𝐼𝑛.  

 

Proof: Suppose 𝑇 is invertible, then there exist 𝑆 ∈ 𝐿(𝑉, 𝑉) such that 

𝑆𝑇 = 𝑇𝑆 = 𝐼.  
Then, by a Theorem, [𝑇𝑆]𝐵 = [𝑆𝑇]𝐵 = 𝐼, that is, [𝑇]𝐵[𝑆]𝐵 = [𝑆]𝐵[𝑇]𝐵 =
𝐼 
Take 𝐴 = [𝑆]𝐵, then [𝑇]𝐵𝐴 = 𝐼 = 𝐴[𝑇]𝐵 

Conversely, suppose there exist a matrix A such that [𝑇]𝐵𝐴 = 𝐴[𝑇]𝐵 = 𝐼.  
Let 𝑆 ∈ 𝐿(𝑉, 𝑉) be such that [𝑆]𝐵 = 𝐴. (𝑆 exists because of Theorem 2), 

then    

[𝑇]𝐵[𝑆]𝐵 = [𝑆]𝐵[𝑇]𝐵 = 𝐼 = [𝐼]𝐵 

Thus,  [𝑇𝑆]𝐵[𝑆𝑇]𝐵 = [𝐼]𝐵 

So, by Theorem,  𝑆𝑇 = 𝑆𝑇 = 𝐼. that is, 𝑇 is invertible.  

Theorem 1 motivates us to give the following definition.  

 

Definition 1: A matrix 𝐴 ∈ 𝑀𝑛(𝐹) is said to be invertible if there exists 

𝐵 ∈ 𝑀𝑛(𝐹) such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛.  
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N.B: Only a square matrix can be invertible. 

𝐼𝑛 is an example of an invertible matrix, since 𝐼𝑛 ⋅ 𝐼𝑛 = 𝐼𝑛 

On the other hand, the 𝑛 × 𝑛 zero matrix 0 is not invertible, since 0𝐴 =
0 ≠ 𝐼𝑛, for any 𝐴.  

Note that Theorem 1says that 𝑇 is invertible iff  [𝑇]𝐵is invertible.  

We give another example of an invertible matrix now: 

 

Example 1: Is 𝐴 = [
1 1
0 1

] invertible? 

Solution: Suppose 𝐴is invertible, then there exists𝐵 = [
𝑎 𝑏
𝑐 𝑑

] such that 

𝐴𝐵 = 𝐼 = 𝐵𝐴 

Now𝐴𝐵 = 𝐼 ⇒ [
1 1
0 1

] [
𝑎 𝑏
𝑐 𝑑

] = [
𝑎 + 𝑐 𝑏 + 𝑑
𝑐 𝑑

] = [
1 0
0 1

] 

          ⇒ 𝑎 + 𝑐 = 1; 𝑐 = 0, 𝑑 = 1, 𝑏 + 𝑑 = 0 

          ⇒ 𝑎 = 1, 𝑏 = −1 and 𝑑 = 1 

∴ 𝐵 = [
1 −1
0 1

]. 

Let us check 𝐵𝐴 = 𝐼 

𝐵𝐴 = [
1 −1
0 1

] [
1 1
0 1

] = [
1 + 0 1 − 1
0 + 0 0 + 1

] = [
1 0
0 1

] = 𝐼 

Therefore, 𝐴 is invertible.  

 

We now show that if an inverse of a matrix exists, it must be unique. 

 

Theorem 2.2: Suppose 𝐴 ∈ 𝑀𝑛(𝐹) is invertible. There exists a unique 

matrix 𝐵 ∈ 𝑀𝑛(𝐹) such that 𝐴𝐵 = 𝐵𝐴 = 𝐼.  
 

Proof: Suppose 𝐵, 𝐶 ∈ 𝑀𝑛(𝐹) are two matrices such that 𝐴𝐵 = 𝐵𝐴 = 𝐼, 
and 𝐴𝐶 = 𝐶𝐴 = 𝐼, then 𝐵 = 𝐵𝐼 = 𝐵(𝐴𝐶) = (𝐵𝐴)𝐶 = 𝐼𝐶 = 𝐶.  

Because of Theorem1 we can make the following definition.  

 

Definition 2: Let Abe an invertible matrix. The unique matrix B such that 

AB = BA is I is called the inverse of A and is denoted by𝐴−1.  
Let us take an example. 

 

Example 2: Calculate the product AB, where 𝐴 = [
1 𝑎
0 1

], 𝐵 = [
1 𝑏
0 1

]. 

Calculate 𝐴−1 
 

Solution: 

𝐴𝐵 = [
1 𝑎
0 1

] [
1 𝑏
0 1

] = [
1 𝑎 + 𝑏
0 1

] 

Now, how can we use this to obtain 𝐴−1 ?  

Well, if 𝐴𝐵 = 𝐼, then 𝑎 + 𝑏 = 0.  

So, if we take 𝐵 = [
1 −𝑎
0 1

], we would have 𝐴𝐵 = 𝐵𝐴 = 𝐼.  
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Thus 𝐴−1 = [
1 −𝑎
0 1

] 

Next is a few observations about the matrix inverse, in the form of a 

theorem.  

 

Theorem 2.3:  

a) If A is invertible, then  

(i) 𝐴−1 is invertible and (𝐴−1)−1 = 𝐴, 

(ii) 𝐴𝑇 is invertible and (𝐴𝑇)−1 = (𝐴−1)𝑇.  

b) If 𝐴, 𝐵 ∈ 𝑀𝑛(𝐹) are invertible, then 𝐴𝐵 is invertible and (𝐴𝐵)−1 =
𝐵−1𝐴−1 
 

Proof:  

(a) By definition  

       𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼                        ………………………. (1)  

(i) Equation (1) shows that 𝐴−1 is invertible and (𝐴−1)𝑇 = 𝐴 

(ii) If we take transposes in Equation (1) and use the property that 
(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇,  

      we obtain 

(𝐴−1)𝑇𝐴𝑇 = 𝐴𝑇(𝐴−1)𝑇 = 𝐼𝑇 = 𝐼 
     So 𝐴𝑇 is invertible and (𝐴𝑇)−1 = (𝐴−1)𝑇 

(b) To prove this, we will use the associativity of matrix multiplication.  

Now (𝐴𝐵)(𝐵−1𝐴−1) = [𝐴(𝐵𝐵−1)]𝐴−1 = 𝐴𝐴−1 = 𝐼 
(𝐵−1𝐴−1)(𝐴𝐵) = 𝐵−1[(𝐴−1𝐴)𝐵] = 𝐵𝐵−1 = 𝐼 

So,𝐴𝐵 is invertible and(𝐴𝐵)−1 = 𝐵−1𝐴−1 
We now relate matrix invertibility with the linear independence of its 

rows or columns.  

When we say that the m rows of 𝐴 = [𝑎𝑖𝑗] ∈ 𝑀𝑚×𝑛(𝐹) are linearly 

independent, what do we mean?  

Let 𝑅1, . . . , 𝑅𝑚 be the m row vectors [𝑎11,𝑎12, … , 𝑎1𝑛],

[𝑎21,𝑎22, … , 𝑎21𝑛], … , [𝑎𝑚1,𝑎𝑚2, … , 𝑎𝑚𝑛]  respectively. We say that they 

are linearly independent if, whenever ∃ 𝑎1,𝑎2, … , 𝑎𝑚 ∈ 𝐹 such that                                     

𝑎1𝑅1 + 𝑎2𝑅2 +⋯+ 𝑎𝑚𝑅𝑚 = 0, then,  𝑎1, = 0,…… , 𝑎𝑚 = 0.   

Similarly, the n columns 𝐶1, 𝐶2, … , 𝐶𝑛 of 𝐴 are linearly independent if 

𝑏1𝐶1 +⋯+ 𝑏𝑛𝐶𝑛 = 0,  ⇒ 𝑏1 = 0, 𝑏2 = 0,… , 𝑏𝑛 = 0  where 𝑏1, … , 𝑏𝑛 ∈
𝐹.  

Thus, the theorem follows: 

 

Theorem 2.4: Let 𝐴 ∈ 𝑀𝑛(𝐹), then the following conditions are 

equivalent  

(a) 𝐴 is invertible  

(b) The columns of 𝐴 are linearly independent.  

(c) The rows of 𝐴 are linearly independent.  
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Proof: We first prove (𝑎) ⇔ (𝑏), using Theorem,  

Let 𝑉 be an n-dimensional vector space over F and 𝐵 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} be 

a basis of V. 

Let 𝑇 ∈ 𝐿(𝑉, 𝑉) be such that (𝑇)𝐵 = 𝐴, then A is invertible iff T is 

invertible iff 𝑇(𝑒1), 𝑇(𝑒2), . . . , 𝑇(𝑒𝑛) are linearly independent (see 

theorem under linear independence).  

Now we define the map 𝜃: 𝑉 → 𝑀𝑛+1(𝐹): (𝑎1𝑒1+. . . +𝑎𝑛𝑒𝑛) = (

𝑎1
⋮
⋮
𝑎𝑛

).  

Let 𝐶1,𝐶2, … , 𝐶𝑛 be the columns of A. Then 𝜃(𝑇(𝑒1))𝐶𝑖 for all 𝑖 =

1, . . . , 𝑛.  

Since 𝜃 is an isomorphism, 𝑇(𝑒1), 𝑇(𝑒2), . . . , 𝑇(𝑒𝑛) are linearly 

independent iff 𝐶1,𝐶2, … , 𝐶𝑛 are linearly independent.  

Thus, A is invertible iff 𝐶1,𝐶2, … , 𝐶𝑛 are linearly independent.  

Thus, we have proved (𝑎) ⇔ (𝑏). 
Now, the equivalence of (a) and (c) follows because A is invertible iff 

𝐴𝑇is invertible iff the columns of 𝐴𝑇are linearly independent (as we have 

just shown) iff the rows of A are linearly independent (since the columns 

of 𝐴𝑇are the rows of A).  

So, we have shown that (𝑎) ⇔ (𝑐). 
Thus, the theorem is proved. 

Example 3: Let 𝐴 = (
1 0 1
0 1 1
1 1 1

) ∈ 𝑀3(𝑅). Determine whether or not 𝐴 

is invertible. 

 

Solution: Let 𝑅1,𝑅2, 𝑅3 be the rows of 𝐴. We will show that they are 

linearly independent.  

Suppose 𝑥𝑅1 + 𝑦𝑅2 + 𝑧𝑅3 = 0, where 𝑥, 𝑦, 𝑧 ∈ 𝑅. Then,  

𝑥(1,0,1) + 𝑦(0,1,1) + 𝑧(1,1,1) = (0,0,0).  
This gives us the following equations. 

𝑥 + 𝑦 = 0
𝑦 + 𝑧 = 0

𝑥 + 𝑦 + 𝑧 = 0
 

On solving these we have 𝑥 = 0, 𝑦 = 0, 𝑧 = 0.  

Thus, by Theorem 2.2, 𝐴 is invertible. 

Exercise: Check if 𝐵 = (
2 0 1
0 0 1
0 3 0

) ∈ 𝑀3(𝑄). 

We will now see how we associate a matrix to a change of basis.  

This association will be made use of very often in the next unit.  
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2.3.2  Matrix of Change of Basis  

 

Definition 3: Let 𝑉  be an n-dimensional vector space over the field 𝐹.  

Let 𝐵 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} and 𝐵′ = {𝑒′1, 𝑒′2, . . . , 𝑒′𝑛} be two bases of  𝑉.  

The transition matrix M from 𝐵 to 𝐵′ is the 𝑛 × 𝑛 matrix whose 𝑗𝑡ℎ 

column is the coordinate representation [𝑒′𝑗
′]
𝐵

of the 𝑗𝑡ℎ vector of 𝐵′ 

relative to B or simply called the matrix of the change of basis from 𝐵 to 

𝐵′ denoted by 𝑀𝐵,𝐵′  .  

 

Proposition:  Let B and 𝐵′ be bases for the n-dimensional vector space 𝑉 

over the field 𝐾. Then, for any vector 𝑒 ∈ 𝑉, the coordinate 

representations of 𝑒 with respect to B and 𝐵′ are related by [𝑒]𝐵 = 𝑀[𝑒]𝐵′ 
 

Proof: 

Let𝑎𝑖𝑗be the 𝑖, 𝑗entry of the matrix M. By definition, we have 𝑒𝑗
′ =

∑ 𝑎𝑖𝑗𝑒𝑖
𝑛
𝑖=1  

Take an arbitrary vector 𝑒 ∈ 𝑉and let 
[𝑒]𝐵 = [𝑐1, . . . , 𝑐𝑛]

𝑇,           [𝑒]𝐵′ = [𝑑1, . . . , 𝑑𝑛]
𝑇 

This means, by definition, that 

𝑒 =∑𝑐𝑖𝑒𝑖

𝑛

𝑖=1

=∑𝑑𝑗𝑒𝑗
′ 

Substituting the formula for 𝑒𝑗
′ into the second equation, we have 

𝑒 =∑𝑑𝑗 (∑𝑎𝑖𝑗𝑒𝑖

𝑛

𝑖=1

)

𝑛

𝑗=1

 

Reversing the order of summation, we get 

𝑒 =∑(∑𝑎𝑖𝑗𝑑𝑗

𝑛

𝑗=1

)

𝑛

𝑖=1

𝑒𝑖 

Now we have two expressions for e as a linear combination of the vectors 

𝑒𝑖.  
By the uniqueness of the coordinate representation, they are the same, that 

is, 

𝑐𝑖 =∑𝑎𝑖𝑗𝑑𝑗

𝑛

𝑗=1

 

In matrix form, this says [

𝑐1
⋮
𝑐𝑛
] = 𝑀 [

𝑑1
⋮
𝑑𝑛

] or [𝑒]𝐵 = 𝑀[𝑒]𝐵′ as required. 

Note that M is the matrix of the transformation 𝑇 ∈ 𝐿(𝑉, 𝑉)such that  𝑇 =

𝑒𝑗
′′ with respect to the basis B. Since {𝑒1

′ , 𝑒2
′ , . . . , 𝑒𝑛

′ }  is a basis of V, from 

Unit 3we see that T is 1 – 1 and onto. Thus, T is invertible. So M is 

invertible.  
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Thus, the matrix of the change of basis from B to 𝐵′ is invertible 

Note: a)  𝑀𝐵,𝐵′ = 𝐼𝑛, this is because, in this case 𝑒𝑗
′ = 𝑒𝑗∀𝑗 = 1, . . . , 𝑛.  

  b) 𝑀𝐵,𝐵′ = 𝐼(𝑒𝑗
′) = [𝐼]𝐵′, 𝐵, this is because, in this case 𝑒𝑗

′ =

∑ 𝑎𝑖𝑗𝑒𝑖
𝑛
𝑖=1 ∀𝑗 = 1, . . . , 𝑛. 

Now suppose A is any invertible matrix. By Theorem 2.2, ∃   𝑇 ∈ 𝐿(𝑉, 𝑉) 
such that 
[𝑇]𝑅 = 𝐴.  

Since A is invertible, T is invertible. Thus, T is 1 – 1 and onto.  

Let 𝑓𝑖 = 𝑇(𝑒𝑖)∀𝑗 = 1, . . . , 𝑛, then 𝐵′ = {𝑓1, 𝑓2, . . . , 𝑓𝑛} is also a basis of V, 

and the matrix of change of basis from B to 𝐵′ is A. 

 

Theorem 2.5: Let 𝐵 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} be a fixed basis of V. The mapping 

𝐵′ → 𝑀𝐵,𝐵′ is a 1-1 and onto correspondence between the set of all bases 

of V and the set of invertible 𝑛 × 𝑛 matrices over F.  

Let us see an example of how to obtain 𝑀𝐵,𝐵′ . 

 

Example 4: In 𝑅2, 𝐵 = {𝑒1, 𝑒2} is the standard basis.  Let 𝐵′ be the basis 

obtained by rotating B through an angle 𝜃  in the anti-clockwise direction 

(see Fig. 1).  

Then 𝐵′ = {𝑒1
′ , 𝑒2

′ },  where 𝑒1
′ = (𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃), 𝑒2

′ = (−𝑠𝑖𝑛 𝜃 , 𝑐𝑜𝑠 𝜃). 
Find 𝑀𝐵,𝐵′  . 

 

 
Solution: 

𝑒1
′ = 𝑐𝑜𝑠 𝜃 (1.0) + 𝑠𝑖𝑛 𝜃 (0.1)  and    𝑒2

′ = −𝑠𝑖𝑛 𝜃 (1.0) + 𝑐𝑜𝑠 𝜃 (0.1) 

Thus, 𝑀𝐵,𝐵′ = (
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

).  

The next corollary summarizes how transition matrices behave.  

Here, I denotes the identity matrix, that is, the matrix having 1’s on the 

main diagonal and 0’s everywhere else.  

Given a matrix M, we denote by 𝑀−1 the inverse of M, the matrix Q 

satisfying MQ = QM = I.  

Not every matrix has an inverse, we say that P is invertible or non-

singular if it has an inverse. 
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Corollary: Let 𝐵, 𝐵′, 𝐵″ be bases of the vector space V, then 

a) 𝑀𝐵,𝐵 = 𝐼 

b) 𝑀𝐵′,𝐵 = (𝑀𝐵,𝐵′)
−1

 

c) 𝑀𝐵′,𝐵 = 𝑀𝐵,𝐵′𝑀𝐵′𝐵′′ 

The proof follows from the preceding Proposition.  

For example, for (b) we have 
[𝑒]𝐵 = 𝑀𝐵,𝐵′[𝑒]𝐵′,                [𝑒]𝐵′ = 𝑀𝐵′,𝐵[𝑒]𝐵′ 

So,  [𝑒]𝐵 = 𝑀𝐵,𝐵′𝑀𝐵′,𝐵[𝑒]𝐵 

By the uniqueness of the coordinate representation, we have𝑀𝐵,𝐵′𝑀𝐵′,𝐵 =

𝐼 
 

Remark: To express the coordinate representation with respect to the 

new basis in terms of the old one, we need the inverse of the transition 

matrix: [𝑒]𝐵′ = 𝑀𝐵,𝐵′
−1 [𝑒]𝐵 

 

Example5: Consider the vector space 𝑅2, with the two bases 

𝐵 = ([
1
0
] , [
0
1
]),  𝐵′ = ([

1
1
] , [
2
3
]) 

The transition matrix is 𝑀𝐵,𝐵′ = [
1 2
1 3

] whose inverse is calculated to be 

𝑀𝐵′,𝐵 = [
3 −2
−1 1

] 

So, the theorem tells us that, for any 𝑥, 𝑦 ∈ 𝑅, we have 

[
𝑥
𝑦] = 𝑥 [

1
0
] + 𝑦 [

0
1
] = (3𝑥 − 2𝑦) [

1
1
] + (−𝑥 + 𝑦) [

2
3
] as is easily 

checked. 

 

Definition 4: The 𝑚 × 𝑛matrices A and B are said to be equivalent if B = 

PAQ, where P and Q are invertible matrices of sizes 𝑚 × 𝑛and 𝑛 ×
𝑛respectively. 

 

Theorem 2.6: Given any𝑚 × 𝑛matrix A, there exist invertible matrices P 

and Q of sizes𝑚 ×𝑚 and𝑛 × 𝑛respectively, such that PAQ is in the 

canonical form for equivalence. 

 

Remarks: The relation “equivalence” defined above is an equivalence 

relation on the set of all 𝑚 × 𝑛matrices; that is, it is reflexive, symmetric 

and transitive. 

 

When mathematicians talk about a “canonical form” for an equivalence 

relation, they mean a set of objects which are representatives of the 

equivalence classes: that is, every object is equivalent to a unique object 

in the canonical form. 
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We have shown this for the relation of equivalence defined earlier, except 

for the uniqueness of the canonical form. This is our job for the next 

section. 

 

2.3.2  The Invertible Matrix Theorem 

 

This section consists of a single important theorem containing many 

equivalent conditions for a matrix to be invertible. Most of the theorem 

have been proved earlier in the unit, so, you are encouraged to refer to 

them to see the beauty of the theorem. 

 

Theorem 2.7: 

Let 𝐴 be an 𝑛 × 𝑛 matrix, and let 𝑇: 𝑅𝑛 → 𝑅𝑛 be the matrix 

transformation 𝑇(𝑥) = 𝐴𝑥.  

The following statements are equivalent: 

a) 𝐴 is invertible. 

b) 𝐴 has n pivots. 

c) 𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = {0}.  
d) The columns of 𝐴 are linearly independent. 

e) The columns of 𝐴 span 𝑅𝑛. 

f) 𝐴𝑥 = 𝑏 has a unique solution for each 𝑏 ∈ 𝑅𝑛. 

g) 𝑇 is invertible. 

h) 𝑇 is one-to-one. 

i) 𝑇 is onto. 

 

There are two kinds of square matrices: 

1. invertible matrices, and 

2. non-invertible matrices. 

 

For invertible matrices, all of the statements of the invertible matrix 

theorem are true. 

 

For non-invertible matrices, all of the statements of the invertible matrix 

theorem are false. 

 

The following conditions are also equivalent to the invertibility of a 

square matrix A.  

 

They are all simple restatements of conditions in the invertible matrix 

theorem. 

a. The reduced row echelon form of A is the identity matrix 𝐼𝑛. 

b. 𝐴𝑥 = 0 has no solutions other than the trivial one. 

c. 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = 0. 

d. The columns of A form a basis for 𝑅𝑛. 

e. 𝐴𝑥 = 𝑏 is consistent for all 𝑏 ∈ 𝑅𝑛. 
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f. 𝐶𝑜𝑙(𝐴) = 𝑅𝑛. 

g. 𝐷𝑖𝑚 𝐶𝑜𝑙(𝐴) = 𝑛 

h. 𝑟𝑎𝑛𝑘(𝐴) = 𝑛. 
 

Let us see some common situations in which the invertible matrix theorem 

is useful. 

Consider the matrix 𝑨 = (
1 2 −1
2 4 7
−2 −4 1

). Is the matrix invertible? 

 

The second column is a multiple of the first. The columns are linearly 

dependent, so 𝐴 does not satisfy condition of the theorem. Therefore, 𝐴 is 

not invertible. 

 

Example 6: Let 𝐴 be an 𝑛 × 𝑛 matrix and let 𝑇(𝑥) = 𝐴𝑥. Suppose that 

the range of 𝑇 is 𝑅𝑛. Show that the columns of 𝐴 are linearly 

independent. 

 

Solution: The range of T is the column space of 𝐴, so 𝐴 satisfies 

condition 5 of the Theorem. Therefore, 𝐴 also satisfies condition 4, which 

says that the columns of  𝐴 are linearly independent. 

Example 7: Let 𝐵 be an 3 × 3 matrix such that 𝑨(
1
7
0
) = 𝑨(

2
0
−1
) 

If we set 𝑏 = 𝐴(
1
7
0
) = 𝐴(

2
0
−1
), then 𝐴𝑥 = 𝑏 has multiple solutions, so 

it does not satisfy condition 6 of the Theorem. 

Therefore, it does not satisfy condition 5, so the columns of A do not 

span 𝑅3.  
Therefore, the column space has dimension strictly less than 3, the rank 

is at most 2. 

 

Example 8: Suppose that 𝐴 is an 𝑛 × 𝑛 matrix such that 𝐴𝑥 = 𝑏 is 

inconsistent some vector 𝑏. Show that 𝐴𝑥 = 𝑏 has infinitely many 

solutions for some (other) vector 𝑏. 

 

Solution: By hypothesis, 𝐴 does not satisfy condition 6 of the 

Theorem Therefore, it does not satisfy condition 3, so Nullity(A) is an 

infinite set.  
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If we take 𝑏 = 0, then the equation 𝐴𝑥 = 𝑏 has infinitely many solutions. 

 

SELF-ASSESSMENT EXERCISES 

 

1. Let 𝐵 be the standard basis of 𝑅3 and 𝐵′ be another basis such that 

             𝑀𝐵,𝐵′ = (
0 1 1
1 1 0
0 0 3

). What are the elements of B? 

2. When are two 𝑚 × 𝑛matrices A and B said to be equivalent? 

3. Let 𝐵 = (
2 0 1
0 0 1
0 3 0

) ∈ 𝑀3(𝑄). Determine whether or not B is 

invertible. 

 

Conclusion 

 

Only a square matrix can be invertible. A matrix is P is invertible or non-

singular if it has an inverse. 

 

Given two bases B and 𝐵′, for the n-dimensional vector space V over the 

field K, then, for any vector 𝑒 ∈ 𝑉, the coordinate representations of 𝑒 

with respect to B and 𝐵′ are related by [𝑒]𝐵 = 𝑀[𝑒]𝐵′. 
 

The reader should be comfortable translating any of the statements in the 

invertible matrix theorem into a statement about the pivots of a matrix. 

 

   2.4  Summary  

 

The concept of an invertible matrix has been explained in this unit.  

 

We defined the matrix of a change of basis, and discussed the effect of 

change of bases on the matrix of a linear transformation. 

 

We have also learnt that if an inverse of a matrix exists, it must be unique. 
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UNIT 3  MATRICES – III 
 

Unit Structure 

 

3.1  Introduction  

3.2  Learning Outcomes 

3.3  Matrices 

    3.3.1  Elementary Operations on a Matrix  

        3.3.2 Elementary Row and Column operations 

       3.3.3 Row-Reduced Echelon Matrices  

    3.3.4  Rank of a Matrix 

    3.3.5  Row and Column Ranks of a Matrix 

    3.3.6  Row and Column Spaces of a Matrix  

    3.3.7  Applications of Row-Reduction of Matrices 

3.4 Inverse of a Matrix  

3.4.1 Solution of System of Linear Equations 

3.5  Successive (or Gaussian) Elimination Method 

3.6 Summary  

3.7 References/Further Reading  

 

 3.1  Introduction 

 

In Unit 1, you were introduced to matrices and shown how a system of 

linear equations can give us a matrix. An important reason for which 

linear algebra arose is the theory of simultaneous linear equations. A 

system of simultaneous linear equations can be translated into a matrix 

equation, and solved by using matrices.  

 

The study of the rank of a matrix is a natural forerunner to the theory of 

simultaneous linear equations. It is in terms of rank that we can find out 

whether a simultaneous system of equations has a solution or not. In this 

unit, you shall be studying the rank of a matrix and its relationship with 

the inverse of the matrix. Then we discuss row operations on a matrix and 

use them for obtaining the rank and inverse of a matrix. Finally, we apply 

this knowledge to determine the nature of solutions of a system of linear 

equations. The method of solving a system of linear equations that we 

give here is by “successive elimination of variable”. It is also called the 

Gaussian elimination process.  

 

In the next unit we shall discuss concepts that are intimately related to 

matrices. 
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  3.2  Learning Outcomes 
 

By the end of this unit, you will be able to: 

  

 Define and obtain the rank of a matrix;  

 Reduce a matrix to the echelon form;  

 Obtain the inverse of a matrix by row-reduction;  

 Solve a system of simultaneous linear equations by the method of 

successive elimination of variables.  

 

  3.3  Matrices 

 

3.3.1  Elementary Operations on a Matrix 

 

3.3.1.1 Elementary Row and column operations 

 

Let 𝐴 be a 𝑚 × 𝑛 matrix over a field 𝐾, we define certain operations on 

𝐴 called row denoted by 𝑅1, . . . , 𝑅𝑛 and column operations denoted by 

𝐶1, . . . , 𝐶𝑛. 

 

There are three types of elementary row operations: 

Type 1: Interchange the 𝑖𝑡ℎ and𝑗𝑡ℎ rows, for𝑗 ≠ 𝑖 
Type 2: Multiply the 𝑖𝑡ℎ row by a non-zero scalar, c. 

Type 3: Add a multiple of the𝑗𝑡ℎrow (𝑅𝑗) to the 𝑖𝑡ℎrow (𝑅𝑖) for𝑗 ≠ 𝑖 

Example 1: Let 𝐴 = [
1 2 3
0 1 2

] 

Then interchanging the two rows, we have 𝑅12(𝐴) = [
0 1 2
1 2 3

] 

Multiplying 𝑅2 by a non-zero scalar, e.g., 𝑐 = 3;  

𝑅12(𝐴) = [
1 2 3

0 × 3 1 × 3 2 × 3
] = [

1 2 3
0 3 6

] 

Add multiple of 𝑅2 to 𝑅1;   R1 + 2𝑅12(𝐴) =

[
1 + 2(0) 2 + 2(1) 3 + 2(2)

0 1 2
] 

= [
1 4 7
0 1 2

] 

There are also three types elementary column operations:  

Type 1 Interchange the 𝑖𝑡ℎand 𝑗𝑡ℎ columns, for 𝑗 ≠ 𝑖.  
Type 2 Multiply the 𝑖𝑡ℎ column by a non-zero scalar. 

Type 3 Add a multiple of the 𝑗𝑡ℎ column (𝐶𝑗) to the 𝑖𝑡ℎ column(𝐶𝑖), 

where 𝑗 ≠ 𝑖. 

Example 2: Let 𝐴 = [
1 2 3
0 1 2

] 
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Then interchanging two columns, we have 𝐶12(𝐴) = [
2 1 2
1 0 3

] 

Multiplying 3C by a non-zero scalar, e.g., 𝑐 = 4; 𝐶3(𝐴) =

[
1 2 3 × 4
0 1 2 × 4

] = [
1 2 12
0 1 8

] 

Add multiple of 𝐶2 to 𝐶1; C1 + 5𝐶2(𝐴) = [
1 + 5(2) 2 3

0 + 5(1) 1 2
] =

[
11 2 3
5 1 2

] 

By applying these operations, we can reduce any matrix to a particularly 

simple form: 

We will now prove a theorem which we will use later for obtaining the 

rank of a matrix easily.  

 

Theorem 3.1: Elementary operations on a matrix do not alter its rank.  

Proof: The way we will prove the statement is to show that the row space 

remains unchanged under row operations and the column space remains 

unchanged under column operations. This means that the row rank and 

the column rank remain unchanged. This immediately shows, by Theorem 

3.1, that the rank of the matrix remains unchanged.  

Now, let us show that the row space remains unaltered.  

Let 𝑅1, . . . , 𝑅𝑛 be the rows of a matrix A, then the row space of A is 

generated by {𝑅1. . . 𝑅𝑖 . . . 𝑅𝑗 . . . 𝑅𝑚} 

On applying 𝑅𝑖𝑗 to A, the rows of A remain the same. Only their order gets 

changed. Therefore, the row space of by 𝑅𝑖𝑗(𝐴) is the same as the rows 

space of A.  

If we apply 𝑅1(𝑎), for by 𝑎 ∈ 𝐾, 𝑎 ≠ 0, then any linear combination of 

by 𝑅1, . . . , 𝑅𝑚 is by 𝑎1𝑅1+. . . +𝑎𝑚𝑅𝑚 = 𝑎1+. . . +𝑎𝑖𝑅𝑖+. . . +𝑎𝑚𝑅𝑚, 

which is a linear combination of by 𝑅1. . . 𝑎𝑅𝑖 . . . 𝑅𝑚.  

Thus, |{𝑅1. . . 𝑅𝑖 . . . 𝑅𝑚}| = [{𝑅1. . . 𝑎𝑅𝑖 . . . 𝑅𝑚}]. 
That is, the row space of A is the same as the row space of 𝑅𝑖(𝑎)(𝐴). 
If we apply 𝑅𝑖𝑗(𝑎)for 𝑎 ∈ 𝐾, then any linear combination  

𝑏1𝑅1+. . . +𝑏𝑖𝑅𝑗+. . . +𝑏𝑚𝑅𝑚
= 𝑏1𝑅1+. . . +𝑏𝑖(𝑅𝑖 + 𝑎𝑅𝑗)+. . . +(𝑏𝑗
− 𝑏𝑖𝑎)𝑅𝑗+. . . +𝑏𝑚𝑅𝑚 

Thus, [{𝑅1. . . , . . . 𝑅𝑚}] = [{𝑅1, . . . , 𝑅𝑖 + 𝑎𝑅𝑗 , . . . , 𝑅𝑗 , . . . , 𝑅𝑚}]. 

Hence, the row space of 𝐴 remains unaltered under any elementary row 

operations.  

We can similarly show that the column space remains unaltered under 

elementary column operations. 

Elementary operations lead to the following definition.  

 

Definition 1: A matrix obtained by subjecting 𝐼𝑛 to an elementary row or 

column operation is called an elementary matrix.  
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For example, 𝐶12(𝐼3) = 𝐶12  = an elementary matrix.  

𝐼3 = [
1 0 0
0 1 0
0 0 1

], 𝐶12(𝐼3) = [
0 1 0
1 0 0
0 0 1

], 𝐶13(𝐼3) = [
0 0 1
0 1 0
1 0 0

],    

𝐶23(𝐼3) = [
1 0 0
0 0 1
0 1 0

] 

𝑅12(𝐼3) = [
0 1 0
1 0 0
0 0 1

],   𝑅13(𝐼3) = [
0 0 1
0 1 0
1 0 0

],     𝑅23(𝐼3) = [
1 0 0
0 0 1
0 1 0

] 

From the above, we have  

𝐶12(𝐼3) = 𝑅12(𝐼3);              𝐶13(𝐼3) = 𝑅13(𝐼3);            𝐶23(𝐼3) = 𝑅23(𝐼3). 
Since there are six types of elementary operations, we have six types of 

elementary matrices, but not all of them are different. 

 

Exercise: Check that i) 𝐶21(3)(𝐼4) = 𝑅12(3)(𝐼4)     ii) 𝐶2(2)(𝐼4) =
𝑅2(2)(𝐼4) 
                                  iii) 𝐶23(𝐼4) = 𝑅23(𝐼4). 
In general, 𝐶𝑖𝑗(𝐼𝑛) = 𝑅𝑖𝑗(𝐼𝑛);   𝐶𝑖(𝑎)(𝐼𝑛) = 𝑅𝑖(𝑎)(𝐼𝑛)  for 𝑎 ≠ 0 and 

                  𝐶𝑖𝑗(𝑎)(𝐼𝑛) = 𝑅𝑖𝑗(𝑎)(𝐼𝑛) for 𝑖 ≠ 𝑗 and 𝑎 ∈ 𝐾. 

Thus, there are only three types of elementary matrices.  

We denote 

i. 𝑅𝑖𝑗(𝐼) = 𝐶𝑖𝑗(𝐼) by 𝐸𝑖𝑗 

ii. 𝑅𝑖(𝑎)(𝐼) = 𝐶𝑖(𝑎)(𝐼) (for 𝑎 ≠ 0)  by 𝐸𝑖(𝑎) and 

iii. 𝑅𝑖𝑗(𝑎)(𝐼) = 𝐶𝑖𝑗(𝑎)(𝐼) by 𝐸𝑖𝑗(𝑎)for 𝑖 ≠ 𝑗 and 𝑎 ∈ 𝐾. 

𝐸𝑖𝑗,𝐸𝑖(𝑎) and 𝐸𝑖𝑗(𝑎) are called the elementary matrices corresponding to 

the pairs (𝑅𝑖𝑗 , 𝐶𝑖𝑗), (𝑅𝑖(𝑎), 𝐶𝑖(𝑎)) and (𝑅𝑖𝑗(𝑎), 𝐶𝑖𝑗(𝑎)) respectively.  

Let’s now see what happens to the matrix 𝐴 = (
0 1 2
3 0 0
2 1 0

) 

If we multiply it on the left by 𝐸12 = (
0 1 0
1 0 0
0 0 1

) 

(
0 1 0
1 0 0
0 0 1

)(
0 1 2
3 0 0
2 1 0

) = (
3 0 0
0 1 2
2 1 0

) = 𝑅12(𝐴) 

Similarly,  𝐴𝐸12 = 𝐶12(𝐴). 

Again, consider 𝐸3(2)𝐴 = (
0 1 0
1 0 0
0 0 2

)(
0 1 2
3 0 0
2 1 0

) = (
0 1 2
3 0 0
4 2 0

) =

𝑅3(2)(𝐴) 
Similarly,  𝐴𝐸3(2) = 𝐶3(2)(𝐴) 

Finally,  𝐸13(5)𝐴 = (
0 1 2
3 0 0
2 1 0

)(
1 0 5
0 1 0
0 0 1

) = (
0 1 2
3 0 15
2 1 10

) =

𝑅31(5)(𝐴) 
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But   𝐴𝐸13(5) = (
0 1 2
3 0 0
2 1 0

)(
1 0 5
0 1 0
0 0 1

) = (
0 1 2
3 0 15
2 1 10

) = 𝐶31(5)(𝐴) 

What you have just seen are example of a general phenomenon. We will 

now state this general result formally. (Its proof is slightly technical, and 

so, we skip it.) 

 

Theorem 3.2: For any matrix A 

a. 𝑅𝑖𝑗(𝐴) = 𝐸𝑖𝑗(𝐴).  

b. 𝑅𝑖(𝑎)(𝐴) = 𝐸𝑖(𝑎)(𝐴) ; for 𝑎 ≠ 0 

c. 𝑅𝑖𝑗(𝑎)(𝐴) = 𝐸𝑖𝑗(𝑎)(𝐴) 

d. 𝐶𝑖𝑗(𝐴) = 𝐴𝐸𝑖𝑗  

e. 𝐶𝑖(𝑎)(𝐴) = 𝐴𝐸𝑖(𝑎) ; for 𝑎 ≠ 0 

f. 𝐶𝑖𝑗(𝑎)(𝐴) = 𝐴𝐸𝑖𝑗(𝑎) 

 

An immediate corollary to this theorem shows that all the elementary 

matrices are invertible (see unit 2).  

Corollary: An elementary matrix is invertible. In fact, 

a. 𝐸𝑖𝑗𝐸𝑖𝑗 = 𝐼 

b. 𝐸𝑖(𝑎
−1)𝐸𝑖(𝑎) = 𝐼 for 𝑎 ≠ 0 

c. 𝐸𝑖𝑗(−𝑎)𝐸𝑖𝑗(𝑎) = 𝐼 

Proof: we prove (a) only and leave the rest to you.  

Now, by definition of 𝑅𝑖𝑗from Theorem, 

𝐸𝑖𝑗𝐸𝑖𝑗 = 𝑅𝑖𝑗 = 𝑅𝑖𝑗(𝑅𝑖𝑗(𝐼)) = 𝐼,  
The corollary tells us that the elementary matrices are invertible and the 

inverse of an elementary matrix is also an element matrix of the same 

type. 

Now we will introduce you to a very nice type of matrix, which any matrix 

can be transformed to by applying elementary operations.  

 

3.3.1.2 Row-Reduced Echelon Matrices  

Consider the matrix (

1 0 9
0 1 0
0 0 1
0 0 0

) 

In this matrix, the three non-zero rows come before the zero row, and the 

first non-zero entry in each non-zero row is 1. Also, below this 1, are only 

zero. This type of matrix has a special name, which we now give.  

 

Definition 2: An 𝑚 × 𝑛 matrix A is called a row-reduced echelon matrix 

if  

a) The non-zero rows come before the rows,  

b) In each non-zero row, the first non-zero entry is 1, and  
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c) The first non-zero entry in every non-zero row (after the first row) is to 

the right of the first non-zero entry in the preceding row.  

The matrix

[
 
 
 
 
 
0 |1 3 4 9 7 8 0 −1 0 1

0 0̄ 0 0 1 5 6 10 2 0 0
0 0 0 0 0 0 0 1 7 0 12
0 0 0 0 0 0 0 0 1 1 10
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ]

 
 
 
 
 

 is a(6 ×

11)row-echelon matrix. 

 

Every matrix can be transformed to the row echelon form by a series of 

elementary row operations. We say that the matrix is reduced to the 

echelon form. 

 

Example 3: Consider the following matrix: 

Let 𝐴 =

[
 
 
 
 
0 0 0 0 0 1
0 1 2 −1 −1 1
0 1 2 0 3 1
0 0 0 1 4 1
0 2 4 1 10 2]

 
 
 
 

 

Reduce 𝐴 to the row echelon form.   

 

Solution: The first column of A is zero. The second is non-zero. The 

(1,2)𝑡ℎelement is 0. 

But we want 1 at this position.  

Apply 𝑅12 to A and get 𝐴1 =

[
 
 
 
 
0 1 2 −1 −1 1
0 0 0 0 0 1
0 1 2 0 3 1
0 0 0 1 4 1
0 2 4 1 10 2]

 
 
 
 

 

The (1,2)𝑡ℎentry has become 1. Now we subtract multiples of the first 

row from other rows so that the (2,2)𝑡ℎ, (3,2)𝑡ℎ, (4,2)𝑡ℎand 

(5,2)𝑡ℎentries become zero. So, we apply 𝑅𝑖𝑗(−1) and 𝑅51(−2)to obtain 

𝐴2 =

[
 
 
 
 
0 1 2 −1 −1 1
0 0 0 0 0 1
0 1 2 0 4 0
0 0 0 1 4 1
0 0 0 3 12 2]

 
 
 
 

 

Now, beneath the entries of the first row we have zeros in the first 3 

columns, and in the fourth column we find non-zero entries. We want 1 

at the (2,4)𝑡ℎposition, so we interchange the 2nd and 3rd rows to obtain 

𝐴3 =

[
 
 
 
 
0 1 2 −1 −1 1
0 0 0 1 4 0
0 0 0 0 0 1
0 0 0 1 4 1
0 0 0 3 12 0]
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We now subtract suitable multiples if the 2nd row from the 3rd, 4th and 

5th rows so that the (3,4)𝑡ℎ,(4,4)𝑡ℎ, (5,4)𝑡ℎentries all become zero. 



𝑅42(−1)

𝑅42(−3)

𝐴3 ≈
𝑅
𝐵
[
 
 
 
 
0 1 2 −1 −1 1
0 0 0 1 4 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 

𝐴3 ≈
𝑅
𝐵 means that on apply the 

operation R to A we obtain matrix B. 

Now we have zero below the entries of the 2nd row, except for the 6th 

column. The(3,6)𝑡ℎelement is 1. We subtract suitable multiples of the 3rd 

row from the 4th and 5th rows so that the (4,6)𝑡ℎelements become zero. 



𝐴4 ≈
𝑅43(−1)

[
 
 
 
 
0 1 2 −1 −1 1
0 0 0 1 4 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 

 

Now we have achieved a row echelon matrix.  

Notice that we applied 7 elementary operations to A to obtain this matrix. 

In general, we have the following theorem.  

 

Theorem 3.3: Every matrix can be reduced to a row-reduced echelon 

matrix by a finite sequence of elementary row operations.  

The proof of this result is just a repetition of the process that you went 

through in Example 4 for practice; we give you the following exercise.  

Example 4:     Reduce the matrix [
1 2 0
0 1 0
3 1 0

]to echelon form. 

Solution:[
1 2 0
0 1 0
3 1 0

] ⇒ 𝑅31(−3)
≈

[
1 2 0
0 1 0
0 −5 0

] ⇒ 𝑅32(5)
≈

[
1 2 0
0 1 0
0 0 0

] 

 

Theorem 3.3 leads us to the following definition.  

 

Definition 3: If a matrix A is reduced to a row-reduce echelon matrix E 

by a finite sequence of elementary row operations, then E is called a row-

reduced echelon form (or, the row echelon form) of 𝐴.  

  



MTH 212           LINEAR ALGEBRA 

119 

 

3.3.2  Rank of a matrix 

 

Theorem 3.4: Let A be an 𝑚 × 𝑛 matrix over the field K. Then it is 

possible to change A into B by elementary row and column operations, 

where B is a matrix of the same size satisfying 𝐵𝑖𝑖 = 1 for 0 ≤ 𝑖 ≤ 𝑟 for 

𝑟 ≤ 𝑚𝑖𝑛{𝑚, 𝑛} and all other entries of B are zero. 

 

If A can be reduced to two matrices, 𝐵 and 𝐵′, both of the above form, 

where the numbers of non-zero elements are r and 𝑟′respectively, by 

different sequences of elementary operations, then 𝑟 = 𝑟′, and so 𝐵 = 𝐵′. 
 

Definition 4: The number r in the above theorem is called the rank of A; 

while a matrix of the form described for B is said to be in the canonical 

form for equivalence. 

We can write the canonical form matrix in “block form” as𝐵 = [
𝐼𝑟 𝑂
𝑂 𝑂

], 

where 𝐼𝑟 is an 𝑟 × 𝑟 identity matrix and 0 denotes a zero matrix of the 

appropriate size (that is, 𝑟 × (𝑛 − 𝑟), (𝑚 − 𝑟) × 𝑟 and (𝑚 − 𝑟) × (𝑛 −
𝑟) respectively for the three 0’s). Note that some or all of these 0’s may 

be missing: for example, if r = m, we just have [𝐼𝑚 𝑂]. 
 

Proof: 

We outline the proof that the reduction is possible.  

To prove that we always get the same value of r, we need a different 

argument. 

 

The proof is by induction on the size of the matrix A: in other words, we 

assume as inductive hypothesis that any smaller matrix can be reduced as 

in the theorem. Let the matrix A be given. We proceed in steps as follows: 

•  If A = 0(the all-zero matrix), then the conclusion of the theorem 

holds, with r = 0; no reduction is required. So, assume that 𝐴 ≠ 0. 

•  If𝐴11 ≠ 0, then skip this step. If 𝐴11 = 0, then there is a non-zero 

element 𝐴𝑖𝑗  somewhere in A; by swapping the first and 𝑖𝑡ℎrows, 

and the first and 𝑗𝑡ℎ columns, if necessary (Type 3 operations), we 

can bring this entry into the (1,1) position. 

•  Now we can assume that 𝐴11 ≠ 0. Multiplying the first row by 

𝐴11
−1, (row operation Type 2), we obtain a matrix with 𝐴11 = 1. 

•  Now by row and column operations of Type 1, we can assume that 

all the other elements in the first row and column are zero. For if 

𝐴1𝑗 ≠ 0, then subtracting 𝐴1𝑗 times the first column from the 𝑗𝑡ℎ  

gives a matrix with𝐴1𝑗 = 0. Repeat this until all non-zero elements 

have been removed. 

Now let B be the matrix obtained by deleting the first row and column of 

A. 



MTH 212           LINEAR ALGEBRA 

120 

 

Then B is smaller than A and so, by the inductive hypothesis, we can 

reduce B to canonical form by elementary row and column operations. 

The same sequence of operations applied to A now finish the job. 

 

Example 5: Here is a small example. Let  𝐴 = [
1 2 3
4 5 6

] 

We have 𝐴11 = 1, so we can skip the first three steps. Subtracting twice 

the first column from the second, and three times the first column from 

the third, gives the matrix[
1 0 0
4 −3 −6

]. 

Now subtracting four times the first row from the second gives 

[
1 0 0
0 −3 −6

] 

From now on, we have to operate on the smaller matrix [−3 −6], but we 

continue to apply the operations to the large matrix. 

Multiply the second row by −1/3 to get [
1 0 0
0 1 2

] 

Now subtract twice the second column from the third to obtain  

[
1 0 0
0 1 0

] 

 

We have finished the reduction, and we conclude that the rank of the 

original matrix A is equal to 2. 

 

We finish this section by describing the elementary row and column 

operations in a different way. 

 

For each elementary row operation on an n-rowed matrix A, we define the 

corresponding elementary matrix by applying the same operation to the 

𝑛 × 𝑛 identity matrix I. 

 

Similarly, we represent elementary column operations by elementary 

matrices obtained by applying the same operations to the 𝑚x𝑚 identity 

matrix. 

We don’t have to distinguish between rows and columns for our 

elementary matrices. For example, the matrix  [
1 2 0
0 1 0
0 0 1

] corresponds to 

the elementary column operation of adding twice the first column to the 

second, or to the elementary row operation of adding twice the second 

row to the first. For the other types, the matrices for row operations and 

column operations are identical. 

 

Lemma: The effect of an elementary row operation on a matrix is the 

same as that of multiplying on the left by the corresponding elementary 

matrix. Similarly, the effect of an elementary column operation is the 
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same as that of multiplying on the right by the corresponding elementary 

matrix. 

The proof of this lemma is somewhat tedious calculation. 

 

Example 6: We continue our previous example. In order, here is the list 

of elementary matrices corresponding to the operations we applied to A. 

(Here 2×2 matrices are row operations while 3×3 matrices are column 

operations). 

[
1 −2 0
0 1 0
0 0 1

],   [
1 0 −3
0 1 0
0 0 1

],   [
1 0
−4 1

],   [
1 0

0 −1 3⁄
],   [

1 0 0
0 1 −2
0 0 1

], 

So, the whole process can be written as a matrix equation: 

[
1 0

0 −1 3⁄
] [
1 0
−4 1

]𝐴 [
1 −2 0
0 1 0
0 0 1

] [
1 0 −3
0 1 0
0 0 1

] [
1 0 0
0 1 −2
0 0 1

] = 𝐵 

or more simply    [
1 0
4
3⁄ −1 3⁄

]𝐴 [
1 −2 1
0 1 −2
0 0 1

] = 𝐵. 

where, as before, 𝐴 = [
1 2 3
4 5 6

],  𝐵 = [
1 0 0
0 1 0

] 

An important observation about the elementary operations is that each of 

them can have its effect undone by another elementary operation of the 

same kind, and hence every elementary matrix is invertible, with its 

inverse being another elementary matrix of the same kind. For example, 

the effect of adding twice the first row to the second is undone by adding 

−2 times the first row to the second, so that [
1 2
0 1

]
−1

= [
1 −2
0 1

] 

Since the product of invertible matrices is invertible, we can state the 

above theorem in a more concise form. First, one more definition: 

 

3.3.2.1 Row and Column Ranks of a Matrix 

 

Definition 5: Let A be an 𝑚 × 𝑛 matrix over a field F. We say that the 

column rank of A is the maximum number of linearly independent 

columns of A; while the row rank of A is the maximum number of linearly 

independent rows of A. (We regard columns or rows as vectors in 𝐹𝑚and 

𝐹𝑛respectively). 

Now we need a sequence of four lemmas. 

 

Lemma: 

(a)  Elementary column operations do not change the column rank of a 

matrix. 

(b)  Elementary row operations do not change the column rank of a 

matrix. 

(c)  Elementary column operations do not change the row rank of a 

matrix. 
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(d)  Elementary row operations do not change the row rank of a matrix. 

 

Proof  

(a) This is clear for Type 3 operations, which just rearrange the vectors. 

For Types 1 and 2, we have to show that such an operation cannot take a 

linearly independent set to a linearly dependent set; the vice versa 

statement holds because the inverse of an elementary operation is another 

operation of the same kind. 

 

So, suppose that 𝑣1, . . . , 𝑣𝑛are linearly independent.  

Consider a Type 1 operation involving adding c times the 𝑗𝑡ℎ column to 

the 𝑖𝑡ℎ; the new columns are 𝑣1
′ , . . . , 𝑣𝑛

′where 𝑣𝑘
′ = 𝑣𝑘for 𝑘 ≠ 𝑖while 𝑣1

′ =
𝑣𝑖 + 𝑐𝑣𝑗 

Suppose that the new vectors are linearly dependent, then there are scalars 

𝑎1, . . . , 𝑎𝑛, not all zero, such that  0 = 𝑎1𝑣1
′+. . . +𝑎𝑛𝑣𝑛

′  

= 𝑎1𝑣1 +⋯+ 𝑎𝑖(𝑣𝑖 + 𝑐𝑣𝑗) + ⋯+ 𝑎𝑗𝑣𝑗 +⋯+ 𝑎𝑛𝑣𝑛 

= 𝑎1𝑣1 +⋯+ 𝑎𝑖𝑣𝑖 +⋯+ (𝑎𝑗 + 𝑐𝑎𝑖)𝑣𝑗 +⋯+ 𝑎𝑛𝑣𝑛 

Since 𝑣1, . . . , 𝑣𝑛are linearly independent, we conclude that 

𝑎1 = 0,… , 𝑎𝑖 = 0,… , 𝑎𝑗𝑐𝑎𝑖 = 0, . . . , 𝑎𝑛 = 0 

from which we see that all the 𝑎𝑘are zero, contrary to assumption. So, the 

new columns are linearly independent. 

The argument for Type 2 operations is similar but easier. 

(b) It is easily checked that, if an elementary row operation is applied, 

then the new vectors satisfy exactly the same linear relations as the old 

ones (that is, the same linear combinations are zero). So, the linearly 

independent sets of vectors don’t change at all. 

(c) Same as (b), but applied to rows. 

(d) Same as (a), but applied to rows. 

 

Theorem 3.4: For any matrix A, the row rank, the column rank, and the 

rank are all equal. In particular, the rank is independent of the row and 

column operations used to compute it. 

 

Proof: Suppose that we reduce A to canonical form B by elementary 

operations, where B has rank r. These elementary operations don’t change 

the row or column rank, by our lemma; so the row ranks of A and B are 

equal, and their column ranks are equal. But it is trivial to see that, if 𝐵 =

[
𝐼𝑟 𝑂
𝑂 𝑂

], then the row and column ranks of B are both equal to r.  

So, the theorem is proved. 

We can get an extra piece of information from our deliberations.  

Let A be an invertible 𝑛 × 𝑛 matrix. Then the canonical form of A is just 

I:  

its rank is equal to n. This means that there are matrices P and Q, each a 

product of elementary matrices, such that  𝑃𝐴𝑄 = 𝐼𝑛. 
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From this we deduce that 𝐴 = 𝑃−1𝐼𝑛𝑄
−1 = 𝑃−1𝑄−1; 

 

Corollary: Every invertible square matrix is a product of elementary 

matrices. 
In fact, we learn a little bit more. We observed when we defined 

elementary matrices, that they can represent either elementary column 

operations or elementary row operations. So, when we have written A as 

a product of elementary matrices, we can choose to regard them as 

representing column operations, and we see that A can be obtained from 

the identity by applying elementary column operations. If we now apply 

the inverse operations in the other order, they will turn A into the identity 

(which is its canonical form). In other words, the following is true: 

 

Corollary: If A is an invertible 𝒏 × 𝒏 matrix, then A can be transformed 

into the identity matrix by elementary column operations alone (or by 

elementary row operations alone). 

 

3.3.2.2 Row and Column Spaces of a Matrix  
 

Consider any 𝑚 × 𝑛 matrix A, over a field F. We can associate two vector 

spaces with it, in a very natural way. Let us see what they are.  

Let𝐴 = [𝑎𝑖𝑗], A has m rows, say, 𝑅1, 𝑅2, . . . , 𝑅𝑚, where     

𝑅1 = (𝑎11, 𝑎12, . . . , 𝑎1𝑛), 𝑅2 = (𝑎21, 𝑎22, . . . , 𝑎2𝑛), . . . , 𝑅𝑚
= (𝑎𝑚1, 𝑎𝑚2, . . . , 𝑎𝑚𝑛) 

Thus, 𝑅𝑖 ∈ [

𝑅1
𝑅2
⋮
𝑅𝑚

] and 𝑖 ∈ 𝐴 

The subspace of 𝐹𝑛 generated by the row vectors 𝑅1, … , 𝑅𝑚of A, is called 

the row space of A, and is denoted by RS (A).  

Example 7: If 𝐴 = [
1 0 0
0 1 0

] , does (0,0,1) ∈ 𝑅𝑆(𝐴)? 

 

Solution: The row space of A  is the subspace of 𝑅3 generated by (1, 0, 

0) and (0, 1, 0). Therefore𝑅𝑆(𝐴) = {(𝑎, 𝑏, 0)|𝑎, 𝑏 ∈ 𝑅} 
∴ (0,0,1) ∉ 𝑅𝑆(𝐴). 
 

Definition 6: The dimension of the row space of A is called the row 

rank of A, and is denoted by 𝒑𝒓(𝑨).  
Thus, 𝑝𝑟(𝐴) = maximum number of linear independent rows of A.  

In Example 1, 𝑝𝑟(𝐴) = 2= number of rows of A. But consider the next 

example.  

Example 8: If 𝐴 = [
1 0
0 1
2 0

], find 𝑝𝑟(𝐴). 
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Solution: The row space of A is the subspace of 𝑅2 generated by (1, 0), 

(0, 1) and (2, 0). But (2, 0) already lies in the vector space generated by 

(1, 0) and 0, 1), since (2,0) = 2(1,0). Therefore, the row of A is generated 

by the linear independent vectors (1, 0) and (0, 1).  

Thus, 𝑝𝑟(𝐴) = 2. 

So, in Example 2, 𝑝𝑟(𝐴) <number of rows of A  

In general, for 𝑚 𝑥 𝑛 matrix A, RS (A) is generated by m vectors.  

Therefore, 𝑝𝑟(𝐴) ≤ 𝑚..  

Also,  ARS is a subspace of 𝐹𝑛 and𝑑𝑖𝑚𝐹 𝐹
𝑛 = 𝑛. Therefore, 𝑝𝑟(𝐴) ≤

𝑛.  

Thus, for any 𝑚 × 𝑛 matrix A, 0 ≤ 𝑝𝑟(𝐴) ≤ 𝑚𝑖𝑛(𝑚, 𝑛).  
 

Example 9:  Show that 𝐴 = 0 ⇔ 𝑝𝑟(𝐴) = 0. 

Just as we have defined the row space of A, we can define the column 

space of A. 

Each column of A is an m-tuple, and hence belongs to𝐹𝑚.  

The column of A is denoted by 𝐶1, … , 𝐶𝑛.  

The subspace of 𝑭𝒎 generated by {𝐶1, … , 𝐶𝑛} is called the column space 

of A and is denoted by CS (A). 

Definition 7: The dimension of CS (A) is called the column rank of A, 

and is denoted of 𝑝𝑐(𝐴).  
Again, since CS (A) is generated by 𝑛 vectors and is a subspace of 𝐹𝑚, 

we obtain 

0 ≤ 𝑝𝑐(𝐴) ≤ 𝑚𝑖𝑛(𝑚, 𝑛). 

Example 10: Obtain the column rank and row rank of 𝐴 = [
1 0 1
0 2 1

] 

Solution:  

The column space of A is the subspace of 𝑅2 generated by (1, 0), (0, 2), 

(1, 1). 

 Now, 𝑑𝑖𝑚𝑅 𝐶 𝑆(𝐴) ≤ 𝑑𝑖𝑚𝑅 𝑅
2 = 2. 

 Also (1, 0) and (0, 2), are linearly independent,  

{(1, 0), (0, 2)} is a basis of CS(A), and 𝑝𝑐(𝐴) = 2.  

The row space of A is the subspace of 𝑅3 generated by (1, 0, 1) and (0, 2, 

1).  

These vectors are linearly independent and hence, form a basis of 𝑅𝑆(𝐴) 
∴ 𝑝𝑟(𝐴) = 2. 

In Example 2 you may have noticed that the row rank and column rank of 

Aare equal. In fact, in Theorem 1, we prove that 𝑝𝑟(𝐴) = 𝑝𝑐(𝐴)for any 

matrix A. But first, we prove a lemma.  

Lemma 1: Let A, B be two matrices over F such that AB is defined. Then  

a) 𝐶𝑆(𝐴𝐵) ⊆ 𝐶𝑆(𝐴) 
b) 𝑅𝑆(𝐴𝐵) ⊆ 𝑅𝑆(𝐵) 
Thus,𝑝𝑐(𝐴𝐵) ≤ 𝑝𝑐(𝐴), 𝑝𝑟(𝐴𝐵) ≤ 𝑝𝑟(𝐵). 
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Proof:  

(a) Suppose 𝐴 = [𝑎𝑖𝑗] is an 𝑛 × 𝑝 matrix. Then, from the previous 

section, you know that the 𝑗𝑡ℎ column of 𝐶 = 𝐴𝐵 would be  

[

𝑐1𝑗
𝑐2𝑗
⋮
𝑐𝑚𝑗

] =

[
 
 
 
 
 
 
 
 
 ∑𝑎1𝑘𝑏𝑘𝑗

𝑛

𝑘=1

∑𝑎2𝑘𝑏𝑘𝑗

𝑛

𝑘=1

⋮

∑𝑎𝑚𝑘𝑏𝑘𝑗

𝑛

𝑘=1 ]
 
 
 
 
 
 
 
 
 

= [

𝑎11
𝑎21
⋮
𝑎𝑚1

] 𝑏1𝑗 +⋯+ [

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑚𝑛

] 𝑏𝑛𝑗 

                                    = 𝐶1𝑏1𝑗 +⋯+ 𝐶𝑛𝑏𝑛𝑗  

Where 𝐶1, … , 𝐶𝑛 are the columns of A.  

Thus, the columns of AB are linear combinations of the columns of 𝐴. 

                      𝐴𝐵 ∈ 𝐶𝑆(𝐴).  
So, 𝐶𝑆(𝐴𝐵) ⊆ 𝐶𝑆(𝐴) 
Hence, 𝑝𝑐(𝐴𝐵) ≤ 𝑝𝑐(𝐴). 
 

b) By a similar argument as above, we have 𝑅𝑆(𝐴𝐵) ⊆ 𝑅𝑆(𝐵)and so  

𝑝𝑟(𝐴𝐵) ≤ 𝑝𝑟(𝐵).  
 

Example 11: Prove (b) of Lemma 1. 

The 𝑖𝑡ℎ row of C = AB is  

[𝑐𝑖1 𝑐𝑖2 … 𝑐𝑖𝑝] = [∑𝑎𝑖𝑘𝑏𝑘1

𝑛

𝑘=1

∑𝑎𝑖𝑘𝑏𝑘2

𝑛

𝑘=1

… ∑𝑎𝑖𝑘𝑏𝑘𝑝

𝑛

𝑘=1

] 

= 𝑎𝑖1[𝑏11 𝑏12 … 𝑏1𝑝] + 𝑎𝑖2[𝑏21 𝑏22 … 𝑏2𝑝] + ⋯+
𝑎𝑖𝑛[𝑏𝑛1 𝑏𝑛2 … 𝑏𝑛𝑝], 
a linear combination of the rows of B 

∴ 𝑅𝑆(𝐴𝐵) ⊆ 𝑅𝑆(𝐵) 
∴ 𝑝𝑟(𝐴𝐵) ≤ 𝑝𝑟(𝐵). 
We will now use Lemma 1 for proving the following theorem.  

Theorem 3.5: 𝑝𝑐(𝐴) = 𝑝𝑟(𝐴)for any matrix A over F.  

Proof: Let𝐴 ∈ 𝑀𝑚×𝑛(𝐹). Suppose 𝑝𝑟(𝐴) = 𝑟 and𝑝𝑐(𝐴) = 𝑡.  
Now, 𝑅𝑆(𝐴) = {𝑅1, 𝑅2, … , 𝑅𝑚}where 𝑅1, 𝑅2, … , 𝑅𝑚are the rows of A.  

Let {𝑒1, 𝑒2, … , 𝑒𝑟} be a basis of RS(A). Then 𝑅1 is a linear combination of 

𝑒1, 𝑒2, … , 𝑒𝑟, for each 𝑖 = 1,… ,𝑚.  

Let 𝑅𝑖 = ∑ 𝑏𝑖𝑗𝑒𝑗
𝑟
𝑗=1 , 𝑖 = 1,2, … ,𝑚, where 𝑏𝑖𝑗 ∈ 𝐹 for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤

𝑗 ≤ 𝑟 
We can write these equations in matrix form as 
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[

𝑅1
⋮
⋮
𝑅𝑚

] = [

𝑏11⋯⋯𝑏1𝑟
⋯⋯⋯
⋯⋯⋯

𝑏𝑚1⋯⋯𝑏𝑚𝑟

] [

𝑒1
⋮
⋮
𝑒𝑟

] 

So,𝐴 = 𝐵𝐸, where 𝐵 = [𝑏𝑖𝑗] is an 𝑚 × 𝑟matrix and E is the𝑟 × 𝑛matrix 

with rows 𝑒1, 𝑒2, … , 𝑒𝑟(𝑒1 ∈ 𝐹
𝑛, for each 𝑖 = 1, . . . , 𝑟) 

So, 𝑡 = 𝑝𝑐(𝐴) = (𝐵𝐸) ≤ 𝑝𝑐(𝐵)                   (by Lemma 1) 

≤ 𝑚𝑖𝑛(𝑚, 𝑟) 
≤ 𝑟 

Thus, 𝑡 ≤ 𝑟 
Just as we got A = BE above, we have 𝐴 = [𝑓1, . . . , 𝑓𝑡]𝐷, where 
{𝑓1, . . . , 𝑓𝑡}is a basis of the column space of A, and D is a (𝑡 𝑥 𝑛) matrix.  

Thus, 𝑟 = 𝑝𝑟(𝐴) ≤ 𝑝𝑟(𝐷) ≤ 𝑡                            (by Lemma 1) 

So, we have 𝑟 ≤ 𝑡 and 𝑡 ≤ 𝑟. This gives 𝑟 = 𝑡.  
Theorem 3.1 allows us to make the following definition.  

 

Definition 8: The integer 𝑝𝑐(𝐴) = 𝑝𝑟(𝐴)is called the rank of A, and is 

denoted by 𝑝(𝐴).  
You will see that theorem 3.1 is very helpful if we want to prove any fact 

about 𝑝(𝐴). If it is easier to deal with the rows of A we can prove the fact 

for 𝑝(𝐴). 
Similarly, if it is easier to deal with the columns of A, we can prove the 

fact for 𝑝𝑐(𝐴). While proving Theorem 3 we have used this facility that 

theorem 3.1 gives us. 

Use theorem 1 to solve the following exercises. 

1) If A, B are two matrices such that AB is defined then show that  

𝑝(𝐴𝐵) ≤ 𝑚𝑖𝑛( p(𝐴), 𝑝(𝐵)). 

2)  Suppose 𝐶 ≠ 0 ∈ 𝑀𝑚×1(𝐹), and 𝑅 ≠ 0 ∈ 𝑀1×𝑛(𝐹), then show 

that the rank of the 𝑚 × 𝑛 matrix 𝐶𝑅 is 1. (Hint: use Example 4). 

Does the term ‘rank’ seem familiar to you? Do you remember studying 

about the rank of a linear transformation in Unit 2? We now see if the 

rank of a linear transformation is related to the rank of its matrix. The 

following theorem brings forth the precise relationship. 

Let us now look at some ways of transforming a matrix by playing around 

with its rows. The idea is to get more and more entries of the matrix to be 

zero. This will help us in solving systems of linear equations.  

 

Theorem 3.6: Let E be a row-reduced echelon form of A. Then the rank 

of A = number of non-zero rows of E.  

 

Proof: We obtain E from A by applying elementary operations. 

By a Theorem; p(A) = p(E). 

Also, p(E) = the number of non-zero rows of E, by Theorem 4.  

Thus, we have proved the theorem. ## 
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Let us look at some examples to actually see how the echelon form of a 

matrix simplifies matters.  

 

Example 12: Find p(A), where𝐴 = [
1 2 3
1 5 6

] by reducing it to its row-

reduced echelon form. 

 

Solution: [
1 2 3
1 5 6

] ⇒ 𝑅2(−1)
≈

[
1 2 3
0 3 3

] ⇒ 𝑅2(
1
3⁄ )

≈

[
1 2 3
0 1 1

] 

which is the desired row-reduced echelon form. This has 2 non-zero rows.  

Hence, p(A) =2. 

Exercise13: Obtain the row-reduced echelon form of the matrix 

𝐴 = [
1 2 0 5
2 1 7 6
4 5 7 10

]. Hence determine the rank of the matrix.  

By now must have got used to obtaining row echelon forms. Let us discuss 

some ways of applying this reduction.  

 

3.3.3  Applications of Row-Reduction of Matrices 
 

In this section we shall see how to utilize row-reduction for obtaining the 

inverse of a matrix, and for solving a system of leaner equations.  

   

3.3.3.1 Inverse of a Matrix  
 

In previous theorem, you discovered that applying a row transformation 

to a matrix A is the same as multiplying it on the left by a suitable 

elementary matrix. Thus, applying a series of row transformations to A is 

the same as pre-multiplying A by a series of elementary matrices.  

 

This means that after the nth row transformation we obtain the matrix 

𝐸𝑛𝐸𝑛−1. . . 𝐸2𝐸1𝐴, where 𝐸1, 𝐸2, . . . , 𝐸𝑛 are elementary matrices.  

 

Now, how do we use this knowledge for obtaining the inverse of an 

invertible matrix? Suppose we have an n x n invertible matrix A. We know 

that A = IA, where 𝐼 = 𝐼𝑛.  

 

Now, we apply a series of elementary row operations 𝐸1, 𝐸2, . . . , 𝐸𝑛to A 

so that A gets transformation to 𝐼𝑛.  

Thus,  

𝐼 = 𝐸𝑠𝐸𝑠−1…𝐸2𝐸1𝐴 = 𝐸𝐸𝑠−1…𝐸2𝐸1(𝐼𝐴) 
= (𝐸𝐸𝑠−1…𝐸2𝐸1)𝐴 = 𝐵𝐴 

Where 𝐵 = 𝐸…𝐸1𝐼. Then B is the inverse of A. 

Note that we are reducing A to I and not only to the echelon form.  

We illustrate this below.  
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Example 13: Determine if the matrix 𝐴 = [
1 2 3
2 3 1
3 1 2

]is invertible.  

If it is invertible, find its inverse.  

 

Solution: 

Now, 𝐴 = 𝐼𝐴 = (
1 0 0
0 1 0
0 0 1

)(
1 2 3
2 3 1
3 1 2

) 

To transform A we will be pre-multiplying it by elementary matrices. We 

will also be pre-multiplying 𝐼𝐴 by these matrices. Therefore, as A is 

transformed to I, the same transformations are done to 1 on the right-hand 

side of the matrix equation given above.  

Now (
1 2 3
0 −1 −5
0 −5 −7

)𝐴(
1 0 0
−2 1 0
−3 0 1

) 

Applying 𝑅21(−2)and 𝑅31(−3)to A  

= (
1 2 3
0 1 5
0 5 7

)𝐴(
1 0 0
2 −1 0
3 0 −1

) 

Applying 𝑅2(−1)and 𝑅3(−1) 

= (
1 0 −7
0 1 5
0 0 −18

)𝐴(
−3 2 0
2 −1 0
−7 5 −1

) 

Applying 𝑅12(−2)and 𝑅32(−5) 

= (
1 0 −7
0 1 5
0 0 −18

)𝐴(
−3 2 0
2 −1 0
−7 5 −1

) 

Applying 𝑅3(−
1
18⁄ ) 

= (
1 0 −7
0 1 5
0 0 −18

)(

−3 2 0
2 −1 0
7
18⁄

−5
18⁄

1
19⁄
) 

= (
1 0 0
0 1 0
0 0 1

)

(

 
 

−5
18⁄

1
18⁄

7
18⁄

1
18⁄

7
18⁄

−5
18⁄

7
18⁄

−5
18⁄

1
18⁄ )

 
 

  Applying 𝑅21(−2)and 

𝑅31(−3)to A  

Hence, A is invertible and its inverse is 𝐵 =
1

18
[
−5 1 7
1 7 −5
7 −5 1

] 

To make sure that we haven’t made a careless mistake at any stage, check 

the answer by multiplying B with A. your answer should be I 

Exercise: Show that [
0 1 3
2 3 5
3 5 7

] is invertible. Find its inverse.  



MTH 212           LINEAR ALGEBRA 

129 

 

Let us now look at another application of row-reduction.  

 

3.3.3.2 Solution of System of Linear Equations  
 

Any system of m linear equations, in n unknowns𝑥1, … , 𝑥𝑛 is 
𝑎11𝑥1 + … + 𝑎1𝑛 = 𝑏1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑎𝑚1𝑥1 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

where all the 𝑥𝑖𝑗 and 𝑏𝑖 are scalars  

This can be written in matrix form as 𝐴𝑋 = 𝐵, where𝐴 = [𝑎𝑖𝑗],𝑋 = [

𝑥1
⋮
𝑥𝑛
], 

𝐵 = [
𝑏1
⋮
𝑏𝑛

] 

 

Definition 6: If B = 0, the system is called homogenous, otherwise, it is 

non-homogeneous.  

In this situation, we are in a position to say how many linearly 

independent solutions the system of equations has.  

 

Theorem 3.7: The number of linearly impendent solutions of the matrix 

equation 𝐴𝑋 = 0 is 𝑛 − 𝑟, where A is an 𝑚 × 𝑛 matrix and 𝑟 = 𝑝(𝐴). 
 

Proof: In Unit 1,you studied that given the matrix A, we can obtain a 

linear transformation 𝑇: 𝐹𝑛 → 𝐹𝑚such that[𝑇]𝐵,𝐵 = 𝐴, where 𝐵 and 𝐵′are 

bases of 𝐹𝑛and𝐹𝑚, respectively.  

Now, 𝑋 = [

𝑥1
⋮
𝑥𝑛
] is a solution of 𝐴𝑋 = 0 if and only if it lies in Tker

(since𝑇(𝑋) = 𝐴𝑋). 

Thus, the number of linearly independent solutions is 

             𝑑𝑖𝑚 𝑘𝑒𝑟 𝑇 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) = 𝑛 − 𝑟𝑎𝑛𝑘(𝑇)                          (Unit 2, 

Module 1) 

Also;  𝑟𝑎𝑛𝑘(𝑇) = 𝑝(𝐴).                                                   (Theorem 3.2)  

Thus, the number of linearly independent solutions is 𝑛 − 𝑝(𝐴). 
 

This theorem is very useful in finding out whether a homogeneous system 

has any non-trivial solution or not.  
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Example 14: Consider the system of 3 equations in 3 unknowns:  
3𝑥 −  2𝑦 +  𝑧 = 0
𝑥 +  𝑦 =  0
𝑥 −  3𝑧 =  0

 

How many solutions does it have which are linearly independent over R?  

Solution: Here is our coefficient matrix, 𝐴 = [
3 −2 1
1 1 0
1 0 −3

] 

Thus, 𝑛 = 3. We have to find 𝑟. For this, we apply the row-reduction 

method: 

We obtain A ~ [
1 0 −3
0 1 3
0 0 1

], which is in echelon form and has rank 3.  

Thus, p(A) = 3.  

Thus, the number of linearly independent solutions is 3 – 3 = 0. This 

means that this system of equations has no non-zero solution.  

In the Example, the number of unknowns was equal to the number of 

equations, that is,          𝑛 = 𝑚. What happens if 𝒏 > 𝑚?  

A system of m homogeneous equations in n unknowns has a non-zero 

solution if 𝑛 > 𝑚, why? Well, if 𝑛 > 𝑚, then the rank of the coefficient 

matrix is less than or equal to 𝑚, and hence, less than. So, 𝑛 − 𝑟 >  0 

Therefore, at least one non-zero solution exists.  

 

Exercise: Give a set of linearly independent solutions for the system of 

equations:  

𝑥 +  2𝑦 +  3𝑧 =  0  
2𝑥 +  4𝑦 +  𝑧 =  0 

Now consider the general equation AX = B, where A is an 𝑚 × 𝑛 matrix. 

We form the augmented matrix |AB|. This is an 𝑚 × (𝑛 + 1) matrix 

whose last column is the matrix B. Here, we also include the case B = 0.  

Interchanging equations, multiplying an equation by a non-zero scalar, 

and adding to any equation scalar times some other equation does not alter 

the set of solutions of the system of equations. In other words, if we apply 

elementary row operations on |AB| then the solution set does not change.  

 

The following result tells us under what conditions the system AX = B has 

a solution.  

 

Theorem 3.8: The system of linear equations given by the matrix 

equation AX = B has a solution if 𝑝(𝐴) = 𝑝(|𝐴𝐵|). 
Proof: AX = B represents the system: 

𝑎11𝑥1 + … + 𝑎1𝑛 = 𝑏1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑎𝑚1𝑥1 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

This is the same as 
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𝑎11𝑥1 + … + 𝑎1𝑛 − 𝑏1 = 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑎𝑚1𝑥1 + … + 𝑎𝑚𝑛𝑥𝑛 − 𝑏𝑚 = 0
 

which is represented by |𝐴𝐵| [
𝑋
−1
] = 0.  

Therefore, any solution of AX = B is also a solution of |𝐴𝐵| [
𝑋
−1
] = 0 

and vice versa.  

By Theorem 3.8; this system has a solution if and only if 𝑛 + 1 >
𝑝(|𝐴𝐵|). 

Now if the equation |𝐴𝐵| [
𝑋
−1
] = 0 has a solution, say [

𝑐1
⋮
𝑐𝑛−1

] then  

𝑐1𝐶1 + 𝑐2𝐶2 +⋯+ 𝑐𝑛𝐶𝑛 = 𝐵, 𝐶1, ⋯ , 𝐶𝑛 are the columns of A. That is, B 

is a linear combination of the 𝐶𝑖′𝑠 therefore, 𝑅𝑆([𝐴𝐵]) = 𝑅𝑆(𝐴). 
Conversely, if 𝑝([𝐴𝐵])then the number of linearly independent columns 

of 𝐴 and |AB| are the same. Therefore, B must be a combination of the 

columns 𝐶1, ⋯ , 𝐶𝑛 of A. 

Let 𝐵 = 𝑎1𝐶1 +⋯+ 𝑎𝑛𝐶𝑛; 𝑎𝑖 ∈ 𝐹, ∀ 𝑖 𝑎𝑖 ∈ 𝐹, ∀ 𝑖 

Then a solution of 𝐴𝑋 = 𝐵 is𝑋 = [

𝑎1
⋮
𝑎𝑛
] 

Thus, AX =B has a solution if and only if 𝑝(𝐴) = 𝑝(|𝐴𝐵|). 
Remark: If A is invertible then the system of 𝐴𝑋 = 𝐵 has the unique 

solution 𝑋 = 𝐴−1𝐵.  

 

3.3.3.3   Successive (or Gaussian) Elimination Method 

 

Now, once we know that the system given by of𝐴𝑋 = 𝐵is consistent, how 

do we find a solution? We utilize the method of successive (or Gaussian) 

elimination. This method is attributed to the famous German 

mathematician, Carl Friedrich Gauss (1777-1855).  

 

Gauss was called the “prince of mathematicians” by his contemporaries. 

He did a great amount of work in pure mathematics as well as probability 

theory of errors, geodesy, mechanics, electro-magnetism and optics.  

 

To apply the method of Gaussian elimination, we first reduce |AB| to its 

row echelon form.  

 

Then, we write out the equations and solve them, which is simple.  

Let us illustrate the method: 

 

Example 15: Solve the following system by using the Gaussian 

elimination process.  
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𝑥 + 2𝑦 + 3𝑧 = 1
2𝑥 + 4𝑦 + 𝑧 = 2

 

Solution: The given system is the same as  

We first reduce the coefficient matrix to echelon form: 

(
1 2 3 1
2 4 1 2

) ≈ 𝑅1(−2) (
1 2 3 1
0 0 −5 0

)

≈ 𝑅2(
−1

5⁄ ) (
1 2 3 1
0 0 1 0

) 

This gives us an equivalent to x = 2y and z = 0.  

𝑥 + 2𝑦 + 3𝑧 = 1 and 𝑧 = 0 

These are again equivalent to 𝑥 = 1 − 2𝑦 and 𝑧 = 0. 

We get the solution in terms of a parameter. 

Put𝑦 = 𝛼, then 𝑥 = 1 − 2𝛼, 𝑦 = 𝛼 and 𝑧 = 0 is a solution, for any scalar 

𝛼, thus, the solution set is {(1 − 2𝛼, 𝛼, 0)|𝛼 ∈ 𝑅}. 
Now let us look at an example where B =0, that is, the system is 

homogeneous  

 

Example 16: Obtain a solution a solution set of the simultaneous 

equations.  
𝑥1 + 2𝑥2 + 5𝑥4 = 0

2𝑥1 + 𝑥2 + 7𝑥3 + 6𝑥4 = 0
4𝑥1 + 5𝑥2 + 7𝑥3 + 16𝑥4 = 0

 

Solution: The matrix of coefficients is 𝐴 = [
1 2 0 5
2 1 7 6
4 5 7 16

] 

The given system is equivalent to of 𝐴𝑋 = 0.  

A row-reduced echelon form of this matrix is [

1 2 0 5

0 1 −7
3⁄
4
3⁄

0 0 0 0

] 

Then the given system is equivalent to  

                     𝑥1 + 2𝑥2 + 5𝑥4 = 0 ⇒ 𝑥1 = −2𝑥2 − 5𝑥4  

                     𝑥2 −
7

3
𝑥3 +

4

3
𝑥4 = 0 ⇒ 𝑥2 =

7

3
𝑥3 −

4

3
𝑥4  

                  𝑥1 = −
14

3
𝑥3 −

7

3
𝑥4 

which is the solution in terms of z and t.  

Thus, the solution set of the given system of equations, in terms of two 

parameters 𝛼 and 𝛽 is {(−
14

3
𝛼 −

7

3
𝛽,
7

3
𝛼 −

4

3
𝛽, 𝛼, 𝛽) |𝛼, 𝛽 ∈ 𝑅}. 

This is a two-dimensional vector subspace of 𝑅4with basis  

{(−
14

3
,
7

3
, 1,0) , (

−14

3
,
−4

3
, 0,1)} 

For practice, attempt the following exercise.  

 

Example 17:  Use the Gaussian method to obtain solution sets of the 

following system of  

                  equations:  
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4𝑥1 − 3𝑥2 + 𝑥3 = 7
𝑥1 − 2𝑥2 − 2𝑥3 = 3
3𝑥1 − 𝑥2 + 2𝑥3 = −1

 

Solution: The augmented matrix is [
4 −3 1 7
1 −2 −2 3
3 −1 2 −1

] 

Its row-reduced echelon form is [

1 −2 21 3

0 1 9
5⁄ −1

0 0 1 5

] 

The given system is equivalent to 
𝑥1 − 2𝑥2 − 2𝑥3 = 3

𝑥2 +
9

5
𝑥3 = −1

𝑥3 = 5

 

We can solve this system to get the unique solution 𝑥1 = −7, 𝑥2 =
−10, 𝑥3 = 5 

 

Theorem 3.9: If a set of linear equations undergoes any of the following 

operations, then the resulting set of equations has exactly the same 

solution set as the original set of equations: 

i. Multiplication of any equation by a non-zero constant 

ii. Interchange of two equations 

iii. Addition to an equation the result of multiplying another equation 

by a constant 

 

Proof:  Part iii) shall be proved, i) and ii) are left for the students to 

attempt. 

Let(𝑠1, 𝑠2⋯ , 𝑠𝑛) be a solution to 
𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯+ 𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝑎𝑝1𝑥1 + 𝑎𝑝2𝑥2 +⋯+ 𝑎𝑝𝑛𝑥𝑛 = 𝑏𝑝
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

Suppose we add to equation (p) the result of multiplying equation (i) by 

r, then the new system has a different equation (p): 

(𝑟𝑎𝑖1 + 𝑎𝑝1)𝑥1 + (𝑟𝑎𝑖2 + 𝑎𝑝2)𝑥2 +⋯+ (𝑟𝑎𝑖𝑛 + 𝑎𝑝𝑛)𝑥𝑛 = 𝑟𝑏𝑖 + 𝑏𝑝 

Since the rest of the equations are interchanged, (𝑠1, 𝑠2⋯ , 𝑠𝑛) is still a 

solution for those equations. 

Substituting 𝑠1 = 𝑥1⋯ , 𝑠𝑛 = 𝑥𝑛 in the new equation (p) and multiplying, 

we have  

𝑟(𝑎𝑖1𝑠1 +⋯+ 𝑎𝑖𝑛𝑠𝑛) + (𝑎𝑖1𝑠1 +⋯+ 𝑎𝑖𝑛𝑠𝑛) = 𝑟𝑏𝑖 + 𝑏𝑝and 

(𝑠1, 𝑠2⋯ , 𝑠𝑛) is a solution of the new equations (p). 
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Conversely, suppose that (𝑡1, 𝑡2⋯ , 𝑡𝑛) is any solution of the new system, 

that is, suppose that 
𝑎11𝑡1 +⋯+ 𝑎1𝑛𝑡𝑛 = 𝑏1

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
(𝑟𝑎𝑖1 + 𝑎𝑝1)𝑡1 +⋯+ (𝑟𝑎𝑖𝑛 + 𝑎𝑝𝑛)𝑡𝑛 = 𝑟𝑏𝑖 + 𝑏𝑝

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝑎𝑚1𝑥1 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

 

Multiply equation (i) by −𝑟 and add the result of equation (p) to obtain 

the original system with (𝑡1, 𝑡2⋯ , 𝑡𝑛) is a solution. 

To streamline our work, in the next example we use abbreviations to 

indicate the algebraic operation done, For example, 

-

__________________________________________________________

_________________  

Abbreviation                                   Meaning 

 

2E1                                      Multiply Eq. (1) by 2 

𝐸3 ⇌ 𝐸4                               Interchange Eq. (3) and (4) 

  -2E1+E5                             Add the result of multiplying Eq. (1) by -2 to 

Eq. (5), and replace     

                                               Eq. (5) by the result  

 

Example 18: Solve the system of equations: 
𝑥1 + 2𝑥2 + 3𝑥3 = 4
4𝑥1 + 5𝑥2 + 6𝑥3 = 7
7𝑥1 + 8𝑥2 + 9𝑥3 = 10

 

Solution:  
𝑥1 + 2𝑥2 + 3𝑥3 = 4
4𝑥1 + 5𝑥2 + 6𝑥3 = 7
7𝑥1 + 8𝑥2 + 9𝑥3 = 10

−4𝐸1 + 𝐸2

−7𝐸1+𝐸3
→      

𝑥1 + 2𝑥2 + 3𝑥3 = 4
−3𝑥2 − 6𝑥3 = −9
−6𝑥1 − 12𝑥3 = −18

 

 

−2𝐸2+𝐸3
→      

𝑥1 + 2𝑥2 + 3𝑥3 = 4
−3𝑥2 − 6𝑥3 = −9

0 = 0

1

3
𝐸2

→ 
𝑥1 + 2𝑥2 + 3𝑥3 = 4
𝑥2 + 2𝑥3 = 3

0 = 0

 

Now we have only two equations in three unknowns. 

In the second equation, we can let 𝑥3 = 𝑘, where k is any complex 

number. 

Then 𝑥2 = 3 − 2𝑘. 

Substituting 𝑥3 = 𝑘 and 𝑥3 = 3 − 2𝑘 into the first equation, we have 

𝑥1 = 4 − 2𝑥2 − 3𝑥3 = 4 − 2(3 − 2𝑘) − 3(𝑘) = −2 + 𝑘 
Thus, the general solution is  

(−2 + 𝑘, 3 − 2𝑘, 𝑘)  or  

𝑥1 = −2 + 𝑘
𝑥2 = 3 − 2𝑘
𝑥3 = 𝑘

 

Thus, we see that the system has an infinite number of solutions. 
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Note that specific solutions can be generated by choosing specific values 

for 𝑘 

We are now near the end of this unit.  

 

SELF-ASSESSMENT EXERCISE(S) 

 

1. Determine if the matrix 𝐴 = [
1 4 2
2 1 4
4 2 1

]is invertible. If it is invertible, 

find its inverse. 

2. Consider the system of 3 equations in 3 unknowns:  
2x + y −  z = −1
x −  y + z = 5
3x − y − 2z = 0

 

How many solutions does it have which are linearly independent over R?  

3. Solve the following systems of equations: 

a) 

𝑥1 + 2𝑥2 + 3𝑥3 = 4
4𝑥1 + 5𝑥2 + 6𝑥3 = 7
7𝑥1 + 8𝑥2 + 9𝑥3 = 12

 

b) 

𝑥1 + 2𝑥2 + 3𝑥3 = 0
4𝑥1 + 5𝑥2 + 6𝑥3 = 0
7𝑥1 + 8𝑥2 + 9𝑥3 = 0

10𝑥1 + 11𝑥2 + 12𝑥3 = 0

 

c) 

𝑥1 − 2𝑥2 + 𝑥3 = 0
3𝑥1 − 𝑥2 + 𝑥3 = 0
−𝑥1 + 4𝑥2 − 𝑥3 = 0

 

Each system is in echelon form.  

For each, say whether the system has a unique solution, no solution, or 

infinitely many solutions. 

a)  
−3x + 2y = 0
−2y = 0

     

b) 
x + y = 4
y − z = 0

     

c) 
𝑥1 + 𝑥2 = 4
𝑥2 − 𝑥3 = 0
0 = 0

      

d) 

𝑥1 + 𝑥2 − 3𝑥3 = −1
𝑥2 − 𝑥3 = 2
𝑥3 = 0
0 = 0

 

Conclusion  
In conclusion, we could see that calculating the rank of a matrix can be 

used to detect whether a simultaneous system of equations has a solution 

or not. In this unit, we have established the relationship between rank of 

a matrix with the inverse of the matrix.   
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   3.4  Summary  
 

In this unit we covered the following points.  

 The row rank, column rank and rank of a matrix have been defined, 

and shown to be equal.  

 The rank of a linear transformation is equal to the rank of its 

matrix.  

 Elementary row and column operations have been defined 

 You have been shown how to reduce a matrix to the row-reduced 

echelon form.  

 the echelon form has been used to obtain the inverse of a matrix.  

 The number of linearly independent solutions of a homogenous 

system of equations given by the matrix equation 𝐴𝑋 = 0 is 𝑛 − 𝑟, 
where r = rank of A and n = number of columns of A.  

 The system of linear equations given by the matrix equation 𝐴𝑋 =
𝐵 is consistent if and only if 𝑝(𝐴) = 𝑝([𝐴𝐵]).  

 A system of linear equations could be solved by the process of 

successive elimination of variables, which is, the Gaussian method.  
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MODULE 3 
 

Unit 1  Determinants I 

Unit 2  Determinants II 

 

 

UNIT 1  DETERMINANTS I 

 

Unit Structure 

 

1.1  Introduction  

1.2  Learning Outcomes  

1.3  Main Content 

     1.3.1  Defining Determinant  

     1.3.2  Determinant as Area and Volume:  

     1.3.3  Properties of Determinants  

     1.3.4  Minor, Cofactors and Adjoint of a Matrix 

     1.3.5  Finding the Inverse of a Matrix  

     1.3.6  Solution of System of Linear Equations using Determinant 

1.4  Summary 

1.5  References/Further Readings  

 

1.1  Introduction 

 

Having considered matrices in the last module, it is important to note the 

fundamental difference between a matrix and the determinant of a matrix. 

While a matrix is an array of numbers (elements), each of which has its 

own distinct position in the array; the determinant of a matrix is a number 

produced by combining the elements of the matrix in a prescribed manner. 

Note that determinants of square matrices only can be defined. In Unit 3 

of module 2, we discussed the successive elimination method for solving 

a system of linear equations. This unit introduces you to another method, 

which depends on the concept of a determinant function. Determinants 

were used by the German mathematician Leibniz (1646 – 716) and the 

Swiss Mathematician, Vander Monde (1735-1796) who gave the first 

systematic presentation of the theory of determinants.  

 

Several ways of developing the theory of determinants have been 

considered in section 3along with the study of the properties of 

determinants and certain other basic facts about them. We go on to give 

applications in solving a system of linear equations (Cramer’s Rule) and 

obtaining the inverse of a matrix.  
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We also advise you to revise the units of module 2 before starting this 

unit. 

 

  1.2  Learning Outcomes 
 

By the end of this unit, you will be able to: 

  

 Define the determinant of a matrix. 

 Evaluate the determinant of a square matrix using properties of 

determinants. 

 Obtain the minor, cofactors and adjoint of a square matrix. 

 Compute the inverse of an invertible matrix, using its adjoint. 

 Apply Cramer’s rule to solve system of linear equations. 

 

 1.3  Main Content  

 

1.3.1  Defining Determinant  
 

There are many ways of introducing and defining the determinant 

function from𝑀𝑛(𝐹) to F. In this section we give one of them, the 

classical approach. This was given by the French Mathematician Laplace 

(1749 -1827), and still very much in use.  

 

The determinant is a function defined on square matrices; its value is a 

scalar. It has some very important properties: perhaps most important is 

the fact that a matrix is invertible if and only if its determinant is not equal 

to zero. 

 

We denote the determinant function by det, so that det(A) is the 

determinant of A. For a matrix written out as an array, the determinant is 

denoted by replacing the square brackets by vertical bars, , for example, 

𝑑𝑒𝑡 [
𝑎11 𝑎12
𝑎21 𝑎22

] = |
𝑎11 𝑎12
𝑎21 𝑎22

|. 

 

It is to be noted that there are two other methods of obtaining determinants 

– via permutations and via multi-linear forms.  We shall not be doing these 

methods in this course. For the purpose of actual calculation of 

determinants the method that already given is normally used.  The other 

methods are used to prove various properties of determinants.  
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So far, we have looked at determinant algebraically only; there is a 

geometrical interpretation of determinants also, which shall be treated 

now. 

 

1.3.2  Determinants as Area and Volume:  

 

Let 𝑢 = (𝑎2, 𝑎2) and 𝑣 = (𝑏2, 𝑏2) be two vectors in 𝑅2. Then, the 

magnitude of the area of the parallelogram spanned by u and v (see fig. 1) 

is the absolute value of 

𝑑𝑒𝑡(𝑢, 𝑣) = |
𝑎1 𝑏1
𝑎2 𝑏2

|.  

Thus, if 𝑢1, 𝑢2, ⋯ , 𝑢𝑛 are n vectors in 𝑅𝑛, then the absolute is the 

magnitude of the volume of the n-dimensional box spanned by 

𝑢1, 𝑢2, ⋯ , 𝑢𝑛. 

 

                                Y 

 

                                      v 

                                                        u 

                                                                             X 

                          Fig.1 The shaded area is det(u,v) 

 

Example 1: What is the magnitude of the volume of the box in 𝑅3, 
spanned by 𝑖, 𝑗 and 𝑘? 

 

                               Z 

|
1 0 0
0 1 0
0 0 1

| = 1 

                                 k 

 

                                O           j                   Y 

                       i  

                       X                               Fig.2 The magnitude of volume 

 

1.3.3  Properties of Determinants  
 

In this section we shall state some properties of determinants, mostly 

proof. We will take examples and check that these properties hold for 

them.  

 

Now, for any 𝐴 ∈ 𝑀𝑛(𝐹), then we have the following 8 properties, P1 – 

P8.  
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P1: If every element of a row (column) of a square matrix A is zero 

then|𝐴| = 0. 

P2: If A is an upper (lower) triangular matrix or it is a diagonal matrix, its 

determinant is the     

       product of its diagonal elements.  

P3: If 𝐴𝑇is the transpose of matrix A, then |𝐴𝑇| = |𝐴| 
P4: If two rows (columns) of A are identical, then |𝐴| = 0 

P5: If matrix 𝐵 is obtained from 𝐴 by multiplying its 𝑖𝑡ℎ row (column) by 

a non-scalar K,                 

       then |𝐵| = 𝐾|𝐴| 
P6: If matrix B is obtained from A by adding to its row the product of K 

(a scalar) and its 𝑗𝑡ℎ 

      row, then |𝐵| = |𝐴|. 
     The theorem also holds when row is replaced by column throughout. 

P7: A square matrix A is non-singular if and only if |𝐴| ≠ 0 . 

P8: The determinant of the product of two matrices is equal to the product 

of the determinants  

       of the two matrices, that is, |𝐴𝐵| = |𝐴||𝐵| 
       We would apply the properties P1 – P8 to some matrices to prove the 

properties. 

 

Example 2: Solve the following determinants: 

i) |𝐴| = |
1 4 2
3 0 5
1 4 2

|      ii)  |𝐵| = |

1 3 1 1
5 1 5 2
0 7 0 3
−2 0 −2 4

|     iii)  |𝐶| =

|
1 4 2
0 3 5
0 0 2

| 

   iv)  |𝐷| = |
−3 0 0
3 4 0
1 4 2

|        v) |𝐸| = |
−1 2 0
5 4 0
1 4 0

|               vi)  |𝐹| =

|
4 3 −7
0 0 0
1 8 12

| 

 

Solution: 

i) since the 1st and 3rd rows coincide, then |𝐴| = 0 

ii) since the 1st and 3rd columns coincide, then|𝐵| = 0 

iii) C is an upper triangular matrix, hence |C| = 1x2x3 = 6 

iv) 𝐷 is a lower triangular matrix, hence |𝐷| = −3 × 4 × 2 = −24 

v) All the elements in the 3rd column are zero, then |𝐸| = 0 

vi) All the elements in the 2nd row are zero, then |𝐹| = 0 
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Example 3: Let 𝐴 = |

𝑎 𝑏 𝑏 𝑏
𝑏 𝑎 𝑏 𝑏
𝑏 𝑏 𝑎 𝑏
𝑏 𝑏 𝑏 𝑎

|, find |𝐴| 

Solution: |𝐴| = |

𝑎 𝑏 𝑏 𝑏
𝑏 𝑎 𝑏 𝑏
𝑏 𝑏 𝑎 𝑏
𝑏 𝑏 𝑏 𝑎

| 

Add the 2nd, 3rd and 4th rows to the 1st row 

               |𝐴| = |

𝑎 + 3𝑏 𝑎 + 3𝑏 𝑎 + 3𝑏 𝑎 + 3𝑏
𝑏 𝑎 𝑏 𝑏
𝑏 𝑏 𝑎 𝑏
𝑏 𝑏 𝑏 𝑎

|  

Subtract the 1st column from every other column 

                      = |

𝑎 + 3𝑏 0 0 0
𝑏 𝑎 − 𝑏 0 0
𝑏 0 𝑎 − 𝑏 0
𝑏 0 0 𝑎 − 𝑏

|  

Expanding along the 1st row gives 

             |𝐴| = (𝑎 + 3𝑏) |
𝑎 − 𝑏 0 0
0 𝑎 − 𝑏 0
0 0 𝑎 − 𝑏

|   (a diagonal matrix) 

Hence |𝐴| = (𝑎 + 3𝑏)(𝑎 − 𝑏)3 

Example 4: Show that ||

1 1 1 1
𝑥1 𝑥2 𝑥3 𝑥4
𝑥1
2 𝑥2

2 𝑥3
2 𝑥4

2

𝑥1
3 𝑥2

3 𝑥3
3 𝑥4

3

|| = ∏ (𝑥𝑖 − 𝑥𝑗); 1 ≤ 𝑖 ≤𝑖<𝑗

𝑗 ≤ 4 . 
This is known as the Vandermonde’s determinant of order 4. 

 

Solution:  

Step1: subtract the 1st column from every other column 

= ||

1 0 0 0
𝑥1 𝑥2 − 𝑥1 𝑥3 − 𝑥1 𝑥4 − 𝑥1
𝑥1
2 𝑥2

2 − 𝑥1
2 𝑥3

2 − 𝑥1
2 𝑥4

2 − 𝑥1
2

𝑥1
3 𝑥2

3 − 𝑥1
3 𝑥3

3 − 𝑥1
3 𝑥4

3 − 𝑥1
3

|| 

Step 2: expand along the first row and factorizing the entries 

= 1 |

𝑥2 − 𝑥1 𝑥3 − 𝑥1 𝑥4 − 𝑥1
𝑥2
2 − 𝑥1

2 𝑥3
2 − 𝑥1

2 𝑥4
2 − 𝑥1

2

𝑥2
3 − 𝑥1

3 𝑥3
3 − 𝑥1

3 𝑥4
3 − 𝑥1

3
| 

= |

𝑥2 − 𝑥1 𝑥3 − 𝑥1 𝑥4 − 𝑥1
(𝑥2 − 𝑥1)(𝑥2 + 𝑥1) (𝑥3 − 𝑥1)(𝑥3 + 𝑥1) (𝑥4 − 𝑥1)(𝑥4 + 𝑥1)

(𝑥2 − 𝑥1)(𝑥2
2 + 𝑥1

2 + 𝑥2𝑥1) (𝑥3 − 𝑥1)(𝑥3
2 + 𝑥1

2 + 𝑥3𝑥1) (𝑥4 − 𝑥1)(𝑥4
2 + 𝑥1

2 + 𝑥4𝑥1)
| 
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Step 3: Take out(𝑥2 − 𝑥1), (𝑥3 − 𝑥1) and (𝑥4 − 𝑥1) from columns 1, 2 

and 3 respectively 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4

− 𝑥1) |

1 1 1
𝑥2 + 𝑥1 𝑥3 + 𝑥1 𝑥4 + 𝑥1

𝑥2
2 + 𝑥1

2 + 𝑥2𝑥1 𝑥3
2 + 𝑥1

2 + 𝑥3𝑥1 𝑥4
2 + 𝑥1

2 + 𝑥4𝑥1

| 

 

Step 4: subtracting the first column from the second and third columns 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4

− 𝑥1) |

1 1 1
𝑥2 + 𝑥1 𝑥3 − 𝑥2 𝑥4 − 𝑥2

𝑥2
2 + 𝑥1

2 + 𝑥2𝑥1 𝑥3
2 − 𝑥2

2 + 𝑥3𝑥1 − 𝑥2𝑥1 𝑥4
2 − 𝑥2

2 + 𝑥4𝑥1 − 𝑥2𝑥1

| 

 

Step 5: expand by the first row and factorizing the entries 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4 − 𝑥1)[(𝑥3 − 𝑥2)(𝑥4
2 − 𝑥2

2 + 𝑥4𝑥1 − 𝑥2𝑥1)
− (𝑥4 − 𝑥2)(𝑥3

2 − 𝑥2
2 + 𝑥3𝑥1 − 𝑥2𝑥1)] 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4
− 𝑥1){(𝑥3 − 𝑥2)[(𝑥4 − 𝑥2)(𝑥4 + 𝑥2) + 𝑥1(𝑥4 − 𝑥2)]
− (𝑥3 − 𝑥2)[(𝑥4 − 𝑥2)(𝑥4 + 𝑥2) + 𝑥1(𝑥4 − 𝑥2)](𝑥2𝑥1)} 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4 − 𝑥1){(𝑥3 − 𝑥2)[(𝑥4 − 𝑥2)(𝑥4 + 𝑥2 + 𝑥1)]
− (𝑥4 − 𝑥2)[(𝑥3 − 𝑥2)(𝑥4 + 𝑥2 + 𝑥1)]} 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4
− 𝑥1){(𝑥3 − 𝑥2)(𝑥4 − 𝑥2)[(𝑥4 + 𝑥2 + 𝑥1)
− (𝑥3 + 𝑥2 + 𝑥1)]} 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥4 − 𝑥1){(𝑥3 − 𝑥2)(𝑥4 − 𝑥2)(𝑥4 − 𝑥3)} 
= (𝑥2 − 𝑥1)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)(𝑥4 − 𝑥3) 

=∏(𝑥𝑖 − 𝑥𝑗); 1 ≤ 𝑖 ≤ 𝑗 ≤ 4 

𝑖<𝑗

 

Example 5:  

Let us define the function 𝜃(𝑡) by 𝜃(𝑡) = |
𝑓(𝑡) 𝑔(𝑡)

𝑓′(𝑡) 𝑔′(𝑡)
|. Show that 

𝜃′(𝑡) = |
𝑓(𝑡) 𝑔(𝑡)

𝑓′′(𝑡) 𝑔′′(𝑡)
| 

Solution: 

𝜃(𝑡) = |
𝑓(𝑡) 𝑔(𝑡)

𝑓′(𝑡) 𝑔′(𝑡)
| = 𝑓(𝑡)𝑔′(𝑡) − 𝑔(𝑡)𝑓′(𝑡) 

𝜃′(𝑡) = 𝑓′(𝑡)𝑔′(𝑡) + 𝑓(𝑡)𝑔′′(𝑡) − {𝑔′(𝑡)𝑓′(𝑡) + 𝑔(𝑡)𝑓′′(𝑡)}    [Since 
𝑑

𝑑𝑡
(𝑓𝑔) =

𝑑𝑓

𝑑𝑡
𝑔 +

𝑑𝑔

𝑑𝑡
𝑓] 

= 𝑓(𝑡)𝑔′′(𝑡) − 𝑔(𝑡)𝑓′′(𝑡) = |
𝑓(𝑡) 𝑔(𝑡)

𝑓′′(𝑡) 𝑔′′(𝑡)
| 

Theorem 1.1: Let 𝐴 = [𝑎𝑖𝑗]𝑛𝑥𝑛, then  

a) 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 +⋯+ 𝑎𝑖𝑛𝐶𝑖𝑛 = 𝑑𝑒𝑡(𝐴) = 𝑎1𝑖𝐶1𝑖 + 𝑎2𝑖𝐶2𝑖 +
⋯+ 𝑎𝑛𝑖𝐶𝑛𝑖 
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b) 𝑎𝑖1𝐶𝑗1 + 𝑎𝑖2𝐶𝑗2 +⋯+ 𝑎𝑖𝑛𝐶𝑗𝑛 = 0 = 𝑎1𝑖𝐶𝑗𝑖 + 𝑎2𝑖𝐶2𝑗 +⋯+

𝑎𝑛𝑖𝐶𝑛𝑗 if 𝑖 ≠ 𝑗 

We will not be proving this theorem here.   

We only mention that (a) follows immediately from the definition of det 

(A), since  

𝑑𝑒𝑡(𝐴) = (−1)𝑖+1𝑎𝑖1|𝐴𝑖1| + ⋯+ (−1)
𝑖+𝑛𝑎𝑖𝑛|𝐴𝑖𝑛| 

 

The following example will help you to get used to calculating 

determinants.  

 

We will define the determinant function 𝑑𝑒𝑡:𝑀𝑛 (𝐹) → 𝐹 by induction 

on n. That is, we will define it for 𝑛 = 1,2,3, . .. and then define it for any 

n, assuming the definition for 𝑛 − 1.  

 

When n = 1, for any 𝐴 ∈ 𝑀1(𝐹) we have 𝑎 = [𝑎], for some 𝑎 ∈ 𝐹. In this 

case we define          

𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡([𝑎]) = 𝑎.  

For example, 𝑑𝑒𝑡(5) = 5. 

When n = 2, for any 𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

] ∈ 𝑀2(𝐹), we define 𝑑𝑒𝑡(𝐴) using 

the definition for the case 𝑛 = 2 as followings: 

𝑑𝑒𝑡(𝐴) = 𝑎11 𝑑𝑒𝑡([𝑎22]) − 𝑎12 𝑑𝑒𝑡([𝑎21]) 

Example 6: 𝑑𝑒𝑡 ([
0 1
−2 3

]) = 0 × 3 − 1 × (−2) = 2 

Using the definition for the case 𝑛 = 2 as followings: 

When n = 3, for any 𝐴 = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] ∈ 𝑀3(𝐹), 𝑑𝑒𝑡(𝐴) is defined 

as 

𝑑𝑒𝑡(𝐴) = |𝐴|

= 𝑎11 𝑑𝑒𝑡 ([
𝑎22 𝑎23
𝑎32 𝑎33

]) − 𝑎12 𝑑𝑒𝑡 ([
𝑎21 𝑎23
𝑎31 𝑎33

])

+ 𝑎13 𝑑𝑒𝑡 ([
𝑎21 𝑎22
𝑎31 𝑎32

]) 

                  = 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31) +
𝑎13(𝑎21𝑎32 − 𝑎22𝑎31) 

Example 7: 𝑑𝑒𝑡 ([
1 2 −3
−2 3 5
−1 4 0

]) = 1 |
3 5
4 0

| − 2 |
−2 5
−1 0

| +

(−3) |
−2 3
−1 4

| 

= 1(0 − 20) − 2(0 − (−5)) − 3(−8 − (−3)) 

= 1(−20) − 2(5) − 3(−5) = −20 − 10 + 15 = −15 
|𝐴| could also be calculated from the second row as follows: 
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𝑑𝑒𝑡 ([
1 2 −3
−2 3 5
−1 4 0

]) = −(−2) |
2 −3
4 0

| + 3 |
1 −3
−1 0

| − 5 |
1 2
−1 4

| 

|𝐴| = 2(0 − −12) + 3(0 − 3) − 5(4 − −2) = 24 − 9 − 30 = −15 

 

Exercise: Calculate the |𝐴| using the third row. What do you notice? 

Now, let us see how this definition is extended to define det(A) for any 

𝑛 × 𝑛 matrix 𝐴,   𝑛 ≠ 1. 

         Let 𝐴 =

[
 
 
 
 
𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎(𝑛−1)1 ⋯ ⋯ 𝑎(𝑛−1)(𝑛−1)
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛 ]

 
 
 
 

 

𝑑𝑒𝑡(𝐴) = (−1)1+1𝑎11𝑑𝑒𝑡(𝐴11) + (−1)
1+2𝑎12𝑑𝑒𝑡(𝐴12) + ⋯+

(−1)1+𝑛𝑎1𝑛𝑑𝑒𝑡(𝐴1𝑛) , 
where 𝐴𝑖𝑗 is the (𝑛 – 1) × (𝑛 – 1) matrix obtained from 𝐴 by deleting the 

𝑖𝑡ℎ row and the 𝑗𝑡ℎ column, and 𝑖 is a fixed integer with 1 ≤ 𝑖 ≤ 𝑛. 

Thus, we see that 𝑑𝑒𝑡(𝐴) = ∑ (−1)𝑖+𝑗𝑎𝑗𝑖𝑑𝑒𝑡(𝐴𝑗𝑖)
𝑛
𝑗=1  define the 

determinant of an 𝑛 × 𝑛 matrix 𝐴 in terms of the determinants of the 

(𝑛 – 1) × (𝑛 – 1)  matrices 𝑎𝑗𝑖  ;  𝑖, 𝑗 = 1,2,⋯ , 𝑛 

 

Note: while calculating |A|, it would be most preferable to expand along 

a row that has the maximum number of zeros, this cut downs the number 

of terms to be calculated.  

 

The following example will help you to get used to calculating 

determinants.  

 

Example 8: If 𝐴 = (

−3 −2 0 2
2 1 0 −1
1 0 1 2
2 1 −3 1

) , calculate |𝐴|. 

Solution: The first three rows have one zero each.  Let us expand along 

third row. Observe that 𝑎32 = 0. So, we don’t need to calculate 𝐴32. Now, 

𝐴31 = (
−2 0 2
1 0 1
1 −3 1

) ,   𝐴33 = (
−3 −2 2
1 1 −1
1 1 1

) , 𝐴34 =

(
−3 −2 0
2 1 0
2 1 −3

) 

 

We will obtain |𝐴31|, |𝐴33|and |𝐴34| by expanding along the second, third 

and second rows, respectively. 

|𝐴31| = |
−2 0 2
1 0 1
1 −3 1

| 
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= (−1)2+1 ∙ 1 |
0 2
−3 1

| + (−1)2+2 ∙ 0 |
−2 2
1 −1

| + (−1)2+3

∙ (−1) |
−2 0
1 −3

| 

(Expansion along the second row) 

= (−1) ∙ 6 + 0 + (−1) ∙ 6 

= −6 + 6 = 0 

|𝐴33| = |
−3 −2 2
2 1 −1
2 1 1

| 

= (−1)3+1 ∙ 2 |
−2 2
1 −1

| + (−1)3+2 ∙ 1 |
−3 −2
2 1

| + (−1)3+3

∙ (1) |
−3 −2
2 1

| 

(Expansion along the third row) 

= (1)(2)(0) + (−1)(1)(−1) + (1)(1)(1) 
= 0 + 1 + 1 = 2 

|𝐴34| = |
−3 −2 0
2 1 0
2 1 −3

| 

= (−1)2+1 ∙ 2 |
−2 0
1 −3

| + (−1)2+2 ∙ 1 |
−3 0
2 −3

| + (−1)2+3

∙ (0) |
−3 −2
2 1

| 

(Expansion along the second row) 

= (−1)(2)(6) + (1)(1)(9) + (−1)(0)(1) 
= −12 + 9 + 0 = −3 

Thus, the required determinant is given by 

= 𝑎31|𝐴31| + 𝑎32|𝐴32| + 𝑎33|𝐴33| + 𝑎34|𝐴34| 
= (1)(0) − (0) + (1)(2) + (−2)(−3) = 8 

 

1.3.4  Minor, Cofactors and Adjoint of a Matrix 

 

Definition: Let A be an 𝑛 × 𝑛 matrix. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we define the 

(𝑖, 𝑗) minor of 𝐴 to be the (𝑛 − 1) × (𝑛 − 1) matrix obtained by deleting 

the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of 𝐴. In other words, if the elements of  𝑖𝑡ℎ 

row and 𝑗𝑡ℎ column of 𝐴 are removed from 𝐴, the determinant of the 

remaining (𝑛 − 1) square matrix is known as the first minor of det(A) 

denoted by 𝑚𝑖𝑗, or more frequently as minor of  𝑎𝑖𝑗. 

Example 9: Consider the matrix  [
1 2 −3
−2 3 5
−1 4 0

] 

Minor of element (1) is |
3 5
4 0

| 

Minor of element (2) is |
−2 5
−1 0

| 

Minor of element (−3) is |
−2 3
−1 4

| etc. 
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Now we define the (𝑖, 𝑗) cofactor of 𝐴 to be (−1)𝑖+𝑗 times the 

determinant of the (𝑖, 𝑗) minor, where (−1)𝑖+𝑗 is called the place sign of 

element 𝑎𝑖𝑗. 

 

Note: These place signs have a chessboard pattern, starting with sign ‘+’ 

in the top left corner, that is,  

Place sign of 𝑎11 is (−1)1+1 = +                         Place sign of 𝑎12 is 

(−1)1+2 = − 

Place sign of 𝑎13 is (−1)1+3 = +                         Place sign of 𝑎21 is 

(−1)2+1 = − 

Place sign of 𝑎22 is (−1)2+2 = +                        Place sign of 𝑎23 is 

(−1)2+3 = − 

Place sign of 𝑎31 is (−1)3+1 = +                        Place sign of 𝑎32 is 

(−1)3+2 = − 

Place sign of 𝑎33 is (−1)3+3 = + 
+ − +
− + −
+ − +

 

Cofactor of 𝑎𝑖𝑗 is the place sign of 𝑎𝑖𝑗 multiply by the minor of 𝑎𝑖𝑗, that 

is, 

Cofactor of 𝑎11 is (−1)1+1 |
𝑎22 𝑎23
𝑎32 𝑎33

| = +(𝑎22𝑎33 − 𝑎23𝑎32) 

Cofactor of 𝑎12 is (−1)1+2 |
𝑎21 𝑎23
𝑎31 𝑎33

| = −(𝑎21𝑎33 − 𝑎23𝑎31) 

Cofactor of 𝑎13 is (−1)1+3 |
𝑎21 𝑎22
𝑎31 𝑎32

| = +(𝑎21𝑎32 − 𝑎22𝑎31) 

Cofactor of 𝑎21 is (−1)2+1 |
𝑎12 𝑎13
𝑎32 𝑎33

| = −(𝑎12𝑎33 − 𝑎13𝑎32) 

Cofactor of 𝑎22 is (−1)2+2 |
𝑎11 𝑎13
𝑎31 𝑎33

| = +(𝑎11𝑎33 − 𝑎13𝑎31) 

Cofactor of 𝑎23 is (−1)2+3 |
𝑎11 𝑎12
𝑎31 𝑎32

| = −(𝑎11𝑎32 − 𝑎12𝑎31) 

Cofactor of 𝑎31 is (−1)3+1 |
𝑎12 𝑎13
𝑎22 𝑎23

| = +(𝑎12𝑎23 − 𝑎13𝑎22) 

Cofactor of 𝑎32 is (−1)3+2 |
𝑎11 𝑎13
𝑎21 𝑎23

| = −(𝑎11𝑎23 − 𝑎13𝑎21) 

Cofactor of 𝑎33 is (−1)3+3 |
𝑎11 𝑎12
𝑎21 𝑎22

| = +(𝑎11𝑎22 − 𝑎12𝑎21) 

The (𝑖, 𝑗) cofactor of 𝐴 is denoted by 𝐶𝑖𝑗(𝐴). 

In the example above, cofactor of 1 = 𝐶11would be + |
3 5
4 0

| = 3 ⋅ 0 −

5 ⋅ 4 = −20, 

Cofactor of (2) = 𝐶12 is − |
−2 5
−1 0

| = −[(−2)0 − 5(−1)] = −5 

Cofactor of (−3) = 𝐶13 is+ |
−2 3
−1 4

| = [(−2)4 −  3(−1)] = −5 

Cofactor of (−2) = 𝐶21 is − |
2 −3
4 0

| = −[(2)0 −  (−3)4] = −12 
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Cofactor of (3) = 𝐶22 is  + |
1 −3
−1 0

| = [1.0 − (−3)(−1)] = −3 

Cofactor of (5) = 𝐶23 is   − |
1 2
−1 4

| = −[1.4 −  2(−1)] = −6 

Cofactor of (−1) = 𝐶31 is   + |
2 −3
3 5

| = [(2)5 − (−3)(3)] = 19 

Cofactor of (4) = 𝐶32 is − |
1 −3
−2 5

| = −[1.5 − (−3)(−2)] = 1 

Cofactor of (0) = 𝐶33 is  + |
1 2
−2 3

| = −[1.3 − (2)(−2)] = 7 

Therefore, the matrix of cofactors of 𝐴 denoted by 𝐶(𝐴)  

is[
−20 −5 −5
−12 −3 −6
19 1 7

]. 

Finally, the adjoint of A is the 𝑛 × 𝑛 matrix 𝐴𝑑𝑗(𝐴) whose (𝑖, 𝑗) entry is 

the ( 𝑗, 𝑖) cofactor 𝐶𝑗𝑖(𝐴) of 𝐴 or simply the transpose of 𝐶𝑖𝑗(𝐴).  

Thus, the adjoint of A is the 𝑛 × 𝑛 matrix is the transpose of the matrix 

of corresponding cofactors of A. 

 

Definition: Let 𝐴 = [𝑎𝑖𝑗] be any 𝑛 × 𝑛 matrix.  Then the adjoint of 𝐴 is 

the 𝑛 × 𝑛 matrix, denoted by 𝐴𝑑𝑗(𝐴), and defined by 

𝐴𝑑𝑗(𝐴) =

[
 
 
 
 
𝐶11 𝐶12 ⋯ ⋯ 𝐶1𝑛
𝐶21 𝐶22 ⋯ ⋯ 𝐶2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝐶𝑛1 𝐶𝑛2 ⋯ ⋯ 𝐶𝑛𝑛]

 
 
 
 
𝑇

=

[
 
 
 
 
𝐶11 𝐶21 ⋯ ⋯ 𝐶𝑛1
𝐶12 𝐶22 ⋯ ⋯ 𝐶𝑛2
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝐶1𝑛 𝐶2𝑛 ⋯ ⋯ 𝐶𝑛𝑛]

 
 
 
 

 

 

For the example above, 𝐴𝑑𝑗(𝐴) = 𝐶𝑇(𝐴) = [
−20 −5 −5
−12 −3 −6
19 1 7

]. 

Example10: Obtain the adjoint of the matrix𝐴 = [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
].  

Solution:|𝐴| = |
𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
| = 𝑐𝑜𝑠 𝜃(𝑐𝑜𝑠 𝜃 − 0) − 0(0 −

0) + 𝑠𝑖𝑛𝜃(𝑠𝑖𝑛𝜃 − 0) 
             ∴ |𝐴| = 𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1  

𝐶11 = 𝑐𝑜𝑠𝜃; 𝐶12 = 0; 𝐶13 = −𝑠𝑖𝑛𝜃; 𝐶21 = 0; 𝐶22 = 𝑐𝑜𝑠
2𝜃 + 𝑠𝑖𝑛2𝜃 =

1;  

𝐶23 = 0; 𝐶31 = 𝑠𝑖𝑛𝜃; 𝐶32 = 0; 𝐶33 = 𝑐𝑜𝑠𝜃 

Therefore, the matrix of cofactors is 𝐶𝑖𝑗(𝐴) = [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
] 

Thus, adjoint of the matrix is 𝐴𝑑𝑗(𝐴) = [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
].  
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1.3.5  Finding the inverse of a matrix  

 

A method of finding out if a matrix is invertible is the use of adjoint of a 

matrix.  

The following theorem uses the adjoint to give another way of finding out 

if a matrix A is invertible. It also gives us𝐴−1, if A is invertible.  

 

Theorem 2: Let A be an 𝑛 × 𝑛 matrix over F, then 𝐴 ∙ (𝐴𝑑𝑗(𝐴)) =

(𝐴𝑑𝑗(𝐴)) ∙ 𝐴 = 𝑑𝑒𝑡(𝐴)𝐼 
Proof: Recall matrix multiplication from Module 2 unit 1.  

[
 
 
 
 
𝑎11 𝑎12 ⋯ ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ ⋯ 𝑎2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ ⋯ 𝑎𝑛𝑛]

 
 
 
 

[
 
 
 
 
𝐶11 𝐶12 ⋯ ⋯ 𝐶𝑛1
𝐶12 𝐶22 ⋯ ⋯ 𝐶𝑛2
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝐶1𝑛 𝐶2𝑛 ⋯ ⋯ 𝐶𝑛𝑛]

 
 
 
 

 

 

Now, by Theorem 1, we know that 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 +⋯+ 𝑎𝑖𝑛𝐶𝑖𝑛 =
𝑑𝑒𝑡(𝐴) and  

𝑎𝑖1𝐶𝑗1 + 𝑎𝑖2𝐶𝑗2 +⋯+ 𝑎𝑖𝑛𝐶𝑗𝑛 = 0  if 𝑖 ≠ 𝑗. 
Therefore,  

𝐴 ∙ (𝐴𝑑𝑗(𝐴)) =

[
 
 
 
 
𝑑𝑒𝑡(𝐴) 0 ⋯ ⋯ 0

0 𝑑𝑒𝑡(𝐴) ⋯ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋮ ⋮ 0
0 0 ⋯ ⋯ 𝑑𝑒𝑡(𝐴)]

 
 
 
 

 

= 𝑑𝑒𝑡(𝐴)

[
 
 
 
 
1 0 ⋯ ⋯ 0
0 1 ⋯ ⋯ 0
⋮ ⋮ 1 ⋮ ⋮
0 0 ⋮ 1 0
0 0 ⋯ ⋯ 1]

 
 
 
 

= 𝑑𝑒𝑡(𝐴)𝐼 

Similarly, (𝐴𝑑𝑗(𝐴)) ∙ 𝐴 = 𝑑𝑒𝑡(𝐴)𝐼 
An immediate corollary shows us how to calculate the inverse of a matrix, 

if it exists. 

 

Corollary 1: Let 𝐴 be an 𝑛 × 𝑛 matrix over 𝐹. Then 𝐴 is invertible if and 

only if 𝑑𝑒𝑡(𝐴) ≠ 0, then 𝐴−1 =
1

𝑑𝑒𝑡(𝐴)
𝐴𝑑𝑗(𝐴) 

 

Proof: If 𝐴 is invertible, then 𝐴−1 exists and 𝐴−1𝐴 = 𝐼. 
So, by theorem 1, 𝑑𝑒𝑡(𝐴−1)𝑑𝑒𝑡(𝐴) = 𝑑𝑒𝑡(𝐼) = 𝐼 
∴               𝑑𝑒𝑡(𝐴) ≠ 0  

Conversely, if 𝑑𝑒𝑡(𝐴) ≠ 0 , then Theorem 2 says that 

𝐴 (
1

𝑑𝑒𝑡(𝐴)
𝐴𝑑𝑗(𝐴)) = 𝐼 = (

1

𝑑𝑒𝑡(𝐴)
𝐴𝑑𝑗(𝐴)) 𝐴 
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Therefore, 𝐴−1 =
1

𝑑𝑒𝑡(𝐴)
𝐴𝑑𝑗(𝐴) 

For Example 9 above,  

         |
1 2 −3
−2 3 5
−1 4 0

| = 1(0 − 20) − 2(0 − (−5)) + (−3)(−8 −

(−3)) = −15  

           ∴ 𝐴−1 =
1

−15
[
−20 −5 −5
−12 −3 −6
19 1 7

]. 

For Example10, 𝐴−1 =
1

1
[
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
] = [

𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
] 

The process of obtaining the inverse of a system of equations using adjoint 

can be expressed in the following steps: 

i. Evaluate the determinant of the matrix, say 𝐴 

ii. Form a matrix of cofactors of the elements of the matrix 𝐴 

iii. Write the transpose of C, that is, 𝐶𝑇 which is the adjoint of the 

given matrix  

iv. Divide the Adjoint by |𝐴| 
v. The resulting matrix is the inverse, 𝐴−1, of matrix 𝐴 

 

1.3.6  Solution of System of Linear Equations using Determinant 

 

In unit 3 of module 2 above, we solved system of linear equations 

especially when the number of equations is not equal to the number of 

variables using the method of Gaussian elimination. A method of solving 

system of linear equations when the number of equations equals the 

number of variables is the use of determinant. In this section we shall give 

a rule derived by the mathematician, Cramer, for solving this system of 

linear equations.  

 

Consider the system of 𝑛 linear equations in 𝑛 unknowns, given by 

                     

𝑎11𝑥1 + 𝑎12𝑥2 + +𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + +𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
⋮

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

    

This can be written in matrix form: 

                                  

[
 
 
 
 
𝑎11 𝑎12 ⋯ ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ ⋯ 𝑎2𝑛
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ ⋯ 𝑎𝑛𝑛]

 
 
 
 

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

=

[
 
 
 
 
𝑏1
𝑏2
⋮
⋮
𝑏𝑛]
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Theorem 3: Let the matrix equation of a system of linear equations be 

𝐴𝑋 = 𝐵, where               

                       𝐴 = [𝑎11]𝑛×𝑛; 𝑋 =

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

 and 𝐵 =

[
 
 
 
 
𝑏1
𝑏2
⋮
⋮
𝑏𝑛]
 
 
 
 

 

Let the columns of A be 𝐶1, 𝐶2, ⋯ , 𝐶𝑛.  If det(A) ≠ 0, the given system has 

a unique solution, namely,𝑥1 =
𝐷1

𝐷
, 𝑥2 =

𝐷2

𝐷
, ⋯ , 𝑥𝑛 =

𝐷𝑛

𝐷
  , 

𝐷𝑖 = 𝑑𝑒𝑡(𝐶1, ⋯ , 𝐶𝑖−1, 𝑩,⋯ , 𝐶𝑛), that is, determinant of the matrix 

obtained from A by replacing the 𝑖𝑡ℎ column by B, and D = det (A).  

 

Proof:  Since |A| ≠ 0, the corollary 1 says that 𝐴−1 exists   

Now 𝐴𝑋 = 𝐵 ⟹ 𝐴−1𝐴𝑋 = 𝐴−1𝐵 

         ⟹ 𝐼𝑋 =
1

𝐷
𝑎𝑑𝑗(𝐴)𝐵  

               𝑋 =
1

𝐷

[
 
 
 
 
𝐶11 𝐶21 ⋯ ⋯ 𝐶𝑛1
𝐶12 𝐶22 ⋯ ⋯ 𝐶𝑛2
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝐶1𝑛 𝐶2𝑛 ⋯ ⋯ 𝐶𝑛𝑛]

 
 
 
 

[
 
 
 
 
𝑏1
𝑏2
⋮
⋮
𝑏𝑛]
 
 
 
 

   

Thus, 

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

=
1

𝐷

[
 
 
 
 
𝐶11𝑏1 + 𝐶21𝑏2 +⋯+ 𝐶𝑛1𝑏1
𝐶12𝑏1 + 𝐶22𝑏2 +⋯+ 𝐶𝑛2𝑏2

⋮
⋮

𝐶1𝑛𝑏1 + 𝐶2𝑛𝑏2 +⋯+ 𝐶𝑛𝑛𝑏𝑛]
 
 
 
 

  

Thus, 

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

=
1

𝐷

[
 
 
 
 
𝐷1
𝐷2
⋮
⋮
𝐷𝑛]
 
 
 
 

 this gives us Cramer’s rule, namely,  

                              𝑥1 =
𝐷1

𝐷
, 𝑥2 =

𝐷2

𝐷
, ⋯ , 𝑥𝑛 =

𝐷𝑛

𝐷
  

The following example and exercise may help you to practice using 

Cramer’s rule 

 

Example 11:  Solve the following system using Cramer’s rule: 

           a)     
5𝑥 + 2𝑦 = −19
3𝑥 + 4𝑦 = −17

     b) 

2𝑥1 + 3𝑥2 − 𝑥3 = 4
3𝑥1 + 𝑥2 + 2𝑥3 = 13
𝑥1 + 2𝑥2 − 5𝑥3 = −11

 

Solution: 
a) The given system is equivalent to AX = B, where  

       𝐴 = (
5 2
3 4

) , 𝑋 =  [
𝑥
𝑦] , B = [

−19
−17

]  

Now, |𝐴| = 𝐷 = 20 − 6 = 14 
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𝐷1 = |
−19 2
−17 4

| = −76 + 34 = −42 

𝐷2 = |
5 −19
3 −17

| = −85 + 57 = −28 

Applying the Crammer’s rule to have 

𝑥 =
𝐷1
𝐷
=
−42

14
= −3,  

𝑦 =
𝐷2
𝐷
=
−28

14
= −2 

Substitute these values in the given equations to check that we haven’t 

made a mistake in our calculations. 

b) The given system is equivalent to AX = B, where  

          𝐴 = (
2 3 −1
3 1 2
1 2 −5

) , 𝑋 =  [

𝑥1
𝑥2
𝑥3
] ,   B = [

4
13
−11

]  

Now, |𝐴| = 𝐷 = 28 

         𝐷1 = |
4 3 −1
13 1 2
−11 2 −5

| = 56  

         𝐷1 = |
3 4 −1
1 13 2
2 −11 −5

| = 28  

         𝐷1 = |
2 3 4
3 1 13
1 2 −11

| = 84  

Applying the Crammer’s rule to have 

𝑥1 =
𝐷1

𝐷
=
56

28
= 2, 𝑥2 =

𝐷2

𝐷
=
28

28
= 1 and 𝑥3 =

𝐷3

𝐷
=
84

28
= 3 

 

SELF-ASSESSMENT EXERCISE(S) 

 

1. Solve (i) |
1 3 0
2 1 2
1 3 0

|  (ii) |
2 3 5
1 0 1
4 6 10

|   (iii) |
𝑎 0 0
𝛼 𝑏 0
𝛽 𝛿 𝑐

|  and (iv) 

|
𝑎 𝑑 𝑒
𝛼 𝑏 𝑓
0 0 𝑐

| 

2. If 𝐴 = [
1 4 3
6 2 5
1 7 0

]. Find (a) |A|   (b) Adj(A)   (c) 𝐴−1 

 

3. 𝐵 = [
2 3 −1
0 0 6
0 0 5

]. Find (a) |B|    (b) Adj(B)   (c) 𝐵−1 

 

4. Solve the following systems of equations by the Cramer’s rule: 
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a)
𝑎 + 2𝑏 + 𝑐 = 4
3𝑎 − 4𝑏 − 2𝑐 = 2
5𝑎 + 3𝑏 + 5𝑐 = −1

b) 

𝑥1 + 2𝑥2 − 3𝑥3 = 3
2𝑥1 − 𝑥2 − 𝑥3 = 11
3𝑥1 + 2𝑥2 + 𝑥3 = −5

c) 

𝑥 − 4𝑦 − 2𝑧 = 21
2𝑥 + 𝑦 + 2𝑧 = 3
3𝑥 + 2𝑦 − 𝑧 = −2

 

 

Conclusion 

In conclusion, to obtain the inverse of a matrix using adjoint you have to 

first evaluate the determinant of the matrix, and matrix of cofactors of 

each of the elements of the matrix and follow the steps highlighted in 

section3 above. It has also been established that determinants have both 

algebraic and geometrical interpretation and can be used to find the 

magnitude of the areas and volumes of solids in terms of vectors in 𝑅2 
and 𝑅3.  
 

 1.4   Summary  

 

In this unit we have covered the following points 

 

The definition of the determinant of a square matrix as well as the 

properties (P1-P8) of determinants were stated.  
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UNIT 2  DETERMINANTS II 
 

Unit Structure 

 

2.1  Introduction  

2.2  Learning Outcomes  

2.3  Main Content 

     2.3.1  Product Formula  

     2.3.2  The Determinant Rank  

2.4  Summary 

2.5  References/Further Readings  

 

 2.1  Introduction 

 

We continue the concept of determinant in this unit. Note that throughout 

this unit, F will denote field of characteristic zero, (𝑀𝑛(𝐹)) will denote 

the set of 𝑛 × 𝑛 matrices over 𝐹 and 𝑉𝑛(𝐹) will denote the space of all 

𝑛 × 1 matrices over 𝐹. 

 

The concept of a determinant must be understood properly because it shall 

be used continuously again and again. Do spend more time on section 2.3, 

if necessary. 

 

  2.2  Learning Outcomes 

 

 Define a linear transformation on a finite-dimensional non-zero 

vector space 

 

 Evaluate the determinant of a linear transformation;  

 

 Evaluate the rank of a matrix by using the concept of the 

determinant rank.  

 

  2.3  Main Content  

 

2.3.1  Product Formula 
 

In the last unit, we noted that one of the properties of determinant is the 

fact that the determinant of the product of two matrices is equal to the 

product of the determinants of the two matrices. 



MTH 212           LINEAR ALGEBRA 

154 

 

Having studied matrix multiplication in module 2 unit 1, we shall obtain 

the determinant of a product of matrices and define the determinant of a 

linear transformation. A method of obtaining the determinant rank of a 

matrix shall also be discussed in this unit. 

 

Theorem 1: Let A and B be 𝑛 × 𝑛 matrices over 𝐹, then 𝑑𝑒𝑡(𝐴𝐵) =
𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝐵).  
 

We shall only verify this theorem for some cases using some examples as 

the proof is slightly complicated.  

Example 1: Calculate |A|, |B| and |AB| when 𝐴 = (
1 0 2
3 1 0
0 0 1

) and 𝐵 =

(
2 10 9
0 3 8
0 0 5

) 

 

Solution: Let us verify theorem 1 for our pair of matrices.  

Now, on expanding by the third row (the reasons already given in unit 1), 

we have |A| = 1. 

Also, |B| = 30, which can be immediately seen since B is a triangular 

matrix   

Also, 𝐴𝐵 = (
1 0 2
3 1 0
0 0 1

)(
2 10 9
0 3 8
0 0 5

) = (
2 10 19
6 33 35
0 0 5

) 

|𝐴𝐵| = 5 |
2 10
6 33

| = 30 

Thus, |𝐴𝐵| = |𝐴||𝐵| = (1)(30) = 30 

Example 2: Show that |𝐴𝐵| = |𝐴||𝐵| where 𝐴 = (
1 0 −1
0 2 −2
3 −3 5

)  and 

𝐵 = (
−1 0 1
−2 2 0
5 −3 3

). 

Solution:  

𝐴𝐵 = (
1 0 −1
0 2 −2
3 −3 5

)(
−1 0 1
−2 2 0
5 −3 3

) = (
−6 3 −2
−14 10 −6
28 −21 18

) 

|𝐴𝐵| = |
−6 3 −2
−14 10 −6
28 −21 18

|

= −6(180 − 126) − 3(−252 + 168)
+ (−2)(294 − 280) 

= −324 + 252 − 28 = −100 

          |𝐵| = |
−1 0 1
−2 2 0
5 −3 3

| = −6 − 4 = −10  
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          |𝐴| = |
1 0 −1
0 2 −2
3 −3 5

| = 10 − 6 + 6 = 10  

|A||B| = 10(−10) = −100  

Hence |𝐴𝐵| = |𝐴||𝐵| = (10)(−10) = −100 

𝐵𝐴 = (
−1 0 1
−2 2 0
5 −3 3

)(
1 0 −1
0 2 −2
3 −3 5

) = (
2 −3 6
−2 4 −2
14 −15 16

) 

This shows that 𝐴𝐵 ≠ 𝐵𝐴 

Theorem 1 can be extended to a product of 𝑚(𝑛 × 𝑛) matrices 

𝐴1, 𝐴2, ⋯ , 𝐴𝑚.  

That is, 𝑑𝑒𝑡(𝐴1, 𝐴2, ⋯ , 𝐴𝑚) = 𝑑𝑒𝑡(𝐴1)𝑑𝑒𝑡(𝐴2)⋯𝑑𝑒𝑡(𝐴𝑚). 
Now, you know that in general, 𝐴𝐵 ≠ 𝐵𝐴, but, |𝐴𝐵| = |𝐴||𝐵| 
On the other hand, in general|𝐴 + 𝐵| ≠ |𝐴| + |𝐵|, using the example 

above 

      𝐴 + 𝐵 = (
1 0 2
3 1 0
0 0 1

) + (
2 10 9
0 3 8
0 0 5

) = (
3 10 11
3 4 8
0 0 6

)  

    |A + B| = |
3 10 11
3 4 8
0 0 6

| = 6(12 − 30) = −108  

 

          |A| = |
1 0 2
3 1 0
0 0 1

| = 1(1 − 0) = 1  

 
         |B| = |

2 10 9
0 3 8
0 0 5

| = 5(6 − 0) = 30  

Thus,  |𝐴| + |𝐵| = 1 + 30 = 31  

So, |𝐴 + 𝐵| = −108 ≠ |𝐴| + |𝐵| = 31 

Thus, what we have just done is that determinant is not a linear function.  

We now give an immediate corollary to theorem 1.  

Corollary 1: If 𝐴 ∈ 𝑀𝑛(𝐹)  is invertible, then 𝑑𝑒𝑡(𝐴−1) =
1

𝑑𝑒𝑡(𝐴)
 

Proof:  

Let 𝐵 ∈ 𝑀𝑛(𝐹) such that 𝐴𝐵 = 𝐼. Then 𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝐵) =
𝑑𝑒𝑡(1) = 1 

Thus, 𝑑𝑒𝑡(𝐴) ≠ 0 and 𝑑𝑒𝑡(𝐵) =
1

𝑑𝑒𝑡(𝐴)
 

In particular, 𝑑𝑒𝑡(𝐴−1) =
1

𝑑𝑒𝑡(𝐴)
 

Another corollary to Theorem 1 is given below: 

Corollary 2: Similar matrices have the same determinant. 

Proof: If B is similar to A, then 𝐵 = 𝑃−1𝐴𝑃 for some invertible matrix 

𝑃.  

Thus, by Theorem 1, 𝑑𝑒𝑡(𝐵) = 𝑑𝑒𝑡(𝑃−1𝐴𝑃) 
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                                = 𝑑𝑒𝑡(𝑃−1)𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝑃) =
1

𝑑𝑒𝑡(𝑃)
∙ 𝑑𝑒𝑡(𝑃)        (By 

corollary 1) 

We use this corollary to introduce you to the determinant of a linear 

transformation. At each stage you have seen the very close relationship 

between linear transformations and matrices. Here too, you will see this 

closeness.  

 

Definition 1: Let 𝑇: 𝑉 → 𝑉 be a linear transformation on a finite-

dimensional non-zero vector space V and let 𝐴 = [𝑇]𝐵 be the matrix of 𝑇 

with respect to a given basis B of V. Then the determinant of T is defined 

by 𝑑𝑒𝑡(𝑇) = 𝑑𝑒𝑡(𝐴). 
This definition is independent of the basis of 𝑉 that is chosen because; if 

we choose another basis B′ of 𝑉 we would obtain the matrix A′ = [T]B′, 
which is similar to 𝐴 (see Module 2 Unit 2, Corollary to Theorem 5).  

Thus, 𝑑𝑒𝑡 (𝐴′)  =  𝑑𝑒𝑡 (𝐴).  
We have the following example and exercises.  

 

Example 3: Find 𝑑𝑒𝑡(𝑇) where we define 𝑇: 𝑅3 → 𝑅3 by  

𝑇(𝑥1, 𝑥2, 𝑥3) = (3𝑥1 + 𝑥3, −2𝑥1 + 𝑥2, −𝑥1 + 2𝑥2 + 4𝑥3) 
 

Solution: Let 𝐵 = {(1,0,0), (0,10), (0,0,1)} be the standard ordered basis 

of 𝑅3. 
 Now, 
             𝑇(1,0,0) = (3, −2,−1) = 3(1,0,0) − 2(0,1,0) − 1(0,0,1)  
             𝑇(0,1,0) = (0,1,2) = 0(1,0,0) + 1(0,1,0) + 2(0,0,1)  
             𝑇(0,0,1) = (1,0,4) = 1(1,0,0) + 0(0,1,0) + 4(0,0,1)  

        ∴ A = [T]B = [
3 0 1
−2 1 0
−1 2 4

]  

So, by definition, 

𝑑𝑒𝑡 (𝑇) = 𝑑𝑒𝑡 (𝐴) = |
3 0 1
−2 1 0
−1 2 4

| = 3 |
1 0
2 4

| + 1 |
−2 1
−1 2

| = 12 − 3

= 9 

 

Now let us see what happens if 𝐵 = 0. Remember, in Unit 8 you saw that 

𝐴𝑋 = 0 has 𝑛 − 𝑟 linearly independent solutions, where 𝑟 = 𝑟𝑎𝑛𝑘 𝐴.  

The following theorem tells us this condition in terms of 𝑑𝑒𝑡(𝐴).  
 

Theorem 2: The homogeneous system 𝐴𝑋 = 0 has a non-trivial solution 

if and only if  

𝑑𝑒𝑡(𝐴) = 0 

Proof: First assume that 𝐴𝑋 = 0 has a non-trivial solution.  

            Suppose, if possible, that 𝑑𝑒𝑡(𝐴)  ≠  0.  
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Then Cramer’s Rule’s says that 𝐴𝑋 = 0 has only the trivial solution 𝑋 =
0 (because each 𝐷𝑖 = 0 in Theorem 3 of the last unit).  

This is a contradiction to our assumption.   

Therefore, 𝑑𝑒𝑡(𝐴) = 0.  

Conversely, if 𝑑𝑒𝑡(𝐴) = 0, then 𝐴 is not invertible.  

Therefore, the linear mapping: 

𝐴: 𝑉𝑛(𝐹) → 𝑉𝑛(𝐹): 𝐴(𝑋) = 𝐴𝑋 is not invertible.  

Therefore, this mapping is not one -to –one, hence, 𝐾𝑒𝑟 𝐴 ≠  0, that is 

𝐴𝑋 = 0 for some non-zero 𝑋 ∈ 𝑉𝑛(𝐹).  
Thus, 𝐴𝑋 = 0 has a non-trivial solution.  

Use theorem 2 to solve the following: 

Example 4: Does the system 

2𝑥 + 3𝑦 + 𝑧 = 0
𝑥 − 𝑦 − 𝑧 = 0

4𝑥 + 6𝑦 + 2𝑧 = 0
  have a non-zero 

solution? 

 

Solution: The given system is equivalent to 𝐴𝑋 = 0, where A =

[
2 3 1
1 −1 −1
4 6 2

] 

Since the third row of A is twice the first row of A.  

Therefore, by P2 and P4 of Section 1.3.3 of unit 1, |𝐴| = 0.  

Therefore, by Theorem 5, the given system has a non-zero solution. 

Let us introduce you to the determinant rank of a matrix, which leads us 

to another method of obtaining the rank of a matrix 

 

2.3.2  The Determinant Rank 

 

In Unit 2 module 2, you were introduced to the rank of a linear 

transformation and the rank of a matrix, respectively. Then we related the 

two ranks. In this section we will discuss the determinant rank and show 

that it is the rank of the concerned matrix.  First, we give a necessary and 

sufficient condition for n vectors in 𝑉𝑛(𝐹) to be linearly dependent.  

 

Theorem 3: Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ 𝑉𝑛(𝐹), then 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are linearly 

dependent over the field 𝐹 if and only if 𝑑𝑒𝑡(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 0. 

 

Proof: Let 𝑈 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) be the 𝑛 × 𝑛 matrix whose column 

vectors are 𝑥1, 𝑥2, ⋯ , 𝑥𝑛. Then 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are linearly dependent over 

F if and only if there exist scalars  𝛼1, 𝛼2, ⋯ , 𝛼𝑛 ∈ 𝐹, not all zero, such 

that 𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑛𝑥𝑛 = 0. 

Now, 𝑈 [

𝛼1
𝛼2
⋮
𝛼𝑛

] = (𝑥1𝑥2⋯𝑥𝑛) [

𝛼1
𝛼2
⋮
𝛼𝑛

] 
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                       = 𝑥1𝛼1 + 𝑥2𝛼2 +⋯+ 𝑥𝑛𝛼𝑛  

                       = 𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑛𝑥𝑛  

Thus, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are linearly dependent over the field 𝐹 if and only if 

𝑈𝑋 = 0 for some  

non-zero 𝑋 = [

𝛼1
𝛼2
⋮
𝛼𝑛

] ∈ 𝑉𝑛(𝐹).  

This happens if and only if 𝑑𝑒𝑡(𝑈) = 0, by Theorem 1.  

Thus, Theorem 2 is proved. 

Theorem 3 is equivalent to the statement (𝑥1𝑥2⋯𝑥𝑛) are linearly 

independent if and only if 𝑑𝑒𝑡(𝑥1𝑥2⋯𝑥𝑛) ≠ 0. 

Now, use theorem 3 to solve the following example: 

Example 5: Check if the vectors;  [
1
0
1
],   [

0
−1
1
],   [

2
3
0
] are linearly 

independent. 

Solution: |
1 0 2
0 −1 3
1 1 0

| = −3 + 2 = −1 ≠ 0 

Hence, the given vectors are linearly independent. 

 

Sub-matrix of A is a matrix that can be obtained from 𝐴 by deleting some 

rows and columns. 

Now, consider the matrix A = [
1 2 3
0 4 5
1 2 3

] 

Since two rows of 𝐴 are equal, we know that |A| = 0.  

But consider its 2 × 2 sub-matrix A13 = [
0 4
1 2

] whose determinant is – 

4 ≠ 0.  

In this case we say that the determinant rank of 𝐴 is 2.  

In general, we have the following definition: 

 

Definition 2: Let A be an (𝑚 × 𝑛) matrix. If A ≠ 0, then the determinant 

rank of A is the largest positive integer r such that  

i. there exists an (𝑟 × 𝑟) sub-matrix of 𝐴 whose determinant is non-

zero, and  

ii. for s > r, the determinant of any (𝑠 × 𝑠) sub-matrix of 𝐴 is 0.  

 

Note: The determinant rank r of any 𝑚 × 𝑛 matrix is defined, not only of 

a square matrix.  

Also, 𝑟 ≤ 𝑚𝑖𝑛(𝑚, 𝑛).  

Example 6: Obtain the determinant rank of A = [
1 4
2 5
3 6

] 
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Solution: Since A is a (3 × 2) matrix, the largest possible value of its 

determinant rank can be 2. Also, the sub-matrix [
1 4
2 5

] of 𝐴 has 

determinant (-3) ≠ 0. 

Therefore, the determinant rank of 𝐴 is 2. 

 

Example 7: Calculate the determinant rank of 𝐴, where A = [
1 2 3
4 5 6

] 

 

Solution: Here, 𝐴 is a (2 × 3) matrix and the largest possible value of its 

determinant rank can be 2. Also, the sub-matrix[
1 2
4 5

] of 𝐴 has 

determinant (-3) ≠ 0. 

Therefore, the determinant rank of 𝐴 is 2. 

 

Now we come to the reason for introducing the determinant rank, this 

gives us another method for obtaining the rank of a matrix. 

 

Theorem 4: The determinant rank of an (𝑚 × 𝑛) matrix 𝐴 is equal to the 

rank of 𝐴.  

 

Proof: Let the determinant rank of 𝐴 be r. Then there exists a (𝑟 × 𝑟) sub-

matrix of 𝐴 whose determinant is non-zero. By Theorem 3, its column 

vectors are linearly independent.  

It follows by the definition of linear independence, that these column 

vectors, when extended to the column vectors of 𝐴, remain linearly 

independent.  

Thus, 𝐴 has at least r-linearly independent column vectors,  

Therefore, by definition of the rank of a matrix,   

            𝑟 ≤ 𝑟𝑎𝑛𝑘(𝐴) = 𝑝(𝐴)                                              …..…… (1)  

Also, by definition of 𝑝(𝐴), we know that the number of linearly 

independent rows that 𝐴 has is 𝑝(𝐴). These rows form a (𝑝(𝐴) ×  𝑛) 
matrix 𝑝(𝐴).  
Thus, B will have 𝑝(𝐴) linearly independent columns.  

Retaining these linearly independent columns of B we obtain a 
(𝑝(𝐴) ×  𝑝(𝐴)) sub-matrix C of B. 

So, C is a sub-matrix of A whose determinant will be non-zero by theorem 

3, since its columns are linearly independent.  

Thus, by the definition of the determinant rank of A, we have 

                     𝑝(𝐴) ≤ 𝑟                                                               ….……. 

(2)  

Combination of (1) and (2) gives 𝑝(𝐴) = 𝑟.  
We will use Theorem 4 in the following example.  

Example 8: Find the rank of 𝐴 = [
2 3 4
3 1 2
−1 2 2

] 
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Solution: |𝐴| = 0 , but |
2 3
3 1

| = −7 ≠ 0 

Thus, by theorem 4, 𝑝(𝐴) = 2.  

 

Remark: This example shows that Theorem 4 can simplify the 

calculation of the rank of a matrix in some cases. We don’t have to reduce 

a matrix to echelon form each time. But at times using this method seems 

to be as tedious as the row-reduction method, for example,  

 

Example 9: Use Theorem 4 to find the rank of A, where  

(a) 𝐴 = (
3 1 2 5
1 2 −1 2
4 3 1 7

)  

(b) 𝐴 = (
2 3 5 1
1 −1 2 1

)  

 

Solution:  

a) The determinant rank of A is less or equals to 3(≤ 3).  

The determinant rank of the 3 × 3 sub-matrix (
3 1 2
1 2 −1
4 3 1

) is zero. 

Also, the determinant rank of the 3 × 3 sub-matrix (
3 2 5
1 −1 2
4 1 7

) is zero. 

In fact, you can check that all the determinant ranks of the 3 × 3 sub-

matrices are zero. 

Now let us look at the 2 × 2 sub-matrix of A,  

Since |
3 1
1 2

| = 5 ≠ 0, and 𝑝(𝐴) = 2 

b) The determinant rank of A is less or equals to 2 (≤ 2) 

Now, |
2 3
1 −1

| = −5 ≠ 0, and 𝑝(𝐴) = 2 

Exercise (a) shows how much time can be taken by using this method. On 

the other hand, Exercise (b) shows how little time it takes to obtain 𝑝(𝐴), 
using the determinant rank. Thus, the method to be used for obtaining 

𝑝(𝐴) varies from case to case. 

 

SELF-ASSESSMENT EXERCISE(S) 

 

Find the rank and determinant rank of the following matrices: 

1) 𝐴 = [
3 1 2
2 3 1
−1 2 2

] 

2) 𝐴 = [
2 2 −2
2 3 1
1 2 2

] 
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3) 𝐴 = [
1 1 2
2 0 1
−1 2 2

] 

4) 𝐴 = [
2 0 1
−1 4 −1
−1 2 0

] 

 

Conclusion 

We conclude that the homogeneous system of linear equations 𝐴𝑋 = 0 

has a non-zero solution if and only if 𝑑𝑒𝑡(𝐴) = 0.  

 

The determinant rank of an (𝑚 × 𝑛) matrix A is equal to the rank of A 

which help to simplify the calculation of the rank of a matrix in some 

cases and there would be no need to reduce a matrix to echelon form at 

every time. 

 

   2.6  Summary  

 

In this unit we have covered the following points.  

With the aid of examples, we have been able to show that 𝑑𝑒𝑡(𝐴𝐵) =
𝑑𝑒𝑡(𝐴)𝑑𝑒𝑡(𝐵). 
 

We also defined determinant of a linear transformation from 𝑈 to 𝑉, 

where 𝑑𝑖𝑚𝑈 = 𝑑𝑖𝑚𝑉. Theorems were used to obtain the rank of matrices 

This unit also defined the determinant rank, and proved that rank of 𝐴 is 

equal to determinant rank of 𝐴.  
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MODULE 4 
 

Unit 1  Eigenvalues and Eigenvectors  

Unit 2  Characteristic and Minimal Polynomials  

 

 

UNIT 1  EIGENVALUES AND EIGENVECTORS 
 

Unit Structure 

 

1.1  Introduction  

1.2  Learning Outcomes  

1.3  Eigenvalues and Eigenvectors 

     1.3.1  The Algebraic Eigenvalue Problem  

     1.3.2  Eigenvalues and Eigenvectors of Linear Transformations 

    1.3.3  Vector Spaces Corresponding to Eigenvalues of Linear 

   Transformations 

     1.3.4  Eigenspace corresponding to an eigenvalue of a matrix 

     1.3.5  Eigenvalues and Eigenvectors of Matrices 

     1.3.6  Characteristic Polynomial  

     1.3.7  Diagonalization  

1.4  Summary 

1.5  References/Further Readings  

 

 1.1  Introduction 

 

Matrices of linear transformations have been studied in Modules 1 and 2. 

You have had several opportunities, in earlier units to observe that the 

matrix of a linear transformation depends on the choice of the bases of the 

concerned vector spaces. In this unit, we shall consider the problem of 

finding a suitable basis B, of the vector space V, such that the 𝑛 × 𝑛 

matrix [𝑇]𝐵 is a diagonal matrix.  It is in this context that the study of 

eigenvalues and eigenvectors plays a central role.  

  

The eigenvalue problem involves the evaluation of all the eigenvalues and 

eigenvectors of a linear transformation or a matrix. The solution of this 

problem has basic applications in almost all branches of the sciences, 

technology and the social science besides its fundamental role in various 

branches of pure and applied mathematics. The emergence of computers 

and the availability of modern computing facilities have further 

strengthened this study, since they can handle very large systems of 

equations.  
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  1.2  Learning Outcomes 
 

By the end of this unit, you should be able to: 

  

 Obtain the characteristic polynomial of a linear transformation or 

a matrix;  

 Obtain the eigenvalues, eigenvectors and eigenspaces of a linear 

transformation of a matrix;  

 Obtain a basis of a vector space 𝑉 with respect to which the matrix 

of a linear transformation 𝑇: 𝑉 → 𝑉 is in diagonal form;  

 Obtain a non-singular matrix P which diagonalizes a given 

diagonalizable matrix A.  

 

 1.3  Eigenvalues and Eigenvectors 

 

1.3.1 The Algebraic Eigenvalue Problem   
 

The word “eigenvalue” is a mixture of German and English; meaning 

“characteristic value” or “proper value” (here “proper” is used in the sense 

of “property”). 

 

Another term used in older books is “latent root”, here “latent” means 

“hidden”, the idea is that the eigenvalue is somehow hidden in a matrix 

representing a, and has to be extracted by some procedure. 

 

1.3.2  Eigenvalues and Eigenvectors of a Linear Transformation 

 

Definition 1: An eigenvalue of a linear transformation 𝑇: 𝑉 → 𝑉 is a 

scalar such that there exists a non-zero 𝑥 ∈ 𝑉 is called an eigenvector of 

T with respect to the eigenvalue 𝜆 ∈ 𝐾, if 𝑥 ≠ 0 and 𝑇(𝑥) = 𝜆𝑥. 

The set {𝑥: 𝑇(𝑥) = 𝜆𝑥} consisting of the zero vector and the eigenvectors 

with eigenvalue 𝜆, is called the 𝜆 −eigen-space of T. 

 

Example 1: Consider the linear mapping 𝑇: 𝑅2 → 𝑅2 such that 𝑇(𝑥, 𝑦) =
(2𝑥, 𝑦).  
Then, 𝑇(1,0) = (2,0) = 2(1,0), therefore, that 𝑇(𝑥, 𝑦) = (2𝑥, 𝑦) =
(1,0) ≠ (0,0).  
In the example above, (1,0) is an eigenvector of T with respect to the 

eigenvalue 2.  

Thus, a vector 𝑥 ∈ 𝑉 is an eigenvector of the linear transformation T if  

i. x is non-zero, and  

ii. 𝑇(𝑥) = 𝜆𝑥 for some scalar 𝑇(𝑥) = 𝜆 ∈ 𝐾.  
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The fundamental algebraic eigenvalue problem deals with the 

determination of all the eigenvalues of a linear transformation.  

Let us look at some examples of how we can find eigenvalues.  

 

Example 2: Obtain an eigenvalue and a corresponding eigenvector for 

the linear operator 𝑇: 𝑅3 → 𝑅3such that𝑇(𝑥, 𝑦, 𝑧) = (2𝑥, 2𝑦, 2𝑧).   
Solution: Clearly, 𝑇(𝑥, 𝑦, 𝑧) = 2(𝑥, 𝑦, 𝑧);   (𝑥, 𝑦, 𝑧) ∈ 𝑅3 
Thus, 2 is an eigenvalue of T.  

Any non-zero element of 𝑅3will be an eigenvector of T corresponding to 

2.  

 

Example 3: Obtain an eigenvalue and a corresponding eigenvector of 

         𝑇(𝑥, 𝑦, 𝑧): 𝐶3 → 𝐶3;   𝑇(𝑥, 𝑦, 𝑧) = (𝑖𝑥, 𝑖𝑦, 𝑧).  
 

Solution: Firstly, note that T is a linear operator. Now, if is an 

eigenvalue, then there exist (𝑥, 𝑦, 𝑧) ≠ (0,0,0) such that 𝑇(𝑥, 𝑦, 𝑧) =
𝜆(𝑥, 𝑦, 𝑧) ⇒ (𝑖𝑥, 𝑖𝑦, 𝑧) = (𝜆𝑥, 𝜆𝑦, 𝜆𝑧) 

⇒ 𝑖𝑥 = 𝜆𝑥 ; −𝑖𝑦 = 𝜆𝑦 ;  𝑧 = 𝜆𝑧 

These equations are satisfied if 𝜆 = 𝑖 ; 𝑦 = 0 ;  𝑧 = 0. 

𝜆 = 𝐼 is an eigenvalue with a corresponding eigenvector being (1,0,0) or 

[(𝑥, 0,0) for any 𝑥 ≠ 0]. 

It is also satisfied if 𝜆 = −𝑖 ; 𝑥 = 0 ;  𝑧 = 0or if𝜆 = 1 ; 𝑥 = 0 ;  𝑦 = 0. 

There, −𝑖 and 1 are also eigenvalues with corresponding eigenvectors 

(0,y,0) and 0,0,z) respectively for any 𝑦 ≠ 0 ;  𝑧 ≠ 0. 

 

1.3.3 Vector space corresponding to an eigenvalue of a linear 

transformation  

 

Suppose 𝜆 ∈ 𝐾 is an eigenvalue of the linear transformation𝑇: 𝑉 → 𝑉. 

Define the set 𝑊𝐴 = {𝑥 ∈ 𝑉|𝑇(𝑥) = 𝜆𝑥} = {0} ∪
{eigenvectors of T corresponding to λ}. 
 

Thus, a vector 𝑣 ∈ 𝑊 if and only if 𝑣 = 0 is an eigenvector of T 

corresponding to 𝜆. 

Now, 𝑥 ∈ 𝑊𝐴 ⇔ 𝑇𝑥 = 𝜆𝐼𝑥, I being the identity operator, 

              ⇔ (𝑇 − 𝜆𝐼)𝑥 = 0 ⇔ 𝑥 ∈ 𝐾𝑒𝑟(𝑇 − 𝜆𝐼)  
∴ 𝑊𝐴 = 𝐾𝑒𝑟(𝑇 − 𝜆𝐼) and hence, 𝑊𝐴 is a subspace of V.  

Since 𝜆 is an eigenvalue of T, it has an eigenvector, which must be non-

zero.  

Thus, 𝑊𝜆 is non-zero 

 

Definition 2: For an eigenvalue 𝜆 of T, the non-zero subspace 𝑊𝜆 is called 

the eigen-space of 𝑇 associated with the eigenvalue.  

 

C
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Example 4: Obtain 𝑊2 for the linear operator given in Example 1. 

 

Solution: 𝑊2 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅
3|𝑇(𝑥, 𝑦, 𝑧) = 2(𝑥, 𝑦, 𝑧)} 

                 {(𝑥, 𝑦, 𝑧) ∈ 𝑅3|𝑇(2𝑥, 2𝑦, 2𝑧) = 2(𝑥, 𝑦, 𝑧)} = 𝑅3  
For T in Example 2, obtain the complex vector spaces 𝑊𝑖  ,𝑊−1,𝑊1. 
                  𝑊𝑖 = {(𝑥, 𝑦, 𝑧) ∈ 𝐶

3|𝑇(𝑥, 𝑦, 𝑧) = 𝑖(𝑥, 𝑦, 𝑧)}  
                        = {(𝑥, 𝑦, 𝑧) ∈ 𝐶3|(𝑖𝑥, −𝑖𝑦, 𝑧) = (𝑥, 𝑦, 𝑧) = (𝑖𝑥, 𝑖𝑦, 𝑖𝑧)}  
                        = {(𝑥, 0,0)|𝑥 ∈ 𝐶}  
Similarly, you can show that 𝑊−1 = {(0, 𝑥, 0)|𝑥 ∈ 𝐶} and 𝑊1 =
{(0,0, 𝑥, )|𝑥 ∈ 𝐶}. 
 

As with every other concept related to linear transformations, we can 

define eigenvalues and eigenvectors for matrices also. 

 

Definition 3: A scalar 𝜆 is an eigenvalue of an (𝑛 x 𝑛) matrix A over F if 

there exists 𝑋 ∈ 𝑉𝑛(𝐹); 𝑋 ≠ 0, such that 𝐴𝑋 = 𝜆𝑋  are eigenvectors of the 

matrix A corresponding to the eigenvalue𝜆. 

 

Example 5: Let 𝐵 = (
6 −6
11 −12

). 

The vector 𝑣 = (
2
3
) satisfies (

6 −6
11 −12

) (
2
3
) = 3 (

2
3
). 

This shows that (
2
3
) is an eigenvector with eigenvalue 3. 

The vector𝑣 = (
3
4
) also is an eigenvector of B with eigenvalue 2. 

Similarly, the vector is an eigenvector of B with eigenvalue 2. 

Generally, if𝜆 is an eigenvalue of (
𝑎 𝑏
𝑐 𝑑

), then we could find a 

corresponding eigenvector (
𝑥
𝑦) by solving the linear equations.  

Example6: If 𝐴 = (
1 0 0
0 2 0
0 0 3

). Obtain an eigenvalue and a 

corresponding eigenvector of A. 

Solution:𝐴(
1
0
0
) = (

1
0
0
), this shows that 1 is an eigenvalue and (

1
0
0
) is an 

eigenvector corresponding to it. 

In fact,𝐴(
0
1
0
) = 2(

0
1
0
) and𝐴(

0
0
1
) = 3(

0
0
1
),  

Thus, 2 and 3 are eigenvalues of A, with corresponding eigenvectors(
0
1
0
) 

and(
0
0
1
) respectively. 
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Example 7: Obtain an eigenvalue and a corresponding eigenvector of 

                       𝐵 = (
0 −1
1 2

) ∈ 𝑀2(𝑅). 

 

Solution: Suppose𝜆 ∈ 𝑅is an eigenvalue of B, 

 Then ∃ (
𝑥
𝑦) ≠ (

0
0
), such that 𝐵𝑋 = 𝜆𝑋, that is, (

−𝑦
𝑥 + 2𝑦) = (

𝜆𝑥
𝜆𝑦
). 

So, for what values of 𝜆, x and yare the equation satisfied?  

Note that x ≠ 0 and y ≠ 0, because if either is zero then the other will have 

to be zero.  

Solving the equations, we obtain 𝜆 = 1with corresponding eigenvector 

(
1
−1
). 

Classwork: Now solve the eigenvalue problem (
1 2
0 3

). 

 

1.3.4  Eigenspace corresponding to an eigenvalue of a matrix 

 

Just as we defined an eigenspace associated with a linear transformation, 

we define the eigenspace 𝑊𝜆, corresponding to an eigenvalue of an 𝑛 × 𝑛 

matrix A, as follows:  

𝑊𝜆 = {𝑋 ∈ 𝑉𝑛(𝐹)|𝐴𝑋 = 𝜆𝑥} = {𝑋 ∈ 𝑉𝑛(𝐹)|𝐴(𝑋 − 𝜆𝐼)𝑋 = 0} 

For instance, the eigenspace 𝑊1, in Example 6, is (
𝑥
𝑦
𝑧
) ∈ 𝑉3(𝑅) 

(
1 0 0
0 2 0
0 0 3

)(
𝑥
𝑦
𝑧
) = (

𝑥
2𝑦
3𝑧
) 

The algebraic eigenvalue problem for matrices is to determine all the 

eigenvalues and eigenvectors of a given matrix. In fact, the eigenvalues 

and eigenvectors of an n x n matrix A are precisely the eigenvalues ad 

eigenvector of a regarded as a linear transformation from 𝑉𝑛(𝐹) to 𝑉𝑛(𝐹).  
We end this section with the following remark:  

 

A scalar 𝜆 is an eigenvalue of the matrix A if and only if (𝐴 − 𝜆𝐼)𝑋 =
0 has a non-zero solution, i.e., if and only if 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0.  

Similarly, 𝜆 is an eigenvalue of the linear transformation T if and only if 

𝑑𝑒𝑡(𝑇 − 𝜆𝐼) = 0. 

So far, we have been obtaining eigenvalues by observation, or by some 

calculations that may not give us all the eigenvalues of a given matrix or 

linear transformation. T 

he remark above suggests where to look for all the eigenvalues in the next 

section we determine eigenvalues and eigenvectors explicitly.  
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1.3.5  Eigenvalues and Eigenvectors of Matrices 
 

In the previous section we have seen that a scalar 𝜆 is an eigenvalue of a 

matrix A if and only if 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0.  

In this section we shall see how this equation helps us to solve the 

eigenvalue problem.  

 

1.3.6  Characteristic Polynomial  
 

Once we know that 𝜆 is an eigenvalue of a matrix A, the eigenvectors can 

easily be obtained by finding non-zero solutions of the system of 

equations given by 𝐴𝑋 = 𝜆𝑋. 

Now, if 𝐴 =

[
 
 
 
 
𝑎11 𝑎12 ⋯ ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ ⋯ 𝑎2𝑛
⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ ⋯ 𝑎𝑛𝑛]

 
 
 
 

 and 𝑋 =

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

 

The equation 𝐴𝑋 = 𝜆𝑋 becomes 

                   

[
 
 
 
 
𝑎11 𝑎12 ⋯ ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ ⋯ 𝑎2𝑛
⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ ⋯ 𝑎𝑛𝑛]

 
 
 
 

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

= 𝜆

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

  

 

Carry out the matrix multiplication to obtain the following system of 

equations: 
𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝜆𝑥1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝜆𝑥2

⋮
⋮

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝜆𝑥𝑛

 

This is equivalent to the following system 
(𝑎11 − 𝜆)𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 0

𝑎21𝑥1 + (𝑎22 − 𝜆)𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 0
⋮
⋮

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ (𝑎𝑛𝑛 − 𝜆)𝑥𝑛 = 0

 

 

This homogeneous system of linear equations has a non-trivial solution if 

and only if the determinant of the coefficient matrix is equal to zero (by 

Unit 3, theorem 1).  

Thus, 𝜆 is an eigenvalue of A if and only if 
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                    𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = |
|

𝑎11 − 𝜆 𝑎12 ⋯ ⋯ 𝑎1𝑛
𝑎21 𝑎22 − 𝜆 ⋯ ⋯ 𝑎2𝑛
⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ ⋯ 𝑎𝑛𝑛 − 𝜆

|
| = 0  

 

Now, 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = (−1)𝑑𝑒𝑡(𝐴 − 𝜆𝐼) (that is, multiplying each row by 

(-1)). 

Hence, 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0if and only if 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0. 

This leads us to define the concept of the characteristic polynomial 

 

Definition 4: Let 𝐴 = [𝑎𝑖𝑗] be any (𝑛𝑥𝑛) matrix. Then the characteristic 

polynomial of the matrix A is defined by  

         𝑓𝐴(𝑡) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = |
|

𝑡 − 𝑎11 −𝑎12 ⋯ ⋯ −𝑎1𝑛
−𝑎21 𝑡 − 𝑎22 ⋯ ⋯ −𝑎2𝑛
⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮

−𝑎𝑛1 −𝑎𝑛2 ⋯ ⋯ 𝑡 − 𝑎𝑛𝑛

|
|  

                                           = 𝑡𝑛 + 𝑐1𝑡
𝑛−1 + 𝑐2𝑡

𝑛−2 +⋯+ 𝑐𝑛−1𝑡 + 𝑐𝑛  

where the coefficients 𝑐1, 𝑐2, ⋯ , 𝑐𝑛 depend on the entries 𝑎𝑖𝑗 of the matrix 

A.  

The equation 𝑓𝐴(𝑡) = 0 is the characteristic equation of A.  

When no confusion arises, we shall simply write 𝑓(𝑡) in place of 𝑓𝐴(𝑡).  
Consider the following example.  

Example 8: Obtain the characteristic polynomial of the matrix (
1 2
0 −1

) 

Solution: The required polynomial is |
−1 −2
0 𝑡 + 1

| = (𝑡 − 1)(𝑡 + 1) =

𝑡2 − 1 

 

Example 9: Obtain the characteristic polynomial of the matrix 

(
0 0 2
1 0 1
0 1 −2

). 

Solution: The required polynomial is 

                           |
𝑡 0 −2
−1 𝑡 −1
0 −1 𝑡 + 2

| = 𝑡[𝑡(𝑡 + 1) − 1] − 2(1) 

                                                          = 𝑡(𝑡2 + 2𝑡 − 1) − 2 = 𝑡3 + 2𝑡2 −
𝑡 − 2 

Note that 𝜆 is an eigenvalue of A iff 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 𝑓𝐴(𝑡) = 0, that is, iff 

𝜆 is a root of the characteristic polynomial 𝑓𝐴(𝑡), defined above. Due to 

this fact, eigenvalues are also called characteristic root, and eigenvectors 

are called characteristic vectors. 

For example, the eigenvalues of the matrix in Example 8 are the roots of 

the polynomial 𝑡2 − 1 which are 1 and −1. 
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To obtain the eigenvalues of the matrix in example 9 above, factorize the 

characteristic polynomial is    

  That is, 𝑡3 + 2𝑡2 − 𝑡 − 2 = 𝑡2(𝑡 + 2) − (𝑡 + 2) 
                 (𝑡2 − 1)(𝑡 + 2) = (𝑡 − 1)(𝑡 + 1)(𝑡 + 2)  
                       𝑡 = 1, 𝑡 = −1 and 𝑡 = −2 

Now, the characteristic polynomial 𝑓𝐴(𝑡) is a polynomial of degree n.  

Hence, it can have n roots at the most. Thus, an 𝑛 × 𝑛 matrix has n 

eigenvalues, at the most. 

For example, the 2 × 2 matrix in Example 8 has two eigenvalues, 1 and 

– 1, and the matrix in example 9 has 3 eigenvalues, 1, -1 and -2. 

Now we will prove a theorem that will help us in unit 2. 

 

Theorem 1: Similar matrices have the same eigenvalues. 

 

Proof: Let an 𝑛 × 𝑛 matrix B be similar to an 𝑛 × 𝑛 matrix A. Then, by 

definition,             𝐵 = 𝑃−1𝐴𝑃, for some invertible matrix P. 

Now, the characteristic polynomial of B, 

                𝑓𝐵(𝑡) = 𝑑𝑒𝑡(𝑡𝐼 − 𝐵)  
                          = 𝑑𝑒𝑡(𝑡𝐼 − 𝑃−1𝐴𝑃)  
                          = 𝑑𝑒𝑡𝑃−1(𝑡𝐼 − 𝐴)𝑃                  (Since 𝑃−1𝑡𝐼𝑃 = 𝑡𝑃−1𝑃 =
𝑡𝐼) 
                          = 𝑑𝑒𝑡(𝑃−1)𝑑𝑒𝑡(𝑡𝐼 − 𝐴)𝑑𝑒𝑡(𝑃)  
                          = 𝑑𝑒𝑡(𝑡𝐼 − 𝐴)𝑑𝑒𝑡(𝑃−1)𝑑𝑒𝑡(𝑃)  
                          = 𝑓𝐴(𝑡)𝑑𝑒𝑡(𝑃

−1𝑃)   
                           = 𝑓𝐴(𝑡)                                        (Since 𝑑𝑒𝑡(𝑃−1𝑃) =
𝑑𝑒𝑡(𝐼) = 𝐼)  
 

Thus, the roots of 𝑓𝐵(𝑡) is and 𝑓𝐴(𝑡) is coincide.  

Therefore, the eigenvalues of A and B are the same. 

Let us consider some more examples so that the concepts mentioned in 

this section become absolutely clear to you. 

Example 10: Obtain the eigenvectors of the matrix (
1 2
0 −1

). 

 

Solution: 

From example 8 above, the characteristic polynomial is 𝑡2 − 1 and when 

equated to zero, we    

have 𝑡 = 1, 𝑡 = −1. 

The eigenvectors of the matrix with respect to the eigenvalue 𝜆1 = −1 

are the non-trivial solutions of 

(
1 2
0 −1

) (
𝑥1
𝑥2
) = −1 (

𝑥1
𝑥2
) 

which gives the equations 
𝑥1 + 2𝑥2 = −𝑥1
−𝑥2 = −𝑥2

} ⇒ 𝑥1 = −𝑥2 
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This result merely tells us that whatever the value of 𝑥2 is, the value of 𝑥1 

is (−1) times it. Therefore, the eigenvector 𝑥1 = (
𝑘
−𝑘
), (𝑘 is an integer) 

is the general form of an infinite number of such eigenvectors.  

The simplest eigenvector is therefore is 𝑥1 = (
1
−1
), corresponding to 

𝜆1 = −1. 

For 𝜆2 = 1, a similar result can be obtained 

          (
1 2
0 −1

) (
𝑥1
𝑥2
) = 1 (

𝑥1
𝑥2
),  ⇒

𝑥1 + 2𝑥2 = 𝑥1
−𝑥2 = 𝑥2

} ⇒ 𝑥2 = 0 

The eigenvector is therefore is 𝑥2 = (
0
0
), corresponding to 𝜆2 = 1. 

Example 11: Find the eigenvalues and eigenvectors of the matrix 

(
0 0 2
1 0 1
0 1 −2

). 

 

Solution: In solving the example, you found that the eigenvalues of A are 

𝜆1 = 1,                                                                                               𝜆2 =
−1, λ3 = −2.  

Now we obtain the eigenvectors of A. 

The eigenvectors of A with respect to the eigenvalue 𝜆1 = 1 are the non-

trivial solutions of 

(
0 0 2
1 0 1
0 1 −2

)(

𝑥1
𝑥2
𝑥3
) = 1(

𝑥1
𝑥2
𝑥3
) 

which gives the equations 
2𝑥3 = 𝑥1

𝑥1 + 𝑥3 = 𝑥2
𝑥2 − 2𝑥3 = 𝑥3

} ⇒
𝑥1 = 2𝑥3
𝑥2 = 3𝑥3
𝑥3 = 𝑥3

 

This result merely tells us that whatever the value of 𝑥3 is, the value of 𝑥1 
is 2 times it and the value of 𝑥2 is 3 times it.  

Therefore, the eigenvector 𝑥1 = (
2𝑘
3𝑘
𝑘
), (𝑘 is an integer) is the general 

form of an infinite number of such eigenvectors.  

The simplest eigenvector for 𝜆1 = 1, is therefore is 𝑋1 = (
2
3
1
). 

For 𝜆2 = −1, a similar result can be obtained 

The eigenvectors corresponding to 𝜆2 = −1 are given by 

(
0 0 2
1 0 1
0 1 −2

)(

𝑥1
𝑥2
𝑥3
) = −1(

𝑥1
𝑥2
𝑥3
) 

 which gives the equations 
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2𝑥3 = −𝑥1
𝑥1 + 𝑥3 = −𝑥2
𝑥2 − 2𝑥3 = −𝑥3

} ⇒
𝑥1 = −2𝑥3
𝑥2 = 𝑥3
𝑥3 = 𝑥2

 

Therefore, the simplest eigenvector corresponding to 𝜆2 = −1 is 𝑋2 =

(
−2
1
1
). 

For 𝜆2 = −2, a similar result can be obtained 

The eigenvectors corresponding to 𝜆2 = −2 are given by 

(
0 0 2
1 0 1
0 1 −2

)(

𝑥1
𝑥2
𝑥3
) = −2(

𝑥1
𝑥2
𝑥3
) 

which gives the equations 
2𝑥3 = −2𝑥1

𝑥1 + 𝑥3 = −2𝑥2
𝑥2 − 2𝑥3 = −2𝑥3

} ⇒

𝑥1 = −𝑥3
𝑥2 = 0
𝑥3 = 𝑥3

 

Therefore, the simplest eigenvector corresponding to 𝜆3 = −2 is 𝑋3 =

(
−1
0
1
). 

Let 𝑇: 𝑉 → 𝑉 be a linear transformation on a finite-dimensional vector 

space V over the field 𝐹. we have seen that 𝜆 ∈ 𝐹 is an eigenvalue of ⇔
𝑑𝑒𝑡(𝑇 − 𝜆𝐼) = 0 ⇔ 𝑑𝑒𝑡(𝜆𝐼 − 𝑇) = 0 ⇔ 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0, where 𝐴 =
[𝑇]𝐵 is the matrix of T with respect to a basis B of V. 

Note that [𝜆𝐼 − 𝑇]𝐵 = 𝜆𝐼 − [𝑇]𝐵. 

 

This shows that 𝜆 is an eigenvalue of T if and only if 𝜆 is an eigenvalue 

of the matrix 𝐴 = [𝑇]𝐵, where B is a basis of V. We define the 

characteristic polynomial of the linear transformation T to be same as the 

characteristic polynomial of the matrix 𝐴 = [𝑇]𝐵, where B is basis V.  

This definition does not depend on the basis B chosen, since similar 

matrices have the same characteristic polynomial (Theorem 1), and the 

matrices of the same linear transformation T with respect to two different 

ordered bases of V are similar.  

Just as for matrices, the eigenvalues of T are precisely the roots of the 

characteristic polynomial of T.  

 

Example 12: Let 𝑇: 𝑉 → 𝑉 be the linear transformation which maps 𝑒1 =
(1,0) to 𝑒2 = (0,1) and 𝑒2 to−𝑒1. Obtain the eigenvalues of T.  

Solution: Let 𝐴 = [𝑇]𝐵 = [
0 −1
1 0

], where 𝐵 = {𝑒1, 𝑒2}.   

The characteristic polynomial of T = the characteristic polynomial of A 

            |
𝑡 1
−1 𝑡

| = 𝑡2 + 1 , which has no real roots. 

Hence, the linear transformation T has n real eigenvalues.  

However, it has two complex eigenvalues 𝑖 and −𝑖 
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Try the following exercise now.  

 

Example 13: Obtain the eigenvalues and eigenvectors of the differential 

operator 

 

Solution: 𝐵 = {1, 𝑥, 𝑥2} is a basis of 𝑃2 

Then [𝐷]𝐵 = (
0 1 0
0 0 2
0 0 0

) 

Therefore, the characteristic polynomial of D is |
𝑡 −1 0
0 𝑡 −2
0 0 𝑡

| = 𝑡2 

Hence, the only eigenvalue is 𝜆 = 0 

The eigenvectors corresponding to 𝜆 = 0 are 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 where, 

𝐷(𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2) = 0, that is,  𝛼1 + 2𝛼2𝑥 = 0 

This gives 𝛼1 = 0, 𝛼2 = 0 

Therefore, the set of eigenvectors corresponding to 𝜆 = 0 are 

{𝛼0: 𝛼0 ∈ 𝑅, 𝛼0 ≠ 0} = 𝑅\{0} 
 

Now that we have discussed a method of obtaining the eigenvalues and 

eigenvectors of a matrix, let us see how they help in transforming any 

square matrix into a diagonal matrix. 

 

1.3.7  Diagonalization 
 

We would start this section by stating and proving a theorem that 

discusses the linear independence. 

 

Theorem 2: Let 𝑇: 𝑉 → 𝑉 be a linear transformation on a finite-

dimensional vector space V over the field 𝐹. Let 𝜆1, 𝜆2, ⋯ , 𝜆𝑚 be the 

distinct eigenvalues of T and 𝑣1, 𝑣2, ⋯ , 𝑣𝑚 be eigenvectors of 𝑇 

corresponding to 𝜆1, 𝜆2, ⋯ , 𝜆𝑚, respectively, then, 𝑣1, 𝑣2, ⋯ , 𝑣𝑚 are 

linearly independent over F.  

 

Proof:  

We know that 𝑇𝑣𝑖 = 𝜆𝑖𝑣𝑖, 0 ≠ 𝑣𝑖 ∈ 𝑉 for 𝑖 = 1,2,⋯ ,𝑚 and 𝜆𝑖 ≠ 𝜆𝑗for 

𝑖 ≠ 𝑗. 
Suppose, if possible, that {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} is a linearly dependent set.  

Now, the single non-zero vector 𝑣𝑖 is linearly independent.  

 

We choose 𝑟(≤ 𝑚) such that {𝑣1, 𝑣2, ⋯ , 𝑣𝑟−1} is linearly independent and 
{𝑣1, 𝑣2, ⋯ , 𝑣𝑟−1, 𝑣𝑟} is linearly dependent.  

Then,  

                𝑣𝑟 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑟−1𝑣𝑟−1                                             
……………. (1)  



MTH 212           LINEAR ALGEBRA 

173 

 

for some 𝛼1, 𝛼2, ⋯ , 𝛼𝑟−1 ∈ 𝐹 

Multiply (1) by T, we have 

              𝑇𝑣𝑟 = 𝛼1𝑇𝑣1 + 𝛼2𝑇𝑣2 +⋯+ 𝛼𝑟−1𝑇𝑣𝑟−1                                
…………………. (2) 

This gives  

             𝜆𝑟𝑣𝑟 = 𝛼1𝜆1𝑣1 + 𝛼2𝜆2𝑣2 +⋯+ 𝛼𝑟−1𝜆𝑟−1𝑣𝑟−1                             
…………........ (3)  

Now, we multiply (1) by 𝜆𝑟 and subtract it from (3), to get  

                0 = 𝛼1(𝜆1 − 𝜆𝑟)𝑣1 + 𝛼2(𝜆2 − 𝜆𝑟)𝑣2 +⋯+ 𝛼𝑟−1(𝜆𝑟−1 −
𝜆𝑟)𝑣𝑟−1    ………… (4) 

Since the set {𝑣1, 𝑣2, ⋯ , 𝑣𝑟−1} if linearly independent, each coefficient in 

the above equation must be 0. Thus, we have 𝛼𝑖(𝜆𝑖 − 𝜆𝑟) = 0 for 𝑖 =
1,2,⋯ , 𝑟 − 1. 

But 𝜆𝑖 ≠ 𝜆𝑟, for 𝑖 = 1,2,⋯ , 𝑟 − 1. 

Hence (𝜆𝑖 − 𝜆𝑟) ≠ 0 for 𝑖 = 1,2,⋯ , 𝑟 − 1, and we must have 𝛼𝑟 = 0 for 

𝑖 = 1,2,⋯ , 𝑟 − 1.  

 

However, this is not possible since (1) would imply that 𝑣𝑟 = 0, and, 

being an eigenvector, 𝑣𝑟 can never be zero. Thus, we reach a 

contradiction.  

 

Hence, the assumption we started with must be wrong.  

Thus, {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} must be linearly independent, and the theorem is 

proved.  

 

Theorem 2 shall be used to choose a basis for a vector space V so that the 

matrix [𝑇]𝐵 is a diagonal matrix.  

 

Definition 5: A linear transformation 𝑇: 𝑉 → 𝑉on a finite-dimensional 

vector space 𝑉 is said to be diagonalizable if there exists a basis 𝐵 =
{𝑣1, 𝑣2, ⋯ , 𝑣𝑚} of V such that the matrix of T with respect to the basis B 

is a diagonal matrix, that is, [𝑇]𝐵 =

[
 
 
 
 
𝜆1 0 0 ⋯ 0
0 𝜆2 0 ⋯ 0
0 0 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 𝜆𝑛]

 
 
 
 

 

Where 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 are scalars which need not be distinct.  

Suppose 𝐵 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is such a basis showing that T is 

diagonalizable, then 𝑇(𝑣𝑖) = 𝛼𝑖𝑗𝑣𝑖 for 𝑖 =  1, . . . , 𝑛 where 𝛼𝑖𝑗 of is the 

𝑖𝑡ℎ diagonal entry of the diagonal matrix A.  

Thus, the basis vectors are eigenvectors.  

Conversely, if we have a basis of eigenvectors, then the matrix 

representing T is diagonal. 
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Proposition: The linear map 𝑇 on 𝑉is diagonalizable if and only if there 

is a basis of V consisting of eigenvectors of T. 

 

Example 14: The matrix(
1 2
0 1

) is not diagonalizable.  

It is easy to see that it’s only eigenvalue is 1, and the only eigenvectors 

are scalar multiples of (0 1)𝑇.  So, we cannot find a basis of 

eigenvectors.  

 

The next theorem tells us under what conditions a linear transformation 

is diagonalizable.  

 

Theorem 3: A linear transformation T, on a finite-dimensional vector 

space V, is diagonalizable if and only if there exists a basis of V consisting 

of eigenvector of T. 

 

Proof: Suppose that T is diagonalizable. By definition, there exists a basis 

𝐵 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} of V, such that  

                      [𝑇]𝐵 =

[
 
 
 
 
𝜆1 0 0 ⋯ 0
0 𝜆2 0 ⋯ 0
0 0 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 𝜆𝑛]

 
 
 
 

 . 

By definition of [𝑇]𝐵, we must have 𝜆1, 𝜆2, ⋯ , 𝜆𝑚; 

 𝑇𝑣1 = 𝜆1𝑣1;   𝑇𝑣2 = 𝜆2𝑣2, ; ⋯⋯ ; 𝑇𝑣𝑛 = 𝜆𝑛𝑣𝑛    

Since basis vectors are always non-zero,𝑣1, 𝑣2, ⋯ , 𝑣𝑛 are non-zero.  

Thus, we find that 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 are eigenvectors of T. 

 

Conversely, let 𝐵 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} be a basis of V consisting of 

eigenvectors of T, then, there exist scalars, 𝛼1, 𝛼2, ⋯ , 𝛼𝑛, not necessarily 

distinct, such that 

            𝑇𝑣1 = 𝜆1𝑣1, 𝑇𝑣2 = 𝜆2𝑣2, ⋯⋯ , 𝑇𝑣𝑛 = 𝜆𝑛𝑣𝑛. 

But then we have [𝑇]𝐵 =

[
 
 
 
 
𝜆1 0 0 ⋯ 0
0 𝜆2 0 ⋯ 0
0 0 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 𝜆𝑛]

 
 
 
 

 which means that 𝑇 is 

diagonalizable. 

The next theorem combines theorem 2 and 3 

 

Theorem 4: Let 𝑇: 𝑉 → 𝑉 be a linear transformation, where V is an n-

dimensional vector space. Assume that T has n distinct eigenvalues, then 

T is diagonalizable. 

 

Proof: Let𝜆1, 𝜆2, ⋯ , 𝜆𝑛 be the n distinct eigenvalues of T.  
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Then there exist eigenvectors𝑣1, 𝑣2, ⋯ , 𝑣𝑛corresponding to the 

eigenvalues 𝜆1, 𝜆2, ⋯ , 𝜆𝑛, respectively. By theorem 2, the set 
{𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is linearly independent and has n vectors, where 𝑛 =
𝑑𝑖𝑚𝑉.  

 

From Unit 3 (corollary to Theorem 5), 𝐵 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} is a basis of V 

consisting of eigenvectors of T.  

Thus, by theorem 3, T is diagonalizable. 

Just as we have reached the conclusion of Theorem 4 for linear 

transformations, we define diagonalizability of a matrix, and reach a 

similar conclusion for matrices.  

 

Definition 6: An 𝑛 × 𝑛 matrix 𝐴 is said to be diagonalizable if A is similar 

to a diagonal matrix, that is, 𝑃−1𝐴𝑃 is diagonal for some non-singular 𝑛 ×
𝑛 matrix 𝑃. 

 

Note that the matrix A is diagonalizable if and only if the matrix A 

regarded as a linear transformation 𝐴: 𝑉𝑛(𝐹) → 𝑉𝑛(𝐹) = 𝐴𝑋, is 

diagonalizable. 

 

Thus, Theorem 2, 3, and 4 are true for the matrix A regarded as a linear 

transformation from 𝑉𝑛(𝐹) to 𝑉𝑛(𝐹).  
 

Therefore, given an 𝑛 × 𝑛matrix A, we know that it is diagonalizable if it 

has n distinct eigenvalues. 

We now give a practical method of diagonalizing a matrix.  

 

Theorem 5: Let A be 𝑛 × 𝑛 matrix having n distinct eigenvalues 

𝜆1, 𝜆2, ⋯ , 𝜆𝑛 and 

Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 ∈ 𝑉𝑛(𝐹) be eigenvectors of A corresponding to 

𝜆1, 𝜆2, ⋯ , 𝜆𝑛, respectively. Let 𝑃 = (𝑋1, 𝑋2, ⋯ , 𝑋𝑛) be the 𝑛 × 𝑛 matrix 

having 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 as its column vectors, then 𝑃−1𝐴𝑃 =
𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋯ , 𝜆𝑛). 
 

Proof: By actual multiplication, you can see that 

               𝐴𝑃 = 𝐴(𝑋1, 𝑋2, ⋯ , 𝑋𝑛)  
                     = (𝐴𝑋1, 𝐴𝑋2, ⋯ , 𝐴𝑋𝑛)  
                     = (𝜆1𝑋1, 𝜆2𝑋2, ⋯ , 𝜆𝑛𝑋𝑛)  

                    = [𝑋1, 𝑋2, ⋯ , 𝑋𝑛]

[
 
 
 
 
𝜆1 0 0 ⋯ 0
0 𝜆2 0 ⋯ 0
0 0 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 𝜆𝑛]

 
 
 
 

  

               𝑃 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋯ , 𝜆𝑛)  
Now, by Theorem 2, the column vectors of P are linearly independent.  
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This means that P is invertible (Unit 3).  

Therefore, we can pre-multiply both sides of the matrix equation 

𝐴𝑃 = 𝑃 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋯ , 𝜆𝑛) 
Let us see how this theorem works in practice.  

 

Theorem 6: Let 𝑇: 𝑉 → 𝑉 be a linear transformation, then the following 

are equivalent: 

a) T is diagonalizable; 

b) V is the direct sum of eigenspaces of T; 

c) 𝑇 = 𝜆1𝜇1 + 𝜆2𝜇2 +⋯+ 𝜇𝑛𝜆𝑛, where 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 are the distinct 

eigenvalues of T, and 𝜇1, 𝜇2, ⋯ , 𝜇𝑛, are projections satisfying 𝜇1 + 𝜇2 +
⋯+ 𝜇𝑛 = 𝐼 and 𝜇𝑖𝜇𝑟 = 0 for 𝑖 ≠ 𝑗. 
 

Proof: 

Let 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 be the distinct eigenvalues of T, and let 𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝑚 

be a basis for the 𝜆𝑖 −eigenspace of T. Then T is diagonalizable if and 

only if the union of these bases is a basis for V.  

So (a) and (b) are equivalent. 

 

Now suppose that (b) holds. A proposition and its converse show that 

there are projections 𝜇1, 𝜇2, ⋯ , 𝜇𝑛 satisfy the conditions in (c) where the 

image 𝐼𝑚(𝜇𝑖) is the 𝜆𝑖 −eigenspace. 

 

Now in this case it is easily checked that T and ∑𝜆𝑖𝜇𝑖 agree on every 

vector in V, so they are equal. 

Hence (b) implies (c). 

 

Finally, if 𝑇 = ∑𝜆𝑖𝜇𝑖, where the 𝜇𝑖 satisfy the conditions of (c), then V is 

the direct sum of the spaces 𝐼𝑚(𝜇𝑖) and 𝐼𝑚(𝜇𝑖) is the 𝜆𝑖 −eigenspace.  

So (c) implies (b), hence the proof. 

 

Example 15: The matrix 𝐴 = [
−6 6
−12 11

] is diagonalizable since the 

eigenvectors [
3
4
] and [

2
3
] are linearly independent, and so form a basis for 

R.  

Indeed, we see that [
−6 6
−12 11

] [
3 4
2 3

] = [
3 4
2 3

] [
2 0
0 3

], so that 𝑃−1𝐴𝑃 

is diagonal, where P is the matrix, whose columns are the eigenvectors of 

A. 

Furthermore, one can find two projection matrices whose column spaces 

are the eigenspaces, namely 𝑃1 = [
9 −6
12 −8

] ,   𝑃2 = [
−8 6
−12 9

]. 

The reader can check directly that 

      i)  𝑃1
2 = 𝑃1; 𝑃2

2 = 𝑃2    

      ii)  𝑃1𝑃2 = 𝑃2𝑃1 = 0  
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      iii) 𝑃1 + 𝑃2 = 𝐼                              
      iv)  2𝑃1 + 3𝑃2 = 𝐴 

 

Proposition: Let 𝐴 = ∑ 𝜆𝑖𝑃𝑖
𝑟
𝑖=1  be the expression for the diagonalizable 

matrix A in terms of projections 𝑃𝑖 satisfying the conditions of Theorem 

6, that is, ∑ 𝑃𝑖
𝑟
𝑖=1 = 𝐼 and 𝑃𝑖𝑃𝑗 = 0 for 𝑖 ≠ 𝑗, then 

         (a) for any positive integer 𝑚, we have 𝐴𝑚 = ∑ 𝜆𝑖
𝑚𝑃𝑖

𝑟
𝑖=1  

         (b) for any polynomial f (x), we have 𝑓(𝐴) = ∑ 𝑓(𝜆𝑖)𝑃𝑖
𝑟
𝑖=1 . 

 

Proof: 

(a) The proof is by induction on m, the case 𝑚 = 1 being the given 

expression. 

Suppose that the result holds for 𝑚 = 𝑘 − 1. Then 

            𝐴𝑘 = 𝐴𝑘−1𝐴  

                 = (∑ 𝜆𝑖
𝑘−1𝑃𝑖

𝑟
𝑖=1 )(∑ 𝜆𝑖𝑃𝑖

𝑟
𝑖=1 ). 

When we multiply out this product, all the terms 𝑃𝑖𝑃𝑗 are zero for 𝑖 ≠ 𝑗 

and we obtain  

simply ∑ 𝜆𝑖
𝑘−1𝜆𝑖𝑃𝑖

𝑟
𝑖=1  as required. So, the induction goes through. 

(b) If 𝑓(𝑥) = ∑𝑎𝑚𝑥
𝑚, we obtain the result by multiplying the equation 

of part (a) by 𝑎𝑚 and  

summing over m.   

(Note that, for m = 0, we use the fact that 𝐴0 = 𝐼 = ∑ 𝑃𝑖
𝑟
𝑖=1 = ∑ 𝜆𝑖

0𝑃𝑖
𝑟
𝑖=0   

that is, part (a) holds also for m = 0). 

 

Example 16: Is matrix 𝐴 = [
0 1 0
1 0 0
0 0 1

] diagonalisable? 

Solution: The characteristic polynomial of 𝐴 =

𝑓(𝑡) |
𝑡 −1 0
−1 𝑡 0
0 0 𝑡 − 1

| = (𝑡 + 1)(𝑡 − 1)2. 

Matrix A is diagonalizable though it only has two distinct eigenvalues. 

This is because there is one linear independent eigenvector corresponding 

to 𝜆1 = −1, but there exist two linearly independent eigenvectors 

corresponding to 𝜆2 = 1.  

Therefore, we can form a basis 𝑉3 ∈ 𝑅 consisting of the eigenvectors; 

       [
1
−1
0
] ,           [

1
1
0
],            [

0
0
1
] 

The matrix 𝑃 = [
1 1 0
−1 1 0
0 0 1

] is invertible, and 𝑃−1𝑃 = [
1 0 0
0 1 0
0 0 1

] 
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Example 17: Verify the diagonalizability of the matrix 𝐴 =

[
2 1 0
0 1 −1
0 2 4

].  

 

Solution: 

The characteristic polynomial of 𝐴 = 𝑓(𝑡) = |
𝑡 − 2 −1 0
0 𝑡 − 1 1
0 −2 𝑡 − 4

| =

(𝑡 − 2)2(𝑡 − 3) 
Therefore, the eigenvalues are 𝜆1 = 2 and 𝜆2 = 3 

The eigenvectors corresponding to 𝜆1 = 2 are given by [
1
0
0
] 

The eigenvectors corresponding to 𝜆2 = 3 are given by [
0
0
1
] and [

0
1
0
] 

Therefore 𝑃 = [
1 0 1
0 0 1
0 1 0

] is invertible, and 𝑃−1 = [
1 −1 0
0 0 1
0 1 0

] 

∴ 𝑃−1𝑃 = [
1 0 0
0 1 0
0 0 1

]  

 

SELF-ASSESSMENT EXERCISE 

 

Obtain the eigenvalues and eigenvectors of the following matrices: 

i. 𝐴 = [
2 1 1
1 3 2
−1 1 2

] 

ii. 𝐴 = [
1 −4 −2
0 3 1
1 2 4

] 

iii. 𝐴 = [
2 0 1
−1 4 −1
−1 2 0

] 
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Conclusion 

We conclude that any 𝑛 × 𝑛matrix 𝐴 is said to be diagonalizable if A is 

similar to a diagonal matrix, that is, 𝑃−1𝐴𝑃 is diagonal for some non-

singular𝑛 × 𝑛 matrix 𝑃. 

 

   1.4  Summary  

 

We end this unit by summarizing what has been done in it.  

 An eigenvalue of a linear transformation 𝑇: 𝑉 → 𝑉 (or matrix A) 

is the same as “characteristic value”, “proper value” or “latent 

root” of T(or A). 

 Let𝐴 = [𝑎𝑖𝑗]be any 𝑛 × 𝑛 matrix, then the characteristic 

polynomial is defined as 𝑓𝐴(𝑡) = 𝑑𝑒𝑡(𝑡𝐼 − 𝐴) and characteristic 

equation of a linear transformation (or matrix) is defined as 

𝑓𝐴(𝑡) = 𝑑𝑒𝑡(𝑡𝐼 − 𝐴) = 0.  

 The roots of the characteristic polynomials are the eigenvalues of 

the linear transformation T (or matrix A). 

 A scalar 𝜆is an eigenvalue of a 𝑛 × 𝑛matrix A over F if there exists 

𝑋 ∈ 𝑉𝑛(𝐹); 𝑋 ≠ 0, such that 𝐴𝑋 = 𝜆𝑋 are eigenvectors of the 

matrix A corresponding to the eigenvalue𝜆. 

 A scalar𝜆 is an eigenvalue of a linear transformation T (or matrix 

A) if and only if it is a root of the characteristic polynomial of T (or 

A).  

 For an eigenvalue𝜆of T, the non-zero subspace 𝑊𝑘 is called the 

eigenspace of T associated with the eigenvalue. 

 Eigenvectors of a linear transformation (or matrix) corresponding 

to distinct eigenvalues are linearly independent.  

 A linear transformation 𝑇: 𝑉 → 𝑉 is diagonalizable if and only if V 

has a basis consisting of eigenvectors of T.  

 A linear transformation (or matrix) is diagonalizable if its 

eigenvalues are distinct.  

 

So how, in practice, do we “diagonalize” a matrix A, that is, find an 

invertible matrix P such that 𝑃−1𝐴𝑃 = 𝐷 is diagonal? We saw an example 

of this earlier.  

 

The matrix equation can be rewritten as 𝐴𝑃 = 𝑃𝐷, from which we see 

that the columns of P are the eigenvectors of A.  

So, the procedure is:  

i. Find the eigenvalues of A,  

ii. Find a basis of eigenvectors;  
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iii. Then let P be the matrix which has the eigenvectors as columns, 

and D the diagonal matrix whose diagonal entries are the 

eigenvalues.  
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UNIT 2  CHARACTERISTIC AND MINIMAL 

POLYNOMIAL 
 

Unit Structure 
 

2.1  Introduction  

2.2  Learning Outcomes  

2.3  Characteristic and Minimal Polynomials 

      2.3.1 Cayley-Hamilton Theorem  

      2.3.2 Minimal Polynomial  

2.4  Solutions/Answers to Exercises 

2.5  Summary 

2.6  References/Further Readings  
 

 2.1  Introduction 
 

This unit is basically a continuation of the previous unit, but the emphasis 

is on a different aspect of the problem discussed in the previous unit.  
 

Let 𝑇: 𝑉 → 𝑉 be a linear transformation on a n-dimensional vector space 

V over the field F. The two most important polynomials that are 

associated with T are the characteristic polynomial of T and the minimal 

polynomial of T.  
 

In this unit, we first show that every square matrix (of linear 

transformation 𝑇: 𝑉 → 𝑉) satisfies its characteristic equation, and use this 

to compute the inverse of the concerned matrix (or linear transformation), 

if it exists.  
 

Then we define the minimal polynomial of a square matrix, and discuss 

the relationship between the characteristic and minimal polynomials. This 

leads us to a simple way of obtaining the minimal polynomial of a matrix 

(or linear transformation). 
 

  2.2  Learning Outcomes 
 

By the end of this unit, you will be able to:  
 

 State and prove the Cayley-Hamilton theorem;  

 Find the inverse of an invertible matrix using this theorem;  

 Prove that a scalar𝜆is an eigenvalue if and only it is a root of the 

minimal polynomial;  

 Obtain the minimal polynomial of a matrix (or linear 

transformation) if the characteristic polynomial is known.  
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  2.3  Characteristic and Minimal Polynomials 

 

2.3.1  Cayley-Hamilton Theorem  
 

This section presents the Cayley-Hamilton theorem, which is related to 

the characteristic equation of a matrix. It is named after the British 

Mathematicians; Arthur Cayley (1821-1895) and William Hamilton 

(1805-1865), they were responsible for a lot of work done in the theorem 

of determinants. 

Example 1: Consider the 3 × 3 matrix 𝐴 = [
0 1 2
−1 2 1
0 3 2

], then 𝑡𝐼 − 𝐴 =

[
𝑡 −1 −2
1 𝑡 − 2 −1
0 −3 𝑡 − 2

] 

Let 𝐶𝑖𝑗 be the (𝑖, 𝑗)𝑡ℎ cofactor of (𝑡𝐼 − 𝐴), then, 

  𝐶11 = (𝑡 − 2)
2 − 3 = 𝑡2 − 4𝑡 + 1 

  𝐶12 = 𝑡 − 2  

  𝐶13 = −3  

  𝐶21 = −1(𝑡 − 2) − 6 = 𝑡 + 4  

  𝐶22 = 𝑡(𝑡 − 2) = 𝑡
2 − 2𝑡  

  𝐶23 = 3𝑡  
  𝐶31 = 1 + 2(𝑡 − 2) = 2𝑡 − 3  

  𝐶32 = −𝑡 + 2  

  𝐶33 = 𝑡(𝑡 − 2) + 1 = 𝑡
2 − 2𝑡 + 1  

 

Therefore, the Matrix of cofactors is 𝐶𝑖𝑗 =

[
𝑡2 − 4𝑡 + 1 𝑡 − 2 −3
𝑡 + 4 𝑡2 − 2𝑡 3𝑡
2𝑡 − 3 𝑡 − 2 𝑡2 − 2𝑡 + 1

]; 

Hence 𝐴𝑑𝑗(𝑡𝐼 − 𝐴) = 𝐶𝑖𝑗
𝑇 = [

𝑡2 − 4𝑡 + 1 𝑡 + 4 2𝑡 − 3
𝑡 − 2 𝑡2 − 2𝑡 𝑡 − 2
−3 3𝑡 𝑡2 − 2𝑡 + 1

]  

                                = [
1 0 0
0 1 0
0 0 1

] 𝑡2 + [
−4 1 2
1 −2 1
0 3 −2

] 𝑡 +

[
1 4 −3
−2 0 −2
−3 0 1

]  

This is a polynomial in 𝑡 of degree 2, with matrix coefficients. 

Similarly, if we consider the 𝑛 × 𝑛 matrix 𝐴 = |𝑎𝑖𝑗|, then 𝐴𝑑𝑗(𝑡𝐼 − 𝐴) is 

a polynomial of degree ≤ 𝑛 − 1, with matrix coefficients.  

Let  𝐴𝑑𝑗(𝑡𝐼 − 𝐴) = 𝐵1𝑡
𝑛−1 + 𝐵2𝑡

𝑛−2 +⋯+ 𝐵𝑛−1𝑡
𝑛−1 + 𝐵𝑛           

………………… (1) 
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where 𝐵1, 𝐵2, ⋯ , 𝐵𝑛 are 𝑛 × 𝑛 matrices over F. 

Now, the characteristic polynomial of A is given by  

             𝐹(𝑡) = 𝑓𝐴(𝑡) = 𝑑𝑒𝑡(𝑡𝐼 − 𝐴) = |𝑡𝐼 − 𝐴|  

                     = |
|

𝑡 − 𝑎11 −𝑎12 ⋯ ⋯ −𝑎1𝑛
−𝑎21 𝑡 − 𝑎22 ⋯ ⋯ −𝑎2𝑛
⋮ ⋮ ⋯ ⋯ ⋮
⋮ ⋮ ⋯ ⋯ ⋮

−𝑎𝑛1 −𝑎𝑛2 ⋯ ⋯ 𝑡 − 𝑎𝑛𝑛

|
| , where 𝐴 = [𝑎𝑖𝑗] 

                    = 𝑡𝑛 + 𝑐1𝑡
𝑛−1 + 𝑐2𝑡

𝑛−2 +⋯+ 𝑐𝑛−1𝑡 + 𝑐𝑛            
…………………….. (2) 

The coefficients in (1) and (2) shall be used to prove the Cayley-Hamilton 

theorem. 

 

Theorem 1 (Cayley-Hamilton): 

 Let 𝐹(𝑡) = 𝑡𝑛 + 𝑐1𝑡
𝑛−1 + 𝑐2𝑡

𝑛−2 +⋯+ 𝑐𝑛−1𝑡 + 𝑐𝑛 be the 

characteristic polynomial of an 𝑛 × 𝑛 matrix A, then 𝐹(𝐴) = 𝐴𝑛 +
𝑐1𝐴

𝑛−1 + 𝑐2𝐴
𝑛−2 +⋯+ 𝑐𝑛−1𝐴 + 𝑐𝑛𝐼 = 0 

(Note that 0 denotes the 𝑛 × 𝑛 zero matrix, and 𝐼 = 𝐼𝑛) 

          (𝑡𝐼 − 𝐴)𝐴𝑑𝑗(𝑡𝐼 − 𝐴) = 𝐴𝑑𝑗(𝑡𝐼 − 𝐴)  
                                             = 𝑑𝑒𝑡(𝑡𝐼 − 𝐴)𝐼  
                                             = 𝑓(𝑡)𝐼                                                 
……..………….. (3) 

Equate equations (1) and (3) above becomes 

              (𝑡𝐼 − 𝐴)(𝐵1𝑡
𝑛−1 + 𝐵2𝑡

𝑛−2 +⋯+ 𝐵𝑛−1𝑡
𝑛−1 + 𝐵𝑛) = 𝐹(𝑡)𝐼  

                         = 𝐼𝑡𝑛 + 𝑐1𝐼𝑡
𝑛−1 + 𝑐2𝐼𝑡

𝑛−2 +⋯+ 𝑐𝑛−1𝐼𝑡 + 𝑐𝑛𝐼  
Substituting the value of 𝐹(𝑡) to get 

                                              = 𝑓(𝑡)  
Now, comparing constant term and the coefficients of 𝑡, 𝑡2, ⋯ , 𝑡𝑛 on both 

sides we have 

                          

− 𝐴𝐵𝑛 = 𝑐𝑛𝐼
𝐵𝑛 − 𝐴𝐵𝑛−1 = 𝑐𝑛−1𝐼
𝐵𝑛−1 − 𝐴𝐵𝑛−2 = 𝑐𝑛−2𝐼
⋮ ⋮ ⋮ = ⋮
⋮ ⋮ ⋮ = ⋮
𝐵3 − 𝐴𝐵2 = 𝑐2𝐼
𝐵2 − 𝐴𝐵1 = 𝑐1𝐼

𝐵1 = 𝐼

  

Pre-multiplying the first equation by 𝐼, the second by 𝐴, the third by 𝐴2 
that last by 𝐴𝑛, and adding all these equations, we obtain 

          0 = 𝑐𝑛𝐼 + 𝑐𝑛−1𝐴 + 𝑐𝑛−2𝐴
2 +⋯+ 𝑐2𝐴

𝑛−2 + 𝑐1𝐴
𝑛−1 + 𝐴𝑛 =

𝐹(𝐴)  
Thus, the Cayley-Hamilton theorem is proved. 

This theorem can also be stated as  

              “Every square matrix satisfies its characteristic polynomial”. 
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Remark 1: You may be tempted to give the following ‘quick’ proof of 

Theorem 1: 

𝐹(𝑡) = 𝑑𝑒𝑡(𝑡𝐼 − 𝐴) 
𝐹(𝐴) = 𝑑𝑒𝑡(𝐴𝐼 − 𝐴) = 𝑑𝑒𝑡(𝐴 − 𝐴) = 𝑑𝑒𝑡(0) = 0 

This proof is false. Why? Well, the left-hand side of the above equation, 

𝐹(𝐴) is an 𝑛 × 𝑛 matrix while the right-hand side is the scalar 0, being 

the value of 𝑑𝑒𝑡(0).  
Now, as usual, we give the analogue of Theorem 1 for linear 

transformations:  

 

Theorem 2 (Cayley-Hamilton): Let T be a linear transformation on a 

finite- dimensional vector space 𝑉. If 𝑓(𝑡) is the characteristic polynomial 

of T, then 𝐹(𝑇) = 0 

 

Proof: Let 𝑑𝑖𝑚𝑉 = 𝑛 and let 𝐵 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} be a basis of 𝑉.  

In Unit 1, we have observed that  

𝐹(𝑡)  = the characteristic polynomial of T 

          = the characteristic polynomial of the matrix [𝑇]𝐵 

Let [𝑇]𝐵 = 𝐴 

If 𝐹(𝑡) = 𝑡𝑛 + 𝑐1𝑡
𝑛−1 + 𝑐2𝑡

𝑛−2 +⋯+ 𝑐𝑛−1𝑡 + 𝑐𝑛  then, by Theorem 1, 

       𝐹(𝐴) = 𝐴𝑛 + 𝑐1𝐴
𝑛−1 + 𝑐2𝐴

𝑛−2 +⋯+ 𝑐𝑛−1𝐴 + 𝑐𝑛𝐼 = 0  

Now, in Theorem 2 of Unit 3we proved that is a vector space 

isomorphism. Thus, 

     [𝐹(𝑇)]𝐵 = [𝑇
𝑛 + 𝑐1𝑇

𝑛−1 + 𝑐2𝑇
𝑛−2 +⋯+ 𝑐𝑛−1𝑇 + 𝑐𝑛𝐼]𝐵  

                    = [𝑇𝑛]𝐵 + 𝑐1[𝑇
𝑛−1]𝐵 + 𝑐2[𝑇

𝑛−2]𝐵 +⋯+ 𝑐𝑛−1[𝑇]𝐵 +
𝑐𝑛[𝐼]𝐵  

                    = 𝐴𝑛 + 𝑐1𝐴
𝑛−1 + 𝑐2𝐴

𝑛−2 +⋯+ 𝑐𝑛−1𝐴 + 𝑐𝑛𝐼  
                    = 𝐹(𝐴) = 0  

Again, using the one-one property of [𝑇]𝐵, this implies that 𝐹(𝑇) = 0.  

Thus, Theorem 2 is true. 

Example 2: Verify the Cayley-Hamilton theorem for 𝐴 = (
3 2
−1 0

) 

Solution: The characteristic polynomial of A is |
3 2
−1 0

| = 𝑡2 − 3𝑡 + 2 

Let’s verify that 𝐴2 − 3𝐴 + 2𝐼 = 0 

   Now, 𝐴2 = (
3 2
−1 0

) (
3 2
−1 0

) = (
7 6
−3 −2

) 

  ∴ 𝐴2 − 3𝐴 + 2𝐼 = (
7 6
−3 −2

) − 3 (
3 2
−1 0

) + 2 (
1 0
0 1

) = (
0 0
0 0

)  

Therefore, the Cayley-Hamilton theorem is true in this case. 

 

Example 3: Verify the Cayley-Hamilton theorem for A, where 𝐴 =

(
0 1 0
3 0 1
1 −2 −1

) 

 BT
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Solution: The characteristic polynomial of A is|
𝑡 −1 0
3 𝑡 −1
1 2 𝑡 + 1

| = 𝑡3 +

𝑡2 − 𝑡 − 4 

Let’s verify that 𝐴3 + 𝐴2 − 𝐴 − 4𝐼 = 0 

Now, 𝐴2 = (
0 1 0
3 0 1
1 −2 −1

)(
0 1 0
3 0 1
1 −2 −1

) = (
3 0 1
1 1 −1
−7 3 −1

) 

Also, 𝐴3 = 𝐴2𝐴 = (
3 0 1
1 1 −1
−7 3 −1

)(
0 1 0
3 0 1
1 −2 −1

) = (
1 1 −1
2 3 2
8 −5 4

) 

𝐴3 + 𝐴2 − 𝐴 − 4𝐼

= (
1 1 −1
2 3 2
8 −5 4

) + (
3 0 1
1 1 −1
−7 3 −1

) − (
0 1 0
3 0 1
1 −2 −1

)

− 4(
1 0 0
0 1 0
0 0 1

) 

                               = (
0 0 0
0 0 0
0 0 0

)  

Hence the Cayley-Hamilton theorem is also true in this case. 

 

Exercise: Verify the Cayley-Hamilton theorem for the following 

matrices: 

i)       ii)   

We shall now use Theorem 1 to prove a result that gives us a method for 

obtaining the inverse of an invertible matrix.  

 

Theorem 3: 𝐹(𝑡) = 𝑡𝑛 + 𝑐1𝑡
𝑛−1 + 𝑐2𝑡

𝑛−2 +⋯+ 𝑐𝑛−1𝑡 + 𝑐𝑛 be the 

characteristic polynomial of an 𝑛 × 𝑛 matrix A. Then 𝐴−1 exists if 𝑐𝑛 ≠ 0 

and, in this case, 

𝐴−1 = −𝑐−1(𝐴𝑛−1 + 𝑐1𝐴
𝑛−2 + 𝑐2𝐴

𝑛−3 +⋯+ 𝑐𝑛−1) 
 

Proof: By Theorem 1, 

𝐹(𝐴) = 𝐴𝑛 + 𝑐1𝐴
𝑛−1 + 𝑐2𝐴

𝑛−2 +⋯+ 𝑐𝑛−1𝐴 + 𝑐𝑛𝐼 = 0  
This implies that 

𝐴(𝐴𝑛−1 + 𝑐1𝐴
𝑛−2 + 𝑐2𝐴

𝑛−3 +⋯+ 𝑐𝑛−1) = −𝑐𝑛𝐼           or 

(𝐴𝑛−1 + 𝑐1𝐴
𝑛−2 + 𝑐2𝐴

𝑛−3 +⋯+ 𝑐𝑛−1)𝐴 = −𝑐𝑛𝐼  
⟹−cn

−1(An−1 + c1A
n−2 + c2A

n−3 +⋯+ cn−1) = IA
−1  

⟹−cn
−1(An−1 + c1A

n−2 + c2A
n−3 +⋯+ cn−1) = A

−1  

Thus, A is invertible. 
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Example 4: Is 𝐴 = (
2 1 1
−1 2 −1
−1 1 3

) invertible? If so, find A−1. 

Solution: The characteristic polynomial of A, 

𝐹(𝑡) = |
𝑡 − 2 −1 −1
1 𝑡 − 2 1
1 −1 𝑡 − 3

| = 𝑡3 − 7𝑡2 + 19𝑡 − 19 

Since the constant term of 𝐹(𝑡) = −19 ≠ 0, hence A is invertible.  

Now, by Theorem 1, 𝐴3 − 7𝐴2 + 19𝐴 − 19𝐼 = 0 

⇒ (
1

19
) 𝐴(𝐴2 − 7𝐴 + 19𝐼) = 𝐼  

∴ A−1 = (
1

19
) (𝐴2 − 7𝐴 + 19𝐼)  

Now, 𝐴2 = (
2 1 1
−1 2 −1
−1 1 3

)(
2 1 1
−1 2 −1
−1 1 3

) = (
2 5 4
−3 2 −6
−6 4 7

) 

 Hence  A−1 = (
1

19
) (
7 −2 −3
4 7 1
1 −3 5

)  

 

To make sure that there has been no error in calculation, multiply this 

matrix by A, you should get  𝐼. 
Now try the following exercise. 

Obtain A−1 wherever possible for the matrices: 

i) (
7 6 0
2 3 0
−2 −2 1

) 

ii) (
1 0 1
0 3 1
3 3 4

) 

 

2.3.2  Minimal Polynomial  
 

In Module 1 Unit 4, we defined the minimal polynomial of a linear 

transformation 𝑇: 𝑉 → 𝑉. We said that it is the monic polynomial of least 

degree with coefficients in F, which is satisfied by T.  But we weren’t 

able to give a method of obtaining the minimal polynomial of T.  

In this section, we will show that the minimal polynomial divides the 

characteristic polynomial. Moreover, the roots of the minimal polynomial 

are the same as those of the characteristic polynomial. Since it is easy to 

obtain the characteristic polynomial of T, these facts will give us a simply 

way of finding the minimal polynomial of T.  

 

Let us first recall some properties of the minimal polynomial (MP) of T 

that we gave in unit 4. Let 𝑝(𝑡) be the minimal polynomial of T, then  

MP1:𝑝(𝑡) is a monic polynomial with coefficients in F. 
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MP2: If 𝑞(𝑡) is a non-zero polynomial over F such that 𝑑𝑒𝑔 𝑞 <  𝑑𝑒𝑔 𝑝, 

then 𝑞(𝑡)  ≠  0.  

 

MP3: If, for some polynomial g (over F, 𝑔(𝑇) = 0, then 𝑝(𝑡)| 𝑔(𝑡)). 
That is, there exists a polynomial ℎ(𝑡) over F such that 𝑔(𝑡)  =  𝑝(𝑡)ℎ(𝑡).  
We will now obtain the first link in the relationship between minimal 

polynomial and the characteristic polynomial 

 

MP4: The minimal polynomial 𝑝(𝑡)of a linear transformation divides its 

characteristic polynomial𝑓(𝑡).  
 

Proof: Let the characteristic polynomial and the minimal polynomial of 

T be 𝑓(𝑡)and 𝑝(𝑡), respectively. By Theorem 2, 𝑓(𝑡) = 0.  

So, by MP4, 𝑝(𝑡) divides 𝑓(𝑡), as desired.  

 

Before going on to show the full relationship between the minimal and 

characteristic polynomials, we state (but won’t prove!) two theorems that 

will be used again and again, in this course as well as other courses. 

 

Theorem 4: (Division algorithm for polynomials): Let f and g be two 

polynomials in t with coefficients in a field F such that f ≠ 0. Then  

i. there exist polynomials in r with coefficients in F such that 𝑔 =
𝑓𝑞 + 𝑟, where r = 0 or 𝑑𝑒𝑔 𝑟 < 𝑑𝑒𝑔 𝑓, and  

ii. if we also have 𝑔𝑓𝑞1 + 𝑟1,with 𝑟1 = 0 or 𝑑𝑒𝑔 𝑟1 < 𝑑𝑒𝑔 𝑓, then 

𝑞 = 𝑞1 and 𝑟 = 𝑟1 
An immediate corollary follows.  

 

Corollary: If g is a polynomial over F with 𝜆 ≠ 0 as a root, then 𝑔(𝑡) =
(𝑡 − 𝜆)𝑞(𝑡), for some polynomial q over F.  

 

Proof: By the division algorithm, taking 𝑓 = (𝑡 − 𝜆) to have 

            𝑔(𝑡) = (𝑡 − 𝜆)𝑞(𝑡) + 𝑟(𝑡)                              …………………(1) 

With 𝑟 = 0 or 𝑑𝑒𝑔 𝑟 < 𝑑𝑒𝑔 (𝑡 − 𝜆) = 1 

If 𝑑𝑒𝑔 𝑟 < 1, then r is a constant. 

Putting 𝑡 = 𝜆 in (1) gives 𝑔(𝜆) = 𝑟(𝜆) = 𝑟 since r is a constant. 

But 𝑔(𝜆) = 0, since 𝜆 is root of g, then 𝑟 = 0. 

Thus, the only possibility is 𝑟 = 0. 

Hence, 𝑔(𝑡) = (𝑡 − 𝜆)𝑞(𝑡) 
 

And now we come to a very important result that you may be using often, 

without realizing coefficients has at least one root in C.  

In other words, this theorem says that any polynomial  

𝑓(𝑡) = 𝛼𝑛−1𝑡
𝑛−1 + 𝛼𝑛−2𝑡

𝑛−2 +⋯+ 𝛼1𝑡 + 𝛼0 (where 𝛼0, ⋯ , 𝛼𝑛 ∈
𝐶, 𝛼𝑛 ≠ 0, 𝑛 ≥ 1) has at least one root in C.  
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Remark 2: In the theorem, if 𝜆1 is a root of 𝑓(𝑡) = 0, then by theorem 1, 

          𝑓(𝑡) = (𝑡 − 𝜆1)𝑓1(𝑡);  here, 𝑑𝑒𝑔 𝑓1 = 𝑛 − 1 

If 𝑓1(𝑡) is not constant, then the equation 𝑓1(𝑡) = 0 has a root 𝜆2 ∈ 𝐶, and 

        𝑓1(𝑡) = (𝑡 − 𝜆2)𝑓2(𝑡). 
Consequently, 𝑓(𝑡) = (𝑡 − 𝜆1)(𝑡 − 𝜆2)𝑓2(𝑡);  here 𝑑𝑒𝑔 𝑓2 = 𝑛 − 2.  

Using the fundamental theorem repeatedly, we obtain 

 𝐹(𝑡) = 𝛼𝑛(𝑡 − 𝜆1)(𝑡 − 𝜆2)⋯ (𝑡 − 𝜆𝑛); for some 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 ∈ 𝐶, 

which are not necessarily distinct. (This process has to stop after n steps 

since 𝑑𝑒𝑔 𝑓 = 𝑛)  

Thus, all the roots of 𝑓(𝑡) ∈ 𝐶 and these are n in number. They may not 

all be distinct.  

Suppose 𝜆1, 𝜆2, ⋯ , 𝜆𝑘 are the distinct roots, and they are repeated 

𝑚1, 𝑚2, ⋯ ,𝑚𝑘 times, respectively. 

Then, 𝑚1 +𝑚2 +⋯+𝑚𝑘 = 𝑛 and 

 𝑓(𝑡) = 𝛼𝑛(𝑡 − 𝜆1)
𝑚1(𝑡 − 𝜆2)

𝑚2⋯(𝑡 − 𝜆𝑛)
𝑚𝑘. 

For example, the polynomial equation 𝑡3 − 𝑖𝑡2 + 𝑡 − 𝑖 has no real roots, 

but it has two distinct complex roots, namely, 𝑡 = −1 and 𝑡 = √−𝑖. 
 So, we write 𝑡3 − 𝑖𝑡2 + 𝑡 − 𝑖. 
Here 𝑖 is repeated twice and –  𝑖 only occurs once.  

We can similarly show that any polynomial 𝑓(𝑡) over r can be written as 

a product of linear polynomials and quadratic polynomials.  

For example, the real polynomial,  𝑡3 − 1 = (𝑡 − 1)(𝑡2 + 𝑡 + 1). 
 

Now we go to show the second and final link that relates the minimal and 

characteristic polynomials of  𝑇: 𝑉 → 𝑉, where 𝑉 is a vector space over 

F.  

Let 𝑝(𝑡) be the minimal polynomial of T. We shall show that a scalar 𝜆 is 

a root of 𝑝(𝑡). 
The proof will utilize the following remark.  

 

Remark 3: If 𝜆 is an eigenvalue of T, then 𝑇𝑥 − 𝜆𝑥 for some 𝑥 ∈ 𝑉, 𝑥 ≠
0 

But 𝑇𝑥 − 𝜆𝑥 ⇒ 𝑇2𝑥 = 𝑇(𝑇𝑥) = 𝑇(𝑇𝜆𝑥) = 𝜆2𝑥 

By induction, it is easy to see that 𝑇𝑘𝑥 = 𝜆𝑘𝑥;  ∀ 𝑘.  

Now, if 𝑔(𝑡) = 𝑎𝑛𝑡
𝑛 + 𝑎𝑛−1𝑡

𝑛−1 + 𝑎𝑛−2𝑡
𝑛−2 +⋯+ 𝑎1𝑡 + 𝑎0 is a 

polynomial over F, then,    𝑔(𝑇) = 𝑎𝑛𝑇
𝑛 + 𝑎𝑛−1𝑇

𝑛−1 + 𝑎𝑛−2𝑇
𝑛−2 +

⋯+ 𝑎1𝑇 + 𝑎0𝐼 
This means that  

             𝑔(𝑇)𝑥 = 𝑎𝑛𝑇
𝑛𝑥 + 𝑎𝑛−1𝑇

𝑛−1𝑥 + ⋯+ 𝑎1𝑇𝑥 + 𝑎0𝑥  

                         = 𝑎𝑛𝜆
𝑛𝑥 + 𝑎𝑛−1𝜆

𝑛−1𝑥 + ⋯+ 𝑎1𝜆𝑥 + 𝑎0𝑥  

                         = 𝑔(𝜆)𝑥  

Thus, 𝜆 is an eigenvalue of 𝑇 ⇒ 𝑔(𝜆) is an eigenvalue of 𝑔(𝑇). 
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Theorem 5: Let 𝑇 be a linear transformation on a finite-dimensional 

vector 𝑉 over the field 𝐹. Then 𝜆 ∈ 𝐹 is an eigenvalue of T if and only if 

𝜆 is a root of the minimal polynomial of T have the same roots.  

 

Proof: Let p be the minimal polynomial of 𝑇 and let 𝜆 ∈ 𝐹. Suppose 𝜆 is 

an eigenvalue of 𝑇, then 𝑇𝑥 − 𝜆𝑥 for some 0 ≠ 𝑥 ∈ 𝑉.  

Also, by Remark 3,  𝑝(𝑇)𝑥 = 0, but 𝑝(𝑇) = 0.  

Thus,  0 = 𝑝(𝜆) = 0, that is, 𝜆 is a root of 𝑝(𝑡).  
Conversely, let 𝜆 be a root of 𝑝(𝜆) = 0 and by Theorem 5, 

𝑝(𝑡) = (𝑡 − 𝜆)𝑞(𝑡), 𝑑𝑒𝑔 𝑞 < 𝑑𝑒𝑔 𝑝, 𝑞 ≠ 0 .  

By the property MP3, ∃ 𝑣 ∈ 𝑉 such that 𝑞(𝑇) 𝑣 ≠  0.  

Let 𝑥 =  𝑞(𝑇)𝑣 ≠  0, then, (𝑇 − 𝜆𝐼)𝑥 = (𝑡 − 𝜆𝐼)𝑞(𝑇)𝑣 = 𝑝(𝑇)𝑣 = 0 

⇒ 𝑇𝑥 − 𝜆𝑥 = 0 ⇒ 𝑇𝑥 = 𝜆𝑥.  

Hence, 𝜆 is an eigenvalue of T.  

So, 𝜆 is an eigenvalue of 𝑇 iff 𝜆 is a root of the minimal polynomial of T.  

 

In Unit 1, we have already observed that 𝜆is an eigenvalue of T if and 

only if 𝜆 is a root of the characteristic polynomial of T.  

Hence, we have shown that both the minimal and characteristic 

polynomials of T have the same roots, namely, the eigenvalues of T.  

 

Caution: Though the roots of the characteristic polynomial and the 

minimal polynomial coincide, the two polynomials are not the same, in 

general. 
 

For example, if the characteristic polynomial 𝑇: 𝑅4 → 𝑅4 is (𝑡 + 1)2(𝑡 −
2)2, then the minimal polynomial could be (𝑡 + 1)(𝑡 − 1),  or 
(𝑡 + 1)2(𝑡 − 2), or (𝑡 + 2)(𝑡 − 2)2, or even (𝑡 + 1)2(𝑡 − 2)2,  
depending on which of these polynomials is satisfied by T.  

In general, let (𝑡 − 𝜆1)
𝑛1(𝑡 − 𝜆2)

𝑛2⋯(𝑡 − 𝜆𝑛)
𝑛𝑟 be the characteristic 

polynomial of a linear transformation T, where 𝑑𝑒𝑔 𝑓 = 𝑛;  (𝑛1 + 𝑛2 +
⋯+ 𝑛𝑟 = 𝑛), and 𝜆1, 𝜆2, ⋯ , 𝜆𝑟 ∈ 𝐶 are distinct. Then the minimal 

polynomial 𝑝(𝑡) is given by 

𝑝(𝑡) = (𝑡 − 𝜆1)
𝑚1(𝑡 − 𝜆2)

𝑚2⋯(𝑡 − 𝜆𝑛)
𝑚𝑟, where 1 ≤ 𝑚𝑖 ≤ 𝑛𝑖 for  

𝑖 =  1,2, … . . , 𝑟.  
In case T has n distinct eigenvalues, then 𝑓(𝑡) = (𝑡 − 𝜆1)(𝑡 − 𝜆2)⋯ (𝑡 −
𝜆𝑛) and therefore, 𝑝(𝑡) = (𝑡 − 𝜆1)(𝑡 − 𝜆2)⋯ (𝑡 − 𝜆𝑛) = 𝑓(𝑡). 
 

Definition: The minimal polynomial of a matrix A over f is the monic 

polynomial 𝑝(𝑡) such that  

i. 𝑝(𝐴) = 0, and  

ii. If 𝑞(𝑡) is a non-zero polynomial over F such that 𝑑𝑒𝑔 𝑞 < 𝑑𝑒𝑔 𝑝, 

then 𝑞(𝐴)  ≠  0.  
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Two theorems which are analogues to Theorems3and 5shall be stated. 

Their proofs are also similar to those of Theorems3 and 5. 

 

Theorem 6: The minimal polynomial and the characteristic polynomial 

of a linear transformation (or matrix) have the same roots. 

 

Theorem 7: The roots of the minimal polynomial and characteristic 

polynomial of a matrix are the same, and the roots are the eigenvalues of 

the matrix.  

Let us use these theorems now. 

Example 5: Obtain the minimal polynomial of 𝐴 = [
5 −6 −6
−1 4 2
3 −6 −4

] 

The characteristic polynomial of A is 𝑓(𝑡) = (
𝑡 − 5 6 6
1 𝑡 − 4 −2
−3 6 𝑡 + 4

) =

(𝑡 − 1)(𝑡 − 2)2 
Therefore, the minimal polynomial 𝑝(𝑡) is either (𝑡 − 1)(𝑡 − 2)or 

(𝑡 − 1)(𝑡 − 2)2 

Since(𝐴 − 𝐼)(𝐴 − 2𝐼) = [
4 −6 −6
−1 3 2
3 −6 −5

] [
3 −6 −6
−1 2 2
3 −6 −6

] =

[
0 0 0
0 0 0
0 0 0

]

 ⇒ 𝑝(𝑡) = (𝑡 − 1)(𝑡 − 2)  

Example 6: Find the minimal polynomial of 𝐴 = [
3 1 −1
2 2 −1
2 2 0

] 

The characteristic polynomial of A is 

𝑓(𝑡) = (
𝑡 − 3 −1 1
−2 𝑡 − 2 1
−2 −2 𝑡

) = (𝑡 − 1)(𝑡 − 2)2 

Again, as in the example (3) above, the minimal polynomial 𝑝(𝑡) is either 
(𝑡 − 1)(𝑡 − 2) or (𝑡 − 1)(𝑡 − 2)2 but in this case, 

(𝐴 − 𝐼)(𝐴 − 2𝐼) = [
2 1 −1
2 1 −1
2 2 −1

] [
1 1 −1
2 0 −1
2 2 −2

] = [
2 0 −1
2 0 −1
4 0 −2

]

≠ [
0 0 0
0 0 0
0 0 0

] 

⇒ 𝑝(𝑡) ≠ (𝑡 − 1)(𝑡 − 2).  
Thus,  𝑝(𝑡) = (𝑡 − 1)(𝑡 − 2)2. 
 

Now, let T be a linear transformation for 𝑉 to 𝑉, and B be a basis of 𝑉. 

Let 𝐴 = [𝑇]𝐵, if 𝑔(𝑡) is any polynomial with coefficients in f, then 

𝑔(𝑇)  =  0 if and only if 𝑔(𝐴)  =  0.  
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Thus, the minimal polynomial of T is the same as the minimal of A. 

For example, if 𝑇: 𝑅3 ⟶ 𝑅3 is a linear operator which is represented with 

respect to the standard basis, by the matrix in Example 3, then its minimal 

polynomial is (𝑡 − 1)(𝑡 − 2). 
 

Example 7: What can the minimal polynomial of 𝑇: 𝑅4⟶ 𝑅4 be if the 

characteristic polynomial of [𝑇]𝐵 is  

i. (𝑡 − 1)(𝑡3 + 1). 
ii. (𝑡2 + 1)2 
 

Solution: i) We know that (𝑡 − 1)(𝑡3 + 1) = (𝑡 − 1)(𝑡 + 1)(𝑡2 − t +
1). 
This has 4 distinct complex roots, of which only 1 and -1 are real.  

Since all the roots are distinct this polynomial is also the minimal 

polynomial of 𝑇.  

ii) (𝑡2 + 1)2 has no real roots. It has 2 repeated complex roots, 𝑖 and – 𝑖 .  
Now, the minimal polynomial must be a real polynomial that divides the 

characteristic polynomial.  Therefore, it can be (𝑡2 + 1) 𝑜𝑟 (𝑡2 + 1)2.  
This example shows that if the minimal polynomial is a real polynomial, 

then it need not be a product of linear polynomials only.  

Of course, over C it will always be a product of linear polynomials.  

 

Solutions/Answers to Exercises 

a) 𝑓𝐴(𝑡) = |

𝑡 −1 0 −1
−1 𝑡 −1 0
0 −1 𝑡 −1
−1 0 −1 𝑡

| = 𝑡2(𝑡 − 2)(𝑡 + 2) 

Therefore, the minimal polynomial can be 𝑡(𝑡 − 2)(𝑡 + 2) or  𝑡2(𝑡 −
2)(𝑡 + 2) 
Now 𝐴(𝐴 − 2𝐼)(𝐴 + 2𝐼) = 0 

∴ 𝑡(𝑡 − 2)(𝑡 + 2) is the minimal polynomial of 𝐴 

b) 𝐴 = (
1 1 0
0 1 1
1 0 1

) 

𝑓𝐴(𝑡) = |
𝑡 − 1 −1 0
0 𝑡 − 1 −1
−1 0 𝑡 − 1

| = 𝑡3 − 𝑡2 − 𝑡  

This has 3 distinct roots: 0,   
1+𝑖√5

2
 ,   

1−𝑖√5

2
 

Therefore, the minimal polynomial is the same as 𝑓𝐴(𝑡). 
 

E5) sum of its diagonal elements = 0 

           sum of eigenvalues = 0 − 2 + 2 = 0 

𝑇𝑟(𝐴) = −(𝑐𝑜𝑒𝑓𝑓of 𝑡3in 𝑓𝐴(𝑡)) = 0 

∴ 𝑇𝑟(𝐴) = sum of its diagonal elements of A 

               = sum of its eigenvalues of A 
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SELF-ASSESSMENT EXERCISE(S) 

 

Try the following exercises now.  

Find the minimal polynomial of  

a) 𝐴 = (

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

) 

b) 𝑇: 𝑅 ⟶ 𝑅3/ (𝑥 + 𝑦,   𝑦 + 𝑧, 𝑧 + 𝑥) 
The next exercise involves the concept of the trace of a matrix.  

If 𝐴 = [𝑎𝑖𝑗] ∈ 𝑀𝑛(𝐹), then the trace of A, denoted by 𝑇𝑟(𝐴) is – 

(coefficient of 𝑡𝑛−1in 𝑓𝐴(𝑡)).  

Let 𝐴 = [𝑎𝑖𝑗] ∈ 𝑀𝑛(𝐹). For the matrix A given in Exercise 4, show that  

𝑇𝑟(𝐴) = (sum of its eigenvalues)  

            = (sum of its diagonal elements) 

 

Conclusion 

We end the unit by concluding that if the minimal polynomial is a real 

polynomial, then it need not be a product of linear polynomials only and 

that the roots of the minimal polynomial and characteristic polynomial of 

a matrix are the same, and the roots are the eigenvalues of the matrix.  

 

   2.4 Summary  

 

In this unit we have covered the following points.  

 

1) The proof of the Cayley-Hamilton theorem, which says that every 

square matrix (or linear transformation𝑇: 𝑉 → 𝑉) satisfies its 

characteristic equation.  

2) The use of the Cayley-Hamilton theorem to find the inverse of a 

matrix.  

3) The definition of the minimal polynomial of a matrix.  

4) The proof of the fact that the minimal polynomial and the 

characteristic polynomial of a linear transformation (or matrix) 

have the same roots. These roots are precisely the eigenvalues of 

the concerned linear transformation (or matrix).  

5)  A method for obtaining the minimal polynomial of a linear 

transformation (or matrix).  
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