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Introduction  
 
MTH 213: Discussion of Lagrange’s form for; The technique of 
determining an approximate value of f(x) for a non-tabular value of x 
which lies in the internal [a, b] is called interpolation. The process of 
determining the value of f(x) for a value of x lying outside the interval 
[a, b] is called extrapolation. 
 
The Lagrange’s form of the interpolating polynomial derived above has 
same draw backs compared to Newton’s form of interpolating 
polynomial. Before deriving Newton’s general form of interpolating 
polynomial. We introduce the concept of divided difference and the 
tabular representation of divided differences. 
 
Numerical solution of systems of linear algebraic equations play a 
prominent role in boundary value problems, for ordinary and partial 
differential equations, statistical influence, optimization theory, least 
square fittings of data etc. 
 
Numerical methods for solving linear algebraic system may be divided 
into two types, direct and iterative. To understand the numerical 
methods for solving linear system of equations, it is necessary to have 
some knowledge of the properties of matrices. The prerequisite to the 
course shall be linear Algebra courses. 
 
The Course 
 
As a 3-credit unit course, 11 study units grouped into 3 modules of 3 
units in module 1, 4 units in module 2 and 4 units in module 3. 
 
This course guide gives a brief summary of the total contents contained 
in the course material. The fundamental theorem of algebra and its 
useful calories, inverse interpolation and errors. Newton’s form of the 
interpolating polynomial features divided differences and interpolating 
polynomial error types. Likewise interpolating at equally spaced points, 
here we talked about differences. 
 
For equally spaced nodes, we shall deal with three types of differences, 
namely forward, backward and central and discuss their representation 
in the form of a table. Also discussed her are some direct and iterative 
methods for finding the solution of system of linear algebraic equations. 
 
Lastly, we discussed three fundamental theorems, namely; intermediate 
value theorem, Rolle’s theorem and Lagrange’s mean value theorem. All 
these theorems give properties of continues functions defined on a 
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closed interval [a, b]. Although the theorems are not proved but their 
utility was illustrated with examples. 
 
Course Aim & Objectives 
 
On the completion of this course, you are expected to: 
 
•••• find the Lagrange’s form of interpolating polynomial 
•••• complete the approximate value of f at a non-tabular point. 
•••• Complete the error omitted in interpolation, if the function is 

known at a non-tabular point of interest. 
•••• Find an upper bound in the magnitude of the error. 
•••• Write forward, backward and central differences in terms of 

function values from a table of either difference and locate a 
difference of given order at given point. 

•••• Obtain the interpolating polynomial of f(x) for a given data by 
applying any one of the interpolating formulae. 

•••• Obtain the solution of systems of linear algebraic equations by 
using the direct methods such as Cramer’s rule, Gauss 
elimination method Lu decomposition method. 

 
Working through the Course 
 
This course involves that you would be required to spend lot of time to 
read. The content of this material is very dense and require you spending 
great time to study it. This accounts for the great effort put into its 
development in the attempt to make it very readable and 
comprehensible. Nevertheless, the effort required of you is still 
tremendous. I would advice that you avail yourself the opportunity of 
attending the tutorial sessions where you would have the opportunity of 
comparing knowledge with your peers. 
 
The Course Material 
 
You will be provided with the following materials: 
 
Course Guide 
Study Units 
 
In addition, the course comes with a list of recommended textbooks, 
which through are not compulsory for you to acquire or indeed read, are 
necessary as supplements to the course material. 
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Study Units 
 
The following are the study units contained in this course. The units are 
arranged into 3 identifiable but readable modules. 
 
Module 1 
 
Unit 1  Interpolation (Lagrange’s Form) 
 
This unit takes one through the definition of interpolation, inverse 
interpolation and error. 
 
Unit 2  Newton’s Form of the Interpolating Polynomial 
 
This unit is sub-divided into divided difference Newton’s General Form 
of interpolating polynomial, and the error of the interpolating 
polynomial. Divided difference and derivative of the functions and 
further results on interpolations error. 
 
Unit 3  Interpolation at Equally Spaced Points 
 
This unit takes about the three types of differences i.e. forward, 
backward and central differences. Difference formulae which 
encompasses: Newton’s Forward–Difference formula and Newton’s 
Backward-Difference formula. 
 
Module 2 Solution of Linear Algebraic Equations. 
 
Unit 1  Direct Method 
 
This unit entails the preliminaries, Cramer’s rule, direct methods for 
special matrices. Gauss elimination methods and LU decomposition 
method. 
 
Unit 2 Inverse of A Square Matrix 
 
This unit is sub-divided into method of adjoints, the Gauss-Jordan 
reduction method and LU decomposition method. 
 
Unit 3 Iterative Methods 
 
This unit consists of the general iterative methods. The Jaccobi’s 
iteration methods and the Gauss-Seidel iteration method. 
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Unit 4  Eigen-Values and Eigen-Vectors. 
 
This unit focused on the Eigen value problem. The power method and 
the inverse power method. 
 
Module 3 
 
Unit 1 Review of Calculus 
 
Here, the three fundamental theorems, Taylor's theorem, error (round off 
and truncation errors) are discussed. 
 
Unit 2  Iteration Methods for Locating Root. 
 
This unit discussed: The initial approximation to a root (tabulation and 
graphical methods). Bisection method and fixed point iteration method. 
 
Unit 3  Chord Methods for Finding Root 
 
This entails Repuler-Falsi method, Newton – Raphson method and 
convergence criterion. 
 
Unit 4  Approximate Root of Polynomial Equation. 
 
It can be sub-divided into some results on roots of polynomial equation. 
Birge-Vieta method and Graeffe’s Root squaring method. 
 
Textbooks 
 
More recent editions of these books are recommended for further 
reading. 
 
Engineering Mathematics P. D. S. Verma. 
 
Generalized functions in mathematical physics by V. S. Viadimirov. 
 
Mathematical methods for science students by G. Stephenson. 
 
Generalized functions by R. F. Hoskins. 
 
Engineering mathematics by K. A. Strond. 
 
Engineering Mathematics by Kreyszic. 
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Assessment 
 
There are two components of assessment for this course. The Tutor 
Marked Assignment (TMAS) and the end of the course examination. 
 
Tutor Marked Assignments (TMAs) 
 
The (TMAS) is the continuous assessment component of your course. It 
accounts for 30% of the total score. You will be given 4 (TMAS) to 
answer. Three of these must be answered before you are allowed to sit 
for the end of course examination. The (TMAS) would be given to you 
by your facilitator and returned after you have done the assignment. 
 
End Of Course Examination 
 
This examination concludes the assessment for the course. It constitutes 
70% of the whole course. You will be informed of the time for the 
examination. It may or may not coincide with the university semester 
examination. 
 
Summary 
 
In summary, we have seen how to desire the Lagrange’s form of 
interpolating polynomial for a given data. It has been shown that the 
interpolating polynomial for a given data is unique. We have derived the 
general error formula and its use has been illustrated to judge the 
accuracy of our calculations. 
 
For a system of ‘n’ equations Ax = b in ‘n’ unknown, where A is a non-
singular matrix, the methods of finding the solution vector x may be 
broadly classified into two types. 
 
i) Direct methods and  
ii) Iteration methods. 
 
For larger systems, direct methods becomes more efficient if the 
coefficient matrix A is in one of the forms D (diagonal), L (lower 
triangular) or U (upper triangular). 
 
We further discussed the following methods for finding approximate roots of 
polynomial questions: (Birge-Vieta and Graeffe’s root squaring methods).  
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MODULE 1 INTERPOLATION  
 
Unit 1  Interpolation (Lagrange’s Form) 
Unit 2   Newton’s Form of the Interpolating Polynomial 
Unit 3  Interpolation at Equally Spaced Points 
 
 
UNIT 1 INTERPOLATION (LAGRANGE’S FORM) 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Lagrange’s Form 
3.2 Inverse Interpolation 

 3.3 General Error Term 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION  
 
Let f be a real-valued function defined on the interval [a, b] and we 
denote f(xk) by fk. suppose that the values of the function f(x) are given 
to be f0, f1, f2, …, fn when x = x0, x1, x2, …, xn respectively where x0 < x1 
< x2 … < xn lying in the interval [a, b]. The function f(x) may not be 
known to us. The technique of determining an approximate value of f(x) 
for a non-tabular value of x which lies in the interval [a, b] is called 
interpolation. The process of determining the value of f(x) for a value of 
x lying outside the interval [a, b] is called extrapolation. In this unit, we 
derive a polynomial P(x) of degree n which agrees with the values of 
f(x) at the given (n + 1) distinct points, called nodes or abscissas. In 
other words, we can find a polynomial P(x) such that P(xj) = fj, j = 0, 1, 
2, …, n. such a polynomial P(x) is called the interpolating polynomial of 
f(x). 
 
In section 3.1 we prove the existence of an interpolating polynomial by 
actually constructing one such polynomial having the desired property. 
The uniqueness is proved by invoking the corollary of the fundamental 
theorem of Algebra. In section 3.2 we derive general expression for 
error in approximating the function by the interpolating polynomial at a 
point and this allows us to calculate a bound on the error over an 
interval. In proving this we make use of the general Rolle’s theorem. 
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2.0 OBJECTIVES 
 
After reading this unit, you should be able to: 
 
•••• find the Lagrange’s form of interpolating polynomial 

interpolating f(x) at n + 1 distinct nodal points 
•••• compute the approximate value of f at a non-tabular point 
•••• compute the value of x  (approximately) given a number y  such 

that f(x ) = (y ) (inverse interpolation) 
•••• compute the error committed in interpolation, if the function is 

known, at a non-tabular point interest 
•••• find an upper bound in the magnitude of the error. 
 
3.0 MAIN CONTENT 
 
3.1 Lagrange’s Form 
 
Let us recall the fundamental theorem of algebra and its useful 
corollaries. 
 
Theorem 1 
 
If P(x) is a polynomial of degree n ≥  1, that is P(x) = anx

n + an-1x
n-1 + … 

+ a1x + a0, …, an real or complex numbers and an ≠ 0, then P(x) has at 
least one zero, that is, there exists a real or complex number  ξ such that 
p(ξ )= 0. 
 
Lemma 1 
 
If z1, z2, …, zk are distinct zeros of the polynomial P(x), then 
 

P(x) = (x – z1) (x – z2) … (x – zk)R(x) 
 
for some polynomial R(x). 
 
Corollary  
 
If Pk(x) and Qk(x) are the two polynomials of degree £  k which agree at 
the k + 1 distinct points  z0 , z1, z2, …, zk then Pk(x) = Qk(x) identically. 
 
You have come across Rolle’s Theorem in the perquisite course.  But we 
need a generalized version of this theorem . (General Error Term). This 
is stated below. 
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Theorem 2 
 
(Generalised Rolle’s Theorem). Let f be a real-valued function defined 
on [a, b] which is n times differentiable on ]a, b[. If f vanishes at the n + 
1 distinct points x0, …, xn in [a, b], then a number c in ]a, b[ exists such 
that f(n) (c) = 0. 
 
We now show the existence of an interpolating polynomial and also 
show that it is unique. The form of the interpolating polynomial that we 
are going to discuss in this section is called the Lagrange’s form of the 
interpolating polynomial. We start with a relevant theorem. 
 
Theorem 3: 
 
Let x0, x1, … xn be n + 1 distinct points on the real line and let f(x) be a 
real-valued function defined on some interval I = [a, b] containing these 
points. Then, there exists exactly one polynomial Pn(x) of degree n, 
which interpolates f(x) at x0, … xn, that is, Pn(xj) = f(xj), i = 0, 1, 2, …, 
n. 
 
Proof: 
 
First we discuss the uniqueness of the interpolating polynomial, and 
then exhibit one explicit construction of an interpolating polynomial 
(Lagrange’s Form). 
 
Let Pn(x) and Qn(x) be two distinct interpolating polynomials of degree  
n, which interpolate f(x) at (n + 1) distinct points x0, x1, … xn. Let h(x) = 
Pn(x) - Qn(x). Note that h(x) is also a polynomial of degree  ≤  n. Also 
 

h(xj) = Pn(xj) - Qn(xj) = f(xj) - f(xj) = 0, i = 0, 1, 2, …, n. 
 
That is, h(x) has (n + 1) distinct zeros. But h(x) is of degree £  n and 
from the Corollary to Lemma 1, we have h(x) º  0. That is Pn(x) Qn(x). 
This proves the uniqueness of the polynomial. 
 
Since the data is given at the points (x0, f0), (x1, f1), …, (xn, fn) let the 
required polynomial be written as  
 

Pn(xj) = L0(x)f0 + L1(x)f1 + … + Ln(x)fn = ∑
=

n

i 0

 Li(x)f i  (1) 

 
Setting x = xj in (1), we get 
 

Pn(xj) = ∑
=

n

i 0

  Li(xj)f i       (2) 
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Since this polynomial fits the data exactly, we must have 
 
  Lj(xj) = 1 
 
and  Lj(xj) = 0, i ≠  j 
 
or  Lj(xj) = ij∂       (3) 

 
The polynomial Li(x) which are of degrees £  n are called the 
Lagrange fundamental polynomials. It is easily verified that these 
polynomial are given by 
 

L j(x) = 0 1 i 1 i 1 n

i 0 i 1 i i 1 i i 1 i n

(x x )(x x )...(x x )(x x )...(x x )
(x x )(x x )...(x x )(x x )...( x x )

- +

- +

- - - - -
- - - - -

 

 

        =∏
=
=

n

ji
i 0

 (x – xj) /  ∏
=
=

n

ji
i 0

 (xi – xj)     (4) 

 
Substituting of (4) in (1) gives the required Lagrange form of the 
interpolating polynomial. 
 
Remark 
 
The Lagrange form (Eqn. (1)) of interpolating polynomial makes 
it easy to show the existence of an interpolating polynomial. But 
its evaluation at a point xi involves a lot computation. 
 
A more serious drawback of the Lagrange form arises in practice 
due to the following: One calculates a linear polynomial P1(x), a 
quadratic polynomial P2(x) e.t.c., by increasing the number of 
interpolation points, until a satisfactory approximation to f(x) has 
been found. In  such a situation Lagrange form does not take any 
advantage of the availability of Pk-1(x) in calculating Pk(x). Later 
on, we shall see how in this respect, Newton form, discussed in 
the next unit, is more useful. 
 
Let us consider some example to construct this form of 
interpolation polynomials. 
 
Example 1 
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If f(1) = -3, f(3) = 9, f(4) = 30 and f(6) = 132, find the Lagrange’s 
interpolation polynomial of f(x). 
 
Solution 
 
We have x0 = 1, x1 = 3, x2 = 4, x3 = 6 and f0 = -3, f1 = 9,  f2 = 30, 
f3 = 132. 
 
The Lagrange’s interpolating polynomial P(x) is given by 
 
P(x) = L0(x)f0 + L1(x)f1 + L2(x)f2 + L3(x)f3   (5) 
 
where 
 

L0(x)  = 1 2 3

0 1 0 2 0 3

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

 

           = 
(x 3)(x 4)(x 6)
(1 3)(1 4)(1 6)

- - -
- - -

 

 

           = 
1
30

 (x3 – 13x2 + 54x – 72) 

 

            L1(x)  = 0 2 3

1 0 1 2 1 3

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

 

 

            = 
(x 1)(x 4)(x 6)
(3 1)(3 4)(3 6)

- - -
- - -

 

 

            = 
1
6

 (x3 – 11x2 + 34x – 24) 

 

            L2(x)  = 0 1 3

2 0 2 1 2 3

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

 

 

             = 
(x 1)(x 4)(x 6)
(4 1)(4 3)(4 6)

- - -
- - -

 

 

            = 
1
6

 (x3 – 10x2 + 27x – 18) 

 

            L3(x)  = 0 1 2

3 0 3 1 3 2

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

  

 



MTH 213                                                                                                            MODULE 3  

 169

             = 
(x 1)(x 3)(x 4)
(6 1)(6 3)(6 4)

- - -
- - -

 

 

             = 
1
30

 (x3 – 8x2 + 19x – 12) 

 
Substituting Lj(x) and fjj = 0, 1, 2, 3 in Eqn. (5), we get 
 

P(x) = -
1
30

 [x3 – 13x2 + 54x – 72] (-3) + 
1
6

 [x3 – 11x2 + 34x – 24] (9) 

 - 
1
6

 [x3 – 10x2 + 27x – 18] (30) + 
1
30

[ x3 – 8x2 + 19x – 12]  (132) 

       = 
1

10
 [ x3 – 13x2 + 54x – 72] + 

2
3

 [x3 – 11x2 + 34x – 24] 

 -5 [x3 – 10x2 + 27x – 18] + 
22
5

 [ x3 – 8x2 = 19x – 12] 

 
which gives on simplification 
 
P(x) = x3 – 3x2 = 5x – 6 
 
which is the Lagrange’s interpolating polynomial of f(x). 
 
Example 2 
 
Using Lagrange’s interpolation formula, find the value of f when x = 1.4 
from the following table. 
 

x               1.2                 1.7                  1.8                 2.0 
f             3.3201           5.4739           6.0496           7.3891 

 
Solution 
 
the Lagrange’s interpolating formula with 4 points is 
 

P(x)= 1 2 3

0 1 0 2 0 3

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

f0 + 0 2 3

1 0 1 2 1 3

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

f1 + 

 
0 1 3

2 0 2 1 2 3

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

 f2 + 0 1 2

3 0 3 1 3 2

(x x )(x x )(x x )
(x x )(x x )(x x )

- - -
- - -

f3 (6) 

 
Substituting 
 
x0 = 1.2, x1 = 1.7, x2 = 1.8, x3 = 2.0 and 
f0 = 3.3201, f1 = 5.4739, f2 = 6.0496, f3 = 7.3891 
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in (6), we get 

P(x) = 
(x 1.7)(x 1.8)(x 2.0)

(1.2 1.7)(1.2 1.8)(1.2 2.0)
- - -

- - -
 * 3.3201 + 

 

 
(x 1.2)(x 1.8)(x 2.0)

(1.7 1.2)(1.7 1.8)(1.7 2.0)
- - -

- - -
* 5.4739 + 

 
(x 1.2)(x 1.7)(x 2.0)

(1.8 1.2)(1.8 1.7)(1.8 2.0)
- - -

- - -
 * 6.0496 + 

 
(x 1.2)(x 1.7)(x 1.8)

(2.0 1.2)(2.0 1.7)(2.0 1.8)
- - -

- - -
 * 7.3891   (7) 

 
Putting x = 1.4 on both sides of (7), we get 
 

f (1.4) = P (1.4) = 
(1.4 1.7)(1.4 1.8)(1.4 2.0)

( 0.5)( 0.6)( 0.8)
- - -

- - -
 *  3.3201 + 

 

  
(1.4 1.2)(1.4 1.8)(1.4 2.0)

(0.5)( 0.1)(0.3)
- - -

-
 * 5.4739 + 

 

  
(1.4 1.2)(1.4 1.7)(1.4 2.0)

(0.6)(0.1)( 0.2)
- - -

-
  * 6.0496 + 

 

  
(1.4 1.2)(1.4 1.7)(1.4 1.8)

(0.8)(0.3)(0.2)
- - -

  * 7.3891 

 

   = 
( 0.3)( 0.4)( 0.6)
( 0.5)( 0.6)( 0.8)
- - -
- - -

 * 3.3201 + 

   

    
(0.2)( 0.4)( 0.6)
(0.5)( 0.1)( 0.3)

- -
- -

 * 5.4739 + 

 

    
(0.2)( 0.3)( 0.6)
(0.6)(0.1)( 0.2)

- -
-

 * 6.0496 + 

 

    
(0.2)( 0.3)( 0.4)

(0.8)(0.3)(0.2)
- -

  * 7.3891 

 
   = 0.99603 + 17.51648 – 18.1488 + 3.69455 
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   = 4.05826 
  
          Therefore f(x) = 4.05826. 
 
3.2 Inverse Interpolation 
 
In inverse interpolation for a table of values of x  and y = f(x), one is 
given a number y  and wishes to find the point x  so that f(x ) = y , 
where f(x) is the tabulated function. This problem can always be solved 
if f(x) is (continuous/and) strictly increasing or decreasing (that is, the 
inverse of f exists). This is done by considering the table of values xi, 
f(x i), i = 0, 1, …, n to be a table of values yi g(yi), i = 0, 1, 2, …, n for 
the inverse function g(y) = fn-1(y) = x by taking yi = f(xi), g(yi) = xi, i = 
0, 1, 2, …, n. Then we can interpolate for the unknown value g(y ) in 
this table. 
 

Pn( y ) =  
( )
( )∑ ∏

=
=
=

n

i
ix

0

n

ji
0i ji

j

y-y

y-y
 

 
and x  = Pn( y ). This process is called inverse interpolation. 
 
Let us consider some examples. 
 
Example 3 
 
From the following table, find the Lagrange’s interpolating polynomial 
which agrees with the values of x at the given values of y. Hence find 
the value of x when y = 2. 
 

x               1                  19                  49                 101 
y               1                   3                    4                    5 

 
Solution 
 
Let x = g(y). the Lagrange’s interpolating polynomial P(y) of g(y) is 
given by 
 

P(y) = 
(y 3)(y 4)(y 5)
(1 3)(1 4)(1 5)

- - -
- - -

 * 1 + 
(y 1)(y 4)(y 5)
(3 1)(3 4)(3 5)

- - -
- - -

 * 19 

 

 + 
(y 1)(y 3)(y 5)
(4 1)(4 3)(4 5)

- - -
- - -

 * 49 + 
(y 1)(y 3)(y 4)
(5 1)(5 3)(5 4)

- - -
- - -

 * 101 
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 = -
1
24

 [y3 – 12y2 + 47y – 60] + 
19
4

 [y3 – 10y2 + 29y – 20] 

 

    -
49
3

 [y3 – 9y2 + 23y – 15] + 
101
8

 [y3 – 8y2 + 19y – 12] 

 
which, on simplification, gives 
 
P(y) = y3 – y2 + 1. 
 
The Lagrange’s interpolating polynomial of x is given by P(y). 
 
There fore, x = P(y) = y3 – y2 + 1 
 
 Therefore, when y = 2, x = P(2) = 5. 
 
Example 4 
 
Find the value of x when y = 3 from the following table of values. 
 
 
 
Solution 
 
The Lagrange’s interpolation polynomial of x is given by 
 

P(y) = 
(y 1)(y 2)(y 4)

( 2)( 3)( 5)
- - -

- - -
 (4) + 

(y 1)(y 2)(y 4)
2(1)( 3)

+ - -
-

 (7) 

 

 + 
(y 1)(y 1)(y 4)

(3)(1)( 2)
+ - -

-
 (10) + 

(y 1)(y 1)(y 2)
(5) (3) (2)

+ - -
 (12) 

 

Therefore P(3) = 
(2) (1) ( 1)

(2) (3) (5)

-

-
 (4) + 

(4) (1) ( 1)

(2) (3)

-
 (7) 

 

+ 
(4) (2) ( 1)

(3) (2)

-

-
 (10) + 

(4) (2) (1)

(5)(3) (2)
 (12) 

 

= 
4 14 40 48
15 3 3 15

- + +  

 

= 
182
15

 = 12.1333 

 

x               4                   7                  10                   12 
y              -1                   1                    2                    4 
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Hence, x(3) = P(3) = 12. 1333. 
 
Now we are going to find the error committed in approximating the 
value of the function by Pn(x). 
 
3.3 General Error Term 
 
Let En(x) = f(x) – Pn(x) be the error involved in approximating the 
function f(x) by an interpolating polynomial. We derive an expression 
for En(x) in the following theorem. This result helps us in estimating a 
useful bound on the error as explained in an example. 
 
 
 
Theorem 4 
 
Let x0, x1, …, xn be distinct numbers in the interval [a, b] and f has 
(continuous) derivatives upto order (n + 1) in the open interval ]a, b[. if 
Pn(x) is the interpolating polynomial of degree ≤  n, which interpolates 
f(x) at the points x0, …, xn, then for each x ∈ [a, b], a number )(xξ  in ]a, 
b[ exists such that 
 

En(x) = f(x) – Pn(x) =
( ) ( )
( ) ( )( ) ( )n

n

xxxxxx
n

xf −−−
+

+

.......
!1

)(
10

1 ξ
   (8) 

 
Proof 
 
If x ≠  xk for any k = 0, 1, 2, …, n, define the function g for t in [a, b] by 
 

g(t) = f(t) – Pn(t) – [f(x) – Pn(x)]
( )
( )∏

= −
−n

j j

j

xx

xt

0

. 

since f(t) has continuous derivatives up to order (n + 1) and P(t) ha 
derivatives of all orders, g(t) has continuous derivatives up to (n + 1) 
order. Now, for k = 0, 1, 2, …, n, we have 
 

g(xk) = f(xk) = Pn(xk) – [f(x) - Pn(x)] 
( )
( )∏

= −
−n

j j

jk

xx

xx

0

. 

         = 0 – [f(x) - Pn(x)].0 = 0 
 

Furthermore, g(x) = f(x) - Pn(x) - [f(x) - Pn(x)] 
( )
( )∏

= −
−n

j j

j

xx

xx

0

. 

         
               = f(x) - Pn(x) - [f(x) - Pn(x)]. 1 = 0 
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Thus g has continuous derivatives up to order (n + 1) and g vanishes at 
the (n + 2) distinct points x, x0, …, xn. By the generalized Rolle’s 
Theorem (Theorem 2) there exists  )(xξ   in ]a, b[ for which g(n+1) )(xξ  = 
0. Differentiating g(t), (n + 1) times (with respect to t) and evaluating 
at )(xξ  i, we get 
 

0 = g(n+1) )(xξ   = f(n+1) )(xξ  – (n + 1)!  
( )∏

=

−

−
n

i
i

n

xx

xPxf

0

)]()([
  

Simplifying we get (error at x = x ) 
 

 En( x ) = f(x ) – Pn( x ) = ( )
( ) ( )
( )∏

=

+

+
−

n

i

n

i n

xf
xx

0

1

!1

ς
  (9) 

 
The error formula (Eqn. (9)) derived above, is an important theoretical 
results because Lagrange interpolating polynomials are extensively used 
in deriving important formulae for numerical differentiation and 
numerical integration. 
 
It is to be noted that ( )xξξ =  depends on the ;point x  at which the error 
estimate is required. This dependence need not even be continuous. This 
error formula is of limited utility since f(n+1)(x) is not known (when we 
are given a set of data at specific nodes) and the point x  is hardly 
known. But the formula can be used to obtain a bound on the error of 
interpolating polynomial. Let us see how, by an example. 
 
Example 5 
 
 The following table gives the values of f(x) = ex. If we fit an 
interpolating polynomial of degree four to the data, find the magnitude 
of the maximum possible error in the computed value of f(x) when x = 
1.25. 
 
 
 
 
Solution 
 
From Eqn. (9), the magnitude of the error associated with the 4th degree 
polynomial approximation is given by 
 

|E4(x)|= ( )( )( )( )( )
( ) ( )

!5

5

43210

ξf
xxxxxxxxxx −−−−−   

x           1.2            1.3              1.4              1.5             1.6 

y         3.3201      3.6692       4.0552        4.4817      4.9530 
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          = ( )( )( )( )( )
( ) ( )

!5
6.15.14.13.12.1

5 ξf
xxxxx −−−−−             (10)

  
Since f(x) = cx, f(5)(x) = ex. 
 
When x lies in the interval [1.2, 1.6], 
 
Max |f(5)(x)| = e1.6 = 4.9530               (11) 
 
Substituting (11) in (10), and putting x = 1.25, the upper bound on the 
magnitude of the error 
 

= |(0.05 (-0.05) (-0.15) (-0.25) (-0.35)| * 4.9530
120

 

= 0.00000135. 
 
 
4.0 CONCLUSION 
 
Let us take a brief look at what you have studied in this unit as the 
concluding path of this unit to the summary. 
 
5.0 SUMMARY 
 
In this unit, we have seen how to derive the Lagrange’s form of 
interpolating polynomial for a given data. It has been shown that he 
interpolating polynomial for a given data is unique. Moreover the 
Lagrange form of interpolating polynomial can be determined for 
equally spaced or unequally spaced nodes. We have also seen how the 
Lagrange’s interpolation formula can be applied with y as the 
independent variable and x as the dependent variable so that the value of 
x corresponding to a given value of y can be calculated approximately 
when some conditions are satisfied. Finally, we have derived the general 
error formula and its use has been illustrated to judge the accuracy of 
our calculation. The mathematical formulae derived in this unit are listed 
below for your easy reference. 
 
1) Lagrange’s Form 

 Pn(x) = ( ) )(
0

xLxf i

n

i
i∑

=

 

 where 

 Li(x) =   ( ) ( )
















−
















− ∏∏
≠
=

≠
=

n

ij
j

ji

n

ij
j

j xxxx
00

/  
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2) Inverse Interpolation 

 Pn(y) = 
( )
( )

















−
−

∏∑
≠
==

n

ij
j ji

j
n

i
i yy

yy
x

00

 

 
3) Interpolation Error 
 

 En( x ) = f(x ) – Pn( x ) = ( )
( ) ( )
( )∏

=

+

+
−

n

i

n

i n

xf
xx

0

1

!1

ς
 

 
 
6.0 TUTOR-MARKED ASSIGNMENT  
 
1) Show that 

i) ∑
=

n

i 0

L i (x) = 1 

 

ii) ∑
=

n

i 0

L i (x) k

ix  = xk, k ≤  n 

where Li(x) are Lagrange fundamental polynomials 
 

2) Let w(x) = ( )∏
=

−
n

k
kxx

0

. Show that the interpolating polynomial of 

degree ≤  n with the nodes x0, x1, …, xn can be written as 
 

Pn(x) = w(x) ∑
=

n

i 0

k

k k

f(x )
(x x )w '(x )-

 

 
3) Find the Lagrange’s interpolation polynomial of f(x) from the 

following data. Hence obtain f(2). 
 
 
 
 
 
4) Find the value of y when x = 6 from the following table: 
 

 
 
 

x               0                   1                    4                    5 

f(x)           8                  11                  68                 123 

x               1                   2                    7                    8 

y               4                   5                    5                    4 
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5) Using the Lagrange’s interpolation formula, find the value of y 

when x = 10. 
 
 
 
 
 
6) For the data of Example 5 with last one omitted, i.e., considering 

only first four nodes, if we fit a polynomial of degree 3, find an 
estimate of the magnitude of the error in the computed value of 
f(x) when x = 1.25. Also find an upper bound in the magnitude of 
the error. 

 
7) Find the value of x when y = 4 from the table given below: 
 
 
 
 
 
8) Using Lagrange’s interpolation formula, find the value of f(4) 

from the following data: 
 
 
 
 
 
7.0 REFERENCES/FURTHER READINGS 
 
Engineering Mathematics P.D.S. Verma. 
 
Generalized Functions in Mathematical Physics by V.S. Viadimirov. 
 
Fundamentals of the Finite Element Method. Hartley Grandin, Fr. 

x               5                   6                    9                    11 

y              12                13                   14                   16 

x           8            16              20              72             

y         -1              1                3                5      

x           8            16              20              72             

y         -1              1                3                5      
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UNIT 2  NEWTON FORM OF THE INTERPOLATING 
POLYNOMIAL 

 
CONTENTS 
 
1.0 Introduction. 
2.0 Objectives. 
3.0 Main Content. 

3.1 Divided Differences. 
3.2 Newton’s General Form of Interpolating Polynomial. 

 3.3 The Error of the Interpolating Polynomial. 
 3.4 Divided Difference and Derivative of the Function. 
 3.5 Further Results on Interpolation Error. 
4.0 Conclusion. 
5.0 Summary. 
6.0 Tutor Marked Assignment. 
7.0 References/Further Readings. 
 
1.0 INTRODUCTION  
 
The Lagrange’s form of the interpolating polynomial derived in Unit 1 
has some drawbacks compared to Newton form of interpolating 
polynomial that we are going to consider now. 
 
In practice, one is often not sure as to how many interpolation points to 
use. One often calculates P1(x), P2(x), … increasing the number of 
interpolation points, and hence the degrees of the interpolating 
polynomials till one gets a satisfactory approximation Pk(x), no 
advantage is taken of the fact that one has already constructed Pk-1(x), 
whereas in Newton form it is not so. 
 
Before deriving Newton’s general form of interpolating polynomial, we 
introduce the concept of divided difference and the tabular 
representation of divided differences. Also the error of the interpolating 
polynomial in this case is derived in terms of divided differences. Using 
the two different expressions for the error term we get a relationship 
between nth order divided difference and nth order derivative. 
 
2.0 OBJECTIVES 
 
After studying this unit, you should be able to: 
 
•••• obtain a divided difference in terms of function values 
•••• form a table of divided differences and find divided differences 

with a given set of arguments from the table 
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•••• show that divided difference is independent of the order of its 
arguments 

•••• obtain the Newton’s divided differences interpolating polynomial 
for a given data 

•••• find an estimate of f(x) for a given non-tabular value of x from a 
table of values of x and y [f(x)] 

•••• relate the kth order derivative of f(x) with the kth order divided 
difference from the expression for the error term. 

 
3.0 MAIN CONTENTS 
 
3.1 Divided Differences 
 
Suppose that we have determined a polynomial Pk-1(x) of degree £  k – 
1 which interpolates f(x) at the points x0, x1, …xk-1. In order to make use 
of Pk-1(x) in calculating Pk(x) we consider the following problem: What 
function g(x) should be added to Pk-1(x) to get Pk(x)? Let g(x) = Pk(x). - 
Pk-1(x). Now, g(x0 is a polynomial of degree £  k and g(xi) = Pk(xi) - Pk-

1(xi) = f(xi) - f(xi) = 0 for i = 0, 1, …, k – 1. 
 
Suppose that Pn(x) is the Lagrange polynomial of degree at most n that 
agrees with the function f at the distinct numbers x0, x1, …xn. Pn(x) can 
have the following representation, called Newton form. 
 
Pn(x) = A0 + A1 (x1 – x0) + A1 (x1 – x0) (x – x1) + …  

+ An (x – x0)…(x – xn-1)    (1) 
 
for appropriate constant A0, A1, …, An. 
 
Evaluating Pn(x) (Eqn. (1)) at x0 we get A0 = Pn(x0). Similarly when 

Pn(x) is evaluated at x1, we get A1 = 1

1 0

f(x) f(x )
x x

-
-

. Let us introduce the 

notation for divided differences and define it at this stage: The zeroeth 
divided difference of the function f, with respect to xi, is denoted by f[xi] 
and is simply the evaluation of f at xi, that is, f[xi] = f(xi). the first 
divided difference of f with respect to xi and xi+1 is denoted by f[xi, xi+1] 
and defined as 
 

f[x i, xi+1] = i 1 i

i 1 i

f[x ] f[x ]
x x

+

+

-
-

 

 
The remaining divided differences of higher orders are defined 
inductively as follows. The kth divided differences relative to xi, xi+1, 
…, xi+k is defined as 
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f[x i, xi+1, …, xi+k] = i 1 i k i i k 1

i k i

f[x ..., x ] f[x , ..., x ]
x x

+ + + -

+

-
-

. 

 
where the (k – 1)st divided differences f[xi, ….., xi+k] have been 
determined. This shows that kth divided difference is the divided 
differences of (k – 1)st divided differences justifying the name. The 
divided difference f[xi, x2, …., xk] is invariant under all permutations of 
the arguments xi, x2, …., xk. To show this we proceed giving another 
expression for the divided difference. 
 
For any integer k between 0 and n. let Qk(x) be the sum of the first k + 1 
terms in form (1), i.e. 
 
Qk(x) = A0 + A1 (x – x0) + … + Ak(x – x0)…( x – xk-1).. 
 
Since each of the remaining terms in Eqn. (1) has the factor (x – x0) (x – 
x1)… (x – xk), Eqn. (1) can be rewritten as 
 
Pn(x) = Qk(x) + (x – x0)… (x – xk) R(x) for some polynomial R(x). as the 
term (x – x0) (x – x1)… (x – xk) R(x) vanishes at each of the points x0, 
… xk, we have f(xi) = Pn(xi) = Qk(xi), i = 0, 1, 2, …, k. Since Qk(x) is a 
polynomial of degree £  k, by uniqueness of interpolating polynomial 
Qk(x) = Pk(x). 
 
This shows that Pn(x) can be constructed step by step with the addition 
of the next term in Eqn. (1), as one construct the sequence P0(x), P1(x) 
… with Pk(x) obtained from Pk-1(x) in the form 
 
Pk(x) = Pk-1(x) + Ak(x – x0)… (x – xk-1)     (2) 
 
That is, g(x) is a polynomial of degree £  k having (at least) the k 
distinct zeros x0, …, xk-1. 
 
\  Pk(x) - Pk-1(x) = g(x) = Ak(x – x0)…(x – xk-1), for some constant Ak. 
this constant Ak is called the kth divided difference of f(x) at the points 
x0, …, xk for reasons discussed below and is denoted by f[x0, x1, …, xk]. 
this coefficient depends only on the values of f(x) at the point x0, …, xk. 
thus Eqn. (2) can be written as 
 
Pk(x) =Pk-1(x) + f[x0, …, xk] (x – x0)… (x – xk-1), 
 
since (x – x0) (x – x1)… (x – xk-1) = xk + a polynomial of degree < k, 
we can rewrite Pk(x) s Pk(x) = f[x0, …, xk] x

k + a polynomial of  
degree < k          (4) 
 
(as Pk-1(x) is a polynomial of degree < k).  
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But considering the Lagrange form of interpolating polynomial we have 
 

Pk(x) = ( ) ( )
( )∏∑

≠
== −

−k

ij
j ji

j
k

i
i xx

xx
xf

00

  

 

        =  
( )

( )
∑

=

≠
=























−

k

i
k

ji
j

ji

k
i

xx

xf

0

0
C

xk + a polynomial of degree < k. 

 
Therefore, on comparison with Eqn. (4) we have 
 

f[x 0, …, xk] = ( ) ( ) ( ) ( )∑
= +− −−−−

k

i kiiii

i

xxxxxxxx

xf

0 11110 .........

)(
 (5) 

 
This shows that 
 
f[y0, …, yk] = f[x0, …, xk] 
 
if y0, …, yk is a reordering of the sequence x0, …, xk. We have defined 
the zeroeth divided difference of f(x) at x0 by f[x0] = f(x0) which is 
consistent with Eqn. (5). 
 
For k = 1, we have from Eqn. (5) 
 

f[x 0, xk] = 0

0 1

f(x )
x x-

 + 1

1 0

f(x )
x x-

 + 0 1

0 1

f(x ) f(x )
x x

-
-

 = 1 0

1 0

f[x ] f[x ]
x x

-
-

 

 
This shows that the first divided difference is really a divided difference 
of divided  differences. 
 
We show below in Theorem 1 that for k > 2 

f[x 0, …, xk] = 1 k 0 k 1

k 0

f[x , ...., x ] f[x ...., x ]
x x

--
-

    (6) 

 
This shows that the kth divided difference is the divided difference of (k 
– 1)st divided differences justifying the name. If M = (x0, …, xn) and N 
denotes any n – 1 elements of M and the remaining two elements are 
denoted by a  and b , then 
 
(f [x0,.., xn= 
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[(n 1st divided difference on N and (n 1)st divided difference on N and ]- a - - b

a - b
  (7) 

 
Theorem 1: 

f [x0,.., xj] = 1 j 0 1 j 1

j 0

f[x , ...., x ] f[x , x ...., x ]
x x

--
-

    (8) 

 
Proof: Let Pi-1(x) be the polynomial of degree £  i – 1 which 
interpolates f(x) at x0, …, xi-1 and let Qj-1(x) be the polynomial of degree 
≤  j – 1 which interpolates f(x) at the points x1, …, xj. Let us define P(x) 
as 
 

P(x) = 0

j 0

x x
x x

-
-

 Qj-1(x) + j

j 0

x x
x x

-
-

 Pj-1(x).  

 
This is a polynomial of degree £  j, and P(xi) = f(xi) for i = 0, 1, …, j. 
By uniqueness of the interpolating polynomial we have P(x) = Pj(x). 
Therefore 
 

Pj(x) 0

j 0

x x
x x

-
-

 Qj-1(x) + j

j 0

x x
x x

-
-

 Pj-1(x). 

 
Equating the coefficient of xj from both sides of Eqn. (8), we obtain 
(leading) coefficient of 
 

xj in Pj(x) = 
j 1

j 0

leading coefficient of Q (x)

x x
-

-
 

      - 
j 1

j 0

leading coefficient of P (x)

x x
-

-
  

 

That is f [x0, ..., xj] = 1 j 0 j 1

j 0

f[x , ...., x ] f[x , ...., x ]
x x

--
-

. 

 
We now illustrate this theorem with the help of a few examples but 
before that we give the table of divided differences of various orders. 
 
Table of divided differences 
 
Suppose we denote, for convenience, a first order divided difference of 
f(x) with any two arguments by f[.,.], a second order divided difference 
with any three arguments by f[.,.,.] and so on. Then the table of divided 
difference can be written as follows 
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Table 1 
 

x                  f[.]                f[.,.]                 f[.,.,.]          f[.,.,.,.]             f[.,.,.,.,.] 

x0                 f0 

                                          f[x0,x1] 
x1                 f1                                                               f[x 0,x1x2] 
                                          f[x1,x2]                             f[x0,x1x2x3] 
x2                           f2                                                                f[x 1,x2x3]                          f[x0,x1x2x3x4] 
                                          f[x2,x3]                              f[x1x2x3x4] 
x3                           f3                                                                f[x 2x3x4] 
                                          f[x3,x4] 
x4                           f4 

 
Example 1:  If f(x) = x3, find the value of f[a, b, c]. 
 

Solution: f[a, b] = 
f(b) f(a)

b a
-
-

 = 
3 3b a
b a

-
-

 

 
   = b2 + ba + a2 = a2 + ab + b2 
 
Similarly, 
 
f[a, b] = c2 + cb + b2 = b2 + bc + c2 
 

f[a, b, c] = 
f[b, c] f[a, b]

c a
-
-

 

 

= 
2 2 2 2(b bc c ) (a ab b )

c a
+ + - + +

-
 

 

= 
2 2(c a ) b(c a)

c a
- + -

-
 

 

= 
(c a)(c a b)

(c a)
- + +

-
 

 
= a + b + c 

 
f[a, b, c] = a + b + c. 
 

Example 2: If f(x) = 
1
x

, show that 

  f[a, b, c, d] = -
1

abcd
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Solution: f[a, b] = 

1 1
b a
b a

-

-
 = 

a b
ab(b a)

-
-

 = -
1

ab
 

 
Similarly, 
 

f[b, c] = -
1
bc

, f[c, d] = -
1
cd

 

 

f[a, b, c] = 

1 1 1 1
bc ab ab bc

c a c a

+ -
=

- -
 

 

               = 
















−

−

ac
abc

ac

= 
1

abc
 

 
Similarly, 
 

        f[b, c, d] = 
1

bcd
 

 

however f[a, b, c, d] =  



















−

−

ac
abc

ac

 = 
1

abc
 

 

                               =  



















−

−

ad
abcd

da

 

 

                   = -
1

abcd 
 
Consequently, 
 

 f[a, b, c, d]  = -
1

abcd
 

 
In next section we shall make use of the divided difference to derive 
Newton’s general form of interpolating polynomial. 
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3.2 Newton’s General Form of Interpolating Polynomial 
 
In section 3.1 we have shown how Pn(x) can be constructed step by step 
as one construct the sequence P0(x), P1(x), P2(x), ..., with Pk(x) obtained 
from Pk-1(x) with the addition of the next term in Eqn. (3), that is, 
 
Pk(x) = Pk-1(x) + (x – x0) (x – x1)...(x – xk-1) f[x0, ..., xk] 
Using this Eqn. (1) ca be rewritten as 
 
Pn(x) = f[x0] + (x – x0) f[x0,x1] + (x – x0) (x – x1) f[x0,x1,x2] +...+ (x – x0) 

(x – x1)... (x – xn-1) f[x0,x1,....,xn].    (9) 
 
This can be written compactly as follows: 

Pn(x) = ( )∑ ∏
=

−

=

−
n

i

j

j
ji xxxxf

0

1

0
0 ],...,[                               (10) 

 
This is the Newton’s form of interpolating polynomial. 
 
Example 3: 
 
From the following table of values, find the Newton’s form of 
interpolating polynomial approximating (x). 
 

x -1           0             3              6               7 

f(x)  3          -6            39           822          1611 

 
Solution: 
 
We notice that the values of x are not equally spaced. We are required to 
find a polynomial which approximates f(x). We form the table of 
divided differences of f(x). 
 

Table 2 
x                  f[.]                f[.,.]                 f[.,.,.]          f[.,.,.,.]             f[.,.,.,.,.] 

-1                 3 
                                            9 
0                 - 6                                            6 
                                          15                                            5 
3                 39                                            41                                         1 
                                          261                                       13 
6                 822                                         132 
                                          789 
7                1611 
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Since the divided difference up to order 4 are available, the Newton’s 
interpolating polynomial P4(x) is given by 
 
P4(x) = f(x0) + (x – x0) f[x0,x1] + (x – x0) (x – x1) f[x0,x1,x2] + 
  (x – x0) (x – x1) (x – x2) f[x0,x1,x2,x3] + 
  (x – x0) (x – x1) (x – x2) (x – x3) f[x0,x1,x2,x3,x4]           (11) 
 
where x0 = -1, x1 = 0, x2 = 3, x3 = 6 and x4 = 7. 
 
The divided differences f(x0), f[x0,x1], f[x 0,x1,x2], f[x 0,x1,x2,x3] and 
f[x 0,x1,x2,x3,x4] are those which lie along the diagonal at f(x0) as shown 
by the dotted line. Substituting the values of xi and the values of the 
divided differences in Eqn. (11), we get 
 
P4(x) =  3 + (x + 1) (-9) + (x + 1) x (6) + (x + 1) x (x – 3) (5) + 

(x + 1) x (x – 3 ) (x – 6) (1) 
 
which on simplification gives 
 

P4(x) =  x4 – 3x3 + 5x2 – 6 
 
Therefore, f(x)  =P4(x) = x4 - 3x3 + 5x2 – 6 
 
We now consider an example to show how Newton’s interpolating 
polynomial can be used to obtain the approximate value of the function 
f(x) at any non-tabular point. 
 
Example 4: 
 
Find the approximate values of f(x) at x = 2 and x = 5 in Example 3. 
 
Solution: Since f(x) = P4(x), from Example 3, we get 
 
f(2) = P4(2) = 16 – 24 + 20 – 6 = 6 
 
and 
 
f(5) = P(5) = 625 – 375 + 125 – 6 = 369 
 
Note 1: When the values of f(x) for given values of x are required to be 
found, it is not necessary to find the interpolating polynomial P4(x) in its 
simplified form given above. We can obtain the required values by 
substituting the values of x in Eqn. (11) itself. Thus, 
 
P4(2) = 3 + (3) (-9) + (3) (2) (6) + (3) (2) (-1) (5) + (3) (2) (-1) (-4) 1 
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Therefore, P4(2) = 3 – 27 + 36 – 30 + 24 = 6. 
 
Similarly, 
P4(5)  = 3 + (6) (-9) + (6) (5) (6) + (6) (5) (2) (5) + (6) (5) (2) (-1) (1) 
 = 3 – 54 + 180 + 300 – 60 = 369. 
 
  Then f(2) = P4(2) = 6 
   And 
    f(5)  = P(5) = 369. 
 
Example 5: 
 
Obtain the divided differences interpolation polynomial and the 
Lagrange’s interpolating polynomial of f(x) from the following data and 
show that they are same. 
 

x            0             2             3               4 

 f(x)       -4            6             26            64 

 
Solution: 
 
(a)  Divided differences interpolation polynomial: 
 

Table 3 
x                  f[x]                f[.,.]                 f[.,.,.]          f[.,.,.,.]             

0                   -4 
                                            5 
2                    6                                            5 
                                          20                                           1 
3                    26                                           9                                         
                                          38 
4                    64       

 
P(x) = -4 + x(5) + x(x – 2) (5) + x(x – 2) (x – 3) (1) 

 
           = x3 + x – 4 
 

\ P(x) = x3 + x – 4 
 
b) Lagrange’s interpolation polynomial: 
 

 P(x) = 
(x 2)(x 3)(x 4) x(x 3)(x 4)

( 4)
( 2)( 3)( 4) (2)( 1)( 2)

- - - - -
- +

- - - - -
   (6) 
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  + 
x(x 2)(x 4)

(3)(1)( 1)
- -

-
  (26) + 

x(x 2)(x 3)
(4)(2)(1)
- -

  (64) 

 

  = 
1
6

 (x3 – 9x2 + 26x – 24) + 
3
2

 (x3 – 7x2 + 12x) 

 

  -
26
3

 (x3 – 6x2 + 8x) + 8(x3 – 5x2 + 6x). 

 
On simplifying, we get 
P(x) = x3 + x – 4. 
 
Thus, we find that both polynomials are same. 
In Unit 1 we have derived the general error term i.e. error committed in 
approximating f(x) by Pn(x). In next section we derive another 
expression for the error term in term of divided difference. 
 
3.3 The Error of the Interpolating Polynomial 
 
Let Pn(x) be the Newton form of interpolating polynomial of degree £  n 
which interpolates f(x) at x0 ...., xn.  
The interpolating error En(x) of Pn(x) is given by 
 
En(x) = f(x) – Pn(x)                 (12) 
Let x  be any point different from x0, ..., xn. If Pn(x) is the Newton form 
of interpolating polynomial which interpolates f(x) at x0, ...., xn and x , 
then Pn+1( x ) = f(x ). Then by (10) we have 
 

Pn+1(x) = Pn(x) + f[x0, ..., xn, x ] ( )∏
=

−
n

j
jxx

0

  

 
Putting x = x  in the above, we have 
 

f( x ) = Pn+1( x ) = Pn( x ) + f[x0, ..., xn, x ] ( )∏
=

−
n

j
jxx

0

 

i.e. En( x ) = f(x ) - Pn( x ) = f[x0, ..., xn, x ] ( )∏
=

−
n

j
jxx

0

            (13) 

 
This shows that the error is like the next term in the Newton form. 
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3.4 Divided Difference and Derivative of the Function 
 
Comparing Eqn. (13) with the error formula derived in Unit 1 Eqn. (9), 
we can establish a relationship between divided difference and the 
derivatives of the function 
 

En( x ) = 
(n 1)f [ (x)]
(n 1) !

+ x
+

 ( )∏
=

−
n

j
jxx

0

 

 

 = f[x0, x1, ..., xn, x ] ( )∏
=

−
n

j
jxx

0

 

 

Comparing, we have f[x0, x1, ..., xn+1] = 
( )

( )!1

1

+

+

n

f n ς
 

(considering x  = xn+1) 
 
Further it can be shown that x  Î  ]min xi, max xi[. 
We state these results in the following theorem. 
 
Theorem 2: 
 
Let f(x) be a real-valued function, defined on [a, b] and n times 
differentiable in ]a, b[. If x0, ......, xn are n + 1 distinct points in [a, b], 
then there exists ς ∈ ]a, b[ such that 
 

f[x 0, ...., xn] = 
( )

!

1

n

f n ς+

 

Corollary 1: 
 
If f(x) = xn, then 
 

f[x 0, ...., xn] =
n !
n !

 = 1.  

 
Corollary 2: 
 
If f(x) = xk, k < n, then 
 
f[x 0, ...., xk] = 0 
 
since nth derivative of xk, k < n, is zero. 
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For example, consider the first divided difference 
 

f[x 0,x1] = 1 0

1 0

f(x ) f(x )
x x

-
-

 

 
by Mean Value Theorem f(x1) = f(x0) + (x1 – x0) f’( ς ), x0 < ς  < x, 
 
substituting, we get  
 
f[x 0,x1] = f’( ς ), x0 < ς  < x1.  
 
Example 6: 
 

If f(x) = anx
n + an-1x

n-1 + ... + a0, then find f[x0, x1, ...., xn] = an* 
n !
n !

 + 0 = 

an. 
 
Let us consider another example. 
 
Example 7: 
 
If f(x) = 2x3 + 3x2 – x + 1, find 
 
f[1, -1, 2, 3], f[a, b, c, d], f[4, 6, 7, 8]. 
 
Solution: 
 
Since f(x) is a cubic polynomial, the 3rd order divided differences of 
f(x) with any set of argument are constant and equal to 2, the coefficient 
of x3 in f(x). 
 
Thus, it follows that f[1, -1, 2, 3], f[a, b, c, d], and f[4, 6, 7, 8] are each 
equal to 2.  
 
In the next section, we are going to discuss about bounds on the 
interpolation error. 
 
3.5 Further Results on Interpolation Error 
 
We have derived error formula 
 

En(x) = f(x) – Pn(x) = ( )
( ) ( )
( )∏

=

+

+
−

n

i

n

i n

xf
xx

0

1

!1

ς
.’ 
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We assume that f(x) is (n + 1) times continuously differentiable in the 
interval of interest [a, b] = I that contains x0, ..., xn and x. since ( )xς  is 

known we may replace f(n+1)( ( )xς ) by (n 1)max
x I f (x)+

Î . If we denote     (x 

- x0) (x – x1)...(x – xn) by �n(x) then we have 
 

nE (x)  = |f(x) – Pn(x)| £  

(n 1)

n

max

x I max

x I

f (t)

(t)

(n 1) !

+

Î

Î

y

+
            (14) 

 
Consider now the case when the nodes are equally spaced, that is (m xj = 
x0 + jh), j = 0,.....,N, and h is the spacing between consecutive nodes. 
For the case n = 1 we have linear interpolation. If x Î  [xi-1, xi], then we 
approximate f(x) by P1(x) which interpolates at 
 

xi-1, and xi. From Eqn. (14) we have |En(x)| £  
1
2

 
max

t I

f "(t)
Î

1max

t I

(t)
Î

y
 

where �1(x) = (x – xi-1) (x - – xi). 
 
Now, 

1d
dx
y

 = x –x - –= 0 

gives x = (xi-1 - xi)/2. 
 
Hence, the maximum value of (x – xi-1) (x - – xi)| occurs at  
x = x* = (xi-1 - xi)/2. 
 
The maximum value is given by 

|�1(x*) | = 
2

i i 1(x x )
4

--
 = 

2h
4

. 

 
Thus, we have for linear interpolation, for nay x ∈ I 
 

|E1(x)| = |f(x) – P1(x)| ≤
2

i i 1(x x )
4

-- 1
2

 
max

x I

f "(x)
Î

 

 

= 
2h

8
M.                  (15) 

where |f”(x) | ≤  M on I. 
 
For the case n = 2, it can be shown that for any x ∈  [xi-1, xi+1]. 
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|E2(x)| ≤  
2h M

9 3
 where |f’”(x) | ≤  M on I.              (16) 
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Example 8: 
 
Determine the spacing h in table of equally spaced values of the function 
of f(x) = x  between 1 and 2, so that interpolation with a first degree 
polynomial in this table will yield seven place accuracy.  
 
Solution: Here 
 

f"(x) = -
1
4

x-3/2 

 
1max f "(x) 41 x 2

=
£ £ . 

and |E1(x)| ≤  
2h

32
. 

 
For seven place accuracy, h is to be chosen such that 

2h
32

 < 5.10-8. 

 
or h2 < (160)10-8 that is h < .0013. 
 
4.0 CONCLUSION 
 
This unit shall be concluded by giving a summary of what we have 
covered in it. 
 
5.0 SUMMARY 
 
In this unit we have derived a form of interpolating polynomial called 
Newton’s general form, which has some advantage over the Lagrange’s 
form discussed in Unit 1. This form is useful in deriving some other 
interpolating formulas. We have introduced the concept of divided 
differences and discussed some of its important properties before 
deriving Newton’s general form. The error term has also been derived 
and utilizing the error term we have established a relationship between 
the divided difference and the derivative of the function f(x) for which 
the interpolating polynomial has been obtained. The main formula 
derived are listed below: 
 

1) f[x 0,....,xj] = 1 j 0 j 1

j 0

f[x , ...., x ] f[x , ...., x ]
x x

--
-
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2) Pn(x) = ( )∑ ∏
=

−

=

−
n

i

j

j
ji xxxxf

0

1

0
0 ],...,[  

 

3) En(x) = ( )∏
=

−
n

j
jn xxxxxf

0
0 ],,...,[  

 

4) f[x0,....,xn] = 
( ) ( )

!n

f n ξ
, ∈ξ  ]min xi, maxi[ 

 
6.0 TUTOR-MARKED ASSIGNMENT  
 
1) Find the Lagrange’s interpolating polynomial of f(x) from the 

table of values given below and show that it is the same as the 
Newton’s divided differences interpolating polynomial. 

 
x            0             1             4               5 

 f(x)       8            11             68            123 

 
2) Form the table of values given below, obtain the value of y when 

x = 1.5 using 
 

a) divided differences interpolation formula. 
 

b) Lagrange’s interpolation formula. 
 

x            0             1              2              4              5 

f(x)       5            14            41            98           122 

 
3) Using Newton’s divided difference interpolation formula, find 

the values of f(8) and f(15) from the following table. 
 

x            4             5              7              10              11            13 

f(x)       48          100          294            900          1210        2028 

4) If f(x) = 2x3 – 3x2 + 7x + 1, what is the value of f[1, 2, 3, 4]? 
 
5) If f(x) = 3x2 – 2x + 5, find f[1, 2], f[2, 3] and f[1, 2, 3]. 
 
6) If f(x) takes the values -21, 15, 12 and 3 respectively when x 

assumes the values -1, 1, 2 and 3, find the polynomial which 
approximates f(x). 

 
7) Find the polynomial which approximate f(x), tabulated below 
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x           -4             -1              0              2              5 

f(x)     1245           33            5              9          1335 

 
Also find an approximate value of f(x) at x = 1 and x = -2. 

 
8) From the following table, find the value of y when x = 102 
 

x        93.0        96.2        100.0        104.2       108.7 

y      11.38       12.80       14.70       17.07        19.91 
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UNIT 3  INTERPOLATION AT EQUALLY SPACED 
POINTS 

 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Differences 
 3.1.1 Forward Differences 
 3.1.2 Backward Differences 
 3.1.3 Central Differences 
3.2 Difference Formulas 
 3.2.1 Newton’s Forward-Difference Formula 
 3.2.2 Newton’s Backward-Formula 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION  
 
Suppose that y is a function of x. The exact functional relation y = f(x) 
between x and y may or may not be known. But, the values of y at        
(n + 1) equally spaced of x are supposed to be known, i.e., (xi, yi); i = 0, 
..., n are known where xi – xi-1 = h (fixed), i = 1, 2, ..., n. Suppose that 
we are required to determine an approximate value of f(x) or its 
derivative f’(x) for some values of x in the interval of interest. The 
methods for solving such problems are based on the concept of finite 
differences. We have introduced the concept of forward, backward and 
central differences and discussed their interrelationship in the previous 
unit 
 
We have already introduced two important forms of the interpolating 
polynomial in Units 1 and 2. These forms simply when the nodes are 
equidistant. For the case of equidistant nodes, we have derived the 
Newton’s forward, backward difference forms and Stirling’s central 
difference form of interpolating, each suitable for use under a specific 
situation. We have derived these methods in the previous unit and also 
given the corresponding error term. 
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2.0 OBJECTIVES 
 
After reading this unit, you should be able to: 
 
•••• write a forward difference in terms of function values from a 

table of forward differences and locate a difference of given order 
at a given point 

•••• write a backward difference in terms of function values from a 
table of backward differences and identify differences of various 
orders at any given point from the table 

•••• expand a central difference in terms of function values and form a 
table of central differences 

•••• establish relations between V , ∇, d and divided difference 
•••• obtain the interpolating polynomial of f(x) for a given data by 

applying any one of the interpolating formulas 
•••• compute f(x) approximately when x lies near the beginning of the 

table and estimate the error 
•••• compute f(x) approximately when x lies near the end of the table 

and estimate the error 
•••• estimate the value of f(x) when x lies near the middle of the table 

and estimate the error. 
 
3.0 MAIN CONTENTS 
 
3.1 Differences 
 
Suppose that we are given a table of values (xi, yi), i = 0, 1, 2, ..., N 
where yi = f(xi) = fj. 
Let the nodal points be equidistant. That is 
 
xi = a + ih, i = 0, ...., N, with N = (b – a)/h    (1) 
 
For simplicity we introduce a linear change of variables 
 

s = s(x) = 0x x
h

-
, so that x = x(s) = x0 + sh    (2) 

 
and introduce the notation 
 
f(x) = f(x0 + sh) = fs       (3) 
 
The linear change of variables in Eqn. (2) transforms polynomials of 
degree n in x into polynomials of degree n is s. we have already 
introduced the divided-difference table to calculate a polynomial of 
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degree £  n which interpolates f(x) at x0, x1, ..., xn. For equally spaced 
nodes, we shall deal with three types of differences, namely, forward, 
backward and central and discuss their representation in the form of a 
table. We shall also derive the relationship of these differences with 
divided differences and their interrelationship. 
 
3.1.1 Forward Differences 
 
We denote the forward differences of f(x) if ith order at x = x0 + sh by 
∆ i fs and define it as follows: 
 

∆ i fs =  { s
i 1 i 1 i 1

s s 1 s

f i 0
( f ) f f , i 0.- - -

+

=
= - >V V V V  

 
Where V denotes forward difference operator. 
 
When s = k, that is, x = xk, we have 
 
for i = 1 ∆ fk = fk+1 - fk 
 
for i = 2 ∆ 2fk = fk+1 - fk 
 

= fk+2 - fk+1 – [fk+1 - fk] 
 
= fk+2 - fk+1 + fk 

 
Similarly ∆ 3fk = fk+3 - 3fk+2 + 3fk+1 - fk 
 
We recall the binomial theorem 
 

(a + b)s =  ∑
=

−







n

j

jrjba
j

s

0

       (4) 

 
where s is a real non-negative integer. 
 
We give below in Lemma 1 the relationship between the forward and 
divided differences. This relation will be utilized to derive the Newton’s 
forward difference formula which interpolates f(x) at xk + ih, i = 0, 1, 
...., n. 
 
Lemma 1: For all i ≥  0 
 

f[x k, ..., kk+1] = i

1
i !h

∆ ifk       (5) 
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Proof: 
 
We prove the result by induction. 
For i = 0, both sides of relation (5) are same by convention, that is, 
 
f[x k] = f(xk) = fk = ∆ 0 fk

 . 
 
Assuming that relation (5) holds for i = n ≥   0, we have for i = n + 1 
 

f[x k, xk+1, ..., kk+n+1] = k 1 k n 1 k k n

k n 1 k

f[x , ....., x ] f[x , ....., x ]
x x

+ + + +

+ +

-
-

 

 

=
[ ] [ ]

( ) khxhnkx

hnfhnf n
k

nn
k

n

−−+++
∆−∆ +

00

1

1

!/!/
      

= ( ) ( ) 1

1

1
1

!1!1 +

+

+
+

+
∆

=
+

∆−∆
n

k
n

n
k

n
k

n

hn

f

hn

ff
 

 
This shows that relation (5) holds for i = n + 1 also. Hence (5) is proved. 
We now give a result which immediately follows from this theorem in 
the following corollary. 
 
Corollary : 
 
If Pn(x) is a polynomial of degree n with leading coefficient an, and x0 is 
an arbitrary point, then 
 
∆ nPn(x0) = ann! hn 
 
and  ∆ n+1Pn(x0) = 0, i.e., all higher differences are zero. 

 
Proof: Taking k = 0 in relation (5) we have 
 

f[x 0, ..., xi] = i

1
1!h

∆ if0.       (6) 

 
Let us recall that 
 

f[x 0, ..., xi] =
( )

!1

)(1 ξf
        (7) 

 
where f(x) is a real-valued function defined on [a, b] and i times 
differentiable in ]a, b[ and ∈ξ  ]a, b[. 
 
Taking i = n and f(x) = Pn(x) in Eqns. (6) and (7), we get 
 



MTH 213    NUMERICAL ANALYSIS 1 
 

 200

∆ i nPn(x0) = n!h nPn[x0, ..., xn] = n!hn 
(n )

nP ( )
n !

x
 

     = hnn!an. 
Since ∆ i n+1Pn(x0) = ∆ i nPn(x1) - ∆ i nPn(x0) 
 
        = hnn!an - h

nn!an = 0. 
 
This completes the proof 
 
The shift operator E is defined as 
 
Efi = fi+1         (8) 
 
In general Ef(x) = f(x + h). 
 
We have Esf i = fi+s 
 
For example, 
 
E3f i = fi+3, E

1/2f i = fi+1/2 and E-1/2f i = fi-1/2 
 
Now, 
 
∆ i fi = fi+1 - Efi – fi = (E – 1)fi 
 
Hence the shift and forward difference operations are related by 
 

∆  = E – 1 
or E = 1 + ∆  
 
Operating s times, we get 
 

∆ s = (e – 1)s =  ( )∑
=

−−






n

j

rjE
j

s

0

11      (9) 

 
Making use of relation (8) in Eqn. (9), we get 
 

∆ s fi = ( ) 1
0

11 +
=

−








−∑ j

n

j

r f
j

s
 

 
We now give in Table 1, the forward differences of various orders using 
5 values. 
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Table 1: Forward Difference Table 
 

x                  f(x)                ∆ 1f                 ∆ 2 f             ∆ 3 f               ∆ 4  f 
x0                 f0 

                                           ∆ f0 
x1                 f1                                            ∆ 2f0  
                                           ∆ f1                                         ∆ 3f0   
x2                 f2                                            ∆ 2f1                                        ∆ 4f0 
                                           ∆ f2                                          ∆ 3f1 
x3                 f3                                             ∆ 2f2 
x4                 f4                    ∆ f3 

 
Note that the forward difference ∆ kf0 lie on a straight line sloping 
downward to the right. 
 
3.1.2 Backward Differences 
 
Let f be a real-valued function of x. let the values of f(x) at n + 1 equally 
spaced points x0, x1, ....., xn be f0, f1, ...., fn respectively. 
 
The backward differences of f(x) of ith order at xk = x0 + kh are denoted 
by ∇ifk. They are defined as follows: 
 

∇ifk = { k
i 1 i 1

k k 1

f , 1 0
( ) [f f ], i 1- -

-

=
= - ³kႮ Ⴎf Ⴎ              (10) 

 
where ∇ denotes backward difference operator. 
 
Using (10), we have for 
 
i = 1; ∇fk = fk – fk-1 
 
i = 2; ∇2fk = ∇( fk – fk-1) 
        = ∇fk – fk-1 
        = fk – 2fk-1 + fk-2 
 
i = 3; ∇3fk = ∇2[f k – fk-1] = ∇2fk - ∇2fk-1 = ∇[f k] - ∇[f k-1] 

= ∇[f k - fk-1] - ∇[f k-1 - fk-2] 
= ∇fk – ∇fk-1 - ∇fk-1 + fk-2 
= fk – fk-1 – 2[fk-1 + fk-2] + fk-2 - fk-3 
= fk – 3fk-2 + 3fk-2 - fk-3 
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By induction we can prove the following lemma which connects the 
divided difference with the backward difference. 
 
Lemma 2: The following relation holds 
 

f[x n-k, ..., xn] = k

1
k !h

 ∇kf(xn)               (11) 

 
The relation between the backward difference operator ∇ and the shift 
operator E is given by 
 

∇ = 1 E-1 or E = (i - ∇)-1 
 
Since  ∇fk = fk – fk-1 = fk – E-1fk = [1 – E]fk. 
 
Operating s times, we get 
 

∇sfk = [1 – E]sfk = ( ) k

n

j

mm fE
m

s








−








∑

=

−

0

1   

       = ( )∑
=

−−






n

j
mk

m f
m

s

0

1                         (12) 

 
We can extend the binomial coefficient notation to include negative 
numbers, by letting 
 

  
( )( ) ( ) =+−−−−−−−=









!

1....21

i

issss

i

s
(-1)i 

s(s 1)....(s i 1)
i !

+ + -
 

 
The backward differences of various orders with 5 nodes are given in 
Table 2. 

 
Table 2: Backward Difference Table 

x                  f(x)                ∇f                 ∇2f               ∇3f                 ∇4f 
x0                 f0 

                                           ∇f1 
x1                 f1                                            ∇2f2  
                                           ∇f2                                         ∇3f3   
x2                 f2                                            ∇2f3                                        ∇4f4 
                                           ∇f3                                          ∇3f4 
x3                 f3                                             ∇2f4 
                                           ∇f4 
x4                 f4                     

Let us consider the following example: 
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Example 1: Evaluate the differences 
 
(a) ∇3[a2x

2 + a1x + a0] 
 
(b) ∇3[a3x

3 + a2x
2 + a3x + a0]. 

 
Solution: 
 
(a) ∇3[a2x

2 + a1x + a0] = 0 
 
(b) ∇3[a3x

3 + a2x
2 + a3x + a0]. 

 = a3∇3(x3) + ∇3[a2x
2 + a1x + a0] 

 = a3.3 ! h2 
 
Note that the backward differences ∇kf4 lie on a straight line sloping 
upward to the right. 
 
Also note that V fk = ∇fk+1 = fk+1 – fk. 
 
Try to show that V 4f0 = ∇4f4. 
 
Let us now discuss about the central differences. 
 
3.1.3 Central Differences 
 
The first order central difference of f at xk, denoted by dfk, is defined as 
 
df = f(x + h/2) – f(x – h/2) = fk+1/2 – fk-1/2. 
 
Operating with d, we obtain the higher order central differences as 
 
dsfk = fk when s = 0. 
 
The second order central difference is given by 
 
d2fk = d[f k+1/2 – fk-1/2] = d[f k+1/2] - d[f k-1/2] 

= fk+1 – fk – fk + fk-1 
= fk+1 – 2fk + fk-1 
 

Similarly, 
 
d3fk = fk+3/2 - 3fk+1/2 + 3fk-1/2 - fk-3/2 
and d4fk = fk+2 - 4fk+1 + 6fk - 4fk-1 + fk-2. 
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Notice that the even order differences at a tabular value xk are expressed 
in terms of tabular values of f and odd order differences at a tabular 
value xk are expressed in terms of non-tabular value of f. also note that 
the coefficients of dsfk are the same as those of the binomial expansion 
of (1 – x)s, s = 1, 2, 3, .... . 
 
Since 
dfk  fk+1/2 – fk-1/2 = (E1/2 – E-1/2)fk 
 
We have the operation relation 
 
d = E1/2 – E-1/2                                                                                      (14) 
 
The central differences at a non-tabular point xk+1/2 can be calculated in a 
similar way. 
 
For example, 
 
dfk+1/2 = fk+1 - fk 
 
d2fk+1/2 = fk+3/2 - 2fk+1/2 + fk-1/2 
d3fk+1/2 = fk+2 - 3fk+1 + 3fk - fk-1                         (15) 
d4fk+1/2 = fk+3/2 - 4fk+3/2 + 6fk+1/2 - 4fk-1/2 + fk-3/2 
 
Relation (15) can be obtained easily by using the relation (14) 
 
We have 
 
dsfk = [E1/2 – E-1/2]sfk 
 

= ( ) k

n

i

iini fEE
i

s








−








∑

=

−−

0

2/)(2/ 1  

 

= ( ) 1)2/(
0

1 −+
=









−








∑ nk

n

i

i f
i

s
                (16) 

 
The following formulas can also be established: 
 

f[x 0, ...., x2m] = 2m

1
(2m) !h

d2mfm               (17) 

f[x 0, ...., x2m+1] = 2m 1

1
(2m 1) !h ++

d2m+1fm+1/2             (18) 

f[x -m, ...,x0, ...., xm] = 2m

1
(2m) !h

d2mf0              (19) 



MTH 213                                                                                                            MODULE 3  

 205

f[x -m, ...,x0, ...., xm+1] = 2m 1

1
(2m 1) !h ++

d2m+1f1/2             (20) 

f[x -(m+1), ...,x0, ...., xm] = 2m 1

1
(2m 1) !h ++

d2m+1f-1/2            (21) 

 
We now give below the central difference table with 5 nodes. 
 

Table 3: Central Difference Table 
 

x                   f                    df                    d2f                   d3f                 d4f 
x-2                 f-2 

                                           df-3/2 
x-1                 f-1                                            d2f-1  
                                           df-1/2                                         d3f-1/2   
x0                 f0                                            d2f0                                        d4f0 
                                           df1/2                                          d3f1/2 
x1                 f1                                             d2f1 
                                           df3/2 
x2                 f2                     

 
Note that the difference d2mf0lie on a horizontal line shown by the dotted 
lines. 
 

Table 4: Central Difference Table 
 

x                   f                    df                    d2f                   d3f                 d4f 
x0                 f0 

                                           df1/2 
x1                 f1                                            d2f1  
                                           df3/2                                         d3f3/2   
x2                 f2                                            d2f2                                        d4f2 
                                           df5/2                                          d3f5/2 
x3                 f3                                             d2f3 
                                           df7/2 
x4                 f4                     

 
Note that the difference d2mf2 lie on a horizontal line. 
 
We now define the mean operator mas follows 

mfk = 
1
2

[f k+1/2 + fk-1/2] 

 

= 
1
2

[E1/2 + E-1/2]f k. 
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Hence 

m = 
1
2

[E1/2 + E-1/2] 

 
Relation Between the Operators V , ∇, d and m 
 
We have expressed V , ∇, d and m in terms of the operator E as follows 
 
V  = E – 1 
 
∇ = 1 – E-1 
 
d = E1/2 – E-1/2 
 

m = 
1
2

[E1/2 + E-1/2] 

 
V  = E(1 = E-1) = E∇ 
 
= E1/2(E1/2 – E-1/2) E1/2d 
 

Also E1/2 = m + 
2
d

 

 

E-1/2 = m - 
2
d

 

 
Example 2: 
 
(a) Express V 3f1 as a backward difference. 
 
(b) Express V 3f1 as a central difference. 
 
(c) Express d2f2 as a forward difference. 
 
Solution: 
 
(a) ∆ 3f1 = (E∇)3f1 = E3∇3f1 = ∇3E3f1 = ∇3f4   (∆  = E∇) 
 
(b) ∆  3f1 = [E1/2∂ ]3f1 = E3/2∂  3f1 = ∂  3E3/2f1 = ∂  3f5/2  (∇=E1/2∂ ) 
 
(c) ∂ 2f2 = [E-1/2∂ ]2f2 = E-1∆  2f2 =∆  2E-1f2 =∆  2f1           (∂ =E-1/2∆ ) 
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Example 3: Prove that 

(a) m2 = 1 + 
4

2∂
 

(b) md = 
1
2

 (∆  + ∇) 

 

(c) 2 21 + md  = 1 + 
2

2∂
 

 
Solution: 

(a) We have m= 
1
2

[E1/2 + E-1/2] 

 m2 = 
1/ 2 1/ 2 2(E E )

4

-+
 = 

1/ 2 1/ 2 2(E E ) 4
4

-- +
 

 = 1 + 
1/ 2 1/ 2 2(E E )

4

--
 

 = 1 + 
4

2∂
 

 
(b) L.H.S. 

 md = 
1
2

(E1/2 + E-1/2) (E1/2 - E-1/2) = 
1
2

 (E – E-1) 

 R.H.S. 
1
2

( ∆   + ∇) = 
1
2

[(E-1) + (1-E-1)] =  
1
2

 (E – E-1). 

 
Hence, the result.  

 
(c) We have 

md = 
1
2

(E1/2 + E-1/2) (E1/2 - E-1/2) = 
1
2

 (E – E-1) 

\  1 + m2d2 = 1 + 
1 2(E E )

4

--
 = 

1 2(E E ) 4
4

-- +
 = 

1 2(E E )
4

-+
 

\  2 21+ md  = 
1E E

2

-+
 = 

1/ 2 1/ 2 2(E E ) 2
2

-- +
 

 

= 
2 2

2
d +

 = 1 + 
4

2∂
 

 
3.2 Difference Formulas 

 
We shall now derive different difference formulas using the results 
obtained in the preceding section (Section 3.2). 
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3.2.1 Newton’s Forward-Difference Formula 
 

In Unit 2, we have derived Newton’s form of interpolating polynomial 
(using divided differences). We have also established in Section 3.2 1, 
the following relationship between divided differences and forward 
differences 

 

f[x k, ...., xk+n] = n

1
n !h

V nfk               (21) 

 
Substituting the divided differences in terms of the forward differences 
in the Newton’s form, and simplifying we get Newton’s forward-
difference form. The Newton’s form of interpolating polynomial 
interpolating at xk, xk+1, ...., xk+n is 

 

Pn(x) = ( )( ) ( ) ],........[........... 111
0

+−++
=

−−−∑ kkikk

n

i
k xxfxxxxxx  

 
Substituting (22), we obtain 
 

Pn(x) = ( )( ) ( ) k
i

ikk

n

i
k f

h
xxxxxx ∆−−− −++

=
∑ 111

0 !1

1
...........               (23) 

 
Setting k = 0, we have the form 
 

Pn(x) = ( )( ) ( ) 011
0

01
...........

!1

1
fxxxxxx

h
i

i

n

i

∆−−− −
=
∑   

 

= f0 + 0(x x )
1!
-

h

f0∆
 + 0 1

2

(x x )(x x )
h

- -
2

0
2

h

f∆
+... 

+ 0 n 1(x x )....(x x )
n !

-- -
n

n

h

f0∆
                   (24) 

 
Using the transformation (2), we have 
 
x – xk+j = x0 + sh – [x0 + (k + j)h] = (s – k – i + 1) V ifk 
 

=    






 −
∆∑

= i

ks
f

n

i
k

0

1  

 

=fk + (s – k) kf∆  + 
(s k)(s k 1)

2!
- - -

kf2∆ +... 
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+ 
(s k)(s n 1)

n !
- - -

k
n f∆               (25) 

 
of degree £  n. 
 
Setting k = 0 in (25) we get the formula 
 

Pn(x0 + sh) = 







∆∑

= i

s
f

n

i

i

0
0                 (26) 

 
The form (23), (24), (25) or (26) is called the Newton’s forward-
difference formula. 
 
The error term is now given by 
 

En(x) = 








+1n

s
hn+1 fn+1 (x ) 

- 
Example 4: 
 
Find the Find the Newton’s forward-difference interpolating polynomial 
which agrees with the table of values given below. Hence obtain the 
value of f(x) at x = 1.5. 
 

x            1             2             3                4                 5                6 

f(x)       10           19           40              79              142            235 

 
Solution: We form a table of forward differences of f(x).  
 

Table 5: Forward differences 
x                  f(x)                ∆ f                  ∆ 2f              ∆ 3f               
1                  10 
                                             9 
2                  19                                          12  
                                            21                                        6 
3                  40                                          18                                       
                                            39                                        6 
4                 79                                           24 
                                            63                                        6 
5                 142                                         30 
                                            93 
6                 235 

 
Since the third order differences are constant, the higher order 
differences vanish and we can infer that f(x) is a polynomial of degree 3 
and the Newton’s forward-differences interpolation polynomial exactly 
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represents f(x) and is not an approximation to f(x). The step length in the 
data id h = 1. Taking x0 = 1 and the subsequent values of x as x1, x2, ...., 
x5 the Newton’s forward-differences interpolation polynomial. 
 

f(x) = f0 + (x – 1) V f0 + 
(x 1)(x 2)

2!
- -

V 2f0 + 

(x 1)(x 2)(x 3)
3!

- - -
V 3f0 

 
becomes 

f(x) = 10 + (x – 1) (9) + 
(x 1)(x 2)

2
- -

(12)+ 
(x 1)(x 2)(x 3)

6
- - -

 (6) 

 
l= 10 + (x – 1) + 6(x – 1) (x – 2) + (x – 1) (x – 2) (x – 3) 
 
which on simplification gives 
 
f(x) = x3 + 2x + 7 
\  f(1.5) = (1.5)3 + 2(1.5) + 7 
= 3.375 + 3 + 7 = 13.375 
 
Note: 
If we want only the value of (1.5) and the interpolation polynomial is 
not needed, we can use the formula (26). In this case, 
 

s = 0x x
h

-
 = 

1.5 1
1
-

 = 0.5 

 
and 

f(1.5) = 10 + (0.5) (9) + 
(0.5)( 0.5)

2
-

 (12) + 
(0.5)( 0.5)( 1.5)

6
- -

 (6) 

 
= 10 + 4.5 – 1.5 + 0.375 
 
= 13.375. 
 
Example 5: 
 
From the following table, find the number of students who obtained less 
than 45 marks. 
 
 

Marks                30 - 40      40 - 50       50 – 60       60 - 70        70 - 80 

No. of students       31            42                51              35               31            
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Solution: 
 
We form a table of the number of students’ f(x) whose marks are less 
than x. In other words, we form a cumulative frequency table. 
 
 

Table 6: Frequency Table 
x              f(x)           V f            V 2f           V 3f           V 4f 
40              31 
                                   42 
50              73                               9  
                                   51                              -25 
60            124                              -16                              37       
                                   35                               12 
70            159                              -4 
                                   31                                    
80            190                                          

 
We have x0 = 40, x = 45 and h = 10 
 
\  s = 0.5 
 

\ f(45) ;  31 + (0.5) (42) + 
(0.5)( 0.5)

2
-

 (9) + 
(0.5)( 0.5)( 1.5)

6
- -

(-25) 

    + 
(0.5)( 0.5)( 1.5)( 2.5)

24
- - -

 (37) 

= 31 + 21 – 1.125 – 1.5625 – 1.4453 
= 47. 8672 ;  48 
 
\  The number of students who obtained less than 45 marks is 
approximately 48. 
 
3.2.2 Newton’s Backward-Difference Formula 
 
Reordering the interpolating nodes as xn, xn-1, ...., x0 and applying the  
Newton’s divided difference form, we get 
 
Pn(x) = f[xn] + (x – xn) f[xn-1, xn] + (x – xn-1) f[xn-2, xn-1, xn] 
+ .... + (x – x) ... (x –xn) f[x0, ...., xn]              (27) 
 
We may also write 
 

Pn(x) = Pn
n

n

x x
x h

h
-é ù+ê úë û
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= Pn[xn + sh] = 
n

n n 1 n i 1 n n 1
i 0

(x x )(x x )...(x x )f[x , ...., x ]- - + -
=

- - -å  

= 
n

i

i n n 1 n i 1 n
i 0

1
(x x )(x x )...(x x ) f

i !h - - +
=

- - -å Ⴎ              (28) 

 
Set x = xn + sh, then 
 
x – xi = xn + sh – [xn – (n – i)h] = (s + n – i)h 
 
x – xn-j = (s + n – n + j)h = (s + j)h 
 
and 
 
(x – xn) (x – xn-1) ... (x – xn-i+1) = s(s + 1) ... s(s + i – 1)hi 
 
Equation (28) becomes 
 

Pn(x) =  ( ) ( ) n

n

i

fisss
i

1........1
!!

1

0

−++∑
=

  

 

= fn + s∇fn + 
s(s 1)

2!
+ ∇2fn + 

s(s 1)...(s n 1)
n !

+ + - ∇nfn                   (29) 

 
We have seen already that 
 










k

s
= (-1)k 

s(s 1)...(s k 1)
k !

+ + -
 

 
Hence, equation (29) ca be written as 
 

Pn(x) = f(xn) + ( ) ( )nxf
s

∇







−

1
1  (-1) + ( ) ( )nxf

s 22

2
1 ∇








−  (-1)2 

 

 + ... +  ( ) ( )n
kk xf

k

s
∇







−1   

 
or 
 

Pn(x) =   ( ) ( )∑
=

∇







−

n

k
n

kk xf
k

s

0

1                    (30) 

 
Equation (27), (28) or (29) is called the Newton’s backward-difference 
form. 
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In this case error is given by 
 

En(x) = (-1)n+1 
s(s 1)...(s n)

(n 1) !
+ +

+
hn+1 fn+1 (x ).             (31) 

 
The backward-difference form is suitable for approximating the value of 
the function at x that lies towards the end of the table. 
 
Example 6: 
 
Find the Newton’s backward differences interpolating polynomial for 
the data of Example 4. 
 
Solution: 
 
We form the table of backward differences of f(x). 
 

Table 7: Backward Difference Table 
x              f(x)           ∇f            ∇2f           ∇3f           
1              10 
                                   9 
2              19                               12  
                                   21                                6 
3              40                               18                                    
                                   39                                6 
4              79                               24 
                                   63                                6 
5            142                               30 
                                   93 
6            235                        

 
Tables 5 and 7 are the same except that we consider the differences of 
Table 7 as backward differences. If we name the abscissas as x0, x1, ...., 
x5, then xn = x5 = 6, fn = f5 = 235. with h = 1, the Newton’s backward 
differences polynomial for the given data is given by 
 

P(x) = f5 + (x – x5) ∇f5 + 5 4(x x )(x x )
2!

- - ∇2f5 + 

5 4 3(x x )(x x )(x x )
3!

- - - ∇3f5 

 

= 235 + (x – 6) (93) + 
(x 6)(x 5)

2
- -

 (30) + 
(x 6)(x 5)(x 4)

6
- - -

 (6) 

 
= 235 + 93(x – 6) + 15(x – 6) + (x – 4) (x - 5) (x – 6) 
 
which on simplification gives 
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P(x) = x3 + 2x + 7, 
 
which is the same as the Newton’s forward differences interpolation 
polynomial in Example 4. 
 
Example 7: 
 
Estimate the value of (1.45) from the data given below: 
 

x              1.1           1.2              1.3              1.4           1.5  

f(x)       1.3357     1.5095        1.6984       1.9043      2.1293 

 
Solution: 
 
We form the backward differences table for the data given. 
 

Table 8: Backward Differences Table 
 

x              f(x)              ∇f             ∇2f            ∇3f           ∇4f 
1.1        1.3357 
                                  0.1738 
1.2        1.5095                              0.0151 
                                  0.1889                           0.0019 
1.3        1.6984                              0.0170                         0.0002      
                                  0.2059                           0.0021 
1.4        1.9043                              0.0191 
                                  0.2250                               
1.5        2.1293                                

 
Here xn = 1.5, x = 1.45, h = 0.1 
 

Hence,  s = nx x
h

-
 = 

1.45 1.5
0.5
-

 = -0.5 

 
The Newton’s backward differences interpolation formula gives 
 

f(x) = fn + s∇fn + 
s(x 1)

2!
+ ∇2fn + 

s(s 1)(s 2)
3!

+ + ∇3fn + 

s(s 1)(s 2)(s 3)
4 !

+ + + ∇4fn 

 

= 2.1293 + (-0.5) (0.2250) + 
( 0.5)(0.5)

2
-

 (0.0191) 

+
( 0.5)(0.5)(1.5)

6
-

(0.0021) + 
( 0.5)(0.5)(2.5)

24
-

 (0.0002) 
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= 2.1293 – 0.1125 – 0.00239 – 0.00013 – 0.0000078 
 
= 2.01427 »  2.0143 
 
3.3.3 Stirling’s Central Difference Form 
 
A number of central difference formulas are available which can be used 
according to a situation to maximum advantage. But we shall consider 
only one such method known as Stirling’s method. This formula is used 
whenever interpolation is required of x near the middle of the table of 
values. 
 
For the central difference formulas, the origin x0, is chosen near the 
point being approximated and points below x0 are labelled as x1, x2, ... 
and those directly above as x-1, x-2, ... (as in Table 3). Using this 
convention, Stirling’s formula for interpolation is given by 

Pn(x) = f(x0) + 
s
2

[ df1/2 + df -1/2] + 
2s

2!
d2f0 

 

 + 
2 2s(s 1 )
3!
-

 
1
2

[ d3f1/2 + d3f -1/2] + ... 

 + 
2 2 2 2 2 2s(s 1 )s(s 2 )...[s (p 1) ]

(2p 1) !
- - - -

-
1
2

[ d2p-1f1/2 + d2p-1f -1/2] 

 + 
2 2 2 2s(s 1 )...[s (p 1) ]

(2p) !
- - -

d2pf0 

 + 
2 2 2 2s(s 1 )...s(s p )

(2p 1) !
- -

+
1
2

[ d2p+1f1/2 + d2p+1f-1/2]            (32) 

 
where s = (x – x0)/h and if n = 2p + 1 is odd. 
 
If n = 2p is even, then the same formula is used deleting the last term. 
 
The Stirling’s interpolation is used for calculation when x lies between 

x0 - 
1
4

h and x0 + 
1
4

h. 

 
It may be noted from the Table 3, that the odd order differences at x-1/2 
are those which lie along the horizontal line between x0 and x-1. 
Similarly, the odd order differences at x1/2 are those which lie along the 
horizontal line between x0 and x1. even order differences at x0 are those 
which lie along the horizontal line through x0. 
 



MTH 213    NUMERICAL ANALYSIS 1 
 

 216

Example 8: Using Stirling’s formula, find the value of (1.32) from the 
following table of values. 
 

x              1.1           1.2              1.3              1.4           1.5  

f(x)       1.3357     1.5095        1.6984       1.9043      2.1293 

 
Solution: 

Table 9: Central Difference 
 

x              f(x)              df             d2f            d3f           d4f 
1.1        1.3357 
                                  0.1738 
1.2        1.5095                              0.0151 
                                  0.1889                           0.0019 
1.3        1.6984                              0.0170                         0.0002      
                                  0.2059                           0.0021 
1.4        1.9043                              0.0191 
                                  0.2250                               
1.5        2.1293                                

 
Choose x0 = 1.3 
 

Therefore     s = 0(x x )
h

-
 = 

1.32 1.3
0.1
-

 = 0.2. 

 
From Eqn. (32), we have 
 

f(x) »  f0 + 
s
2

[ df-1/2 + df1/2]+
2s

2!
 d2f0+

2 2s(s 1 )
3!
- 1

2
[ d3f -1/2 + d3f1/2]+ 

2 2 2s (s 1 )
4 !
-

d4f0. 

 
Now, 
 
1
2

[ df -1/2 + df1/2] = 
1
2

(0.1889 + 0.2059) = 0.1974 

 
1
2

[ d3f-1/2 + d3f1/2] = 
1
2

(0.0019 + 0.0021) = 0.0020 

 
Also d2f0 = 0.0170, d4f0 = 0.0002. 
 
Substituting in the above equation, we get 
 

f(x) = 1.6984 + (0.2) (0.1974) + 
0.04

2
 (0.0170) + 

(0.2)( 0.96)
6
-

(0.0020) 
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 + 
(0.04)( 0.96)

24
-

 (0.0002) 

 
= 1.6984 + 0.03948 + 0.00034 – 0.00006 – 0 
 
= 1.73816 ;  1.7382. 
 
4.0 CONCLUSION 
 
 As in the summary. 
 
5.0 SUMMARY. 
 
In this unit, we have derived interpolation formulas for data with equally 
spaced values of the argument. We have seen how to find the value of 
f(x) for a given value of x by applying an appropriate interpolation 
formula derived in this section. The application of the formulas derived 
in this section is easier when compared to the application of the 
formulas derived in Units1 and 2. However, the formulas derived in this 
unit can only be applied to data with equally spaced arguments whereas 
the formulas derived in Units 1 and 2 can be applied for data with 
equally spaced or unequally spaced arguments. Thus, the formulas 
derived in Units 1 and 2 are of a more general nature than those of Unit 
3. The interpolation polynomial which fits a given data can be 
determined by using any of the formulas derived in this section which 
will be unique whatever be the interpolation formula that is used. 
 
The interpolation formulas derived in this unit are listed below: 
 
1) Newton’s forward difference formula: 

Pn(x) = Pn(x0 + sh) =  ∑
=

∇






n

i

i f
k

s

0
0     

 f0 + sV f0 + 
s(s 1)

2!
-

V 2f0 + ... + 
s(s 1)...s(s n 1)

n !
- - +

V nf0 

 where s = (x – x0)/h. 
 
2) Newton’s backward difference formula: 

 Pn(x) = Pn(xn + sh) = ( )∑
=

∇







−

n

k
n

kk f
k

s

0

1   where s = (x – x0)/h 

 
3) Stirling’s central difference formula: 
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Pn(x) = Pn(x0 + sh) = f0 + 
s
2

[ df1/2 + df -1/2] + 
2s

2!
d2f0 + 

2 2s(s 1 )
3!
- 1

2
[ d3f1/2 + d3f-1/2] +...+ 

2 2 2 2 2 2

0s (s 1 )...(s (p 1) )s f
(2p) !

- - -
 

+ 
2 2 2 2 2s (s 1 )...(s p )

(2p 1) !
- -

+
[ d2p+1f1/2 + d2p+1f-1/2] 

if n = 2p + 1 is odd. If n = 2p is even, the same formula is used 
deleting the last term. 

 
6.0 TUTOR-MARKED ASSIGNMENT. 
 
1) Express ∇4f5 in terms of function values. 
 
2) Show that (E + 1) d = 2(E – 1) m. 

 
3) The population of a town in the decimal census was given below. 

Estimate population for the year 1915. 
 

Year x                  1911           1921          1931            1941           1951                

Population: y         46                66               81               93              101           
(in thousands)        

 
 
4) from the following table, find the value of y (0.23): 
  

x            0 .20         0.22           0.24          0.26           0.28         0.30 

y          1.6596      1.6698      1.6804       1.6912      1.7024      1.7139    

 
5) Find the number of men getting wages between Rs. 10 and Rs. 15 

from the following table. 
  

Wages in Rs. x           0 - 10         10 - 20           20 - 30          30 -40           

No. of men y                  9                 30                  35                 42       

 
6) The area A of a circle of diameter d is given in the following 

table. Find the area of the circle when the diameter is 82 units. 
  

d              80           85            90            95           100  

A          5026        5674        6362       7088         7854 

 
7) From the table of values of 3a, find the value of y when x = 0.29. 
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8) Using the backward differences interpolation, find the 
polynomial which agree with the values of y(x) where 

 
 y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10. 
 
9) In 3c, find the number of candidates whose marks are less than or 

equal to (i) 70, (ii) 89. 
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10) Find f(1.725) from the following table. 
 

x              1.5           1.6              1.7              1.8           1.9  

f(x)       4.4817     4.9530        5.4739       6.0496      6.6859 

 
11) Evaluate f(4.325) from the following. 
  

x              4.1           4.2              4.3             4.4           4.5  

f(x)      30.1784    33.3507     36.8567     40.7316   45.0141 

 
 
12) Find the approximate value of y(2.15) from the table 
 

x              0              1                 2                 3                4  

f(x)       6.9897     7.4036       7.7815       8.1281       8.4510 
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MODULE 2 SOLUTION OF LINEAR ALGEBRAIC 
EQUATIONS 

 
Unit 1  Direct Methods 
Unit 2  Inverse of a Square Matrix 
Unit 3  Iterative Methods 
Unit 4  Eigen Values and Eigen Vectors 
 
 
UNIT 1  DIRECT METHOD 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Preliminaries 
3.2 Cramer’s Rule 
3.3 Direct Methods for Special Matrices 
3.4 Gauss Elimination Methods 
3.5 LU Decomposition Methods 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
Notations and Symbols 
 
A = [ ]ika     Matrix with the elements aik 

det A = |A|    Determinant of a square matrix A 
¥     infinity 
r      Rho 
u      Nu 
m     Mu 
l      Lambda 
||A||    Norm of a matrix A 
  i     Imaginary unit, i2 = -1. 
 

Also see the list given in Block 1. 
 

1.0 INTRODUCTION  
 
One of the commonly occurring problems in applied mathematics is 
finding one or more roots of an equation f(x) = 0. In most cases explicit 
solutions are not available and we are satisfied with being able to find 



MTH 213    NUMERICAL ANALYSIS 1 
 

 222

one or more roots to a specified degree of accuracy. In Block 1, we have 
discussed various numerical methods for finding the roots of an equation 
f(x) = 0. There we have also discussed the convergence of these 
methods. Another important problem of applied mathematics is to find 
the solution of systems of linear equations arise in a large number of 
areas, both directly in modelling physical situations and indirectly in the 
numerical solution of other mathematical models. These applications 
occur in all areas of the physical, biological and engineering sciences. 
For instance, in physics, the problem of steady state temperature in a 
plate is reduced to solving linear equations. 
 
Engineering problems such as determining the potential in certain 
electrical networks, stresses in a building frame, flow rates in a 
hydraulic system etc. are all reduced to solving a set of algebraic 
equations simultaneously. Linear algebraic systems are also involved in 
the optimization theory, least squares fitting of data, numerical solution 
of boundary value problems for ordinary and partial differential 
equations, statistical inference etc. Hence, the numerical solution of 
systems linear algebraic equations plays a very important role. 
 
Numerical methods for solving linear algebraic systems may be divided 
into two types, direct and iterative. Direct methods are those which, in 
the absence of round-off or other errors, yield the exact solution in a 
finite number of elementary arithmetic operations. Iterative methods 
start with an initial approximation. 
 
To understand the numerical methods for solving linear system of 
equations it is necessary to have some knowledge of the properties of 
matrices. You might have already studied matrices, determinants and 
their properties in your linear algebra courses. However, we begin with a 
quick recall of few definitions here. In this unit, we have also discussed 
some direct methods for finding the solution of system of linear 
algebraic equations. 
 
2.0 OBJECTIVES 
 
After studying this unit, you should be able to: 
 
•••• state the difference between the direct and iterative methods of 

solving the system of linear algebraic equations 
•••• obtain the solution of system of linear algebraic equations by 

using the direct method 
•••• use the pivoting technique while transforming the coefficient 

matrix to upper or lower triangular matrix. 
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3.0 MAIN CONTENTS 
 
3.1 Preliminaries 
 
As we have mentioned earlier, you might be already familiar with 
vectors, matrices, determinants and their properties (Ref. Linear algebra 
MTE-02). A rectangular array of (real or complex) numbers of the from 
 

  























nnnn

n

n

aaa

aaa

aaa

.......

......

......

21

22221

21211

 
 
is called a matrix. The numbers a11, a12, ..., ann are the elements of the 
matrix. The horizontal lines are called rows and the vertical lines called 
columns of the matrix. A matrix with m rows and n columns is called an 
m´ n matrix (read as m by n matrix). We usually denote matrices by 
capital letters A, b etc., or by (ajk), (bik) etc. 
 
If the matrix has the same number of rows and columns, we call it a 
square matrix and the number of rows or columns is called its order. If a 
matrix has only one column it is a column matrix or column vector and 
if it has only one row it is a row matrix or row vector. 
 

The matrices A = 



















1

21

11

:

na

a

a

= [a11, a21, ... an1]
T and 

 
B = [a11, a12, ..., a1n] are respectively the column and row matrices. We 
give below some special square matrices A = (aij) of order n. 
 
1) A matrix A = (aij) in which aij = 0 (i, j = 1, 2 ....., n) is called a 

null matrix and is denoted by 0. 
e.g., 

A = 








00

00
 is a 2 ́  2 null matrix. 

 
2) A matrix A in which all the non-diagonal elements vanish i.e., aij  

= 0 for i ¹  j is called a diagonal matrix. 
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E.g., A =  
















33

22

11

00

00

00

a

a

a

  

is a 3 ́  3 diagonal matrix. 
 

3) The identity matrix I is a diagonal matrix in which all the 
diagonal elements are equal to one. The identity matrix of order 4 
is 

 

 I = 



















1000

0100

0010

0001

  

 
4) A square matrix is lower triangular if all the elements above the 

main diagonal vanish i.e., aij = 0 for j > i. A lower triangular 
matrix of order 3 has the form 

 

 A =   
















333231

2221

11

0

00

aaa

aa

a

 

 
Similarly upper triangular matrices are matrices in which, 
aij = 0 for i > j. 
 

e.g.,  A =   
















33

2322

131211

00

0

a

aa

aaa

  

 
Two matrices A = (aij) and B = (bij) are equal iff they have the same 
number of rows and columns and their corresponding elements are 
equal, that is aij = bij for all i, j. 
 
You must also be familiar with the addition and multiplication of 
matrices. 
 
Addition of matrices is defined only for matrices of same order. The 
sum C = A + B of two matrices A and B, is obtained by adding the 
corresponding elements of A and B, i.e., cij = aij + bij. 
 

For example, if A =  








210

364
and B = 







 −
013

015
  then 
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A + B =     








223

351
   

 
Product of an m ´  n matrix A = (aij) and an n ́  p matrix B = (bij) is an 
m ́  p matrix C. C = AB, whose (i, k)th entry is 
 

cij =  ij
j

ijba∑
=

0

1

= aij bij + ai2bi2 + ... + ain bnk 

 
That is, to obtain the (i, k)th element of AB, take the ith row of A and 
kth column of B, multiply their corresponding elements and add up all 
these products. For example, if 
 

A =   






 −
201

132
   and B = 

















121

242

211

 then (1, 2)the element 

 
of AB is 
 

[2  3  -1] 



















2

4

1

 = 2 * 1 + 3 * 4 + (-1) *2 = 12 

 
Note that two matrices A and B can be multiplied only if the number of 
columns of A equals the number of rows of B. In the above example the 
product BA is not defined. 
 
The matrix obtained by interchanging the rows and columns of A is 
called the transpose of A and is denoted by AT 
 

If A = 








11

32
 then AT =  







 −
13

12
 

 
Determinant is a number associated with square matrices. 
 
 

For a 2 ́  2 matrix A =   








2221

1211

aa

aa
 

det (A) = det 








2221

1211

aa

aa
 = a11a22 – a12a21 
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For a 3 ́  3 matrix A =  
















333231

232221

131211

aaa

aaa

aaa

 

 

det(A) = a11 det  








3332

2322

aa

aa
 - a12 det 









3331

2321

aa

aa
+ a13 det 









3231

2221

aa

aa
 

 
A determinant can be expanded about any row or column. The 
determinant of an n ´  n matrix A = (aij) is given by det(A) = (-1)i+1aij 
det(Aij) + (-1)i+2ai2 det(Ai2) + ... + (-1)i+nain det(Ain), where the 
determinant is expanded about the ith row and Aij is the (n – 1) ́  (n – 1) 
matrix obtained from A by deleting the ith row and jth column and i £  i 
£  n. Obviously, computation is simple if det(A) is expanded along a 
row or column that has maximum number of zeros. This reduces the 
number of terms to be computed. 
 
The following example will help you to get used to calculating 
determinants. 
 
Example 1: 
 

If A =  
















237

145

621

 calculated det (A). 

 
Solution: 
 
Let us expand by the first row. We have 
 

|A11| =  








23

14
 = 4 * 2 – 1 * 3 = 5, |A12| = 









27

15
  = 5 * 2 = 7 * 1 = 3 

, 

|A13| = 








37

45
= 5 * 3 – 4 * 7 = -13. 

 
Thus, 
 
|A| = (-1)1+1*1*|A 11|+(-1)1+2*2*|A 12|+(-1)1+3*6*|A 13|=5–6–78 = -79 
 
If the determinant of a square matrix A has the value zero, then the 
matrix A is called a singular matrix, otherwise, A is called a nonsingular 
matrix. 
We shall now give some more definitions. 
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Definition : 
 
The inverse of an n ´  n nonsingular matrix A is an n ´  n matrix B 
having the property 
 
A B = B A = i 
where I is an identity matrix of order n ´  n. 
 
the inverse matrix B if it exists, is denoted by A-1 and is unique. 
 
Definition : 
 
For a matrix A = (aij), the cofactor Aij of the element aij is given by  
 
A ij = (-1)i+j M ij 
 
where Mij (minor) is the determinant of the matrix of order (n – 1) ́  (n 
– 1) obtained from A after deleting its ith row and the jth column. 
 
Definition : 
 
The matrix of cofactors associated with the n ´  n matrix A is an n ́  n 
matrix Ac obtained from A by replacing each element of A by its 
cofactor. 
 
Definition : 
 
The transpose of the cofactor matrix Ac of A is called the adjoint of A 
and is written as adj(A). Thus 
 
adj(A) = (Ac)T 
 
Let us now consider a system of n linear algebraic equations in n 
unknowns 
 
a11x1 + a12x2 + .... + a1nxn = b1 
a21x1 + a22x2 + .... + a2nxn = b2      (1) 
 .  . . 
 .  . . 
 .  . . 
an1x1 + an2x2 + .... + annxn = bn 
where the coefficients aij and the constant bi (i = 1, ...., n) are real and 
known. This system of equations in matrix from may be written as 
 
A x = b         (2) 
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where 
 

A = 























nnnn

n

n

aaa

aaa

aaa

21

22221

11211

 x =  























nx

x

x

2

1

 b = 























nb

b

b

2

1

  

 
A is called the coefficient matrix and has real elements. 
 
Our problem is to find the values xi, i = 1, 2 ...., n if they exist, satisfying 
Eqn. (2). Before we discuss some methods of solving the system (2), we 
give the following definitions. 
 
Definition : 
 
A system of linear Eqns. (2) is said to be consistent if it has at least one 
solution. If no solution exists, then the system is said to be inconsistent. 
 
Definition : 
 
The system of Eqns. (2) is said to be homogeneous if b = 0, that is, all 
the elements bi, b2, ...., bn are zero, otherwise the system is called non-
homogeneous. 
 
In this unit, we shall consider only non-homogeneous systems. 
 
You also know from you linear algebra that the non-homogeneous 
system of Eqns. (2) has a unique solution, if the matrix A is nonsingular. 
You may recall the following basic theorem on the solvability of linear 
systems (Ref. Theorem 4, Sec. 5.0, Unit 1, Block 3, Module 1). 
 
Theorem 1: 
 
A non-homogeneous system of n linear equations in n known has a 
unique solution if and only if the coefficient matrix A is nonsingular. 
 
If A is nonsingular, thenA-1 exists, and the solution of system (2) can be 
expressed as 
 
x = A-1b. 
 
In case the matrix A is singular, then the system (2) has no solution if b 
¹  0 or has an infinite number of solutions if b = 0. here we assume that 
A is a nonsingular matrix. 
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As we have already mentioned in the introduction, the methods of 
solution of the system (2) may be classified into two types: 
 
i) Direct Methods: which in the absence of round-off errors give the 

exact solution in a finite number of steps. 
 
ii)  Iterative Methods: Starting with an approximate solution vector 

x(0), these methods generates a sequence of approximate solution 
vectors {x(k)} which converge to the exact solution vector x as the 
number of iterations k ® ¥ . Thus iterative methods are infinite 
processes. Since we perform only a finite number of iterations, 
these methods can only find some approximation to the solution 
vector x. We shall discuss iterative methods later in Units 4 and 
5. 

 
In this unit we shall discuss only the direct methods. You are familiar 
with one such method due to the mathematician Cramer and known as 
Cramer’s Rule. Let us briefly review it. 
 
3.2 Cramer’s Rule 
 
In the system (2), let d = det(A) ¹  0 and b ¹  0. Then the solution of the 
system is obtained as 
 
xi = di/d, i = 1, 2, ...., n       (3) 
where di is the determinant of the matrix obtained from A by replacing 
the ith column of A by the column vector b. let us illustrate the method 
through an example. 
 
Example 2: 
 
Solve the system of equations. 
 
3x1 + x2 + 2x3 = 3 
2x1 - 3x2 - x3 = -3 
x1 - 2x2 - x3 = 4 
using Cramer’s rule. 
 
Solution: We have, 
 

d = |A| = 
3 1 2
1 3 1
1 2 1

- -  = 8 
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d1 = 
3 1 2
3 3 1
4 2 1

- - -   

 
= 8 (first column in A is replaced by the column vector b) 
 

d2 = 
3 3 2
2 3 1
1 4 1

- -   

 
= 16 (second column in A is replaced by the column vector b 
 

d3 = 
3 1 3
2 3 3
1 2 4

- -

 
 
= -8 (third column in A is replaced by the column vector b) 
 
Using (3), we get the solution 
 
x1 = d1/d = 1; x2 = d2/d = 2; x3 = d3/d = -1 
 
While going through the example and attempting the self assessment 
exercises you must have observed that in Cramer’s methods we need to 
evaluate n + 1 determinants each of order n, where n is the number of 
equations. If the number of operations required to evaluate a determinant 
is measured in terms of multiplications only, then to evaluate a 
determinant of second order, i.e., 
 

  








2221

1211

aa

aa
 = a11 a22 – a12 a21 

 
we need two multiplications or (2 – 1) 2! multiplications. To evaluate a 
determinant of third order 
 

















333231

232221

131211

aaa

aaa

aaa

=(a11a22a33-a11a23a32-a12a21a33+a12a23a31+a13a21a32-a13a22a31) 

 
we need 12 multiplication or (3 – 1)3! multiplications. In general, to 
evaluate a determinant of nth order we need (n – 1)n! multiplications. 
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Also for a system of n equations, Cramer’s rule requires n + 
1determinants each of order n and performs n divisions to obtain xi, i = 
1, 2, ...., n. Thus the total number of multiplications and divisions 
needed to solve a system of n equations, using Cramer’s rule becomes 
 
M = total number of multiplications + total number of divisions 
    = (n + 1) (n  - 1)n! + n 
 
In Table 1, we have given the values of M for different values of n. 
 

 
Table 1 

Number of equations 
N 

Number of operations 
n 

2 
3 
4 
5 
6 
7 
8 
9 
10 

8 
51 

364 
2885 

25206 
241927 

2540168 
29030409 

359251210 
 
From the table, you will observe that as n increases, the number of 
operations required for Cramer’s rule increases very rapidly. For this 
reason, Cramer’s rule is not generally used for n > 4. hence for solving 
large systems, we need more efficient methods. In the next section we 
describe some direct methods which depend on the form of the 
coefficient matrix. 
 
3.3 Direct Methods for Special Matrices 
 
We now discuss three special forms of matrix A in Eqn. (2) for which 
the solution vector x can be obtained directly. 
 
Case 1: 
 
A = D, where D is diagonal matrix. In this case the systems of Eqns. (2) 
are of the form 
 
a11x1  ...................... = b1 
.     a22x2          . = b2 
.      .          . =   . 
.          .          .      . 
.    .      .      . 
.    annxn = bn 
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and det (A) – a11 a22 .... ann 
 
Since the matrix A is nonsingular, a11 ¹  0 for 1, 2, ....., n and we obtain 
the solution as 
 
xi = bi/aii, i = 1, 2, ...., n. 
 
Note that in this case we need only n divisions to obtain the solution 
vector. 
 
Case 2 : 
 
A = L, where L is a lower triangular matrix (aij = 0, j > i). The system 
of Eqns. (2) is now of the form 
 
a11x1     = b1 
a21x1 + a22x2    = b2 

a31x1 + a32x2 + a33x3  = b3 
.          (4) 
. 
. 
an1x1 + an2x2 + an3x3 + ... + annxn = bn 
and det (A) = a11a22...ann. 
 
You may notice here that the first equation of the system (4) contains 
only x1, the second equation contains only x1 and x2 and so on. Hence, 
we find x1 from the first equation, x2 from the second equation and 
proceed in that order till we get xn from the last equation. 
 
Since the coefficient matrix A is nonsingular, a11 ¹  0, i = 1, 2, ..., n. we 
thus obtain 
x1 = b1/a11 
x2 = (b2 – a21x1)/a22 
x3 = (b3 – a31x1 – a32x2)/a33 
. 
. 
. 

xn = (bn -∑
−

=

1

1

n

j

 aij xj)/ann 

 
In general, we have for any i 
 

xi = (bi - ( ) ii

n

j
jij axa /

1

1
∑

−

=
  i = 1, 2, ...., n.     (5) 
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For example, consider the system of equations 
 
5x1   = 5 
-x1 - 2x2  = -7 
-x1 + 3x2 + 2x3 = 5 
 
From the first equation we have, 
 
x1 = 1 
 
From the second equation we get, 
 

x2 = 17 x
2

- +
-

 = 3 

 
and from the third equation we have, 
 

x3 = 1 25 x 3x
2

+ -
 = -

3
2

. 

 
Since the unknowns in this methods are obtained in the order x1, x2, ...., 
xn, this method is called the forward substitution method. 
 
The total number of multiplications and divisions needed to obtain the 
complete solution vector x, using this method is 
 
M = 1 + 2 + ..... + n = n(n + 1)/2. 
 
Case 3: 
 
A = U, where U is an upper triangular matrix (aij = 0, j < 1). The 
system (2) is now of the form 
 
a11x1 + a12x2 + a13x3 + ... + a1nxn  = b1 

a22x2 + a23x3 + ... + a2nxn  = b2 
a33x3 + ... + a3nxn  = b3    (6) 

 
an-1,n-1xn-1 + an-1,nxn = bn-1 
                   ann   xn = bn 

 
and det (A) = a11a22...ann. 
 
You may notice here that the nth (last) equation contains only xn, the (n 
– 1)th equation contains xn and xn-1 and so on. We can obtain xn from the 
nth equation, xn-1 from the (n – 1)th equation and proceed in that order 
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till we get x1 from the first equation. Since the coefficient matrix A is 
nonsingular, aii ¹  0, i = 1, 2, ...., n and we obtain 
 
xn = bn/ann 
xn-1 = (bn-1 – an-1,nxn)/an-1,n-1 
 

x1 = (bi -  ∑
=

n

j 2

 aij xj)/a11 

 
or in general 
 

xi = (bi - ∑
+=

n

ij 1

 aij xj)/aii i = 1, 2, ..., n     (7) 

 
Since the unknowns in this method are determined in the order xn, xn-1, 
..., x1, this method is called the back substitution method. The total 
number pf multiplications and divisions needed to obtain the complete 
solution vector x using this method is again n(n + 1)/2. 
 
Let us consider the following example. 
 
Example 3: 
 
Solve the linear system of equations 
2x1 + 3x2 – x3 = 5 
        -2x2 – x3 = -7 
               -5x3 = -15 
 
Solution: 
 
From the last equation, we have 
 
x3 = 3. 
 
From the second equation, we have 
 

x2 = 2 23 3

22

b a x
a

-
 = 

( 7 3)
( 2)

- +
-

 = 2. 

 
Hence from the first equation, we get 
 

x1 = 1 12 2 13 3

11

b a x a x
a

- -
 = 

(5 3.2 3)
2

- +
 = 1 
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In the above discussion you have observed that the system of Eqns. (2) 
can be easily solved if the coefficient matrix A in Eqns. (2) has one of 
the three forms D, L or U or if it can be transformed to one of these 
forms. Now, you would like to know how to reduce the given matrix A 
into one of these three forms? One such method which transforms the 
matrix A to the form U is the Gauss elimination method which we shall 
describe in the next section. 
 
3.4 Gauss Elimination Method 
 
Gauss elimination is one of the oldest and most frequently used methods 
for solving systems of algebraic equations. It is attributed to the famous 
German mathematician, Carl Fredrick Gauss (1777 – 1855). This 
method is the generalization of the familiar method of eliminating one 
unknown between a pair of simultaneous linear equations. You must 
have learnt this method in your linear algebra course (MTH 122). In this 
method the matrix A is reduced to the form U by using the elementary 
row operations which include: 
 
i) interchanging any two rows 
 
ii)  multiplying (or dividing) any row by a non-zero constant 
 
iii)  adding (or subtracting) a constant multiple of one row to another 

row. 
 

The operation Ri + mRj is an elementary row operation, that means, add 
to the elements of the ith row m times the corresponding elements of the 
jth row. The elements in the jth row remain unchanged. 
 
If any matrix A is transformed into another matrix B by a series of 
elementary row operations, we say that A and B are equivalent matrices. 
Consequently, we have the following definition. 
 
To understand the Gauss elimination method let us consider a system of 
three equations: 
 
a11x1 + a12x2 + a13x3 = b1 
a21x1 + a22x2 + a23x3 = b2       (8) 
a31x1 + a32x2 + a33x3 = b3 
 
Let a11 ¹  0. In the first stage of elimination we multiply the first 
equation in Eqns. (8) by m21 = (-a21/a11) and add to the second equation. 
Then multiply the first equation by m31 = (-a31/a11) and add to the third 
equation. This eliminates x1 from the second and third equations. The 
new system called the first derived system then becomes 
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a11x1 + a12x2 + a13x3 = b1 
 

(1)

22a x2 + a(1)

23 x3 = b(1)

2         (9) 
 
a(1)

32 x2 + a(1)

33 x3 = b(1)

3  
 
where, 
 

(1)

22a  = a22 - 
21

11

a
a

a12 

a(1)

23  = a23 - 
21

11

a
a

a13 

b (1)

2  = b2 - 
21

11

a
a

b1 

a(1)

32  = a32 - 
31

11

a
a

a12 

a(1)

33  = a33 - 
31

11

a
a

a13 

b (1)

3  = b3 - 
31

11

a
a

b1 

 
In the second stage of elimination we multiply the second equation in 
(9) by m32 = (-a(1)

32 / (1)

22a ), (1)

22a  ¹  0 and add to the third equation. This 
eliminates x2 from the third equation. The new system called the second 
derived system becomes  
 
a11x1 + a12x2 + a13x3 = b1 
          (1)

22a x2 + a(1)

23 x3 = b(1)

2                 (11) 

                        a(2)

33 x3 = b(2)

3  
 
where  
 

a(2)

33  = a(1)

33  - 
(1)

32
(1)

22

a
a

 a(1)

23  

b (2)

3  = b(1)

3  - 
(1)

32
(1)

22

a
a

b (1)

2                  (12) 

 
You may note here that the system of Eqns. (11) is an upper triangular 
system of the form (6) and can be solved using the back substitution 
provided method a(2)

33  ¹  0. 
 
Let us illustrate the method through an example. 
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Example 4: 
 
Solve the following linear system 
 
 2x1 + 3x2 – x3  = 5 
 4x1 + 4x2 – 3x3  = 3                (13) 
-2x1 + 3x2 – x3 = 1 
 
using Gauss elimination method. 
 
Solution: 
 
To eliminate x1 from the second and third equations of the system (13) 

add 
4

2
-

  = -2 times the first equation to the second equation and 

add -(-2)/2 = 1 times the first equation to the third equation. We obtain 
the new system as 
 
2x1 + 3x2 – x3  =  5 
        -2x2 – x3  = -7                (14) 
        6x2 – 2x3  =  6 
 
In the second stage, we eliminate x2 from the third equation of system 
(14). Adding -6/(-2) = 3 times the second equation to the third equation, 
we get 
 
2x1 + 3x2 - x3  =    5  
        -2x2 - x3  =   -7                (15) 
               -5x3  = -15 
 
System (15) is in upper triangular form and its solution is 
 
x3 = 3, x2 = 2, x1 = 1. 
 
You may observe that we can write the above procedure more 
conveniently in matrix form. Since the arithmetic operations we have 
performed here affect only the elements of the matrix A and the vector 
b, we consider the augmented matrix i., [A|b] (matrix A augmented by 
the vector b) and perform the elementary now operations on the 
augmented matrix. 
 

[A|b] =  
















3

2

1

333231

232221

131211

b

b

b

aaa

aaa

aaa

R2 - 
21

11

a
a

 R1, R3 - 
31

11

a
a

 R1 
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» ( ) ( )

( )

( )

















3

1
2

1

33
1

32

1
32

1
22

131211

b

b

b

aa

aa

aaa

  R3 - 
(1)

32
(1)

22

a
a

 R2 

 

»  ( ) ( ) ( )

















3

1
2

1

33

1
32

1
22

131211

b

b

b

a

aa

aaa

 

 
which is in the desired from where, a(1)

22 , a(1)

23 , a(1)

32 , a(1)

33 , b(1)

2 , b(1)

3 , a(2)

33 , a(2)

3  
are given by Eqns. (10) and (12). 
 
Definition : The diagonal elements a11, a(1)

22  and a(2)

33  which are used as 
divisors are called pivots. 
 
You might have observed here that for a linear system of order 3, the 
elimination was performed in 3 – 1 = 2 stages. In general for a system of 
n equations given by Eqns. (2) the elimination is performed in (n – 1) 
stages. At the ith stage of elimination, we eliminate xi, starting from (i + 
1)th row up to the nth row. Sometimes, it may happen that the 
elimination process stops in less than (n – 1) stages. But this is possible 
only when no equations containing the unknowns are left or when the 
coefficients of all the unknowns in remaining equations become zero. 
Thus if the process stops at the rth stage of elimination then we get a 
derived system of the form 
 
a11x1 + a12x2 + ... + a1nxn = b1 
a(1)

22 x2 + ... + a(1)

2n xn = b(1)

2  
. 
. 
.                   (16) 
a( r 1)

rr

- xr + ... + a( r 1)

rn

- xn = b( r 1)

r

-  

           0 = b( r 1)

r 1

-

+  
.         . 
.         . 
.         . 
0 = b( r 1)

n

-

  

Where r ≤  n and a11 ¹  0, a(1)

22  ¹  0, ...., a( r 1)

rr

-  ¹  0. 
 
In the solution of system of linear equations we can thus expect two 
different situations 
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1) r = n 
2) r < n. 

 
Let us now illustrate these situations through examples. 
 
Example 5: 
 
Solve the system of equations 
 
  4x1 + x2 + x3 = 4 
 x1 + 4x2 – 2x3 = 4 
-x1 + 2x2 – 4x3 = 2 
using Gauss elimination method 
 
Solution: 
 
Here we have 
 

[A|b] =  
















−
−

2

4

4

421

241

114

R2 - 
1
4

 R1, R3 + 
1
4

 R1 

 

= 
















3

3

4

4/154/90

4/94/150

114

  R3 - 
3
5

 R2 

 

= 
















−
−

5/6

3

4

5/1200

4/94/150

114

  

 
using back substitution method, we get 
x3 = -1/2; x2 = 1/2; x1 = 1 
 

Also, det (A) = 4 *  
15
4

 *  
( 12)

5
-

 = -36 

 
Thus in this case we observe that r = n = 3 and the given system of 
equations has a unique solution. Also the coefficient matrix A in this 
case is nonsingular. Let us look at another example. 
 
Example 6: 
 
Solve the system of equations 
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  3x1 + 2x2 + x3 = 3 
    2x1 + x2 + x3 = 0 
6x1 + 2x2 + 4x3 = 6 
 
 
using Gauss elimination method. Does the solution exist? 
 
Solution: We have 
 

[A|b] = 
















6

0

3

426

112

123

 R2 - 
2
3

 R1, R3 – 2R1 

 

= 
















−
−

−
0

2

3

220

3/13/10

123

  R3 – 6R2 

 

= 
















−−
12

2

3

000

3/13/10

123

  

 
In this case you can see that r < n and elements b1, b

(1)

2  and b(2)

3  are all 
non-zero. 
 
Since we cannot determine x3 from the last equation, the system has no 
solution. In such a situation we say that the equations are inconsistent. 
Also note that det (A) = 0 i.e., the coefficient matrix is singular. 
 
We now consider a situation in which not all b’s are non-zero. 
 
 
Example 7: Solve the system of equations 
 
16x1 + 22x2 + 4x3 = -2 
    4x1 – 3x2 + 2x3 = 9 
12x1 + 25x2 + 2x3 = -11 
 
using gauss elimination method. 
 
Solution: 
 
In this case we have  
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[A|b] =   
















−

−
−

11

9

2

22512

234

4226

 R2 - 
1
4

 R1, R3 - 
3
4

 R1 

 

= 
















−

−

−
−

2/19

2/19

2

12/170

12/170

4226

 R3 + R2 

 

=  














 −
−

0

2/19

2

000

12/170

4226

 

 
Now in this case r < n and elements b1, b

(1)

2  are non-zero, but b(2)

3  is zero. 
Also the last equation is satisfied for any value of x3. Thus, we get 
 
x3 = any value 
 

x2 = -
2

17
 (

19
2

 - x3) 

 

x1 = 
1

16
 (-2 – 22x2 – 4x3)  

 
Hence the system of equations has infinitely many solutions. 
 
Note that in this case also det(A) = 0. 
 
 
The conclusions derived from Examples 4, 5 and 6 are true for any 
system of linear equations. We now summarize these conclusions as 
follows: 
 
i) If r = n, then the system of Eqns. (2) has a unique solution which 

can be obtained using the back substitution method. Moreover, 
the coefficient matrix A in this case is nonsingular. 
 

ii)  If  r < n and all the elements b( r 1)

r 1

-

+ , b( r 1)

r 2

-

+ , ...., b( r 1)

n

-  are zero then 
the system has no solution. In this case we say that the system of 
equations inconsistent. 

 
iii)  If r < n and all the elements b( r 1)

r 1

-

+ , b( r 1)

r 2

-

+ , ....., b( r 1)

n

- , if present, are 
zero, then the system has infinite number of solutions. In this case 
the system has only r linearly independent rows. 
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In both the cases (ii) and (iii), the matrix A is singular. 
 
Now we estimate the number of operations (multiplication and division) 
in the Gauss elimination method for a system of n linear equations in n 
unknowns as follows: 
 
No. of divisions 
1st step of elimination (n – 1) divisions 
2nd step of elimination (n – 2) divisions 
 
(n – 1)th step of elimination 1 divisions 
\  Total number of divisions = ( n – 1) + (n – 2) + ..... + 1 
 

       = å (n – 1) = 
n(n 1)

2
-

 

 
No. of multiplications 
1st step of elimination n(n – 1) multiplications 
2nd step of elimination(n – 1) (n – 2) multiplications 
(n – 1)th step of elimination 2.1 multiplications 
\  Total number of multiplications = n(n – 1) + (n – 1) (n – 1) + .... + 2.1 
 
      = å n(n – 1) 

= å n2 - å n 

= 
n(n 1)(2n 1)

6
+ +

 - 
n(n 1)

2
+

 

= 
1
3

 n(n + 1) (n – 1) 

 
Also the back substitution adds n divisions (one division at each step) 
and the numbers of multiplications added are 
(n – 1)th equation 1 multiplication 
(n – 2)th equation 2 multiplication 
 
1st equation ( n – 1) multiplication 

\  Total multiplications = å (n – 1) = 
n(n 1)

2
-

 

Total operation added by back substitution = 
n(n 1)

2
-

 + n = 
n(n 1)

2
+

 

You can verify these results for n = 3 from Eqns. (9) and (11). 
 
Thus to find the solution vector x using the Gauss elimination method, 
we need 
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M = 
n(n 1)

2
-

 + 
1
3

n(n2 – 1) + 
n
2

(n + 1) 

= 
n
6

[2n2 + 6n – 2] 

= 
3n

6
 + n2 - 

n
3  

 
operations. For large n, we may say the total number of operations 

needed is 
1
3

n3 (approximately). Thus, we find that Gauss elimination 

method needs much lesser number of operations compared to the 
Cramer’s rule. 
 
It is clear from above that you can apply Gauss elimination method to a 
system of equations of any order. However, what happens if one of the 
diagonal elements i.e., the pivots in the triangularization process 
vanishes? Then the method will fail. In such situations we modify the 
Gauss elimination method and this procedure is called pivoting. 
 
Pivoting 
 
In the elimination procedure the pivots a11, a(1)

22 , ..., a(n 1)

nn

-  are used as 

divisors. If at any stage of the elimination one of these pivots say a( i 1)

ii

- , 

(a(0)

11  = a11), vanishes then the elimination procedure cannot be continued 

further (see Example 8). Also, it may happen that the pivot a( i 1)

ii

- , though 
not zero, may be very small in magnitude compared to the remaining 
elements in the ith column. Using a small number as a divisor may lead 
to the growth of the round-off error. In such cases the multipliers (e.g. 

( i 2)

i 1,i

( i 1)

ii

a

a

-

-

-

-
, 

( i 3)

i 2,i

( i 1)

ii

a

a

-

-

-

-
) will be larger than one in magnitude. The use of large 

multiplier will lead to magnification of error both during the elimination 
phase and during the back substitution phase of the solution. To avoid 
this we rearrange the remaining rows (ith row upto nth row) so as to 
obtain a non-vanishing pivot or to make it the largest element in 
magnitude in that column. The strategy is called pivoting (see Example 
9). The pivoting is of the two types; partial pivoting and complete 
pivoting. 
 
Partial Pivoting 
 
In the first stage of elimination, the first column is searched for the 
largest element in magnitude and this largest element is then brought at 
the position of the pivot by interchanging the first row with the row 
having the largest element in magnitude in the first column. In the 
second stage of elimination, the second column is searched for the 



MTH 213    NUMERICAL ANALYSIS 1 
 

 244

largest element in magnitude among the (n – 1) elements leaving the 
first element and then this largest element in magnitude is brought at the 
position of the second pivot by interchanging the second row with the 
row having the largest element in the second column. This searching and 
interchanging of rows is repeated in all the n – 1 stages of the 
elimination. Thus we have the following algorithm to find the pivot. 
 
For i = 1, 2, ....., n, find j such that 
 

( i 1)
jia -  = 

k
max ( i 1)

kia - , i ≤ k≤  n, 

and interchange rows i and j. 
 
Complete Pivoting 
 
In the first stage of elimination, we search the entire matrix A for the 
largest element in magnitude and bring it at the position of the pivot. In 
the second stage of elimination we search the square matrix of order n – 
1 (leaving the first row and the first column) for the largest element in 
magnitude and bring it to the position of second pivot and so on. This 
requires at every stage of elimination not only the interchanging of rows 
but also interchanging of columns. Complete pivoting is much more 
complicated and is not often used. 
 
In this unit, by pivoting we shall mean only partial pivoting. 
 
Let us now understand the pivoting procedure through examples. 
 
Example 8: 
 
Solve the system of equations 
 
x1 + x2 + x3 = 6 
3x1 + 3x2 + 4x3 = 20 
2x1 + x2 + 3x3 = 13 
 
Using Gauss elimination method with partial pivoting. 
 
Solution: 
 
Let us first attempt to solve the system without pivoting. We have 
 

[A|b] = 
















13

20

6

312

433

111

  R2 – 3R1, R3 – 2R1 
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=  
















− 1

2

6

110

100

111

 

 
Note that in the above matrix the second pivot has the value zero and the 
elimination procedure cannot be continued further unless, pivoting is 
used. 
 
Let us now use the partial pivoting. In the first column 3 is the largest 
element. Interchanging the rows 1 and 2, we have 
 

[A|b] =  
















13

6

20

312

111

433

R2 - 
1
3

 R1, R3 - 
2
3

 R1 

 

= 
















−
−

−
−

3/1

3/2

20

3/110

3/100

433

 

 
In the second column, 1 is the largest element in magnitude leaving the 
first element. Interchanging the second and third rows we have 
 

[A|b] = 
















−
−

−
−

3/2

3/1

20

3/100

3/110

433

 

 
You may observe here that the resultant matrix is in triangular form and 
no further elimination is required. Using back substitution method, we 
obtain the solution 
 
x3 = 2, x2 = 1, x1 = 3. 
 
Let us consider another example. 
 
Example 9: 
 
Solve the system of equations 
 
0.0003 x1 + 1.566 x2 = 1.569 
0.3454 x1 – 0.436 x2 = 3.018 
               (17) 
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using Gauss elimination method with and pivoting. Assume that the 
numbers in arithmetic calculations are rounded to four significant digits. 
The solution of the system (17) is x1 = 10, x2 = 1. 
 
 
Solution: 
 
Without Pivoting 
 

m21 = - 21

11

a
a

 = -
0.3454
0.0003

 = -1151.0  (rounded to four places) 

a(1)

22  = -0.436 – 1.566 ´  1151 
= -0.436 – 1802.0 – 1802.436 
= -1802.0 

b (1)

2  = 3.018 – 1.569 ´  1151.0 
= 3.018 – 1806.0 
= -1803.0 
 

Thus, we get the system of equations 
0.0003 x1 + 1.566 x2 = 1.569 
   - 1802.0 x2 = -1803.0 

 
which gives 

x2 = 
1803.0
1802.0

 = 1.001 

x1 = 
1.569 1.566 1.001

0.0003
- ´

 = 
1.569 1.568

0.0003
-

 

= 3.333 
 

which is highly inaccurate compared to the exact solution. 
 
We interchange the first and second equations in (17) and get 
0.3454 x1 – 0.436 x2 = 3.018 
0.0003 x1 + 1.566 x2 = 1.569 
 
we obtain 
 

m21 = - 21

11

a
a

 = -0.0009 

a(1)

22  = 1.566 – 0.0009 ´  (0.436) 
1.566 – 0.0004 
= 1.566 

b (1)

2  = 1.569 – 3.018 ´  (0.0009) 
= 1.569 - -.0027 
= 1.566 
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Thus, we get the system of equations 
 
0.3454 x1 – 0.436 x2 = 3.018 
         1.566 x2 = 1.566 
 
which gives 
 
x2 = i 
 

x1 = 
3.018 0.436

0.3454
+

 = 
3.454
0.3454

 = 10 

 
which is the exact solution. 
 
We now make the following two remarks about pivoting. 
 
Remark: If the matrix A is diagonally dominant i.e., 
 

iia ³  ∑
=
=

n

j
i

iia

1
1

, then no pivoting is needed. See Example 5 in which A is  

 
diagonally dominant. 
 
Remark: 
 
If exact arithmetic is used throughout the computation, pivoting is not 
necessary unless the pivot vanishes. However, if computation is carried 
up to a fixed number of digits, we get accurate results if pivoting is used. 
 
There is another convenient way of carrying out the pivoting procedure. 
Instead of physically interchanging the equations all the time, the n 
original equations and the various changes made in them can be 
recorded in a systematic way. Here we use an n ´  (n + 1) working array 
or matrix which we call W and is same as our augmented matrix [A|b]. 
Whenever some unknown is eliminated from an equation, the changed 
coefficients and right side for this equation are calculated and stored in 
the working array W in place of the previous coefficients and right side. 
Also, we use an n-vector which we call p = (pi) to keep track of which 
equations have already been used as pivotal equation (and therefore 
should not be changed any further) and which equations are still to be 
modified. Initially, the ith entry pi pf p contains the integer i, i = 1, ........, 
n and working array W is of the form 
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W = (wij) =  























nnnnn

n

n

b

b

b

aaa

aaa

aaa

2

1

21

22221

11211

  

 
Further, one has to be careful in the selection of the pivotal equation for 
each step. For each step the pivotal equation must be selected on the 
basis of the current state of the system under consideration i.e. without 
foreknowledge of the effect of the i = 1, ......, n, where di is the number 
di = max |aij| 
1 ≤ j≤  n 

 
At the beginning of say kth step of elimination, e pick as pivotal 
equation that one from the available n – k, which has the absolutely 
largest coefficient of xk relative to the size of the equation. This means 
that the integer j is selected between k and n for which 
 

jk

j

p

p

w

d
³ ik

i

w
d

, " i = pk, ....., pn 

 
We can also store the multipliers in the working array W instead of 
storing zeros. That is, if pi is the first pivotal equation and we use the 
multipliers mpi,1, i = 2, ....., n to eliminate x1 from the remaining (n – 1) 
positions of the first column then in the first column we can store the 
multipliers mpi,1, i = 2, ....., n, instead of storing zeros. 
 
Let us now solve the following system of linear equations by scaled 
partial pivoting by storing the multipliers and maintaining pivotal 
vector. 
 
Example 10: 
 
Solve the following system of linear equations with pivoting 
 
x1 – x2 + 3x3 = 3 
2x1 + x2 + 4x3 = 7 
3x1 + 5x2 – 2x3 = 6 
 
Solution: 
 
Here the working matrix is 
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W = 
















−

−

6253

7412

3311

  p = [p1, p2, p3]
T = [1, 2, 3]T 

 
and d1 = 3, d2 = 4 and d3 = 5. 
 
Note that d’s will not change in the successive steps. 
 

Step 1: Now p1,1

1

w
d

 = 
1
3

p2,1

2

w
d

 = 
2
4

 = 
1
2

, p 3,1

3

w
d

 = 
3
5

. 

 

Since 
3
5

 > 
1
2

, 
1
3

, 

 
Hence, p1 = 3, p2 = 2 and p3 = 1. 
 
We use the third equation to eliminate x1 from first and second 
equations and store corresponding multipliers instead of storing zeros in 
the working matrix. 
 

The multipliers are mpi,1 = i ,1

i ,1

p

p

w
w

, i = 2, 3 

Therefore, m2,1 = 2,1

1,1

p

p

w
w

 = 2,1

3,1

w
w

 = 
2
3

 

and m1,1 = 3,1

1,1

p

p

w

w
 = 1,1

3,1

w
w

 = 
1
3

 

 
After the first step the working matrix is transformed to 
 

  W(1) =      
( )
( )
  
















−
−
−

6253

33/163/73/2

13/113/83/1

   p = (p1, p2, p3)
T = (3, 2, 1)T 

 

Step 2: 2,2p

2

w

dp
 = 

2,2

2

w

d
 = 

7 / 3
4

 = 
7
12

 

 3,2p

3

w

dp
 = 

1,2

1

w

d
 = 

8 / 3
3

 = 
8
9  

 

Now 
8
9

 > 
7
12

 so that we have p = (p1, p2, p3)
T = (3, 2, 1)T. 
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Multiplier is m
i .2p = i ,2

2,2

p

p

w

w
, i = 3 

 

Þ  m
3.2p = i ,2

2,2

p

p

w

w
 = 

7 / 3
8 / 3

-
-

 = 
7
8

. 

 
That is, we use the first equation as pivotal equation to eliminate x2 from 
second equation and also we store the multiplier. After the second step, 
we have the following working matrix. 
 
 

     W(2) =   























−

−

6253
8

17

24

51

8

7

3

2

1
3

11

3

8

3

1

 p = [3, 1, 2]T 

 
In the working matrix the circled numbers denote multipliers and 
squared ones denote pivotal elements. Rearranging the equations (i.e., 
3rd equation becomes the first equation, 1st becomes the 2nd and 2nd 
becomes the third) we get the reduced upper triangular system which 
can be solved by back substitution. 
 
3x1 + 5x2 – 2x3 = 6 
 

-
8
3

 x2 + 
11
3

 x3 = 1 

 
51
24

 x3 = 
17
8

 

 
By back substitution, we get x1 = 1, x2 = 1 and x3 = 1. 
 
We now make the following two remarks. 
 
Remark: 
 
We do not interchange rows in Step 1 and 2, instead we maintain a 
pivotal vector and use it at the end to get upper triangular system. 
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Remark: 
 
We store multipliers in the working matrix so that we can easily solve 
Ax = c, once we have solved Ax = b. This will be explained to you in 
detail in Unit 2 when we discuss the method of obtaining inverse of a 
matrix A. 
 
We shall now describe the triangularization method which is also a 
direct method for the solution of system of equations. 
 
In this method the matrix of coefficients of the linear system being 
solved is factored into the product of two triangular matrices. This 
method is frequently used to solve a large system of equations. We shall 
discuss the method in the next section. 
 
3.5 LU Decomposition Method 
 
Let us consider the system of Eqns. (2), where A is a non-singular 
matrix. We first write the matrix A as the product of a lower triangular 
matrix L and an upper triangular matrix U in the form 
 
A = LU 
or in matrix form we write                (18) 
 

 























nnnn

n

n

aaa

aaa

aaa

21

22221

11211

=













































nn

n

n

nnnn u

uu

uuu

lll

ll

l

00

00

00

222

11211

21

2221

11

    (19) 

 
The left side matrix A has n2 elements, whereas L and U have 1 + 2 + ... 
+ n = n(n + 1)/2 elements each. Thus, we have n2 + n unknowns in L and 
U which are to be determined. On comparing the corresponding 
elements on two sides in Eqn. (19), we get n2 equations in n2 + n 
unknowns and hence n unknowns are determined. Thus, we get a 
solution in terms of these n unknowns i.e., we get a n parameter family 
of solutions. In order to obtain a unique solution we either take all the 
diagonal elements of L as 1, or all the diagonal elements of U as 1. 
 
For uij = 1, i = 1, 2, ...., n, the method is called the Crout LU 
decomposition method. For 1ii = 1, i = 1, 2, ...., n we have Doolittle LU 
decomposition method. Usually Crout’s LU decomposition method is 
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used unless it is specifically mentioned. We shall now explain the 
method for n = 3 with uii = 1, i = 1, 2, 3. We have 
 

  
















333231

232221

131211

aaa

aaa

aaa

 =
















333231

2221

11

0

0

lll

ll

ol

 
















100

10

1

23

1312

u

uu

   

 
or 
 

















333231

232221

131211

aaa

aaa

aaa

= 
















+++
++

332332133132123131

2322232122222121

1311121111

lulullull

ulullull

ulull

  

 
On comparing the elements of the first column, we obtain 
111 = a11, 121 = a21, 131 = a31                (20) 
i.e., the first column of L is determined. 
 
On comparing the remaining elements of the first row, we get 
111u12 = a12; 111u13 = a13 
which gives 
u12 = a12/111; u13 = a13/111                (21) 
 
Hence the first row of U is determined 
 
On comparing the elements of the second column, we get 
121u12 + 122 = a22 
131u12 + 132 = a32 
which gives 
 

  









−=
−=

12313232

12212222

ulal

ulal

   

                 (22) 

 
Now the second column of L is determined. 
 
On comparing the elements of the second row, we get 
121u13 +122u23 = a23 
which gives u23 = (a23 – 121 u13)/122                (23) 
and the second row of U is determined. 
 
On comparing the elements of the third column, we get 
131u13 + 132u23 + 133 = a33 

which gives 133 = a33 – 131u13 – 132u23               (24) 
You must have observed that in this method, we alternate between getting a 
column of L and a row of U in that order. If instead of uii = 1 1, 2, ...., n, we 
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take 1ii = 1, i = 1, 2, ...., n, then we alternative between getting a row of U and  
a column of L in that order. 
 
Thus, it is clear from Eqns. (20) – (24) that we can determine all the elements 
of L and U provided the nonsingular matrix A is such that 
 

a11 ¹  0, 








2221

1211

aa

aa
¹  0. 

 
Similarly, for the general system of Eqns. (2), we obtain the elements of L and 
U using the relations 
 

1ij = aij - ∑
=

=

1

1

j

i

1ikukj, i ³  j 

uij = (aij - ∑
=

=

1

1

j

i

1ikukj)/1ii, i ³  j 

uii = 1 
Also, det (A) = 111122 ....., 1nn. 
 
Thus w can say that every nonsingular matrix A can be written as the 
product of a lower triangular matrix and an upper triangular matrix if all 
principal minors of A are nonsingular, i.e., if 
 

a11 ¹  0, 








2221

1211

aa

aa
¹  0, 

333231

232221

131211

aaa

aaa

aaa

¹  0, ..... |A| ¹  0. 

 
Once we have obtained the elements of the matrices L and U, we write the 
system of equations 
 
A x = b                   (25) 
in the form 
L U x = b   
                 (26) 
The system (26) may be further written as the following two systems 
 
U x = y                   (27) 
L y = b                    (28) 
 
Now, we first solve the system (28), i.e., 
 
L y = b, 
 
using the forward substitution method to obtain the solution vector y. Then 
using this y, we solve the system (27), i.e., 
 
U x = y, 
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using the backward substitution method to obtain the solution vector x. 
 
The number of operations for this method remains the same as that in the 
Gauss-elimination method. 
 
We now illustrate this method through an example. 
 
 
Example 11: 
 
Use the LU decomposition method to solve the system of equations 
 
x1 + x2 + x3 = 1 
4x1 + 3x2 – x3 = 6 
3x1 + 5x2 + 3x3 = 4 
 
Solution: Using 1ii = 1, i = 1, 2, 3, we have 
 

















−
353

134

111

= 

















1

01

001

3231

21

ll

l

















33

2322

311211

00

0

u

uu

uuu

  

 

                      =

















+++
++

3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

  

 
On comparing the elements of row and column alternatively, on both sides, we 
obtain 
 
first row  : u11 = 1,   u12 = 1, u13 = 1 
first column  : 121 = 4,   131 = 3 
second row  : u22 - -1,   u23 = -5 
second column : 132 = -2 
third row  : u33 = -10 
 
Thus, we have 
 

L = 

















− 123

014

001

 U = 

















−
−−
1000

510

111

 

 
Now from the system 
L y = b 
 
or  
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















− 123

014

001

 

















3

2

1

y

y

y

 = 

















4

6

1

 

 
we get 
y1 = 1, y2 = 2, y3 = 5 
and from the system 
U x = y 
or  

















−
−−
1000

510

111

















3

2

1

x

x

x

 = 

















5

2

1

 

 
we get 
x3 = -1/2, x2 = 1/2, x1 = 1. 
 
4.0 CONCLUSION 
 

Same as in the summary. 
 

5.0 SUMMARY 
 
In this unit we have covered the following: 
 
1) For a system of n equations 
 Ax = b      (see Eqn. (2)) 
 

in n unknowns, where A is n ´  n non-singular matrix, the 
methods of finding the solution vector x may be broadly 
classified into two types: (1) direct methods and (ii) iterative 
methods 

 
2) Direct methods produce the exact solution in a finite number of 

steps provided there are no round-off errors. Cramer’s rule is one 
such method. This method gives the solution vector as 

 

 xi = id
d

 i = 1, 2, ..., n 

 
where d = |A| and di is the determinant pf the matrix obtained 
from A by replacing the ith column of A by the column vector b. 
Total number of operations required for Cramer’s rule in solving 
a system of n equations are 
 
M = (n + 1) (n – 1)n! + n 
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Since the number M increases very rapidly, Cramer’s rule is not 
used for n > 4. 

 
3) For larger systems, direct methods becomes more efficient if the 

coefficient matrix A is in one of the forms D (diagonal), L (lower 
triangular) or U (upper triangular). 

 
4) Gauss elimination method is another direct method for solving 

large systems (n > 4). In this method the coefficient matrix A is 
reduced to the form U by using the elementary row operations. 
The solution vector x is then obtained by using the back 
substitution method. For large n, the total numbers of operations 

required in Gauss elimination method are 
1
3

n3 (approximately). 

 
5) In Gauss elimination method if at any stage of the elimination 

any of the pivots vanishes or become small in magnitude, 
elimination procedure cannot be continued further. In such cases 
pivoting is used to obtain the solution vector x. 

 
6) Every non-singular matrix A can be written as the product of a 

lower triangular matrix and an upper triangular matrix, by the LU 
decomposition method, if all the principal minors of A are non-
singular. Thus, LU decomposition method, which is a 
modification of the Gauss elimination method can be used to 
obtain the solution vector x. 

 
6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 

1) If A =



















−

−
−

1312

2101

1012

2023

  calculate det (A). 

 
2) Solve the system of equations 
 

3x1 + 5x2          =8 
-x1 + 2x2 – x3   = 0 
3x1 – 6x2 + 4x3 = 1 
 
using Cramer’s rule. 
 

3) Solve the system of equations 
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x1 + 2x2 – 3x3 + x4 = -5 
          x2 + 3x3 + x4 = 6 
2x1 + 3x2 + x3 + x4 = 4 
  x1           + x3 + x4 = 1 
 
using Cramer’s rule. 
 
 

4) Solve the system of equations 
 

x1    = 1 
2x1 = x2   = 1 
3x1 – x2 – 2x3   = 0 
4x1 + x2 – 3x3 + x4  = 3 
5x1 – 2x2 – x3 – 2x4 + x5 = 1 
 
using forward substitution method. 

 
5) Solve the system of equations 

 
x1 – 2x2 + 3x3 – 4x4 + 5x5 = 3 
         x2 – 2x3 + 3x4 – 4x5 = -2 
                  x3 – 2x4 + 3x5 = 2 
                           x4 – 2x5 = -1 
                                     x5 = 1 
 
using backward substitution method. 

 
6) Use Gauss elimination method to solve the system of equations 

 
   x1 + 2x2 + x3 = 3 
3x1 – 2x2 – 4x3 = -2 
  2x1 + 3x2 – x3 = -6 

 
7) Solve the system of equations 
  

 

















 −

1101

1132

1310

1321

 



















4

3

2

1

x

x

x

x

= 



















1

4

6

5

 

 
8) Use Gauss elimination method to solve the system of equations 
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











































−
−−

−−
−

−

5

4

3

2

1

21000

12100

01210

00121

00012

x

x

x

x

x

= 























1

0

0

0

1

 

 
9) Solve the system of equations 
 
 0.729x + 0.81y + 0.9z = 0.6867 

x + y + z = 0.8338 
1.331x + 1.21y + 1.1z = 1.000 
 
using gauss eliminating method with and without pivoting. 
Round off the numbers in arithmetic calculations to four 
significant digits. The exact solution of the system rounded to 
four significant digit is 

 
x = 0.2245, y = 0.2814  z = 0.3279 

 
10) Use the LU decomposition method with uii = 1, i = 1, 2, 3 to 

solve the system of equations given in Example 11. 
 

11) Use the LU decomposition method with 1ii = 1, i = 1, 2, 3 to 
solve the system of equations given in TMA Question 4 no. 1. 

 
12) Use L U decomposition method to solve the system of equations 

given in TMA Question 4 no. 3. 
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UNIT 2   DIRECT METHOD 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 The Method of adjoints 
3.2 The Gauss-Jordan Reduction Method 
3.3 LU Decomposition Method 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION  
 
In the previous unit, you have studied the Gauss elimination and LU 
decomposition methods for solving systems of algebraic equations A x = 
, when A is a n ́  n nonsingular matrix. Matrix inversion is another 
problem associated with the problem of finding solutions of a linear 
system. If the inverse matrix A-1 of the coefficient matrix A is known 
then the solution vector x can be obtained from x = A-1b. In genral, 
inversion of matrices for solving system of equations should be avoided 
whenever possible. This is because, it involves greater amount of work 
and also it is difficult to obtain the inverse accurately in many problems. 
However, there are two cases in which the explicit computation of the 
inverse is desirable. Firstly, when several systems equations, having the 
same coefficient matrix A but different right hand side b, have to b e 
solved. Then computations are reduced if we first find the inverse matrix 
and then find the solution. Secondly, when the elements of A-1 
themselves have some special physical significance. For instance, in the 
statistical treatment of the fitting of a function to observational data by 
the method of least squares, the elements of A-1 give information about 
the kind and magnitude of errors in the data. 
 
In this unit, we shall study a few important methods for finding the 
inverse of a nonsingular square matrix. 
 
2.0 OBJECTIVES 
 
After studying this unit, you should be able to: 
 
•••• obtain the inverse by adjoint method for n < 4 
•••• obtain the inverse by the Gauss-Jordan and LU decomposition 

methods 
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•••• obtain the solution of a system of linear equations using the 
inverse method. 

 
3.0 MAIN CONTENTS 
 
3.1 The Method of Adjoints 
 
You already know that the transpose of the matrix of the cofactors of 
elements of A is called the adjoint matrix and is denoted by adj(A). 
 
Formally, we have the following definition. 
 
Definition : 
 
The transpose of the cofactor matrix Ac of A is called the adjoint of A 
and is written a adj(A). 
 
adj(A) = (Ac)T 
 
The inverse of a matrix can be calculated using the adjoint of a matrix. 
 
E obtain the inverse matrix A-1 of A from 
 

A-1 = 
1

det (A)
 adj(A)   

     (1) 
This method of finding the inverse of a matrix is called the method of 
adjoints. 
 
Note that det(A) in Eqn. (1) must not be zero and therefore the matrix A 
must be nonsingular. 
 
We shall not be going into the details of the method here. We shall only 
illustrate it through examples. 
 
Example 1: Find A-1 for the matrix 
 

A =  

 
















−134

120

185

 

 
and solve the system of equations 
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A x = b 
         (2) 
for 
 

i) b =   
















3

1

2

  ii) b =
















0

0

1

  iii) b = 
















3

2

1

   

 
Solution: 
 
Since det(A) = -1 ¹  0, the inverse of A exists. We obtain the cofactor matrix 
Ac from A by replacing each element of A by its cofactor as follows: 
 

Ac = 

















−
−

−

1056

17911

845

 

 

\  adj(A) = (Ac)T = 
















−−
10178

594

6115

 

 

Now A-1 = 
1

det (A)
adj(A) 

 

\ A-1 = - = 
















−−
10178

594

6115

 = 
















−−

−−

10178

594

6115

 

 
Also the solution of the given system of equations are 
 

i) x = A-1b =  
















−−

−−

10178

594

6115

 
















3

1

2

 = 
















3

2

3

 

 

ii)  x = A-1b = 
















−−

−−

10178

594

6115

  
















0

0

1

 =  
















8

4

5
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iii)  x = A-1b = 
















−−

−−

10178

594

6115

  
















3

2

1

 = 
















12

7

9

 

 
We now take up an example in which the given matrix A is lower 
triangular and we shall show that its inverse is also a lower triangular 
matrix. 
 
Example 2: Find A-1 for the matrix 
 

A = 
















654

032

001

 

 
Solution: 
 
We have 
 
det(A) = 18 ¹  0. Thus A-1 exists. 
 
Now 
 

Ac = 

















−
−−

300

560

21218

 

 

\  A-1 = 
c T(A )

adj(A)
 = 

1
18

  
















−− 352

0612

0018

= 
















− 6/118/59/1

03/13/2

001

 

 
Thus, A-1 is again a lower triangular matrix. Similarly, we can illustrate 
that the inverse of an upper triangular matrix is again upper triangular. 
 
Example 3: 
 
Find A-1 for the matrix 
 

A = 
















600

540

321

 



MTH 213                                                                                                            MODULE 3  

 263

 
 
Solution: 
 
Since, det(A) = 24 ¹  0, A-1 exists. 
 
We obtain 
 

Ac = 

















−− 452

0612

0024

 

 

\  A-1 = 
1
24

  
















−
−−

400

560

21224

= 
















−
−−

6/100

24/54/10

12/12/11

 

which is again an upper triangular matrix. 
 
The method of adjoints provides a systematic procedure to obtain the 
inverse of a given matrix and for solving systems of linear equations. To 
obtain the inverse of an n ´  n matrix, using this method, we need to 
evaluate one determinant of order n, n determinants each of order n – 1 
and perform n2 divisions. In addition, if this method is used for solving a 
linear system we also need matrix multiplication. The number of 
operations (multiplications and divisions) needed, for using this method, 
increases very rapidly as n increases. For this reason, this method is not 
used when n > 4. 
 
For large n, there are methods which are efficient and are frequently 
used for finding the inverse of a matrix and solving linear systems. We 
shall now discuss these methods. 
 
3.2 The Gauss-Jordan Reduction Method 
 
This method is a variation of the Gauss elimination method. In the 
Gauss elimination method, using elementary row operations, we 
transform the matrix A to an upper triangular matrix U and obtain the 
solution by using back substitution method. In Gauss-Jordan reduction 
not only the elements below the diagonal but also the elements above 
the diagonal of A are made zero at the same time. In other words, we 
transform the matrix A to a diagonal matrix D. This diagonal matrix 
may then be reduced to an identity matrix by dividing each row by its 
pivot element. 
 
Alternately, the diagonal elements can also be made unity at the same 
time when the reduction is performed. This transforms the coefficient 
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matrix into an identity matrix. Thus, on completion of the Gauss-Jordan 
method, we have 
 
[A|b]   [I|d]        (3) 
 
The solution is then given by 
 
xi = di, i = 1, 2, ......, n       (4) 
 
In this method also, we use elementary row operations that are used in 
the Gauss elimination method. We apply these operations both below 
and above the diagonal in order to reduce all the off-diagonal elements 
of the matrix to zero. Pivoting can be used to make the pivot non-zero or 
make it the largest element in magnitude in that column as discussed. 
We illustrate the method through an example. 
 
 
Example 4: Solve the system of equations 
 
x1 + x2 + x3 =1 
4x1 + 3x2 – x3 = 6 
3x1 + 5x2 + 3x3 = 4 
using Gauss-Jordan method with pivoting. 
 
Solution: We have 
 

[A|b] = 
















−
4

6

1

353

134

111

  (interchanging first and second row) 

 

»














 −

4

1

6

353

111

134

 R2 - 
1
4

 R1, R3 - 
3
4

 R1 

 

»  
















−
−

−

2/1

2/1

6

4/154/110

4/54/10

134

 (interchanging second and third row) 

 

»   
















−
−

−

2/1

2/1

6

4/54/10

4/15`4/110

134

R3 – 1/11 R2, R1 - 
12
11

 R2 
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»
















−
−

−

11/5

2/1

11/72

11/1000

4/154/110

11/5604

 R1 + 
56
10

R3, R2 - 
33
8

R3 

 

»
















11/5

8/11

4

11/1000

04/110

004

 R1/4 (divide first row by 4),

          2

4
R (divide sec ond row by 11/ 4),

11

         3

11
R (divide third row by 10/ 11).

10
 

»
















− 2/1

2/1

1

100

010

001

 

which is the desired form. 
 
Thus, we obtain 

x1 = 1, x2 = 
1
2

, x3 = -
1
2

. 

 
The method can be easily extended to a general system of n equations. 
Just as we calculated the number of operations needed for Gauss 
elimination method in the same way you can verify that the total number 

of operations needed for this method is M = 
1
2

 n3 + 
2n

2
 + n. 

 
Clearly this method requires more number of operations compared to the 
Gauss elimination method. We therefore, do not use this method 
generally for solving system of equations but is very commonly used for 
finding the inverse matrix. This is don by augmenting the matrix A by 
the identity matrix I of the order same as that of A. Using elementary 
row operations on the augmented matrix [A|I] we reduce the matrix A to 
the form I and in the process the matrix I is transformed to A-1 
 
That is 
 
[A|I]   [I|A _1]       (5) 
 
We now illustrate the method through examples. 



MTH 213    NUMERICAL ANALYSIS 1 
 

 266

 
 
Example 5: Find the inverse of the matrix 
 

A = 
















−
−−
121

132

213

 
 
using the Gauss-Jordan method. 
 
Solution: We have 
 

[A|I] = 
















−
−−

100

010

001

121

132

213

R/3

 

 

»  
















−
−−

100

010

003/1

121

132

3/23/11

R – 2R, R - R

 

 

»   
















−
−

−
−−

103/1

013/2

003/1

3/13.70

3/73/110

3/23/11

 3R/11

 

 

»   
















−
−

− 103/1

011/311/2

003/1

3/13/70

11/710

3/23/11

  

R1 - 
1
3

R2, R3 + 
7
3

R2 

 

»   
















−
−

111/711/1

011/311/2

011/111/3

11/2000

11/710

11/501

 
11
20

R3 

 

»   
















−
−

20/1120/720/1

011/311/2

011/111/3

000

11/710

11/501

  R1 - 
5
11

R3, R2 - 
7
11

R3 
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»   
















−
−−
−

20/1120/720/1

20/720/120/3

4/14/14/1

100

010

001

 

 
Thus, we obtain 
 

A-1 = 
















−
−−
−

20/1120/720/1

20/720/120/3

4/14/14/1

 

 
Example 6: Find the inverse of the matrix 
 

A = 



















−−
−

3/55172/71

0301

002/11

0002

 
 
using the Gauss-Jordan method 
 
Solution: 
 
Here we have 
 

[A|I] = 

 




















−−
−

1000

0100

0010

0001

3/55172/71

0302

002/11

0002

   

1
2

R1 

 

»  





















−−
−

1000

0100

0010

0002/1

3/55172/71

0302

002/11

0001

  
  R2 – R1, R3 – 2R1, R4 – R1 
 

»





















−
−

−

−−
−

1002/1

0101

0012/1

0002/1

3/55172/70

0300

002/10

0001

  

2R2 
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»





















−
−
−

−−
−

1002/1

0101

0021

0002/1

3/55172/70

0300

0010

0001

  

R4 + 
7
2

R2 

 

»





















−
−
−

−
−

1074

0101

0021

0002/1

3/551700

0300

0010

0001

  

( )3

1
R

3
-  

 

»





















−
−

−

− 1074

03/103/1

0021

0002/1

3/551700

0100

0010

0001

  

( )4

1
R

17
-  

 

»





















−−
−

−

− 17/1017/717/4

03/103/1

0021

0002/1

3/551700

0100

0010

0001

  

R4–R3 

 

»





















−−−
−

−

− 17/13/117/751/5

03/103/1

0021

0002/1

51/55000

0100

0010

0001

  

( )4

51
R

55
-  

 

»





















−
−

−

55/355/1755/2111/1

03/103/1

0021

0002/1

1000

0100

0010

0001

 

 
Hence 
 

A-1 = 



















−
−

−

55/355/1755/2111/1

03/103/1

0021

0002/1

 
 
is the inverse of the given lower triangular matrix. 
 



MTH 213                                                                                                            MODULE 3  

 269

Let us now consider the problem of finding the inverse of an upper 
triangular matrix. 
 
Example 7: 
 
Find the inverse of the matrix 
 

A =   



















−

1000

3/2100

1410

2/122/31

 
 
Using the Gauss-Jordan method. 
 

[A|I] =  





















−

1000

0100

0010

0001

1000

3/2100

1410

2/122/31

  R1 - 
3
2

R2 

 

»  



















 −
−

−

1000

0100

0010

002/31

1000

3/2100

1410

1801

  R1 – 8R3, R2 + 4R3 

 

»

 


















 −−−

1000

0100

0410

082/31

1000

3/2100

3/11010

3/19001

 

  R1 + 
19
3

R4, R2 - 
11
3

R4, R3 - 
2
3

R4 

 

»

 




















−
−

−−

1000

3/2100

3/11410

3/1982/31

1000

0100

0010

0001
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Hence 
 

A-1 = 



















−
−

−−

1000

3/2100

3/11410

3/1982/31

 
 

which is the inverse of the given upper triangular matrix. 
 

Note that in Example 2, 3, 6 and 7, the inverse of a lower/upper 
triangular matrix is again a lower/upper triangular matrix. There is 
another method of finding the inverse of a matrix A which uses the 
pivoting strategy. Recall that in Sec. 3.4 of Unit 1, for the solution of 
system of linear algebraic equation Ax = b, we showed you how the 
multipliers mp,i,k’s can be stored in working array W during the process 
of elimination. The main advantage of storing these multipliers is that if 
we have already solved the linear system of equations Ax = b or order n, 
by the elimination method and we want to solve the system Ax = c with 
the same coefficient matrix A, only the right side being different, then 
we do not have to go through the entire elimination process again. Since 
we have saved in the working matrix W all the multipliers used and also 
have saved the p vector, we have only to repeat the operations on the 
right hand side to obtain β, such that Ux = β  is equivalent to Ax = c. 

 
In order to understand the calculations necessary to derive β , from c 
consider the changes made in the right side b during the elimination 
process. Let k be an integer between 1 and n, and assume that the ith 
equation was used as pivotal equation during step k of the elimination 
process. Then i = pk. initially, the right side of equation i is just bi. 

 
If k > 1, then after Step 1, the right side is 
b (1)

i  = bi – mi1 b 1p  
 
If k > 2, then  after Step 2, the right side is 
b (2)

i  = b(1)

i  = mi2 b 2

(1)

p  

= bi – mi1 bp1 – mi2 b 2

(1)

p  
 

In the same manner, we have the right side of equation i = pk as 
b( k 1)

i

-  = bi – mi1 bp1 – mi2 b 2

(1)

p  - ..... - mi,k-1 b k 1

( k 2)

p -

-     (6) 
 
Replacing i by pk in Eqn. (6), we get 
b

k

( k 1)

p

-  = b
kp - m

k '1p bp1 - m k ' 2p b
2

(1)

p  - .... - m
k ' k 1p -

b
k 1

( k 2)

p -

-    (7) 
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k = 1, 2, ....., n. 
 

Also, since jb% = b
j

( j 1)
p

- , j = 1, 2, ...., n, we can rewrite Eqn. (7) as 

kb%  = 
kpb% - m

k ,1p 1b% - m
k ,2p 2b% - ..... - m

k .k 1p - k 1b -
%     (8) 

     k = 1, ...., n. 
 
Eqn. (8) can then be used to calculate the entries of b%. But since the 
multipliers mij ’s are stored in entries wij ’s of the working matrix W, we 
can also write Eqn. (8) in the form 
 

kb%  = 
kpb%  - 

k 1

j 1

-

=
å Wpkj jb%, k = 1, ...., n      (9) 

 
Hence, if we just know the final content of the first n columns of W and 
the pivoting strategy p then we can calculate the solution x of Ax = b by 
using the back substitution method and writing 
 

xk = 
k

kk

n

k p j j
j k 1

p

b W x

W
= +

- å%
, k = n, n – 1 , ....., 1             (10) 

The vector x = [x1 x2 ....... xn]
T will then be the solution of Ax = b. 

 
For finding the inverse of an n ´  n matrix A, we use the above 
algorithm. We first calculate the final contents of the n columns of the 
working matrix W and the pivoting vector p and then solve each of the n 
systems 
 
Ax = ej, j = 1, ......., n 
                (11) 
where e1 = [1   0 ...... 0]T, e2 = [0   1   0 ..... 0]T, ......., en = [0   0 ...... 1]T, 
with the help of Eqn. (9) and (10). Then for each j = 1, ......, n the 
solution of system of system (11) will be the corresponding column of 
the inverse matrix A-1. The following example will help you to 
understand the above procedure. 
 
Example 8: 
 
Find the inverse of the matrix 
 

A = 














 −

211

012

121

 
 
using partial pivoting. 
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Solution: 
 
Initially p = [p1, p2, p3]

T = [1, 2, 3]T and the working matrix is 
 

W(0) = 














 −

211

012

121

 
 
Now d1 = 2, d2 = 2, d3 = 2. 
 

Step 1: 1,1p

1

| W |

d
 = 

1
2

, 2,1p

2

| W |

d
 = 

2
2

 = 1, 3,1p

3

| W |

d
 = 

1
2

 

 1 > 
1
2

, 
1
2

 \  p1 = 2, p2 = 1, p3 = 3 

 
We use the second equation to eliminate x1 from first and third 
equations and store corresponding multipliers instead of storing zeros in 
the working matrix. The multipliers are 
 

m
i,1p = i ,1

i,1

p

p

w
w

, i = 2, 3 

\  m
2,1p = m11 = 2,1

1,1

p

p

w

w
 = 

1
2

 

    m
3,1p = m31 = 3,1

1,1

p

p

w

w
 = -

1
2

 

we get the following working matrix 
 

W(1) = 

 















 −

22/32/1

012

12/32/1

  

, p = (2, 1, 3)T 

 

Step 2: 2,2p

2

w

dp
 = 1,2p

1

w

d
 = 

3/ 2
2

 = 
3
4

 

3,2p

3

w

dp
 = 3,2p

3

w

d
 = 

3/ 2
2

 = 
3
4

 

 

Since 
3
4

 = 
3
4

 so we take p = (2, 1, 3)T 

 

Now m
i,2p = i ,2

2,2

p

p

w

w
, i = 3 
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\  m
3,2p = m32 = 3,2

1,2

p

p

w

w
 = 

3/ 2
3/ 2

 = 1 

 
We use the first equation as pivotal equation to eliminate x2 from the 
third equation and also store the multipliers. After the second step we 
have the following working matrix 
 

W(2) = 














 −

312/1

012

12/32/1

  

, p = (2, 1, 3)T 

 
Now in this case, w(2) is our final working matrix with pivoting strategy 
p = (2, 1, 3)T 
 
Note that circled ones denote multipliers and squared ones denote pivot 
elements in the working matrices. 
 
To find the inverse of the given matrix A, we have to solve 
Ax = e1 = [b1 b2 b3]

T 
Ax = e2 = [b1 b2 b3]

T 
Ax = e3 = [b1 b2 b3]

T 
where e1 = [1 0 0]T, e2 = [0 1 0]T, e3 = [0 0 1]T 
 
First we solve the system Ax = e1 and consider 
 















 −

312/1

012

12/32/1

















x

x

x

=
















0

0

1

, p = (2, 1, 3)T                       (12) 

 
Using Eqn. (9), we get 
 
with p1 = 2, 1b% = b2 = 0 

with p2 = 1, 2b% = b1 – w11 1b% 
 

= 1 - 






2

1 0 

= 1 
with p3 = 3, 3b% = b3 – w31 1b% - w32 2b% 
 

= 0 - 






2

1 .0 – 1.1 = -1 

 
Using Eqn. (10), we then get the following system of equations 
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3x3 = -1 
3
2

x2 – x3 = 1 

2x1 + x2 = 0 

which gives x3 = -
1
3

, x2 = 
4
9

 and x1 = -
2
9  

 

i.e., vector x =  
T








 −
3

1

9

4
.

2

1     is the solution of system (12). 

 
Remember that the solution of system (12) constitutes the first column 
of the inverse matrix A-1. 
 
In the same way we solve the system of equations Ax = e2 and Ax = e3, 
or 
 















 −

312/1

012

12/32/1

















3

2

1

x

x

x

=
















0

1

0

, p = (2, 1, 3)T              (13) 

 
and 
 















 −

312/1

012

12/32/1

















3

2

1

x

x

x

=
















1

0

0

, p = (2, 1, 3)T              (14) 

 
Using Eqns (9) and (10), we obtain the solution of system (13) as 
 

x =   
T






 −
3

1

9

1
.

9

5
 which is the second column of A-1 and the solution of 

system (14), i.e., x =   
T






 −
3

1

9

2
.

9

1
 as the third column of A-1 

 

Hence A-1 = 
















−
−

3/13/13/1

9/29/19/4

9/19/59/2

 

 
You may recall that in Sec. 3.5 of Unit 1 we discussed the LU 
decomposition method. Using this method we can factorise any non-
singular square matrix A into the product of a lower triangular matrix L 
and upper triangular matrix U. That is, we can write 
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A = L U.             ...  (15) 
 
In the next section we shall discuss how form (15) can be used to find 
the inverse of non-singular square matrices. 
 
 
3.3 L U Decomposition Method  
 
Let us consider Eqn. (15) and take the inverse on both the sides. If we 
use the fact that the inverse of the product of matrices is the product of 
their inverses takes in reverse order, then we obtain 
 
A-1 = (L U)-1 = U-1 L-1                (16) 
 
We can now find the inverse of U and L separately and obtain the 
inverse matrix A-1 from Eqn. (16). 
 
Remark: It may appear to you that finding an inverse of a matrix by this 
method is a lengthy process. But, in practice, this method is very useful 
because of the fact that here we deal with triangular matrices and 
triangular matrices are easily invertible. It involves only forward and 
backward substitutions. 
 
Let us now consider an example to understand how the method works. 
 
Example 9: 
 
Find the inverse of the matrix 
 

A = 
















−
−−
121

132

213

 

Using LU decomposition method. 
 
Solution:  
 
We write, 
 

A = 
















−
−−
121

132

213

 = LU =  
















111

011

001

 
















100

10

1

u

uu

                  (17) 

 
Comparing the coefficients on both sides of Eqn. (17), we obtain 
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111 = 3, 121 = 2, 131 = 1 (multiplying the rows of L by the first 
column of U) 

111u12 = 1, u12 = 
1
3

 (multiplying the rows of L by the 

111u13 = 2, u13 = 2/3 second and third column of U) 
 
The second column of L is obtained from 
 

121u12 + 122 = a22, 122 = -3 - 
2
3

 = -
11
3

 

131u12 + 132 = a32, 132 = -2 - 
1
3

 = -
7
3

 

u23 is obtained from 
 

121u13 + 122u23 = a23, u23 = 
1 2(2/ 3)

11/ 3
- -

-
 = 

7
11

 

133 is obtained from 
 

131u13 + 132u23 + 133 = 1, 133 = 
20
11

 

Thus we have 
 

L =   
















−
−

11/203/71

03/112

003

 and U = 
















100

11/710

3/23/11

 

 
Now since L is a lower triangular matrix L-1 is also a lower triangular 
matrix. Let us assume that 
 

L-1 = 
















111

011

001

 
 
Using the identity LL-1, we have 
 

LL -1 =  
















−
−

11/203/71

03/112

003

  
















−
111

03/112

003

















111

011

001

= 
















100

010

001

 

 
Comparing the coefficients, we get 
 

'

111  = 
1
3

, '

221  = -
3
11

, '

331  = 
11
20
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Also, 
 

2 '

111  - 
11
3

 '

211  = 0, '

211  = 
6
33

 = 
2
11

 

 
'

111  - 
7
3

'

211  + 
20
11

 '

311  = 
1
20

 

 

-
7
3

 '

221  + 
20
11

'

321  = 0, '

321  = -
7
20

 

 

\  L-1 = 
















−
−

20/1120/720/1

011/311/2

003/1

 

 
Similarly, since U is an upper triangular matrix, U-1 is also upper 
triangular matrix. Using UU-1 = I, we obtain by backward substitution. 
 

U = 
















100

11/710

3/23/11

 and U-1 = 
















−
−−

100

11/710

11/53/11

 

 
Therefore, we have from Eqn. (16) 
 

A-1 = U-1 L-1 =   
















−
−−

100

11/710

11/53/11

















−
−

20/1120/720/1

011/311/2

003/1

 

  

              = 
















−
−−
−

20/1120/720/1

20/720/120/3

4/14/14/1

 

 
4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have 
covered in it. 

 
5.0 SUMMARY 
 
In this unit we have covered the following: 
 
1) Using the method of adjoints, the inverse of a given non-singular 

matrix A can be obtained from 
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 A-1 = 
1

det (A)
adj(A)     (see Eqn. (1)) 

 
Since the number of operations in the adjoint method to find the 
inverse of n ́  n non-singular matrix A increases rapidly as n 
increases, the method is not generally used for n > 4. 

 
2) For large n, the Gauss-Jordan reduction method, which is an 

extension of the Gauss elimination method can be used for 
finding the inverse matrix and solve the linear systems. 

 
Ax = b      (see Eqn. (2)) 
 
using the Gauss-Jordan method. 
 
a) the solution of system of Eqns (2) can be obtained by 

using elementary row operations 
 

 [A|b] reduced to
¾ ¾ ¾ ¾ ¾ ® [I|d] 

 
b) the inverse matrix A-1 can be obtained by using elementary 
 

row operations [A|I] reduced to
¾ ¾ ¾ ¾ ¾ ®[I|A -1] 

 
3) For large n, another useful method of finding the inverse matrix 

A-1 is LU decomposition method. Using this method any non-
singular matrix A is first decomposed into the product of a lower 
triangular matrix L and an upper triangular matrix U. That is 

 
 A = LU 
 U-1 and L-1 can be obtained by backward and forward 

substitutions. Then the inverse can be found from 
 
 A-1 = U-1 L-1 
 
6.0 TUTOR-MARKED ASSIGNMENT  
 
1) Solve the system of equations 
 3x1 + x2 + 2x3 = 3 
 2x1 – x2 – x3 = 1 
 x1 – 2x2 + x3 = -4 
 using the method of adjoints. 
 
2) Solve the system of equations 
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

















−−
−
4121

1132

1021

1432



















4

3

2

1

X

X

X

X

= 



















5

1

2

3

 

  
using the method of adjoints. 

 
3) Verify that the total number of operations needed for Gauss-

Jordan reduction methods is 
1
2

 n3 + 
2n

2
 + n. 

4) In example 6 and 7 verify that 
 A A-1 = A-1 A = I. 
 
5) Solve the system of equation 
 x1 + 2x2 + x3 = 0 
 2x1 + 2x2 + 3x3 = 3 
 -x1 – 3x2 = 2 
 using the Gauss-Jordan method with pivoting. 
 
6) Find the inverse of the matrix 
 

 A = 



















−
−−

−−
−

2100

1210

0121

0012

 

 
 using the Gauss-Jordan method. 
 
7) Find the inverse of the matrix 
 
 

 A = 
















−134

120

185

 

 
 using the LU decomposition method. 
 
8) Find the inverse of the matrix 
 

 A = 
















−
−−
121

112

213

 

 Using the LU decomposition method. 
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UNIT 3  ITERATIVE METHODS 
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5.0 Summary 
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1.0 INTRODUCTION  
 
In the previous two units, you have studied direct methods for solving 
linear system of equations Ax = b, A being n ´  n non-singular matrix. 
Direct methods provide the exact solution in a finite number of steps 
provided exact arithmetic is used and there is no round-off error. Also, 
direct methods are generally used when the matrix A is dense or filled, 
that is, there are few zero elements, and the order of the matrix is not 
very large say n < 50. 
 
Iterative methods, on the other hand, start with an initial approximation 
and by applying a suitably chosen algorithm, lead to successively better 
approximations. Even if the process converges, it would give only an 
approximate solution. These methods are generally used when the 
matrix A is sparse and the order of the matrix A is very large say n > 50. 
Sparse matrices have very few non-zero elements. In most cases these 
non-zero elements lie on or near the main diagonal giving rise to tri-
diagonal, five diagonal or band matrix systems. It may be noted that 
there are no fixed rules to decide when to use direct methods and when 
to use iterative methods. However, when the coefficient matrix is sparse 
or large, the use of iterative methods is ideally suited to find the solution 
which take advantage of the sparse nature of the matrix involved. 
 
In this we shall discuss two iterative methods, namely, Jacobi iteration 
and Gauss-Seidel iteration methods which are frequently used for 
solving linear system of equations. 
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2.0 OBJECTIVES 
 
After studying this unit, you should be able to: 
 
•••• obtain the solution of system of linear equations, Ax = b, when 

the matrix A is large or sparse, by using the iterative method viz; 
Jacobi method or the Gauss-Seidel method 

•••• tell whether these iterative methods converges or not 
•••• obtain the rate of convergence and the approximate number of 

iterations needed for the required accuracy of these iterative 
methods. 

 
3.0 MAIN CONTENT 
 
3.1 The General Iteration Method 
 
In iteration methods as we have already mentioned, we start with some 
initial approximate solution vector x(0) an generate a sequence of 
approximation {x(k)} which converge to the exact solution vector x as k 
®  ¥ . If the method is convergent, each iteration produces a better 
approximation to the exact solution. We repeat the iterations till the 
required accuracy is obtained. Therefore, in an iterative method the 
amount of computation depends on the desired accuracy whereas in 
direct methods the amount of computation is fixed. The number of 
iterations needed to obtain the desired accuracy also depends on the 
initial approximation, closer the initial approximation to the exact 
solution, faster will be the convergence. 
 
Consider the system of equations 
 

Ax = b   
            ... (1) 

where A is an ń n non-singular matrix. 
 
Writing the system in expanded form, we get 
 
a11x1 + a12x2 + ...... a1nxn = b1 
a21x1 + a22x2 + ...... a2nxn = b2      (2) 
.............................................. 
an1x1 + an2x2 + ...... + annxn = bn 
 
We assume that the diagonal coefficients aii ¹  0, (i = 1, ....., n). If some 
of aii = 0, then we arrange the equations so that this condition holds. We 
then rewrite system (2) as 
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x1 = -
11

1
a

(a12x2 + a13x3 + .... + a1nxn) + 1

11

b
a

 

x2 = -
22

1
a

(a21x1 + a23x3 + .... + a2nxn) + 2

22

b
a

    (3) 

 

xn = -
nn

1
a

(an1x1 + an2x2 + .... + ann-1xn-1) + n

nn

b
a

 

 
In matrix form, system (3) can be written as 
x = Hx + c 
where 
 

H =  
















−−−

−−

−−−

0

0

0

1,21

22
2

22
23

22
21

11
1

11
13

11
12

ann
nan

ann
an

ann
an

a
na

a
a

a
a

a
na

a
a

a
a

  

   (4) 

and the elements of c are ci = i

ii

b
a

(i = 1, 2, ..., n) 

 
To solve system (3) we make an initial guess x(0) of the solution vector 
and substitute into the r.h.s. of Eqn. (3). The solution of Eqn. (3) will 
then yield a vector x(1), which hopefully is a better approximation to the 
solution than x(0). We then substitute x(1) into the r.h.s. of Eqn. (3) and 
get another approximation, x(2). We continue in this manner until the 
successive iterations x(k) have converged to the required number of 
significant figures. 
 
In general we can write the iteration method for solving the linear 
system of Eqns. (1) in the form 
 
x(k+1) = Hx(k) + c, k = 0, 1......      (5) 
 
where x(k) and x(k+1) are the approximations to the solution vector x at the 
kth and the (k + 1)th iterations respectively. H is called the iteration 
matrix and depends on A. c is a column vector and depends on both A 
and b. The matrix H is generally a constant matrix. 
 
When the method (5) is convergent, then 

(k)

k
lim x

® ¥
= (k 1)

k
lim x +

® ¥
 = x 

and we obtain from Eqn. (5) 
 
x = Hx + c         (6) 
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If we define the error vector at the kth iteration as 
 

(k)Î  = x(k) – x         (7) 
 
then subtracting Eqn. (6) from Eqn. (5), we obtain 
 

(k 1)+Î  = H (k)Î         (8) 
 
Thus, we get from Eqn. (8) 
 

(k)Î  = H (k 1)-Î  = H2 (k 2)-Î = ... = Hk (0)Î      (9) 
 

Where (0)Î  is the error in the initial approximate vector. Thus, for the 
convergence of the iterative method, we must have 
 

(k)

k
lim

® ¥
Î  = 0 

independent of (0)Î . 
 
Before we discuss the above convergence criteria, let us recall the 
following definitions from linear algebra. 
 
Definition : 
 
For a square matrix A of order n, and a number l  the value of l  for 
which the vector equation Ax = l x has non-trivial solution x ¹  0, is 
called an eigenvalue or characteristic value of the matrix A. 
 
Definition : 
 
The largest eigenvalue in magnitude of A is called the spectral radius of 
A ad is denoted by p(A). 
 
The eigenvalues of the matrix A are obtained from the characteristic 
equation 
det(A - l I) = 0 
which is an nth degree polynomial in l . The roots of this polynomial 
l 1, l 2, ......., l n are the eigenvalues of A. Therefore, we have 
 
r (A) = 

i
max|l i|                 (10) 

 
We now state a theorem on the convergence of the iterative methods. 
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Theorem 1: 
 
An iteration method of the form (5) is convergent for arbitrary initial 
approximate vector x(0) if and only if r (H) < 1. 
 
We shall not be proving this theorem here as its proof makes use of 
advanced concepts from linear algebra and is beyond the scope of this 
course.  
 
We define the rate of convergence as follows: 
 
Definition : 
 
The number n  = -log10 r (H) is called the rate of convergence of an 
iteration method. 
 
Obviously, smaller the value of r (H), larger is the value of n . 
 
Definition : 
 
The method is said to have converged to m significant digits if 

i
max|Î i

(k)| ‚  10-m, that is, largest element in magnitude, of the error 

vector Î (k) ‚  10-m. Also the number of iterations k that will be needed 
to make 

i
max|Î i

(k)| ‚  10-m is given by  

 k = 
m
n

                  (11) 

 
Therefore, the number of iterations that are required to achieved the 
desired accuracy depends onn . For a method having higher rate of 
convergence, lesser number of iterations will be needed for a fixed 
accuracy and fixed initial approximation. 
 
There is another convergence criterion for iterative methods which is 
based on the norm of a matrix. 
 
The norm of a square matrix A of order n can be defined in the same 
way as we define the norm of an n-vector by comparing the size of Ax 
with the size of x (an n-vector) as follows: 
 

i) ||A||2 = max 2

2

Ax
x

 

 based on the Euclidean vector norm, ||x||2 = 2 2 2
1 2 n| x | | x | ... | x |+ + +  

and 
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ii) ||A||¥  = max Ax
x

¥

¥
, based on the maximum vector norm, ||x||¥  

= 
1 i n
max

£ £
|xi|. 

 
 In (i) and (ii) above the maximum is taken over all (non zero) n-

vector. The most commonly used norms is the maximum norm 
||A||¥ , as it is easier to calculate. It can be calculated in any of the 
following two ways: 

 
 ||A||¥  = 

x
max

i
å |aik| (maximum absolute column-sum) 

 Or 
 
 ||A||¥  = 

i
max

k
å |aik| (maximum absolute row sum) 

 
The norm of a matrix is a non-negative number which in addition to the 
property ||AB||‚ ||A|| ||B|| 
satisfies all the properties of a vector norm, viz.,  
 
a) ||A|| ƒ  0 and ||A|| = 0 if A = 0 

 
b) ||a A|| = |a | ||A||, for all numbers a . 
 
c) ||A + B|| ‚  ||A|| + ||B|| 

where A and B are square matrices of order n. 
 
We no state a theorem which gives the convergence criterion for 
iterative methods in terms of the norm of a matrix. 
 
Theorem 2: 
 
The iteration method of the form (5) for the solution of system (1) 
converges to the exact solution for any initial vector, if ||H||<1. 
 
Also note that 
||H|| ƒ r (H).  
 
This ca be easily proved by considering the eignevalue problem Ax = 
l x. 
Then ||A|| = ||l x|| = |l | ||x|| 
or |l | ||x|| = ||Ax|| ‚  ||A|| ||x|| 
i.e., |l | ‚  ||A|| since ||x|| ¹  0 
 
Since this results is true for all eignevalue, we have 
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r (A) ‚  ||A||. 
 
The criterion given in Theorem 2 is only a sufficient condition, it is not 
necessary. Therefore, for a system of equations for which the matrix H 

is such that either 
i

max
n

k 1=
å |hik| < 1, the iteration always converges, but if 

the condition is violated it is not necessary that the iteration diverges. 
 
There is another sufficient condition for convergence as follows: 
 
Theorem 3:  
 
If the matrix A is strictly diagonally dominant that is, 
 

|aii| > 
j 1
j i

n

=
¹

å |aij|, i = 1, 2, ......, n. 

 
Then the iteration method (5) converges for nay initial approximation 
x10. If no better initial approximation is known, we generally take x(0) = 
0. 
 
We shall mostly use the criterion given in Theorem 1, which is both 
necessary and sufficient. 
 
For using the iteration method (5), we need the matrix H and the vector 
c which depend on the matrix A and the vector b. the well-known 
iteration methods are based on the splitting of the matrix A in the form 
 
A = D + L + U                 (12) 
where D is the diagonal matrix, L and U are respectively the lower and 
upper triangular matrices with zero diagonal elements. Based on the 
splitting (12), we now discuss two iteration methods of the form (5). 
 
3.2 The Jacobi’s Iteration Method 
 
We write the system of Eqn. (1) in the form (2), viz., 
a11x1 + a12x2 + ... + a1nxn = b1 
a21x1 + a22x2 + ... + a2nxn = b2 
.   .  . . 
.   .  . . 
.   .  . . 
an1x1 + an2x2 + ... + annxn = bn 
 
We assume that a11, a22, ..... ann are pivot elements and aii ¹ 0, i = 1, 2, 
...., n. if any of the pivots is zero, we can interchange the equations to 
obtain non-zero pivots (partial pivoting). 
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Note that, A being a non-singular matrix, it is possible for us to make all 
the pivots non-zero. It is only when the matrix A is singular that even 
complete pivoting may not lead to all the non-zero pivots. 
 
We rewrite system (2) in the form (3) and define the Jacobi iteration 
method as 
 

x ( k 1)

1

+  = -
11

1
a

(a12x
(k)

2  + a13x
(k)

3  + ... +  a1nx
(k)

n -b1) 

x ( k 1)

2

+  = -
22

1
a

(a21x
(k)

2  + a23x
(k)

3  + ... +  a2nx
(k)

n -b2) 

. 

. 

. 

x ( k 1)

n

+  = -
ii

1
a

(an1x
(k)

i  + an2x
(k)

2  + ... +  an,n-1x
( k )

n 1- -bn) 

 
 

or x( k 1)

i

+  = -
ii

1
a

 i
k

j

n

j
ij bxa −∑

=

)(

1

, i = 1, 2, .... n, k = 0, 1, ....           (13) 

 
 
 
The method (13) can be put in the matrix form as 

































+

+

+

)1(
1

)1(
1

)1(
1

k

k

k

x

x

x

 = -





























ann

a

a

1

22
1

11
1

...





























0....

...

....0

....0

21

221

112

nn

n

n

aa

aa

aa

































−

−

−

)(

)(
2

)(
1

k
n

k

k

x

x

x

   

-

































nb

b

b

2

1

 r 

 
 
x(k+1) = -D-1 (L + U) x(k) + D-1b, k = 0, 1, ....             (14) 
 
where 
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D = 
















nna

a

a

..........0

0..........0

0..........0

22

11

, L = 























− 0

00

0..........0

0..........00

1,21

3231

21

nnnn aaa

aa

a

 

 

and U = 























−

0..........000

..........

00

..........0

,1

223

11312

nn

n

n

a

aa

aaa

 

 
The method (14) is for the form (5), where 
 
H = -D-1 (L + U) and c = D-1b 
 
For computation purpose, we obtain the solution vector x(k+1) at the (k + 
1)th iteration, element by element using Eqn. (13). For large n, we rarely 
use the method in its matrix form as given by Eqn. (14). 
 
In this method in the (k + 1)th iteration we use the values, obtained at 
the kth iteration viz., x(k)

1 , x(k)

2 , ...., x(k)

n  on the right hand side of Eqn. 
(13) and obtain the solution vector x(k+1). We then replace the entire 
vector x(k) on the right side of Eqn. (13) by x(k+1) to obtain the solution at 
the next iteration. In other words each of the equations is simultaneously 
changed by using the most recent set of x-values. It is for this reason this 
method is also known as the method of simultaneous displacements. 
 
Let us now solve a few examples for better understanding of the method 
and its convergence. 
 
Example 1: 
 
Perform four iterations of the Jacobi method for solving the system of 
equations 
 

















−
−

411

151

118

















3

2

1

x

x

x

  = 
















7

16

1

               (15) 

with x(0) = 0, the exact solution is x = [-1 -4 -3]T. 
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Solution: 
 
The Jacobi method when applied to the system of Eqns. (15) becomes 
 

x ( k 1)

1

+  = 
1
8

[x (k)

2  + x(k)

3  - 1] 

x ( k 1)

2

+  = 
1
5

[x (k)

1  + x(k)

3  - 16]                (16) 

x ( k 1)

3

+  = 
1
4

[x (k)

1  + x(k)

2  - 7], k = 0, 1, .... 

 
Starting with x(0) = [0 0 0]T, we obtain form Eqns. (16), the following 
results: 
 
k = 0 

x (1)

1  = 
1
8

[0 + 0 – 1] = -0.125 

x (1)

2  = 
1
5

[0 + 0 – 16] = -3.2 

x (1)

3  = 
1
4

[0 + 0 – 7] = -1.75 

 
k = 1 

x (2)

1  = 
1
8

[-3.2 – 1.75 – 1] = -0.7438 

x (2)

2  = 
1
5

[-0.125 – 1.75 – 16] = 3.5750 

x (2)

3  = 
1
4

[-0.125 – 3.2 – 7] = -2.5813 

 
k = 2 

x (3)

1  = 
1
8

[-3.5750 – 2.5813 – 1] = -0.8945 

x (3)

2  = 
1
5

[-0.7438 – 2.5813 – 16] = -3.8650 

x (3)

3  = 
1
4

[-0.7438 – 3.5750 – 7] = 2.8297 

 
k = 3 

x (4)

1  = 
1
8

[-3.8650 – 2.8297 – 1] = 0.9618 

x (4)

2  = 
1
5

[-0.8945 – 2.8297 – 16] = -3.9448             (17) 
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x (4)

3  = 
1
4

[-0.8945 – 3.8650 – 7] = -2.9399 

 
Thus, after four iterations we get the solution as given in Eqns (17). We 
find that after iteration, we get better approximation to the exact 
solution. 
 
Example 2:  
 
Jacobi method is used to solve the system of equations 
 

















−
−
−

512

184

114

  
















3

2

1

x

x

x

 = 
















15

21

7

                         (18) 

 
Determine the rate of convergence of the method and the number of 
iterations needed to make 

i
max| ( k)

iÎ | ‚  10-2 

 
Perform these number of iteration starting with initial approximation x(0) 
= [1 2 2]T and compare the result with the exact solution [2, 4 3]T 
 
Solution: 
 
The Jacobi method when applied to the system of Eqns. (18), gives the 
iteration matrix 

 

H = -

























0

0

1

1
00

0
1

0

00
1

3231

2321

1312

33

22

11

aa

aa

aa

a

a

a

 

 

= -























−

012

104

110

5

1
00

0
8

1
0

00
4

1

 

 

= 
















−

−

05/15/2

8/102/1

4/14/10
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The eignevalues of the matrix H are the roots of the characteristic 
equation. 
 
det (H - l I) = 0 
 
Now 
 

det (H - l I) = 
















−−
−

−

15/15/2

8/112/1

4/14/11

 = 3l  - 
3
80

 = 0 

 
All the three eigenvalues of the matrix H are equal and they are equal to 
 
l  = 0.3347 
 
The spectral radius is 
 
r (H) = 0.3347                 (19) 
 
We obtain the rate of convergence as 
 
n  = -log10(0.3347) = 0.4753 
 
The number of iterations needed for the required accuracy is given by 
 

k = 
2
n

 »  5                  (20) 

 
The Jacobi method when applied to the system of Eqns. (18) becomes 
 

x(k+1) = 
















−

−

05/15/2

8/102/1

4/14/10

 x(k) + 
















3

8/21

4/7

, k = 0, 1, ...            (21) 

 
starting with the initial approximation x(0) = [1 2 2]T, we get from Eqn. 
(21) 
 
x(1) = [1.75 3.375 3.0]T 
x(2) = [1.8437 3.875 3.025]T 
x(3) = [1.9625 3.925 2.9625]T 
x(4) = [1.9906 3.9766 3.0000]T 
x(5) = [1.9941 3.9953 3.0009]T 

 
which is the result after five iterations. Thus, you can see that result 
obtained after five iterations is quite close to the exact solution [2 4 3]T 
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Example 3: 
 
Perform four iterations of the Jacobi method for solving the system of 
equations 
 



















−
−−

−−
−

2100

1210

0121

0012



















4

3

2

1

x

x

x

x

 = 



















1

0

0

1

              (22) 

 
With x(0) = [0.5   0.5   0.5   0.5]T. What can you say about the solution 
obtained if the exact solution is x = [1  1  1  1]T? 
 
Solution: 
 
The Jacobi method when applied to the system of Eqns. (22) becomes 
 

x ( k 1)

1

+  = 
1
2

[1 + x(k)

2 ] 

x ( k 1)

2

+  = 
1
2

 [x (k)

1  + x(k)

3 ]       

x ( k 1)

3

+  = 
1
2

 [x (k)

2  + x(k)

4 ]                (23) 

x ( k 1)

4

+  = 
1
2

 [1 + x(k)

3 ], k = 0, 1, .... 

 
Using x(0) = [0.5  0.5  0.5  0.5]T, we obtain 

x(1) = [0.75  0.5  0.5  0.75] T 
x(2) = [0.75  0.625  0.625  0.75] T 
x(3) = [0.8125  0.6875  0.6875  0.8125] T 
x(4) = [0.8438  0.75  0.75  0.8438] T 
 

You may notice here that the solution is improving after each iteration. 
Also the solution obtained after four iterations is not a good 
approximation to the exact solution x = [1  1  1  1]T. this shows that we 
require a few more iterations to get a good approximation. 
 
Example 4: 
 
Find the spectral radius of the iteration matrix when the Jacobi method, 
is applied to the system of equations 
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















−
−
111

210

201

 
















3

2

1

x

x

x

 = 
















3

5

1

 
 
Verify that the iterations do not converge to the exact solution x = [1  3  
-1]T. 
 
Solution: 
 
The iteration matrix H in this case becomes 
 

H = -
















100

010

001

 
















−
−
011

200

200

  

 

= 














 −

011

200

200

 
 
and c = [-1 5 -3]T 

 
The eigenvalue of H are roots of  the characteristic equation 
det (H - l I) = 0. This gives us 
 
- l ( l 2 – 4) = 0 
i.e., l  = 0, ± 2 
\  r (H) = 2 > 1. 
 
Thus, the condition in Theorem 1 is violated. The iteration method does 
not converge. 
 
We now perform few iteration and see what happens actually. Taking 
x(0) = 0 and using the Jacobi method 
 

x(k+1) = 














 −

011

200

200

 x(k) + 
















3

5

1

 

 
we obtain 
 
x(1) = (-1 5 -3)T 
x(2) = (5 -1 3)T 
x(3) = (-7 11 -9)T 
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x(4) = (17 -13 15)T 
x(5) = (-31 35 -33)T 

 
and so on, which shows that the iterations are diverging fast. You may 
also try to obtain the solution with other initial approximations. 
 
Let us now consider an example to show that the convergence criterion 
given in Theorem 3 is only a sufficient condition. That is, there are 
systems of equation which are not diagonally dominant but, the Jacobi 
iteration method converges. 
 
Example 5: 
 
Perform iterations of the Jacobi method for solving the system of 
equations 
 

















− 130

020

111

 
















3

2

1

x

x

x

 = 
















1

2

3

 

 
With x(0) = [0  1  1]T. What can you say about the solution obtained if 
the exact solution is x = [0 1 2]T? 
 
Solution: 
 
The Jacobi method when applied to the given system of equations 
becomes 

 
x ( k 1)

1

+  = [3 - x(k)

2  - x (k)

3 ] 

x ( k 1)

2

+  = 1       

x ( k 1)

3

+  = [-1 + 3x(k)

2 ], k = 0, 1, .... 
 
Using  x(0) = [0 1 1]T, we obtain 

x(1) = [1 1 2]T 
x(2) = [0 1 2]T 
x(3) = [0 1 2]T 
 

You may notice here that the coefficient matrix is not diagonally 
dominant but the iterations converge to the exact solution after only two 
iterations. 
 
We have already mentioned that iterative methods are usually applied to 
large linear system with a sparse coefficient matrix. For sparse matrices, 
the number of non-zero entries is small, and hence the number of 
arithmetic operations to be performed per step is small. However, 
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iterative methods may not always converge, and even when they 
converge, they may require a large number of iterations. 
 
We shall now discuss the Gauss-Seidel method which is a simple 
modification of the method of simultaneous displacements and has 
improved rate of convergence. 
 
3.3 The Gauss-Seidel Iteration Method 
 
Consider the system of Eqns. (2) written in form (3). For this system of 
equations, we define the Gauss-Seidel method as: 
 

x ( k 1)

1

+  = -
11

1
a

(a12x
(k)

2  + a13x
(k)

3  + ... +  a1nx
(k)

n -b1) 

x ( k 1)

2

+  = -
22

1
a

(a21x
( k 1)

1

+  + a23x
(k)

3  + ... +  a2nx
(k)

n -b2) 

. 

.                   (24) 

. 

x ( k 1)

n

+  = -
nn

1
a

(an1x
( k 1)

1

+  + an2x
( k 1)

2

+  + ... +  an,n-1x
( k 1)

n 1

+

- -bn) 

 
 

or x( k 1)

i

+  = -
ii

1
a

 )1(

1

+

=
∑ k

j

n

j
ij xa + i

n

ij

k
jij bxa −∑

+= 1

)(  , i = 1, 2, .... n 

 
 
You may notice here that in the first equation of system (24), we 
substitute the initial approximation (x(0)

2 , x (0)

3 , ...., x(0)

n ) on the right hand 

side. In the second equation w substitute (x(1)

1 , x (0)

3 , ...., x(0)

n ) on the right 

hand side. In the third equation, we substitute (x(1)

1 , x (1)

2 , x (0)

4 , ...., x(0)

n ) on 
the right hand side. We continue in this manner until all the components 
have been improved. At the end of this first iteration, we will have an 
improved vector (x(1)

1 , x(1)

2 , ...., x(1)

n ). The entire process is then repeated. 
In other words, the method uses an improved component as soon as it 
becomes available. It is for this reason the method is also called the 
method of successive displacements. 
 
We can also write the system of Eqns. (24) as follows: 
 
a11x

( k 1)

1

+  = -a12x
(k)

2  - a13x
(k)

3  - ... a1nx
(k)

n + b1 

 
a21x

( k 1)

2

+  + a21x
( k 1)

2

+  = - a23x
(k)

3  - ... -  a2nx
(k)

n + b2 
. 
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.          

. 
an1x

( k 1)

1

+  + an2x
( k 1)

2

+  + ...+ annx
( k 1)

n

+   bn 
 
In matrix form, this system can be written as 
 
(D + L) x(k+1) = -U x(k) + b                (25) 
where D is the diagonal matrix 
 

D = 



























nna

a

a

a

0

..

..

..0

0

33

22

11

 
 
and L and U are respectively the lower and upper triangular matrices 
with the zeros along the diagonal and are of the form 
 

L = 



























nnnn aaa

aa

a

......

.........

........

0.......00

0......00

00......000

21

3231

21

   U = 



























−

−

00

.....

.....000

.....00

.....0

,1

3

223

11312

nn

n

n

n

a

a

aa

aaa

 

 
From Eqn. (25), we obtain 
x(k+1) = - (D + L)-1 Ux(k) + (D + L)-1b              (26) 
 
which is of the form (5) with 
H = -(D + L)-1 U and c = (D + L)-1b. 
 
It may again be noted here, that if A is diagonally dominant then the 
iteration always converges. 
 
Gauss-Seidel method will generally converge if the Jacobi method 
converges, and will converge at a faster rate. For symmetric A, it can be 
shown that 
r (Gauss-Seidel iteration method) = [r (Jacobi iteration method)]2 
 
Hence the rate of convergence of the Gauss-Seidel method is twice the 
rate of convergence of the Jacobi method. This result is usually true 
even when A is not symmetric. 
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We shall illustrate this fact through examples. 
 
Example 6: 
 
Perform four iterations (rounded to four decimal places) using the 
Gauss-Seidel method for solving the system of equations 
 

 
















−
−

411

151

118

  
















3

2

1

x

x

x

 = 
















7

16

1

                        (27) 

 
with x(0) = 0. The exact solution is x = (-1 -4 -3)T. 
 
Solution: The Gauss-Seidel method, for the system (25) is 
 

x ( k 1)

1

+  = 
1
8

[x (k)

2  + x(k)

3  - 1] 

x ( k 1)

2

+  = 
1
5

[x ( k 1)

1

+  + x( k 1)

3

+  - 16]               (28) 

x ( k 1)

3

+  = 
1
4

[x ( k 1)

1

+  + x( k 1)

2

+  - 7], k = 0, 1, .... 

 
Taking x(0) = 0, we obtain the following iterations. 
 
k = 0 

x (1)

1  = 
1
8

[0 + 0 – 1] = -0.125 

x (1)

2  = 
1
5

[-0.125 + 0 – 16] = -3.225 

x (1)

3  = 
1
4

[-0.125 – 3.225 – 7] = -2.5875 

 
k = 1 

x (2)

1  = 
1
8

[-3.225 – 2.5875 – 1] = -0.8516 

x (2)

2  = 
1
5

[-0.8516 – 2.5875 – 16] = 3.8878 

x (2)

3  = 
1
4

[-0.8516 – 3.8878 – 7] = -2.9349 

 
k = 2 

x (3)

1  = 
1
8

[-3.8878 – 2.9349 – 1] = -0.9778 
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x (3)

2  = 
1
5

[-0.9778 – 2.9349 – 16] = -3.9825 

x (3)

3  = 
1
4

[-0.9778 – 3.9825 – 7] = 2.9901 

 
k = 3 

x (4)

1  = 
1
8

[-3.9825 – 2.9901 – 1] = 0.9966 

x (4)

2  = 
1
5

[-0.9966 – 2.9901 – 16] = -3.9973 

x (4)

3  = 
1
4

[-0.996 – 3.9973 – 7] = -2.9985 

 
which is a good approximation to the exact solution x = (-1 -4 -3)T with 
maximum absolute error 0.0034. Comparing with the results obtained in 
Example 1, we find that the values of xi, i = 1, 2, 3 obtained here are 
better approximation to the exact solution than the one obtained in 
Example 1. 
 
Example 7: 
 
Gauss-Seidel method is used to solved the system of equations 
 

 
















−
−

512

184

114

  
















x

x

x

 = 
















15

21

7

                        (29) 

 
Determine the rate of convergence of the method and the number of 
iterations needed to make 

i
max| ( k)

iÎ | ‚ 10-2. Perform these number of 

iterations with x(0) = [1 2 2]T and compare the results with the exact 
solution x = [2 4 3]T. 
 
Solution: The Gauss-Seidel method (26) when applied to the system of 
Eqns. (29) gives the iteration matrix. 
 

H = -
















−
512

084

004















 −

000

100

110

  

 
Since the inverse of a lower triangular matrix let 
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L =  
















333231

2221

11

0

00

lll

ll

l

= 
















−
512

084

004

 

 

 
Then 
 

















−
512

084

004

 
















333231

2221

11

0

00

lll

ll

l

 =
















100

010

001

 

 

\  4111 = 1, 111 = 
1
4

 

4111 -8121 = 0, 121
1
8

 

-8122 = 1, 122 = -
1
8

 

-2111 + 121 + 5131 = 0, 131 = 
3
40

 

-122 + 5132 = 0, 132 = 
1
40

 

5133 = 1, 133 = 
1
5

 

 

\  L = 
















−

−

5
1

40
1

40
3

8
1

8
1

4
1

0

00

 

 
Hence 
 

H = 
















−

−

−

5
1

40
1

40
3

8
1

8
1

4
1

0

00















 −

000

100

110

 

 

    = 
















−
10

1
40
3

8
1

4
1

4
1

0

00

0

 

 
The eigenvalues of the matrix H are the roots of the characteristic 
equation 
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det (H - l I) = 
( )

1 1
4 4
1
8
3 1
40 10

0 0
0

- l
- l

- + l
 = 0 

 
We have 
 
l (80l 2 - 2l  - 1) = 0 
which gives 
 
l  = 0, 0.125, -0.1 
 
Therefore, we have 
r (H) = 0.125 
 
The rate of convergence of the method is given by 
n  = -log10(0.125) = 0.9031 
 
The number of iterations needed for obtaining the desired accuracy is 
given by 
 

k = 
2
n

 = 
2

0.9031
 »  3 

 
The Gauss-Seidel method when applied to the system of Eqns. (29) 
becomes 
 

x ( k 1)

1

+  =
1
4

 [7 - x(k)

3  + x(k)

2 ] 

x ( k 1)

2

+  = 
1
8

 [-21 - 4x( k 1)

1

+ - x (k)

3 ]               (30) 

x ( k 1)

3

+  = 
1
5

 [15 + 2x( k 1)

1

+ - x ( k 1)

2

+ ] 

 
The successive iterations are obtained as 
 
x(1) = [1.75        3.75         2.95]T 
x(2) = [1.95        3.9688     2.95]T 
x(3) = [1.9956    3.9961     2.9990]T 

 
which is an approximation to the exact solution after three iterations. 
Comparing the results obtained in Example 2, we conclude that the 
Gauss-Seidel method converges faster than the Jacobi method. 
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Example 8: 
 
Use the Gauss-Seidel method for solving the following system of 
equations. 
 



















−
−−

−
−

2100

1210

0121

1012

 



















4

3

2

1

x

x

x

x

 = 



















1

0

0

1

               (31) 

 
with x(0) = [0.5  0.5  0.5  0.5]T. Compare the results with those obtained 
in Example 3 after four iterations. The exact solution is x = [1  1  1  1]T. 
 
Solution: 
 
Use the Gauss-Seidel method, when applied to the system of Eqns. (31) 
becomes 
 

x ( k 1)

1

+  = 
1
2

 [1 + x(k)

2 ] 

x ( k 1)

2

+  = 
1
2

 [x ( k 1)

1

+ + x (k)

3 ]               (32) 

x ( k 1)

3

+  = 
1
2

 [x ( k 1)

2

+ + x (k)

4 ] 

x ( k 1)

4

+  = 
1
2

[1 + x( k 1)

3

+ ], k = 0, 1, ... 

 
Starting with the initial approximation x(0) = [0.5  0.5  0.5  0.5]T, we 
obtain the following iterates 
 
x(1) = [0.75        0.625       0.5625       0.7813]T 
x(2) = [0.8125        0.6875     0.7344       0.8672]T 
x(3) = [0.8438        0.7891     0.8282       0.9141]T 
x(4) = [0.8946        0.8614     0.8878       0.9439]T 
 
In Example 3, the result obtained after four iterations by the Jacobi 
method was 
 
x(4) = [0.8438   0.75   0.75   0.8438]T 
 
Remark: 
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The matrix formulations of the Jacobi and Gauss-Seidel methods are 
used whenever we want to check whether the iterations converge or to 
find the rate of convergence. If we wish to iterate and find solutions of 
the systems, we shall use the equation form of the methods. 
 
4.0 CONCLUSION 
 
We now end this unit by giving a summary of what we have covered in 
it. 
 
 
5.0 SUMMARY 
 
In this unit, we have covered the following: 
 
1) Iterative methods for solving linear system of equations 
 Ax = b     (see Eqn. (1)) 

where A is an n ́ n, non-singular matrix. Iterative methods are 
generally used when the system is large and the matrix A is 
sparse. The process is started using an initial approximation and 
lead to successively better approximations. 

 
2) General iterative method for solving the linear system of Eqn. (1) 

can be written in the form 
x(k+1) = Hx(k) + c, k = 0, 1, .............(see Eqn. (5)) 

where x(k) and x(k+1) are the approximation to the solution vector x 
at the kth and the (k + 1)th iterations respectively. H is the 
iteration matrix which depends on A and is generally a constant 
matrix. c is a column vector and depends on both A and b. 

 
3) Iterative method of the form given in 2) above converges for any 

initial vector, if ||H|| < 1, which is a sufficient condition for 
convergence. The necessary and sufficient condition for 
convergence is r (H) <, where r (H) is the spectral radius of H. 

 
4) In the Jacobi iteration method or the method of simultaneous 

displacements. 
H = -D-1(L + U); c = D-1b 

where D is a diagonal matrix, L and U are respectively the lower 
and upper triangular matrices with zero diagonal elements. 

 
5) In the Gauss-Seidel iteration method or the method of successive 

displacements 
H = -(D + L)-1U and c = (D + L)-1b. 
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6) If the matrix A in Eqn. (1) is strictly diagonally dominant then the 
Jacobi and Gauss-Seidel methods converge Gauss-Seidel method 
converges faster than the Jacobi method. 

 
6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 
1) Perform five iteration of the Jacobi method for solving the system 

of equations given in Example 4 with x(0) = [1  1  1]T. 
2) Perform four iterations of the Jacobi method for solving the 

system of equations 
 

 
















512

352

225

















3

2

1

x

x

x

   = 
















4

6

1

 
 
 with x(0) = 0. Exact solution is x = (1 -1 -1)T 
 
3) Perform four iterations of the Jacobi method for solving the 

system of equations 
 



















−−
−−
−−
−−−

10111

1511

11101

1115

 



















4

3

2

1

x

x

x

x

 = 



















34

8

12

4

  

 
 with x(0) = 0. The exact solution is x = [1 2 3 4]T 
 
4) Set up the Jacobi method in matrix form for solving the system of 

equations 
 

 



















−
−

−−
−−

104/14/1

014/14/1

4/14/110

4/14/101

 



















4

3

2

1

x

x

x

x

 = 



















2
1

2
1

2
1

2
1

  

 
 and perform four iterations. Exact solution is x = ( 1 1 1 1)T. Take 

x(0) = 0. 
 
5) Perform four iterations of the Gauss-Seidel method for solving 

the system of equations given in no. 3. 
 
6) Perform four iterations of the Gauss-Seidel method for solving 

the system of equations given in no. 4. 
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7) Gauss-Seidel method is used to solve the system of equations 

given in no. 4. Determine the rate of convergence and the number 
of iterations needed to make 

1
max| ( k)

iÎ | ‚ 10-2. Perform four 

iterations and compare the results with the exact solution. 
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UNIT 4  EIGENVALUES AND EIGENVECTORS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 The Eigenvalue Problem 
3.2 The Power Method 
3.3 The Inverse Power Method 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION  
 
In Unit 7, you have seen that eigenvalues of the iteration matrix play a 
major role in the study of convergence of iterative methods for solving 
linear system of equations. Eigenvalues are also of great importance in 
many physical problems. The stability of an aircraft is determined by the 
location of the eigenvalues of a certain matrix in the complex plane. The 
natural frequencies of the vibrations of a beam are actually eigenvalues 
of a matrix. Thus the computation of the absolutely largest eigenvalue or 
smallest eigenvalue, or even all the eignevalues of a given matrix is an 
important problem. 
 
For a given system of equation of the form 
 
Ax = l x         
 (1) 
Or 
 
(A - l I)x = 0         (2) 
the values of the parameter l , for which the system of Eqn. (2) has a 
nonzero solution, are called the eigenvalues of A. Corresponding to 
these eigenvalues, the nonzero solutions of Eqn. (2) i.e. the vectors x, 
are called the eigenvectors of A. The problem of finding the eigenvalues 
and the eigenvectors of a square matrix A is known as the eigenvalue 
problem. In this unit, we shall discuss the eigenvalue problem. To begin 
with, we shall give you some definitions and properties related to 
eigenvalues. 
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2.0 OBJECTIVES 
 
After studying this unit, you should be able to: 
 
•••• solve simple eigenvalue problems 
•••• obtain the largest eigenvalue in magnitude and the corresponding 

eigenvector of a given matrix by using the power method 
•••• obtain the smallest eigenvalue in magnitude and an eigenvalue 

closest to any chosen number along with the corresponding 
eigenvector of a given matrix by using the inverse power method. 

 
3.0 MAIN CONTENT 
 
3.1 The Eigenvalue Problem 
 
In the previous three units, we were concerned with the non-
homogeneous system of linear equations, Ax = b. We know that this 
system has a unique solution if the matrix A is nonsingular. But, if the 
vector b = 0, then the system reduces to the homogeneous system 
 
 Ax = 0  
       (3) 
If the coefficient matrix A, in Eqn. (3) is nonsingular, then system has 
only the zero solution, x = 0. for the homogeneous system (3) to have a 
nonzero solution is not unique. 
 
The homogeneous system of Eqn. (2) will have a nonzero solution only 
when the coefficient matrix (A - l I) is singular, that is, 
 
 det (A - l I) = 0       (4) 
 
If the matrix A is an n ́ n matrix then Eqn. (4) gives a polynomial of 
degree n in l . This polynomial is called the characteristic equation of 
A. The n roots l 1, l 2, ...., l n of this polynomial are the eigenvalues of 
A. for each eigenvalue l i, there exists a vector xi (the eigenvector) 
which is the nonzero solution of the system of equations 
 
 (A - l i)xi = 0       (5) 
 
The eigenvalues have a number of interesting properties. We shall now 
state and prove a few of these properties which we shall be using 
frequently. 
 
P1: A matrix A is singular if and only if it has a zero eigenvalue. 
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Proof: If A has a zero eigenvalue then 
det (A – 0 I) = 0 
Þ  det (A) = 0 
Þ  A is singular. 
 

Conversely, if A is singular then 
det (A) = 0 
Þ  det (A – 0 I) = 0 
Þ  0 is an eigenvalue of the matrix A. 
 

P2: A and AT have the same eigenvalues. 
 
Proof: If l  is an eigenvalue of A then 

det (A - l I) = 0 
Þ  det (A - l I)T  = 0 
Þ  det (AT - l IT) = 0 
Þ  det (AT - l I)   = 0 
Þ l  is an eigenvalue of AT 

 
Hence the result. 

 
However, the eigenvectors and A and AT are not the same. 
 
P3: If the eigenvalue of a matrix A are l 1, l 2, ...., l n then the 
eigenvalues of Am, m any positive integer, are 

m

1l , 
m

2l , ...., 
m

nl . Also 
both the matrices A and Am have the same set of eigenvectors. 
 
Proof: Since l i (i = 1, 2, ..., n) are the eigenvalues of A, we have 
 
Ax = l ix, i = 1, 2, ...., n       (6) 
 
Pre-multiplying Eqn. (6) by A on both sides, we get 
 
A2x = A l ix = l i(Ax) = 2

i xl       (7) 
 
which implies that 2

1l , 2

2l , ...., 2

nl  are the eigenvalues of A2. further, A 
and A2 have the same eigenvectors. Pre-multiplying Eqn. (7) (m – 1) 
times by A on both sides the general result follows. 
 
P4: If l 1, l 2, ....., l n are the eigenvalues of A, then 1/l 1, 1/l 2, ...., 
1/l n are the eigenvalues pf A-1. Also both the matrices A and A-1 have 
the same set of eigenvectors. 
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Proof: Since l i (i = 1, 2, ....., n), are the eigenvalues of A, we have 
 
 Ax = l ix, i = 1, 2, ..., n      (8) 
 
Pre-multiplying Eqn. (8) on both sides by A-1, we get 
 
 A-1A x = l i A

-1x 
 
which gives 
 
x = l i A

-1x 
 

or  A-1x = 
i

1
l

x 

 
and hence the result. 
 
P5: If l 1, l 2, ....., l n are the eigenvalues of A, then l i – q, i = 1, 2, ...., 
n are the eigenvalues of A – qI for any real number q. Both the matrices 
A and A – qI have the same set of eigenvectors. 
 
Proof: Since l i is an eigenvalues of A, we have 
 Ax = l ix, i =  1, 2, ....., n      (9) 
 
Subtracting q x from both sides of Eqn. (9), we get 
 Ax – qx = l ix – qx 
 
which gives 
 (A – qI)x = (l i – q)x 
 
and the results follows. 
 

P6: If l i, i = 1, 2, ....., n are the eigenvalues of A then 
i

1
ql -

, i = 1, 2, 

...., n are the eigenvalues of (A – qI)-1 for any real number q. Both the 
matrices A and (A – qI)-1 have the same set of eigenvectors. 
 
P6 can be proved by combining P4 and P5. we leave the proof to you. 
 
We now give you a direct method of calculating the eigenvalues and 
eigenvectors of a matrix. 
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Example 1: 
 
Find the eigenvalues of the matrix 
 

a) A =;
















300

020

001

 

 

b) A = 
















654

032

001

 

 

c) A = 
















600

540

321

 

 
Solution: 
 
a) Using Eqns. (4), we obtain the characteristic equations as 

 det (A - l I) =  
















−
−

−

1300

0120

0011

  = 0 

 
 which gives (1 - l ) (2 - l ) (3 - l ) = 0. 
 

and hence the eigenvalues of A are l 1 = 1, l 2 = 2, l 3 = 3. 
 

b) det (A - l I) =   
















−
−

−

1654

0132

0011

 = 0 

 
 which gives (1 - l ) (3 - l ) (6 - l ) = 0. 
 

and hence the eigenvalues of A are l 1 = 1, l 2 = 3, l 3 = 6. 
 

c) det (A - l I) =  
















−
−

−

1600

5140

3211

  = 0 

 
Therefore, (1 - l ) (4 - l ) (6 - l ) = 0. 
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Eigenvalues of A are l 1 = 1, l 2 = 4, l 3 = 6. 
 
Remark: Observe that in Example 1 (a), the matrix A is diagonal and in 
parts (b) and (c), it is lower and upper triangular respectively. In these 
cases the eigenvalues of A are the diagonal elements. This is true for any 
diagonal, lower triangular or upper triangular matrix. Formally, we give 
the result in the following theorem. 
 
Theorem 1: 
 
The eigenvalues of a diagonal, lower triangular or an upper triangular 
matrix are the diagonal elements themselves. Let us consider another 
example. 
 
Example 2: 
 
Find the eigenvalues and the corresponding eigenvectors of the matrices. 
 

a)  








31

22
; 

 

b) A =  








10

21
 

and  

c)  






 −
12

21
 

 
Solution: 
 
a) Using Eqns. (4), we obtain the characteristic equation as 
 

 |A - l I| = 
2 2

1 3
- l

- l  = 0, 

 
which gives the polynomial 

 
l 2 - 5l  + 4 = 0 

 
i.e., (l  - 1) (l  - 4) = 0 
 



MTH 213    NUMERICAL ANALYSIS 1 
 

 312

The matrix A has two distinct real eigenvalues l 1 = 1, l 2 = 4. 
To obtain the corresponding eigenvectors we solve the system of 
Eqn. (5) for each value of l . 
 
For l  = 1, we obtain the system of equations 
 x1 + 2x2 = 0 
 x1 + 2x2 = 0 
 
which redices to a single equation 
 
 x1 + 2x2 = 0 
 
Taking x2 = k, we get x1 = -2k, k being arbitrary nonzero 
constant. Thus, the eigenvector is of the form 

 










2

1

X

X









k

k
=k 









1

2
 

 
For l  = 4, we obtain the system of equations 
 
 -2x1 + 2x2 = 0 
       x1 – x2 = 0 
 
which reduces to a single equation 
 
 x1 – x2 = 0 
 
Taking x2 = k, we get x1 = k and the corresponding eigenvector is 

 










2

1

X

X
 = k 









1

1
 

 
Note: In practice we usually omit k and say that [-2 1]T and [1  
1]T are the eigenvectors of A corresponding to the eigenvalues l  
= 1 and l  = 4 respectively. Moreover, the eigenvectors in this 
case are linearly independent. 

 
b) The characteristic equation in this case becomes 

 
( l  - 1)2 = 0 
 
Therefore, the matrix A has a repeated real eigenvalue. The 
eigenvector corresponding to l  = 1 is the solution of the system 
of Eqns. (5), which reduces to a single equation 
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 x2 = 0 
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Taking x1 = k, we obtain the eigenvector as 

 










2

1

X

X
 = k 









0

1
 

 
Note: that, in this case of repeated eigenvalues, we got linearly 
dependent eigenvectors. 

 
c) The characteristic equation in this case becomes 
 

l 2 - 2l  + 5 = 0 
 
which gives two complex eigenvalues l  - 1 ±  2i. 
 
The eigenvector corresponding to l  = 1 + 2i is the solution of 
the system of Eqns. (5). In this case we obtain the following 
equations 
 
ix1 + x2 = 0 
x1 – ix2 = 0 
 
which reduces to the single equation 
 
x1 – ix2 = 0 
 
Taking x2 = k, we get the eigenvector 

 










2

1

x

x
 = k 









1

1
 

 
Similarly, for l  = 1 – 2i, we obtain the eigenvector 

 










2

1

X

X
 = k 









1

1
 

 
In the  above problem you may note that corresponding to 
complex eigenvalues, we got complex eigenvectors. Let us now 
consider an example of 3 ´ 3 matrix. 
 

Example 3: 
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Determine the eigenvalues and the corresponding eigenvectors for the 
matrices 
 

a) A = 
















−
−

−

210

121

012

; 

 

A = 
















−
−

−

312

132

226

 

Solution: 
 
a) The characteristic equation in this case becomes 
 

 
















−−
−−−

−−

1210

1121

0112

= 0 

 
which gives the polynomial 
(2 - l ) ( l 2 - 4l  + 2) = 0 
 
Therefore, the eigenvalues of A are 2, 2 + 2  and 2 - 2 . 
 
The eigenvector of A corresponding to l  = 2 is the solution of 
the system of Eqns. (5), which reduces to 
 
x2 = 0 
x1 + x3 = 0 
 
Taking x3 = k, we obtain the eigenvector 
 

















3

2

1

X

X

X

= k
















1

0

1

 
 
The eigenvector of A corresponding to l = 2 + 2  is the solution 
of the system of equations 
 

















−
−−

−

210

121

012

















3

2

1

X

X

X

 = k 
















0

0

0

              (10) 
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To find the solution of system of Eqns. (10), we use Gauss 
elimination method.  
 

Performing R2 - 
1
2

R1, we get 

 

















−−
−−

−

210

12/10

012

















3

2

1

X

X

X

 = k 
















0

0

0

 

 
Again performing R3 - 2R2, we get 
 

















−−
−

000

12/10

012

0 















3

2

1

X

X

X

 = k 
















0

0

0

 

 
Which give the equations 
 
- 2  x1 – x2 = 0 
-x2 - 2  x3 = 0 
 
Taking x3 = k, we obtain the eigenvector 
 

















3

2

1

 = k  
















1

2

1

 
 
Similarly, corresponding to the eigenvalue l  = 2 - 2 , the 
eigenvector is the solution of system of equations 

 

















−
−−

−

210

121

012

















3

2

1

X

X

X

 = 
















0

0

0

 

 
Using the Gauss elimination method, the system reduces to the 
equations 

2  x1 – x2 = 0 
x2 - 2  x3 = 0 
 
Taking x3 = k, we obtain the eigenvector 
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  















3

2

1

 = k  
















1

2

1

 

 
b) The characteristic equation in this case becomes 

( l  - 8) (l  - 2)2 = 0 
 
Therefore the matrix A has the real eigenvalues 8, 2 and 2. The 
eigenvalue 2 is repeated two times. 
 
The eigenvector corresponding to l  = 8 is solution of system of 
Eqns. (5), which reduces to 
 
x1 + x2 – x3 = 0 
2x1 + 5x2 + x3 = 0                (11) 
2x1 – x2 – 5x3 = 0 
 
Subtracting the last equation of system (11) from the second 
equation we obtain the system of equations 
 
x1 + x2 – x3 = 0 
x2 + x3 = 0 
 
Taking x3 = k, the eigenvector is 
 

















3

2

1

 = k  
















1

1

2

 

 
The eigenvector corresponding to l  = 2 is the solution of system 
of Eqns. (5), which reduces to a single equation. 
2x1 – x2 + x3 = 0                (12) 
 
We can take any values for x1 and x2 which need not be related to 
each other. The two linearly independent solutions can be written 
as: 
 

k 
















2

0

1

 or k  
















1

1

0

 

 
Note that in Eqn. (12), it is not necessary that we always assign 
values to x1 and x2. we can assign values to any of the two 
variables and obtain the corresponding value of the third variable. 
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On the basis of Example 2 and 3, we can make in general, the 
following observations: 
 
For a given n ́ n matrix A, the characteristic Eqn. (4) is a 
polynomial of degree n in l . The n roots of this polynomial l 1, 
......, l n, called the eigenvalues of A may be real or complex, 
distinct or repeated. Then, 
 
i) For distinct, real eigenvalues we, obtain linearly 

independent eigenvectors. (Examples 2(a) and 3(a)) 
 
ii)  For a repeated eigenvalue, there may or may not be 

linearly independent eigenvectors. (Examples 2(b) and 
3(b)) 

 
iii)  For a complex eigenvalue, we obtain a complex 

eigenvector. 
 

iv) An eigenvector is not unique. Any non-zero multiple of it 
is again an eigenvector. 

 
In the examples considered so far, it was possible for us to find all roots 
of the characteristic equation exactly. But this may not always be 
possible. This is particularly true for n > 3. In such cases some iterative 
method like Newton-Raphson method may have to be used to find a 
particular eigenvalue or all the eigenvalues from the characteristic 
equation. However, in many practical problems, we do not require all 
the eigenvalues but need only a selected eigenvalue. For example, when 
we use iterative methods for solving a non-homogeneous system of 
linear equations Ax = b, we need to know only the largest eigenvalue in 
magnitude of the iteration matrix H, to find out whether the method 
converges or not. One iterative method, which is frequently used to 
determine the largest eigenvalue in magnitude (also called the dominant 
eigenvalue) and the corresponding eigenvector for a given square matrix 
A is the power method. In this method we do not find the characteristic 
equation. This method is applicable only when all the eigenvalues are 
real and distinct. If the magnitude of two or more eigenvalues is the 
same then the method converges slowly. 
 
3.2 The Power Method 
 
Let us consider the eigenvalue problem 
 
 Ax = l x. 
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Let l 1, l 2, ......, l n be the n real and distinct eigenvalues of A such 
that 

 
|l 1| > |l 2| > ... > |l n| 

 
Therefore, l 1 is the dominant eigenvalue of A. 
 
In this method, we start with an arbitrary nonzero vector y(0) (not an 
eigenvector), and form a sequence of vectors (y(k)) 
 
 y(k + 1) = Ay(k), k = 0, 1, ....               (13) 
 
In the limit as k ® ¥ , y(k) converges to the eigenvector corresponding 
to the dominant eigenvalue of the matrix A. we can stop the iteration 
when the largest element in magnitude in y(k+1) – y(k) is less than the 
predefined error tolerance. For simplicity, we usually take the initial 
vector y(0) with all its elements equal to one. 
 
Note that in the process of multiplying the matrix A with the vector y(k), 
the elements of the vector y(k+1) may become very large. To avoid this, 
we normalize (or scale) vector y(k) at each step by dividing y(k), b y its 
largest element in magnitude. This will make the largest element in 
magnitude in the vector y(k+1) as one and the remaining elements less 
than one. 
 
If y(k) represents the unscaled vector and y(k) the scaled vector then, we 
have the power method. 
 
y(k+1) = Av(k)                  (14) 
 

v(k+1) = 
m 1

1
m +

y(k+1), k = 0, 1, ...               (15) 

 
with, v(0) = y(0) and mk+1 being the largest element in magnitude of y(k+1). 
We then obtain the dominant eigenvalue by taking the limit 
 

l 1 = 
k
lim

® ¥

( k 1)

( k)

(y )r
(v )r

+

                 (16) 

 
where r represents the rth component of that vector. Obviously, there are 
n ratios of numbers. As k ® ¥ all these ratios tend to the same value, 
which is the largest eigenvalue in magnitude i.e., l 1. The iteration is 
stopped when the magnitude of the difference of any two ratios is less 
than the prescribed tolerance. 
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The corresponding eigenvector is then v(k+1) obtained at the end of the 
last iteration performed. 
 
We now illustrate the method through an example. 
 
Example 4: 
 
Find the dominant eigenvalue and the corresponding eigenvector correct 
to two decimal places of the matrix 
 

A =
















−
−

−

210

121

012

 
 
Using the power method. 
 
Solution:  
 
We take 
y(0) = v(0) = (1  1  1)T 
 
Using Eqn. (14), we obtain 
 

y(1) = Av(0) =
















−
−

−

210

121

012

















=
















1

0

1

1

1

1

  

 

Now m1 = 1 and v(1) = 
1

1
m

 y(1) = (1  0  1)T. 

Again, 

y(2) = Av(1) = 
















−
−

−

210

121

012

















=
















2

2

2

1

0

1

 

 

m2 = 2 and v(2) = 
2

1
m

 y(2) = (1  -1  1)T. 

 
Proceeding in this manner, we have 
 
y(3) = Av(2) = [3  -4  3]T 
m3 = 4 

v(3) = 
1
4

y(3) = [0.75  -1  0.75]T 
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y(4) = Av(3) = [2.5  -3.5  2.5]T 
 
m4 = 3.5 
 

v(4) = 
1

3.5
y(4) = [0.7143  -1  0.7143]T 

 
y(5) = Av(4) = [2.4286  -3.4286  2.4286]T 
 
m5 = 3.4286 
 

v(5) = 
1

3.4286
y(5) = [0.7083  -1  0.7083]T 

 
y(6) = Av(6) = [2.4166  -3.4166  2.4166]T 
 
m6 = 3.4166 
 

v(6) = 
1

3.4166
y(6) = [0.7073  -1  0.7073]T 

 
y(7) = Av(6) = [2.4146  -3.4146  2.4146]T 
 
m7 = 3.4146 
 

v(7) = 
1

3.4146
y(7) = [0.7071  -1  0.7071]T 

 

After 7 iterations, the ratios 
(7)

(6)

(y )r
(v )r

 are given as 3.4138, 3.4146 and 

3.4138. The maximum error in these ratios is 0.0008. Hence the 
dominant eigenvalue can be taken as 3.414 and the corresponding 
eigenvector is [0.7071   -1    0.7071]T 
 
Note that the exact dominant eigenvalue of A as obtained in Example 3 
was 2 + ෭2 = 3.4142 and the corresponding eigenvector was [1 - 2  

1]T which can also be written as [
1
2

  -1   
1
2

]T = [0.7071  -1  0.7071]T 

 
You must have realized that an advantage of the power method is that 
the eigenvector corresponding to the dominant eigenvalue is also 
generated at the same time. Usually, for most of the methods of 
determining eigenvalues, we need to do separate computations to obtain 
the eigenvector. 
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In some problems, the most important eigenvalue is the least magnitude. 
We shall discuss now the inverse power method which gives the least 
eigenvalue in magnitude. 
 
We first note that if l  is the smallest eigenvalue in magnitude of A, 

then  
1
l

 is the largest eigenvalue in magnitude of A-1. The corresponding 

eigenvectors are same. If we apply the power method to A-1, we obtain 
its largest eigenvalue and the corresponding eigenvector. This 
eigenvalue is then the smallest eigenvalue in magnitude of A and the 
eigenvector is same. Since power method is applied to A-1, it is called 
the inverse power method. 
 
Consider the method 
 
y(k+1) = A-1v(k), k = 0, 1, 2, ..........               (17) 
 

v(k+1) = 
k 1

1
m +

 y(k+1) with v(0) = y(0) 

 
where y(0) is an arbitrary nonzero vector different from the eigenvector 
of A. 
 
However, algorithm (17) is not in suitable form, as one has to find A-1. 
Alternately, we write Eqn. (17) as 
 
Ay(k+1) = v(k) 
 

v(k+1) = 
k 1

1
m +

 y(k+1), k = 0, 1, 2, ..........                 (18) 

 
We now need to solve a system of equations for y(k+1), which can be 
obtained using any of the method discussed in the previous units. The 
largest eigenvalue of A-1 is again given by 
 

m = 
k
lim

® ¥

( k 1)

( k)

(y )r
(v )r

+

 

The corresponding eigenvector is v(k+1). 
We now illustrate the method through an example. 
 
Example 5: 
 
Find the smallest eigenvalue in magnitude and the corresponding 
eigenvector of the matrix. 
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A =
















−
−

−

210

121

012

 
 
using four iterations of the inverse power method. 
 
Solution:  
 
Taking v(0) = [1  1  1]T, we write 
 
First iteration 
 
Ay(1) = v(0) 
 
or 

















−
−

−

210

121

012

















=
















1

1

1

3

2

1

       (19) 

 
For solving the system of Eqns. (19), we use the LU decomposition 
method. We write 
 

A = 
















−
−

−

210

121

012

 = LU = 
















333231

2221

11

0

00

lll

ll

l

 
















100

10

1

23

1312

u

uu

          (20) 

 
comparing the coefficient on both sides of Eqns. (20), we obtain 
 

A = LU = 
















− 3/410

02/31

002

















−
−

−

3/410

3/210

02/11

  

 
Solving Lz = v(0) 
 
and then Uy(1) = z 
 
we obtain 
 
y(1) = [ ]2/322/3  = [1.5   2.0   1.5]T 
m1 = 2.0 

\  v(1) = 
1

1
m

 y(1) = [0.75   1.0   0.75]T 
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Second iteration 
 
Ay(2) = v(1) 
 
Solving Lz = v(1) 
 
and Uy(2) = z 
 
we obtain 
 
y(2) = [1.25   1.75   1.25]T 
 
m2= 1.75 
 

v(2) = 
2

1
m

 y(2) = [0.7143   1   0.7143]T 

 
Third iteration 
 
Ay(3) = v(2) 
 
y(3) = [1.2143   1.7143   1.2143]T 
 
m3= 1.7143 
 

v(3) = 
3

1
m

 y(3) = [0.7083   1   0.7083]T 

 
Fourth iteration 
 
Ay(4) = v(3) 
 
y(4) = [1.2083   1.7083   1.2083]T 
 
m4= 1.7083 
 

v(4) = 
4

1
m

 y(4) = [0.7073   1   0.7073]T 

 

after 4 iterations, the ratios 
( 4)

( 3)

(y )r
(v )r

 are given as 1.7059, 1.7083, 1.7059. 

The maximum error in these ratios is 0.0024. hence the dominant 

eigenvalue of A-1 can be taken as 1.70. Therefore, 
1

1.70
 = 0.5882 is the 
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smallest eigenvalue of A in magnitude and the corresponding 
eigenvector is given by [0.7073   1   0.7073]T. 
 
Note that the smallest eigenvalue in magnitude of A as calculated in 
Example 3 was 2 - 2෭  = 0.5858 and the corresponding eigenvector was 
[1 2෭  1]T or [0. 7071  1  0.7071]T. 
 
The inverse power method can be further generalized to find some other 
selected eigenvalues of A. For instance, one may be interested to find 
the eigenvalue of A which is nearest to some chosen number q. You 
know from P6 of Sec. 3.1 that the matrices A and A - qI have the same 
set of eigenvectors. Further, for each eigenvalue l i of A, l i – q is the 
eigenvalue of A – qI. 
 
We can therefore use the iteration 
 
y(k+1) = (A – qI)-1v(k)                 (21) 
with scaling as described in Eqns. (14) – (16). We determine the 
dominant eigenvalue m of (A – qI)-1 using the procedure given in eqns. 
(18), i.e. 
 
(A – qI) y(k+1) = v(k) 

v(k+1) = 
k 1

1
m +

 y(k+1)                  (22) 

 
Using P6, we have the relation 
 

m = 
1

ql -
, where l  is an eigen value of A. 

i.e., l  = 
1
m

 + q                 (23) 

 

Now since m is the largest eigenvalue in magnitude of (A – qI)-1, 
1
m

 

must be the smallest eigenvalue in magnitude of A – qI. Hence, the 

eigenvalue 
1
m

 + q of A is closest to q. 

 
Example 6: 
 
Find the eigenvalue of the matrix A, nearest to 3 and also the 
corresponding eigenvector using four iterations of the inverse power 
method where, 
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A = 
















−
−

−

210

121

012

  

 
Solution: 
 
In this case q = 3. Thus we have 
 

A – 3I =  
















−−
−−

−

110

111

011

 
 
To find y(k+1), we need to solve the system 
 

    















−−
−−

−

110

111

011

  

y(k+1) = v(k)                (24) 

 
and normalize y(k+1) as given in Eqn. (22). 
 
First iteration 
 
Starting with v(0) = [1  1  1]T and using the Gauss elimination method to 
solve the system (24), we obtain 
 
y(1) = [0  -1  0]T 
 
m1 = 1 
 

v(1) = 
1

1
m

y(1) = [0  -1  0]T 

Second iteration 
 
Ay(2) = v(1) 
 
y(2) = [1  -1  1]T 
 
m2 = 1 
 

v(2) = 
2

1
m

y(2) = [1  -1  1]T 
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Third iteration 
 
Ay(3) = v(2) 
 
y(3) = [2  -3  2]T 
 
m3 = 3 
 

v(3) = 
3

1
m

y(3) = [
2
3

  -1  
2
3

]T 

 
Fourth iteration 
 
Ay(4) = v(3) 
 

y(4) = [
5
3

  -
7
3

  
5
3

]T 

 

m4 = 
7
3

 = 2.333 

 

v(4) = 
4

1
m

y(4) = [
5
7

  -1  
5
7

]T 

 

After four iterations, the ratios 
( 4)

( 3)

(y )r
(v )r

 are given as 2.5, 2.333, 2.5. The 

maximum error in these ratios is 0.1667. Hence the dominant eigenvalue 
of (A – 31)-1 can be taken as 2. Thus the eigenvalue l  of A closest to 3 
as given by Eqn. (23) is 
 

l  = 
1
m

 + 3 

 

= 
1
2

 + 3 = 
7
2

 = 3.5 

 
and the corresponding eigenvector is v(4) =  [ ]7/517/5 −  = [0.7143  -
1  0.7143]T. Note that the eigenvalue of A closest to 3 as obtained in 
Example 3 was 2 + 2෭  = 3.4142. The eigenvector corresponding to this 
eigenvalue was [0.7071  -1  0.7071]T 
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The eigenvalues of a given matrix can also be estimated. That is, for a 
given matrix A, we can find the region in which all its eigenvalues lie. 
This can be done as follows: 
 
Let l i be an eigenvalue of A and xi be the corresponding eigenvector, 
i.e., 
Ax i = l ixi                  (25) 
or 
a11xi,1 + a12xi,2 + ...... + a1nxi,n = l ixi,1 
a21xi,1 + a22xi,2 + ...... + a2nxi,n = l ixi,2 
.         .   . . 
.         .   . .             (26) 
.         .   . . 
ak1xi,1 + ak2xi,2 + ...... + aknxi,n = l ixi,k 
.         .   . . 
.         .   . . 
.         .   .          . 
an1xi,1 + an2xi,2 + ...... + annxi,n = l ixi,n 
 
Let |xi,k| be the largest element in magnitude of the vector [xi,1, x i,2, ......, 
x i,n]

T. Consider the kth equation of the system (26) and divide it by xi,k. 
We then have 
 

ak1 ( )i,1

i,k

x
x  + ak2 ( )i,2

i,k

x
x  + .... + akk + .... + akn ( )i,n

i,k

x
x  = l i           (27) 

 
Taking the magnitudes on both sides of Eqn. (27), we get 
 

| il | ‚  |ak1|
i,1

i,k

x
x  + |ak2|

i,2

i,k

x
x  + ..... + |akk| + .... + |akn|    

       ‚  |ak1| + ak2| + ..... + |akk| + .... + |akn|              (28) 
 

since 
i, j

i,k

x
x  ‚  1 for j = 1, 2, ...... n. 

 
Since eigenvalues of A and AT are same Ref. P2), Eqn. (28) can also be 
written as 
 
| il | ‚  |a1k| + |a2k| + ..... + |akk| + ..... + |ank|             (29) 
 
Since |xi,k|, the largest element in magnitude, is unknown, we 
approximate Eqns. (28) and (29) by 
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|l | ‚  
i

max∑
=
=

n

ij
i

ija
1

 (maximum absolute row sum)            (30) 
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and  
 

|l | ƒ  
j

max∑
=
=

n

ij
i

ija
1

 (maximum absolute column sum)           (31) 

 
We can also rewrite Eqn. (27) in the form 
 

| il  - akk| = ak1 ( )i,1

i,k

x
x  + ak2 ( )i,2

i,k

x
x  + .... + akn ( )i,n

i,k

x
x  

 
and taking magnitude on both sides, we get 
 

| il  - akk| ‚ ∑
=
=

n

ij
i

ija
1

                (32) 

 
Again, since A and AT have the same eigenvalues Eqn. (32) can be 
written as 
 

| il  - akk| ‚ ∑
=
=

n

ij
i

ija
1

                          (33) 

 
Note that since the eigenvalues can be complex, the bounds (30), (31), 
(32) and (33) represents circles in the complex plane. If the eigenvalues 
are real, then they represent intervals. For example, when A is 
symmetric then the eigenvalues of A are real. 
 
Again in Eqn. (32), since k is not known, we replace the circle by the 
union of the n circle 
 

| il  - aii| ‚ ∑
=
=

n

ij
i

ija
1

, i = 1, 2, ........., n.              (34) 

 
Similarly from Eqn. (33), we have that eigenvalues of A lie in the union 
of circles 
 

| il  - aii| ∑
=
=

n

ij
i

ija
1

‚ , i = 1, 2, ........., n.              (35) 

 
The bounds derived in Eqns. (30), (31), (34) and (35) for eigenvalues are 
all independent bounds. Hence the eigenvalues must lie in the 



MTH 213                                                                                                            MODULE 3  

 331

intersection of these bounds. The circles derived above are called the 
Gerschgorin circles and the bounds are called the Gerschgorin bounds. 
 
Let us now consider the following examples: 
 
Example 7: 
 
Estimate the eigenvalues of the matrix 
 

A =  














 −

231

312

211

 
 
using the Gerschgorin bounds. 
 
Solution: 
 
The eigenvalues of A lie in following regions: 
 
i) absolute row sums are 4, 6 and 6. Hence 
 |l | ‚  max [4, 6, 6] = 6               (36) 
 
ii) absolute column sums are 4, 5 and 7. Hence 
 |l | ‚  7                 (37) 
 
iii) union of the circles [using (35)] 
 |l  - 1| ‚  3 
 |l  - 1| ‚  4 

|l  - 2| ‚  5 
union of circles in (iii) is |l  - 1| ‚  5             (38) 
union of circles in (iv) is |l  - 2| ‚  5             (39) 

 
The eigenvalues lie in all circles (36), (37), (38) and (39) i.e., in the 
intersection of these circles as shown by shaded region in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 

-x             -7  -6    -4 -3  0   1  2    6 7              x 

Y 

-Y 

Fig. 1 
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Example 8: 
 
Estimate the eigenvalues of the symmetric matrix 
 

A =   
















−

−

222

212

211

 
 
by the Gerschgorin bounds. 
 
Solution: 
 
The eigenvalues lie in the following regions: 
 
i) | l | ‚  max [4, 4, 6] = 6 
 
ii) union of the circles 
 a) | l  - 1| ‚  3 
 b) | l  - 1| ‚  3 
 c) | l  + 1| ‚ 4 
 
Since A is symmetric, it has real eigenvalues. Therefore, the eigenvalues 
lie in the intervals 
 
i) -6 ‚  l  ‚  6 
 
ii) union of 
 a) -3 ‚  l -1 ‚  3, i.e. -2 ‚  l  ‚  4 
 b) -4 ‚  l +2 ‚  4, i.e. -6 ‚  l  ‚  2 
 union of (a) and (c) is -6 ‚  l  ‚  4. 
 
Intersection of (i) and (ii) is -6 ‚  l  ‚  4.  Hence the eigenvalues of A 
lie i the interval -6 ‚  l  ‚  4. 
 
Note that in Example 8, since the matrix A is symmetric, the bounds 
(30) and (31) are same and also the bounds (34) and (35) are same. 
 
You may now try the following self assessment exercise. 
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4.0 CONCLUSION 
 
       We can now conclude as in summary. 
 
5.0 SUMMARY 
 
In this unit, we have covered the following: 
 
1) For a given system of equations of the form 
 
 Ax = l x    (see Eqn. (1)). 

 
the values of l  for which Eqn. (1) has a nonzero solution are 
called the eigenvalues and the corresponding nonzero solutions 
(which are not unique) are called the eigenvectors of the matrix 
A. 

 
2) The following are the steps involved in solving an eigenvalue 

problem 
 
i) Find the nth degree polynomial (called the characteristic 

equation) in l  from det (A - l I) = 0. 
ii) Find the n roots l i, i = 1, 2, ...., n of the characteristic 

equation. 
 iii) Find the eigenvectors corresponding to each l i. 
 
3) For n ƒ  3, it may not be possible to find the roots of the 

characteristic equation exactly. In such cases, we use some 
iterative method like Newton Raphson method to find these roots. 
However, 

 
i) when only the largest eigenvalue in magnitude is to be 

obtained, we use the power method. In this method we 
obtain a sequence of vectors {y(k)}, using the iiteative 
scheme  

  
 y(k+1) = A y(k), k = 0, 1, ...   (see Eqn. (13)) 

 
which in the limit as k ® ¥ , converges to the eigenvector 
corresponding to the dominant eigenvalue of the matrix A. 
The vector y(0) is an arbitrary non-zero vector (different 
from with the eigenvector of A). 

 
ii) we use the inverse power method with the iteration 

scheme 
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  y(k+1) = (A – qI)-1 v(k), 
 
i.e., (A – qI) (k+1) = v(k), k = 0, 1, 2, ...... 
where y(0) = v(0) is an arbitrary non-zero vector (not an 
eigenvector) 
 
a) with q = 0, if only the least eigenvalue of A in 

magnitude and the corresponding eigenvector are to 
be obtained and 

 
b) with any q, if the eigenvalue of A, nearest to some 

chosen number q and the corresponding 
eigenvector are to be obtained. 

 
6.0 TUTOR-MARKED ASSIGNMENT (TMA)  
 
 
1) Determine the Eigenvalues and the corresponding eigenvectors of 

the following 
 

 A = 
















122

232

221

 

 

2) A = 
















−
−

2420

61210

3415

 

 

3) A =  
















−
−
−

021

612

322

 

 

4) A =  
















−
−−

100

123

112

 

 

5) A =  
















122

232

221
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6) A = 



















−
−−

−
−

2100

1210

0121

0012

  

 
7) Find the smallest eigenvalue in magnitude and the corresponding 

eigenvector of the matrix 
 

 A = 








31

22
  

 
 with v(0) – [-1  1]T, using four iterations of the power method.  
 
8) Find the eigenvalue which is nearest to -1 and the corresponding 

eigenvector for the matrix 
 

A = 








31

22
  

 
 with v(0) = [-1  1]T, using four iterations of the inverse power 

method. 
 
8) Using four iterations of the inverse power method, find the 

eigenvalue which is nearest to 5 and the corresponding 
eigenvector for the matrix 

 

 A = 








43

23
  (exact eigenvalues are = 1 and 6) 

 
 with v(0) = [1  1]T  
 
10) Estimate the eigenvalues of the matrix A given in Example 3(a) 

and 3(b), using the Gerschgorin bounds. 
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MODULE 3 
 
Unit 1: Review of Calculus 
Unit 2:  Iteration Methods for Locating Root. 
Unit 3:  Chord Methods for Finding Root 
Unit 4:  Approximate Root of Polynomial Equation. 
 
 
UNIT 1 REVIEW OF CALCULUS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Three Fundamental Theorems 
 3.1.1 Intermediate Value Theorem 
 3.1.2 Rolle’s Theorem 
 3.1.3 Lagrange’s Mean Value Theorem 
3.2 Taylor's Theorem 

 3.3 Errors 
  3.3.1 Round Off Errors 
  3.3.2 Truncation Error 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
NUMERICAL ANALYSIS  
 
Mathematical modelling of physical/biological problems generally gives 
rise to ordinary or partial differential equations or an integral equation or 
in terms of a set of such equation. A number of these problems can be 
solved exactly by mathematical analysis but most of them cannot be 
solved exactly. Thus, a need arises to devise numerical methods to solve 
these problems. These methods for solution of mathematical methods 
may give rise to a system of algebraic equations or a non-linear equation 
or system of non-linear equations. The numerical solution of these 
systems of equations is quantitative in nature but when interpreted give 
qualitative results and are very useful. Numerical analysis deals with the 
development and analysis of the numerical methods. We are offering 
this course of numerical analysis to students entering the Bachelor’s 
Degree Programme as an elective subject. 
 
It was in the year 1624 that the English mathematician, Henry Briggs 
used a numerical procedure to construct his celebrated table of 
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logarithms. The interpolation problem was first taken up by Briggs but 
was solved by the 17th century mathematicians and physicists, Sir Isaac 
Newton and James Gregory. Later on, other problems were considered 
and solved by more and more efficient methods. In recent years the 
invention and development of electronic calculators/computers have 
strongly influenced the development of numerical analysis. 
 
This course assumes the knowledge of the course MTH 112, MTH 122. 
They are prerequisite for this course. Number of results from linear 
algebra are also used in this course. These results have been stated 
wherever required. For details of these results our linear algebra course 
MTH 121 may be referred. This course is divided into 4 blocks. The first 
block, deals with the problem of finding approximate roots of a non-
linear equation in one unknown. We have started the block with a recall 
of four important theorems from  calculus which are referred to 
throughout the course. After introducing the concept of ‘error’ that arise 
due to approximations, we have discussed two basic approximation 
methods namely, bisection and fixed point iteration methods and two 
commonly used methods, namely. secant and Newton-Raphson 
methods. In Block 2, we have considered the problem of finding the 
solution of system of linear equations. We have discussed both direct 
and iterative methods of solving system of linear equations. 
 
Block 3 deals with the theory of interpolation. Here, we are concerned 
only with polynomial interpolation. The existence and uniqueness of 
interpolating polynomials are discussed. Several form of interpolating 
polynomials like Lagrange’s and Newton’s divided difference forms 
with error terms are discussed. This block concludes with a discussion 
on Newton’s forward and backward difference form. 
 
In Block 4, using interpolating polynomials we have obtained numerical 
differentiation and integration formulae together with their error terms. 
After a brief introduction to difference equations the numerical solution 
of the first order ordinary differential equation is dealt with. More 
precisely, Taylor series, Euler’s and second order Runge Kutta methods 
are derived with error terms for the solution of differential equations. 
 
Each block consists 4 units. All the concepts given in the units are 
followed by a number of examples well as exercises. These will help 
you get a better grasp of the techniques discussed in this course. We 
have used a scientific calculator for doing computations throughout the 
course. While attempting the exercises given in the units, you would 
also need a calculator which is available at your study centre. The 
solutions/answers to the exercises in a unit are given at the end of the 
unit. We suggest that you look at them only after attempting the 
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exercises. A list of symbols and notations are also given in for your 
reference. 
 
You ma like to look up some more books on the subject and try to solve 
some exercises given in them. This will help you get a better grasp of 
the techniques discussed in this course. We are giving you a list of titles 
which will be available in your study centre for reference purposes. 
 
Some useful books 
 
Numerical Methods for Scientific and Engineering Computation by 

M. K. Jain, S.R.K. Iyengar, R.K. Jain. 
 
Elementary Numerical Analysis by 
 Samuel D. Conte and Carl de Boor. 
 
NOTATION AND SYMBOLS  
 
Î  belong to 
É  contains 
< (£ ) less than (less than or equal to) 
>(³ ) greater than (greater than or equal to) 
R set of real numbers 
C set of complex numbers 
n! n(n-1) ... 3. 2. 1 (n factorial) 
[   ] closed interval 
]   [ open interval 
|x| absolute value of a number x 
i.e. that is 

n

i
j 1

a
=
å  a1 + a2 + ... + an 

x® a x tends to a 

x a
lim f(x)

®
 limit of f(x) as x tends to a 

Pn(x) nth degree polynomial 
f'(x) derivative of f(x) with respect to x 
»  approximately equal to 
a  alpha 
b  beta 
g  gamma 
e epsilon 
p  pi 
å  capital sigma 
z  zeta 
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BLOCK INTRODUCTION  
 
This is the first of the four blocks which you will be studying in the 
Numerical Analysis course. In this block we shall be dealing with the 
problem of finding approximate roots of a non-linear equation in one 
unknown. In the Elementary Algebra course you have studied some 
methods for solving polynomial equations of degree up to and including 
four. In this block we shall introduce you to some numerical methods for 
finding solutions of equation. These methods are applicable to 
polynomial and transcendental equations. 
 
This block consists of four units. In Unit 1, we begin with a recall of our 
important theorems from calculus which are referred to throughout the 
course. We then introduce you to the concept of ‘error’ that arise due to 
approximation. In Unit 2, we shall discuss two types of errors that are 
common in numerical approximation methods, namely, bisection 
method and fixed point iteration method. Each of these methods involve 
a process that is repeated until an answer or required accuracy is 
achieved. These methods are known as iteration methods. We shall also 
discuss two accurate methods, namely, secant and Newton-Raphson 
methods in Unit 3. Unit 4, which is the last unit of this block, deals with 
the solutions of the most well-known class of equations, the polynomial 
equations. For finding the roots of polynomial equations we shall 
discuss Birge-Vieta and Graeffe’s root squaring methods. 
 
As already mentioned in the course introduction, we shall be using a 
scientific calculator for doing computations throughout the block. While 
attempting the exercises given in this block, you would also need a 
calculator which is available at your centre. We therefore suggest you to 
go through the instructions manual, supplied with the calculator, before 
using it. 
 
Lastly we remind you to through the solved examples carefully, and to 
attempt all exercises in each unit. This will help you to gain some 
practice over various methods discussed in this block. 
 
1.0 INTRODUCTION 
 
The study of numerical analysis involves concepts from various 
branches of mathematics including calculus. In this unit, we shall briefly 
review certain important theorems in calculus which are essential for the 
development and understanding of numerical methods. You are already 
familiar with some fundamental theorems about continuous functions 
from your calculus course. Here we shall review three theorems given in 
that course, namely, intermediate value theorem, Rolle’s Theorem and 
Lagrange’s mean value theorem. Then we state another important 
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theorem in calculus due to B. Taylor and illustrate the theorem through 
various examples. 
 
Most of the numerical methods give answers that are approximation to 
the desired solutions. In this situation, it is important to measure the 
accuracy of the approximate solution compared to the actual solution. 
To find the accuracy we must have an idea of the possible errors that can 
arise in computational procedures. In this unit we shall introduce you to 
different forms of errors which are common in numerical computations. 
 
The basic ideas and result that we have illustrated in this unit will be 
used often throughout this course. So we suggest you go through this 
unit very carefully. 
 
2.0 OBJECTIVES 
 
After studying this unit you should be able to: 
 
•••• apply 

o Intermediate value theorem 
o Rolle’s Theorem 
o Lagrange’s mean value theorem 
o Taylor’s theorem; 

•••• define the term ‘error’ in approximation 
•••• distinguish between rounded-off error and truncation error and 

calculate these errors as the situation demands. 
 
3.0 MAIN CONTENT 
 
3.1 Three Fundamental Theorems 
 
In this section we shall discuss three fundamental theorems, namely, 
intermediate value theorem, Rolle’s Theorem and Lagrange’s mean 
value theorem. All these theorems give properties of continuous 
functions defined on a closed interval [a, b]. we shall not prove them 
here, but we shall illustrate their utility with various examples. Let us 
take up these theorems one by one. 
 
3.1.1 Intermediate Value Theorem 
 
The intermediate value theorem says that a function that is continuous 
on a closed interval [a, b] takes on every intermediate value i.e., every 
value lying between f(a) and f(b) if f(a) ¹  f(b). 
 
Formally, we can state the theorem a follows: 
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Theorem 1: 
 
let f be a function defined on a closed interval [a, b]. let c be a number 
lying between f(a) and f(b) (i.e. f(a) < c < f(b) if f(a) < f(b) or f(b) < c < 
f(a) if f(b) < f(a)). Then there exists at least one point x0 Î  [a, b] such 
that f(x0) = c. 
 
The following figure (Fig. 1) may help you to visualise the theorem 
more easily. It gives the graph of a function f. 
 
 
 
 
 
 
 
 
 
 
 
In this figure f(a) < f(b). the condition f(a) < c < f(b) implies that the 
points (a, f(a)) and (b, f(b)) lie on opposite sides of the line y = c. This, 
together with the fact that f is continuous, implies that the graph crosses 
the line y = c at some point. In Fig. 1 you see that the graph crosses the 
line y = c at (x0, c). 
 
The importance of this theorem is as follows: If we have a  continuous 
function f defined on a closed interval [a, b], then the theorem 
guarantees the existence of a solution of the equation f(x) = c, where c is 
as in Theorem 1. However, it does not say what the solution is. We shall 
illustrate this point with an example. 
 
Example 1: 
 

Find the value of x in 0 £  x £  
2
p  for which sin (x) = 1

2
. 

 
Solution: You know that the function f(x) = sin x is continuous on 










2
,0

P
. Since f(0) = 0 and f( )2

p
 = 1, we have f(0) < 1

2
 < f( )2

p
. thus f 

satisfies all the conditions of Theorem 1. Therefore, there exists at least 

one value of x, say x0 such that sin (x0) = 1
2

, that is, the theorem 

O     x0     b      x a 
f(a) 

y=c 

f(b) 

Y 

Fig. 1 
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guarantees that there exists a point x0 such that sin (x0) = 1
2

. Let us try to 

find this point from the graph of sin x in 








2
,0

P
 (see Fig. 2). 

 
 
 
 
 
 
 
 

From the figure, you can see that the line x = 1
2

 cuts the graph at the 

point ( )1
,

6 2
p . Hence there exists a point x0 = 

6
p  in 









2
,0

P
 such that sin 

((x0) = 1
2

. 

 
Let us consider another example. 
 
Example 2: 
 
Show that the equation 2x3 + x2 – x + 1 = 5 has a solution in the interval 
[1, 2]. 
 
Solution: 
 
Let f(x) = 2x3 + x2 – x + 1. Since f is a polynomial in x, f is continuous 
in [1, 2]. Also f(1) = 3, f(2) = 19 and 15 lies between f(1) and f(2). Thus 
f satisfied all conditions of Theorem 1. Therefore, there exists a number 
x0 between 1 and 2 such that f(x0) = 5. That is, the equation 2x3 + x2 – x 
+ 1 = 5 has solution in the interval [1, 2]. 
 
Thus we saw that the theorem enables us in establishing the existence of 
the solutions of certain equations of the type f(x) = 0 without actually 
solving them. In other words, if you want to find an interval in which a 
solution (or root) of f(x) = 0 exists, then find two numbers a, b such that 
f(a) f(b) < 0. Theorem 1, then states that the solution lies in ]a, b[. We 
shall need some other numerical methods for finding the actual solution. 
We shall study the problem of finding solution of the equation f(x) = 0 
more elaborately in Unit 2. 
 
Let us now discuss another important theorem in calculus. 
 
3.1.2 Rolle’s Theorem 

Y 

O p /6     p /2         x 

y=sin x 

Fig. 2 
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In this section we shall review the Rolle’s Theorem. The theorem is 
named after the seventeenth century French mathematician Michel Rolle 
(1652 – 1719). 
 
Theorem 2 (Rolle’s Theorem): 
 
Let f be a continuous function defined on [a, b] and differentiable on ]a, 
b[. If f(a) = f(b), then there exists a number x0 in ]a, b[ such that f’(x0) = 
0. 
 
Geometrically, we can interpret the theorem easily. You know that since 
f is continuous, the graph of f is a smooth curve (see Fig. 3). 
 
 
 
 
 
 
 
 
 
 
You have already seen in your calculus course that the derivative f’(x0) 
at some point x0 gives the slope of the tangent at (x0, f(x0)) to the curve y 
= f(x). Therefore the theorem states that if the end values f(a) and f(b) 
are equal, then there exists a point x0 in ]a, b[ such that the slope of the 
tangent at the point P(x0, f(x0)) is zero, that is, the tangent is parallel to 
x-axis at the point (see Fig. 3). In fact we can have more than one point 
at which f’(x) = 0 as shown in Fig. 3. This shows that the number x0 in 
Theorem 2 may not be unique. 
 
The following example gives an application of Rolle’s Theorem. 
 
Example 3: 
 
Use Rolle’s Theorem to show that there is a solution of the equation cot 

x = x in ]0, 
2
π

[. 

 
Solution: Here we have to solve the equation cot x – x = 0. We rewrite 

cot x – x as 
xsin

xsinxxcos
. Solving the equation 

xsin
xsinxxcos

 = 0 in ]0, 

2
π

[ is same as solving the equation cos x – x sin x = 0. now we shall see 

whether we can find a function f which satisfies the conditions of 

Y 

(a, f(a)) (b, f(b)) 

Q 

R 
a x0 b X 

P 

Fig. 3 



MTH 213    NUMERICAL ANALYSIS 1 
 

 344

Rolle’s Theorem and for which f’(x) = cos x – x sin x. Our experience in 
differentiation suggests that we try f(x) = x cos x. this function f is 

continuous in ]0, 
2
π

[, differentiable in ]0, 
2
π

[ and the derivative f’(x) = 

cos x – x sin x. Also f(0) = 0 = f (
2
π

). Thus f satisfies all the 

requirements of Rolle’s Theorem. Hence, there exists a point x0 in ]a, b[ 
such that f’(x0) = cos x0 – x0 sin x0 = 0. This shows that a solution to the 

equation cot x – x = 0 exists in ]0, 
2
π

[. 

 
Now, let us look at Fig. 3 carefully. We see that the line joining (a, f(a)) 
and (b, f(b)) is parallel to the tangent at (x0, f(x0)). Does this property 
hold when f(a) ≠ f(b) also? In other words, does there exists a point x0 in 
]a, b[ such that the tangent at (x0, f(x0)) is parallel to the line joining (a, 
f(a)) and (a, f(b))? The answer to this question is the content of the well-
known theorem. “Lagrange’s mean value theorem”, which we discuss 
next. 
 
3.1.3 Lagrange’s Mean Value Theorem 
 
This theorem was first proved by the French mathematician Count 
Joseph Louis Lagrange (1736 – 1813). 
 
Theorem 3: 
 
Let f be a continuous function defined on [a, b] and differentiable in ]a, 
b[. Then there exists a number x0 in ]a, b[ such that 
 

f'(x0) = 
a-b

)a(f-)b(f
        (1) 

 
geometrically we can interpret this theorem as given in Fig. 4. 
 
 
 
 
 
 
 
 
 
In this figure you can see that the straight line connecting the end points 
(a, f(a)) and (b, f(b)) of the graph is parallel to some tangent to the curve 
at an intermediate point. 
 

Y 

O X a      x0              b 
(a, f(a)) 

(b, f(b)) 
(x0, f(x0)) 

Fig. 4 
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You may be wondering why this theorem is called ‘mean value 
theorem’. This is because of the following physical interpretation. 
 
Suppose f(t) denotes the position of an object at time t. Then the average 
(mean) velocity during the interval [a, b] is given by 
 

a-b
)a(f-)b(f

 

 
Now Theorem 3 states that this mean velocity during an interval [a, b] is 
equal to the velocity f’(x0) at some instant x0 in ]a, b[. 
 
We shall illustrate the theorem with an example. 
 
Example 4: 
 
Apply the mean value theorem to the function f(x) = x  in [0, 2] (see 
Fig. 5). 
 
 
 
 
 
 
 
 
Solution: 
 
We first note that the function f(x) = x  is continuous on [0, 2] and 

differentiable in ]0, 2[ and f’(x0 = 
x2

1
. 

 
Therefore by Theorem 3, there exists a point x0 in ]0, 2[ such the 
 
f(2) = 2  and f(0) = f’(x0)  (2 – 0) 
 

Now f(2) = 2  and f(0) = 0 and f’(x0) = 
0x2

1
. 

 
Therefore we have 

2  = 
0x

1
 

i.e. 
0x

1
 = 

2

1
 and x0 = 

2
1

. 

Y 

O X   1/2      1           2 

(2, 2 ) 

(y = x  
) 

Fig. 5: Graph of f(x) = x  

1 
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Thus we get that the line joining the end points (0, 0) and (2, 2 ) of the 

graph of f is parallel to the tangent to the curve at the point (
2

1
,

2

1
). 

 
We shall consider one more example. 
 
Example 5: 
 
Consider the function f(x) = (x – 1) (x – 2) (x – 3) in [0, 4]. Find a point 
x0 in ]0, 4[ such that 
 

f'(x0) = 
0-4
f(0))4(f -

. 

 
Solution: We rewrite the function f(x) as 
 
f(x) = (x – 1) (x – 2) (x – 3) = x3 – 6x2 + 11x – 6 
 
we know that f(x) is continuous on [0, 4], since f is a polynomial in x. 
Also the derivative 
 
f’(x) = 3x2 – 12x = 11 
exists in ]0, 4[. Thus f satisfies all conditions of the mean value theorem. 
Therefore, there exists a point x0 in ]0, 4[ such that 
 

f’(x 0) = 
0-4
f(0))4(f -

 

i.e., 3x2
0  - 12x0 + 11 = 

04
6+6

-
 = 3 

i.e., 3x2
0  - 12x0 + 8 = 0 

 
This is a quadratic equation in x0. The roots of this equation are 
 

8
32+6

 and 
8

326-
 

 
Taking 3  = 1.732, we see that there are twp values for x0 lying in the 
interval ]0, 4[. 
 
The above example shows that the number x0 in Theorem 3 may not be 
unique. Again, as we mentioned in the case of theorems 1 and 2, the 
mean value theorem guarantees the existence of a point only. 
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So far we have used the mean value theorem to show the existence of  a 
point satisfying Eqn. 1. Next we shall consider an example which shows 
another application of mean value theorem. 
 
Example 6: 
 
Find an approximate value of 3 26  using the mean value theorem. 
 
Solution: 
 
Consider the function f(x) = x1/3. Then f(26) = 3 26 . The number nearest 
to 26 for which the cube root is known is 27, i.e., f(27) = 3 27  = 3. Now 
we shall apply the mean value theorem to the function f(x) = x1/3 in the 
interval ]26, 27[. The function f is continuous in [26, 27] and the 
derivative is 
 

f'(x) = 3/2x3
1

 

 
Therefore, there exists a point x0 between 26 and 27 such that 
 

3 27  - 3 26  = 3/2
0x3

1
 (27 – 26) 

i.e., 3 26  = 3 - 3/2
0x3

1
       (2) 

 

Since x0 is  close to 27, we approximate 3/2
0x3

1
 by 3/2)27(3

1
, i.e.; 

      3/2
0x3

1
≈

27
1

 

Substituting this value in Eqn. (2) we get 
 

3 26  = 3 - 
27
1

 = 2.963. 

 
Note that in writing the value of  we have rounded off the number after 
three decimal places. Using the calculator we find that the exact value of 
3 26  is 2.9624961. 
 
We have given this example just to illustrate the usefulness of the 
theorem. The mean value theorem has got many other application which 
you will come across in later units. 
 
Now we shall discuss another theorem in calculus. 



MTH 213    NUMERICAL ANALYSIS 1 
 

 348

 
3.2 Taylor's Theorem 
 
You are already familiar with the name of the English mathematician 
Brook Taylor (1685 – 1731) from your calculus course. In this section 
we shall introduce you to a well-known theorem due to B. Taylor. Here 
we shall state the theorem without proof and discuss some of its 
applications. 
 
You are familiar with polynomial equations of the form f(x) = a0 + a1 x 
+ ... + an x

n where a0, a1 ....., an are real numbers. We can easily compute 
the value of a polynomial at any point x = a by using the four basic 
operation of addition, multiplication, subtraction and division. On the 
other hand there are function like ex, cos x. In x etc. which occur 
frequently in all branches of mathematics which cannot be evaluated in 
the same manner. For example, evaluating the function f(x) = cos x at 
0.524 is not so simple. Now, to evaluate such functions we try to 
approximate them by polynomial which are easier to evaluate. Taylor's 
theorem gives us a simple method for approximating functions f(x) by 
polynomials. 
 
Let f(x) be a real-valued function defined on R which is n-times 
differentiable. Consider the function 
 
P1(x) = f(x0) + (x – x0) f’(x 0) 
where x0 is any given real number. 
 
Now P1(x) is a polynomial in x of degree 1 and P1(x0) = f(x0) and P’1(x0) 
= f’(x0). The polynomial P1(x) is called the first Taylor polynomial of 
f(x) at x0. Now consider another function 
 

P2(x0) = f(x0) + (x – x0)f’(x 0) + 
!2

)xx( 2
0-

f”(x 0). 

 
Then P2(x) is a polynomial in x of degree 2 and P2(x0) = f(x0), P’2(x0) = 
f’(x 0) and P”2(x0) = f”(x0). P2(x) is called the second Taylor polynomial 
of f(x) at x0. 
 
Similarly, we can define the rth Taylor polynomial of f(x) at x0 where 1 
≤ r ≤ n. The rth Taylor polynomial at x0 is given by 
 

Pr(x) = f(x0) + (x – x0) f’(x 0) + … + 
!r

)x(f 0
)n(

(x – x0)
r.   (3) 

 
You can check that Pr(x0) = f(x0), P’r(x0) = f’(x0), …. 
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P )r(
r (x0) = f(r)(x0)  (see E6) 

Let us consider an example. 
 
Example 7: 
 
Find the fourth Taylor polynomial of f(x) = In x about x0=1. 
 
Solution: 
 
The fourth Taylor polynomial of f(x) is given by 

P4(x) = f(1) + (x – 1)f’(1) + 
!2
)1-x( 2

 f”(1) + 
!3
1)-x( 3

f(3)(1) + 
!4

1)-x( 4

f(4)(1). 

 
Now, f(1) = In1 = 0 

f’(x) = 
x
1

; f’(1) = 1 

f”(x) = ( 2x

1
- ); f”(1) = -1 

f(3)(x) = 3x
2

; f(3)(1) = 2 

f(4)(x) = 4x
6-

; f(4)(1) = -6 

Therefore, P4(x) = (x – 1) - 
2

)1-x( 2

 + 
3

1)-x( 3

 - 
4

1)-x( 4

 

 
We are now ready to state the Taylor’s theorem. 
 
Theorem 4 (Taylor’s Theorem): 
 
Let f be a real valued function having (n + 1) continuous derivatives on 
]a, b[ for some n ≥ 0. Let x0 be any point in the interval ]a, b[. Then for 
any x ∈ ]a, b[, we have 
 

f(x) = f(x0) + 
!1

)x-x( 0 f’(x 0) + 
!2

)x-x( 0 f(2)(x0) + … 

+ … + 
!n

)x-x( n
0 f(n)(x0) + 

!1+n
)x-x( 1+n

0 fn+1(c).    (4) 

where c is point between x0 and x. 
 
The series given in Eqn. (4) is called the nth Taylor’s expansion of f(x) 
at x0. 
 
We rewrite Eqn. (4) in the form 
f(x) = Pn(x) + Rn+1(x)  
where Pn(x) is the nth Taylor polynomial of f(x) about x0 and 
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R )x(
1+n  = 

!1+n
)x-x( 1+n

0  fn+1(c). 

 
Rn+1(x) depends on x, x0 and n. Rn+1(x) is called the remainder (or error) 
of the nth Taylor’s expansion after n + 1 terms. 
 
Suppose we put x0 = a and x = a + h where h > 0, in Eqn (4). Then any 
point between a and a + h will be of the form a +/θh, 0 < θ  < 1. 
 
Therefore, Eqn (4) can be written as 
 

f(a+h) = f(a)+h f’(a)+
!2

h2

 f”(a)+…+
!n

hn

f(n)(a)+
!1+n

h 1+n

f(n+1)(a+θh) (5) 

 
Let us now make some remarks on the Taylor’s theorem.  
 
Remark 1: Suppose that the function f(x) in Theorem 4 is a polynomial 
of degree m. Then f(r)(x) = 0 for all r > m. Therefore Rn+1(x) = 0 for all n 
≥ m. Thus, in this case, the mth Taylor’s expansion of f(x) about x0 will 
be 
 

f(x) = f(x0) + 
!1

)x-x( 0 f’(x 0) + … + 
!m
)x-x( m

0 f(m)(x0). 

 
Note that the right hand side of the above equation is simply a 
polynomial in (x – x0). 
 
Therefore, finding Taylor’s expansion of a polynomial function f(x) 
about x0 is the same as expressing f(x) as a polynomial in (x – x0) with 
coefficients from R. 
 
Remark 2: 
 
Suppose we put x0 = a, x = b and n = 0 in Eqn. (4). Then Eqn (4) 
becomes  
f(b) = f(a) + f’(c)(b – a) 
or equivalently 
f(b) – f(a) = f’(c) (b – a) 
which is the Lagrange’s mean value theorem. Therefore we can consider 
the mean value theorem as a special case of Taylor’s theorem. 
 
Let us consider some examples. 
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Example 8 
 
Expand f(x) = x4 – 5x3 + 5x2 + x + 2 in powers of (x – 2). 
 
Solution: 
 
The function f(x) is a polynomial in x of degree 4. Hence, derivatives of 
all orders exists and are continuous. Therefore by Taylor’s theorem, the 
4th Taylor expansion of f(x) about 2 is given by 
 

f(x) = f(2) + 
!1

)2-x(
f’(2) + 

!2

)2-x( 2

f”(2) + 
!3

)2-x( 3

f(3)(2) + 
!4

)2-x( 4

 f(4)(2). 

 
Here f(2) = 0 
f’(x) = 4x3 – 15x2 + 10x + 1, f’(2) = -7 
f”(x) = 12x2 – 30x + 10,  f”(2) = -2 
f(3)(x) = 24x – 30,   f(3)(2) = 18 
f(4)(x) = 24,    f(4)(2) = 24 
 
Hence the expansion is 

f(x) = -7(x – 2) - 
!2

)2-x(2 2

 + 
!3

)2-x(18 3

 + 
!4

)2-x(24 4

 

= -7(x – 2) – (x – 2)2 + 3(x – 2)3 + (x – 2)4 
 
Example 9: 
 
Find the nth Taylor expansion of 1n (1 + x) about x = 0 for x ∈ ]-1, 1[. 
 
Solution: 
 
We first note that the point x = 0 lies in the given interval. Further; the 
function f(x) = 1n (1 + x) has continuous derivatives of all orders. The 
derivatives are given by 
 

f’(x) = 
x+1

1
,  f’(0) = 1 

f”(x) = 2)x+1(
1-

, f”(0) = -1 

f(3)(x) = 3

2

)x+1(

!2)1(-
,  f(3)(0) = 2 

 .. . 
.. . 
.. . 
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f(n))x) = n

1-n

)x+1(

)!1-n()1(-
, f(n)(0) = (-1)n-1(n – 1)! 

 
Therefore by applying Taylor’s theorem we get that for any x ∈ ]-1, 1[ 
 

1n (1 + x) = x - 
2

x2

 + 
3

x3

 - 
4

x4

 + … + 
n

x)1(- n1-n

 + 1+n

1+n1-n

)c+1()!1+n(

x!n)1(-
 

where c is a point lying between 0 and x. 
 
Now, let us consider the behaviour of the remainder in a small interval, 
say, [0, 0.5]. then for x in [0, 0.5], we have 
 

|Rn+1(x)| = 1+n

1+nn

)c+1()!1+n(

x!n)1-(
 

where 0 < c < x. 
 
Since |x| < 1, |x|n+1 < 1 for any positive integer n. 
 

Also since c > 0, 1+n)c+1(
1

 < 1. Therefore we have 

|Rn+1(x)| < 
1+n

1
 

Now 
1+n

1
 can be made as small as we like by choosing n sufficiently 

large i.e. 
∞→n

lim
1+n

1
 = 0. This shows that 

∞→n
lim |Rn+1(x)| = 0. 

 
The above example shows that if n is sufficient large, the value of the 
nth Taylor polynomial Pn(x) at any x0 will be approximately equal to the 
value of the given function f(x0). In fact, the remainder Rn+1(x) tell(s) us 
how close the value Pn(x0) is to f(x0). 
 
Now we shall make some general observations about the remainder 
Rn+1(x) in the Taylor’s expansion of a function f(x). 
 
Remark 3: Consider the nth Taylor expansion of f about x0 given by 
f(x) = Pn(x) + Rn+1(x). 
 
Then Rn+1(x) = f(x) - Pn(x). If 

∞→n
lim Rn+1(x) = 0 for some x, then for that x 

we say that we can approximate f(x) by Pn(x) and we write f(x) as the 
infinite series. 
 

f(x) = f0(x) + f’(x)(x–x0) + 
!2

)x(f 0
)2(

(x – x0)
2 +…+ 

!n

)x(f 0
)n(

(x–x0)
n + … 
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 = 
∞

0=n
∑

!n

)x(f 0
)n(

xn 

 
is called Maclaurin’s series. 
 
Remark 4: If the remainder Rn+1(x) satisfies the condition that |Rn+1(x)| < 
M for some n at some fixed point x = a, then M is called the bound of 
the error at x = a. 
 
In this case we have 
 
|Rn+1(x)| = |f(x) - | < M 
That is, f(x) lies in the interval ]Pn(x) – M, Pn(x) + M[. 
 
Now if M is considerably small for some n, then this interval becomes 
very small. In this case we say that f(x) is approximately equal to the 
value of the nth Taylor polynomial with error M. Thus the remainder is 
used to determine a bound for the accuracy of the approximation. 
 
We shall explain these concepts with an example. 
 
Example 10: 
 
Find the 2nd Taylor’s expansion of f(x) = x+1  in ]-1, 1[ about  x = 0. 
find the bound of the error at x = 0.2. 
 
Solution: 
 
Since f(x) = x+1 , we have 
f(0) = 1 

f’(x) = 
x+12

1
, f(0) = 

2
1

 

f”(x) = -
4
1

 (1 + x)-3/2, f’(0) = -
4
1

 

f(3)(x) = 
8
3

 (1 + x)-5/2, 

 
Applying Taylor’s theorem to f(x), we get 
 

x+1  = 1 + 
2
1

x - 
8
1

x2 + 
16
1

x3(1 + c)-5/2 

 
where c is a point lying between 0 and x. 
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The error is given by R3(x) = 
16

x3

(1 + c)-5/2. 

 
When x = 0.2, we have 

R3(0.2) = 2/5

3

)c+1(16

)2.0(
 

 
Where 0 < c < 0.2. Since c > 0 we have 
 

2/5)c+1(

1
 < 1. 

 
Hence, 

|R3(0.2)| ≤
16

)2.0( 3

 = (0.5) 10-3 

 
Hence the bound of the error for n = 2 at x = 0.2 is (0.5) 10-3. 
 
There are some functions whose Taylor’s expansion is used very often. 
We shall list their expansion here. 
 

ex = 1 + 
!1
x

 + 
!2

x2

 + … + 
!n

xn

 + 
)!1+n(

x 1+n

ec …    (7) 

Sin x = x - 
!3

x3

 + 
!5

x5

 + … + 
)!1-n2(

x)1-( 1-n21-n

 + 
)!1+n2(

x)1-( 1-n2n

cos (c)  (8) 

Cos x = 1 - 
!2

x2

 + 
!4

x4

 - … + 
)!n2(

x)1-( n2n

 + 
)!2+n2(

x)1-( 2+n21+n

cos (c).  (9) 

x-1
1

 = 1 + x + x2 + … + xn + 2+n

1+n

c)-1(

x
             (10) 

where c, in each expansion, is as given in Taylor’s theorem. 
 
Now, let us consider some examples that illustrate the use of finding 
approximate values of some functions at certain points using truncated 
Taylor series. 
 
Example 11: 
 
Using Taylor’s expansion for sin x about x = 0, find the approximate 
value of sin 10o with error less than 10-7. 
 
Solution: 
 
The nth Taylor’s expansion for sin x given in Eqn. (9) is 
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sin x = x - 
!3

x3

 + 
!5

x5

 - … + 
)!1-n2(

x)1-( 1-n21-n

 + 
)!1+n2(

x)1-( 1+n2n

cos (c).           (11) 

where x is the angle  measured in radians. 
 
Now, in radian measure , we have 

10o  = 
18

π
 radians. 

 

Therefore, by putting x = 
18

π
 in Eqn. (11) we get 

sin
18

π
 = 

18

π
 - 

!3

1
(
18

π
) 3  + 

!5

1
(
18

π
) 5  + … + Rn+1(18

π
) 

where Rn+1(18

π
) is the remainder after (n + 1) terms. 

 
Now 

Rn+1(18

π
) = 

)!1+n2(

)1-( n

(
18

π
) 1+n2 cos c. 

If we approximate sin 
18

π
 by Pn(18

π
), then the error introduced will be 

less than 10-7 if 

)
18

π
(P-)

18

π
sin( n  = )

18

π
(R 1+n  = ccos)

18

π
(

)!1+n2(

)1-( 1+n2
n

 < 10-7. 

 
Maximizing cos c, we require that 
 

)!1+n2(

1
(
18

π
) 1+n2  < 10-7                (12) 

 
Using the calculator, we find that the value of left hand side of Eqn. (12) 
for various n is 
 

n 1 2 3 

Left hand side 89 ×  10-3 13 ×  10-5 99 ×  10-9 

 
From the table we find that the inequality in (12) is satisfied for n = 3. 
Hence the required approximation is 
 

sin (
18

π
) ≈

18

π
 - 

!3

1
(
18

π
) 3  + 

!5

1
(
18

π
) 5  = 0.1745445 

with error less than 1.0 ×  10-7. 
 
Let us now find the approximate value of e using Taylor’s theorem. 
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Example 12: 
 
Using Maclaurin’s series for ex, show that e≈2.71806 with error less 
than 0.001. (Assume that e < 3). 
 
Solution: 
 
The Maclaurin’s series for ex is 
 

ex = 1 + 
!1

x
 + 

!2

x2

 + … 

Putting x = 1 in the above series, we get 

e = 1 + 1 + 
!2

1
 + 

!3

1
 + … 

Now we have to find n for which 
|e – Pn(1)| = |Rn+1(1)| < 0.001. 

Now |Rn+1(1)| ≤ec 
)!1+n(

1
 

 
Since we have chosen x0 = 0 and x = 1, the value c lies between 0 and 1 
i.e. 0 < c < 1. Since ec < c < 3, we get 
 

|Rn+1(1)| ≤ec 
)!1+n(

3
 

 
The bound for Rn+1(1) for different n is given in the following table. 
 

n 1 2 3 4 5 6 

Bounds for Rn+1 1.5 .5 .1 .125 .004 .0006 

 
From this table, we see that 
 
Rn+1 < .001 if n = 6 
 
Thus P6(1) is the desired approximation to e. i.e. 

e≈1 + 1 +
2

1
 + 

6

1
 + 

24

1
 + 

120

1
 + 

720

1
 + 

720

1957
 ≈ 2.71806 

 
In numerical analysis we are concerned with developing a 
sequence of calculations that will give a satisfactory answer to a 
problem. Since this process involves a lot of computations, there is 
a chance for the presence of some errors in these computations. In 
the next section we shall introduce you to the concept of ‘errors’ 
that arise in numerical computations. 
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3.3 Errors 
 
In this section we shall discuss the concept of an ‘error’. We consider 
two types of errors that are commonly encountered in numerical 
computations. 
 
You are already familiar with the rounding off a number which has non-
terminal decimal expansion from your school arithmetic. For example 
we use 3.1425 for 22/7. These rounded off numbers are approximations 
of the actual values. In any computational procedure we make use of 
these approximate values instead of the true values. Let xT denote the 
true value and xA denote the approximate value. How do we measure the 
goodness of an approximation xA to xT? The simplest measure which 
naturally comes to our mind is the difference between xT and xA. This 
measure is called the ‘error’. Formally, we define error as a quantity 
which satisfies the identity. 
 
True value xT = Approximate value xA + error. 
 
Now if an ‘error’ in approximation is considered small (according to 
some criterion), then we say that ‘xA is a good approximation to x’. 
 
Let us consider an example. 
 
Example 13: 
 
The true value of π  is 3.14159265 … In some mensuration problems the 
value 22/7 is commonly used as an approximation to π . What is the 
error in this approximation? 
 
Solution: 
 
The true value of π  is 
π  = 3.14159265                 (13) 
 
Now, we convert 22/7 to decimal form, so that we can find the 
difference between the approximate value and true value. Then the 
approximate value of π  is 

7

22
 = 3.14285714                 (14) 

 
Therefore, 
error = True value – approximate value = -0.00126449            (15) 
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Note that in this case the error is negative. Error can be positive or 
negative. We shall in general be interested in absolute value of the error 
which is defined as 
 
|error| = |True value – approximate value| 
For example, the absolute Error in Example 13 is 
|error | = |-0.00126449…| = 0.00126… 
Sometimes, when the true value is very small we prefer to study the 
error by comparing it with the value. This is known as Relative error and 
we define this error as  
 

|Relative error| = 
valueTrue

valueeapproximat-valueTrue
 

 
In the case of Example 13, 

|Relative error| = 
...14159265.3

...00126449.0
 = 0.00040249966… 

 
But note that in certain computations, the true value may to be available. 
In that case we replace the true value by the computed approximate 
value by the computed approximate value in the definition of relative 
error. 
 
In numerical calculations, you will encounter mainly two types of errors: 
round-off error and truncation error. We shall discuss these errors in the 
next two subsections 1.4.1 and 1.4.2 respectively. 
 
3.3.1 Round-off Error 
 
Let us look at Example 13 again. You can see that the numbers 
appearing in Eqn. (13), (14) and (15) consists of 8 digits after the 
decimal point followed by dots. The line of dots indicates that the digits 
continue and we are not able to write all of them. That is, these numbers 
cannot be represented exactly by a terminating decimal expansion. 
Whenever we use much numbers in calculations we have to decide how 
many digits we are going to take into account. For example, consider 
again the approximate value of π . If we approximate π  using 2 digits 
after the decimal point (say), chopping off the other digits, then we have 
 
π  = 3.14 
 
The error in this approximation is 
error = 0.00159265                 (16) 
 
If we use 3 digits after the decimal point, then using chopping we have 
π ≈3.141 
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In this case the error is given by 
error = -0.00059265                 (17) 
 
Now suppose we consider the approximate value rounded-off to three 
decimal places. You already know how to round off a number which has 
non-terminal decimal expansion. Then the value of π  rounded-off to 3 
digits is 3.142. The error in this case is 
 
error = -0.00040734… 
which is smaller, in absolute value than 0.00059265…given in Eqn. 
(17). Therefore in general whenever we want to use only a certain 
number of digits after the decimal point, then it is always better to use 
the value rounded-off to that many digits because in this case the error is 
usually small. The error involved in a process where we use rounding-
off method is called round-off error. 
 
We now discuss the concept of floating point arithmetic. 
 
In scientific computations a real number x is usually represented in the 
form 
 
x = ± (. d1 d2 … dn) 10m 
where d1 d2 … dn are natural numbers between 0 and 9 and m is an 
integer called exponent. Writing a number in this form is known as 
floating point representation. We denote this representation by fl(x). 
Such a floating point number is said to be normalized if d1 ≠ 0. To 
translate a number into floating point representation we adopt any of the 
two methods – rounding and chopping. For example, suppose we want 
to represent the number 537 in the normalized floating point 
representation with n = 1, then we get 
 
fl (537) = .5 ×  103 chopped 
   = .5 ×  103 rounded 
 
In this case we are getting the same representation in rounding and 
chopping. Now if we take n = 2, then we get 
 
fl (537) = .53 ×  103 chopped 
   = .54 ×  103 rounded 
 
In this case, the representations are different. 
 
Now if we take n = 3, then we get 
 
fl (537) = .537 ×  103 chopped 
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   = .537 ×  103 rounded 
 
The number n in the floating point representation is called precision. 
 
The difference between the true value of a number x and rounded fl(x) is 
called round-off error. From the earlier discussion it is clear that the 
round-off error decreases when precision increases. 
 
Mathematically, we define these concepts as follows: 
 
Definition 2: 
 
Let x be a real number and x* be a real number having non-terminal 
decimal expansion, then we say that x* represents x rounded to k 
decimal places if 
 

|x – x*| ≤ 
2

1
 10-k, where k > 0 is a positive integer. 

 
Next definition gives us a measure by which we can conclude that the 
round-off error occurring in an approximation process is negligible or 
not. 
 
Definition 3: 
 
Let x  be a real number and x* be an approximation to x. Then we say 
that x* is accurate to k decimal places if 
 

2

1
10-(k+1) ≤|x – x*| ≤ 

2

1
10-k                                   (18) 

 
Let us consider an example. 
 
Example 14: 
 
Find out to how many decimal places the value of 22/7 obtained in 
Example 13 is accurate as an approximation to π  = 3.14159265? 
 
Solution: 
 
We have already seen in Example 13 that 
 

7

22
-π = 0.00126449… 

Now .0005 < .00126… < 0.005 
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or 
2

1
10-3 < .00126… < 

2

1
10-2 

 
Therefore the inequality (18) is satisfied for k = 2. 
 
Hence, by Definition 3, we conclude that the approximation is accurate 
to 2 decimal places. 
 
Now we make an important remark. 
 
Remark 5: 
 
Round-off errors can create serious difficulties in lengthy computations. 
Suppose we have a problem which involves a long calculation. In the 
course of these computations many rounding errors (some positive, and 
some negative) may occur in a number of ways. At the end of the 
calculations these errors will get accumulated and we don’t know the 
magnitude of this error. Theoretically it can be large. But, in reality 
some of these errors (between positive and negative errors) may get 
cancelled so that the accumulated error will be much smaller. 
 
Let us now define another type of error called Truncation error. 
 
3.3.2 Truncation Error  
 
We shall first illustrate this error with a simple example. In Sec. 1.3. we 
have already discussed how to find approximate value of a certain 
function f(x) for a given value of x using Taylor’s series expression. Let 
 

f(x) = 
∞

0=n
∑an (x – x0)

n 

denote the Taylor’s series of f(x) about x0. In practical situations, we 
cannot, in general, find the sum of an infinite number of terms. So we 
must stop after a finite number of terms, say N. This means that we are 
taking 
 

f(x) = 
N

0=n
∑  (x – x0)

n 

and ignoring the rest of the terms, that is, 
∞

1+N=n
∑  an (x – x0)

n 

 
There is an error involved in this truncating process which arises from 
the terms which we exclude. This error is called the ‘truncation error’. 
We denote this error by T E. Thus we have 
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T E = f(x) - 
N

0=n
∑an (x – x0)

n 
∞

1+N=n
∑  an (x – x0)

n 

 
You already know how to calculate this error from Sec. 1.3. There we 
saw that using Taylor’s theorem we can estimate the error (or 
remainder) involved in a truncation process in some cases. 
 
Let’s see what happen if we apply Taylor’s theorem to the function f(x) 
about the point x0 = 0. We assume that f satisfies all conditions of 
Taylor’s theorem. Then we have 
 

f(x) = 
N

0=n
∑an x

n + 
!1+N

x 1+N

fN+1(c)               (19) 

where an = 
!n

)0(f )n(

 and 0 < c < x. 

 

now, suppose that we want to approximate f(x) by 
N

0=n
∑  an x

n. 

 
Then Eqn. (19) tells us that the truncation error in approximating f(x) by 

N

0=n
∑  an x

n is given by 

 

T E = RN+1(x) = 
!1+N

x 1+N

 fN+1(c)                (20) 

 
Theoretically we can use this formula for truncation error for any 
sufficiently differentiable function. But practically it is not easy to 
calculate the nth derivative of many functions. Because of the 
complexity in differentiation of such functions, it is better to obtain 
indirectly their Taylor polynomials by using one of the standard 
expansions we have listed in Sec. 1.3. 
 
For example consider the function f(x) = e

2x . It is difficult to calculate 
the nth derivative of this function. Therefore, for convenience, we obtain 
Taylor’s expansion of e

2x using Taylor’s expansion of ey by putting y = 
x2. We shall illustrate this in the following example. 
 
Example 15: 
 
Calculate a bound for the truncation error in approximation e

2x  by 
 

e
2x ≈1 + x2 + 

!2
x4

 + 
!3

x6

 + 
!4

x8

 for x ∈ ]-1, 1[. 
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Solution: 
 
Put u = x2. Then e

2x = eu. Now we apply the Taylor’s theorem to 
function f(u) = eu about u = 0. Then, we have 
 

eu = 1 + u + 
!2

u2

 + 
!3

u3

 + 
!4

u4

 + R5(u) where 

 

R5(u) = 
!5
ue 5c

 

 
And 0 < c < u. Since |x| < 1, u = x2 < 1 i.e. c < 1. Therefore, ec < e < 3. 
Thus 

|R5(u)| ≤ 
!5

x3 10

 < 
!5

3
 = 

40
1

 = .025  

 
Hence the truncation error in approximating e

2x by the above expression 
is less than 25 ×  10-1. 
 
If the absolute value of the TE is less, then we say that he approximation 
is good. 
 
Now, in practical situations we should be able to find out the value of n 
for which the summation ∑an x

n gives a good approximation to f(x). For 
this we always specify the accuracy (or error bound) required in 
advance. Then we find n using formula (20) such that the absolute error 
|Rn+1(x)| is less than the specified accuracy. This gives the 
approximation within the prescribed accuracy.  
 
Let us consider an example. 
 
Example 16: 
 
Find an approximate value of the integral 
 
1

0
∫ e

2x dx 

with an error less than 0.025 
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Solution: 
 
 In Example 15 we observed that 

e
2x ≈1 + 

!1

x2

 + 
!2

x4

 + 
!3

x6

 + 
!4

x8

 

with TE = 
!5

xe 102x

dx. 

 
Now we use this approximation to calculate the integral. We have 
 
1

0
∫ e

2x dx ≈ 
1

0
∫(1 + x2 + 

!2

x4

 + 
!3

x6

 + 
!4

x8

)dx                       (20) 

 
with the truncation error 
 

TE = 
1

0
∫

!5

xe 102x

dx. 

 
We have 

|TE| 
1

0
∫

!5

|x|e 102x

≤ 
!5

3
 = .25 ×  10-1 

 
Integrating the right hand side of (21), we get 
 
1

0
∫e

2x ≈ 
1

0
∫ (1 + x2 + 

!2

x4

 + 
!3

x6

 + 
!4

x8

)dx = 

1

0

9753

!4×9

x
+

!3×7

x
+

!2×5

x
+

3

x
+x  

= 
1

0

9753

216

x
+

42

x
+

10

x
+

3

x
+x  

= 1 + 
2
1

 + 
10
1

 + 
40
1

 + 
216
1

 

 
= 0.0048 
 
Here is an important remark. 
 
Remark: The magnitude of the truncation error could be reduced within 
any prescribed accuracy by retaining sufficient large number of terms. 
Likewise the magnitude of the round-off error could be reduced by 
retaining additional digits. 
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You can now try the following self assessment exercises. 
 
SELF ASSESSMENT EXERCISE 
 
a) Calculate a bound for the truncation error in approximation f(x) = 

sin x by 

 sin x ≈1 - 
!3

x3

 + 
!5

x5

 + 
!7

x7

 where -1 ≤ x ≤ 1. 

 
b) Using the approximation in (a), calculate an approximate value of 

the integral 

 
1

0
∫ 

x
xsin dx 

 with an error 10-4. 
 
SELF ASSESSMENT EXERCISE 
 
a) Calculate the truncation error in approximating 

 e
2x- by 1 – x2 + 

2

x4

, -1 ≤ x ≤ 1. 

 
b) Using the approximation in (a) calculate an approximate value of 

1

0
∫e

2x- dx within an error bound of 10-7. 

 
4.0 CONCLUSION 
 
We end this unit by summarizing what we have learnt in this unit. 
 
5.0 SUMMARY 
 
In this unit we have: 
• recalled three important theorems in calculus, namely  
 

i) Intermediate value theorem 
ii)  Rolle’s Theorem 
iii)  Lagrange’s mean value theorem 

 
• State Taylor’s theorem and demonstrated it with the help of 

examples. 
The nth Taylor’s expansion: 

f(x) = f(x0) + 
!1

)xx( 0  f’(x 0) + 
!2

)xx( 2
0  f(2)(x0) + … 
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… + 
!n

)xx( n
0  f(n)(x0) + 

)!1+n(

)xx( 1+n
0  f(n+1)(c) 

 
• Defined the term ‘error’ occurring in numerical computations. 
 
• Discussed two types of errors namely 
 

i) Round-off error: Error occurring in computations where 
we use rounding off method to represent a number is 
called round-off error. 

ii)  Truncation error: Error occurring in computations where 
we use truncation process to represent the sum of an 
infinite number of terms. 

 
• Explained how Taylor’s theorem is used to calculate the 

truncation error. 
 
6.0 TUTOR-MARKED ASSIGNMENT  
 
1) Show that the following equations have a solution in the interval 

given alongside. 
 
2) Using Rolle’s Theorem show that there is a solution to the 

equation tan x – 1 + x = 0 in ]0, 1[. 
 

3) Let f(x) = 
3
1

x3 + 2x. Find a number x0 in ]0, 3[ such that 

 f'(x0) = 
03

)0(f)3(f
-

-
 

 
4) Find all numbers x0 in the interval ]-2, 1[ for which the tangent to 

the graph of f(x) = x3 + 4 is parallel to the line joining the end 
points (-2, f(-2)) and (1, f(1)). 

 
5) Show that Rolle’s Theorem is a special case of mean value 

theorem. 
 
6) If Pr denotes the rth Taylor polynomial as given y Eqn (3), then 

show that Pr(x0) = f(x0), P’r(x0) = f’(x0), .... P
)r(

r (x0) = f(r)(x0). 
 
7) Obtain the third Taylor polynomial of f(x) = ex about x = 0. 
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8) Obtain the nth Taylor expansion of the function f(x) = 
x+1

1
 in ]-

2
1

, 1[ about x0 = 0. 

 
9) Does f(x) = x  have a Taylor series expansion about x = 0? 

Justify your answer. 
 
10) Obtain the 8th Taylor expansion of the function f(x) = cos x in [-

4
π

, 
4
π

] about x0 = 0. Obtain a bound for the error R9(x). 

 
11) Using Maclaurin’s expansion for cos x, find the approximate 

value of cos 
4

π
 with the error bound 10-5. 

 
12) How large should n be chosen in Maclaurin’s expansion for ex to 

have |ex – Pn(x)| ≤ 10-5,  -1 ≤ x ≤ 1. 
 
13) In some approximation problems where graphic methods are 

used, the value 
133
355

 is used as an approximation to π  = 

3.14159265….To how many decimal places the value 
133
355

 is 

accurate as an approximation to π? 
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UNIT 2 REVIEW OF CALCULUS 
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 3.1.2 Graphical Method 
3.2 Bisection Method 

 3.3 Fixed Point Iteration Method 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 
We often come across equation of the form x4 + 3x2 + 2x + 1 = 0 or ex = 
x – 2 or tan h x = x etc. Finding one or more values of x which satisfy 
these equations is one of the important problems in Mathematics. From 
your elementary algebra course, you are already familiar with some 
methods of solving equations of degrees 1, 2, 3 and 4 equations of 
degree 1, 2, 3 and 4 are called linear, quadratic, cubic and biquadratic 
respectively. There you might have realized that it is very difficult to use 
the methods available for solving cubic and biquadratic equations. In 
fact no formula exists for solving equations of degree n ≥5. In these 
cases we take recourse to approximate methods for the determination of 
the solution of equations of the form. 
 
f(x) = 0         (1) 
 
The  problem of finding approximate values of roots of polynomial 
equations of higher degree was initiated by Chinese mathematicians. 
The methods of solution in various forms appeared in the 13th century 
work che’ in kiu-shoo. The first noteworthy work in this direction was 
done in Euope by the English mathematician Fibonacci. Later in the 
year 1600 Vieta and Isaac Newton made significant contribution to the 
theory. 
 
In this unit as well as in the next two units we shall discuss some 
numerical methods which gives an approximate solution of an equation 
f(x) = 0. We can classify the methods of solution into two types namely 
(i) Direct methods and (ii) Iteration methods. Direct methods produce 
solution by in finite number of steps whereas iteration methods give an 
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approximate solution by repeated application of a numerical process. 
You will find later that for using iteration methods we have to start with 
an approximate solution. Iteration methods improve this approximate 
solution. We shall begin this unit by first discussing methods which 
enable us to determine an initial approximate solution and then discuss 
iteration methods to refine this approximate solution. 
 
2.0 OBJECTIVES 
 
After studying this unit you should be able to: 
 
• find an initial approximation of the root using (1) tabulation 

method (2) graphical method. 
 
• use bisection method for finding approximate roots. 
 
• use fixed point iteration method for finding approximate roots. 
 
3.0 MAIN BODY 
 
3.1 Initial Approximation to a Root 
 
You know that in many problems of engineering and physical sciences 
you come across equations in one variable of the form f(x) = 0. 
 
For example, in Physical, the pressure-volume-temperature relationship 
of real gases can be described by the equation 
 

PV = RT +
V
β

 + 2V
r

 + 3V
s

       (2) 

 
where P, V, T are pressure, volume and temperature respectively. R, β , 
r, s are constants. We can rewrite Eqn. (2) as 
 
PV4 – RTV3 - βV3 – rV – s = 0      (3) 
 
Therefore the problem of finding the specific volume of a gas at a given 
temperature and pressure reduces to solving the biquadratic equation 
Eqn. (3) for the unknown variable V. 
 
Consider another example in life sciences, the study of genetic problem 
of recombination of chromosomes can be described in the form 
 
p(1 – p) = p2 – p + k – 0, 
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where p stands for the recombination fraction with the limitation 0 ≤p 

≤ 
2
1

 and (1 – p) stands for the non-recombination fraction. The problem 

of finding the recombination fraction of a gene reduces to the problem 
of finding roots of the quadratic equation p2 – p + k = 0. 
 
In these problems we are concerned with finding value (or values) of the 
unknown variable x that satisfies the equation f(x) = 0. the function f(x) 
may be a polynomial of the form 
 
f(x) = a0 + a1 x +... + an xn 
 
or it may be a combination of polynomials, trigonometric, exponential 
or logarithmic functions. By a root of this equation we mean a number 
x0 such that f(x0) = 0. The root is also called a zero of f(x). 
 
If f(x) is linear, then Eqn. (1) is of the form ax + b = 0, a ≠0 and it has 

only one root given by x = -
a
b

. Any equation which is not linear is 

called a non-equation. In this unit we shall discuss some methods for 
finding roots of the equation f(x) = 0 where f(x) is a non linear function. 
You are already familiar with various methods for calculating roots of 
quadratic, cubic and biquadratic equations. But there is no such formula 
for solving polynomial equations of degree more than 4 or even for a 
simple equation like 
 
x – cos x = 0 
 
Here we shall discuss some of the numerical approximation methods. 
These methods involve two steps: 
 
Step 1: To find an initial approximation of a root. 
 
Step 2: To improve this approximation to get a more accurate value. 
 
We first consider step 1. Finding an initial approximation to a root 
means locating (or estimating) a root of an equation approximately. 
There are two ways for achieving this-tabulation method and graphical 
method. 
 
Let us start with Tabulation method. 
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3.1.1 Tabulation Method 
 
This method is based on the intermediate value theorem (IV Theorem), 
(see Theorem 1, Unit 1). Let us try to understand the various steps 
involved in the method through an example. 
 
Suppose we want to find a root of the equation 
 
2x – log10x = 7 
 
We first compute value of f(x) = 2x – log10x – 7 for different value of x, 
say x = 1, 2, 3 and 4. 
 
When x = 1, we have f(1) = 2 – log101 – 7 = -5 
 
Similarly, we have 
 
f(2) = 4 – log102 – 7 = -3.301 
(Note that log102 is computed using a scientific calculator.) 
 
f(3) = 6 – log102 – 7 = -1.477 
f(4) = 8 – log104 – 7 = -0.3977 
 
These values are given in the following table: 
 

Table 1 
x 1 2 3 4 

f(x) -5 -3.301 -1.477 0.397 

 
We find that f(3) is negative and f(4) is positive. Now we apply IV 
Theorem to the function f(x) = 2x – log10x – 7 in the interval I1 = [3, 4]. 
Since f(3) and f(4) are of opposite signs, by IV theorem there exists a 
number x0 lying between 3 and 4 such that f(x0) = 0. That is, a root of 
the function lies in the interval ]3, 4[. Note that this root is positive. 
 
Let us now repeat the above computations for some values of x lying in 
]3, 4[ say x = 3.5, 3.7 and 3.8. In the following table we report the 
values of f(x). 
 

Table 2 
x 3.5 3.7 3.8 

f(x) -0.544 -0.168 0.0202 

 
We find that f(3.7) are of opposite signs. By applying IV theorem again 
to f(x) in the interval I2 = [3.7, 3.8], we find that the root of f(x) lies in 
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the interval ]3.7, 3.8[. Note that this interval is smaller than the previous 
interval. We call this interval a refinement of the previous interval. Let 
us repeat the above procedure once again for the interval I2. In Table 3 
we give the values of f(x) for some x between 3.7 and 3.8. 
 

Table 3 
x 3.75 3.78 3.79 

f(x) -0.074 -0.017 -0.00137 

 
Table 3 shows that the root lies within the interval ]3.78, 3.79[ and this 
interval is much smaller compared to the original interval ]3, 4[. The 
procedure is terminated by taking any value of x between 3. 78 and 3.79 
as an approximate value of the root of the equation f(x) = 2x – log10x – 7 
= 0. 
 
The method illustrated above is known as Tabulation method. Let us 
write the steps involved in the method. 
 
Step 1: 
 
Select some numbers x1, x2, ...., xn and calculate f(x1) and f(x2), ...., f(xn). 
If f(x i) = 0 for some i, then xi is a root of the equation. If none of the xis 
are zero, then proceed to step 2. 
 
Step 2: 
 
Find values xi and xi+1 such that f(xi) f(xi+1) < 0. Rename xi = a1 and xi+1 
= b1. Then by the IV Theorem a root lies in between a1 and b1. Test for 
all values of f(xj), j = 1, 2, ...., n and determine other intervals, if any, in 
which some more roots may lie. 
 
Step 3: 
 
Repeat Step 1 by taking some numbers between a1 and b1. Again, if f(xj) 
= 0 for some xj between a1 then we have found the root xj. Otherwise, 
continue step 2. 
 
Continue the step 1, 2, 3 till we get a sufficiently small interval]a, b[ in 
which the root lies. Then any value between ]a, b[ can be chosen as an 
initial approximation to the root. You may have noticed that the test 
values xj, j = 1, 2, ...., n chosen are dependent on the nature of the 
function f(x). 
 
We can always gather some information regarding the root either from 
the physical problem in which the equation f(x) = 0 occur, or it is 
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specified in the problem. For example, we may ask for the smallest 
positive root or a root closest to a given number etc. 
 
For a better understanding of the method let us consider one more 
example. 
 
 
Example 1: 
 
Find the approximate value of the real root of the equation 
 
2x – 3 sin x – 5 = 0. 
 
Solution: 
 
Let f(x) = 2x – 3 sin x – 5. 
 
Since f(-x) = -2x + 3 sin x – 5 < 0 for x > 0, the function f(x) is negative 
for all negative real numbers x. Therefore the function has no negative 
real root. Hence the roots of this equation must lie in [0, ∞[. Now 
following step 1, we compute values of f(x), for x = 0, 1, 2, 3, 4, .... 
 
We have 
 
f(0) = -5.0, 
f(1) = 2 – 3 sin 1 – 5 = 5.5224 
 
using the calculator. Note that x is in radians. The values f(0), f(1), f(2) 
and f(3) are given in Table 4. 
 

Table 4 
x 0 1 2 3 

f(x) -5.0 -5.51224 -3.7278 0.5766 

 
Now we follow step 2. From the table we find that f(2) and f(3) are of 
opposite signs. Therefore a root lies between  2 and 3. Now, to get a 
more refined interval, we evaluate f(x) for some values between 2 and 3. 
The values are given in Table 5. 
 

Table 5 
x 2 2.5 2.8 2.9 

f(x) -3.7278 -1.7954 -0.4049 0.0822 

 
This table of values shows that f(2.8) and f(2.9) are of opposite signs 
and hence the root lies between 2.8 and 2.9. We repeat the process once 
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again for the interval [2.8, 2.9] by taking some values as given in Table 
6. 
 

Table 6 
x 2.8 2.85 2.88 2.89 

f(x) -0.4049 -1.1624 -0.0159 0.0232 

 
From Table 6 we find that the root lies between 2.88 and 2.89. This 
interval is small, therefore we take any value between 2.88 and 2.89 as 
an initial approximation of the root. Since f(2.88) is near to zero than 
f(2.89), we can take any number near to 2.88 as an initial approximation 
to the root. 
 
You might have realized that the tabulation method is a lengthy process 
for finding an initial approximation of a root. However, since only a 
rough approximation to the root is required, we normally use only one 
application of the tabulation method. In the next sub-section we shall 
discuss the graphical method. 
 
3.1.2 Graphical Method 
 
In this method, we draw the approximate graph of y = f(x). The points 
where the curve cuts the x-axis are taken as the required approximate 
values of the roots of the equation f(x) = 0. Let us consider an example. 
 
Example 2: Find an approximate value of a root of the bi-quadratic 
equation 
 
x4 + 4x3 + 4x2 – 2 = 0 
using graphical method. 
 
Solution: 
 
We first sketch the fourth degree polynomial f(x) = x4 + 4x3 + 4x2 – 2. 
This graph is given in Fig. 1. 
 
 
 
 
 
 
 
 
 
 

Y 

X O 
-1 

-2.55 -0.55 

-2 

Fig. 1: Graph of f(x) = + 4x3 + 4x2 – 2 
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The figure shows that the graph cuts the x-axis at two points -2.55 and 
0.55, approximately. Hence -2.55 and 0.55 are taken as the approximate 
roots of the equation 
 
x4 + 4x3 + 4x2 – 2 = 0 
 
Now go back for a moment to Unit 1 and see Example 1 in Sec. 1.2. 
There we applied graphical method to find the roots of the equation sin x 

= 
2

1
. 

 
Let us consider another example. 
 
Example 3: 
 
Find the approximate value of a root of 
 
x2 – ex = 0 
using graphical method. 
 
Solution: 
 
First thing to do is to draw the graph of the function f(x) = x2 – ex. It is 
not easy to graph this function. Now if we split the function as 
 
f(x) = f1(x) – f2(x) 
 
where f1(x) = x2 and f2(x) = ex, then we can easily draw the graphs of the 
functions f1(x) and f2(x). The graphs are given in fig. 2. 
 
The figure shows that the two curves y = x2 and y = ex intersect at some 
point P. From the figure, we find that the approximate point of 
intersection of the two curves is -0.7. Thus we 
 
 
 
 
 
 
 
 
have f1(-0.7) – f2(-0.7), and therefore f(-0.7) = f1(-0.7) – f2(-0.7) ≈ 0. 
Hence -0.7 is an approximate value of the root of the equation f(x) = 0. 
 

Y 
3- 
2- 

-2           -1    P        O            1         2    X 

y=ex 

y=x2 

Fig. 2: Graphs of f1(x) = x2 and f2(x) = ex. 
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From the above example we observe the following: Suppose we want to 
apply the graphic method for finding an approximate root of f(x) = 0. 
Then we may try to simply the method by splitting the equation as 
 
f(x) = f1(x) – f2(x) = 0       (4) 
 
where the graphs of f1(x) and f2(x) are easy to draw. From Eqn. (4), we 
have f1(x) = f2(x). The x-coordinate of the point at which the two curves 
y1 = f1(x) and y2 = f2(x) intersect gives an approximate value of the root 
of the equation f(x) = 0. Note that we are interested only in the x-
coordinate, we don’t have to worry about the point of intersection of the 
curves. 
 
Often we can split the function f(x) in the form (4) in a number of ways. 
But we should choose that form which involves minimum calculations 
and the graphs of f1(x) and f2(x) are easy to draw. We illustrate this point 
in the following example. 
 
Example 4: 
 
Find an approximate value of the positive real root of 3x – cos x – 1 = 0 
using graphic method. 
 
Solution: 
 
Since it is easy to plot 3x – 1 and cos x, we rewrite the equation as 3x – 
1 = cos x. The graphs of y = f1(x) = 3x – 1 and y = f2(x) = cos x are 
given in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
It is clear from the figure that the x-coordinate of the point of 
intersection is approximately 0.6. Hence x = 0.6 is an approximate value 
of the root of the equation 3x – cos x – 1 = 0. 

Y 

1.0 

.8- 

.6- 

.4- 

.2- 

O .2     .4     .6     .8     1.0       X   

y1=3x-1 

y2=cosx 

Fig. 3: Graphs of f1(x) = 3x – 1 and f2(x) cos x 
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We now make a remark. 
 
Remark 1: 
 
You should take some care while choosing the scale for graphing. A 
magnification of the scale may improve the accuracy of the approximate 
value. 
 
We have discussed two methods, namely, tabulation method and 
graphical method which help us in finding an initial approximation to a 
root. But these two methods give only a rough approximation to a root. 
Now to obtain more accurate results, we need to improve these crude 
approximations. In the tabulation method we found that one way of 
improving the process is refining the intervals within which a root lies. 
A modification of this method is known as bisection method. In the next 
section we discuss this method. 
 
3.2 Bisection Method 
 
In the beginning of the previous section we have mentioned that there 
are two steps involved in finding an approximate solution. The first step 
has already been discussed. In this section we consider the second step 
which deals with refining an initial approximation to a root. 
 
Once we know an interval in which a root lies, there are several 
procedures to refine it. The bisection method is one of the basic methods 
among them. We repeat the steps 1, 2, 3 of the tabulation method given 
in subsection 3.3.1 in a modified form. For convenience we write the 
method as an algorithm. 
 
Suppose that we are given a continuous function f(x) defined on [a, b] 
and we want to find the roots of the equation f(x) = 0 by bisection 
method. We described the procedure in the following steps: 
 
Step 1: 
 
Find points x1, x2 in the interval [a, b] such that f(x1). f(x2) < 0. That is, 
those points x1 and x2 for which f(x1) and f(x2) are of opposite signs-(see 
Step 1 subsection 3.3.1). This process is called “finding an initial 
bisecting interval”. Then IV theorem a root lies in the interval ]x1, x2[. 



MTH 213    NUMERICAL ANALYSIS 1 
 

 378

 
Step 2: 
 

Find the middle point c of the interval ]x1, x2[ i.e., c = 
2

x+x 21 . If f(c) = 

0, then c is the required root of the equation and we can stop the 
procedure. Otherwise we go to Step 3. 
 
Step 3: 
 
Find out if 
 
f(x1) f(c) < 0 
 
If it holds, then the root lies in ]x1, c[. Otherwise the root lies in ]c, x2[ 
(see Fig 4). Thus in either case we have found an interval half as wide as 
the original interval that contains the root. 
 
 
 
 
 
 
 
 
 
 
 
Step 4: 
 
Repeat Step 2 and 3 with the new interval. This process either gives you 
the root or an interval having width ¼ of the original interval ]x1, x2[ 
which contains the required root. 
 
Step 5: 
 
Repeat this procedure until the interval width is as small as we desire. 
Each bisection halves the length of the preceding interval. After N steps, 
the original interval length will be reduced by a factor 1/2N. 
 
Now we shall see how this method helps in refining the initial intervals 
in some of the problems we have done in subsection 2.2.1. 

(x1, f(x1)) 

(c, f(c)) 
(x2, f(x2)) 

y = f(x) 

r 
x1 c x2 

(x1, f(x1)) 

(c, f(c)) 

(x2, f(x2)) 

y = f(x) 

r x1 c x2 

Fig. 4: The decision process for the bisection method 
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Example 5: 
 
Consider the equation 2x – log10x – 7 lies in ]3.78, 3.79[. Apply 
bisection method to find an approximate root of the equation correct to 
three decimal places. 
 
Solution: 
 
Let f(x) = 2x – log10x – 7. From Table 2 in subsection 3.3.1, we find that 
f(3.78) = -0.01749 and f(3.79) = 0.00136. Thus s root lies in the interval 
]3.78, 3.79[. 
 
Then we find the middle point of the interval ]3.78, 3.79[. The middle 
point is c = (3.78 + 3.79)/2 = 3.785 and f(c) = f3.785) = -0.0806 ≠ 0. 
Now, we check the condition in Step 3. Since f(3.78) f(3.785) > 0, the 
root does not lie in the interval ]3.78. 3.78[. Hence the root lies in the 
interval ]3.785, 3.9[. We have to refine this interval further to get better 
approximation. Further bisection are shown in the following Table. 
 

Table 7 
Number of Bisection Bisected value xi f(xi) Improved Interval 

1 
2 
3 
4 
5 

3.785 
3.7875 
3.78875 
3.789375 
3.7890625 

-0.00806 
-3.3525×10-3 
9.9594×10-4 
1.824×10-4 
-4.068×10-4 

]3.785, 3.79[ 
]3.7875, 3.79[ 
]3.78875, 3.79[ 

]3.78875, 3.789375[ 
]3.78906, 3.7989375[ 

 
The table shows that the improved interval after 5 bisections is ]3.78906, 
3.789375[. The width of this interval in 3.789375 - 3.78906 = 0.000315. 
If we stop further bisections, the maximum absolute error would be 
0.000315. The approximate root can therefore be taken as (3.78906 - 
3.789375)/2 = 3.789218. Hence the desired approximate value of the 
root rounded off to three decimal places is 3.789. 
 
Example 6: 
 
Apply bisection method to find an approximation to the positive root of 
the equation. 
 
2x – 3 sin x – 5 = 0 
 
rounded off to three decimal places. 
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Solution: Let f(x) = 2x – 3 sin x – 5. 
 
In Example 1, we had shown that a positive root lies in the interval ]2.8, 
2.9[. Now we apply bisection method to this interval. The results are 
given in the following table. 
 

Table 8 
Number of Bisection Bisected value xi f(xi) Improved Interval 

1 
2 
3 
4 
5 
6 
7 
8 

2.85 
2.875 
2.8875 
2.88125 
2.884375 
2.8828125 
2.8835938 
2.8832031 

-0.1624 
-0.0403 
0.02089 

-9.735×10-3 
5.57781×10-3 
-2.0795×10-3 
1.7489×10-3 
-1.6539×10-4 

]2.85, 2.79[ 
]2.875, 2.79[ 

]2.875, 2.8875[ 
]2.88125, 2.8875[ 

]2.88125, 2.884375[ 
]2.8828125, 2.884375[ 
]2.8828125, 2.8835938[ 
]2.8832031, 2.8835938[ 

 
After we bisection the width of the interval is 2.8835938 - 2.8832031 =  
0.0003907. Hence, the maximum possible absolute error to the root is 
0.0003907. Therefore the required approximation to the root is 2.883. 
 
Now let us make some remarks. 
 
Remark 2: 
 
While applying bisection method we must be careful to check that f(x) is 
continuous. For example, we may come across functions like f(x) = 

1-x

1
. If we consider the interval ].5, 1.5[, then f(.5) f(1.5) < 0. In this 

case we may be tempted to use bisection method. But we cannot use the 
method here because f(x) is not defined at the middle point x = 1. We 
can overcome these difficulties by taking f(x) to be continuous 
throughout the initial bisecting interval. (Note that if f(x) is continuous 
by IV theorem f(x) assumes all values between the intervals.) 
 
 
Therefore you should always examine the continuity of the function in 
the initial interval before attempting the bisection method. 
 
Remark 3: 
 
It may happen that a function has more than one root in an interval. The 
bisection method helps us in determining one root only. We can 
determine the other roots by properly choosing the initial intervals. 
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While applying bisection method we repeatedly apply steps 2, 3, 4 and 
5. You recall that in the introduction we classified such a method as an 
Iteration method. As we mentioned in the beginning of Sec. 3.1, a 
numerical process starts with an initial approximation and iteration 
improves this approximation until we get the desired accurate value of 
the root. 
 
Let us consider another iteration method now. 
 
 
3.3 Fixed Point Iteration Method 
 
The bisection method we have described earlier depends on our ability 
to find an interval in which the root lies. The task of finding such 
intervals is difficult in certain situations. In such cases we try an 
alternate method called Fixed Point Iteration Method. We shall discuss 
the advantage of this method later. 
 
The first step in this method is to rewrite the equation f(x) = 0 as 
 
x = g(x)         (5) 
 
For example consider the equation x2 – 2x – 8 = 0. We can write it as 
 
x = 8+x2          (6) 

x = 
x

8+x2
         (7) 

x = 
2

8-x2

         (8) 

 
We can choose the form (5) in several ways. Since f(x) = 0 is the same s 
x = g(x), finding a root of f(x) = 0 is the same as finding a root of x = 
g(x) i.e., a fixed point of g(x). Each such g(x) given in (6), (7) or (8) is 
called an iteration function for solving f(x) = 0. 
 
Once an iteration function is chosen, our next step is to take a point x0 
close to the root as the initial approximation of the root. 
 
Starting with x0, we find the first approximation x1 as 
 
x1 = g(x0) 
 
Then we find the next approximation as 
 
x2 = g(x1) 
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Similarly we find the successive approximation x2, x3, x4 ... as 
 
x3 = g(x2) 
x4 = g(x3) 
. . 
.. 
. . 
xn+1 = g(xn) 
 
Each computation of the type xn+1 = g(xn) is called an iteration. Now, 
two questions arise (i) when do we stop these iterations? (ii) Does this 
procedure always give the required solution? 
 
To ensure this we make the following assumptions on g(x): 
 
Assumption* 
 
The derivative g’(x) of g(x) exists g’(x) is continuous and satisfies 
|g’(x)| < 1 in an interval containing x0. (That would mean that we require 
|g’(x)| < 1 at all iterates xi.) 
 
The iteration is usually stopped whenever |xi+1| is less than the accuracy 
required. 
 
In Unit 3 you will prove that if g(x) satisfies the above conditions, then 
there exists a unique point α  such that g(α ) = α  and the sequence of 
iterates approach α , provided that the initial approximation is close to 
the point α . 
 
Now we shall illustrate this method with the following example. 
 
Example 7: 
 
Find an approximate root of the equation 
 
x2 – 2x – 8 = 0 
using fixed point iteration method, starting with x0 = 5. Stop the iteration 
whenever 
 
|xi+1 – xi| < 0.001. 
 
Solution: 
 
Let f(x) = x2 – 2x – 8. We saw that the equation f(x) = 0 can be written 
in three forms (6), (7) and (8). We shall take up the three forms one by 
one. 
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Case 1: Suppose we consider form (5). In this form the equation is 
written as 
 
x = (2x + 8)1/2 
 
Here g(x) = (2x + 8)1/2. Let’s see whether Assumption (*) is satisfied for 
this g(x). We have 
 

g’(x) = 2/1)8+x2(

1
 

 
Then |g’(x)| < 1 whenever (2x + 8)1/2 > 1. For any positive real number 
x, we see that the inequality (2x + 8)1/2 > 1 is satisfied. Therefore, we 
consider any interval on the positive side of  x-axis. Since the starting 
point is x0 = 5, we may consider the interval at I = [3, 6]. This contains 
the point 5. Now, g(x) satisfies the condition that g’(x) exists on I, g’(x) 
is continuous on I and |g’(x)| < 1 for every x in the interval [3, 6]. Now 
we apply fixed point iteration method to g(x). 
 
We get 
x1 = g(5) = 18 = 4.243 
x2 = g(4.243) = 4.060 
x3 = 4.015 
x4 = 4.004 
x5 = 4.001 
x6 = 4.000. 
 
Since |x6 – x5| = |-0.001| = 0.001, we conclude that an approximate value 
of a root of f(x) = 0 is 4. 
 
Case 2: Let us consider the second form, 
 

x = 
x

8+x2
 

 

Here g(x) = 
x

8+x2
 and g’(x) = 2x

8-
. The |g’(x)| < 1 for any real number x 

≥ 3. Hence g(x) satisfies Assumption (*) in the interval [3, 6]. Now we 
leave is as an exercise for you to complete the computations (See TMA 
6). 
 

Case 3: Here we have x = 
2

8-x2

. Then g(x) = 
2

8-x2

 and g’(x) = x. In 

this case |g’(x)| < 1 only if |x| < 1 i.e. if x lies in the interval ]-1, 1[. But 
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this interval does not contain 5. Therefore g(x) does not satisfy the 
Assumption (*) in any interval containing the initial approximation. 
Hence, the iteration method cannot provide approximation to the desired 
root. 
 
Note: This example may appear artificial to you. You are right because 
in this case we have got a formula for calculating the root. This example 
is taken to illustrate the method in a simple way. 
 
Let us consider another example. 
 
Example 8: 
 
Use fixed point iteration procedure to find an approximate root of 2x = 3 
sin x – 5 = 0 starting with the point x0 = 2.8. Stop the iteration whenever 
|xi+1 + xi| < 10-5. 
 
Solution: We can rewrite the equation in the form, 
 

x = 
2

3
 sin x + 

2

5
. 

 

Here g(x) = 
2

3
 sin x + 

2

5
 and g’(x) = 

2

3
 cos x. 

 
Now at x0 = 2.8, we have 
 
|g’(2.8)| = 1.413 
which is greater than 1. Thus g(x) does not satisfy Assumption (*) and 
therefore in this form the iteration method fails. 
 
Let us now rewrite the equation in another form. We write 
 

x = x - 
3cosx-2

5-3sinx-x2
 

 

Then g(x) = x - 
3cosx-2

5-3sinx-x2
 

 
You may wonder how did we get this form. Note that here g(x) is of the 

form g(x) = x - 
)x('f

)x(f
. You will find later that the above equation is the 

iterated formula for another popular iteration method. 
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Then g’(x) = 1 - 2x)3cos-(2

x3sin5)+x3sin-(2x-x)3cos-2()x3cos-2(
 

= 23cosx)-2(

5+x3sin-x2
3 sin x 

 
At x0 = 2.8 |g’(x0)| = 0.0669315 (or 0.02174691) < 1 
 
Therefore g(x) satisfies the Assumption (*). Using the initial 
approximation as x0 = 2.8, we get the successive approximation as 
 
x1 = 2.8839015 
x2 = 2.8832369 
x3 = 2.8832369 
 
Since |x2 – x3| < 10-5 we stop the iteration here and conclude that 
2.88323 is an approximate value of the root. 
 
Next we shall use another form 

x = sin-1 
3

5-2x
 

 

Here g(x) = sin-1  
3

5-2x
 and g’(x) = 

25)-(2x-9

2
 

 
At x0 = 2.8, g’(x0) = 0.6804 < 1. In fact, we can check that in any small 
interval containing 2.8 |g’(x)| < 1. Thus g(x) satisfies the Assumption 
(*). Applying the iteration method, we have 
 

x1 = sin-1 
3

5-)8.2(2
 = 0.201358 

 
We find that there are two values which satisfy the above equation. One 
value is 0.201358 and the other is π  - 0.201358 = 2.940235. In 
situations, we take a value close to the initial approximation. In this case 
the value close to the initial approximation is 2.940235. Therefore we 
take this value as the starting point of the next approximation. 
 
x1 = 2.940235 
 
Next we calculate 
 

x2 = sin-1 
3

5-)940235.2(2
 

= 0.297876 or 2.843717 
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Continuing like this, it needed 17 iteration to obtain the value x17 = 
2.88323, which we got from the previous form. This means that in this 
form the convergence is very slow. 
 
From examples 7 and 8, we learn that if we choose the form x = g(x) 
properly, then we can get the approximate root provided that the initial 
approximation is sufficiently close to the root. The initial approximation 
is usually given in the problem or we can find using the IV theorem. 
 
Now we shall make a remark here 
 
Remark: The Assumption (*) we have given for an iteration function, is 
a stronger assumption. In actual practice there are a variety of 
assumptions which the iteration function g(x) must satisfy to ensure that 
the iterations approach the root. But, to use those assumptions you 
would require a lot of practice in the application of techniques in 
mathematical analysis. In this course, we will be restricting ourselves to 
functions that satisfies Assumption (*). If you would like to know about 
the other assumptions, you may refer to ‘Elementary Numerical 
Analysis’ by Samuel D Conte and Carl de Boor. 
 
4.0 CONCLUSION 
 
Let us now briefly recall what we have done in this unit. 
 
5.0 SUMMARY 
 
In this unit we have covered the following points: 
 
• We have seen that the methods for finding an approximate 

solution of an equation involve two steps: 
 

i) Find an initial approximation to a root. 
 
ii)  Improve the initial approximation to get a more accurate 

value of the root. 
 
• We have described the following iteration methods for improving 

an initial approximation of a root. 
 

i) Bisection method 
 
ii) Fixed point iteration method. 
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6.0 TUTOR-MARKED ASSIGNMENT (TMA)  
 
1) Find an initial approximation to a root of the equation 3x - 

xsin+1  = 0 using tabulation method. 
 

2) Find a initial approximation to a positive root of the equation 2x 
– tan x = 0 using tabulation method. 
 

3) Find the approximate location of the roots of the following 
equations in the regions given using graphic method. 
 
a) f(x) = e-x – x = 0, in 0 ≤ x ≤ 1 
 
b) f(x) = e-0.4x – 0.4x – 9 = 0, in 0 < x ≤ 7 
 

4) Starting with the interval [a0, b0], apply bisection method to be 
the following equations and find an interval of width 0.05 that 
contains a solution of the equations 
a) ex – 2 – x = 0, [a0, b0] = [1.0, 1.8] 
 
b) 1n x – 5 + x = 0, [a0, b0] = [3.2, 4.0] 

 
 

5) Using bisection method find an approximate root of the equation 
x3 – x – 4 = 0 in the interval ]1, 2[ to two places of decimal. 

 

6) Apply fixed point iteration method to the form x =
x

8+x2
 starting 

with x0 = 5 to obtain a root of x2 – 2x – 8 = 0. 
 
7) a)  Apply fixed point iteration method to the following  

equations with the initial approximation given alongside. 
In each case find an approximate root rounded off to 4 
decimal places. 

i) x = -45 + 
x
2

 x0 = 20. 

ii)  x = 
2
1

 + sin x, x0 = 1. 

 
b) Compute the exact roots of the equation x2 + 45x – 2 = 0 

using quadratic formula and compare with the 
approximate root obtained in (a) (i). 
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UNIT 3 CHORD METHOD FOR FINDING ROOTS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Regular – Falsi Method 
3.2 Newton – Raphson Method 

 3.3 Convergence Criterion 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION  
 
In the last unit we introduced you to two iteration methods for finding 
roots of an equation f(x) = 0. There we have shown that a root of the 
equation f(x) = 0 can be obtained by writing the equation in the form x = 
g(x). Using this form we generate a sequence of approximations xi+1 = 
g(xi) for i = 0, 1, 2, ... We had also mentioned there that the success of 
the iteration methods depends upon the form of g(x) and the initial 
approximation x0. In this unit, we shall discuss two iteration methods: 
regula-falsi and Newton-Raphson methods. These methods produce 
results faster than bisection method. The first two sections of this unit 
deal with derivations and the use of these two methods. You will be able 
to appreciate these iteration methods better if you can compare the 
efficiency of these methods. With this in view we introduce the concept 
of convergence criterion which helps us to check the efficiency of each 
method. Sec. 3.3 is devoted to the study of rate of convergence of 
different iterative methods. 
 
2.0 OBJECTIVES 
 
After studying the unit you should be able to: 
 
• apply regula-falsi and secant methods for finding roots 
 
• apply Newton-Raphson method for finding roots 
 
• define ‘order of convergence’ of an iterative scheme 
 
• obtain the order of convergence of the following four methods: 
 

o bisection method 
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o fixed point iteration method 
o secant method 
o Newton-Raphson method 

 
3.0 MAIN BODY 
 
3.1 Regula-Falsi Method (or Method of False Position) 
 
In this section we shall discuss the ‘regula-falsi method’. The Latin 
word ‘Regula Falsi’ means rule of falsehood. It does not mean that rule 
is a false statement. But it conveys that the roots that we get according to 
the rule are approximate roots and not necessarily exact roots. The 
method is also known as the method of false position. This method is 
similar to the bisection method you have learnt in Unit 3. 
 
The bisection method for finding approximate roots has a drawback that 
it makes use of only the signs of f(a) and f(b). It does not use the values 
f(a), f(b) in the computations. For example, if f(a) = 700 and f(b) = -0.1, 
then by the bisection method the first approximate value of a root of f(x) 
is the mid value x0 of the interval ]a, b[. But at x0, f(x0) is nowhere near 
0. Therefore in this case it makes more sense to take a value near to -0.1 
than the middle value as the approximation to the root. This drawback is 
to some extent overcome by the regula-falsi method. We shall first 
describe the method geometrically. 
 
Suppose we want to find a root of the equation f(x) = 0 where f(x) is a 
continuous function. As in the bisection method, we first find an interval 
]a, b[ such that f(a) f(b) < 0. Let us look at the graph of f(x) given in Fig. 
1. 
 
 
 
 
 
 
 
 
 
 
The condition f(a) f(b) < 0 means that the points (a, f(a)) and (b, f(b)) lie 
on the opposite sides of the x-axis. Let bus consider the line joining (a, 
f(a)) and (b, f(b)). This line crosses the x-axis at some point (c, 0) [see 
Fig. 1]. Then we take the x-coordinate of that point as the first 
approximation. If f(c) = 0, then x = c is the required root. If f(a) f(c) < 0, 
then the root lies in ]a, c[ (see Fig. 1 (a)). In this case the graph of y = 
f(x) is concave near the root r). Otherwise, if f(a) f(c) > 0, the root lies in 

r  

a c b 
L  (c,f(c)) 

y=f(x) 
(b,f(b)) 

(a,f(a)) 

r  

a c b 

L  

(c,f(c)) 

y=f(x) 

(b,f(b)) 

(a,f(a)) 

Fig 1: Regula-Falsi 
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]c, b[ (see Fig. 1 (b)). In this case the graph of y = f(x) is convex near 
the root. Having fixed the interval in which the roots lies, we repeat the 
above procedure. 
 
Let us now write the above procedure in the mathematical form. Recall 
the formula for the line joining two points in the Cartesian plane. The 
line joining (a, f(a)) and (b, f(b)) is given by 
 

y – f(a) = 
a-b
f(a)-)b(f

(x – a) 

 
We can rewrite this in the form 
 

f(a)-)b(f
)a(f-y

 = 
a-b
a-x

        (1) 

 
Since the straight line intersects the x-axis at (c, 0), he point (c, 0) lies 
on the straight line. Putting x = c, y = 0 in Eqn. (1), we get 
 

f(a)-)b(f
)a(f-

 = 
a-b
a-c

 

i.e. 
a-b

c
 - 

a-b
a

 = 
f(a)-)b(f
)a(f-

 

 

Thus c = a 
f(a)-)b(f
)a(f

 (b – a).      (2) 

 
This expression for c gives an approximate value of a root of f(x). 
Simplifying (2), we can also write as 
 

f(a)-)b(f
)a(fb-af(b)

 

 
Now, examine the sign of f(c) and decide in which interval ]a, c[ or ]c, 
b[, the root lies. We thus obtain a new interval such that f(x) is of 
opposite signs at the end points of this interval. By repeating this 
process, we get a sequence of intervals ]a, b[, ]a, a1[, ]a, a2[, ... as shown 
in Fig. 2. 
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We stop the process when either of the following holds. 
 
i) The interval containing the zero of f(x) is of sufficiently small 

length or 
 

ii)  The difference between two successive approximation is 
negligible. 

 
In the iteration format, the method is usually written as 
 

x2 = 
)x(f-)f(x

)x(fx-)x(fx

01

0110  

where ]x0, x1[ is the interval in which the root lies. 
 
We now summarise this method in the algorithm form. This will enable 
you to solve problems easily. 
 
Step 1: Find numbers x0 and x1 such that f(x0) f(x1) < 0, using the 
tabulation method. 
 

Step 2: Set x2 = 
)x(f-)f(x

)x(fx-)x(fx

01

0110 . This gives the first approximation. 

 
Step 3: If f(x2) = 0 then x2 is the required root. If f(x2) ≠0 and f(x0) f(x2) 
< 0, then the next approximation lies in ]x0, x2[. Otherwise it lies in ]x2, 
x1[. 
 
Step 4: Repeat the process till the magnitude of the difference between 
two successive iterated values xi and xi+1 is less than the accuracy 
required. (Note that |xi+1 – xi| gives the error after ith iteration). 
 
Let us now understand these steps through an example. 

O 

Y 

X a a2 a1 b 

(a, f(a)) 

(b, f(b)) 

Fig. 2 
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Example 1: 
 
It is known that the equation x3 + 7x2 + 9 = 0 has a root between -8 and -
7. Use the regula-falsi method to obtain the root rounded off to 3 
decimal places. Stop the iteration when |xi+1 – xi| < 10-4. 
 
Solution: 
 
For convenience we rewrite the given function f(x) as 
 
f(x) = x3 + 7x2 + 9 
= x2(x + 7) + 9 
 
Since we are given that x0 = -8 and x1 = -7, we do not have to use Step 
1. Now to get the first approximation, we apply the formula in Step 2. 
 
Since, f(x0) = f(-8) = -55 and f(x1) = f(-7) = 9 we obtain 
 

x2 = 
55+9

(-7)(-5)--8)9(
 = -7.1406 

 
Therefore our first approximation is -7.1406. 
 
To find the next approximation we calculate f(x2) with the signs of f(x0) 
and f(x1). We can see that f(x0) and f(x2) are of opposite signs. Therefore 
a root lies in the interval ]-8, -7.1406[. We apply the formula again by 
renaming the end points of the interval as x1 = -8, x2 = -7.1406. Then we 
get the second approximation as 
 

x3 = 
55+1.862856

f(-8)7.1406+f(-7.1406)8-
 = -7.168174. 

 
We repeat this process using  Step 2 and 3 given above. The iterated 
values are given in the following table. 
 

Table 1 
Number of 
iterations 

Interval 
Iterated Values 

xi 
The function value f(xi) 

1 
2 
3 
4 
5 
6 

]-8,-7[ 
]-8,-7.1406[ 

]-8,-7.168174[ 
]-8,-7.1735649[ 
]-8,-7.1745906[ 
]-8, -7.1747855[ 

-7.1406 
-7.168174 
-7.1735649 
-7.1745906 
-7.1747855 
-7.1748226 

1.862856 
0.3587607 
0.0683443 
0.012994 
0.00246959 
0.00046978 
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From the able, we see that the absolute value of the difference between 
the 5th and 6th iterated values is |7.1748226 – 7.1747855| = .0000371. 
Therefore we stop the iteration here. Further, the values of f(x) at 6th 
iterated value is .00046978 = 4.6978 × 10-4 which is close to zero. 
Hence we conclude that -7.175 is an approximate root of x3 + 7x2 + 9 = 
0 
 
Rounded off to three decimal places. 
 
You note that in regula-falsi method, at each stage we find an interval 
]x0, x1[ which contains a root and then apply iteration formula (3). This 
procedure has a disadvantage. To overcome this, regula-falsi method is 
modified. The modified method is known as secant method. In this 
method we choose x0 and x1 as any two approximations of the root. The 
Interval ]x0, x1[ need not contain the root. Then we supply formula (3) 
with x0, x1, f(x0) and f(x1). 
 
The iterations are now defined as: 
 

x2 = 
)x(f-)f(x

)x(fx-)x(fx

1

0110  

x3 = 
)x(f-)f(x

)x(fx-)x(fx

12

1221  

................................. 

................................. 

xn+1 = 
)x(f-)f(x

)x(fx-)x(fx

1-nn

1-nnn1-n        (4) 

 
Note: Geometrically, in secant Method, we replace the graph of f(x) in 
the interval ]xn, xn+1[ by a straight line joining two points (xn, f(xn+1), 
(xn+1), f(xn+1)) on the curve and take the point of intersection with x-axis 
as the approximate value of the root. Any line joining two points on the 
curve is called a secant line. That is why this method is known as secant 
method. (see Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 

O X x0 x3 x2 

(x1, f(x1)) 

Fig. 3 

(x0, f(x0)) 

x1 
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Let us solve an example. 
 
Example 2: 
 
Determine an approximate root of the equation 
 
cos x – x ex = 0 
 
using 
i) secant method starting with the two initial approximations as x0 = 

1 and x1 = 1 
and 
ii) regula-falsi method. 
(This example was considered in the book ‘Numerical methods for 
scientific and engineering computation’ by M. K. Jain, S. R. K. Iyengar 
and R. K. Jain). 
 
Solution: 
 
Let f(x) = cos x - x ex. 
 
Then f(0) = 1 and f(1) = cos 1 – e = -2.177979523. Now we apply 
formula (4) with x0 = 0 and x1 = 1. Then 
 

x2 = 
)x(f-)f(x

)x(fx-)x(fx

01

0110  = 
1-32.17797952-

(-1)1+23(-217797950
 

 

= 
1-32.17797952-

1-
 = 

33.17797952
1

 = 0.3146653378. 

 
Therefore the first iterated value is 0.3146653378. to get the 2nd iterated 
value, we apply formula (4) with x1 = 1, x2 = 0.3144653378. Now f(1) = 
-2.177979523 and f(0. 3144653378) = 0.519871175. 
 
Therefore  

x3 = 
)x(f-)f(x

)x(fx-)x(fx

12

1221  

 

= 
32.17797952+50.51987117

79523)78(-2.17790.31466533-175)1(0.519871
 

 
= 0.4467281466 
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We continue this process. The iterated values are tabulated in the 
following table.  
 

Table 2: Secant Method 
 
 

 
 
 
 
 
 
 
From the table we find that the iterated values for 7th and 8th iterations 
are the same. Also the value of the function at the 8th iteration is closed 
to zero. Therefore we conclude that 0.5177573637 is an approximate 
root of the equation.  
 
ii)  To apply regula-falsi method, let us first note that f(0) f(1) < 0. 

Therefore a root lies in the interval ]0, 1[. Now we apply formula 
(3) with x0 = 0 and x1 = 1. then the first approximation is 

 

x 2 = 
1-32.17797952-

(-1)1+23(-217797950
 

 
     = 0.3146653378 

 
You may have noticed that we have already calculated the expression on 
the right hand side of the above equation in part (i). 
 
Now f(x2) = 0.51987 > 0. This shows that the root lies in the interval 
]0.3146653378, 1[. To get the second approximation, we compute 

x3 = 
3378)f(0.314665-)1(f

53378)1f(0.31466-)1(f3146653378.0
 = 0.4467281446 

which is same as x3 obtained in (i). We find f(x2) = 0.203545 > 0. Hence 
the root lies in ]0.4467281446, 1[. To get the third approximation, we 
calculate 
 

x4 = 
)4467281446.0f(-)1(f

)4467281446.01f(-)1(f4467281446.0
 

 
The above expression on the right hand side is different from the 
expression for x4 in part (i). This is because when we use regula-falsi 
method, at each stage, we have to check the condition f(x1) f(xi-1) < 0. 
 

Number of iterations Iterated Values xi f(x i) 
1 
2 
3 
4 
5 
6 
7 
8 

0.3146653378 
0.4467281466 
0.5317058606 
0.5169044676 
0.5177474653 
0.5177573708 
0.5177573637 
0.5177573637 

0.519871 
0.203545 
-0.0429311 
.00259276 
0.00003011 
-0.215132 ×  10-7 
0.178663 ×  10-12 
0.222045 ×  10-15 
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The computed values of the rest of the approximations are given in 
Table 3. 
 

Table 3: Regula-Falsi Method 
 

No. Interval Iterated value xi f(x i) 

1 
2 
3 
4 
5 
6 
7 

[0, 1[ 
].04467281446, 1[ 
]0.4940153366, 1[ 
]0.5099461404, 1[ 
]0.5152010099, 1[ 
]0.5176683450, 1[ 
]0.5177478783, 1[ 

0.3146653378 
0.4467281446 
0.4940153366 
0.5099461404 
0.5152010099 
0.5177478783 
0.5177573636 

0.519871 
0.203545 

0.708023 ×  10-1 
0.236077 ×  10-1 
0.776011 ×  10-2 
0.288554 ×  10-4 
0.396288 ×  10-9 

 
From the table, we observe that we have to perform 20 iterations using 
regula-falsi method to get the approximate value of the root 
0.5177573637 which we obtained by secant method after 8 iterations. 
Note that the end point 1 is fixed in all iterations given in the table. 
 
Next we shall discuss another iteration method. 
 
3.2 Newton-Raphson Method 
 
This method is one of the most useful methods for finding roots of an 
algebraic equation. 
 
Suppose that we want to find an approximate root of the equation f(x) = 
0. If f(x) is continuous, then we can apply either bisection method or 
regula-falsi method to find approximate roots. Now if f(x) and f’(x) are 
continuous, then we can use a new iteration method called Newton-
Raphson method. You will learn that this method gives the result more 
faster than the bisection or regula-falsi methods. The underlying idea of 
the method is due to mathematician Isac Newton. But the method as 
now used is due to the mathematician Raphson. 
 
Let  us begin with an equation f(x) = 0 where f(x) and f’(x) and are 
continuous. Let x0 be an initial approximation and assume that x0 is 
close to the exact root α  and f’(x) ≠0. Let α  = x0 + h where h is a small 
quantity in magnitude. Hence f(α ) = f(x0 + h) = 0. 
 
Now we expand f(x0 + h) using Taylor’s theorem. Note that f(x) satisfies 
all the requirements of Taylor's theorem. Therefore, we get 
 
f(x0 + h) = f(x0) + hf’(x0) + ... = 0 
 
Neglecting the terms containing h2 and higher powers we get 
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f(x0) + hf’(x0) = 0. 
 

Then, h = 
)x('f
)f(x-

0

0  

 
This gives a new approximation to α  as 

x1 = x0 + h = x0 - )x('f
)f(x-

0

0  

 
Now the iteration can be defined by 

x1 = x0 - )x('f
)f(x

0

0  

x2 = x1 - )x('f
)f(x

1

1  

xn = xn-1 - )x('f
)f(x

1-n

1-n         (5) 

 
Eqn. (5) is called the Newton-Raphson formula. Before solving some 
examples we shall explain this method geometrically. 
 
Geometrical Interpretation of Newton-Raphson Method 
 
Let the graph of the function y = f(x) be as shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
If x0 is an initial approximation to the root, then the corresponding point 
on the graph is P(x0, f(x0)). We draw a tangent to the curve at P. Let it 
intersect the x-axis at T. (see Fig. 4). Let x1 be the x-coordinate of T. Let 
S(α , 0) denote the point on the x-axis where the curve cuts the x-axis. 
We know that α  is a root of the equation f(x) = 0. We take x1 as the new 
approximation which may be closer to α  than x0. Now let us find the 
tangent at P(x0, f(x0)). The slope of the tangent at P(x0, f(x0)) is given by 
f’(x 0). Therefore by the point-slope form of the expression for a tangent 
to a curve, we can write 
 

T T1 (x0, 0) X 

P (x0, f(x0) 

Y 

Fig. 4 Newton-Raphson Method 
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y – f(x0) = f’(x0) (x1 – x0)  
 
This tangent passes through the point T(x1, 0) (see fig. 4). Therefore we 
get 
 
0 – f(x0) = f’(x0) (x1 – x0) 
 
i.e. x1 f’(x 0) = x0f’(x 0) – f(x0) 

i.e. x1 = x0 – 
)x('f
)f(x

0

0   

 
This is the first iterated value. To get the second iterated value we again 
consider a tangent at a point P(x1, f(x1)) on the curve (see Fig. 4) and 
repeat the process. Then we get a point T1(x2, 0) on the x-axis. From the 
figure, we observe that T1 is more closer to S(α , 0) than T. therefore 
after each iteration the approximation is coming closet and closer to the 
actual root. In practice we do not know the actual root of a given 
function. 
 
Let us now take up some examples. 
 
Example 3: 
 
Find the smallest positive root of 
2x – tan x = 0 
by Newton-Raphson method, correct to 5 decimal places. 
 
Solution: 
 
Let f(x) = 2x – tan x. Then f(x) is a continuous function and f’(x) = 2 – 
sec2x is also a continuous function. Recall that the given equation has 
already appeared in an exercise in Unit 2 (see TMA in Unit 2). From 
that exercise we know that an initial approximation to the positive root 
of the equations is x = 1. Now we apply the Newton-Raphson iterated 
formula. 
 

x1 = xi-1 - )x('f
)f(x

i

i , i = 1, 2, 3 .... 

 
Here x0 = 1. Then f(x0) = f(1) = 2 – tan 1 = 0.4425922 
f'(x0) = f’(1) = 2 – sec21 = 2 – (1 + tan21) 
         = 1 - tan21 
         = -1.425519 
 

Therefore x1 = 1 - 
1.425519-
4425922.0
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  = 1.31048 
 
For i = 2, we get 
x3 = 1.17605 
x4 = 1.165926 
x5 = 1.165562 
x6 = 1.165561 
 
Now x5 and x6 are correct to five decimal places. Hence we stop the 
iteration process here. The root correct to 5 decimal places is 1.16556. 
 
Next we shall consider an application of Newton-Raphson formula. We 
know that finding the square root of a number is not easy unless we use 
a calculator. Calculators use some algorithm to obtain such an algorithm 
for calculating square roots. Let’s consider an example. 
 
Example 4: 
 
Find an approximate value of 2  using the Newton-Raphson formula. 
 
Solution: 
 
Let x = 2 . Then we have x2 = 2 i.e. x2 – 2 = 0. Hence we need to find 
the positive root of the equation x2 – 2 = 0. Let 
 
f(x) = x2 – 2. 
 
Then f(x) satisfies all the conditions for applying Newton-Raphson 
method. We choose x0 = 1 as the initial approximation to the root. This 
is because we know that 2  lies between 1  and 4  and therefore we 
can assume that the root will be close to 1. 
 
Now we compute the iterated values. 
 
The iteration formula is 

xi = xi-1 - 
1-i

2
1-i

2x
2-x

 

= 
2
1

 xi-1 + 
1-ix

2
 

 
Putting i = 1, 2, 3 ….. we get 
 

x1 = 
2
1

 x0 + 
0x

2
 = 1.5 
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x2 = 
2
1

 1.5 + 
1.5
2

 = 1.4166667 

x3 = 
2
1

1.4166667 + 
1.416667

2
 

= 1.41242157 
 
Similarly 
 
x4 = 1.4142136 
x5 = 1.4142136 
 
Thus the value of 2  correct to seven decimal places is 1.4142136. 
Now you can check this value with the calculator. 
 
Note 1: 
 
The method used in the above example is applicable for finding square 
root of nay positive real number. For example suppose we want to find 
an approximate value of A  where A is a positive real number. Then 
we consider the equation x2 – A = 0. The iterated formula in this case is 
 

xi = 
2
1

 xi-1 + 
1-ix

A
 

 
This formula involves only the basic arithmetic operations +, -, × and 
÷ . 
 
Note 2: 
 
From examples (3) and (4), we find that Newton-Raphson method gives 
the root very fast. One reason for this is that the derivative |f’(x)| is large 

compared to |f(x)| for any x = xi. The quantity 
)x('f

)x(f
 which is the 

difference between two iterated values is small in this case. In general 
we can say that if |f’(xi)| is large compared to |f(xi)|, then we can obtain 
the desired root very fast by this method. 
 
The Newton-Raphson method has some limitations. In the following 
remarks we mention some of the difficulties. 
 
Remark 1: 
 
Suppose f’(xi) is zero in a neighbourhood of the root, then it may happen 
that f’(xi) = 0 for some xi. In this case we cannot apply Newton-Raphson 
formula, since division by zero is not allowed. 
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Remark 2: 
 
Another difficulty is that it may happen that f’(x) is zero only at the 
roots. This happens in either of the situations. 
 
i) f(x) has multiple root at α . Recall that a polynomial function f(x) 

has a multiple root α  of order N if we can write 
 

f(x) = ( x - α )N h(x) 
where h(x) is a function such that h(α )≠ 0. For a general 
function f(x), this means f(α ) = 0 = f’(α ) = ... = fN-1(α ) and 
fN(α )≠0. 
 

ii)  f(x) has a stationary point (point of maximum of minimum) point 
at the root [recall from your calculus course that if f’(x) = 0 at 
some point x then x is called a stationary point]. 

 
In such cases some modifications to the Newton-Raphson method are 
necessary to get an accurate result. We shall not discuss the 
modifications here as they are beyond the scope of this course. 
 
You can try some exercise now. Whenever needed, should use a 
calculator for computation. 
 
In the next section we shall discuss a criterion using which we can check 
the efficiency of an iteration process. 
 
3.3 Convergence Criterion 
 
In this section we shall introduce a new concept called ‘convergence 
criterion’ related to an iteration process. This criterion gives us an idea 
of how much successive iteration has to be carried out to obtain the root 
to the desired accuracy. We begin with a definition. 
 
Definition 1: 
 
Let x0, x1 …..xn …. be the successive approximation of an iteration 
process. We denote the sequence of these approximation as { }∞

0=nnx . We 

say that { }∞
0=nnx converges to a root α  with order p ≥ 1 if 

 
|xn+1 - α | ≤λ |xn - α |P       (6) 
 
for some number λ  > 0. p is called the order of convergence and λ  is 
called the asymptotic error constant. 
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For each i. we denote by iε  = xi - α . Then the above inequality be 
written as 
 
| 1+iε | ≤λ | iε |P         (7) 
 
This inequality shows the relationship between the errors in successive 
approximations. For example, suppose p = 2 and |iε |≈10-2 for some i. 

then we can expect that |1+iε |≈λ10-4. Thus if p is large, the iteration 
converges rapidly. When p takes the integer values 1, 2, 3 then we say 
that the convergences are linear, quadratic and cubic respectively. In the 
case of linear convergence (i.e. p =1). Then we require that λ  < 1. In 
this case we can write (6) as 
 
|xn+1 - α | ≤λ |xn - α | for all n ≥0      (8) 
 
In this condition is satisfied for an iteration process then we say that the 
iteration process converges linearly. 
 
Setting n = 0 in the inequality (8), we get 
 
|x1 - α | ≤λ |x0 - α | 
 
For n = 1, we get 
 
|x2 - α | ≤λ |x1 - α |≤ 2λ |x0 - α | 
 
Similarly for n = 2, we get 
 
|x3 - α | ≤λ |x2 - α |≤ 2λ |x1 - α |≤ 3λ |x0 - α | 
 
Using induction on n, we get that 
 
|xn - α |≤ nλ |x0 - α | for n ≥0      (9) 
 
If either of the inequality (8) or (9) is satisfied, then we conclude that 
{ }∞

0=nnx  converges to the root. 
 
Now we shall find the order of convergence of the iteration methods 
which you have studied so far. 
 
Let us first consider bisection method. 
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Convergence of bisection method 
 
Suppose that we apply the bisection method on the interval [a0, b0] for 
the equation f(x) = 0. In this method you have seen that we construct 
intervals [a0, b0] ⊃  [a1, b1] ⊃  [a2, b2] ⊃  … each of which contains the 
required root of the given equation. 
 

Recall that in each step the interval width is reduced by 
2
1

 i.e. 

 

b1 – a1 = 
2

a-b 00  

b2 = a2 = 
2

a-b 11  = 2
00

2

a-b
 

.  . 

.  . 

.  . 

and bn – an = n
00

2

a-b
                 (10) 

 
We know that the equation f(x) = 0 has a root in [a0, b0]. Let α  be the 
root of the equation. Then α  lies in all intervals [ai, bi], i = 0, 1, 2, .… 

For any n, let cn = 
2

b-a nn  denote the middle point of the interval [an, bn]. 

Then c0, c1, c2, … are taken as successive approximations to the root α . 
Let’s check the inequality (8) for { }∞

0=nnc  converges to the rootα . Hence 

we can say the bisection method always converges. 
 
For practical purposes, we should be able to decide at what stage we can 
stop the iteration to have an acceptably good approximate value of α . 
The number of iterations required to achieve a given accuracy for the 
bisection method can be obtained. Suppose that we want an approximate 
solution within an error bound of 10-M (Recall that you have studied 
error bounds in Unit 1, Sec. 3.4). Taking logarithms on both sides of 
Eqn. (10), we find that the number of iteration required, say n, is 
approximately given by 
 

n = int  
2In

In10-)a-b(In -M
00                  (11) 

 
where the symbol ‘int’ stands for the integral part of the number in the 
bracket and ]a0, b0[ is the initial interval in which a root lies. 
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Let us work out an example. 
 
Example 5: 
 
Suppose that the bisection method is used to find a zero of f(x) in the 
interval [0, 1]. How many times this interval be bisected to guarantee 
that we have an approximate root with absolute error less than or equal 
to 10-5. 
 
Solution: 
 
Let n denote the required number. To calculate n, we apply the formula 
in Eqn. (11) with b0 = 1, a0 = 0 and M = 5. 
 
Then 
 

n = int 
2In

In10-1In -5

 

 
Using a calculator, we find 
 

n = int 
69314718.0
51292547.11

 

= int [16.60964047] = 17 
 
The following table gives the minimum number of iterations required to 
find an approximate root in the interval ]0, 1[ for various acceptable 
errors. 
 

  E       10-2         10-3          10-4          10-5         10-6          10-7 
  n         7            10            14            17           20            24 

 
This table shows that for getting an approximate value with an absolute 
error bounded by 10-5, we have to perform 17 iterations. Thus even 
though the bisection method is simple to use, it requires a large number 
of iterations to obtain a reasonably good approximate root. This is one of 
the disadvantages of thee bisection method. 
 
Note: The formula given in Eqn. (11) shows that, given an acceptable 
error, the number of iterations depends upon the initial interval and 
thereby depends upon the initial approximation of the root and not 
directly on the values of f(x) at these approximations. 
 
Next we shall obtain the convergence criteria for the secant method. 
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Convergence criteria for Secant Method 
 
Let f(x) = 0 be the given equation. Let α  denote a simple root of the 
equation f(x) = 0. Then we have f’(α )≠0. The iteration scheme for the 
secant method is 
 

xi+1 = xi - )f(x-)x(f
x-x

1-ii

1-ii                 (12) 

 
For each i, set iε = xi - α . Then xi + α . Substituting in Eqn. (12) we get 
 

1+iε +α  = iε +α  - 
)α+εf(-)α+εf(

ε-ε

1+ii

1-ii  f( iε +α ) 

1+iε = iε  - 
)α+εf(-)α+εf(

ε-ε

1-ii

1-ii  f( iε +α )              (13) 

 
Now we expand f(iε +α ) and f( iε -α ) using Taylor's theorem about the 
point x = α . 

We get f( iε +α ) = f(α ) + 
1

)α('f
iε  + 

2
)α("f
 2

iε  + ... 

i.e. f( iε +α ) = f’( α )  iε  + 
)α('f2
)α("f 2

iε  + ...                         (14) 

since f’(α ) = 0.  
 
Similarly, 

f( 1-iε  + α ) = f’( α )  1-iε + 
)α('f2
)α("f 2

1-iε  + ...              (15) 

 

Therefore f( iε +α ) - f( 1-iε  + α ) = f’( α )   iε  - 1-iε  + ( 2
iε  - 2

iε )
)α('f2
)α("f

 + ... 

= f’( α ) ( iε  - 1-iε ) 1 + ( iε  + 1-iε )
)α('f2
)α("f

 + ...             (16) 

 
Substituting Eqn. (14) and Eqn. (13), we get 
 

1+iε  = iε  - iε  + 
2
1 2

iε )α('f
)α("f
 + ...  1 + 

2
1

( iε  + 1-iε )
)α('f
)α("f
 + ... 1-  

 

= iε  - iε  + 
2
1 2

iε )α('f
)α("f
 + ...  1 - 

2
1

( iε  + 1-iε )
)α('f
)α("f
 + ...  

 

= iε  -  iε  + 
2
1

)α('f
)α("f
( 2

iε  - 2
iε  - iε 1-iε ) + ...  
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By neglecting the terms involving iε
2

1-iε  + 2
iε

'

1-i
ε  the above expression, 

we get 
 

1+iε ≈ iε 1-iε )α('f2
)α("f

                (17) 

 
This relationship between the errors is called the error equation. Note 
that this relationship holds only if α  is a simple root. Now using Eqn. 
(17) we will find a number p and λ  such that 
 

1+iε  =λ p
iε  i = 0, 1, 2, ...                (18) 

 
Setting i = j – 1, we obtain 
 

jε  = λ p
1-jε  

or 

iε  = λ p
1-iε  

 
Taking pth root on both sides, we get 
 

p/1
iε  = p/1λ 1-iε  

i.e. 1-iε  = p/1-λ p/1
iε                  (19) 

 
Combining Eqns. (17) and (18). We get 
 

λ p
iε  = iε 1-iε )α('f2

)α("f
 

 
Substituting the expression for 1-iε  from Eqn. (19) in the above 
expression we get 
 

λ p
iε ≈ )α('f2

)α("f
iε

p/1-λ p/1
iε  

i.e. λ p
iε ≈ )α('f2

)α("f p/1-λ p/1+1
iε                 (20) 

 
Equating the powers of iε on both sides of Eqn. (20) we get 
 

p = 1 + 
p
1

 or p2 – p – 1 = 0. 

 
This is a quadratic equation in p. The roots are given by 
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p = 
2

5+1
 ≈1.618.  

 
Now, to get the number λ , we equate the constant terms on both sides of 
Eqn. (20). Then we get 
 

λ  = 
p+1/P

)α('f2

)α("f
 

 
Hence the order of convergence of the secant method is p = 1.62 and the 

asymptotic error constant is 
p+1/P

)α('f2

)α("f
 

 
Example 6: 
 
The following are the five successive iterations obtained by secant 
method to find the root α  = -2 of the equation x3 – 3x + 2 = 0. 
 
x1 = -2.6, x2 =  -2.4, x3 = -2.106598985. 
x4 =  -2.022641412 and x5 = -2.000022537. 
 

Compute the asymptotic error constant and show that 5ε ≈3
2

4ε . 

 
Solution: 
 
Let f(x) = x3 – 3x + 2 
 
Then 
f'(x) = 3x2 – 3, f’(-2) = 9 
f”(x) = 6x, f(-2) = -12 
 

Therefore λ  = 
618.

18
12-  

= 
618.

3
2-  = -0.778351205 

 
Now 

5ε  = | x5 - α  | = | -2.000022537 + 2 
= 0.000022537 
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and  
 

4ε  = | -2.022641412 + 2 | = 0.022641412. 
 
Then λ 4ε  = 0.778351205 × 2.022641412 
= 0.000021246 
≈0.00002253 
Hence we get that λ 4ε  ≈ 5ε  
 
Convergence criterion for fixed point iteration method 
 
Recall that in this method we write the equation in the form 
 
x = g(x) 
 
Let α  denote a root of the equation. Let x0 be an initial approximation to 
the root. The iteration formula is 
 
xi+1 = g(xi), i = 0, 1, 2, ...                (21) 
 
We assume that g’(x) exists and is continuous  and | g’(x) | < 1 in an 
interval containing the root α . We also assume that x0, x1, .... lie in this 
interval. 
 
Since g’(x) is continuous near the root and | g’(x) | < 1, there exists an 
interval] α  - h, α  + h[, where h > 0, such that | g’(x) | ≤ k for some k, 
where 0 < k < 1. 
 
Since α  is a root of the equation, we have 
 
α  = g(α ).                  (22) 
 
Subtracting (22) from (21) we get 
 
xi+1 - α  = g(xi) = g(α ) 
 
Now the function g(x) is continuous in the interval ]xi, α [ and g’(x) 
exists in this interval. Hence g(x) satisfies all the conditions of the mean 
value theorem [see Unit 1]. Then, by the mean value theorem there 
exists a ξ  between xi and α  such that 
 
| xi+1 - α | ≤ | g(xi) – g(α ) | ≤ | g’(ξ ) | | (xi - α | 
 
Note that ξ  lies in ]α  - h, α  + h[ and therefore | g’(ξ ) | < k and hence 
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| xi+1 - α | ≤ | xi - α | 
 
Setting i = 0, 1, 2, ..., n we get 
| x1 - α | ≤ k | x0 - α | 
| x2 - α | ≤ k | x1 - α |≤ k2 | x0 - α | 
 . . 

. . 

. . 
| xn - α | ≤kn | x0 - α | 
 
This shows that the sequence of approximation | xi | converges to α  
provided that the initial approximation is close to the root. 
 
We summarise the result obtained for this iteration process in the 
following Theorem. 
 
Theorem 1: 
 
If g(x) and g’(x) are continuous in an interval about a root α  of the 
equation x = g(x), and if | g’(x) | < 1 for all x in the interval, then the 
successive approximations x1, x2, ... given by 
 
xi = g(xi-1), i = 1, 2, 3, ... 
converges to the root α  provided that the initial approximation x0 is 
chosen in the above interval. 
 
We shall now discuss the order of convergence of this method. From the 
previous discussions we have the result. 
 
| xi+1 - α | ≤g’( ξ ) | (xi - α ) | 
 
Note that ξ  is dependent on each xi. Now we wish to determine the 
constant λ  and p independent of xi such that 
 
| xi+1 - α | ≤ c | (xi - α ) |P 
 
Note that as the approximations xi get closer to the root α , g’( ξ ) 
approaches a constant value g’(α ). Therefore, in the limiting case, as i 
→ ∞,the approximation satisfy the relation 
 
| xi+1 - α | ≤g’( α ) | (xi - α ) | 
 
Therefore, we conclude that if g’(α )≠0, then the convergence of the 
method is linear. 
 
If g’( α ) = 0, then we have  
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i+1-α  = g(xi) -α  
= g(xi - α ) + α  - α  

= g(α ) + (xi - α ) g’(α ) +
2

)αx( 2
i g”( ξ ) - α  

= 
2

)αx( 2
i  g”( ξ ) 

since g(α ) = α  and g’(α ) = 0 and ξ  lies between xi and α . 
 
Therefore, in the limiting case we have 
 

| xi+1 - α | ≤
2
1

 | g”(α ) | | (xi - α ) |2 

Hence, if f’(α ) = 0 and g’(α )≠0, then this iteration method is of order 
2. 
 
Example 7: 
 
Suppose α  and β  are the roots of the equation x2 + ax + b = 0. Consider 
a rearrangement of this equation as 
 

x = -
x

)b+ax(
 

 

Show that the iteration xi+1 = -
i

i

x

)b+ax(
 will converge near x = α  when 

|α | > |β | 
 
Solution: 
 
The iteration are given by 
 

xi+1 = g(xi) = -
i

i

x

)b+ax(
, i = 0, 1, 2,... 

 
By Theorem 1, these iterations converge to α  if |g’(x) | < 1 near α  i.e. if 

|g’(x) | = 2x
b

-  < 1. Note that g’(x) is continuous near α . If the iterations 

converge to x = α , then we require |g’(x) | = 2α

b
-  < 1. 

 
Thus | b | < | α  |2 
i.e. | α  |2 > | b |.                           (23) 
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Now you recall from your elementary algebra course that if α  and β  are 
the roots, then 
 
α  + β  = -a and α β  = b 
Therefore | b | = |α | |β |. Substituting in Eqn. (23), we get 
|α |2 > | b | = |α | | β |. 
 
Hence |α | > |β | 
 
Finally, we shall discuss the convergence of the Newton-Raphson 
method. 
 
Convergence of Newton-Raphson Method 
 
Newton-Raphson iteration formula is given by 

xi+1 = xi - )x('f

)x(f

i

i                  (24) 

 
To obtain the order of the method we proceed as in the secant method. 
We assume that α  is a simple root of f(x) = 0. Let 
 
xi - α  = iε , i = 0, 1, 2,... 
 
Then we have 

1+iε  + α  = iε  + α  - 
)α+ε('f

)α+ε(f

i

i  

i.e. 1+iε  = 
)α+ε(f'

)α+εf(-)α+ε('fε

i

iii  

 
Now we expand f(iε  + α ) and f’( iε  + α ), using Taylor's theorem about 

the point α . We have 
 

{ }[
{ }]

...+)α("fε+)α("fε+)α('f

...+)α("f+)α('fε)αf(-
=ε

...+)α("f+)α("fε+α('fε

2
1i

i

1+i

ii

2
ε

2
ε

2
1

2
1

 

 
But f(α ) = 0 and f’(α )≠0. Therefore 
 

1+iε  = [ ] [ ] 1-

...++1
)α("f

1
...+α"f )α('f

)α("fi2
1 ε

2
ε
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[ ][ ]...+-1...+α"f
)α('f

1
= )α('f

)α("fi2
1 ε

2
ε

 

 
Hence, by neglecting higher powers of iε , we get 

1+iε ≈
)α('f2
)α("f 2

iε  

 

This shows that the errors satisfy Eqn. (6) with p = and λ  = 
)α('f2
)α("f

. 

Hence, Newton-Raphson method is of order 2. That is at each step, the 
error is proportional to the square of the previous error. 
 
Now, we shall discuss an alternate method for showing that the order is 
2. Note that we can write (24) in the form x = g(x) where 
 

g(x) = x 
)x('f
)x(f

 

g’(x) = 
dx
d [ ]f(x)

f(x)-x  = 1 - 
[ ]

[ ]2

2

(x)f'

(x)f(x)f"-)x('f
 

= [ ]2)x('f

)x("f)x(f
 

 

Now, g’(α ) = [ ]2)α('f

)α("f)α(f
= 0, since f(α ) = 0 and f’(α )≠0. 

 
Hence by the conclusion drawn just above Example 7, the method is of 
order 2. Note that this is true only if α  is a simple root. If α  is a multiple 
root i.e. if g’(α ) = 0, then the convergence is not quadratic, but only 
linear. We shall not prove this result, but we shall illustrate this with an 
example. 
 
Let us consider an example. 
 
Example 8: 
 
Let f(x) = (x – 2)4 = 0. Starting with the initial approximation x0 = 2.1, 
compute the iterations x1, x2, x3 and x4 using Newton-Raphson method. 
Is the sequence conveying quadratically or linearly? 
 
Solution: 
 
The given function has multiple roots at x = 2 and is of order 4. 
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Newton-Raphson iteration formula for the given equation is 
 

xi+1 = xi - 3
i

4
i

2)-4(x
2)-x(

= xi - 4
1

(xi – 2) 

= 4
1

(3xi – 2)                  (25) 

 
Starting with x0 = 2.1, the iteration are given by 
 

x1 = 4
1

(6.3 + 2) = 2
3.8

 = 2.075 

 
Similarly, 
 
x2 = 2.05625 
x3 = 2.0421875 
x4 = 2.031640625 
 
Now 0ε = x0 – 2 = 0.1, iε = x1 -2 = 0.075, 2ε  = 0.05625, 3ε  = 0.0421875, 

4ε  = 0.031640625. 
 
Then 

iε  = .075 = 
4
3

 ×  0.1 = 
4
3

0ε  

 
and 
 

2ε  = 
4
3

iε  

3ε  = 
4
3

2ε  

4ε  = 
4
3

3ε  

 
Thus the convergence is linear in this case. The error is reduced by a 

factor of 
4
3

 with each iteration. This result can also be obtained directly 

from Eqn. (25). 
 
4.0 CONCLUSION 
 

Same as in Summary 
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5.0 SUMMARY 
 
In this unit we have 
 
• described the following methods for finding a root of an 

equation f(x) = 0 
 
i) Regula-Falsi method: 

The formula is 

c = 
f(a)-)b(f

f(a)b-)b(fa
 

where ]a, b[ is an interval such that f(a) f(b) < 0. 
 

ii)  Secant method: 
The iteration formula is 

xi+1 = 
)f(x-)x(f

)x(fx-)x(fx

1-ii

1-iii1-i  i = 0, 1, 2,.... 

where x0 and x1 are any two given approximation of the 
root. 
 

iii)  Newton-Raphson method: 
The iteration formula is 

xi+1 = xi - )x('f
)x(f

i

i , i = 0, 1, 2, ... 

where x0 is an initial approximation to the root. 
 

• introduced the concept called convergence criterion of an 
iteration process. 

 
• discussed the convergence of the following iterative methods 

i) Bisection method. 
ii)  Fixed point iteration method. 
iii)  Secant method. 
iv) Newton-Raphson method. 

 
6.0 TUTOR-MARKED ASSIGNMENT (TMA)  
 
1.) Obtain an approximate root for the following equations rounded 

off to three decimal places, using regula-falsi method 
 

a) x log10x – 1.2 = 0 
 

b) x sin x – 1 = 0 
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2.) Use secant method to find an approximate root to the equation x2 
– 2x + 1 = 0, rounded off to 5 decimal places, starting with x0 = 
2.6 and x1 = 2.5. Compare the result with the exact root 1 + 2 . 

 
3.) Find an approximate root of the cubic equation x3 + x2 + 3x – 3 = 

0 using  
 

a) i) regula-falsi method, correct to three decimal places. 
 

ii) secant method starting with a = 1, b = 2, rounded-
off to three decimal places. 

 
b) compare the results obtained by (i) and (ii) in part (a). 

 
4.) Starting with x0 = 0 find an approximate root of the equation x3 – 

4x + 1 = 0, rounded off to five decimal places using Newton-
Raphson method. 

 
5.) The motion of a planet in the orbit is governed by an equation of 

the form y = x – e sin x where e stands for the eccentricity. Let y 

= 1 and e = 
2
1

. Then find a approximate root of 2x – 2 – sin x = 0 

in the interval [0, π ] with error less than 10-5. Start with x0 = 1.5. 
 
6.) Using Newton-Raphson square root algorithm, find the following 

roots within an accuracy of 10-4. 
 
i) 81/2 starting with x0 = 3 
 
ii)  911/2 starting with x0 = 10 
 

7.) Can Newton-Raphson iteration method be used to solve the 
equation x1/3 = 0? Give reasons for your answer. 

 
8.) For the problem given in Example 5, Unit 2, find the number n of 

bisection required to have an approximate root with absolute 
error less than or equal to 10-7. 

 
9.) For the equation given in Example 7, show that the iteration xi+1 

= 
a+x

b

i

 will converge to the root x = α , when |α | < |β |. 
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UNIT 4 APPROXIMATE ROOTS OF POLYNOMIAL 
EQUATION 

 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Some Results on Roots of Polynomial Equations. 
3.2 Birge-Vieta Method. 

 3.3 Graeffe’s Root Squaring Method. 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION  
 
In the last two units we discussed methods for finding approximate roots 
of the equation f(x) = 0. In this unit we restrict our attention to 
polynomial equations. Recall that a polynomial equation is an equation 
of the form f(x) = 0 where f(x) is a polynomial in x. Polynomial 
equation arise very frequently in all branches of science especially in 
physical applications. For example, the stability of electrical of 
mechanical systems is related to the real part of one of the complex roots 
of a certain polynomial equation. Thus there is a need to find all roots, 
real and complex, of a polynomial equation. The four iteration methods, 
we have discussed so far, applies to polynomial equations also. But you 
have seen that all those methods are time consuming. Thus it is 
necessary to find some efficient methods for obtaining roots of 
polynomial equations. 
 
The sixteenth century French mathematician Francois Vieta was the 
pioneer to develop methods for finding approximate roots of polynomial 
equations. Later, several other methods were developed for solving 
polynomial equations. In this unit we shall discuss two simple methods: 
Birge-Vieta’s and Graeffe’s root squaring methods. To apply these 
methods we should have some prior knowledge of location and nature of 
roots of a polynomial equation. You are already familiar with some 
results regarding location and nature of roots from the elementary 
algebra course. We shall begin this unit by listing some of the important 
result about the roots of polynomial equations. 
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2.0 OBJECTIVES 
 
After reading this unit you should be able to: 
 
• apply the following methods for finding approximate roots of 

polynomial equations 
o Birge-Vieta method 
o Graeffe’s root squaring method 

• list the advantages of the above methods over the methods 
discussed in the earlier units. 

 
3.0 MAIN BODY 
 
3.1 Some Results on Roots of Polynomial Equations 
 
The main contribution in the study of polynomial equations due to the 
French mathematician Rene Descartes’ The results appeared in the third 
part of his famous paper ‘La geometric’ which means ‘The geometry’. 
 
Consider a polynomial equation of degree n 
p(x) = anx

n + an-1x
n-1 + ... +a1x + a0      (1) 

 
where a0, a1, .... an are real numbers and an ≠ 0. You know that the roots 
of a polynomial equation need not be real numbers, it can be complex 
numbers, that is numbers of the form z = a + ib where a and b are real 
numbers. The following  results are basic  to the study of roots of 
polynomial equations. 
 
Theorem 1: 
 
(Fundamental Theorem of Algebra): Let p(x) be a polynomial of degree 
n ≥ 1 given by Eqn. (1). Then p(x) = 0 has at least one root: that is there 
exists a number α∈ C such that p(α ) = 0. In fact p(x) has n complex 
roots which may not be distinct. 
 
Theorem 2: 
 
Let p(x) be a polynomial of degree n and α  is a real number. Then 

p(x) = (x - α ) q0(x) + r0      (2) 
 
for some polynomial q0(x) of degree n – 1 and some constant number r0 . 
q0(x) and r0 are called the quotient polynomial and the remainder 
respectively. 
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In particular, if α  is a root of the equation p(x) = 0, then r0 = 0: that is (x 
- α ) divides p(x). 
 
Then we get 
 
 p(x) = (x - α ) q0(x) 
 
How do we determine q0(x) and r0? We can find them by the method of 
synthetic division of a polynomial p(x). Let us now discuss the synthetic 
division procedure. 
 
Consider the polynomial p(x) as given in Eqn. (1) 
 
p(x) = anx

n + an-1x
n-1 + ... +a1x + a0   

 
Dividing p(x) by x - α  we get 
p(x) = q0(x) (x - α ) + r0       (3) 
where q0(x) is a polynomial of degree n – 1 and r0 is a constant. 
 
Let q0(x) be represented as 
q0(x) = bnx

n-1 + bn-1x
n-2 + ... + b2x + b1 

 
(Note that for convenience we are denoting the coefficient by b1, ..., bn 
instead of b0, b1, .... bn-1). Set b0 = r0. Substituting the expressions for 
q0(x) and r0 in Eqn. (3) we get 
p(x) = (x - α ) (bnx

n-1 + bn-1x
n-2 + ... + b2x + b1) + b0   (4) 

 
Now, to find b0, b1 ..... bn we simplify the right hand side of Eqn. (4) and 
compare the coefficients of xi, i = 0, 1, .... n on both sides. Note that 
p(α ) = b0. Comparing the coefficient we get 
 
Coefficient of xn : an = bn bn = an 
Coefficient of xn-1 : an-1 = bn-1 - α bn, bn-1 = an-1 + α bn 

. 
   . 
   . 
Coefficient of xk : ak – bk - α bk+1, bk = ak + α bk+1 
   . 
   . 
   . 
Coefficient of x0 : a0 = b0 - α ,   b0 = a0 + α b1 
 
It is easy to perform the calculations if we write the  coefficient of p(x) 
on a line and perform the calculation bk = ak + α bk+1 below ak as given 
in the table below. 
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Table 1: Horner’s table for synthetic division procedure 
α     an         an-1         an-2          ...           ak            ...           a2              a1              a0 

                       bα n       bα n-1       ...          bα k+1           ...           bα 3         bα 2          bα 1 

   bn         bn-1        bn-2                         bk                          b2             b1      b0=p0(α ) 

 
We shall illustrate this procedure with an example. 
 
 
Example 1: 
 
Divide the polynomial 
 
p(x) = x5 – 6x4 + 8x3 + 8x2 + 4x – 40 
by x – 3 by the synthetic division method and find the remainder. 
 
Solution: 
 
Here p(x) is a polynomial of degree 5. If a5, a4, a3, a2, a1, a0 are the 
coefficients of p(x), then the Horner’s table in this case is 
 

Table 2 
  a5         a4         a3          a2            a1            a0 

  1         -6          8           8             4           -40 
 
              3         -9          -3            15           57 
  1         -3         -1           5            19           17 
  b5        b4         b3          b2            b1            b1 

 
Hence the quotient polynomial q0(x) is 
 
q0(x) = x4 – 3x3 – x2 + 5x + 19 
and the remainder is r0 = b0 = 17. thus we have p(3) = b =17. 
 
Theorem 3: 
 
Suppose that z = a + ib is a root of the polynomial equation p(x) = 0. 
Then the conjugate of z, namely z , = a – ib is also a root of the  
equation p(x) = 0, i.e. complex roots occur in pairs. 
 
We denote by p(-x) the polynomial obtained by replacing x by –x in 
p(x). We next give an important Theorem due to Rene Descartes. 
 
Theorem 4: 
 
(Descartes’ Rule of signs): A polynomial equation p(x) = 0 cannot have 
more positive roots than the number of changes in sign of its 
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coefficients. Similarly p(x) = 0 cannot have more negative roots than the 
number of changes in sign of the coefficients of p(-x). 
 
For example, let us consider the polynomial equation 
p(x) = x4 – 15x2 + 7x – 11 = 0 
= 1x4 – 15x2 + 7x – 11 = 0 
We count the changes in the sign of the coefficients. Going from left to 
right there are changes between 1 and -15, between -15 and 7 and 
between 7 and -11. The total number of changes is 3 and hence it can 
have at most 3 positive roots. Now we consider 
p(-x) = (-x)4 – 15(-x)2 + 7(-x) – 11 = 0 
= x4 – 15x2 – 7x – 11 
 
Here there is only one change between 1 and -15 and hence the equation 
cannot have more than one negative root. 
 
We now give another theorem which helps us in locating the real roots. 
 
Theorem 5: 
 
Let p(x) = 0 be a polynomial equation of degree n ≥ 1. Let a  and b be 
two real numbers with a < b. Suppose further that p(a) ≠ 0 and p(b) ≠ 
0. Then, 
 
i) if p(a) and p(b) have opposite signs, the equation p(x) = 0 has an 

odd number of roots between a and b. 
 
ii)  if p(a) and p(b) have like signs, then p(x) = 0 either has no root or 

an even number of roots between a and b. 
 
Note: In this theorem multiplicity of the root is taken into consideration 
i.e. if a is a root of multiplicity k it has to be counted k times. 
 
As a corollary of Theorem 5, we have the following results. 
 
Corollary 1: An equation of odd degree with real coefficients has at least 
one real root whose sign is opposite to that of the last term. 
 
Corollary 2: An equation of even degree whose constant term has the 
sign opposite to that of the leading coefficient, has at least two real roots 
one positive and the other negative. 
 
Corollary 3: the result given in Theorem 5(i) is the generalization of the 
Intermediate value theorem. 
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The relationship between roots and coefficients of a polynomial 
equation is given below. 
 
Theorem 6: Let 1α , 2α , ....., nα  be a roots (n ≥ 1) of the polynomial 
equation 
 
p(x) = anx

n + an-1x
n-1 + ... + a1x + a0 = 0 

Then 1α  + 2α  + ... + nα  = 
n

1-n

a

a-
 

1α 2α  + 2α 3α  + ... + 1-nα nα  = 
n

2-n

a

a
 

............................................ 

............................................ 

1α 2α ... nα = (-1)n
n

0

a

a
 

 
In the next section we shall discuss one of the simple methods for 
solving polynomial equations. 
 
3.2 Birge-Vieta Method 
 
We shall now discuss the Birge-Vieta method for finding the real roots 
of a polynomial equation. This method is based on an original method 
due to two English mathematicians Birge-Vieta. This method is a 
modified form of Newton-Raphson method. 
 
Consider now, a polynomial equation of degree n, say 
pn(x) = anx

n + ... + a1x + a0 = 0.      (5) 
 
Let x0 be an initial approximation to the root α . The Newton-Raphson 
iterated formula for improving this approximation is 

xi = xi-1 - )x('p

)x(p

1-in

1-in , i = 1, 2, ...      (6) 

 
To apply this formula we should be able to evaluate both pn(x) and 
p’n(xi) at any xi. The most natural way is to evaluate 
 
pn(xi) = anx

n
i  + an-1x

n-1 + ... + a2x
2
i  + a1xi + a0 

p’n(xi) = n anx
1-n

i  + (n - 1)an-1x
2-n

i  + ... + 2a2xi + a1 
 
However, this is the most inefficient way of polynomial because of the 
amount of computations involved and also due to the possible growth of 
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round off errors. Thus there is a need to look for some efficient method 
for evaluating pn(xi) and p’n(xi). 
 
Let us consider the evaluation of pn(xi) and p’n(xi) at x0 using Horner’s 
method as discussed in the previous section. 
 
We have 
 
pn(xi) = (x – x0) qn-1(x) + r0       (7) 
where 
qn-1(x) = bnx

n-1 + bn-2x
n-2 + … + b2x + b1 

and b0 = pn(x0) = r0        (8) 
 
We have already discussed in the previous section how to find b1, I = 1, 
2, …, n. 
 
Next we shall find the derivative p’n(x0) using Horner’s method. We 
divide qn-1(x) by (x – x0) using Horner’s method. That is, we write 
 
qn-1(x) = (x – x0) qn-2(x) + r1 
qn-1(x) = cnx

n-2 + cn-1x
n-3 + … + c3x + c2. 

 
Comparing the coefficients, we get ci as given in the following table 

Table 3 
 
      
 
 

As observed in Sec. 1, we have 
c1 = qn-1(x0)         (9) 
 
Now, from Eqn. (7) and (8), we have 
pn(x) = (x – x0) qn-1(x) + pn(x0)               (10) 
 
Differentiating both sides of Eqn. (10) w.r.t.x, we get 
p’n(x) = qn-1(x) + (x – x0) q’n-1(x)               (11) 
 
Putting x = x0 in Eqn. (11), we get 
p’n(x0) = qn-1(x0)                 (12) 
 
Comparing (9) and (12), we get 
p’n(x0) = qn-1(x0) = c1     
 
Hence the Newton-Raphson method (Eqn. (6)) simplies to 

xi = xi-1 - 
1

0

c

b
                  (13) 

x0 
   bn               bn-1         ...           bk            ...           b2               b1 

                     x0cn         ...           x0ck+1           ...           x0c3           x0c 2       

    cn=bn         cn-1                          ck                         c2               c1 
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We summarise the evaluation of bi and ci in the following table. 
 

Table 4 

 
Let us consider an example. 
 
Example 2: 
 
Evaluate p’(3) for the polynomial 
p(x) = x5 – 6x4 + 8x3 + 8x2 + 4x – 40. 
 
Solution: 
 
Here the coefficients are a0 = -40, a1 = 4, a2 = 8, a3 = 8, a4 = -6 and a5 = 
1. To compute b0, we form the following table. 
 

Table 5 
3     1           -6             8              8              4             -40 

                  3            -9             -3             15             57 
3     1           -3            -1              5             19             

                  3             0              -3              6 
17=p(3)=b0 

 

    1            0            -1              2 25 = p’(3)=c1 

 
Therefore p’(3) = 25 
 
Now we shall illustrate why this method is more efficient than the direct 
method. Let us consider an example. Suppose we want to evaluate the 
polynomial 
 

p(x) = -8x5 + 7x4 – 6x3 + 5x2 – 4x + 3 
for any given x. 
 
When we evaluate by direct method, we compute each power of x by 
multiplying with x the preceding power of x as 
 
x3 = x(x2), x4 = x(x3) etc. 
 

x0 
   an               an-1        ...              ak           ...            a2               a1              a0 
                     x0bn        ...           x0bk+1           ...           x0b3           x0b 2         x0b 1 

x0 

   an=bn         bn-1                          bk                          b2               b1 b0=pn(x0) 

                     x0cn        ...           x0ck+1           ...           x0c3           x0c2          

 cn=bn           cn-1                           ck                          c2               c1=p’n(x0) 



MTH 213    NUMERICAL ANALYSIS 1 
 

 426

Thus each term ck takes two multiplications for k > 1. Then the total 
number of multiplications involved in the evaluation pf p(x) is 1 + 2 + 2 
+ 2 + 2 = 9. 
 
When we use Horner’s method the total number of multiplications in 5. 
The number of additions in both cases are the same. This shows that less 
computation is involved while using Horner’s method and therapy 
reduces the error in computation. 
 
Let us now solve some problems using Birge-Vieta method. 
 
Example 3: 
 
Use Birge-Vieta method to find all the positive real roots, rounded off to 
three decimal places of the equation 
 
x4 + 7x3 + 24x2 + x – 15 = 0 
 
Stop the iteration whenever | xi+1 – xi | < 0.0001 
 
Solution: 
 
We first note that the given equation 
p4(x) = x4 + 7x3 + 24x2 + x – 15 = 0 
is of degree 4. Therefore, by Theorem 1, this equation has 4 roots. Since 
there is only one change of sign in the coefficients of this equation, 
Descartes’ rule of signs (see Theorem 4), states that the equation can 
have at most one positive real root. 
 
Now let us examine whether the equation has a positive real root. 
 
Since p4(0) = -15 and p4(1) = 19, by Intermediate value theorem, the 
equation has a root lying in ]0, 1[. 
 
We take x0 = 0.5 as the initial approximation to the root. The first 
iteration is given by 
 

x1 = x0 - )x('p

)x(p

04

04  

= 0.5 - 
)5.0('p

)5.0(p

4

4  

 
Now we evaluate p4(0.5) and p’4(0.5) using Horner’s method. The 
results are given in the following table. 
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Table 6 

0.5 
   1             7              24                 1                -15 
                0.5           3.75          13.875         7.4375 

0.5 
   1           7.5          27.75           14.875 -75625=p4(0.5) 
                0.5            4.00           15.875 

    1           8.0          31.75     30.750 = p’4(0.5) 

 

Therefore x1 = 0.5 - 
30.75
7.5625-  = 0.7459 

 
The second iteration is given by 

x2 = x1 - )x('p

)x(p

14

14
 = 0.7459 - 

)7459.0('p

)7459.0(p

4

4
 

 
Uisng synthetic division, we form the following table of values 
 

Table 7 
 

 
 

 
 

Therefore x2 = 0.7459 - 
1469.50
3132.2  = 0.6998 

 
Third iteration is given by 

x3 = x2 - )6998.0('p

)6998.0(p

4

4  

Table 8 
 
 
 
 
 

x3 = 0.6998 - 
2429.46
0905.0

 = 0.6978 

 
For the fourth iteration we have 
 

x4 = x3 - )6978.0('p

)6978.0(p

4

4
 

0.7459 
   1               7                     24                 1                   -15 
                0.7459           5.7777          22.2119         17.3138 

0.7459 
   1           7.7459          29.7777         23.2119 2.3138 
                0.7459          6.3340336                                26.935717 

    1           8.4918          36.111701   50.146879 

0.6998 
   1               7                     24                 1                   -15 
                0.6998           5.3881          20.5649         15.0905 

0.6998 
   1           7.6998          29.3881         21.5649 0.0905 
                 .6998          5.8778            24.6780 

    1           8.3996          35.2659   46.2429 
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Table 9 

 
 
 
 
 

 

x4 = 0.6978 - 
0789.46
0005.0

 = 0.6978 

 
Since x3 and x4 are the same, we get | x4 – x3 | < 0.0001 and therefore we 
stop the iteration here. Hence the approximate value of the root rounded 
off to three decimal places is 0.698. 
 
Next we shall illustrate how Birge-Vieta’s method helps us to find all 
real roots of a polynomial equation. 
 
Consider Eqn. (4) 
 
p(x) = (x - α ) (bnx

n-1 + bn-1x
n-2 + ... + b2x + b1) + b0 

 
If α  is a root of the equation p(x) = 0, then p(x) is exactly divisible by x 
- α , that is, b0 = 0. In finding the approximations to the root by the 
Birge-Vieta method, we find that b0 approaches zero (b0 →0) as xi 
approaches α  (xi → α ). Hence, if xn is taken as the final approximation, 
to the root satisfying the criterion | xn – xn-1 | < ε , then to this 
approximation, the required quotient is 
 
qn-1(x) = bnx

n-1 + bn-1x
n-2 + ... + b1 

 
where b’1 are obtained by using xn and the Horner’s method. This 
polynomial is called the deflated polynomial or reduced polynomial. 
The next root is now obtained using qn-1(x) and not pn(x). Continuing 
this process, we can successively reduce the degree of the polynomial 
and find one real root at a time. 
 
Let us consider an example. 
 
Example 4:  
 
Find all the roots of the polynomial equation p3(x) = x3 + x – 3 = 0 
rounded off to three decimal places. Stop the iteration whenever |xi+1 – 
xi| < 0.0001. 

0.6978 
   1               7                     24                     1                   -15 
               0.6978         5.3715248          20.495459        14.999525 

0.6978 
   1           7.6978        29.3715248        21.495459 0.0905 
                 .6978          5.8584497         24.583476 

    1           8.3956         35.229975    46.078926 
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Solution: 
 
The equation p3(x) = 0 has three root. Since there is only one change in 
the sign of the coefficients, by Descartes’ rule of signs the equation can 
have at most one positive real root. The equation has no negative real 
root since p3(-x) = 0 has no change of sign of coefficients. Since p3(x) = 
0 is of odd degree it has at least one real root. Hence the given equation 
x3 + x – 3 = 0 has one positive real root and a complex pair. Since p(1) = 
-1 and p(2) = 7, by intermediate value theorem the equation has a real 
root lying in the interval ]1, 2[. Let us find the real root using Birge-
Vieta Method. Let the initial approximation be 1.1. 
 
First iteration 

Table 10 
 
 
 
 
 

Therefore x1 = 1.1 - 
4.63
0.569-  = 1.22289 

 
Similarly, we obtain 
x2 = 1.21347 
x3 = 1.21341 
 
Since | x2 – x3 | < 0.0001, we stop the iteration here. Hence the required 
value of the root is 1.213, rounded off to three decimal places. Next let 
us obtain the deflated polynomial of p3(x). To get the deflated 
polynomial of, we have to find the polynomial q2(x) by using the final 
approximation x3 = 1.213 (see Table 11). 
 

Table 11 
 
 
 
 
Note that p3(1.213) = -0.0022. That is, the magnitude of the error in 
satisfying p3(x3) = 0 is 0.0022. 
We find q2(x) = x2 + 1.213x + 2.4714 = 0 
 
This is a quadratic equation and its roots are given by 
 

x = 
2

2.4714×4-(1.213)±1.213- 2

 

1.1 
   1               0                     14                    -3  
                  1.1                   1.21                2.431  

1.1 
   1             1.1                   2.21  0.0905 
                  1.1                   2.42  

    1             2.2                4.63 

1.213 
   1               0                     1                    -3  
                1.213             1.4714             2.9978 

    1             1.213           2.4714  -0.0022 
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= 
2
2.9009i±1.213-  

 
= 0. 6065± 1.4505 i 
 
Hence the three roots of the equation rounded off to three decimal places 
are 1.213, 0.6065 + 1.4505 i and -0.6065 – 1.4505 i. 
 
Remark: We now know that we can determine all the real roots of a 
polynomial equation using deflated polynomials. This procedure reduces 
the amount of computations also. But this method has certain 
limitations. The computations using deflated polynomial can cause 
unexpected errors. If the roots are determined only approximately, the 
coefficients of the deflated polynomials will contain some errors due to 
rounding off. Therefore we can expect loss of accuracy in the remaining 
roots. There are some ways of minimizing this error. We shall not be 
going into the details of these refinements. 
 
3.3 Graeffe’s Root Squaring Method 
 
In the last section we have discussed a method for finding real roots of 
polynomial equations. Here we shall discuss a direct method for solving 
polynomial equations. This method was developed independently by 
three mathematicians Dandelin, Lobachesky and Graeffe. But Graeffe’s 
name is usually associated with this method. The advantage of this 
method is that it finds all roots of a polynomial equation simultaneously: 
the roots may be real and distinct, real and equal (multiple) or complex 
roots. 
 
The underlying idea of the method is based on the following fact: 
Suppose 1β , 2β , ...., nβ  are the n real and distinct roots of a polynomial 
equation of degree n such that they are widely separated, that is, 
 
| 1β | >> | 2β | >> | 3β | >> ... >> | nβ | 
where >> stands for ‘much greater than’. Then we can obtain the roots 
approximately from the coefficients of the polynomial equation as 
follows: 
 
Let the polynomial equation whose roots are 1β , 2β , ...., nβ  be 
 
a0 + a1x + a2x

2 + ... + anx
n = 0, an ≠ 0. 

 
Using the relations between the roots and the coefficients of the 
polynomial as given in Sec. 4.2, we get 
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n

0n
n21

n

3-n

n1-n2-n321

n

2-n

n1-n3121

n

1-n

n21

a

a
)1-(=β...ββ

........................................
a

a
-=βββ+...+βββ

a

a
=ββ+...+ββ+β,β

a

a
-=β+...+β+β

               (14) 

 
Since | 1β | >> | 2β | >> | 3β | >> ... >> | nβ |, we have from (14) the 
approximations 
 

n

0n
n21

n

3-n

321

n

2-n

21

n

1-n

1

a

a
)1-(≈β...ββ

...

...
a

a
-≈βββ

a

a
≈ββ

a

a
-≈β

                          (15) 

 
These approximations can be simplified as 
 

1

0

n

2-n

3-n

1-n

n

2-n

1-n

n

3-n

3

1-n

2-n

1-n

n

n

2-n

2

n

1-n

1

a

a
|≈β|

.

.

.
a

a
=

a

a

a

a

a

a
-|≈β|

a

a
≈

a

a

a

a
|≈β|

a

a
-|≈β|

               (16) 
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So the problem now is to find from the given polynomial equation, a 
polynomial equation whose roots are widely separated. This can be done 
by the method which we shall describe now. 
 
In the present course we shall discuss the application of the method to a 
polynomial equation whose roots are real and distinct. 
 
Let 1α , 2α , ...., nα  be the n real and distinct roots of the polynomial 
equation of degree n given by 
 
a0 + a1x + a2x

2 + ... + anx
n = 0.               (17) 

where a0, a1, a2, ..., an-1, an are real numbers and an ≠ 0. We rewrite Eqn. 
(17) by collecting all even terms on one side and all odd terms on the 
other side, i.e. 
 
a0 + a2x

2 + a4x
4 + ... = -( a1x + a3x

3 + a5x
5 + ...)             (18) 

 
Squaring both sides of Eqn. (18), we get 
 
(a0 + a2x

2 + a4x
4 + ...)2 = (a1x + a3x

3 + a5x
5 + ...)2 

 
Now we expand both the right and left sides and simplify by collecting 
the coefficients. We get 
 
a2

0  - (a2
1  - 2a0a2)x

2 + (a2
2  - 2a1a3 + 2a0a4)x

4 – 

(a2
3  - 2a2a4 + 2a1a5 - 2a0a6)x

6 + ... + (-1)n a2
n x2n = 0                      (19) 

 
Putting x2 = -y in Eqn. (19), we obtain a new equation given by 
 
b0 + b1y + b2y

2 + ... + bn = 0               (20) 
where 
b0 = a2

0  

b1 = a2
1  - 2a0a2 

b2 = a2
2  - 2a1a3 + 2a0a4 

 
bn = a2

n  
 
The following table helps us to compute the coefficients b0, b1, ..., bn of 
Eqn. (20) directly from Eqn. (17). 
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Table 12 

           a0                           a1                               a2                            a3...                                            an 

           a
2
0                          a

2
1                              a

2
2                           a

2
3                             a

2
n  

           0                         -2a0a2                          -2a1a3                     -2a2a4                           0                  
0                             0                             -2a0a4                      -2a1a5                           0                           
0                             0                                0                           -2a0a6                          0             
.                              .                                  .                              .                                .                                      
.                              .                                  .                              .                                .                                        
.                              .                                  .                              .                                .                         

          b0                           b1                               b2                           b3...                            bn 

 
To form Table 12 we first write the coefficients a0, a1, a2, ...., an as the 
first row. Then we form (n + 1) columns as follows. 
 
The terms in each column alternate in sign starting with a positive sign. 
The first term in each column is the square of the coefficients ak, k = 0, 
1, 2, ..., n. The second term in each column is twice the product of the 
nearest neighbouring coefficients, if there are nay with negative sign: 
otherwise put it as zero. For example, the second term in the first 
column is zero and second term in the second column is -2a0 a2. 
Likewise the second term of the (k + 1)th column is 2ak-1 ak+1. The third 
term in the (k + 1)th column is twice the product of the next 
neighbouring coefficients ak-2 and ak+2, if there are nay, otherwise put it 
as zero. This procedure is continued until there are no coefficients 
available to form the cross products. Then we add all the term in each 
column. The sum gives the coefficients bk for k = 0, 1, 2, ..., n which are 
listed as the last term in each column. Since the substitution x2 = -y is 
used, it is easy to see that if α 1, α 2, ..., α n are the n roots of Eqn. (17), 
then - 2

1α , 2
2α , ..., 2

nα  are the roots of Eqn. (20). 
 
Thus, starting with a given polynomial equation, we obtained another 
polynomial equation whose roots are the squares of the roots of the 
original equation with negative sign. 
 
We repeat the procedure for Eqn. (20) and obtain another equation 
 
c0 + c1x + ... + cnx

n = 0. 
 
Whose roots are the squares of the roots of Eqn. (20) with  a negative 
sign i.e. they are fourth powers of the roots of the original equation with 
a negative sign. Let this procedure be repeated n times. Then, we obtain 
an equation 
 
q0 + q1x + ... + qnx

n = 0                          (21) 
whose roots 1γ , 2γ , ...., nγ  are given by 
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iγ  =, i = 0, 1, 2, ..., n.                          (22) 
 
Now, since all the roots of Eqn. (17) are real and distinct, we have 
 
| 1α | > | 2α | > ..........> | nα | 
 

Hence | 1γ | = |
m2

1α | = 
n

1-n

q

q
 

| 2γ | = |
m2

2α | = 
1-n

2-n

q

q
 

.    .       . 

.    .       . 

.    .       . 

| nγ |= |
m2

nα | = 
1

0

q

q
 

 
The magnitude of the roots of the original equations are therefore given 
by 

| 1α | = 
m2

n

1-n

q

q
 

| 2α | = 
m2

1-n

2-n

q

q
 

. 

. 

. 

| nα | = 
m2

1

0

q

q
 

 
This gives the magnitude of the roots. To determine the sign of the 
roots, we substitute these approximations in the original equation and 
verify whether positive or negative value satisfies it. 
 
We shall now illustrate this method with an example. 
 
Example 5: 
 
Find the roots of the cubic equation x3 – 15x2 + 62x – 72 = 0 by 
Graeffe’s method using three squaring. 



MTH 213                                                                                                            MODULE 3  

 435

 
Solution: 
 
Let P3(x) = x3 – 15x2 + 62x – 72 = 0. 
 
The equation has no negative real roots. Let us now apply the root 
squaring method successively. The get the following results: 
 
First Squaring 

Table 13 
 

       a0                       a1                       a2                          a3 
      -72                     62                     -15                          1 

    a
2
0  =5184             a

2
1 =3844             a

2
2 =225                  a

2
3 =1                    

       0                    -2a0a2=-2160        -2a1a3=-124              0 
      5184                      1684                       101                       1 
         b0                           b1                          b2                        b3 

 
Therefore the new equation is 
 
x3 + 101x2 + 168x + 5184 = 0. 
 
Applying the squaring method to the new equation we get the following 
results. 
 
Second Squaring 

Table 14 
        5184                      1684                       101                       1 

    26873856               2835856                  10201                     1 
            0                     -1047168                 -3368                     0 

    26873856               1788688                   6833                      1 

 
Thus the new equation is 
 
x3 + 6833x2 + 1788688x + 26873856 = 0. 
 
For the third squaring, we have the following results. 
 
Third Squaring 

Table 15 
      26873856                   1788688                           6833                      1 

   7.2220414 ×1014       3.1994048×1012         46689889                     1 
                0                     -3672581×1012           -3577376                     0 

   7.2220414 ×1014       2.83214×1012              43112513                    1 
             q0                                 q1                               q2                        q3 
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Hence the new equation is 
 
x3 + 43112513x2 + (2.83214 ×  1012)x + (7.2220414 ×1014) = 0 
 
After three squaring, the roots 1γ , 2γ , and 3γ  of this equation are given 
by 

| 1γ | = 
3

2

q

q
 = 43112513 

| 2γ | = 
2

1

q

q
 = 

43112513
10×83214.2 12

 

| 3γ | = 
1

0

q

q
 = 

12

14

10×83214.2

10×22204.7  

 
Hence, the roots  

| 1α | =8 443112513 = 9.0017 
 

| 2α | = 8
12

43112513
10×83214.2  = 4.0011 

 

| 3α | = 8
12

14

10×83214.2

10×22204.7  = 1.9990 

 
Since the equation has no negative real roots, all the roots are positive. 
Hence the roots can be taken as 9.0017, 4.0011 and 1.9990. If the 
approximations are rounded to 2 decimal places, we have the roots as 9, 
4 and 2. Alternately, we can substitute the approximate roots in the 
given equation and find their sign. 
 
4.0 CONCLUSION 
 
We have seen that Graeffe’s root squaring method obtain all real roots 
simultaneously. There is considerable saving in time also. The method 
can be extended to find multiple and complex roots also. However the 
method is not efficient to find these roots. We shall not discuss these 
extensions. 
 
We shall end this block by summarizing what we have covered in this 
unit. 
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5.0 SUMMARY 
 
In this unit we have 
 
• discussed the following methods for finding approximate roots of 

polynomial equations. 
 

i) Birge-Vieta method. 
 
ii)  Graeffe’s root squaring method. 

 
• Mentioned the advantage and disadvantages of the above 

methods. 
 

6.0 TUTOR-MARKED ASSIGMENT (TMA) 
 
1) Find the quotient and the remainder when 2x3 – 5x2 + 3x – 1 is 

divided by x – 2. 
 
2) Using synthetic division check whether 0α  = 3 is a root of the 

polynomial equation x4 + x3 – 13x2 – x + 12 = 0 and find the 
quotient polynomial. 

 
3) How many negative roots does the equation 3x7 + 5x5 + 4x3 + 

10x – 6 = 0 have? Also determine the number of positive roots, if 
any. 

 
4) Show that the biquadratic equation 
 p(x) = x4 + x3 – 2x2 + 4x – 24 = 0 has at least two real roots one 

positive and the other negative. 
 
5) Using synthetic division, show that 2 is a simple root of the 

equation 
p(x) = x4 – 2x3 – 7x2 + 8x + 12 = 0. 
 

6) Evaluate p(0.5) and p’(0.5) for 
p(x) = -8x5 + 7x4 – 6x3 + 5x2 – 4x + 3 
 

7) Find an approximation to one of the roots of the equation 
p(x) = 2x4 – 3x2 + 3x – 4 = 0 
using Birge-Vieta method starting with the initial approximation 
x0 = -2. Stop the iteration whenever | xi+1 – xi | < 0.4 ×  10-2. 
 

8) Find all the roots of the equation x3 – 2x – 5 = 0 using Birge-
Vieta method. 
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9) Find the real root rounded off to two decimal places of the 

equation x4 – 4x3 – 3x + 23 = 0 lying in the interval ]2, 3[ by 
Birge-Vieta method. 

 
10) Determine all roots of the following equations by Graeffe’s root 

squaring method using three squaring. 
 

i) x3 + 6x2 – 36x + 40 = 0 
 
ii)  x3 – 2x2 – 5x + 6 = 0 

 
iii)  x3 – 5x2 – 17x + 20 = 0 
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