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MTH 213 MODULE 3

Introduction

MTH 213: Discussion of Lagrange’s form for; The technique of
determining an approximate value of f(x) for a nahular value of x
which lies in the internal [a, b] is called intelgion. The process of
determining the value of f(x) for a value of x lgimutside the interval
[a, b] is called extrapolation.

The Lagrange’s form of the interpolating polynondarived above has
same draw backs compared to Newton's form of imietmng
polynomial. Before deriving Newton’s general formh iaterpolating
polynomial. We introduce the concept of dividedfeliénce and the
tabular representation of divided differences.

Numerical solution of systems of linear algebraguaions play a
prominent role in boundary value problems, for pady and partial
differential equations, statistical influence, opiation theory, least
square fittings of data etc.

Numerical methods for solving linear algebraic sgstmay be divided

into two types, direct and iterative. To understaihgé numerical

methods for solving linear system of equationss ihecessary to have
some knowledge of the properties of matrices. Tiezgouisite to the

course shall be linear Algebra courses.

The Course

As a 3-credit unit course, 11 study units group®d 3 modules of 3
units in module 1, 4 units in module 2 and 4 umtsodule 3.

This course guide gives a brief summary of thel wwatents contained
in the course material. The fundamental theorenmalgébra and its
useful calories, inverse interpolation and errdiewton’s form of the
interpolating polynomial features divided differescand interpolating
polynomial error types. Likewise interpolating aueally spaced points,
here we talked about differences.

For equally spaced nodes, we shall deal with thypes of differences,
namely forward, backward and central and discues tlepresentation
in the form of a table. Also discussed her are sdimect and iterative
methods for finding the solution of system of linalgebraic equations.

Lastly, we discussed three fundamental theoremmgha intermediate

value theorem, Rolle’s theorem and Lagrange’s nvadéure theorem. All
these theorems give properties of continues funstidefined on a
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MTH 213 NUMERICAL ANALYSIS 1

closed interval [a, b]. Although the theorems ao¢ proved but their
utility was illustrated with examples.

Course Aim & Objectives

On the completion of this course, you are expetded

. find the Lagrange’s form of interpolating polynomia

. complete the approximate value of f at a non-tatbjudent.

. Complete the error omitted in interpolation, if thenction is
known at a non-tabular point of interest.

. Find an upper bound in the magnitude of the error.

. Write forward, backward and central differencestémms of

function values from a table of either differenaed docate a
difference of given order at given point.

. Obtain the interpolating polynomial of f(x) for avgn data by
applying any one of the interpolating formulae.
. Obtain the solution of systems of linear algebrggiations by

using the direct methods such as Cramer’s rule, s&au
elimination method Lu decomposition method.

Working through the Course

This course involves that you would be requiredggend lot of time to
read. The content of this material is very denskraquire you spending
great time to study it. This accounts for the greHort put into its
development in the attempt to make it very readalaed
comprehensible. Nevertheless, the effort requirédyou is still
tremendous. | would advice that you avail yourske# opportunity of
attending the tutorial sessions where you woulcehtéie opportunity of
comparing knowledge with your peers.

The Course Material
You will be provided with the following materials:

Course Guide
Study Units

In addition, the course comes with a list of recanded textbooks,

which through are not compulsory for you to acquirendeed read, are
necessary as supplements to the course material.
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MTH 213 MODULE 3

Study Units

The following are the study units contained in ttogirse. The units are
arranged into 3 identifiable but readable modules.

Module 1

Unit 1 Interpolation (Lagrange’s Form)

This unit takes one through the definition of ipi@ation, inverse
interpolation and error.

Unit 2 Newton’s Form of the Interpolating Polynomal

This unit is sub-divided into divided differencewen’s General Form
of interpolating polynomial, and the error of thaterpolating
polynomial. Divided difference and derivative ofetlfunctions and
further results on interpolations error.

Unit 3 Interpolation at Equally Spaced Points

This unit takes about the three types of difference. forward,
backward and central differences. Difference foagul which
encompasses: Newton’s Forward-Difference formuld &fewton’s
Backward-Difference formula.

Module 2  Solution of Linear Algebraic Equations.

Unit 1 Direct Method

This unit entails the preliminaries, Cramer’s rutiect methods for
special matrices. Gauss elimination methods and dedomposition
method.

Unit 2 Inverse of A Square Matrix

This unit is sub-divided into method of adjointhietGauss-Jordan
reduction method and LU decomposition method.

Unit 3 Iterative Methods

This unit consists of the general iterative methodlke Jaccobi’s
iteration methods and the Gauss-Seidel iteratioimoake
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MTH 213 NUMERICAL ANALYSIS 1

Unit 4 Eigen-Values and Eigen-Vectors

This unit focused on the Eigen value problem. Thevgr method and
the inverse power method.

Module 3
Unit 1 Review of Calculus

Here, the three fundamental theorems, Taylor'srémeperror (round off
and truncation errors) are discussed.

Unit 2 Iteration Methods for Locating Root.

This unit discussed: The initial approximation tooat (tabulation and
graphical methods). Bisection method and fixed pibémation method.

Unit 3 Chord Methods for Finding Root

This entails Repuler-Falsi method, Newton — Raphswmthod and
convergence criterion.

Unit 4 Approximate Root of Polynomial Equation

It can be sub-divided into some results on rootgatynomial equation.
Birge-Vieta method and Graeffe’s Root squaring roéth

Textbooks

More recent editions of these books are recommerfdedfurther
reading.

Engineering Mathematics P. D. S. Verma.

Generalized functions in mathematical physics b Wiadimirov.
Mathematical methods for science students by Gaheteson.
Generalized functions by R. F. Hoskins.

Engineering mathematics by K. A. Strond.

Engineering Mathematics by Kreyszic.
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MTH 213 MODULE 3

Assessment

There are two components of assessment for thisseo’he Tutor
Marked Assignment (TMAS) and the end of the coarsamination.

Tutor Marked Assignments (TMAS)

The (TMAS) is the continuous assessment comporfeydur course. It
accounts for 30% of the total score. You will beegi 4 (TMAS) to
answer. Three of these must be answered beforargallowed to sit
for the end of course examination. The (TMAS) wobé&lgiven to you
by your facilitator and returned after you have eltimee assignment.

End Of Course Examination

This examination concludes the assessment fordhese. It constitutes
70% of the whole course. You will be informed otthime for the
examination. It may or may not coincide with thavensity semester
examination.

Summary

In summary, we have seen how to desire the Lagmmnigem of
interpolating polynomial for a given data. It haseh shown that the
interpolating polynomial for a given data is unigWée have derived the
general error formula and its use has been illtesirdao judge the
accuracy of our calculations.

For a system of ‘n’ equations Ax = b in ‘n’ unknowmhere A is a non-
singular matrix, the methods of finding the solatieector x may be
broadly classified into two types.

)] Direct methods and
1)) Iteration methods.

For larger systems, direct methods becomes moreiesff if the
coefficient matrix A is in one of the forms D (d@wpl), L (lower
triangular) or U (upper triangular).

We further discussed the following methods for iiigdapproximate roots of
polynomial questions: (Birge-Vieta and Graeffe’'strequaring methods).
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MTH 213 NUMERICAL ANALYSIS 1

MODULE 1 INTERPOLATION

Unit 1 Interpolation (Lagrange’s Form)

Unit 2 Newton’s Form of the Interpolating Polyniam
Unit 3 Interpolation at Equally Spaced Points

UNIT 1 INTERPOLATION (LAGRANGE’S FORM)
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Lagrange’s Form
3.2 Inverse Interpolation
3.3 General Error Term
4.0 Conclusion
50 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Let f be a real-valued function defined on the nvé [a, b] and we
denote f(x) by f.. suppose that the values of the function f(x)g@ven
to be §, f1, f5, ..., fywhen x =%, Xq, X, ..., X, respectively wherep x;
< X ... < X, lying in the interval [a, b]. The function f(x) manot be
known to us. The technique of determining an appnate value of f(x)
for a non-tabular value of x which lies in the m& [a, b] is called
interpolation. The process of determining the valti§x) for a value of
x lying outside the interval [a, b] is called extodation. In this unit, we
derive a polynomial P(x) of degree n which agreés whe values of
f(x) at the given (n + 1) distinct points, calleddes or abscissas. In
other words, we can find a polynomial P(x) such ) = f;, j = 0, 1,
2, ..., n. such a polynomial P(x) is called the iptgéating polynomial of

f(x).

In section 3.1 we prove the existence of an infatpw polynomial by
actually constructing one such polynomial having tlesired property.
The uniqueness is proved by invoking the corollairghe fundamental
theorem of Algebra. In section 3.2 we derive genergression for
error in approximating the function by the inteigtalg polynomial at a
point and this allows us to calculate a bound o& énror over an
interval. In proving this we make use of the gehB@le’s theorem.
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MTH 213 MODULE 3

2.0 OBJECTIVES

After reading this unit, you should be able to:

. find the Lagrange’s form of interpolating polynoinia
interpolating f(x) at n + 1 distinct nodal points

. compute the approximate value of f at a non-talubant

. compute the value ot (approximately) given a numbér such
that f(x) = (y) (inverse interpolation)

. compute the error committed in interpolation, ié tfunction is
known, at a non-tabular point interest

. find an upper bound in the magnitude of the error.

3.0 MAIN CONTENT

3.1 Lagrange’s Form

Let us recall the fundamental theorem of algebra &s useful
corollaries.

Theorem 1
If P(x) is a polynomial of degree= 1, that is P(x) = &" + g.x"" + ...

+ aX + &, ..., & real or complex numbers angl 20, then P(x) has at
least one zero, that is, there exists a real optexmumber & such that

p(¢$)=0.

Lemma 1

If z4, 2, ..., % are distinct zeros of the polynomial P(x), then
P(X)=(x-2) (x-2) ... (x—2)R(X)

for some polynomial R(x).

Corollary

If Px(x) and Q(x) are the two polynomials of degrée k which agree at
the k + 1 distinct points ¢z z, 2, ..., Z then R(x) = Q«(x) identically.

You have come across Rolle’s Theorem in the peitguisurse. But we

need a generalized version of this theorem . (Gdkgror Term). This
Is stated below.
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MTH 213 NUMERICAL ANALYSIS 1

Theorem 2

(Generalised Rolle’s Theorem). Let f be a real-gdlfunction defined
on [a, b] which is n times differentiable on ]a, B[f vanishes at the n +

1 distinct points ¥ ..., X, in [a, b], then a number c in ]a, b[ exists such
that f (c) = 0.

We now show the existence of an interpolating potgial and also
show that it is unique. The form of the interpoigtipolynomial that we
are going to discuss in this section is calledlthgrange’s form of the
interpolating polynomial. We start with a relevéamtorem.

Theorem 3

Let X, Xq, ... X, be n + 1 distinct points on the real line andi(el be a

real-valued function defined on some interval las1j] containing these
points. Then, there exists exactly one polynomigk)Pof degree n,
which interpolates f(x) atox ... x,, that is, R(x) = f(x),1=0, 1, 2, ...,

n.

Proof:

First we discuss the uniqueness of the interpaapolynomial, and
then exhibit one explicit construction of an inwgiing polynomial
(Lagrange’s Form).

Let Py(x) and Q(x) be two distinct interpolating polynomials ofgiee

n, which interpolate f(x) at (n + 1) distinct pang, Xy, ... X,. Let h(x) =
Pa(X) - Qn(X). Note that h(x) is also a polynomial of degreen. Also

h(x) = Pi(x) - Qu(x)) = f(x) - f(x) =0,i=0,1, 2, ..., n.

That is, h(x) has (n + 1) distinct zeros. But hi&&)of degreefE n and
from the Corollary to Lemma 1, we have hfx)0. That is R(x) Q.(X).
This proves the uniqueness of the polynomial.

Since the data is given at the pointg, %), (Xi, f), ..., (%, fn) let the
required polynomial be written as

PAX) = Lo(fo + Lfy + ... + Li(¥)fa= 3 Li(0F, (1)

i=0

Setting x = xin (1), we get

Po(x) = > Li(x)fi (2)

n
i=0
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MTH 213 MODULE 3

Since this polynomial fits the data exactly, we trhesse

Li(x) =1
and L(x)=0,i# |
or Lj(Xj) :6” (3)

The polynomial I(x) which are of degree§ n are called the
Lagrange fundamental polynomials. It is easily fiedi that these
polynomial are given by

Li(x) = (X- X)(X- Xp).oo(X- X, )(X- Xii)oo(X- X,)
PV X)) (% %) - %) (% - X)X %)

:ﬁl (x—x,->/|j (% — X) (4)

i=]

Substituting of (4) in (1) gives the required Lagga form of the
interpolating polynomial.

Remark

The Lagrange form (Eqn. (1)) of interpolating palymal makes
it easy to show the existence of an interpolatiolymomial. But
its evaluation at a point mivolves a lot computation.

A more serious drawback of the Lagrange form ariisgsactice
due to the following: One calculates a linear polymal P,(x), a
guadratic polynomial #£x) e.t.c., by increasing the number of
interpolation points, until a satisfactory approaiion to f(x) has
been found. In such a situation Lagrange form catsake any
advantage of the availability of Hx) in calculating R(x). Later
on, we shall see how in this respect, Newton falisgussed in
the next unit, is more useful.

Let us consider some example to construct this faymn
interpolation polynomials.

Example 1
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MTH 213 NUMERICAL ANALYSIS 1

If f(1) = -3, (3) = 9, f(4) = 30 and f(6) = 132nt the Lagrange’s
interpolation polynomial of f(x).

Solution

We have =1, %x=3,%=4,%=6and§=-3,1,=9, =30,
fy=132.

The Lagrange’s interpolating polynomial P(x) iseivby
P(X) = Lo(X)fo + La()f1 + La(x)f2 + Lg(X)f3 (5)
where

C(x- X)X~ x)(X- X))
B S TR | U
(x- 3(x- 4)(x- 6)
©(1- 3)(1- 4)(@1- 6)

:%) (x® = 13¥ + 54x — 72)

— (X' Xo)(x' Xz)(x' Xs)
L) = T X)X (K- XD

_(x- I)(x- 4)(x- 6)
" (3- 1)(3- 4)(3- 6)

:é (G — 11X + 34x — 24)

— (X' Xo)(X' Xl)(x' X3)
o) = G T X (- X0 x)

_(x- D(x- 4)(x- 6)
“(4- 1)(4- 3)(4- 6)

:% (x®— 10X + 27x — 18)

(X' Xo)(x' Xl)(x' Xz)
(Xs' Xo)(xs' XJ)(XS' Xz)

ls(x) =
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MTH 213 MODULE 3

_(x- D(x- H(x- 4)
T (6- 1)(6- 3)(6- 4)

1 el _
30 (= 8% + 19x — 12)
Substituting I(x) and fj = 0, 1, 2, 3 in Eqn. (5), we get

P(x) = ?10 [x®— 13% + 54x — 72] (-3) % [x®— 11X + 34x — 24] (9)
- % [x® — 10X + 27x — 18] (30) %[ x> — 8% + 19x — 12] (132)
:% [ X3 — 13% + 54x — 72] +§ [x3 — 11X + 34x — 24]

-5 [ = 10X + 27x — 18] +%2 [x3—8¥X=19x — 12]

which gives on simplification

P(x) =X —-3%=5x—6

which is the Lagrange’s interpolating polynomialfQd).
Example 2

Using Lagrange’s interpolation formula, find thdueof f when x = 1.4
from the following table.

X 1.2 1.7 1.8 2.0
f 3.3201 5.4739 40 7.3891

Solution

the Lagrange’s interpolating formula with 4 poirgs

— (X' Xl)(x' Xz)(x' X3) (X' Xo)(x' Xz)(x' X3)
N I TR O A A | AN TR

(- x)0- X)X~ x) . L (x- x)(K- X)X X))
%o~ X0 X0 XY 2T x)xom X0 xy O

Substituting

Xo=12,%=1.7,%=1.8,%=2.0and
fo=3.3201, f=5.4739, § = 6.0496, § = 7.3891
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MTH 213 NUMERICAL ANALYSIS 1

in (6), we get
P(x) = (x- 1.7)(x- 1.8)(x- 2.0)

* 3 +
@2- 1.2z 18@z 2z >>20

(x- 1.2)(x- 1.8)(x- 2.0)
1.7- 1.2)1.7 1.8)(1.7 2.«

*5.4739 +

(x- 1.2)(x- 1.7)(x- 2.0)

*
@8- 1218 L7)@8 2 0049+

(x- 1.2)(x- 1.7)(x- 1.8)
(2.0- 1.2)(2.0 1.7)(2.6 1.t

*7.3891 @)

Putting x = 1.4 on both sides of (7), we get

(1.4- 1.7)(L.4 1.8)(1.4 2.

f(14) =P 14 ==— e Ga 08 53201+
1.4- 1(5);;.(-4013(%)%4 2.(, 54739 +
(1.4- 1(5)6(5;.(31)32)(2];4 2.0, 6.0496 +
(1.4- 1.(20).(;.).(46'3;.(.5.)2(;..4 1.6, 73891
=Cos o8 o5 0
O 0T 05 54T
(0.2)¢ 0.3)¢ 0.6, o (0o,

(0.6)(0.1)¢ 0.2)

(0.2)¢ 0.3)¢ 0.4

0.8)03)(02 8%

=0.99603 + 17.51648 — 18.1488 + 3.69455
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= 4.05826
Therefore f(x) = 4.05826.
3.2 Inverse Interpolation

In inverse interpolation for a table of values ofand y = f(x), one is
given a numbely and wishes to find the poirt so that fk) =V,
where f(x) is the tabulated function. This probleam always be solved
if f(x) is (continuous/and) strictly increasing decreasing (that is, the
inverse of f exists). This is done by considerihg table of values;x
f(x;),1=0, 1, ..., nto be a table of valugsgyy), i =0, 1, 2, ..., n for
the inverse function g(y) f(y) = x by taking y= f(x), g(y) = X, i =
0, 1, 2, ..., n. Then we can interpolate for the wvkm value gf) in
this table.

=

I y-y,)
P(Y)= > x '
(y) ; i=0 Vi Y

i
andX = P,(y). This process is called inverse interpolation.

Let us consider some examples.

Example 3

From the following table, find the Lagrange’s imelating polynomial

which agrees with the values of x at the given e@alof y. Hence find
the value of x when y = 2.

X 1 19 49 101
y 1 3 4 5

Solution

Let x = g(y). the Lagrange’s interpolating polynamP(y) of g(y) is
given by

_(y-3y- Hly- 9, ,, - Dly- Hy- 5,

PO =T 3@ o 5 TG DE E 5 P
(y- D(y- 3)(y- 5, (y- D(y- 3(y- 4),

YA D@ 34 5 e ye 3G 4 1
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= 2i4 [y® — 12y + 47y — 60] +%9 [y® — 10y + 29y — 20]

-% [y® — 9y + 23y — 15] +%1 [y®— 8y + 19y — 12]

which, on simplification, gives

Py)=y -y +1.

The Lagrange’s interpolating polynomial of x is givby P(y).
There fore, x = P(y) =3~y + 1

Therefore, wheny =2, x = P(2) = 5.

Example 4

Find the value of x when y = 3 from the followirapte of values.

X 4 7 10 12
y -1 1 2 4

Solution

The Lagrange’s interpolation polynomial of x is givby

(- Dly- 9(y- 4
(- 2)¢ 3)¢ 9

Y+ Dy- 2)(y- 4
2(1E 3)

(4) +

P(y) = (7)

(y+ Dy- D(y- 4) (y+Dy- D(y- 2
TTemcy . O mee P

@MOMcy 4) @) ¢ 1
Therefore P(3) SNTWENR 3 6 (4) +—(2) ©)

@)
G@CY @O

oo oo *?

4 14 40 4¢&

. oy My =

15 3 3 15

[

82
— =12.1333
15
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Hence, x(3) = P(3) = 12. 1333.

Now we are going to find the error committed in p@mating the
value of the function by Jx).

3.3 General Error Term

Let E,(x) = f(x) — R(x) be the error involved in approximating the
function f(x) by an interpolating polynomial. Werte an expression
for E,(X) in the following theorem. This result helps insestimating a
useful bound on the error as explained in an exampl

Theorem 4

Let X, X1, ..., X be distinct numbers in the interval [a, b] andakh
(continuous) derivatives upto order (n + 1) in dpen interval Ja, bl. if
P.(x) is the interpolating polynomial of degreen, which interpolates
f(x) at the points ¥ ..., X, then for each XI [a, b], a numbe#(x) in ]a,

b[ exists such that

(n+1)
£,() = 1) — B :f(Tﬁf»(x—xoxx—xl) ...... (x-x,) @)

Proof

If x # % forany k=0, 1, 2, ..., n, define the functionog tin [a, b] by

o ft-x,)
g(t) = f(t) — R(t) — [f(x) — R(X)] (—)' :
I:zl X=X
since f(t) has continuous derivatives up to order+(1) and P(t) ha
derivatives of all orders, g(t) has continuous \d#ives up to (n + 1)

order. Now, fork =0, 1, 2, ..., n, we have

9(xd = f(x) = Rl — [f(x) - Pu(X)] ﬁ%%y)

J= J

=0 —[f(x) - Rx)].0 =0
X,)

Furthermore, g(x) = f(x) - #X) - [f(X) - Py(X)] Il!%i:—x’)

=1(x) - RX) - [f(x) - Py(x)]. 1 =0
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Thus g has continuous derivatives up to order (f) #and g vanishes at
the (n + 2) distinct points X,oX ..., X%. By the generalized Rolle’s
Theorem (Theorem 2) there exis&x) in Ja, b[ for which §*V &(x) =
0. Differentiating g(t), (n + 1) times (with respeo t) and evaluating
até(x) i, we get

0=d" £ =19 g(9 - (n+ 1 ORI

D(X_Xi)

fe(x)
(n + 1)!

Simplifying we get (error at X X)

f ©)

Ei(X) =f(X) = R(X) = ﬂ(i—xi)

The error formula (Eqn. (9)) derived above, is mpartant theoretical
results because Lagrange interpolating polynonaiedsextensively used
in deriving important formulae for numerical diféstiation and

numerical integration.

It is to be noted thaf = £(X) depends on the ;poif at which the error
estimate is required. This dependence need notleeontinuous. This
error formula is of limited utility since™?(x) is not known (when we
are given a set of data at specific nodes) andpthet x is hardly

known. But the formula can be used to obtain a Hoom the error of
interpolating polynomial. Let us see how, by anrepke.

Example 5

The following table gives the values of f(x) =.df we fit an

interpolating polynomial of degree four to the ddiad the magnitude
of the maximum possible error in the computed vau&x) when x =

1.25.

X 1.2 13 14 15 1.6
y 3.3201 3.6692 4.0552 4847  4.9530

Solution

From Eqn. (9), the magnitude of the error assodiatéh the 4th degree
polynomial approximation is given by

00T oo Mo o, ) )
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=|(x - 1.2)(x - 1.3)(x - 1.4)(x — 1.5)(x - 1.6) f (5;(5) (10)

Since f(x) = & fO(x) = &,
When x lies in the interval [1.2, 1.6],
Max [f®(x)| = €-° = 4.9530 (11)

Substituting (11) in (10), and putting x = 1.25¢ thpper bound on the
magnitude of the error

4.9530

=1(0-05 (-0.05) (-0.15) (-0.25) (-0.38)— >

= 0.00000135.

4.0 CONCLUSION

Let us take a brief look at what you have studiedhis unit as the
concluding path of this unit to the summary.

5.0 SUMMARY

In this unit, we have seen how to derive the Lagess form of

interpolating polynomial for a given data. It hasebh shown that he
interpolating polynomial for a given data is uniqudoreover the

Lagrange form of interpolating polynomial can betedmined for

equally spaced or unequally spaced nodes. We Hawesaen how the
Lagrange’s interpolation formula can be applied hwy as the

independent variable and x as the dependent varsabthat the value of
x corresponding to a given value of y can be caleal approximately
when some conditions are satisfied. Finally, weeh@erived the general
error formula and its use has been illustratedutly¢ the accuracy of
our calculation. The mathematical formulae derivethis unit are listed
below for your easy reference.

1) Lagrange’s Form
Pa(X) = z f(xi )Li (%)
i=0
where

Li(x) = !j(x_xj) / Ij(xi _Xj)

J#i J#i
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2) Inverse Interpolation

=3 1222

3) Interpolation Error

f (¢ (x)
(n+1)

EA(X) = f(%) - F(X) = |j(x—xi)

6.0 TUTOR-MARKED ASSIGNMENT

1) Show that

n

) Y L®=1

i=0

i) z L) x* =%, k< n

where L(x) are Lagrange fundamental polynomials

n

2) Let w(x) =[](x-x ). Show that the interpolating polynomial of
X

degree< n with the nodesg<x, ..., X, can be written as

f(x,)
X - Xk)W'(Xk)

ZORCDN

3) Find the Lagrange’s interpolation polynomial f¢X) from the
following data. Hence obtain f(2).

X 0 1 4 5
f(x) 8 11 68 123

4) Find the value of y when x = 6 from the follogitable:
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5) Using the Lagrange’s interpolation formula, fitiee value of y
when x = 10.

11

16

6) For the data of Example 5 with last one omitiesl, considering
only first four nodes, if we fit a polynomial of geee 3, find an
estimate of the magnitude of the error in the camghwalue of
f(x) when x = 1.25. Also find an upper bound in thagnitude of
the error.

7) Find the value of x when y = 4 from the tableegi below:

X 8 16 20 72
y 1 1 3 5

8) Using Lagrange’s interpolation formula, find tkalue of f(4)
from the following data:

X 8 16 20 72
y 1 1 3

n

7.0 REFERENCES/FURTHER READINGS
Engineering Mathematics P.D.S. Verma.
Generalized Functions in Mathematical Physics . Wiadimirov.

Fundamentals of the Finite Element Method. Har@esndin, Fr.
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UNIT 2 NEWTON FORM OF THE INTERPOLATING
POLYNOMIAL
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1.0 INTRODUCTION

The Lagrange’s form of the interpolating polynongrived in Unit 1
has some drawbacks compared to Newton form of paotating
polynomial that we are going to consider now.

In practice, one is often not sure as to how matsrpolation points to
use. One often calculates(®, P,(x), ... increasing the number of
interpolation points, and hence the degrees of itterpolating
polynomials till one gets a satisfactory approximat B(x), no
advantage is taken of the fact that one has alreadgtructed Py(x),
whereas in Newton form it is not so.

Before deriving Newton’s general form of interpatgt polynomial, we

introduce the concept of divided difference and th&bular

representation of divided differences. Also theeof the interpolating
polynomial in this case is derived in terms of dad differences. Using
the two different expressions for the error term get a relationship
between nth order divided difference and nth oddgivative.

2.0 OBJECTIVES
After studying this unit, you should be able to:
. obtain a divided difference in terms of functiodues

. form a table of divided differences and find divdddifferences
with a given set of arguments from the table
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. show that divided difference is independent of ¢inder of its
arguments

. obtain the Newton’s divided differences interpaigtpolynomial
for a given data

. find an estimate of f(x) for a given non-tabulatueaof x from a
table of values of x and y [f(X)]

. relate the R order derivative of f(x) with the"korder divided

difference from the expression for the error term.

3.0 MAIN CONTENTS

3.1 Divided Differences

Suppose that we have determined a polynomialxp of degreef k —

1 which interpolates f(x) at the pointg Xy, ...Xc1. In order to make use
of P.1(X) in calculating Rx) we consider the following problem: What
function g(x) should be added t@.4#x) to get R(x)? Let g(x) = R(x). -
Pr-1(X). Now, g(x0 is a polynomial of degrde k and g(x = R(x) - P
1) =f(x) -f(x) =0fori=0,1, ..., k—=1.

Suppose that §X) is the Lagrange polynomial of degree at mothat
agrees with the function f at the distinct numbegsx;, ...X,. Py(X) can
have the following representation, called Newtomfo

Pa(X) = Ag+ Ap (X1 — %) + Ar (X — X)) (X —x) + ...
+ An (X =) (X — %n.1) (1)

for appropriate constantAAy, ..., A,.

Evaluating R(x) (Eqn. (1)) at ¥ we get A = PBy(Xo). Similarly when
P.(X) is evaluated atxwe get A = w Let us introduce the
1° 0

notation for divided differences and define it laiststage: The zeroeth
divided difference of the function f, with respéatx, is denoted by f[X
and is simply the evaluation of f at, xhat is, f[X] = f(x;). the first
divided difference of f with respect t¢ and x., is denoted by [ X+1]
and defined as

fixil - fix]
Xi1 = X

f[xi, Xis1] =

The remaining divided differences of higher ordease defined
inductively as follows. The kth divided differencesative to X X1,
..., Xtk IS defined as
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f[Xi+1"'7Xi+k]_ f[xi""1Xi+k-1]
Xk = X, '

f[XH Xi+11 e )q+k] =

i+k

where the (k — 1)st divided differences f[x...., %] have been
determined. This shows that kth divided differensethe divided
differences of (k — 1)st divided differences jugtiy the name. The
divided difference f[x X, ...., %] 1s invariant under all permutations of
the arguments;xxy, ...., %. To show this we proceed giving another
expression for the divided difference.

For any integer k between 0 and n. lgbbe the sum of the first k + 1
terms in form (1), i.e.

QuX) = Ag+ Ay (X =X) + ... + AX = X0)...( X = Xc1)..

Since each of the remaining terms in Eqn. (1) haddctor (x — ¥ (X —
X1)... (X = X%), Egn. (1) can be rewritten as

Pa(X) = Qu(X) + (X — %)... (X —X%) R(x) for some polynomial R(x). as the
term (X — %) (X — %)... (X — %) R(x) vanishes at each of the poings X
... Xk, we have f(y = P(x) = Q(x),1i=0, 1, 2, ..., k. Since {X) is a

polynomial of degreeE k, by uniqueness of interpolating polynomial

Qu(X) = R(X).

This shows that [Px) can be constructed step by step with the amiditi
of the next term in Egn. (1), as one constructsbguence §x), Pi(x)
... with B(x) obtained from Ry(x) in the form

Pc(X) = Bea(X) + A(X —Xg) ... (X = %c1) (2)

That is, g(x) is a polynomial of degree k having (at least) the k
distinct zeros ¥ ..., Xc1.

\' P(X) - Ba(®) = g(x) = AX — X))...(X — %.1), for some constant,A
this constant Ais called the kth divided difference of f(x) aetpoints
Xo, ..., X fOr reasons discussed below and is denoted RyX{x..., X].

this coefficient depends only on the values of Hikjhe point ¥ ..., X.

thus Eqn. (2) can be written as

P(X) =Pca(X) + fXo, ... %] (X = X0)... (X = %c-a),

since (X —¥) (X — %)... (X — %.1) = X' + a polynomial of degree < k,
we can rewrite @) s R(x) = f[Xo, ..., %] X + a polynomial of

degree < k (4)

(as R.1(x) is a polynomial of degree < k).
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But considering the Lagrange form of interpolatpaiynomial we have

K k
=y LAGY N polynomial of degree < k.

Therefore, on comparison with Egn. (4) we have

& f(x)
fiXo, ..., %] = ;(Xi =, )6 =% )6 = %, (% =%, ) (5)

This shows that

flyo, ---» Y] = f[Xoy .-y %]

if Yo, ..., Y IS a reordering of the sequengg X., %. We have defined
the zeroeth divided difference of f(x) a§ ky f[xq] = f(xg) which is

consistent with Eqn. (5).

For k = 1, we have from Eqgn. (5)

f(xo) | fx) | f(xo) - f(xy) _ fxi]- fix{

fXo0, X =
[ ] Xo = Xy Xi- Xo Xo = X4 X1 X

This shows that the first divided difference islisea divided difference
of divided differences.

We show below in Theorem 1 that for k > 2
fIXpoonn X ]- fXgeon X 4]
Xy = Xo

fiXo, ... %] = (6)

This shows that the'kdivided difference is the divided difference of (k
— 1)st divided differences justifying the nameMf= (xo, ..., X,) and N
denotes any n — 1 elements of M and the remainitgelements are
denoted bya andb, then

(f [Xo0.0s %=
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[(n - 1st divided difference on N and - (n 1)st died difference on N and
()
a-»b
Theorem &
fXyoootn Xi]- fXo Xy X 4]
f[Xo,.., %] = — : e = 8
o, %] — ®)
Proof: Let R.y(x) be the polynomial of degre€ i — 1 which

interpolates f(x) ateg ..., %1 and let Q,(x) be the polynomial of degree
< J — 1 which interpolates f(x) at the pointg x.., X. Let us define P(x)
as

I:‘()—

1(X) + Pl-l(x)-

] 0

This is a polynomial of degre€ j, and P(¥ = f(x) fori =0, 1, ..., |.
By uniqueness of the interpolating polynomial weséhd@(x) = RX).
Therefore

P(X) Q 1) + - Ba().

] 0

Equating the coefficient of ¥rom both sides of Eqn. (8), we obtain
(leading) coefficient of

leading coefficient of Q, (x

X in B(x) =

X; - X,

leading coefficient of P, (x

X; - X,

Xy X 1= fXgoo X 4]

Thatis f [, ..., X] = v—
i 0

We now illustrate this theorem with the help of eavfexamples but
before that we give the table of divided differesioé various orders.

Table of divided differences
Suppose we denote, for convenience, a first ortledet! difference of
f(x) with any two arguments by f[.,.], a second erdlivided difference

with any three arguments by f[.,.,.] and so on.iTtiee table of divided
difference can be written as follows

182



MTH 213 MODULE 3
Table 1
X fl.] fl.,.] fl.,...] fl.,.- ] florererr ]
Xo §
bixi]
X1 f f[X0,%1%2]
fix] flxaxoxa]
X2 fa f[X 1,X2X4] flxX1X2X3X4]
£[X3] fB?X(2X3X4]
X3 fa f[X 2XaX4]
§xJ]
Xa f4

Example 1 If f(x) = X3, find the value of f[a, b, c].

_f(b)- fa) _b’- &
" b-a  b-a

Solution:  f[a, b]

=f+ba+d=ad+ab+8
Similarly,
fla,b]=F+cb+B=0+bc +¢é

_f[b,c]- fla, b]

fla, b, ] —
_(b*+ bc+ €)- (&+ ab+ b
B c- a
_(c*- a)+ b(c- a
B c- a
_(c- a)(ct at+ b
- (c- a)
za+b+c
fla, b, c] —at+b+c.

Example 2 If f(x) = % show that

1
f[a, b, C, d] = m
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1 1
jon: fla, bj =0 a = _2- b
Solution: f[a, b] b- a _ab(b- a)
Similarly,
_ 1 -1
fib, c] = -7, fle, dl = -

fla, b, c] = bg- aab a(k:)_ ab(

1 1 1 1

cC—a
| abc |- 1
c-a abc

Similarly,

1
f[b, c, d] :m_j

1]
i
[~

however f[a, b, c, d]

(@]

|
o]
QO
(@p
(@)

a-d
- abcd
d-a
-1
abcd
Consequently,
_ 1
fla, b, c,d] = ~bod

In next section we shall make use of the divideteence to derive

NUMERICAL ANALYSIS 1

Newton’s general form of interpolating polynomial.
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3.2 Newton’s General Form of Interpolating Polynomal
In section 3.1 we have shown how(>§ can be constructed step by step

as one construct the sequeng& R Pi(x), Px(X), ..., with R(x) obtained
from RB.1(x) with the addition of the next term in Eqn. (8)at is,

Pu(X) = RBca(X) + (X = %) (X = X0)...(X = %1) fXos -y %]
Using this Eqgn. (1) ca be rewritten as

Pa(X) = f[Xo] + (X = 0) flXo,X1] + (X = X0) (X = X1) f[Xo,X1,X] +...4 (X = %)
(X = X0)eeo (X = %0-1) f[X0sX1,ee s X (9)

This can be written compactly as follows:

P00 = 3 1] =) (10)

This is the Newton’s form of interpolating polynahi
Example 3

From the following table of values, find the Neww®nform of
interpolating polynomial approximating (x).

X -1 0 3 6 7
fx) | 3 -6 39 822 1611

Solution:

We notice that the values of x are not equally sgagVe are required to
find a polynomial which approximates f(x). We forthe table of
divided differences of f(x).

Table 2
X fl.] fl...] fl.,.0] flre] L ]
1 3 ......................
.................. 9...
e 6 ........
1 .................................
l ............................. 1
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Since the divided difference up to order 4 are labé&, the Newton’s
interpolating polynomial ix) is given by

Py(X) = f(Xo) + (X = 0) fXo,Xe] + (X = %) (X = X1) f[Xo,X1,X] +

(X =) (X =) (X = %) f[X0,X1,%2,Xs] +

(X =) (X = X0) (X = %) (X = %) f[X0,X1,X2,X3,X4] (11)
wherex=-1,%x=0,%=3,%x=6and x=7.
The divided differences fg% f[Xo,X1], f[X0,X1,X2], f[X0,X1,X0,%3] @nd
f[X 0,X1,X2,X3,X4] are those which lie along the diagonal at)(@&s shown
by the dotted line. Substituting the values pfard the values of the
divided differences in Eqgn. (11), we get

Pa(x) = 3+(x+1) (-9 +(x+1)x(6) +(x+1)x—-3)(5) +
(x+1)x(x-3) (x-6) (1)

which on simplification gives

Px) = X'—3X+5X—-6
Therefore, (x) “RX)=x'-3x+5¢ -6
We now consider an example to show how Newton'srpulating
polynomial can be used to obtain the approximateevaf the function
f(x) at any non-tabular point.
Example 4
Find the approximate values of f(x) at x = 2 ard X in Example 3.
Solution: Since f(x) = BR(x), from Example 3, we get
f(2Q)=P(2)=16-24+20-6=6
and
f(5) = P(5) =625 - 375 + 125 -6 = 369
Note 1 When the values of f(x) for given values of x aegquired to be
found, it is not necessary to find the interpolgtpolynomial B(x) in its

simplified form given above. We can obtain the isgpl values by
substituting the values of x in Eqn. (11) itselfus,

P(2)=3+(3)(-9)+(3)(2)(6)+ () A (1) B A (1) (4 1
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Therefore, R2) =3 - 27 + 36 — 30 + 24 = 6.

Similarly,

P4(5) =3 +(6) (-9) + (6) (5) (6) + (6) (5) (2) (3)(6) (5) (2) (-1) (1)
=3 -54+ 180 + 300 — 60 = 369.

Thenf(2) =R2) =6
And
f(5) = P(5) = 369.

Example 5
Obtain the divided differences interpolation polgmal and the

Lagrange’s interpolating polynomial of f(x) fromettiollowing data and
show that they are same.

X 0 2 3 4
fx) -4 6 26 64

Solution:

(@) Divided differences interpolation polynomial:

Table 3
X flx] fl.] od L]
: R S
.................. S...
2 o S
20 ......................... 1
3 ” |
38
4 =

P(X) = -4+ X(5) + x(x = 2) (3) + x(x - 2) (x - &)
=X+x—4
\ PX) =X +x—4
b) Lagrange’s interpolation polynomial:

(x- 2(x- 3)(x-
-2C3C 4

X(x- 3)(x- 4)
¢ D¢ 2

P(X) = D g+ 6)
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N X(X- 2)(x- 4)
ADE 1

X(X- 2)(x- 3)
(4)(2)(1)

(26) + (64)

:é (x3—9x2+26x—24)+g (G — 7% + 12x)

22 0C— 6%+ 84) + 8(¢ — 52 + 64).

On simplifying, we get
P(X) =X + X — 4.

Thus, we find that both polynomials are same.

In Unit 1 we have derived the general error teemerror committed in
approximating f(x) by RXx). In next section we derive another
expression for the error term in term of divideffedence.

3.3 The Error of the Interpolating Polynomial
Let P,(x) be the Newton form of interpolating polynomadidegreeE n

which interpolates f(x) ateX..., %.
The interpolating error Jx) of P,(x) is given by

En(x) = f(x) — Ri(X) (12)
Let X be any point different fromgx..., . If P,(x) is the Newton form
of interpolating polynomial which interpolates f(&) X, ...., % and X,

then R.«(X) =f(X). Then by (10) we have

Pn+1(X) = Pn(X) + f[XO, e Xy i] I:l (X_ Xj)

Putting x =X in the above, we have

n

f(X) = Poa(X) = R(X) + flXo, ... %, X] rl(i—xj)

]=

i.e. E(X) = f(X) - P(X) = f[Xo, ..., % X] |j(>—<—xj) (13)

This shows that the error is like the next ternthim Newton form.
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3.4 Divided Difference and Derivative of the Funcon

Comparing Eqn. (13) with the error formula derivedJnit 1 Eqn. (9),
we can establish a relationship between dividedemihce and the
derivatives of the function

(D]
(n+ l)l IJ:!(X_Xj)

En(X) =

n

= X0, X1, ov» Yo X] |_! (x-x)

(n+1)
Comparing, we have ffxXq, ..., %+1] = ﬁ

(consideringX = X+1)

Further it can be shown thatl Jmin x;, max x].
We state these results in the following theorem.

Theorem 2
Let f(x) be a real-valued function, defined on g, and n times

differentiable in ]a, b[. If ¥ ...... , % are n + 1 distinct points in [a, b],
then there existg [ ]a, b[ such that

f (n+1) C
n!

f[X0y evey X =
Corollary 1:

If f(x) = x", then

5

fXoy ooy %] = = 1.

=]

Corollary 2:
If f(x) = x¥, k < n, then

f[Xo, o0y %] =0

since nth derivative okak <n, is zero.
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For example, consider the first divided difference

f[x val] = M

X, = X
by Mean Value Theorem f(k= f(Xg) + (X1 — Xo) '(¢), X0 < ¢ <X,
substituting, we get

fiXoXxd] =F(¢), X< ¢ <x.

Example 6

If f(X) = apX" + @ X" + ... + @, then find g, Xq, ..., %] = a* — +0=
an

Let us consider another example.

Example 7.

If f(x) = 2x3 + 3¢ — x + 1, find

fl1, -1, 2, 3], fla, b, c, d], f[4, 6, 7, 8].

Solution:

Since f(x) is a cubic polynomial, the 3rd orderided differences of
f(x) with any set of argument are constant and ka3, the coefficient
of X3 in f(x).

Thus, it follows that f[1, -1, 2, 3], f[a, b, c,,dnd f[4, 6, 7, 8] are each
equal to 2.

In the next section, we are going to discuss albmunds on the
interpolation error.

3.5 Further Results on Interpolation Error
We have derived error formula

n (n+1) <
£ = 100~ P00 = [ (X )f(T‘l()X)
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We assume that f(x) is (n + 1) times continuousfiecentiable in the
interval of interest [a, b] = | that containg x., %, and x. sinceg(x) is

known we may replac€t?( ¢(x)) by x i

f*9(x)|. If we denote  (x
- Xo) (X =X%)...(X — %)) by [1(x) then we have

max

f(n+ 1)(t) ‘
xT 1 max|y ,(t)]

[E. ()] = If(x) = RX)| £ mE DT X

(14)

Consider now the case when the nodes are equaltedpthat is (m;x
Xo + jh), j = 0,.....,N, and h is the spacing betweensecutive nodes.
For the case n = 1 we have linear interpolatiom. lIf [x;.1, X], then we
approximate f(x) by f£x) which interpolates at

fr(t J(t
xi.1, and x. From Eqn. (14) we haJg(x)| £ % Zniaxl| M| iniaxl|y (0]

wherelJ;(x) = (X — %.1) (X - — ).
Now,
dy, _ . _
ax =X—-xXx-—=0

gives X = (X1 - %)/2.

Hence, the maximum value of (X = X(X - — %)| occurs at
X=X = (%1-X)/2.

The maximum value is given by
*\ | — (Xi - Xi—l)2 — h_z
|D1(X )l - 4 - 4 .

Thus, we have for linear interpolation, for nayix

- (Xi - Xi-l)2 1 max|f"(x)|
ECII= 1) = PO <=5 ¢

_h
=gM (15)

wherelf’(X)| < M on I.

For the case n = 2, it can be shown that for afly j.1, X.1].
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2

|Ex(X)| < % wherelf”(x) | < M on . (16)
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Example 8

Determine the spacing h in table of equally spa@ddes of the function
of f(x) = vX between 1 and 2, so that interpolation with a filsgree
polynomial in this table will yield seven place acacy.

Solution; Here

P(x) = X

max | f'(x)| = 4

1£ X £ 2 -

and|E;(x)| < h—z
= 320

For seven place accuracy, h is to be chosen sath th

2

— <5.10°
32 5.10

or i¥ < (160)1C that is h < .0013.
4.0 CONCLUSION

This unit shall be concluded by giving a summarybat we have
covered in it.

5.0 SUMMARY

In this unit we have derived a form of interpolgtipolynomial called
Newton’s general form, which has some advantage tnvelLagrange’s
form discussed in Unit 1. This form is useful inridemg some other
interpolating formulas. We have introduced the emicof divided

differences and discussed some of its importanpgutes before
deriving Newton’s general form. The error term laéso been derived
and utilizing the error term we have establishaelationship between
the divided difference and the derivative of thadion f(x) for which

the interpolating polynomial has been obtained. Thain formula

derived are listed below:

Xy X ]- fiXg o X4
B X, - X,

1) fXoy... %]
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2)

3)

4)

6.0

1)

2)

3)

4)

5)

6)

7
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TUTOR-MARKED ASSIGNMENT
Find the Lagrange’s interpolating polynomial f¢X) from the

table of values given below and show that it is shene as the
Newton’s divided differences interpolating polynani

X 0 1 4 5
fx) 8 11 68 123

Form the table of values given below, obtainvhkie of y when
x = 1.5 using

a) divided differences interpolation formula.

b) Lagrange’s interpolation formula.

X 0 1 2 4 5
fx) 5 14 41 98 122

Using Newton’s divided difference interpolatidormula, find
the values of f(8) and f(15) from the following tab

X 4 5 7 10 11 13

f(x) 48 100 294 900 1210 2028
If f(x) = 2X° — 3¥ + 7x + 1, what is the value of f[1, 2, 3, 4]?

If f(x) = 3x* — 2x + 5, find f[1, 2], f[2, 3] and f[1, 2, 3].

If f(x) takes the values -21, 15, 12 and 3 resipely when x
assumes the values -1, 1, 2 and 3, find the poljalowhich
approximates f(x).

Find the polynomial which approximate f(x), tédted below
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X 4 -1 0o 2 5
f(x) 1245 33 5 9 1335

Also find an approximate value of f(x) at x = 1 and -2.

8) From the following table, find the value of y &hx = 102

X 93.0 96.2 100.0 104.2108.7
y 11.38 12.80 14.70 17.07 19.91

7.0 REFERENCES/FURTHER READINGS.
Engineering Mathematics P.D.S. Verma.
Generalized Functions in Mathematical Physics . Wiadimirov.

Fundamentals of the Finite Element Method. Har@esndin, Fr.
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UNIT 3 INTERPOLATION AT EQUALLY SPACED
POINTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Differences
3.1.1 Forward Differences
3.1.2 Backward Differences
3.1.3 Central Differences
3.2 Difference Formulas
3.2.1 Newton’s Forward-Difference Formula
3.2.2 Newton’s Backward-Formula
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Suppose that y is a function of x. The exact fuomal relation y = f(x)
between x and y may or may not be known. But, thkies of y at
(n + 1) equally spaced of x are supposed to be knoer, (x, y); i =0,

..., h are known whereg x %, = h (fixed), i = 1, 2, ..., n. Suppose that
we are required to determine an approximate valud(>Q or its
derivative f'(x) for some values of x in the intafvof interest. The
methods for solving such problems are based orcdineept of finite
differences. We have introduced the concept of &mdwbackward and
central differences and discussed their inter@tatiip in the previous
unit

We have already introduced two important forms had interpolating

polynomial in Units 1 and 2. These forms simply whbe nodes are
equidistant. For the case of equidistant nodes,haxe derived the
Newton’s forward, backward difference forms andrligty’s central

difference form of interpolating, each suitable t@e under a specific
situation. We have derived these methods in theique unit and also
given the corresponding error term.
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2.0 OBJECTIVES
After reading this unit, you should be able to:

. write a forward difference in terms of function was from a
table of forward differences and locate a diffeeen€given order
at a given point

. write a backward difference in terms of functioriues from a
table of backward differences and identify differes of various
orders at any given point from the table

. expand a central difference in terms of functioluga and form a
table of central differences

. establish relations betweéh, [, d and divided difference

. obtain the interpolating polynomial of f(x) for avgn data by
applying any one of the interpolating formulas

. compute f(x) approximately when x lies near theitweigg of the
table and estimate the error

. compute f(x) approximately when x lies near the ehthe table
and estimate the error

. estimate the value of f(x) when x lies near thediadf the table

and estimate the error.

3.0 MAIN CONTENTS

3.1 Differences

Suppose that we are given a table of valugsy(x i = 0, 1, 2, ..., N
where y = f(x;) = f;.
Let the nodal points be equidistant. That is

xi=a+ih,i=0,..,N,withN=(b-a)h )(1
For simplicity we introduce a linear change of aates

X - X
s=5s(x) = u

, SO that X = x(S) =¢x+ sh (2)

and introduce the notation
f(x) = f(xo + sh) = § (3)
The linear change of variables in Egn. (2) transfmpolynomials of

degree n in x into polynomials of degree n is s. have already
introduced the divided-difference table to caloala polynomial of
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degreef£ n which interpolates f(x) atoxxy, ..., %. For equally spaced
nodes, we shall deal with three types of differenceamely, forward,
backward and central and discuss their representati the form of a
table. We shall also derive the relationship ofséhelifferences with
divided differences and their interrelationship.

3.1.1 Forward Differences

We denote the forward differences of f(x) if ithder at x = ¥ + sh by

A' fsand define it as follows:

i fi=0
At = {V(V"lfs) =V, ,-V"f,i >0.

WhereV denotes forward difference operator.
When s =k, that is, X 5xxwe have
fori=1 Afy = fieq - fi
fori=2 AFy = fiaq - T
= iz = frr = [firr - Tl
= e - fier + i
Similarly  A3fy = iz - 3fian + 3fies - fi

We recall the binomial theorem
(@+bf= imaibf-i (4)
j=0

where s is a real non-negative integer.

We give below in Lemma 1 the relationship betwess forward and
divided differences. This relation will be utilizéo derive the Newton’s
forward difference formula which interpolates f@) % + ih, i = 0, 1,

o N

Lemma 1l Foralli= 0

Xk o Kol = 05 81, 5)
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Proof:

We prove the result by induction.
For i =0, both sides of relation (5) are same tayvention, that is,

fixi] = f(xi) = fi = A° fy.
Assuming that relation (5) holds for i =>n 0, we have fori=n+1

f[Xk, Xk+1; o K(+n+]] - f[X kK+1y "=="" ’ Xk+n+1]_ f[X PRI y Xk+n]

Xisner = Xy

|t nbe |- |an g, rninn|
%, +(k+n+1)h-x, —kh
N, -Af A
~ (h+n™  (n+1ph™

This shows that relation (5) holds for i = n + $alHence (5) is proved.
We now give a result which immediately follows frams theorem in
the following corollary.

Corollary :

If P,(x) is a polynomial of degree n with leading coafnt g, and % is
an arbitrary point, then

A"Pn(Xo) = an! K"
and A"™'P,(x) = 0, i.e., all higher differences are zero.
Proof: Taking k = 0 in relation (5) we have

Xor ... X] = TlhiAifo. (6)

Let us recall that

@
fXor oo X] :¥ (7)

where f(x) is a real-valued function defined on g, and i times
differentiable in ]a, b[ and O ]a, b[.

Taking i = n and f(x) = ix) in Eqgns. (6) and (7), we get
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. (n)
A "Po(X0) = NTh"PolXo, ...\ %] = niA" P"n—l(x)

| _ = Hnla,.
Since A ™Py(xg) = A'"Py(Xq) - A'"Pa(Xo)

= HAnla,- h'nla, = 0.
This completes the proof
The shift operator E is defined as
Efi = fi (8)
In general Ef(x) = f(x + h).
We have B; = fi,¢
For example,
E; = fus, E/%; = fuap and BV = iy
Now,
A'fi =y - Ef, —f = (E = 1)f
Hence the shift and forward difference operatiaesralated by

E-1
1+A

A
or E

Operating s times, we get

AS=(e—-1j= Zn:(?jEj(—l)r_l (9)

i=0

Making use of relation (8) in Eqn. (9), we get

pSf = Zn:(—l)“l[?jfjﬂ

j=0

We now give in Table 1, the forward differencesafious orders using
5 values.
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Table 1: Forward Difference Table

| . Al AZ§ A%t A
XO J ............................
A fO .................
: L B Ny .
A fl ............... A 3f0 ...........
X2 j: A Zfl ............... A 4fo
N A 3f1
X3 éc A 2f2
Xs j A f3

Note that the forward differencaf, lie on a straight line sloping
downward to the right.

3.1.2 Backward Differences

Let f be a real-valued function of x. let the vau# f(x) at n + 1 equally
spaced pointsgx X, ..... , % be b, Ty, ..., frespectively.

The backward differences of f(x) of ith order at=xx, + kh are denoted
by O'fi. They are defined as follows:

o= {0 10
R = - 0l (0

wherell denotes backward difference operator.

Using (10), we have for

i=1; ka = fk_fk-l

i =2; szk = D( fk - fk-l)
=0f — fies
=f =261+ fie

i = 3; 0%, = Ofy — fia] = 0% - O%Fier = O[F] - Off ]
= O[fk - fca] - Off s - 2]
= Ofg = Ofyq - Ofyeq + iz
=ik — fcar — 2fica + fieo] + fro - fis
= fi — 3o + 32 - fis
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By induction we can prove the following lemma whicbnnects the
divided difference with the backward difference.

Lemma 2: The following relation holds

1
klh

Xk ey %] = (X ) (11)

The relation between the backward difference opefrdtand the shift
operator E is given by

O=1E'orE=(-0O)*"
Since ka = fk - fk-l = fk - Elfk = [1 - E]fk

Operating s times, we get

O, = [L — Eff, = {i(fﬂjsm(—l)m}fk

=0

=Z[fnj(— )y (12)

We can extend the binomial coefficient notationiriolude negative
numbers, by letting

{S}:—S(—S—l)(—s'—Z)....(—s—i+1):(_1)i (st D...(sr k1

The backward differences of various orders withosles are given in
Table 2.

Table 2: Backward Difference Table

X f(x) Of 0% 7% .

Xo J
Of,

X1 I i
Of, .

X2 Zf D2f3 ............. D4f4
o de D3f4 .........

X3 :f 0%

' Df4 ......................
X4 j ............................

Let us consider the following example:
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Example 1 Evaluate the differences
(@ Oax®+ax+al
(b) DO%aex® + ax’ + ax + aj.
Solution:
(@) [lax’+ax+al=0
(b) Oax® + ax’ + ax + a.
= a0°(¢%) + 0% axx® + ax + &
=33

Note that the backward differencekf, lie on a straight line sloping
upward to the right.

Also note thatV f, = Ofyq = fier — f.

Try to show thatV *, = 0%..

Let us now discuss about the central differences.

3.1.3 Central Differences

The first order central difference of f at xlenoted bydfy, is defined as
df = f(x + h/2) — f(x — h/2) =12 — fc12.

Operating withd, we obtain the higher order central differences as
d¥, = f, when s = 0.

The second order central difference is given by

d*fk = dlfkerz — el = dlfierrd - dlficas]
= firn = fi = fc + fia
= fior — 26 + fia

Similarly,

A%y = fiearz - 3fesro + Srz - fiear
and d4fk = fk+2 - 4fk+1 + 6fk - 4fk_1 + fk-2-
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Notice that the even order differences at a tabrdare x are expressed

in terms of tabular values of f and odd order ddfees at a tabular
value x are expressed in terms of non-tabular value afsb note that
the coefficients ofd*f, are the same as those of the binomial expansion
of(1-xfs=1,2,3, ...

Since
dfy fiero—fca = (El/2 - El/z)fk

We have the operation relation
d — El/2 _ El/2 (14)

The central differences at a non-tabular pojntxcan be calculated in a
similar way.

For example,

Afisrre = fiar - i

0 frarr2 = fisarz = 2fcerin + fiearz

dsz+1/2 = ez = fies + 3f - fig (15)
A e = faaro - Miraiz + Ofcrnrn - Aficare + far

Relation (15) can be obtained easily by using étetion (14)

We have

dsfk = [Ell2 - El/Z]ka

_ [g(?JE“’ZE(”“)’Z(—l)ifk

:{i(ﬂ(—l)i}fkm,z)_l (16)

i=o \I
The following formulas can also be established:

1

f[Xo, faeny )@m] = W dszm (17)

o0 el = s & v (18
1

f[X_m, ey XDy eeny X-n] = W dszo (19)
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1

2m+ D)Ipm?
1

2m+ DIpm?

Xy «eesX0s oeees Yone1] = d>™ %, (20)

d*™% 1 (21)

f[X_(m+1), vy XDy eeny Xn] =

We now give below the central difference table visithodes.

Table 3: Central Difference Table

X f df d’f d’f d‘f
X2 b
df 3
X1 E dzf_l
df_1/2 d31:—1/2
Xo J dzfo d4fo
dfl/g d3f1/2
X1 jc dzfl
df3/2
X2 £

Note that the differencd®™folie on a horizontal line shown by the dotted
lines.

Table 4: Central Difference Table

X f df d’f d’f d‘f
Xo §
dfl/2
X1 jc d2f1
df3/2 d31:3/2
X2 Zf dzfz d4f2
df5/2 d31:5/2
X3 ;f dzfg
dfz.
X4 f

Note that the difference®¥, lie on a horizontal line.

We now define the mean operatoas follows

1
mfy = > [Frrr2t Tl

[E1/2 + Ellz]fk.

NI =
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Hence
m = %[Ellz + E1/2]

Relation Between the OperatorsV, [, d andm

We have expressed, [, d andm in terms of the operator E as follows

V=E-1
0=1-E
d = E¥2 _ g2

M= :_21[E1/2 +EYY

V=EQ1=EY=E

= EYAEY2 — E1?) g2y

Also E2= m + 3
2
} d
E12=pm.2
M2
Example 2:

(@) Expresd/ %, as a backward difference.
(b)  ExpressV %, as a central difference.

(c) Expressd*, as a forward difference.

Solution:

(@ A% = (ED)*, = B, = O°E%f, = 0%, (A = E0)
(b) A% =[E"%01%,=FE"0 %, =0 B, =0 %5 (0=E"?9)
() o%,=[EY%]%,=E'A %, =0 EYN,=0%, 0 =E*?n)
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Example 3: Prove that
2

> 0
a m=1+—
(a) .

() =3 (a+0)

(c) 1+ nmid :1+§

Solution:
(a) We havem= %‘[Ellz + E1/2]
m2 3 (E1/2 + E— 1/2)2 _ (E1/2 _ E— 1/2)2+ 4

4 B 4
(El/2 _ E- 1/ 2)2
=1+

4

2
=1+ a_
4
b) LH.S.
nd = %(Ellz + E1/2) (E1/2 _ El/Z) — %— (E _ El)
R.H.S.

S0 +0)= J[ED) + (1Y) = 5 (E-E)

NI =

Hence, the result.

(c) We have

n.d — %(EI/Z + El/Z) (El/2 _ El/Z) — % (E _ El)

22_. (E-E'Y (E-E'Y+4 (E+E'Y
\ 1+md° =1+ 2 = 7 = 2
E + E-l (E1/2 _ E- 1/2)2 + 2
+ = =
\ 1+ mid 5 >
_df+2 92
= > =1+ —

3.2 Difference Formulas

We shall now derive different difference formulasing the results
obtained in the preceding section (Section 3.2).
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3.2.1 Newton’s Forward-Difference Formula

In Unit 2, we have derived Newton'’s form of intelgting polynomial
(using divided differences). We have also estabtisim Section 3.2 1,
the following relationship between divided diffeoess and forward
differences

1

f[Xk, . X('H‘l] = W

V "y (21)
Substituting the divided differences in terms of forward differences
in the Newton’s form, and simplifying we get Newt®nforward-
difference form. The Newton’s form of interpolatingolynomial
interpolating at ¥ Xg+1, --.., X+n IS

n 1 i
Pa(X) = D7 (X =%, J(X = Xup )oevvenvens (x- xkﬂ_l)WA f, (23)
i=0

Setting k = 0, we have the form
P(x):ni(x—x)(x—x) (x—x_, )A f

n i:OlIhl 0 q Jrorenenens -1 0
—f,+ (X- Xo) Af, . (X- xo)gx - X)) A’y .

1! h h h?
+(x- Xo) ... (X- X, ,)A"f, (24)
n! h"

Using the transformation (2), we have

X=X = Xo + Sh— g+ (K +]h] = (s—k—i+ 1V
— X s-k
;Af{i }

K)(s- k- 1)
21

=f, + (s — K)Af, + (s- N2, +...
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SR T Ty, (25)

of degreet n.

Setting k = 0 in (25) we get the formula
Py(Xo + sh) <> A fom (26)
i=0

The form (23), (24), (25) or (26) is called the News forward-
difference formula.

The error term is now given by

E.(X) = {f} . 1j| ptL el (x)

Example 4:

Find the Find the Newton’s forward-difference iplating polynomial
which agrees with the table of values given belélgnce obtain the
value of f(x) at x = 1.5.

X 1 2 3 4 5 6
fx) 10 19 40 79 142 235

Solution: We form a table of forward differences of f(x).

Table 5: Forward differences

X f(x) ot X i
1 10 .....................
............... 9

/ o e 12...

e 6
3 © .

39 6
4 " .

63 6
5 2 )

93
6 =

Since the third order differences are constant, kigher order
differences vanish and we can infer that f(x) go&ynomial of degree 3
and the Newton'’s forward-differences interpolatmolynomial exactly
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represents f(x) and is not an approximation to.f(Xj)e step length in the
data id h = 1. Takingg<= 1 and the subsequent values of x ax ....,
xs the Newton’s forward-differences interpolationyamial.

) = fo + (x — 1) Vi, + & 1)2(|X' vz, +
(x- D(x- 2)(x- 3
3! Vo
becomes
f(x) = 10 + (x — 1) (9) +X 1)2(X' 2 (12)+ X DX = 2(x-_3) )

=10+ (x—=1)+6(x—-1) (x=2)+(x—-1) X+ &—-3)
which on simplification gives

fx) = x>+ 2x + 7
\ f(1.5) = (1.5 + 2(1.5) + 7
=3.375+3+ 7 =13.375

Note:
If we want only the value of (1.5) and the integimn polynomial is
not needed, we can use the formula (26). In thsg,ca

s=2 20 =22 =05
and
(1.5 =10+ (0.5) (9) {226 09 (1 , 09 0HE 15

=10+4.5-15+0.375
= 13.375.
Example 5:

From the following table, find the number of stuttewho obtained less
than 45 marks.

Marks 30-40 40-50 560 60-70 70 -80
No. of students 31 42 51 35 31
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Solution:

We form a table of the number of students’ f(x) whonarks are less
than x. In other words, we form a cumulative fraguetable.

Table 6: Frequency Table

X f(x) V f V 2f V 3f V 4f
31..
....... 42 /
""" ....9..,....
L P -28.. 3
U —

1 ’

80

We have =40, x=45and h =10
\ s=05

0.5)¢ 1.5
5 (-25)

(37)

\ f(45); 31+ (0.5) (42) +w) () + 0:5)¢

, (0.5)¢ 0.5)¢ 1.5){ 25
24
=31+ 21— 1.125 — 1.5625 — 1.4453
= 47.8672, 48

\ The number of students who obtained less than 4#ksnis
approximately 48.

3.2.2 Newton’s Backward-Difference Formula

Reordering the interpolating nodes @sxs.1, ...., % and applying the
Newton’s divided difference form, we get

Pa(X) = fIXnl + (X = %) fIXn-2, Xl + (X = %5.1) fXn-20 Xn-2, %]
+ ot (X=X) oo (X X0y veees X (27)

We may also write

e x
Pi(¥) = Pog, + ——"h)
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=Rl ST = & (- X)X Xy ) (6 Xy XX, ]

=8 I(x- X)X~ Xy )e(X- X, )7, (28)

o !

Set x = ¥ + sh, then
X=X%=Xtsh—=[x—-(n-0Dh]=(s+n-=1ih
X=Xj=(s+n-n+jh=(s+jh

and

(X = %) (X =%2) -.. (X=%is1) =S(S+1)...5(s +i—1)h
Equation (28) becomes

n

Pn(x) = ZT:LIS(S+1) ....... (S+i _1)fn

i=o I

s(s+ l)DZf N s(s+ 1)...(st+ n 1

= o+ s + =5 n

0%, (29)

We have seen already that

s|_ s(st+ 1)...(st k 1
M"('l)k k!

Hence, equation (29) ca be written as

Pa() = f0x) + (- 1)mmf () (D + (- 1)2@? () (-2

bt (—1){S}D"f(xn)

k

or
Ped= 3ot () (30)

Equation (27), (28) or (29) is called the Newtohackward-difference
form.
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In this case error is given by

E (X) = (-1j1+1 S(S+(n13_"i()s!+ r]hn+1 gl (x). (31)

The backward-difference form is suitable for appmating the value of
the function at x that lies towards the end ofttide.

Example 6

Find the Newton’s backward differences interpolgtipolynomial for
the data of Example 4.

Solution:
We form the table of backward differences of f(x).

Table 7: Backward Difference Table

| © - 0% 0%
1 I
9
2 i )
21 6
3 " -
39 6
4 2o .
63 e 6
5 142 ....... 30
o e 93 ......
° 235

Tables 5 and 7 are the same except that we corthidatifferences of
Table 7 as backward differences. If we name theisgss asgx xq, ...,
Xs, then ¥ = x5 = 6, f, = f5 = 235. with h = 1, the Newton’s backward
differences polynomial for the given data is gimn

P) = & + (x - %) O + L& X5)2(|X- X.) 0% +
(X - Xg)(X- X)(X- Xy)

3l s
=235 + (x - 6) (03) X~ A9 (30, 0 O I 4) )

= 235 + 93(X — 6) + 15(X — 6) + (X — 4) (X - 5)-06)

which on simplification gives
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P(X) =X +2x+7,

which is the same as the Newton’'s forward diffeesninterpolation
polynomial in Example 4.

Example 7

Estimate the value of (1.45) from the data givelowe

X 11 1.2 13 14 15
f(x) 1.3357 1.5095 1.6984 9mU3  2.1293

Solution:
We form the backward differences table for the dgtan.

Table 8: Backward Differences Table

X f(x) Of 0% 0% %
1.1 1.3357
0.1738
1.2 1.5095 G01
0.1889 0.0019
1.3 1.608 0.0170 .. 0.0002
0.2059 .. 0.0021
1.4 1.9043 . @01
_0.2250
1.5 2.1293""

Here =15,x=1.45 h=0.1

x- X, _145- 1.t
Hence, s = =

h 05  _0®

The Newton’s backward differences interpolatiomfala gives

fx) = f. + oI, S’(XZ—*Il)szn S(s+ ;)I(SJ’ e -
s(s+ 1)(s+ 2)(s+ 3_4

4) al
= 21293 + (-0.5) (0.2250) + %) (0.0191)
NG 0.5)(2.5)(1.53(0_0021) LG 0.5)2(31.5)(2.5 (0.0002)
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=2.1293 -0.1125 - 0.00239 — 0.00013 — 0.0000078
= 2.01427» 2.0143

3.3.3 Stirling’s Central Difference Form

A number of central difference formulas are avddakhich can be used
according to a situation to maximum advantage. \Beitshall consider
only one such method known as Stirling’s methods Tormula is used
whenever interpolation is required of x near theldte of the table of
values.

For the central difference formulas, the origi§ ¥ chosen near the
point being approximated and points beloyvaxe labelled as;xxs, ...
and those directly above as;,xx,, ... (as in Table 3). Using this
convention, Stirling’s formula for interpolation ggven by

S
Pa(x) = f(xo) + 5 [df1/2 + df.y] + 5 dzfo

S(§3| 1) 1[d3f1/2 + d%.q] + .
4 S(s- f)S(é(Zp.? )1)|[§ b i)l[dzplf +d*H.0]
sg- 1)..5- (p D
' (2p)! o
§ SIS (pr)-ll-usi()%_ : ;— d2P %, + d2PH ) (32)

where s = (x —g@/hand if n =2p + 1 is odd.
If n = 2p is even, then the same formula is usdetitg the last term.

The Stirling’s interpolation is used for calculatiovhen x lies between

1 1
-~hand ¥+ =h.
Xo 2 and x% 2

It may be noted from the Table 3, that the odd odierences at X,
are those which lie along the horizontal line betwey and X,.
Similarly, the odd order differences atxare those which lie along the
horizontal line betweengand X%. even order differences a§ are those
which lie along the horizontal line through x
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Example 8 Using Stirling’s formula, find the value of (1.8#om the
following table of values.

X 11 1.2 13 14 15
f(x) 1.3357 1.5095 1.6984 9mU3  2.1293

Solution:
Table 9: Central Difference
X f(x) df d* d’ d*
1.1 1.3357
0.1738
1.2 1.5095 G01
0.1889 0.0019
1.3 1.6984 @01 0.0002
0.2059 0.0021
1.4 1.9043 @01
0.2250
1.5 2.1293
Choose x=1.3

(x- Xx,) _ 1.32- 1.3:

Therefore s 5 01 0.2.
From Eqn. (32), we have
2
(00 » fo+ Sldfan + dhudeS, oo DL, + dge
$(€- 1), | |
Td fo.
Now,

%[df_l,z + dfy] = %(0.1889 +0.2059) = 0.1974

%[d3f_1,2 + d%y = %(0.0019 +0.0021) = 0.0020

Also d*f, = 0.0170,d*, = 0.0002.
Substituting in the above equation, we get

0.04 (0.2)¢ 0.96)
6

f(x) = 1.6984 + (0.2) (0.1974) ¥ (0.0170) + (0.0020)
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, (0.04)¢ 0.96

o (0.0002)

=1.6984 + 0.03948 + 0.00034 — 0.00006 — 0O
=1.73816; 1.7382.
4.0 CONCLUSION

As in the summary.

5.0 SUMMARY.

In this unit, we have derived interpolation formafar data with equally
spaced values of the argument. We have seen hdwdtdhe value of
f(x) for a given value of x by applying an appr@te interpolation
formula derived in this section. The applicationtloé formulas derived
in this section is easier when compared to the icgpn of the
formulas derived in Units1l and 2. However, the folas derived in this
unit can only be applied to data with equally spaasgyuments whereas
the formulas derived in Units 1 and 2 can be agpfier data with
equally spaced or unequally spaced arguments. Times,formulas
derived in Units 1 and 2 are of a more generalreatan those of Unit
3. The interpolation polynomial which fits a givemata can be
determined by using any of the formulas derivedhis section which
will be unique whatever be the interpolation formthat is used.

The interpolation formulas derived in this unit &sted below:

1) Newton’s forward difference formula:
PA(X) = Py(xo + sh) = Z”jmmi f,

i=0
s(s- 1)
2!
where s = (X —g/h.

s(s- 1..s(s m ]
n!

fo+ sV fy+ Vg + ... + \VAL S

2) Newton’'s backward difference formula:
P.(X) = Py(X, + sh) :i(-l)kmmk f where s = (x —g/h
k=0

3) Stirling’s central difference formula:
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6.0
1)
2)

3)

4)

5)

6)

7

218

2
P = Rixo + sh) = § + S[dfu, + dfg] + %dzfo "

S(g?:! f)%[dsfllz b A%y 4ot (< - f)((zép-)l (p D)5
N S($- 1)...5- p

2p+ 1!
ifn=2p+ 1lisodd. If n =2p is even, the sameula is used
deleting the last term.

[d2p+lf1/2 + d2p+lf-1/2]

TUTOR-MARKED ASSIGNMENT.
Express1s in terms of function values.
Show that (E + 1 = 2(E — 1)m.

The population of a town in the decimal censas given below.
Estimate population for the year 1915.

Year X 1911 1921 1931 1941 1951

Population: y 46 66 81 93 101
(in thousands)

from the following table, find the value of y.P3):

X 0.20 0.22 0.24 0.26 0.28 0.30

y 1.6596 1.6698 1.6804 915 1.7024 1.7139

Find the number of men getting wages betweel®snd Rs. 15
from the following table.

Wages in Rs. x 0-10 10-20 20-30 3010

No. of meny 9 30 35 42

The area A of a circle of diameter d is giventhe following
table. Find the area of the circle when the diamet82 units.

d 80 85 90 95 100
A 5026 5674 6362 7088 7854

From the table of values of 3a, find the valtig when x = 0.29.
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8) Using the backward differences interpolation,ndfi the
polynomial which agree with the values of y(x) wier

y(0)=1,y(1) =0, y(2) =1 and y(3) = 10.

9) In 3c, find the number of candidates whose markdess than or
equal to (i) 70, (ii) 89.
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10) Find f(1.725) from the following table.

X 15 1.6 1.7 1.8 1.9
f(x) 44817 4.9530 54739 0486  6.6859

11) Evaluate f(4.325) from the following.

X 4.1 4.2 4.3 4.4 4.5
f(x) 30.1784 33.3507 36.8567 406345.0141

12) Find the approximate value of y(2.15) from thigle

X 0 1 2 3 4
f(x)  6.9897 7.4036  7.7815 2B1  8.451C

7.0 REFERENCES/FURTHER READINGS.
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MODULE 2 SOLUTION OF LINEAR ALGEBRAIC

EQUATIONS
Unit 1 Direct Methods
Unit 2 Inverse of a Square Matrix
Unit 3 Iterative Methods
Unit 4 Eigen Values and Eigen Vectors

UNIT 1 DIRECT METHOD
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1  Preliminaries
3.2 Cramer’s Rule
3.3 Direct Methods for Special Matrices
3.4  Gauss Elimination Methods
3.5 LU Decomposition Methods
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

Notations and Symbols

A=1a,] Matrix with the elements,a
det A = |A| Determinant of a square matrix A
¥ infinity
r Rho
u Nu
m Mu
| Lambda
[|A]] Norm of a matrix A

| Imaginary unit,5= -1.
Also see the list given in Block 1.
1.0 INTRODUCTION
One of the commonly occurring problems in appliedtiematics is

finding one or more roots of an equation f(x) 4rOmost cases explicit
solutions are not available and we are satisfietth Wweing able to find
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one or more roots to a specified degree of accutadglock 1, we have
discussed various numerical methods for findingrdwgs of an equation
f(x) = 0. There we have also discussed the conwemyeof these
methods. Another important problem of applied matatcs is to find

the solution of systems of linear equations amsa ilarge number of
areas, both directly in modelling physical situai@and indirectly in the
numerical solution of other mathematical modelseseh applications
occur in all areas of the physical, biological amjineering sciences.
For instance, in physics, the problem of steadjestamperature in a
plate is reduced to solving linear equations.

Engineering problems such as determining the palem certain
electrical networks, stresses in a building frarflew rates in a
hydraulic system etc. are all reduced to solvinged of algebraic
equations simultaneously. Linear algebraic systarasalso involved in
the optimization theory, least squares fitting ataj numerical solution
of boundary value problems for ordinary and partédifferential
equations, statistical inference etc. Hence, thmarical solution of
systems linear algebraic equations plays a veryitapt role.

Numerical methods for solving linear algebraic syst may be divided
into two types, direct and iterative. Direct methade those which, in
the absence of round-off or other errors, yield éiact solution in a
finite number of elementary arithmetic operatioiterative methods
start with an initial approximation.

To understand the numerical methods for solvinggdmsystem of
equations it is necessary to have some knowledgbeoproperties of
matrices. You might have already studied matrickterminants and
their properties in your linear algebra coursesweler, we begin with a
quick recall of few definitions here. In this unitg have also discussed
some direct methods for finding the solution of tegs of linear
algebraic equations.

2.0 OBJECTIVES

After studying this unit, you should be able to:

. state the difference between the direct and iteratnethods of
solving the system of linear algebraic equations

. obtain the solution of system of linear algebraguations by
using the direct method

. use the pivoting technique while transforming theeféicient

matrix to upper or lower triangular matrix.
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3.0 MAIN CONTENTS

3.1 Preliminaries

As we have mentioned earlier, you might be alreéalyiliar with
vectors, matrices, determinants and their proge(ief. Linear algebra
MTE-02). A rectangular array of (real or complexjmbers of the from

a, Qe a,,
A, Agyeenn a,,
ay A a,, |

is called a matrix. The numberg;,aa,, ..., &, are the elements of the
matrix. The horizontal lines are called rows angl ¥ertical lines called

columns of the matrix. A matrix with m rows andalumns is called an

m" n matrix (read as m by n matrix). We usually denot&trices by

capital letters A, b etc., or byy(a (b) etc.

If the matrix has the same number of rows and coljmve call it a
square matrix and the number of rows or colummglied its order. If a
matrix has only one column it is a column matrixcolumn vector and
if it has only one row it is a row matrix or rowater.

A

a,

The matrices A 3 2| = [ayy, &1, ... &1 and

Ay

B = [a1, &y ..., @y are respectively the column and row matrices. We
give below some special square matrices A;r¢horder n.

1) A matrix A =(g) inwhichg =0(,j=1,2 ... , ) is called a
null matrix and is denoted by 0.
e.g.,

00
A= isa?2 2 null matrix.
00

2) A matrix A in which all the non-diagonal elementmnish i.e.,
=0forit jis called a diagonal matrix.
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a, O 0
Eg.,A=]0 a, O
0 0 a;

isa 3 3 diagonal matrix.

3) The identity matrix | is a diagonal matrix in wh all the
diagonal elements are equal to one. The identityixnaf order 4

IS
1000
- (0100
0010
0001

4) A square matrix is lower triangular if all thiements above the
main diagonal vanish i.e.;j& 0 for j > i. A lower triangular
matrix of order 3 has the form

a, 0 O
A= a, a, 0
a31 a32 a33
Similarly upper triangular matrices are matricesvimch,
aj=0fori>]j.
&y &, &y
eg., A= 0 a, ay
0 0 ag

Two matrices A = (g and B = (B) are equal iff they have the same
number of rows and columns and their correspondilegnents are
equal, that isg= by for all i, j.

You must also be familiar with the addition and tiplication of
matrices.

Addition of matrices is defined only for matriceé same order. The
sum C = A + B of two matrices A and B, is obtairggd adding the
corresponding elements of A and B, i.¢.7a; + b.

. 4 6 3 5
For example, |fA:{ 0 1 }andB:{

0
then
2 31 0
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153
A+B=
3 2 2

Product of an m n matrix A = (g) and anri p matrix B = () is an
m~ p matrix C. C = AB, whose (i, k)th entry is

0
Gj = Y. ahb =a by +abp+ .. +abu
=L

That is, to obtain the (i, k)th element of AB, take ith row of A and
kth column of B, multiply their corresponding elem® and add up all
these products. For example, if

112
2 3 -1
A= L 0 2} andB =2 4 2| then (1, 2)the element
1 21
of AB is
1
[23-1];':2*1+3*4+(-1)*2:12

Note that two matrices A and B can be multiplietyahthe number of
columns of A equals the number of rows of B. In éeve example the
product BA is not defined.

The matrix obtained by interchanging the rows aotlrons of A is
called the transpose of A and is denoted by A

If A = {2 3} then A = {2 _1}
11 3 1

Determinant is a number associated with squareiceatr

Fora2 2 matrix A= {a“ aﬂ}
8, a8y
det (A) = det{a“ a“} = @18 — 281
1 2
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a; ap &
Fora3 3 matrixA=|a, a, a,;
A3 Az g3
det(A) = a, det {azz aﬂ - & det{6121 aﬂ+ a3 de{azl aﬂ
83 3 1 Ggg A 8y

A determinant can be expanded about any row ornuoluThe
determinant of an h n matrix A = () is given by det(A) = (-1*)1aj
det(d) + (-1)7a, det(Ay) + .. + (-1J"a, det(A,), where the
determinant is expanded about the ith row apdsAhe (n—-1) (n—1)
matrix obtained from A by deleting the ith row gtidcolumn and i£ i

£ n. Obviously, computation is simple if det(A) igpanded along a
row or column that has maximum number of zerossTkeduces the
number of terms to be computed.

The following example will help you to get used talculating
determinants.

Example 1:

If A=

~N g e
w AN

6
1| calculated det (A).
2

Solution:
Let us expand by the first row. We have

51

41
IAuI{ :|:4*2—1*3:51|é2|:{7 2} =5*2=7*1=3

3 2

5 4
|Ag| =

}:5*3—4*7:-13.
7 3

Thus,

Al = (115 A | +(-1) 25| A 1] +(-1)"6*|A 1 =5-6-78 = -79

If the determinant of a square matrix A has theueatero, then the
matrix A is called a singular matrix, otherwisejsAcalled a nonsingular

matrix.
We shall now give some more definitions.
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Definition:

The inverse of an h n nonsingular matrix A is an n n matrix B
having the property

AB=BA=i
where | is an identity matrix of order nn.

the inverse matrix B if it exists, is denoted by &and is unique.
Definition:

For a matrix A = (g), the cofactor 4 of the element;ais given by
A = (1) My

where M, (minor) is the determinant of the matrix of order— 1)" (n
— 1) obtained from A after deleting its ith row ahe jth column.

Definition:

The matrix of cofactors associated with the m matrix Aisanni n
matrix A° obtained from A by replacing each element of A itsy
cofactor.

Definition:

The transpose of the cofactor matrik & A is called the adjoint of A
and is written as adj(A). Thus

adj(A) = (A)'

Let us now consider a system of n linear algebegjoations in n
unknowns

Xyt aet ... tax,=h
QX+t aXet ... taXn = by (1)

31Xyt X t .+ @nXn = by
where the coefficients;aand the constant i = 1, ...., n) are real and
known. This system of equations in matrix from rbaywritten as

Ax=b (2)
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where
a; ap ay, X b,
a'21 a'22 a2n X2 b2
A= X = b=
_anl an2 ann _ _Xn _ _bn .

A is called the coefficient matrix and has reahsats.

Our problem is to find the valueg x= 1, 2 ...., n if they exist, satisfying
Egn. (2). Before we discuss some methods of solthegystem (2), we
give the following definitions.

Definition:

A system of linear Eqgns. (2) is said to be conaisifeit has at least one
solution. If no solution exists, then the systersagl to be inconsistent.

Definition:

The system of Eqgns. (2) is said to be homogenddus=iO, that is, all
the elements;pb,, ....,  are zero, otherwise the system is called non-
homogeneous.

In this unit, we shall consider only non-homogersesystems.

You also know from you linear algebra that the hamogeneous
system of Eqgns. (2) has a unique solution, if tldrmx A is nonsingular.
You may recall the following basic theorem on tloévability of linear
systems (Ref. Theorem 4, Sec. 5.0, Unit 1, Bloddi@dule 1).

Theorem I

A non-homogeneous system of n linear equations knaown has a
unique solution if and only if the coefficient matA is nonsingular.

If A is nonsingular, thenA exists, and the solution of system (2) can be
expressed as

x = A'b.
In case the matrix A is singular, then the syst&jrh@s no solution if b

1 0 or has an infinite number of solutions if b =h@re we assume that
A is a nonsingular matrix.
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As we have already mentioned in the introductidre methods of
solution of the system (2) may be classified imto types:

) Direct Methods: which in the absence of rounfiesfors give the
exact solution in a finite number of steps.

1)) Iterative Methods: Starting with an approximateusioh vector
x© these methods generates a sequence of approxsoiat®n
vectors {¥“} which converge to the exact solution vector xtses
number of iterations K ¥ . Thus iterative methods are infinite
processes. Since we perform only a finite numbeitevations,
these methods can only find some approximatiorhéosblution
vector X. We shall discuss iterative methods latdunits 4 and
5.

In this unit we shall discuss only the direct mekhoYou are familiar
with one such method due to the mathematician Orame known as
Cramer’s Rule. Let us briefly review it.

3.2 Cramer’s Rule

In the system (2), let d = det(A) 0 and b* 0. Then the solution of the
system is obtained as

xi=d/d,i=1,2,..,n 3)
where dis the determinant of the matrix obtained from yArbplacing
the ith column of A by the column vector b. letilhgstrate the method
through an example.

Example 2

Solve the system of equations.
33Xy + X+ 2% =3

2X1 - 3X2 - X3 = -3

Xq - 2X2 - X3 = 4

using Cramer’s rule.

Solution: We have,

3 1 2
d=|A|=|1- 3- 1 =8
1 2
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3 1 2
d=|-3-3-
4 2

= 8 (first column in A is replaced by the columrcige b)

d2:

= N W
1

A W W
1

= 16 (second column in A is replaced by the colwmctor b

d3:

P N W
1

N W
1

B W W

= -8 (third column in A is replaced by the columector b)

Using (3), we get the solution
Xr=d/d=1;%=h/d=2; %=0d/d =-1

While going through the example and attempting $bd# assessment
exercises you must have observed that in Crameztbods we need to
evaluate n + 1 determinants each of order n, whersethe number of
equations. If the number of operations requireeMaluate a determinant
IS measured in terms of multiplications only, thém evaluate a
determinant of second order, i.e.,

{an a,

} =1 dpp— Az
A Ay

we need two multiplications or (2 — 1) 2! multi@itcons. To evaluate a
determinant of third order

a; &, a3
8y @, 8, |=(011802833-81180397-1 28018031 B 23039118 390183281 39028a1)

1 8p 5

we need 12 multiplication or (3 — 1)3! multiplicatis. In general, to
evaluate a determinant of nth order we need (mtripltiplications.
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Also for a system of n equations, Cramer's ruleumss n +
ldeterminants each of order n and performs n onssto obtain xi =
1, 2, ...., n. Thus the total number of multiplioas and divisions
needed to solve a system of n equations, using €&iamule becomes

M = total number of multiplications + total numbardivisions
=(n+1)(n -1)n'+n

In Table 1, we have given the values of M for diéi& values of n.

Table 1
Number of equations Number of operations
n

8
51
364
2885
25206
241927
2540168
29030409
359251210

Bom\lmmhwwz

From the table, you will observe that as n increaskee number of
operations required for Cramer’s rule increasey vapidly. For this
reason, Cramer’s rule is not generally used for4 hence for solving
large systems, we need more efficient methodshénnext section we
describe some direct methods which depend on tme fof the

coefficient matrix.

3.3 Direct Methods for Special Matrices

We now discuss three special forms of matrix A gqnE(2) for which
the solution vector x can be obtained directly.

Case 1

A =D, where D is diagonal matrix. In this case slystems of Eqgns. (2)
are of the form
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and det (A) —a &> .... &n

Since the matrix A is nonsingular,& O for 1, 2, ..... , N and we obtain
the solution as

Xj = b/ai, i=1,2,...,n.

Note that in this case we need only n divisionsltain the solution
vector.

Case 2.

A =L, where L is a lower triangular matrix;(z O, j > i). The system
of Eqns. (2) is now of the form

a11X1
S1X1 T X2
31Xy T aoXo + &3X3

T T
& oo

(4)

AniXy + SoXo + Xz T ...+ @y = by
and det (A) = aa,...an.

You may notice here that the first equation of $lgstem (4) contains
only x;, the second equation contains onjyard % and so on. Hence,
we find x from the first equation, xfrom the second equation and
proceed in that order till we get rom the last equation.

Since the coefficient matrix A is nonsingulas; & 0,i=1, 2, ..., n. we
thus obtain

X1 = by/agy

X2 = (0 — @1X1)/ag2

X3 = (b3 — &1X1 — &2X2)/8g3

[N

Xn=(bh-D, & %)@

n-

j=1

In general, we have for any i

n-1

xi=@-(x)a i=1,2 ..,n (5)

j=1
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For example, consider the system of equations
5X]_ =

-X1 - 2X% =-7

-X1 + 3% + 2% =5

From the first equation we have,

X1 = 1

From the second equation we get,

-7+
X2:—7_ 2X1 =3

and from the third equation we have,

5+ x,- 3x, _ 3
=T T

Since the unknowns in this methods are obtaingdarorder x, X, ....,
Xn, this method is called the forward substitutiortmod.

The total number of multiplications and divisiorseded to obtain the
complete solution vector X, using this method is

M=1+2+... +n=n(n+ 1)/2.
Case 3

A = U, where U is an upper triangular matrix; @ O, j < 1). The
system (2) is now of the form

H1Xy T aoXo T Xz T ... + Xy
SoXp T B3Xz T ... + @pXp
&axXz t+ ... T X,

by
b
bs (6)

An-1,n-Xn-1t B, Xn = Bhaa
@& X =Dy

and det (A) = a&o)...an.
You may notice here that the nth (last) equatiomaias only x, the (n

— 1)th equation containg &nd %.,; and so on. We can obtaipfxom the
nth equation, x, from the (n — 1)th equation and proceed in thdeor
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till we get x from the first equation. Since the coefficient ma# is
nonsingular,a* 0,i=1, 2, ...., n and we obtain

Xn = by/ann
Xn-1 = (Bn-1 = &h-1,Xn)/@n-1.n-1

n

x¢=(h- D a x)au

=2

or in general

x=(-> ax)Vai=1 2 ..n )

j=i+l

Since the unknowns in this method are determingtienorder X, X1,
..., X, this method is called the back substitution meéthbhe total
number pf multiplications and divisions needed bdamn the complete
solution vector x using this method is again n(h)/2.

Let us consider the following example.
Example 3
Solve the linear system of equations
2X1+ 3% —X% =5

-2% — X3 = -1

-5x=-15

Solution:
From the last equation, we have
X3 = 3.

From the second equation, we have

bz' Ay X5 :(' 7+ 3) —

ay (' 2) 2

Xo =

Hence from the first equation, we get

bl' a;, X, - a13X3:(5' 3.2+ 3):1

X1 =
a,, 2
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In the above discussion you have observed thasyeem of Egns. (2)
can be easily solved if the coefficient matrix Akgns. (2) has one of
the three forms D, L or U or if it can be transfednto one of these
forms. Now, you would like to know how to reduce thiven matrix A

into one of these three forms? One such methodhanasforms the
matrix A to the form U is the Gauss elimination hwt which we shall

describe in the next section.

3.4 Gauss Elimination Method

Gauss elimination is one of the oldest and mosjueatly used methods
for solving systems of algebraic equations. Itttslauted to the famous
German mathematician, Carl Fredrick Gauss (17778551 This
method is the generalization of the familiar metlddeliminating one
unknown between a pair of simultaneous linear egugt You must
have learnt this method in your linear algebra seMTH 122). In this
method the matrix A is reduced to the form U byngsihe elementary
row operations which include:

) interchanging any two rows
1)) multiplying (or dividing) any row by a non-zero siant

iii)  adding (or subtracting) a constant multiple of oo to another
row.

The operation R+ mR is an elementary row operation, that means, add
to the elements of the ith row m times the corredpwy elements of the
jth row. The elements in the jth row remain unchexhg

If any matrix A is transformed into another matiéxby a series of
elementary row operations, we say that A and Begrevalent matrices.
Consequently, we have the following definition.

To understand the Gauss elimination method leusider a system of
three equations:

Xy + X + aXz = by
B1X1 + BXo + X3 = 1 (8)
A1Xy + X + &aXz = by

Let &; * O. In the first stage of elimination we multiplpet first
equation in Egns. (8) by m= (-a+/a;1) and add to the second equation.
Then multiply the first equation by i= (-ai/&;1) and add to the third
equation. This eliminates; Xrom the second and third equations. The
new system called the first derived system themines
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Xy + X + Xz = by

&G Xz + &3 X3 = by (9)
ag) X + 8 X3 = by’

where,

_ a,
&y, = - —an
all
_ a,
ay = &3- —au3
all
W — a,
by =b,- =y
11
a
W _
a;, = ap- —an
1

_ g
ay = a3- —aus
11

In the second stage of elimination we multiply #exond equation in
(9) by mp, = (-a)/af)), a) * 0 and add to the third equation. This
eliminates x from the third equation. The new system calledstheond
derived system becomes

Xyt aXe taxs=h
1) (1) — LD
3-212 Xy + a213 X3 = bzl (11)
( — W2
Ax3 = b?

where

a(l)
(2) — A 32 (1)
ay = a; - ) a;
a,,

(1)
a;

(1)
22

b(32) — b(31) _ b(zl) (12)

You may note here that the system of Eqns. (1&nisipper triangular
system of the form (6) and can be solved usingbthek substitution
provided method @ * 0.

Let us illustrate the method through an example.
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Example 4
Solve the following linear system

2% + 3% — X3 =5
Ax; + 4% — 3% =3 (13)
22X+ 3% —X =1

using Gauss elimination method.
Solution:

To eliminate x from the second and third equations of the sygtE3h

add%1 = -2 times the first equation to the second d@qoaand

add -(-2)/2 = 1 times the first equation to thedhequation. We obtain
the new system as

2X1 + 3% — X3
-2% — X3
6% — 2%

5
-7 (14)
6

In the second stage, we eliminatefrom the third equation of system
(14). Adding -6/(-2) = 3 times the second equatmthe third equation,
we get

2% + 3% - X3 = 5
-2% - X3 = -7 (15)
-5x% =-15

System (15) is in upper triangular form and itsugoh is
X3=3,%=2,%=1.

You may observe that we can write the above praeeduore

conveniently in matrix form. Since the arithmetipetations we have
performed here affect only the elements of the im#trand the vector
b, we consider the augmented matrix i., [A|b] (mafk augmented by
the vector b) and perform the elementary now opmraton the

augmented matrix.

a, a, aglb

a
[Alb] = |8y 8y Ay bz RZ - % Rl, RS - = R1
By B Bglh ' "
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&; &, a5 bl a(l)
» ay a%b¥| Rs- — R
(@) Az
a; agpb
&, &, ol
o | el alled
a3 [

which is in the desired from where)aal, a, a), b, by, a2, a?
are given by Eqgns. (10) and (12).

Definition: The diagonal elements;aa); and & which are used as
divisors are called pivots.

You might have observed here that for a linearesysof order 3, the
elimination was performed in 3 — 1 = 2 stages.dnggal for a system of
n equations given by Eqns. (2) the elimination esfgrmed in (n — 1)
stages. At the ith stage of elimination, we elinbéng, starting from (i +

1th row up to the nth row. Sometimes, it may happbat the

elimination process stops in less than (n — 1)estaBut this is possible
only when no equations containing the unknownsleifteor when the

coefficients of all the unknowns in remaining edoiaé become zero.
Thus if the process stops at the rth stage of epatron then we get a
derived system of the form

aXytaXet ... taxa=bh
(1) 1) — 1
al)x, + ... + d”x, = bf

. (16)
arx + ... +3 Ux,=b"?

0=t

o<b

Wherer<s nandg* 0,d)* 0,...,4d "Y1 0.

In the solution of system of linear equations wa tlaus expect two
different situations
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1) r=n
2) r<n.

Let us now illustrate these situations through exlam
Example 5
Solve the system of equations
A+ X + X3 =4
X1+4% —2% =4
Xy + 2% —4x =2
using Gauss elimination method

Solution:

Here we have

4 1 114

(Ab]= |1 4 -2l Rz—%Rl,R3+%R1
1 2 -4
(4 1 1 |4 3
=[0 15/4 9/43| Re-Z Ry
0 9/4 15/4]3

(4 1 1 |4
-|0 15/4 -9/43
0 0 -12/56/5

using back substitution method, we get
X3=-1/2;%=1/2; x =1

Also, det (A) = 4 %’ G ;2) =-36

Thus in this case we observe that r = n = 3 andgthen system of
equations has a unique solution. Also the coefiicmatrix A in this
case is nonsingular. Let us look at another example

Example 6

Solve the system of equations
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3+ 2% +X3=3
2% + X + X% =0
6X;+ 2% + 4% =6

using Gauss elimination method. Does the solutiost2

Solution: We have

3 2 13 5
[Alb]: 2 1 10 Rz':—.3 R]_, R3—2R1

6 2 46
(3 2 113 ]

-0 -1/3 1/3-2| R;—6R
0 -2 20
'3 2 113 |

-0 -1/3 1/3-2
0 0 012

In this case you can see that r < n and elementsiband B” are all
non-zero.

Since we cannot determing fxom the last equation, the system has no
solution. In such a situation we say that the agoatare inconsistent.
Also note that det (A) = 0 i.e., the coefficienttmais singular.

We now consider a situation in which not all b’e abn-zero.

Example 7. Solve the system of equations
16X + 22% + 4% = -2
4 — 3% + 2% =9
12x; + 25% + 2% = -11
using gauss elimination method.

Solution:

In this case we have
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6 22 4]-2
1 3

[Alb]: 4 -3 29 Rz'le, Rg-—R]_

4
12 25 2-11

6 22 41-2
0 -17/2 1119/2 R:+ R
0 17/2 -1-19/2

6 22 4-2
0 -17/2 1(19/2
0 0 00

Now in this case r < n and elementsls’ are non-zero, but'p is zero.
Also the last equation is satisfied for any valfi@ Thus, we get

X3 = any value

X 2 Eg-x)
2772 B

1
= — (-2-22%—4
X1 16( % — 4%)

Hence the system of equations has infinitely maryt®ns.

Note that in this case also det(A) = 0.

The conclusions derived from Examples 4, 5 and & tare for any
system of linear equations. We now summarize tloeselusions as
follows:

)

ii)

If r = n, then the system of Eqns. (2) has a ungplation which
can be obtained using the back substitution methMumteover,
the coefficient matrix A in this case is nonsingula

If r<n and all the elements’y’, b, ...., 4" are zero then

the system has no solution. In this case we saythiasystem of
equations inconsistent.

If r < n and all the elements'ty, b"”, ....., 4" Y, if present, are

zero, then the system has infinite number of smhgti In this case
the system has only r linearly independent rows.
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In both the cases (ii) and (iii), the matrix A iagular.

Now we estimate the number of operations (multgslan and division)
in the Gauss elimination method for a system ahedr equations in n
unknowns as follows:

No. of divisions
1st step of elimination (n — 1) divisions
2nd step of elimination (n — 2) divisions

(n = 1)th step of elimination 1 divisions
\ Total number of divisions=(n—-1)+ (n—-2).+. + 1

=a (n_l) :n(nT-l)

No. of multiplications

1st step of elimination n(n — 1) multiplications

2nd step of elimination(n — 1) (n — 2) multiplicats

(n = 1)th step of elimination 2.1 multiplications

\ Total number of multiplications=n(n-1) + (l}(n-1)+.... + 2.1

=4 n(n-1)

=&n°-4&n

_n(n+ H@2n+ 1 n(n+ 1)
B 6 2
:%n(n+1)(n—1)

Also the back substitution adds n divisions (onasthn at each step)
and the numbers of multiplications added are

(n = 1)th equation 1 multiplication

(n = 2)th equation 2 multiplication

1st equation ( n — 1) multiplication
nn- 1)

2
Total operation added by back substitutiOH———nmz- Y +n :—n(n2+ Y

You can verify these results for n = 3 from Eqi®3.gnd (11).

\ Total multiplications =& (n-1) =

Thus to find the solution vector x using the Gaeksination method,
we need
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M = ”(”2' 1)+— N — 1) + 2 (n+1)
%[Zn +6n—2]
_n n
=% "3

operations. For large n, we may say the total nundfeoperations
.1 . . -
needed |s:—3 n® (approximately). Thus, we find that Gauss eliniimat

method needs much lesser number of operations ceohp@® the
Cramer’s rule.

It is clear from above that you can apply Gaussiektion method to a
system of equations of any order. However, whaphap if one of the
diagonal elements i.e., the pivots in the triangeddion process
vanishes? Then the method will fail. In such sitre we modify the
Gauss elimination method and this procedure igdallvoting.

Pivoting

In the elimination procedure the pivotg,aal;, ..., 4" " are used as

n

divisors. If at any stage of the elimination onetluiése pivots say'd’,
(@9 = a;), vanishes then the elimination procedure caneatdntinued

further (see Example 8). Also, it may happen thatgivot 4, though

not zero, may be very small in magnitude compacethé remaining
elements in the ith column. Using a small numbea dsvisor may lead
to the growth of the round-off error. In such ca#ies multipliers (e.qg.

(i- 2) (i- 3)
- al 1i - al 2,i

a(.l 1) ! (| 1)

multiplier will lead to magnification of error botturing the elimination
phase and during the back substitution phase otdh&ion. To avoid
this we rearrange the remaining rows (ith row uptio row) so as to
obtain a non-vanishing pivot or to make it the é&sfgelement in
magnitude in that column. The strategy is callading (see Example
9). The pivoting is of the two types; partial pivif and complete

pivoting.

) will be larger than one in magnitude. The usdaaje

Partial Pivoting

In the first stage of elimination, the first colunm searched for the
largest element in magnitude and this largest ekémsethen brought at
the position of the pivot by interchanging the tfirew with the row
having the largest element in magnitude in thet faslumn. In the
second stage of elimination, the second columnesrched for the
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largest element in magnitude among the (n — 1) eisnleaving the
first element and then this largest element in ritaga is brought at the
position of the second pivot by interchanging teeosid row with the
row having the largest element in the second colurhis searching and
interchanging of rows is repeated in all the n —sthges of the
elimination. Thus we have the following algorithanfind the pivot.

Fori=1, 2, .....,, n, find j such that

| = max [a | i<ks n

and interchange rows i and j.

Complete Pivoting

In the first stage of elimination, we search thérermatrix A for the
largest element in magnitude and bring it at th&tm of the pivot. In
the second stage of elimination we search the squatrix of order n —
1 (leaving the first row and the first column) file largest element in
magnitude and bring it to the position of secomngbpiand so on. This
requires at every stage of elimination not onlyititerchanging of rows
but also interchanging of columns. Complete piwgptia much more
complicated and is not often used.

In this unit, by pivoting we shall mean only palrpavoting.

Let us now understand the pivoting procedure thinaesxgamples.
Example 8

Solve the system of equations

X1+ X +X=6

3X1 + 3% + 4% =20

2X1 + X + 3% =13

Using Gauss elimination method with partial pivgtin

Solution:

Let us first attempt to solve the system withowbping. We have

1 1 1|6
[Alb] =13 3 4{20 Rz— 3'%_, R3— 2'%_
2 1 313
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1 1 16
=10 0 12
0 -1 11

Note that in the above matrix the second pivotthassalue zero and the
elimination procedure cannot be continued furtheless, pivoting is
used.

Let us now use the partial pivoting. In the firsiuomn 3 is the largest
element. Interchanging the rows 1 and 2, we have

3 3 420 1 5
[Alb]: 11 1|6 Rz-éR]_, Rg'é Rl
2 1 313

3 3 4 | 20
=0 0 -1/3-2/3
0 -1 1/3|-1/3

In the second column, 1 is the largest elementagnitude leaving the
first element. Interchanging the second and tlowisrwe have

3 3 4|20
Ab]= |0 -1 13 |-1/3
0 0 -1/3-2/3

You may observe here that the resultant matrir igsiangular form and
no further elimination is required. Using back ditbson method, we
obtain the solution

X3:21)©:1’)@.:3'

Let us consider another example.

Example 9

Solve the system of equations

0.0003 x + 1.566 % = 1.569

0.3454 % — 0.436 % = 3.018
17)
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using Gauss elimination method with and pivotingsséme that the
numbers in arithmetic calculations are roundedto Bignificant digits.
The solution of the system (17) isx 10, % = 1.

Solution:
Without Pivoting

~a, 0.0003 1151.0 (rounded to four places)

a® =-0.436 — 1.566 1151
-0.436 — 1802.0 — 1802.436

-1802.0

b® =3.018 — 1.569 1151.0
= 3.018 — 1806.0
= -1803.0

Thus, we get the system of equations
0.0003 x + 1.566 % = 1.569
- 1802.0 x=-1803.0

which gives
_1803.C _
Xo = 1802.C 1.001
. = 1.569- 1.566 1.00 _1.569- 1.56¢
! 0.0003 0.0003
=3.333

which is highly inaccurate compared to the exakitsm.

We interchange the first and second equationsipdtd get
0.3454 x — 0.436 x = 3.018
0.0003 x + 1.566 % = 1.569

we obtain

a =1.566 — 0.0009 (0.436)
1.566 — 0.0004
= 1.566

b =1.569 — 3.018 (0.0009)

=1.569 - -.0027
= 1.566
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Thus, we get the system of equations

0.3454 x — 0.436 x = 3.018
1.566 x= 1.566

which gives
Xo = [

_ 3.018+ 0.43¢_ 3.454 _

_ - =1
X1 0.3454 0.3454 10

which is the exact solution.
We now make the following two remarks about pivgtin

Remark: If the matrix A is diagonally dominant i.e.,

ENE Zn:|agi| , then no pivoting is needed. See Example 5 in wAiés
i=1

=1
diagonally dominant.
Remark:

If exact arithmetic is used throughout the compaigtpivoting is not
necessary unless the pivot vanishes. However,nifpeation is carried
up to a fixed number of digits, we get accuratellissf pivoting is used.

There is another convenient way of carrying outgiveting procedure.
Instead of physically interchanging the equatiofisttee time, the n
original equations and the various changes madeéh@m can be
recorded in a systematic way. Here we use an(n + 1) working array
or matrix which we call W and is same as our augetmatrix [A|b].
Whenever some unknown is eliminated from an eqoative changed
coefficients and right side for this equation aaécalated and stored in
the working array W in place of the previous caaéints and right side.
Also, we use an n-vector which we call p 1) ¢o keep track of which
equations have already been used as pivotal equéiad therefore
should not be changed any further) and which egustare still to be
modified. Initially, the ith entry jpof p contains the integeri,i=1, ........
n and working array W is of the form
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(a, a, a, |b, |

a21 a'22 a‘2n b2
W = (wy) =

_anl a2 A bnj

Further, one has to be careful in the selectiothefpivotal equation for
each step. For each step the pivotal equation brisgelected on the
basis of the current state of the system underideration i.e. without

foreknowledge of the effect of the i = 1, ......where dis the number

d = max |g|

1-j<n

At the beginning of say kth step of elimination,p&k as pivotal
equation that one from the available n — k, whiels the absolutely
largest coefficient of xrelative to the size of the equation. This means
that the integer j is selected between k and mvfoch

We can also store the multipliers in the workingagrW instead of
storing zeros. That is, if; ps the first pivotal equation and we use the

multipliers my;,, 1 = 2, ..... , N to eliminate;¥rom the remaining (n — 1)
positions of the first column then in the first @ein we can store the
multipliers m,i 1, i = 2, ....., n, instead of storing zeros.

Let us now solve the following system of linear agons by scaled
partial pivoting by storing the multipliers and mtiining pivotal
vector.

Example 1Q

Solve the following system of linear equations wathoting

X1 —% +3%=3

2X1+X2+4X3:7

33X+ 5% —2%=6

Solution:

Here the working matrix is
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1 -1 3 3
W=[2 1 4 7! p=[p,ppl =11 2, 3
3 5 -2 6

andd =3,d=4and ¢ =5.

Note that d’'s will not change in the successivpste

W _1|Wea| 2 1 |w,,| 3
Step 1: Now—ettl = = [Te2al = 2 = = [ Teaal - 2
PLNOWI T T3, T272 d, 5
: 3_.11

s =
Slnce5 5 3

HenceP1=3,@=2and p=1.

We use the third equation to eliminate ftom first and second
equations and store corresponding multipliers atiaf storing zeros in
the working matrix.

o W,
The multipliers are gp; = —=,i=2, 3
pr,l

Th f m, 4 = —> =21 — g

erefore/Mz1 w, W, 3
W 1
andm,= P =—= ==
P11 W3:1 3

After the first step the working matrix is transfoed to

(1/3) -8/3 113 1
W= (2/3) -7/3 16/3 3| p=(n. P Pa)' =(3,2, 1)
3] 5 -2 6

W, | _[Woo| _7/3_ 7

Step 2: an, q 7 17
|Wo., | _ [Waia| _ 8/3 _8
dp, d, 3 9

Nowg > 112 so that we have p ={p, ps)' = (3, 2, 1J.
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Multiplieris m = —2=,i=3

W, _-7/3_z
2w -8/3 8

P22

That is, we use the first equation as pivotal équab eliminate xfrom
second equation and also we store the multipli€@erAhe second step,
we have the following working matrix.

@ 8

2 73 531 17

V\/Z): — g z E p:[3, 1, ZT
€>5 -2 6

In the working matrix the circled numbers denote ltipliers and

squared ones denote pivotal elements. Rearrangasmgduations (i.e.,
3rd equation becomes the first equation, 1st besame 2nd and 2nd
becomes the third) we get the reduced upper triangystem which
can be solved by back substitution.

3X1 + 5% —2%=6

8 11

= Xot+t = X=1
3% 37
o1 17
24 %7 '8

By back substitution, we get x 1, % =1 and ¥ = 1.
We now make the following two remarks.
Remark:

We do not interchange rows in Step 1 and 2, insteadmaintain a
pivotal vector and use it at the end to get uppangular system.
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Remark:

We store multipliers in the working matrix so thve¢ can easily solve
Ax = ¢, once we have solved Ax = b. This will bepkned to you in
detail in Unit 2 when we discuss the method of ivlirtg inverse of a
matrix A.

We shall now describe the triangularization methaich is also a
direct method for the solution of system of equadio

In this method the matrix of coefficients of thedar system being
solved is factored into the product of two triarayumatrices. This
method is frequently used to solve a large systeegoations. We shall
discuss the method in the next section.

3.5 LU Decomposition Method

Let us consider the system of Eqns. (2), where A ison-singular
matrix. We first write the matrix A as the prodwita lower triangular
matrix L and an upper triangular matrix U in thenfio

A=LU
or in matrix form we write (18)
la, Ay, a, | [l O 0w, up, Uy, |
a'21 a22 a'2n l 21 l 22 O O u22 u2n
= (19)
_anl anz ann_ _Inl In2 Inn__O O unn_

The left side matrix A has’relements, whereas L and U have 1 + 2 + ...
+n =n(n + 1)/2 elements each. Thus, we h&vemunknowns in L and
U which are to be determined. On comparing the esponding
elements on two sides in Eqgn. (19), we géteguations in h+ n
unknowns and hence n unknowns are determined. Tlasget a
solution in terms of these n unknowns i.e., weaatparameter family
of solutions. In order to obtain a unique solutiwa either take all the
diagonal elements of L as 1, or all the diagonaingints of U as 1.

For yy = 1,1 =1, 2, ..., n, the method is called theol® LU

decomposition method. For £1,1=1, 2, ...., n we have Doolittle LU
decomposition method. Usually Crout’'s LU decompositmethod is
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used unless it is specifically mentioned. We shmliv explain the
method forn =3 withju=1,1=1, 2, 3. We have

a; a5 a3 l, 0 o 1 u, ug

a'21 a22 a23 = l 21 l 22 O O 1 u23
a31 a32 a33 I 31 I 32 I 33 O O 1
or
ail a12 a13 Ill IllulZ |11U13
aZl a22 a23 = I21 |21u22 + |22 I21""23 + |22u23
a31 a32 a33 |31 I31""12 + |32 |31u13 + |32u23 + |33

On comparing the elements of the first column, Wwiain

iy=a1, by =, 11 = as; (20)
I.e., the first column of L is determined.

On comparing the remaining elements of the firat,nwe get

113U1o = &p; 131U13 = @3

which gives

Ui = @l lag; Uiz = ad/lig (21)

Hence the first row of U is determined
On comparing the elements of the second columrgewe

1ogUso + 1o = &
Iaiuio + 132 = &2

which gives
{I 22 =8y | 21u12} 22)
|32 =35~ I31"'12

Now the second column of L is determined.

On comparing the elements of the second row, we get

T21U13 +1oolp3 = &3

which gives y3 = (a3 — 1o i)/l (23)
and the second row of U is determined.

On comparing the elements of the third column, efe g
131U13 + lgolipz + 133 = @3

which gives 33 = a3 — 131U13 — 132U23 (24)
You must have observed that in this method, wearate between getting a
column of L and a row of U in that order. If instleaf u; =1 1, 2, ...., n, we
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take 3 =1,i=1, 2, ...., n, then we alternative betwgetting a row of U and
a column of L in that order.

Thus, it is clear from Eqgns. (20) — (24) that we datermine all the elements
of L and U provided the nonsingular matrix A is lsulat

sl O {au au} o
a, ay

Similarly, for the general system of Eqns. (2),atxain the elements of L and
U using the relations

j=1
1j =g - Z LicUj, i 3 ]
i=1

=
Uj = (g - Y, Lig)/Li, i3 ]

i=1

[y

ui =1
AlSO, det (A) = 11122 ..... ) l]n.

Thus w can say that every nonsingular matrix A banwritten as the
product of a lower triangular matrix and an upp&migular matrix if all
principal minors of A are nonsingular, i.e., if

a, a,

5, a, 10,8, a, ay! 0, ... |A[* 0.

:| aCI.1 a:I.2 a:l.3
8 8y Gy

gt 0[

Once we have obtained the elements of the matticaisd U, we write the
system of equations

Ax=Db (25)
in the form
LUx=Db

(26)
The system (26) may be further written as the fihgy two systems
Ux=y (27)
Ly=b (28)

Now, we first solve the system (28), i.e.,
Ly=hb,

using the forward substitution method to obtain sledution vector y. Then
using this y, we solve the system (27), i.e.,

Ux=y,
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using the backward substitution method to obtagnsiblution vector x.

The number of operations for this method remaires ghme as that in the
Gauss-elimination method.

We now illustrate this method through an example.

Example 11

Use the LU decomposition method to solve the systkeguations
X1+X+x3=1

4%+ 3% — X% =6

X1 +5%+3x=4

Solution: Using } =1,i=1, 2, 3, we have

IZlull |21u12 + u22 |21u13 + u23

I31""11 |31u12 + |32u22 |31u13 + |32u23 + u33

On comparing the elements of row and column alterelg, on both sides, we
obtain

first row ‘w1=1, u=1,usz=1
first column =4, =3
second row a--1, uz=-5
second column p=-2

third row S 3=-10

Thus, we have

1 0 O 1 1 1
L=(4 1 0OjU=|0 -1 -5
3 -2 1 0 0 -10

Now from the system
Ly=b

or
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1 0 0|y 1

4 1 0]|y,|=|6

3 -2 1|y, 4
we get

yi=1,%=2,%=5
and from the system
Ux=y
or

1 1 1 ||x

1
0 -1 -5||x|=|2
0 0 -10||x| |5

we get
X3=-1/2, % =1/2, x = 1.

4.0 CONCLUSION
Same as in the summary.

5.0 SUMMARY

In this unit we have covered the following:

1) For a system of n equations
Ax=Db (see Eqn. (2))

in n unknowns, where A is h n non-singular matrix, the
methods of finding the solution vector x may be dully
classified into two types: (1) direct methods amyl iferative
methods

2) Direct methods produce the exact solution imndef number of

steps provided there are no round-off errors. Cramele is one
such method. This method gives the solution veasor

xi:%izl,z,...,n

where d = |A| and;ds the determinant pf the matrix obtained
from A by replacing the ith column of A by the cola vector b.
Total number of operations required for Cramerig iia solving

a system of n equations are

M=(n+1)(n=-2n!+n
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Since the number M increases very rapidly, Cramers is not
used forn > 4.

3) For larger systems, direct methods becomes efficent if the
coefficient matrix A is in one of the forms D (d@wgl), L (lower
triangular) or U (upper triangular).

4) Gauss elimination method is another direct metfar solving
large systems (n > 4). In this method the coefficimatrix A is
reduced to the form U by using the elementary r@arations.
The solution vector x is then obtained by using theck
substitution method. For large n, the total numloéreperations

required in Gauss elimination method %93 (approximately).

5) In Gauss elimination method if at any stagehw &limination
any of the pivots vanishes or become small in ntagsi
elimination procedure cannot be continued furtheisuch cases
pivoting is used to obtain the solution vector x.

6) Every non-singular matrix A can be written as firoduct of a
lower triangular matrix and an upper triangular mxaby the LU
decomposition method, if all the principal minoifsfoare non-
singular. Thus, LU decomposition method, which is a
modification of the Gauss elimination method canused to
obtain the solution vector x.

6.0 TUTOR-MARKED ASSIGNMENT (TMA)

-2 0 2

1)  IfA=

3
2
1 calculate det (A).
2

1
0
1 -3 1
2) Solve the system of equations
3%, + 5% =8
X1+ 2% —X =0
X1 —6% +t4x=1

using Cramer’s rule.

3) Solve the system of equations
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4)

5)

6)

7

8)

Xp+ 2% — 3%+ X =-5

%+3%+X=6
2%+ 3%+ X3+ X4 =4

using Cramer’s rule.

Solve the system of equations

X1 =1
2X1:X2 =1
33X — X — 2% =0
4X1 + X — 3% + Xy =3

X1 —2% —Xg— 2% +X%X =1
using forward substitution method.
Solve the system of equations

X1— 2% + 3% — 4% + 5% =3
% — 2% + 3% — 4% = -2

X— 2%+ 3% =2
2% =-1
5% 1

using backward substitution method.

Use Gauss elimination method to solve the systieaguations
Xg+ 2% + X3=3

X1 — 2% — 4% = -2
2% + 3% — X3 = -6

Solve the system of equations

-3

B, N O R
o W kFEk N
[ = S S SN
= B~ OO O

Use Gauss elimination method to solve the systieaguations
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9)

10)

11)

12)

7.0

-1 0 0 O0x 1
2 -1 0 0]x 0
-1 2 -1 0|x|=|0
0 -1 2 -1|x, 0
0 0 -1 2]x 1

O O O L N

Solve the system of equations

0.729x + 0.81y + 0.9z = 0.6867
Xx+y+z=0.8338
1.331x + 1.21y + 1.1z = 1.000

using gauss eliminating method with and without ogiivg.
Round off the numbers in arithmetic calculations fmur
significant digits. The exact solution of the systeounded to
four significant digit is

X =0.2245,y=0.2814 z=0.3279

Use the LU decomposition method with & 1, i =1, 2, 3 to
solve the system of equations given in Example 11.

Use the LU decomposition method with4 1, i =1, 2, 3 to
solve the system of equations given in TMA Questioro. 1.

Use L U decomposition method to solve the systé equations
given in TMA Question 4 no. 3.
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1.0 INTRODUCTION

In the previous unit, you have studied the Gaussimhtion and LU
decomposition methods for solving systems of algielequations A x =
, when A is a i n nonsingular matrix. Matrix inversion is another
problem associated with the problem of finding sohs of a linear
system. If the inverse matrix Aof the coefficient matrix A is known
then the solution vector x can be obtained from Ab. In genral,
inversion of matrices for solving system of equagichould be avoided
whenever possible. This is because, it involvesitgreamount of work
and also it is difficult to obtain the inverse ately in many problems.
However, there are two cases in which the expticmputation of the
inverse is desirable. Firstly, when several systequations, having the
same coefficient matrix A but different right hasidle b, have to b e
solved. Then computations are reduced if we fingt the inverse matrix
and then find the solution. Secondly, when the el of A
themselves have some special physical significahgeinstance, in the
statistical treatment of the fitting of a functitm observational data by
the method of least squares, the elements ofjife information about
the kind and magnitude of errors in the data.

In this unit, we shall study a few important meteddr finding the
inverse of a nonsingular square matrix.

2.0 OBJECTIVES

After studying this unit, you should be able to:

. obtain the inverse by adjoint method forn < 4
. obtain the inverse by the Gauss-Jordan and LU dposition
methods
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. obtain the solution of a system of linear equatioiseng the
inverse method.

3.0 MAIN CONTENTS

3.1 The Method of Adjoints

You already know that the transpose of the matfixhe cofactors of
elements of A is called the adjoint matrix andesokted by adj(A).

Formally, we have the following definition.
Definition:

The transpose of the cofactor matrix @ A is called the adjoint of A
and is written a adj(A).

adj(A) = (A)'
The inverse of a matrix can be calculated usingatheint of a matrix.

E obtain the inverse matrix 2of A from

11

= det(a) 290

1)
This method of finding the inverse of a matrix aled the method of
adjoints.

Note that det(A) in Eqn. (1) must not be zero dretdéfore the matrix A
must be nonsingular.

We shall not be going into the details of the mdthere. We shall only
illustrate it through examples.

Example 1 Find A™ for the matrix

1
1

>

I
~ O Ul
w N o

-1

and solve the system of equations
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Ax=Db
(2)
for
2 1 1
)] b= |1 i) b=[0| i) b=|2
3 0 3
Solution:

Since det(A) = -1t 0, the inverse of A exists. We obtain the cofaatatrix
A° from A by replacing each element of A by its cadai@s follows:

5 4 -8
A°=|11 -9 17
6 -5 10
5 11 6
\ adj(A)=(A)"=[4 -9 -5
8 17 10
Now A= — L adj(A)
det(A)

5 11 6 5 -11 -6
\Al=-=|4 -9 -5|=|4 9 5
8 17 10 8 -17 -10

Also the solution of the given system of equatiares

5 -11 -61|[2 3
i) x=Ab=14 9 5 ||1]=|2
8 -17 -10| 3 3

5 -11 -6] [1 5
i) x=A'b={4 9 5| |0|l=|4
8 -17 -10| |0 8
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5 -11 -6 1 9
i) x=A'=4 9 5| |2/=|7
8 -17 -10 3 12

We now take up an example in which the given ma#ixs lower
triangular and we shall show that its inverse sa lower triangular
matrix.

Example 2 Find A™ for the matrix

>

I
FNON R
U w o
o o o

Solution:
We have

det(A) = 181 0. Thus A exists.

Now
18 -12 -2
A°=1|0 6 -5
0 0 3
18 0 O 1 0 0
4 (AT 1

= =— |12 6 0|=|2/3 1/3 0
adjA) 18
-2 -5 3 1/9 -5/18 1/6

Thus, A is again a lower triangular matrix. Similarly, wen illustrate
that the inverse of an upper triangular matrixgaia upper triangular.

Example 3

Find A for the matrix

1 2 3
A=]|0 4 5
0 0 6
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Solution:

Since, det(A) = 24 0, A* exists.

We obtain
24 0 O
A°=112 6 O
-2 -5 4

24 -12 -2 1 -1/2 -1/12
\ A'1:2—14 0 6 -5[=(0 1/4 -5/24

0O O 4 0O O 1/6
which is again an upper triangular matrix.

The method of adjoints provides a systematic proeedo obtain the
inverse of a given matrix and for solving systerhBrn@ar equations. To
obtain the inverse of an n n matrix, using this method, we need to
evaluate one determinant of order n, n determinaaté of order n — 1
and perform hdivisions. In addition, if this method is used gmlving a
linear system we also need matrix multiplicatiorheTnumber of
operations (multiplications and divisions) needed,using this method,
increases very rapidly as n increases. For thsorgahis method is not
used when n > 4.

For large n, there are methods which are efficamd are frequently
used for finding the inverse of a matrix and sajvimear systems. We
shall now discuss these methods.

3.2 The Gauss-Jordan Reduction Method

This method is a variation of the Gauss eliminatmaathod. In the

Gauss elimination method, using elementary row aipmis, we

transform the matrix A to an upper triangular matd and obtain the
solution by using back substitution method. In Gailgrdan reduction
not only the elements below the diagonal but altsodlements above
the diagonal of A are made zero at the same timether words, we
transform the matrix A to a diagonal matrix D. Thimgonal matrix

may then be reduced to an identity matrix by divgdeach row by its
pivot element.

Alternately, the diagonal elements can also be mauly at the same
time when the reduction is performed. This transfrthe coefficient
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matrix into an identity matrix. Thus, on completiohthe Gauss-Jordan
method, we have

[Alb] =—=> [l|d] (3)
The solution is then given by
xi=d,i=1,2, ... . n 4)

In this method also, we use elementary row operattbat are used in
the Gauss elimination method. We apply these opasatoth below
and above the diagonal in order to reduce all theliagonal elements
of the matrix to zero. Pivoting can be used to nthkepivot non-zero or
make it the largest element in magnitude in thatiroa as discussed.
We illustrate the method through an example.

Example 4 Solve the system of equations
X1+ X + X =1

4x;+ 3% — X3 =6

X1+ 5% +3x=4

using Gauss-Jordan method with pivoting.

Solution: We have

11 12
[Alb] =4 3 -16| (interchanging first and second row)
35 34
4 3 -16
»1111R-ERR-§R
2 4 1, I3 4 1
35 34

4 3 -1| 6
» |0 1/4 5/4|-1/2| (interchanging second and third row)
0 114 15/4/-1/2

4 3 -1] 6
12

» |0 114 15/4-1/2|R3—1/11 R, Rl-ﬁRz
0 1/4 5/4|-1/2
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4 0 -56/1172/11 c6 33
»|0 11/4 15/4 |-1/2 R1+ER3’ R2-§R3
_O 0 10/11 |- 511
4 0 0| 4
» |0 11/4 0 (118
0 0 1011511 o
- R1/4 (divide first row by 4),
1ilR2(divide second row by 11/4),
%Rs(divide third row by 10/11).
100 1
»|0 1 0]1/2
0 0 1-1/2

which is the desired form.

Thus, we obtain

1 1
X1:11)@251X3:-§'

The method can be easily extended to a generamyst n equations.
Just as we calculated the number of operations eneddr Gauss

elimination method in the same way you can vehtthe total number
2

of operations needed for this method is !\%:FF + % +n.

Clearly this method requires more number of openatcompared to the
Gauss elimination method. We therefore, do not tlse method

generally for solving system of equations but is/xadmmonly used for
finding the inverse matrix. This is don by augmegtthe matrix A by

the identity matrix | of the order same as thatAofUsing elementary
row operations on the augmented matrix [A]l] weumthe matrix A to

the form | and in the process the matrix | is tfarmed to A*

That is
[All —> [IIA-] (5)

We now illustrate the method through examples.
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Example 5 Find the inverse of the matrix

3 1 2
A=|2 -3 -1
1 -2 1

using the Gauss-Jordan method.

Solution;: We have

3 1 2100
All=]2 -3 -100 1 ©

1 -2 1001R/3

1 1/3 2/3]1/3 0 O
» (2 -3 -1/0 1 O
1 -2 1|0 01 R_2R.R-R
1 1/3 2/311/3 0 O
» |0 -11/3 -7/3]-2/3 1 0

0 -73 13|-1/3 0 1 3R/11

1 1/3 2/3|1/3 0 0 L .
» 0 1 7/112/11 -3/11 O Rl-éRZ’ R3+§R2
0 -7/3 1/3|-1/3 0 1

[ERN
o

5/11|3/11 1/11 O 11
7/11|2/11 -3/11 O E)Rg
20/1141/21 -7/11 1

» |0

o
o

[EEN
o

5/113/11 1/11 0 . ,
7/112/11 -3/11 0 | Ri- 73Ra Re- 5Rs
0 [1/20 -7/20 11/20

» |0

[ERN

o
o
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1 0 014 14 -1/4
» |0 1 0]3/20 -1/20 -7/20
0 0 11720 -7/20 1120

Thus, we obtain

1/4 1/4 -1/4
Al={3/20 -1/20 -7/20
1/20 -7/20 11/20

Example 6 Find the inverse of the matrix

2 0 0 0

1 1/2 0 0
A=

1 0 -3 0

1 -7/2 -17 55/3

using the Gauss-Jordan method
Solution:

Here we have

2 0 0O 01000
Al = 1 12 0 01]0100 1o
"2 0 -3 0l0o010 2%
1 -7/2 -17 55/30 0 0 1
1 0 0 0112 000
1 12 0 0/0 100
»
2 0 -3 0/0 010
1 -7/2 -17 55/310 0 0 1
R-R,R-2R, R - R
1 0 0O 012 000
0 12 0 0 /|-1/2 100 R
»
0 0 -3 0/|-1 010 2
0 -7/2 -17 55/3-1/2 0 0 1
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O 0 0|12 000
1 0 0|-1 200 7,
O -3 0|-1 010 * 2°
-7/2 -17 55/3-1/2 0 0 1
0 0 Oly2 000
1 0 01]-1 200 1
0 -3 0[-1 010 ('§R3)
0 -17 55/3-4 7 0 1
0O 0 O0jy20 0 O
1 0 01]-12 0 O 1
0 1 0|3 0o -1U30 ( 1_7R4)
0 -17 55/3-4 7 0 1
0O 0 0|2 0O 0 0
1 0 o0]-1 2 0 0
0o 1 o|u3 o -uz o |TuTe
0 -17 55/34/7 -717 0 -117
00 0 |12 0 0 0
10 0 | -1 2 0 0 51
01 0 | 13 0 -13 0 ( 5_5R4)
0 0 -55/51-5/51 —7/17 U3 -117
000L2 0 0 0
100-1 2 0 0
0103 0 -13 0
0 0 1111 2155 -17/55 3/55
0 0 0
2 0 0
0 -1/3 0

1/11 21/55 -17/55 3/55

is the inverse of the given lower triangular matrix
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Let us now consider the problem of finding the mseeof an upper

triangular matrix.
Example 7.

Find the inverse of the matrix

1 3/2 2 1/2

0O 1 -4 1
A=

0O O 1 2/3

0O O 0 1

Using the Gauss-Jordan method.

1 32 2 121 000
[A“]_01—4 10100R::,R
"0 0 1 2/30 010 Yt 27
0 0 0 1/0 00 1
1 0 8 -1]1 -3/2 0 0O
01 -4 10 1 00
»
00 1 2/30 0 10
00 0 10 0 01
1 0 0 -19/31 -3/2 -8 0
010 130 1 4 0
»
001 2/30 0 1 0
000 10 0 01
19 11 2
R+ —R, R-—R, R;- =R
134234334
1 0 0 01 -3/2 -8 19/3
01000 1 4 -11/3
»
00100 O 1 -2/3
00010 0 O 1

R, -8R, Ry + 4R
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Hence

1 -3/2 -8 19/3
0 1 4 -11/3
0O O 1 -2/3
0O O 0 1

Al=

which is the inverse of the given upper trianguteatrix.

Note that in Example 2, 3, 6 and 7, the inverseaolower/upper
triangular matrix is again a lower/upper triangutaatrix. There is
another method of finding the inverse of a matrixwhich uses the
pivoting strategy. Recall that in Sec. 3.4 of Uhjtfor the solution of
system of linear algebraic equation Ax = b, we skdwou how the
multipliers my;’'s can be stored in working array W during the jpssc
of elimination. The main advantage of storing thesatipliers is that if
we have already solved the linear system of egusit#o< = b or order n,
by the elimination method and we want to solvesy&em Ax = ¢ with
the same coefficient matrix A, only the right sioeing different, then
we do not have to go through the entire eliminapoocess again. Since
we have saved in the working matrix W all the npliéirs used and also
have saved the p vector, we have only to repeabpleeations on the
right hand side to obtaif, such that Ux $ is equivalent to Ax = c.

In order to understand the calculations necessametivef , from c

consider the changes made in the right side b dutie elimination
process. Let k be an integer between 1 and n, asulee that the ith
equation was used as pivotal equation during step tke elimination
process. Then i spinitially, the right side of equation i is just b

If k > 1, then after Step 1, the right side is
b =h -m, b,,

If k > 2, then after Step 2, the right side is
b(2) o b(l) - m2 b(l)
i i P2
=b—-my By —my b(plz)

In the same manner, we have the right side of equat p, as
b** =h—my by —mp b} - ... - Mg bY 2 (6)

Replacing i by pin Eqgn. (6), we get
bi)t ? = bpk - mpm bpl - mpk'z bg;) T T rTLk'krlbi)':-lz) (7)
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k=1, 2, ..... . n

Also, sincet = by ”,j=1,2,..,n, we can rewrite Eqn. (7) as

%k) = %k- mPk,1 %-) - mpk,z %2) LR - rrl)k.krl %'2-1 (8)
k=1, ..,n.

Egn. (8) can then be used to calculate the entficf. But since the
multipliers my’s are stored in entries;‘8 of the working matrix W, we
can also write Eqn. (8) in the form

k-1

Bo =B -8 Wyt k=1,...n 9)

J

Hence, if we just know the final content of thesfin columns of W and
the pivoting strategy p then we can calculate thet®n x of Ax = b by
using the back substitution method and writing

B - ék' WX
= e ,k=nn-1,...,1 10
X W, (10)
The vector X = [X X5 ....... %] will then be the solution of Ax = b.

For finding the inverse of an h n matrix A, we use the above
algorithm. We first calculate the final contentstbé n columns of the
working matrix W and the pivoting vector p and tisaive each of the n
systems

Ax=g,j=1, ... , N

(11)
whereg=[1 O...... 0,e=[0 1 0...0]..... ,e=[0 O0.... i
with the help of Eqn. (9) and (10). Then for each [L, ...... , N the

solution of system of system (11) will be the cepending column of
the inverse matrix A The following example will help you to
understand the above procedure.

Example 8

Find the inverse of the matrix

-1
0
2

>
I
RN R
RPN

using partial pivoting.
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Solution:

Initially p = [p1, P2, pl" = [1, 2, 3] and the working matrix is

1 2 -1
w@=12 1 o
11 2

Nowd, =2,d=2,¢=2.

|Wp | 1 |Wp | 2 |Wp | 1
t l: 1,1 - 2,1 :_:1 3,1 -
Step d, 2" d, 2 ©od, 2
11
> = = =
1 2,2\ pp=2,p=1, =3

We use the second equation to eliminate from first and third
equations and store corresponding multipliers atiaf storing zeros in
the working matrix. The multipliers are

W_. .
m, =—>,i=2,3
. prl
w 1
\'m, =y = Per = =
P22 WpL1 2
m — rr}s — Wp3.1 —_ 1
= 1= = ——
P3a W 2

we get the following working matrix

3/2 -1
wh=112] 1 0] ,p=(213)

qp:yz 2

_|WP2,2| _ |WP1,2| _ 3/ 2 _ §
P, T d, 2 4
|WF’3,2| — |ng,2| — 3/ 2 — §

dp3 dg 2 4
. 3_3
Since = 7 sowe take p = (2, 1,3)
Now m, = Wo. ,i=3
1,2 W
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We use the first equation as pivotal equation tmiakte % from the
third equation and also store the multipliers. Afiee second step we
have the following working matrix

1/2 [3/2] -1
W® = 1 0|,p=(21,3)
3

Now in this case, # is our final working matrix with pivoting strategy
P=(213)

Note that circled ones denote multipliers and segilames denote pivot
elements in the working matrices.

To find the inverse of the given matrix A, we hawesolve
AX =g = [b1b2b3]T

Ax =& =[by b, by’

Ax =e3=[by b, by"

where g=[100],&=[010], &s=[001]

First we solve the system Ax x &nd consider

-1||x 1
0 |[x|=|0],p=(2, 1, 3) (12)
3 ||X 0

Using Egn. (9), we get

withp,= 2,80 =h, =0
with p, = 1, B0 = by — wy, 0

= 1-|:1i|0
2
=1
with p3:3,%/3:tb—W31%/? 'W32%/9

:O-H.O—l.lz-l
2

Using Egn. (10), we then get the following systdmequations
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3X3=-1
3
—Xo—X =1
5% =%
2X1+X2:O
o 1 4 2
which gives % = 3%y and x = 9

.
l.e., vector x :E.g—ﬂ is the solution of system (12).

Remember that the solution of system (12) consstalhe first column
of the inverse matrix A

In the same way we solve the system of equations Axand Ax = g,
or

X1 0
x2|=|1|,p=(2, 1, 3) (13)
x3| |0
and
1/2 3/2 -1||x 0
2 1 o0||x2|=|o],p=(2 1,3) (14)
1/2 1 3| x3 1
Using Egns (9) and (10), we obtain the solutiosystem (13) as
51 17 .., . 1 .
X = 99 3 which is the second column of-Aand the solution of

.
system (14), i.e., X :Eg—ﬂ as the third column of A

2/9 5/9 -1/9
Hence A'=|4/9 -1/9 2/9
1/3 1/3 1/3

You may recall that in Sec. 3.5 of Unit 1 we disads the LU
decomposition method. Using this method we canofeed any non-
singular square matrix A into the product of a lowengular matrix L
and upper triangular matrix U. That is, we can &vrit
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A=LU. ... (15)
In the next section we shall discuss how form (&) be used to find
the inverse of non-singular square matrices.

3.3 L U Decomposition Method

Let us consider Egn. (15) and take the inverseaih the sides. If we
use the fact that the inverse of the product ofrices is the product of
their inverses takes in reverse order, then weibta
At=(ut=utL? (16)

We can now find the inverse of U and L separatelg abtain the
inverse matrix A from Eqn. (16).

Remark: It may appear to you that finding an ingesa matrix by this
method is a lengthy process. But, in practice, tishod is very useful
because of the fact that here we deal with trisargwhatrices and
triangular matrices are easily invertible. It inve$ only forward and
backward substitutions.

Let us now consider an example to understand hewnigthod works.
Example 9

Find the inverse of the matrix

3 1 2
A=|2 -3 -1
1 -2 1

Using LU decomposition method.

Solution:

We write,
3 1 2 1 O O||1 u u

A=|2 -3 -1|=LU=(11 0/|0 1 u (17)
1 -2 1 11 1|10 0 1

Comparing the coefficients on both sides of Eqid),(tve obtain
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1,:=3,%=2, %=1 (multiplying the rows of L by the first

column of U)
13U =1, U= % (multiplying the rows of L by the
11Uz =2, u3=2/3 second and third column of U)

The second column of L is obtained from

2 11
Lwup+ bo=a 1,,=-3-— =-—
21U12 + 1po = o, Ipo 3 3
1 7
LU+ 1o =&y, 1390 =-2 -= = -—
31U12 T 3o = 3o, 132 3 3
U,3 is obtained from
-1- 22/3) 7
LUz + ooy = &3, lhg = ————— = —
21U13 T 1polp3 = &3, U3 - 11/ 3 11
153 is obtained from
20
Iz + Igopz + 133 =1, k3= 11
Thus we have
3 0 0 1 1/3 2/3
L= |2 -11/3 0 andUu=l0 1 7/11
1 -7/3 20/11 0O O 1

Now since L is a lower triangular matrix'lis also a lower triangular
matrix. Let us assume that

L=

L S =
S )
L O O

Using the identity L[}, we have

3 0 0 3 0 0j/|11 0 O 1 00
LLt= |2 -11y3 0 2 -11/3 0|21 1 0|=|0 1 O
1 -7/3 20/11] |1 1 1{j11 1 1 0 01

Comparing the coefficients, we get

1. 3 . 11

_!122:'ﬂ1133_§)

L =3

276



MTH 213 MODULE 3

Also,

11, . 6 _2
2L1'§]21_0’]21_33 11

7. 20, 1
111'§121+ﬁ 131_%

7. 20 :
'§ 122+ﬁ132:0:132:'

7
20

1/3 0 0
\ Lt=]2/11 -3111 0O
1/20 -7/20 11/20

Similarly, since U is an upper triangular matrix;* Us also upper
triangular matrix. Using UU = |, we obtain by backward substitution.

1 1/3 2/3 1 -1/3 -5A1
U=|o 1 7n1landU'=|0 1 -711
0 0 1 0 0 1

Therefore, we have from Eqn. (16)

1 -1/3 -5M11 1/3 0 0
Al=uUlLtl= |0 1 -7m1 211 -3/11 0
0 0 1 1/20 -7/20 11/20

1/4 1/4 -1/4
= 3/20 -1/20 -7/20
1/20 -7/20 11/20

4.0 CONCLUSION

We now end this unit by giving a summary of what have
covered in it.

5.0 SUMMARY
In this unit we have covered the following:

1) Using the method of adjoints, the inverse ofvery non-singular
matrix A can be obtained from
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2)

3)

6.0

1)

2)

278

Al = detl(A) adj(A) (see Eqn. (1)

Since the number of operations in the adjoint megtteofind the
inverse of n° n non-singular matrix A increases rapidly as n
increases, the method is not generally used fodn >

For large n, the Gauss-Jordan reduction metkddch is an
extension of the Gauss elimination method can bed usr
finding the inverse matrix and solve the linearsyss.

Ax =D (see Eqgn. (2))
using the Gauss-Jordan method.

a) the solution of system of Eqns (2) can be obthiby
using elementary row operations

[Alb] %'$845%% @ [I|d]

b) the inverse matrix Acan be obtained by using elementary

row operations [A[1]%:95 %%, $Pe[IA Y

For large n, another useful method of finding thverse matrix
Al is LU decomposition method. Using this method aoy-
singular matrix A is first decomposed into the prodof a lower
triangular matrix L and an upper triangular matdixThat is

A=LU
U' and L' can be obtained by backward and forward
substitutions. Then the inverse can be found from

A'l - U'l L'l
TUTOR-MARKED ASSIGNMENT

Solve the system of equations
3X1+X2+2X3:3

2% — X% —X% =1

X1— 2%+ X3=-4

using the method of adjoints.

Solve the system of equations
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3)

4)

5)

6)

7

8)

3 4 1| X1
2 0 1| X2

3 1 -1/ X3
-2 -1 4||x4

R N PN
g = N W

using the method of adjoints.

Verify that the total number of operations needed Gauss-
2

Jordan reduction methods%sn3 + % + n.

In example 6 and 7 verify that
AAT=ATA=

Solve the system of equation

X1+ 2%+ X =0

2%+ 2% + 3% =3

X1 — 3% =2

using the Gauss-Jordan method with pivoting.

Find the inverse of the matrix

2 -1 0 O

-1 2 -1 O
A=

0O -1 2 -1

0O 0 -1 2

using the Gauss-Jordan method.

Find the inverse of the matrix

1
1

>

I
A O w
w N o

-1
using the LU decomposition method.

Find the inverse of the matrix

3 1 2
A=|2 -1 -1
1 -2 1

Using the LU decomposition method.
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UNIT 3 ITERATIVE METHODS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 The General Iteration Methods
3.2 The Jaccobi’s Iteration Method
3.3 The Gauss-Seidel Iteration Method
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In the previous two units, you have studied dimeethods for solving
linear system of equations Ax = b, A being nn non-singular matrix.
Direct methods provide the exact solution in at@mumber of steps
provided exact arithmetic is used and there isaumd-off error. Also,
direct methods are generally used when the matng dense or filled,
that is, there are few zero elements, and the aytiéne matrix is not
very large say n < 50.

Iterative methods, on the other hand, start withnéral approximation
and by applying a suitably chosen algorithm, leaduccessively better
approximations. Even if the process converges,otild/ give only an
approximate solution. These methods are generabd uwvhen the
matrix A is sparse and the order of the matrix A&asy large say n > 50.
Sparse matrices have very few non-zero elementsidst cases these
non-zero elements lie on or near the main diaggnhahg rise to tri-
diagonal, five diagonal or band matrix systemsm#y be noted that
there are no fixed rules to decide when to usectimethods and when
to use iterative methods. However, when the caefitcmatrix is sparse
or large, the use of iterative methods is idealiyesl to find the solution
which take advantage of the sparse nature of thexnavolved.

In this we shall discuss two iterative methods, elgmJacobi iteration

and Gauss-Seidel iteration methods which are freifyueused for
solving linear system of equations.
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2.0 OBJECTIVES
After studying this unit, you should be able to:
. obtain the solution of system of linear equatiofis,= b, when

the matrix A is large or sparse, by using the tteeamethod viz;
Jacobi method or the Gauss-Seidel method

. tell whether these iterative methods convergesbr n

. obtain the rate of convergence and the approximataber of
iterations needed for the required accuracy of eéhibsrative
methods.

3.0 MAIN CONTENT

3.1 The General Iteration Method

In iteration methods as we have already mentionedstart with some
initial approximate solution vector % an generate a sequence of
approximation {£} which converge to the exact solution vector xkas
® ¥ . If the method is convergent, each iteration poedua better
approximation to the exact solution. We repeat iteeations till the
required accuracy is obtained. Therefore, in aratitee method the
amount of computation depends on the desired acgurdnereas in
direct methods the amount of computation is fixéde number of
iterations needed to obtain the desired accurasy depends on the
initial approximation, closer the initial approxitien to the exact
solution, faster will be the convergence.

Consider the system of equations

Ax=Db
. (1)

where A is an n n non-singular matrix.
Writing the system in expanded form, we get
Q1Xp T aXo + ... anXn = by
31X1 + &KX+ .o @ = (2)
BiXy + 3hXo * .. + an = by
We assume that the diagonal coefficient$ a0, (i =1, ....., n). If some

of a; = 0, then we arrange the equations so that timditton holds. We
then rewrite system (2) as
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1 b
Xy = -—(@gXo + @gXg + ... + @nXy) + —
a‘ll 11

1 b
Xo = -— (GpXy + &aXz + ... + @Xp) + == (3)
a,, a

22

b
(BniX1 + X + .o + @naXnop) + —

nn nn

Xn:'

In matrix form, system (3) can be written as

X=Hx+c
where
-al2 -al3 —all
0 Tall all ﬁ
—_ 21 -a23 -a2
H= % 0 aazz :22n
anl —an?2 —an,n-1 O
ann ann ann
(4)

and the elements of ¢ arerc% i=1,2,..,n)

To solve system (3) we make an initial gue$5of the solution vector
and substitute into the r.h.s. of Egn. (3). Theusoh of Eqn. (3) will
then yield a vector®, which hopefullé/ is a better approximation to the
solution than ®. We then substituteX into the r.h.s. of Eqn. (3) and
get another approximation® We continue in this manner until the
successive iterations®k have converged to the required number of
significant figures.

In general we can write the iteration method folvieg the linear
system of Eqgns. (1) in the form

xX¥ V=™ +¢c k=0, 1...... (5)

where ¥ and XV are the approximations to the solution vector that
kth and the (k + 1)th iterations respectively. Hcaled the iteration
matrix and depends on A. ¢ is a column vector agpkdds on both A
and b. The matrix H is generally a constant matrix.

When the method (5) is convergent, then

lim x® = lim x*? =x
k® ¥ k® ¥

and we obtain from Eqgn. (5)

X=Hx+c (6)
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If we define the error vector at the kth iteratam

19 =x8—x (7)
then subtracting Eqn. (6) from Egn. (5), we obtain

Fed oo (8)
Thus, we get from Eqn. (8)

PO =T e0 = 2] o= =] o (©)

Wherel is the error in the initial approximate vector.ush for the
convergence of the iterative method, we must have

independent of © .

Before we discuss the above convergence criteela,u$ recall the
following definitions from linear algebra.

Definition:

For a square matrix A of order n, and a numbethe value ofl for
which the vector equation Ax £ x has non-trivial solution ®* 0, is
called an eigenvalue or characteristic value ofntiagrix A.

Definition:

The largest eigenvalue in magnitude of A is catiezl spectral radius of
A ad is denoted by p(A).

The eigenvalues of the matrix A are obtained frdra tharacteristic
equation

det(A-11)=0

which is an nth degree polynomial In. The roots of this polynomial
[T IR ,| »are the eigenvalues of A. Therefore, we have

r (A) = max|l || (10)

We now state a theorem on the convergence ofehatite methods.
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Theorem I

An iteration method of the form (5) is convergeat arbitrary initial
approximate vector® if and only if r (H) < 1.

We shall not be proving this theorem here as it®oppmakes use of
advanced concepts from linear algebra and is beyloedcope of this
course.

We define the rate of convergence as follows:
Definition:

The numbern = -logy, r (H) is called the rate of convergence of an
iteration method.

Obviously, smaller the value of(H), larger is the value afi.
Definition:

The method is said to have converged to m sigmficdigits if
max|i M, 10™ that is, largest element in magnitude, of thererr

vector! ®  10™ Also the number of iterations k that will be nedd
to makemax|i %], 10™is given by

- m
k=" (11)

Therefore, the number of iterations that are reglito achieved the
desired accuracy dependsronFor a method having higher rate of
convergence, lesser number of iterations will bedee for a fixed
accuracy and fixed initial approximation.

There is another convergence criterion for iteetmethods which is
based on the norm of a matrix.

The norm of a square matrix A of order n can bangef in the same
way as we define the norm of an n-vector by conmgatihe size of Ax
with the size of x (an n-vector) as follows:

: I AX .
[ Alp = max
) 1Al X 1l2
based on the Euclidean vector normgx|f| x [+ % f+ .+ | x|

and

285



MTH 213 NUMERICAL ANALYSIS 1

iy Al = ma%lﬁ(xll”*‘ , based on the maximum vector norm, J|x||
¥

= max|x.

1£iEn

In (i) and (ii) above the maximum is taken ovér(abn zero) n-
vector. The most commonly used norms is the maxinmonm
|All, , as it is easier to calculate. It can be calcdlateany of the

following two ways:

Al = mxaxé |ax| (maximum absolute column-sum)
Or

[|A], miaxé |ax| (maximum absolute row sum)
k

The norm of a matrix is a non-negative number wirichddition to the
property [[ABJ| [|A]l [|B]]

satisfies all the properties of a vector norm,,viz.

a) l|Allf Oand [|A]|=0ifA=0

b) [la Al| = [a] ||A]l, for all numbera. .

c) [IA+B], [IAll+[B]l
where A and B are square matrices of order n.

We no state a theorem which gives the convergemiterion for
iterative methods in terms of the norm of a matrix.

Theorem 2

The iteration method of the form (5) for the sautiof system (1)
converges to the exact solution for any initialteecif ||[H||<1.

Also note that

IRITf r (H).

This ca be easily proved by considering the eiglwevaroblem Ax =
I x.

Then [[A[l = x| =1 [ [Ix]]
or || {Ix]] = [lAX]] [[AIl [Ix]
ie., | [, [IA]l since |[x} O

Since this results is true for all eignevalue, \ageh
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r(A) . [IAll.

The criterion given in Theorem 2 is only a suffidi€ondition, it is not
necessary. Therefore, for a system of equationsvfech the matrix H

IS such that eithemiaxél|hk| < 1, the iteration always converges, but if
the condition is violated it is not necessary thatiteration diverges.

There is another sufficient condition for convergeas follows:
Theorem 3

If the matrix A is strictly diagonally dominant thia,

Then the iteration method (5) converges for nagiahapproximation
X10. If N0 better initial approximation is known, wengrally take ¥ =
0.

We shall mostly use the criterion given in Theor&mwhich is both
necessary and sufficient.

For using the iteration method (5), we need theimét and the vector
¢ which depend on the matrix A and the vector e well-known
iteration methods are based on the splitting ointlagrix A in the form

A=D+L+U (12)
where D is the diagonal matrix, L and U are regpelst the lower and
upper triangular matrices with zero diagonal eleimeBased on the
splitting (12), we now discuss two iteration methad the form (5).

3.2 The Jacobi’s Iteration Method
We write the system of Eqn. (1) in the form (2).vi

Xyt aXet ... taxX,=b
B1X1+ &Xo t ...t aXn =

BniXy + @Xe ..+ @nXn = by
We assume thata &, ..... &n are pivot elements ang & 0, i = 1, 2,

..., N. if any of the pivots is zero, we can iot&nge the equations to
obtain non-zero pivots (partial pivoting).
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Note that, A being a non-singular matrix, it is gibge for us to make all
the pivots non-zero. It is only when the matrix Asingular that even
complete pivoting may not lead to all the non-zakamts.

We rewrite system (2) in the form (3) and define tlacobi iteration
method as

1

k+1) — k k k

X(l Vo= '—(alzx(z) + a_|3X(3) + ...+ QnX(n)'b]_)
ay,

X(2k+1) — _ai (a21X(2k) + 823)((3k) + ..+ anx(nk)'bZ)

22
w1 0 Q) b
Xy = e—(@nX; ] F aX, t .t &niX,,-bn)
ii

or x**9 = -ai Yax"-h,i=1,2,...nk=0,1, ... (13)

i =1

The method (13) can be put in the matrix form as

[ (k+1) ] B o ~ Mo -(k) ]
% - 0 a, e Ay, % b
(k+1) ()
% = a, O e 8y 2 b,
=- - r

e | @ anp e 0] 00 b,
x!P=D'L+U)x¥+D',k=0,1, ... (14)
where
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0O 0 ... 0
a, 0 ... 0 a,, 0 ... 0
D=0 a, ... 0 |,L=|a; ay 0 0
0 e a,,
ay, A, a,,.1 0
[0 a, a; .. a, |
O O a23 a2n
andU= ...
-1
0 O 0 e 0 |

The method (14) is for the form (5), where
H=-D'(L+U)andc=Db

For computation purpose, we obtain the solutiortared*"") at the (k +
1)th iteration, element by element using Eqgn. (E8).large n, we rarely
use the method in its matrix form as given by E@n).

In this method in the (k + 1)th iteration we use tralues, obtained at
the kth iteration viz., ¥, x%, ...., X¥ on the right hand side of Eqn.
(13) and obtain the solution vectof*¥. We then replace the entire
vector ¥ on the right side of Eqn. (13) by}’ to obtain the solution at
the next iteration. In other words each of the &qua is simultaneously
changed by using the most recent set of x-values for this reason this
method is also known as the method of simultand@macements.

Let us now solve a few examples for better undedsiey of the method
and its convergence.

Example I

Perform four iterations of the Jacobi method fovisy the system of
equations

8 1 17[x 1
1 -5 1||x| =16 (15)
1 1 -4||x 7

with xX© = 0, the exact solution is x = [-1 -4 3]
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Solution:

The Jacobi method when applied to the system o6 H4®) becomes

. 1
XE = X0 - 1)

X(2k+l) _ iIE-)[X(lk) + X(?,k) - 16] (16)

Starting with £ = [0 0 0], we obtain form Eqns. (16), the following
results:

k=0
x® = %[o +0-1]=-0.125
S 1
x = Z[0+0~16] =-3.2
x® = %[o +0-7]=-1.75
k=1
x® = %[-3.2 —1.75-1] =-0.7438
X = %[-0.125 —1.75 - 16] = 3.5750
, 1
x{ = 7[0.125 -3.2 - 7] = -2.5813
k=2
x® = é[-3.5750 —2.5813 — 1] = -0.8945
x® = %[-0.7438 — 2.5813 — 16] = -3.8650
x® = %[-0.7438 — 3.5750 — 7] = 2.8297
k=3
X = :—8L[-3.8650 —2.8297 — 1] = 0.9618
o 1
x{" = £[-0.8945 — 2.8297 — 16] = -3.9448 (17)
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X = %[-0.8945 — 3.8650 — 7] = -2.9399

Thus, after four iterations we get the solutiorga®n in Eqns (17). We
find that after iteration, we get better approximatto the exact
solution.

Example 2

Jacobi method is used to solve the system of empsati

4 -1 1] [x 7
4 -8 1| |x,|=|21 (18)
-2 1 5| |x| |15

Determine the rate of convergence of the method thadnumber of
iterations needed to mal{‘eiaxﬁ “| 107

Perform these number of iteration starting withiahiapproximation £’
= [1 2 2] and compare the result with the exact solutior[2]'

Solution:

The Jacobi method when applied to the system o6 Ed8), gives the
iteration matrix

i 0 0
A, 1 1 a, ag;
H=- 0 — O0la, 0 a,
a
“ 1 |8a1 8g 0
0 0 —
L Ags i
E 0o
4 0 -1 1
=-10 % 04 0 1
2 1 0
0 O }
L 5 |

0 1/4 -1/4
=11/2 O 1/8
2/5 -1/5 0

201



MTH 213 NUMERICAL ANALYSIS 1

The eignevalues of the matrix H are the roots & ¢tharacteristic
equation.

det(H-11)=0
Now

1 14 -1/4 3
det(H-1 1)=|1/2 -1 1/8 :IS-%:O
2/5 -1/5 -1

All the three eigenvalues of the matrix H are el they are equal to
| =0.3347

The spectral radius is

r (H) = 0.3347 (19)
We obtain the rate of convergence as

N = -logo(0.3347) = 0.4753

The number of iterations needed for the requiretii@cy is given by

_ 2
_ﬁ » 5 (20)

The Jacobi method when applied to the system o§ H48) becomes

0 1/4 -1/4 714
x¥V=11/72 o w8 |x¥+|21/8,k=0,1, .. (21)
2/5 -1/5 0 3

starting with the initial approximation®=[1 2 2], we get from Eqn.
(21)

xM =[1.75 3.375  3.0]

x® =11.8437 3.875 3.025]
x®=[1.9625 3.925 2.9625]
x¥ =[1.9906 3.9766 3.0000]
x® =[1.9941 3.9953 3.0009]

which is the result after five iterations. Thus,uyoan see that result
obtained after five iterations is quite close te #xact solution [2 4 3]
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Example 3

Perform four iterations of the Jacobi method fdvisg the system of
equations

2 -1 0 0]|x 1
-1 2 -1 0||X 0
“l= (22)
0 -1 2 -1||x, 0
0O 0 -1 2||x 1

4

with X =[0.5 0.5 0.5 0.5] What can you say about the solution
obtained if the exact solutionis x = [1 1 1'2]

Solution:

The Jacobi method when applied to the system o§ H@2) becomes

XP = 2+ x0)
(k+1) — 1 (K 4 y®
X3 - é [X1 X3 ]
XE =2 XY XY (23)

X6 = % [1+x9] k=0,1, ..

Using X2 =[0.5 0.5 0.5 0.3] we obtain
xM =10.75 0.5 0.5 0.75]
x? =10.75 0.625 0.625 0.75]
x® =[0.8125 0.6875 0.6875 0.8175]
x® =10.8438 0.75 0.75 0.8438]

You may notice here that the solution is improvaiter each iteration.
Also the solution obtained after four iterations mt a good
approximation to the exact solution x =[1 1 1. this shows that we
require a few more iterations to get a good apjnaxion.

Example 4

Find the spectral radius of the iteration matrixewlhe Jacobi method,
is applied to the system of equations
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Verify that the iterations do not converge to tlaat solution x = [1 3
-1]".

Solution:

The iteration matrix H in this case becomes

1 0 0[]0 0O 2
H=-0 1 0/]|0 0 -2
0 0 1|1 -1 O
0 0 -2
=0 0 2
11 O
andc=[-15 -3

The eigenvalue of H are roots of the charactereqjuation
det (H -1 1) = 0. This gives us

-1 (1%2-4)=0
e, =0,+2
\ r(H=2>1.

Thus, the condition in Theorem 1 is violated. Tteeation method does
not converge.

We now perform few iteration and see what happetsally. Taking
x© = 0 and using the Jacobi method

00 -2 1

x¥V=lo 0 2 |x®¥+|5
11 0 3

we obtain

xM=(-15-3y

x? = (5 -1 3]

x® = (-7 11 -9§
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x® = (17 -13 15)
x®) = (-31 35 -33)

and so on, which shows that the iterations arerding fast. You may
also try to obtain the solution with other initegdproximations.

Let us now consider an example to show that therexgence criterion
given in Theorem 3 is only a sufficient conditiofhat is, there are
systems of equation which are not diagonally domtiraut, the Jacobi
iteration method converges.

Example 5

Perform iterations of the Jacobi method for solvithg system of
equations

11 10[x] [3
02 0|x,|=]2
0 3 -1| (x| |1

with xX® = [0 1 1]. What can you say about the solution obtained if
the exact solution is x = [0 12

Solution:

The Jacobi method when applied to the given systénequations
becomes

(k+1) — (k) (k)
Xy - [3 =X X, ]
X(2k+1) —

X = [-1+3%], k=0, 1, ....

Using %% =1[01 1], we obtain

xW=1112f
x@=1012]
x¥=[012]

You may notice here that the coefficient matrix net diagonally
dominant but the iterations converge to the exalctti®n after only two
iterations.

We have already mentioned that iterative methodsiaually applied to
large linear system with a sparse coefficient matfor sparse matrices,
the number of non-zero entries is small, and hehee number of
arithmetic operations to be performed per step nmlls However,

295



MTH 213 NUMERICAL ANALYSIS 1

iterative methods may not always converge, and ewéen they
converge, they may require a large number of itanat

We shall now discuss the Gauss-Seidel method whach simple
modification of the method of simultaneous dispraeats and has
improved rate of convergence.

3.3 The Gauss-Seidel Iteration Method

Consider the system of Eqns. (2) written in form &or this system of
equations, we define the Gauss-Seidel method as:

R 1
Xy = A (axy +asxy + ...+ ax)’-by)

1

1
(k+1) — (k+1) (k) (k)
X5 —-a—(aglxl Vot gaxy) +.t+ axi’-by)

(24)

(k+1) —
n =

1
(k+1) (k+1) (k+1)
(@  + ax ¥ + L+ anx P -by)

nn

X

1 2 n :
(k+1) _ (k+D) k) _ -
orx; ~ =- '1aﬂxi + E ax —h,i=12,..n
J:

i j=i+l

You may notice here that in the first equation gstem (24), we
substitute the initial approximation {fx x, ...., X) on the right hand
side. In the second equation w substitutg (x”, ...., X”) on the right
hand side. In the third equation, we substitutg ,(x!”, x{”, ...., X”) on

the right hand side. We continue in this manneil afitthe components
have been improved. At the end of this first itemrat we will have an
improved vector (¥, x\”, ...., X?). The entire process is then repeated.

In other words, the method uses an improved comyoa® soon as it
becomes available. It is for this reason the metisodlso called the
method of successive displacements.

We can also write the system of Egns. (24) asvialo
X, = -apXy’ - axy’ - A by

k+ k+ — k k
XS + Xy =gy - - ax+ by
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k+1 k+1 k+1
Xt +apx ST + L+ g (Y by

In matrix form, this system can be written as

D+L)x*V=ux+p (25)
where D is the diagonal matrix
ay, 0]
0 a,
D - a33
e an, |

and L and U are respectively the lower and uppangular matrices
with the zeros along the diagonal and are of tihe fo

0 0 0 ... 0 0 0 a, & - a,

a,, 0 0 ... 0 0 0 a, ... ay,,

L = a,;; a, 0 0 ... 0 U= 0O 0 0 ... a, —
....... y a4,
l@n QA e a,, 10 0 |

From Eqgn. (25), we obtain
xX¥*V=—D+L'ux¥+D+L" (26)

which is of the form (5) with
H=-D+L)"Uandc=(D+L}b.

It may again be noted here, that if A is diagonalgminant then the
iteration always converges.

Gauss-Seidel method will generally converge if trecobi method
converges, and will converge at a faster rate.slyormetric A, it can be
shown that

r (Gauss-Seidel iteration method) FJacobi iteration method)]

Hence the rate of convergence of the Gauss-Seid#lad is twice the
rate of convergence of the Jacobi method. Thisltreswsually true
even when A is not symmetric.
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We shall illustrate this fact through examples.
Example 6

Perform four iterations (rounded to four decimahqas) using the
Gauss-Seidel method for solving the system of egpust

8 1 17 [x 1
1 -5 1] [x|= 16 (27)
1 1 -4 [x 7

with X = 0. The exact solution is x = (-1 -4 13)

Solution: The Gauss-Seidel method, for the system (25) is
(k+1) — 1 (k) (k)
X3 _é[xz T X, '1]
XE0 = 20 4+ x0 - 16] (28)

5
X(3k+l) — %[X§k+l) + X(2k+1) _ 7]’ k=0,1, ...

Taking X% = 0, we obtain the following iterations.

k=0
x® = é[o +0-1]=-0.125
x® = %[ 0.125 + 0 — 16] = -3.225
, 1
x{ = 7[0.125 - 3.225 — 7] = -2.5875
k=1
x? = Z[-3.225 — 2.5875 — 1] = -0.8516

ol

x{ = £[-0.8516 — 2.5875 — 16] = 3.8878

x? = %[-0.8516 —3.8878 — 7] = -2.9349

k=2
X = [ 3.8878 —2.9349 — 1] =-0.9778
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X = %[-0.9778 —2.9349 — 16] = -3.9825

x® = %[-0.9778 —3.9825 — 7] = 2.9901

k=3
X = é[-3.9825 —2.9901 — 1] = 0.9966
X = %[-0.9966 —2.9901 — 16] = -3.9973
X = %[-0.996 —3.9973 — 7] = -2.9985

which is a good approximation to the exact solution (-1 -4 -3) with
maximum absolute error 0.0034. Comparing with #suits obtained in
Example 1, we find that the values qf x= 1, 2, 3 obtained here are
better approximation to the exact solution than ¢me obtained in
Example 1.

Example 7

Gauss-Seidel method is used to solved the systaqguaitions

4 -1 1] [x 7
4 -8 1| |x|=|21 (29)
2 1 5| |x| |15

Determine the rate of convergence of the method thadnumber of
iterations needed to makreliaxﬂ “| 107 Perform these number of

iterations with ) = [1 2 2] and compare the results with the exact
solution x = [2 4 3],

Solution: The Gauss-Seidel method (26) when applied tesylseem of
Egns. (29) gives the iteration matrix.

4 0 o]fo -1 1
H=-{4 -8 0[[0 0 1
2 1 5//0 0 0

Since the inverse of a lower triangular matrix let
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\ 4111: 1, :Ig_l:

4111-81,1=0, Iy

1
8l,=1, b= -
22 ]22 8
3
21y + 1oy + 51,20, By = —
11 21 ]81 ]81 40

1

-1,,+513,=0, k= 70

gl -~

Slzz3=1, 3=

-

—

1
Blo b s
o

o O

bl

SlL - O
o O O
o O

o B

Uil

I

o
g|w ol Bl
Bl O ak

The eigenvalues of the matrix H are the roots @& tharacteristic
equation
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det(H-11)=|0
0

Sl‘*’ o] (RN [N
1
N e

We have

| (801 2-21 -1)=0
which gives

| =0,0.125,-0.1

Therefore, we have
r (H) =0.125

The rate of convergence of the method is given by
N =-log(0.125) = 0.9031

The number of iterations needed for obtaining tkseireéd accuracy is
given by

22
k=4 = 09031 3

The Gauss-Seidel method when applied to the systeagns. (29)
becomes

ay 1
K =g 750 +x)

X$D = % [-21 - 4% x¥] (30)

X(3k+l) :% [15 + 2X(1k+1)_ X(2k+l)]

The successive iterations are obtained as

xM =[1.75 3.75 2.95]
x® =[1.95 3.9688 2.95]
x® =11.9956 3.9961 2.9990]

which is an approximation to the exact solutiorerafihree iterations.

Comparing the results obtained in Example 2, weckme that the
Gauss-Seidel method converges faster than the iJaebhod.
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Example 8

Use the Gauss-Seidel method for solving the folhgwisystem of
equations.

2 -1 0 17[x 1
1 2 -1 0] (X _ 0 (31)
0 -1 2 -1||Xx 0
0 0 -1 2| |x%, 1

with X% = [0.5 0.5 0.5 0.3] Compare the results with those obtained
in Example 3 after four iterations. The exact soluis x=[1 1 1 1]

Solution:

Use the Gauss-Seidel method, when applied to tstersyof Eqns. (31)
becomes

XE = 2L

XE = X x) (32)
S XY

X9 = %[1 Fx] k=0,1, ...

k+1) _—
X =

Starting with the initial approximation®% = [0.5 0.5 0.5 0.3] we
obtain the following iterates

xM =[0.75 0.625 0.5625  0.7813]

x® =10.8125 0.6875 0.7344  0.8672]
x®=[0.8438  0.7891 0.8282  0.9141]
x* =[0.8946 0.8614 0.8878  0.9439]

In Example 3, the result obtained after four itenra by the Jacobi
method was

x® =10.8438 0.75 0.75 0.8438]

Remark:
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The matrix formulations of the Jacobi and Gaussi€§emethods are
used whenever we want to check whether the iterattmnverge or to
find the rate of convergence. If we wish to iteratel find solutions of
the systems, we shall use the equation form ofrtéihods.

4.0 CONCLUSION

We now end this unit by giving a summary of whathese covered in

it.

5.0 SUMMARY

In this unit, we have covered the following:

1)

2)

3)

4)

5)

Iterative methods for solving linear system g@i@tions

Ax=Db (see Eqn. (1))

where A is an i n, non-singular matrix. Iterative methods are
generally used when the system is large and theixmatis
sparse. The process is started using an initialoxppation and
lead to successively better approximations.

General iterative method for solving the linegstem of Eqgn. (1)
can be written in the form
(k+1) = 11y _

xX ¥V =™ +¢c k=01, ... (see Eqn. (5))
where ¥ and ¥V are the approximation to the solution vector x
at the kth and the (k + 1)th iterations respecyivéd is the
iteration matrix which depends on A and is gengrallconstant
matrix. ¢ is a column vector and depends on bo#méb.

Iterative method of the form given in 2) abowaeerges for any
initial vector, if ||H|| < 1, which is a sufficiem@ondition for
convergence. The necessary and sufficient conditfon
convergence is (H) <, wherer (H) is the spectral radius of H.

In the Jacobi iteration method or the methodsiofiultaneous
displacements.

H=-DXL+U);c=D"%
where D is a diagonal matrix, L and U are respetyithe lower
and upper triangular matrices with zero diagonanants.

In the Gauss-Seidel iteration method or the oebihf successive

displacements
H=-D+L)'Uandc= (D + L)b.
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6)

6.0
1)

2)

3)

4)

5)

6)
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If the matrix A in Eqn. (1) is strictly diagomyaldominant then the
Jacobi and Gauss-Seidel methods converge Gausst$ethod
converges faster than the Jacobi method.

TUTOR-MARKED ASSIGNMENT (TMA)

Perform five iteration of the Jacobi methoddgolving the system
of equations given in Example 4 witf=[1 1 1].

Perform four iterations of the Jacobi method $miving the
system of equations

5 2 2][x 1
2 5 3||x| =|6
2 1 5||x 4

3
with X = 0. Exact solution is x = (1 -1 1)

Perform four iterations of the Jacobi method $miving the
system of equations

5 -1 -1 -1 [x 4
110 -1 -1||x | |12
1 -1 5 -1||x| |8
1 -1 -1 10| |x,| |34

with X = 0. The exact solution is x = [1 2 3'4]

Set up the Jacobi method in matrix form for s@vhe system of
equations

1 0 -4 -u4][x] [+
0 1 -4 -14||x| |2
14 -14 1 0 ||x]| |4
4 -14 0 1 ||x]| |2

and perform four iterations. Exact solution is k£1 1 1J. Take
©0) _
X7 =0.

Perform four iterations of the Gauss-Seidel métfor solving
the system of equations given in no. 3.

Perform four iterations of the Gauss-Seidel métfor solving
the system of equations given in no. 4.
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7) Gauss-Seidel method is used to solve the systesquations
given in no. 4. Determine the rate of convergemakthe number

of iterations needed to makmax|i{| , 102, Perform four
iterations and compare the results with the exalatisn.

7.0 REFERENCES/FURTHER READINGS

Engineering Mathematics P.D.S. Verma.
Generalized Functions in Mathematical Physics . Wiadimirov.

Fundamentals of the Finite Element Method. Har@esndin, Fr.
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UNIT 4 EIGENVALUES AND EIGENVECTORS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 The Eigenvalue Problem
3.2 The Power Method
3.3 The Inverse Power Method
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In Unit 7, you have seen that eigenvalues of temiton matrix play a
major role in the study of convergence of iteratmethods for solving
linear system of equations. Eigenvalues are alsgredit importance in
many physical problems. The stability of an airtiaidetermined by the
location of the eigenvalues of a certain matrixhe complex plane. The
natural frequencies of the vibrations of a beamaateally eigenvalues
of a matrix. Thus the computation of the absolulatgest eigenvalue or
smallest eigenvalue, or even all the eignevalues gifven matrix is an
important problem.

For a given system of equation of the form

Ax=1 X
(1)
Or
(A-1Dx=0 (2)

the values of the parameter, for which the system of Eqn. (2) has a
nonzero solution, are called the eigenvalues ofCArresponding to
these eigenvalues, the nonzero solutions of Egni.¢2the vectors x,
are called the eigenvectors of A. The problem mdiifng the eigenvalues
and the eigenvectors of a square matrix A is knewrthe eigenvalue
problem. In this unit, we shall discuss the eigémwgroblem. To begin
with, we shall give you some definitions and prajesr related to
eigenvalues.
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2.0 OBJECTIVES

After studying this unit, you should be able to:

. solve simple eigenvalue problems

. obtain the largest eigenvalue in magnitude andctimeesponding
eigenvector of a given matrix by using the powethod

. obtain the smallest eigenvalue in magnitude anckiganvalue

closest to any chosen number along with the cooredipg
eigenvector of a given matrix by using the inveggeaer method.

3.0 MAIN CONTENT

3.1 The Eigenvalue Problem

In the previous three units, we were concerned ville non-
homogeneous system of linear equations, Ax = b.k@v that this
system has a unique solution if the matrix A isswgular. But, if the
vector b = 0, then the system reduces to the honsages system

Ax=0
(3)
If the coefficient matrix A, in Eqn. (3) is nonsmlgr, then system has
only the zero solution, x = 0. for the homogenesystem (3) to have a
nonzero solution is not unique.

The homogeneous system of Eqn. (2) will have a exangolution only
when the coefficient matrix (A} 1) is singular, that is,

det(A-11)=0 4)

If the matrix A is an i n matrix then Eqn. (4) gives a polynomial of
degree n inl . This polynomial is called the characteristic ddpraof

A. The nrootdl 4, | 5, ....,1 ,, of this polynomial are the eigenvalues of
A. for each eigenvalue ;, there exists a vector; the eigenvector)
which is the nonzero solution of the system of ¢éigna

(A-1)x=0 (5)
The eigenvalues have a number of interesting ptieseMe shall now
state and prove a few of these properties whichsivall be using

frequently.

P1: A matrix A is singular if and only if it haszaro eigenvalue.
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Proof: If A has a zero eigenvalue then
det(A-01)=0
P det(A)=0
P Ais singular.

Conversely, if A is singular then
det (A) =0
P det(A-01)=0
P 0is an eigenvalue of the matrix A.

P2: A and A have the same eigenvalues.
Proof: If | is an eigenvalue of A then
det(A-1 =0
b det(A-1 1" =0
b det(A'-11M=0
b det(A-11) =0
b | isan eigenvalue of A
Hence the result.
However, the eigenvectors and A anbake not the same.

P3: If the eigenvalue of a matrix A afe,, | 5, ...., | , then the
eigenvalues of A m any positive integer, are}’, 1, ..., . Also
both the matrices A and"Phave the same set of eigenvectors.

Proof: Sincel ; (i=1, 2, ..., n) are the eigenvalues of A, weeha
Ax=1x,1=1,2,..,n (6)
Pre-multiplying Eqgn. (6) by A on both sides, we get

A=Al x=1(Ax) = | ’x (7)
> are the eigenvalues of Afurther, A

and A have the same eigenvectors. Pre-multiplying E@p.(ih — 1)
times by A on both sides the general result follows

which implies thatl £, 15, ....,1°2

Pa: If I 4, 1 o ... , | » are the eigenvalues of A, thenl 1/ 1/ ,, ....,
1/l , are the eigenvalues pf’AAlso both the matrices A and’shave
the same set of eigenvectors.
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Proof: Sincel ; (i=1, 2, ....., n), are the eigenvalues of A,veee
Ax=1 x,i=1,2,..n (8)
Pre-multiplying Eqn. (8) on both sides by Awe get
AlAx=1 ;A%
which gives

x=1 ;A

or Alx = lix

and hence the result.
P5:1fl 4,1 o, ..... ,| ,are the eigenvalues of A, thén—-q,i=1, 2, ....,
n are the eigenvalues of A — gl for any real nuntheéBoth the matrices

A and A - gl have the same set of eigenvectors.

Proof: Sincel ; is an eigenvalues of A, we have
Ax=1 x,i=1,2,...,n (9)

Subtracting q x from both sides of Eqgn. (9), we get
AX —gx =1 x—Qgx

which gives
(A—ahx=(i—ag)x

and the results follows.

..., n are the eigenvalues of (A —Yfpr any real number q. Both the
matrices A and (A — gf) have the same set of eigenvectors.

P6 can be proved by combining P4 and P5. we |davproof to you.

We now give you a direct method of calculating #igenvalues and
eigenvectors of a matrix.
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Example 1

Find the eigenvalues of the matrix

Solution:

a) Using Egns. (4), we obtain the characteristicagiqgns as
1-1 O 0
det(A-11)=] 0 2-1 0| =0
0 0 3-1

which gives (14 )(2-1)(3-1)=0.
and hence the eigenvalues of A are=1,1 ,=2,1 3=3.

1-1 0 O
b) det(A-IN)= |2 3-1 0 |=0
4 5 6-1

which gives (14 )(3-1)(6-1)=0.
and hence the eigenvalues of A are=1,1 , =3, 3=6.

1-1 2 3
C) det(A-1 )=| 0 4-1 5 | =0
0 0 6-1

Therefore, (14 )(4-1)(®6-1)=0.
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Eigenvaluesof Aaré ;=1,1 ,=4,1 3=6.

Remark: Observe that in Example 1 (a), the matris Aiagonal and in
parts (b) and (c), it is lower and upper triangukspectively. In these
cases the eigenvalues of A are the diagonal eleméhis is true for any
diagonal, lower triangular or upper triangular matFormally, we give

the result in the following theorem.

Theorem &

The eigenvalues of a diagonal, lower triangulamprupper triangular
matrix are the diagonal elements themselves. Letamsider another
example.

Example 2

Find the eigenvalues and the corresponding eigé¢ongeof the matrices.

2 2

a) ;

_1 3_

o]
b) A=

_O 1_
and

1 -2
C)

2 1
Solution:

a) Using Egns. (4), we obtain the characteristica¢gign as

2-1 2
A-111=|" 1 37,]=0

which gives the polynomial
| 2-51 +4=0

ie,( -1)( -4=0
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b)

312

The matrix A has two distinct real eigenvaldes = 1,1 , = 4.
To obtain the corresponding eigenvectors we sdieesiystem of
Eqgn. (5) for each value df .
Forl =1, we obtain the system of equations

X1+ 2% =0

X1+ 2% =0
which redices to a single equation

X1+ 2% =0

Taking % = k, we get x = -2k, k being arbitrary nonzero
constant. Thus, the eigenvector is of the form

biNEH

For| =4, we obtain the system of equations

2%+ 2% =0
%X—%=0

which reduces to a single equation
X1 —X = 0

Taking % = k, we get x=k and the corresponding eigenvector is

MRCH

Note: In practice we usually omit k and say tha& 1]’ and [1
1]" are the eigenvectors of A corresponding to thersiglues|

= 1 andl = 4 respectively. Moreover, the eigenvectors is th
case are linearly independent.

The characteristic equation in this case becomes
(I -1%=0
Therefore, the matrix A has a repeated real eigamvalhe

eigenvector corresponding to = 1 is the solution of the system
of Egns. (5), which reduces to a single equation
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Xo=0
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Taking % = k, we obtain the eigenvector as

MRCH

Note: that, in this case of repeated eigenvaluesgut linearly
dependent eigenvectors.

C) The characteristic equation in this case becomes
| 2-21 +5=0
which gives two complex eigenvalues- 1 + 2i.
The eigenvector corresponding ko = 1 + 2i is the solution of
the system of Egns. (5). In this case we obtain fdtlewing
equations
iX]_ + X = 0
X1 — iX2 =0
which reduces to the single equation
X1 — iX2 =0
Taking % = k, we get the eigenvector
X | K 1
X, 1
Similarly, for | =1 — 2i, we obtain the eigenvector
X 1
)=l
X, 1
In the above problem you may note that correspando
complex eigenvalues, we got complex eigenvectoes.us now
consider an example of 33 matrix.
Example 3
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Determine the eigenvalues and the correspondingneegtors for the

matrices
(2 -1 0]
a A=|1 2 -1|;
0 -1 2]
(6 -2 2]
A=12 3 -1
2 -1 3]
Solution:
a) The characteristic equation in this case becomes

2-1 -1 0
-1 2-1 -1|=0
0 -1 2-1

which gives the polynomial
2-1)( 2-4 +2)=0

Therefore, the eigenvalues of A are 2, 22 and 2 V2.

The eigenvector of A corresponding ko = 2 is the solution of
the system of Eqns. (5), which reduces to

X2:O
X1+X3:O

Taking % = k, we obtain the eigenvector

X1 1
X2|=k|0
X3 1

The eigenvector of A correspondingltc= 2 + +/2 is the solution
of the system of equations

J2 -1 o[x1 0
-1 J2 -1||Xx2|=k]|0 (10)
0 -1 +2||X3 0

315



MTH 213 NUMERICAL ANALYSIS 1

To find the solution of system of Eqgns. (10), wee uUSauss
elimination method.

Performing R - %Rl, we get

N 0 |[x1 0
0 -1/4/2 -1 |[x2]|=k]|o0
0 -1 -42||x3 0

Again performing R- +v2R,, we get

J2 -1 ol [x1 0
0 -1/42 -1| | X2|=k]|0
0 0 0 |oLX3 0

Which give the equations

V2 x-%=0
-Xz-\/?X;g:O

Taking % = k, we obtain the eigenvector

1 1
21 =k |2
3 1

Similarly, corresponding to the eigenvalle = 2 - V2, the
eigenvector is the solution of system of equations

J2 -1 o [x1 0
-1 J2 -1]|x2|=]0
0 -1 +J2||x3 0

Using the Gauss elimination method, the systemaesido the
equations

V2 X1 —%=0

Xo - 2 X3=0

Taking % = k, we obtain the eigenvector
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b)

1 1
21 =k [/2
3 1

The characteristic equation in this case becomes
(I -8)( -2F=0

Therefore the matrix A has the real eigenvalue2 8nd 2. The
eigenvalue 2 is repeated two times.

The eigenvector corresponding lto= 8 is solution of system of
Egns. (5), which reduces to

X1+ X —%=0
2% + 5% + % =0 (11)
2X1—X2—5X3:O

Subtracting the last equation of system (11) fréva second
equation we obtain the system of equations

X1 +X—%=0
Xo+ X% =0

Taking % = k, the eigenvector is

w N P
1
=~

Rk N

The eigenvector correspondinglto= 2 is the solution of system
of Egns. (5), which reduces to a single equation.
2X1 — X+ X3 = 0 (12)

We can take any values foy and % which need not be related to
each other. The two linearly independent soluticars be written
as:

1 0
k{O|ork |1
2 1

Note that in Eqn. (12), it is not necessary thataweays assign
values to x and %. we can assign values to any of the two
variables and obtain the corresponding value ofhihd variable.
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On the basis of Example 2 and 3, we can make iergénthe
following observations:

For a given n” n matrix A, the characteristic Eqn. (4) is a
polynomial of degree n ith . The n roots of this polynomial ,,
...... , | n, called the eigenvalues of A may be real or comple
distinct or repeated. Then,

) For distinct, real eigenvalues we, obtain linearly
independent eigenvectors. (Examples 2(a) and 3(a))

1)) For a repeated eigenvalue, there may or may not be
linearly independent eigenvectors. (Examples 2(b)l a

3())

i) For a complex eigenvalue, we obtain a complex
eigenvector.

Iv)  An eigenvector is not unique. Any non-zero multipfeit
is again an eigenvector.

In the examples considered so far, it was posédrles to find all roots
of the characteristic equation exactly. But thisymat always be
possible. This is particularly true for n > 3. lmch cases some iterative
method like Newton-Raphson method may have to leel us find a
particular eigenvalue or all the eigenvalues frane tcharacteristic
equation. However, in many practical problems, wendt require all
the eigenvalues but need only a selected eigenvatweexample, when
we use iterative methods for solving a non-homogasesystem of
linear equations Ax = b, we need to know only dugést eigenvalue in
magnitude of the iteration matrix H, to find out ether the method
converges or not. One iterative method, which eqdiently used to
determine the largest eigenvalue in magnitude (eddled the dominant
eigenvalue) and the corresponding eigenvector fiiven square matrix
A is the power method. In this method we do notl fine characteristic
equation. This method is applicable only when ladl eigenvalues are
real and distinct. If the magnitude of two or maigenvalues is the
same then the method converges slowly.

3.2 The Power Method

Let us consider the eigenvalue problem
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Let | 4, | 5 ...... , | » be the n real and distinct eigenvalues of A such
that

[ a > 2l > >
Therefore,| ; is the dominant eigenvalue of A.

In this method, we start with an arbitrary nonzeestor y* (not an
eigenvector), and form a sequence of vectdf§ (y

yErD=ay® k=01, ... (13)

In the limit as k® ¥ , y® converges to the eigenvector corresponding
to the dominant eigenvalue of the matrix A. we stop the iteration
when the largest element in magnitude ff3— y¥ is less than the
predefined error tolerance. For simplicity, we dsugake the initial
vector Y with all its elements equal to one.

Note that in the process of multiplying the matkixvith the vector §,

the elements of the vectof{) may become very large. To avoid this,
we normalize (or scale) vectofyat each step by dividing<; b y its
largest element in magnitude. This will make thegdést element in
magnitude in the vector'y) as one and the remaining elements less
than one.

If y® represents the unscaled vector afftitie scaled vector then, we
have the power method.

yt = Ayt (14)

vk = —1 y(k+l), k=0,1,... (15)

m+1

with, V@ =y and m.4 being the largest element in magnitude 6%/
We then obtain the dominant eigenvalue by takirgithit

) 16)

where r represents the rth component of that ve€bviously, there are

n ratios of numbers. As ® ¥ all these ratios tend to the same value,
which is the largest eigenvalue in magnitude ile;, The iteration is
stopped when the magnitude of the difference of targyratios is less
than the prescribed tolerance.
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The corresponding eigenvector is thefi™¥ obtained at the end of the
last iteration performed.

We now illustrate the method through an example.
Example 4

Find the dominant eigenvalue and the correspongiiggnvector correct
to two decimal places of the matrix

2 -1 0
A=|1 2 -1
0 -1 2

Using the power method.
Solution:

We take
yO=v@=(1 1 1j

Using Egn. (14), we obtain

2 -1 0][1] [1
yW=aAv@ =1 2 -1j|1]=|0
0 -1 2]|1] |1

Nownhzland\(}):miy“):(l 0 1J.

1

Again,
2 -1 0][1] [2
y@=AaW=11 2 -1f|o|=|2
0 -1 2|[1] |2

m, = 2 and \(F):mi y@=(1 -1 1J.

2
Proceeding in this manner, we have

yO =AW =[3 -4 3]
ms = 4

v<3>:%y<3>:[0.75 -1 0.75]
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y@=A® =[25 -35 2.5]

my = 3.5

v(4):3—15y(4): [0.7143 -1 0.7143]

y® = Av® = [2.4286 -3.4286 2.4286]

ms = 3.4286

®) = ® =[0.7083 -1 0.7083]

1
3.4286
y® =Av® =[2.4166 -3.4166 2.4166]

Mg = 3.4166

1
®) — ®) — _
R VT [0.7073 -1 0.7073]

vy = AV® = [2.4146 -3.4146 2.4146]

m, = 3.4146

1
(") = (1) — -
V0= e [0.7071 -1 0.7071]

(7)
After 7 iterations, the ratio%(e—);: are given as 3.4138, 3.4146 and

3.4138. The maximum error in these ratios is 0.0088nce the
dominant eigenvalue can be taken as 3.414 and dneesponding
eigenvector is [0.7071 -1 0.7071]

Note that the exact dominant eigenvalue of A asiobtl in Example 3
was 2 ++v2 = 3.4142 and the corresponding eigenvector was2

1]" which can also be written as% - 0.7071 -1 0.7071]

1.7
1 —1 =
1" =1
You must have realized that an advantage of theepamethod is that
the eigenvector corresponding to the dominant eiglele is also
generated at the same time. Usually, for most @ mhethods of

determining eigenvalues, we need to do separat@a@tions to obtain
the eigenvector.
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In some problems, the most important eigenvalukdadeast magnitude.
We shall discuss now the inverse power method whiehs the least
eigenvalue in magnitude.

We first note that ifl is the smallest eigenvalue in magnitude of A,

then % is the largest eigenvalue in magnitude &f Ahe corresponding

eigenvectors are same. If we apply the power metbod®, we obtain
its largest eigenvalue and the corresponding emgov. This
eigenvalue is then the smallest eigenvalue in ntadeiof A and the
eigenvector is same. Since power method is appdiedl’; it is called
the inverse power method.

Consider the method

y(k+1) — A'lv(k), k=0,1,2,.......... (7)

1 .
v = —— YD with V@ = y©)

k+1

where ) is an arbitrary nonzero vector different from #igenvector
of A.

However, algorithm (17) is not in suitable form, @ has to find A.
Alternately, we write Eqn. (17) as

Ay(k+1) =\
yeno 1 v k=0,1,2, ... (18)
mk+1

We now need to solve a system of equations f6Pywhich can be
obtained using any of the method discussed in theiqus units. The
largest eigenvalue of Ais again given by

(k+1)
m=fim &)
k® ¥ (V )r
The corresponding eigenvector {§.

We now illustrate the method through an example.

Example 5

Find the smallest eigenvalue in magnitude and tbeesponding
eigenvector of the matrix.
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2 -1 0
A=1 2 -1
0 -1 2

using four iterations of the inverse power method.
Solution:
Taking V2 =[1 1 1], we write

First iteration

Ay® = O
or

2 -1 01[1] [1

1 2 -1f|2|=|1 (19)

0 -1 2(|3]| |1

For solving the system of Eqgns. (19), we use the dddomposition
method. We write

2 -1 0 l, 0O O| (1 u, u;,
A=|1 2 -1|=LU=|l, I,, 0|0 1 wuy, (20)
0 -1 2 l,, 1, 13O O 1

comparing the coefficient on both sides of EqQne),(&e obtain

2 0 o ||1 -1/2 O
A=LU=|1 3/2 0 ||0O 1 -2/3
0 -1 4/3|]|0 -1 4/3

Solving Lz = ")
and then U} = z
we obtain

yO=[3/2 2 3/2]=[1.5 2.0 1.5]
m1:2.0

\ v(l):miy“):[o.?s 1.0 0.78]

1
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Second iteration

Ay®@ =\

Solving Lz = V!

and Uy = z

we obtain

y@=[1.25 1.75 1.25]

my,=1.75

V(Z):mi y?=[0.7143 1 0.7143]

2
Third iteration
Ay(3) — \/(2)
y® =[1.2143 1.7143 1.2143]

ms= 1.7143

V(S):mi y©®) =10.7083 1 0.7083]

3
Fourth iteration
Ay@ =
y*=[1.2083 1.7083 1.2083]

m,= 1.7083

v<4>:mi y#®=10.7073 1 0.7073]

4

(4)
after 4 iterations, the ratio%u are given as 1.7059, 1.7083, 1.7059.
v

(3))r
The maximum error in these ratios is 0.0024. hetice dominant

eigenvalue of A can be taken as 1.70. Therefoiélﬂ) = 0.5882 is the
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smallest eigenvalue of A in magnitude and the spoading
eigenvector is given by [0.7073 1 0.7073]

Note that the smallest eigenvalue in magnitude chsAcalculated in
Example 3 was 2 2 = 0.5858 and the corresponding eigenvector was
[1v2 1] or[0.7071 1 0.7071]

The inverse power method can be further generatizdéithd some other
selected eigenvalues of A. For instance, one mawteeested to find
the eigenvalue of A which is nearest to some chosenber . You

know from P6 of Sec. 3.1 that the matrices A anddg\ have the same
set of eigenvectors. Further, for each eigenvadlyef A, | ; — g is the

eigenvalue of A —ql.

We can therefore use the iteration

y“ = (A —qiy v (21)
with scaling as described in Egns. (14) — (16). W&termine the
dominant eigenvaluen of (A — ql)* using the procedure given in eqns.

(18), i.e.

(A= =

1
(k+1) _ y(k+1)
v = _— (22)
My

Using P6, we have the relation

m = ﬁ wherel is an eigen value of A.

: 1
e, |l = el +q (23)

Now sincem is the largest eigenvalue in magnitude of (A élq%

must be the smallest eigenvalue in magnitude of 4l.-Hence, the

: 1 .
elgenvaluer—n + q of Ais closest to q.

Example 6
Find the eigenvalue of the matrix A, nearest to r&l also the

corresponding eigenvector using four iterationsthd inverse power
method where,
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2 -1 0
A=|1 2 -1

0O -1 2
Solution:

In this case g = 3. Thus we have

1 -1 0
A-3l=|1 -1 -1
0 -1 -1

To find Y'Y, we need to solve the system

1 -1 0
1 -1 -1] y*D =\ (24)
0 -1 -1

and normalize %" as given in Eqn. (22).
First iteration

Starting with ¥ = [1 1 1] and using the Gauss elimination method to
solve the system (24), we obtain

y"=1[0 -1 0of

m]_:l

1
(1) = (1) — -
v -y [0 -1 0f

Second iteration

Ay@ =
y@ =11 -1 1]
mp, = 1

1
(2) = (2) = -
v y@ =11 -1 1f

2
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Third iteration

Ay® =@
y¥ =12 -3 2f
mz=3

1 2 . 2
@ 2\ @=1% 1 4

Fourth iteration

Ay = @
@=2 L 3y
3733
.
= - =2.333
m, 3

1 5 5
@) — @=r2 1217
Vv 4y [7 7]

(4)
After four iterations, the ratio%(g—);: are given as 2.5, 2.333, 2.5. The

maximum error in these ratios is 0.1667. Hencelthrainant eigenvalue
of (A — 31)" can be taken as 2. Thus the eigenvdluef A closest to 3
as given by Eqgn. (23) is

I :£+3
m

=-+3=-=35

NI =
NI~

and the corresponding eigenvector 8 % [5/7 -1 5/7] = [0.7143 -
1 0.7143]. Note that the eigenvalue of A closest to 3 asiobt in

Example 3 was 2 +/2 = 3.4142. The eigenvector corresponding to this
eigenvalue was [0.7071 -1 0.7071]
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The eigenvalues of a given matrix can also be eséich That is, for a
given matrix A, we can find the region in which @fl eigenvalues lie.
This can be done as follows:

Let | ; be an eigenvalue of A and be the corresponding eigenvector,
le.,

AX; = | iXi (25)
or
H1Xj1 T aXip + ... +aXin=1 X1
DX T Xjp T ... +aXin=1 iXi2

(26)
X1 T aXijp t+ ... + &Xin =1 iXik
ShiXin T X ... + @Xin=1 iXin

Let | «| be the largest element in magnitude of the vdgter X, -..... ,
Xin". Consider the kth equation of the system (26) dixidle it by X.
We then have

Xi, Xi, Xi,n
akl(x_.i)+a<2(x_.i)+""+a‘<+""+aﬂ(x.k):I i (27)

Taking the magnitudes on both sides of Eqn. (2€)get

Xi,l Xi,2
il Al |+ 18l |+ TR+ (R
o laal tael + Rl st R (28)
. Xi,j .
since|3 |, lforj=1,2, ... n.
i,k

Since eigenvalues of A and' Are same Ref. P2), Eqn. (28) can also be
written as

Il e +1ad + o+ Jad + e+ [Rd (29)

Since |x«|, the largest element in magnitude, is unknown, we
approximate Egns. (28) and (29) by
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I, miaxzn: a,.j‘ (maximum absolute row sum) (30)
i=1

j=i
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and

Il 1f max "|ay| (maximum absolute column sum) (31)
i=1

j=i

We can also rewrite Egn. (27) in the form

Xi,l Xi,2 Xi,n
I - &l = 8a (X_.k) T e (x_,k) Tt (Xi,k)

and taking magnitude on both sides, we get

-, Ylay (32)
i=1

j=

Again, since A and A have the same eigenvalues Eqn. (32) can be
written as

I - aud §n ay| (33)
i=1
j=i

Note that since the eigenvalues can be complexbdeds (30), (31),
(32) and (33) represents circles in the compleraldf the eigenvalues
are real, then they represent intervals. For exampthen A is

symmetric then the eigenvalues of A are real.

Again in Egn. (32), since k is not known, we repldbe circle by the
union of the n circle

-al, Sali=12 . (34)
j=i

Similarly from Eqn. (33), we have that eigenvaloé# lie in the union
of circles

-l Yaf, =12, e n. (35)

j=

The bounds derived in Eqns. (30), (31), (34) ari] {8r eigenvalues are
all independent bounds. Hence the eigenvalues mhastin the
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intersection of these bounds. The circles derivieova are called the
Gerschgorin circles and the bounds are called #rschgorin bounds.

Let us now consider the following examples:
Example 7
Estimate the eigenvalues of the matrix

-1

>

I
RN R
N W N

1
3
using the Gerschgorin bounds.

Solution:

The eigenvalues of A lie in following regions:

)] absolute row sums are 4, 6 and 6. Hence

[l |, max|[4,6,6]=6 (36)
1)) absolute column sums are 4, 5 and 7. Hence

], 7 (37)
i) union of the circles [using (35)]

I -1], 3

I -1], 4

I -2|, 5

union of circles in (i) isl] - 1], 5 (38)

union of circles in (iv) isl| - 2|, 5 (39)

The eigenvalues lie in all circles (36), (37), (38)d (39) i.e., in the
intersection of these circles as shown by shadgidmen Fig. 1.
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Example 8

Estimate the eigenvalues of the symmetric matrix

1 -1 2
A= |2 1 2
2 2 -2

by the Gerschgorin bounds.
Solution:

The eigenvalues lie in the following regions:

)] | 1|, max[4,4,6]=6
1)) union of the circles

a) I -1], 3

b) [T -1], 3

C) [l +1, 4

Since A is symmetric, it has real eigenvalues. &fuee, the eigenvalues
lie in the intervals

) 6, | , 6
1)) union of
a) -3, I -1, 3ie.-2, | , 4
b) 4, | +2, 4,ie.-6, | , 2
unionof () and (c)is-p | , 4.
Intersection of (i) and (i) is -6 | , 4. Hence the eigenvalues of A
lie i the interval -6, | , 4.

Note that in Example 8, since the matrix A is syrtriogthe bounds
(30) and (31) are same and also the bounds (34(3&)dre same.

You may now try the following self assessment eiserc
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4.0 CONCLUSION

We can now conclude as in summary.

5.0 SUMMARY

In this unit, we have covered the following:

1)

2)

3)

For a given system of equations of the form
Ax=1 x (see Eqgn. (1)).

the values ofl for which Egn. (1) has a nonzero solution are
called the eigenvalues and the corresponding nonzelutions
(which are not unique) are called the eigenveobbrihe matrix

A.

The following are the steps involved in solviag eigenvalue
problem

) Find the nth degree polynomial (called the chtastic
equation) inl from det (A -1 1) =0.

1)) Find the n rootsl ;, i = 1, 2, ...., n of the characteristic
equation.

iii)  Find the eigenvectors corresponding to e&gh

For nf 3, it may not be possible to find the roots of the
characteristic equation exactly. In such cases, use some
iterative method like Newton Raphson method to fimeke roots.
However,

)] when only the largest eigenvalue in magnitudeoisbe
obtained, we use the power method. In this methed w
obtain a sequence of vectors™{}; using the iiteative
scheme

Y =AYy k=0,1, .. (seeEqn. (13))

which in the limit as K® ¥ , converges to the eigenvector
correspondin? to the dominant eigenvalue of theimaAt
The vector §’ is an arbitrary non-zero vector (different
from with the eigenvector of A).

1)) we use the inverse power method with the iierat
scheme
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y(k+1) - (A _ ql)-l V(k),

e, (A-—g)* Y= k=012, ....

where

) = V@ is an arbitrary non-zero vector (not an

eigenvector)

a)

b)

with g = 0, if only the least eigenvalue of A in
magnitude and the corresponding eigenvector are to
be obtained and

with any q, if the eigenvalue of A, nearest ¢tong
chosen number q and the corresponding
eigenvector are to be obtained.

6.0 TUTOR-MARKED ASSIGNMENT (TMA)

1)

2)

3)

4)

5)
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Determine the Eigenvalues and the corresporglggnvectors of

the following
1 V2 2
A=|J2 3 42
2 J2 1
(15 4 3]
A=|10 -12 6
20 -4 2
[2 2 -3]
A=12 1 -6
1 -2 0
2 -1 -1
A=13 -2 1
0 0 1
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6)

7

8)

8)

10)

7.0

2 -1 0 O
1 2 -1 0
0 -1 2 -1
0O 0 -1 2

A=

Find the smallest eigenvalue in magnitude aedctirresponding
eigenvector of the matrix

5

A=

1 3

with V@ — [-1 1T, using four iterations of the power method.

Find the eigenvalue which is nearest to -1 d&edcorresponding
eigenvector for the matrix

.

A=

13

with V@ = [-1 1], using four iterations of the inverse power
method.

Using four iterations of the inverse power methdind the

eigenvalue which is nearest to 5 and the correspgnd
eigenvector for the matrix

32 .
A :{3 4} (exact eigenvalues are = 1 and 6)

with V@ =[1 1T

Estimate the eigenvalues of the matrix A giuefxample 3(a)
and 3(b), using the Gerschgorin bounds.
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MODULE 3

Unit 1: Review of Calculus

Unit 2: Iteration Methods for Locating Root.

Unit 3: Chord Methods for Finding Root

Unit 4: Approximate Root of Polynomial Equation.

UNIT 1 REVIEW OF CALCULUS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Three Fundamental Theorems
3.1.1 Intermediate Value Theorem
3.1.2 Rolle’s Theorem
3.1.3 Lagrange’s Mean Value Theorem
3.2 Taylor's Theorem
3.3 Errors
3.3.1 Round Off Errors
3.3.2 Truncation Error
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

NUMERICAL ANALYSIS

Mathematical modelling of physical/biological prebis generally gives
rise to ordinary or partial differential equatiosrsan integral equation or
in terms of a set of such equation. A number of¢hproblems can be
solved exactly by mathematical analysis but mosthein cannot be
solved exactly. Thus, a need arises to devise rioatenethods to solve
these problems. These methods for solution of madtieal methods

may give rise to a system of algebraic equatiore mon-linear equation
or system of non-linear equations. The numericdltsm of these

systems of equations is quantitative in natureviugn interpreted give
gualitative results and are very useful. Numeraralysis deals with the
development and analysis of the numerical methWds.are offering

this course of numerical analysis to students amgethe Bachelor's

Degree Programme as an elective subject.

It was in the year 1624 that the English mathen@atjcHenry Briggs
used a numerical procedure to construct his cdietrdaable of
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logarithms. The interpolation problem was firstaakup by Briggs but
was solved by the 17th century mathematicians dysgigists, Sir Isaac
Newton and James Gregory. Later on, other problesre considered
and solved by more and more efficient methods.ecent years the
invention and development of electronic calculdtmsputers have
strongly influenced the development of numericalgsis.

This course assumes the knowledge of the course MIAH MTH 122.

They are prerequisite for this course. Number @ults from linear

algebra are also used in this course. These rekalts been stated
wherever required. For details of these resultslioear algebra course
MTH 121 may be referred. This course is divided htblocks. The first
block, deals with the problem of finding approximabots of a non-
linear equation in one unknown. We have startedbtbek with a recall

of four important theorems from calculus which aeferred to

throughout the course. After introducing the conagperror’ that arise

due to approximations, we have discussed two bagmroximation

methods namely, bisection and fixed point iterattoathods and two
commonly used methods, namely. secant and Newtphd?a

methods. In Block 2, we have considered the probdéérfinding the

solution of system of linear equations. We haveulsed both direct
and iterative methods of solving system of lineguagions.

Block 3 deals with the theory of interpolation. Eewe are concerned
only with polynomial interpolation. The existencadauniqueness of
interpolating polynomials are discussed. Severanfof interpolating
polynomials like Lagrange’s and Newton’s dividedfetience forms
with error terms are discussed. This block condudéh a discussion
on Newton’s forward and backward difference form.

In Block 4, using interpolating polynomials we hadaained numerical
differentiation and integration formulae togethathwtheir error terms.
After a brief introduction to difference equaticii® numerical solution
of the first order ordinary differential equatios dealt with. More
precisely, Taylor series, Euler's and second oRlarge Kutta methods
are derived with error terms for the solution dfefiential equations.

Each block consists 4 units. All the concepts giverthe units are
followed by a number of examples well as exerciSdsese will help
you get a better grasp of the techniques discusséhis course. We
have used a scientific calculator for doing compaites throughout the
course. While attempting the exercises given in uh#s, you would
also need a calculator which is available at yowdy centre. The
solutions/answers to the exercises in a unit arengat the end of the
unit. We suggest that you look at them only aftéempting the
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exercises. A list of symbols and notations are gs@n in for your
reference.

You ma like to look up some more books on the stlged try to solve
some exercises given in them. This will help you gdetter grasp of
the techniques discussed in this course. We areggyou a list of titles
which will be available in your study centre fofaence purposes.

Some useful books

Numerical Methods for Scientific and Engineering Computation by
M. K. Jain, S.R.K. lyengar, R.K. Jain.

Elementary Numerical Analysis by
Samuel D. Conte and Carl de Boor.

NOTATION AND SYMBOLS

| belong to

E contains

<(£) less than (less than or equal to)

>(3 ) greater than (greater than or equal to)

R set of real numbers

C set of complex numbers

n! n(n-1) ... 3. 2. 1 (n factorial)

[ ] closed interval

1 [ open interval

IX| absolute value of a number x
le. that is

da atat.+ta

X® a X tends to a
lim f(x) limit of f(x) as x tends to a

Pn(X) nth degree polynomial

f'(x) derivative of f(x) with respect to x
» approximately equal to

a alpha

b beta

g gamma

e epsilon

P pi

a capital sigma
z zeta
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BLOCK INTRODUCTION

This is the first of the four blocks which you whle studying in the
Numerical Analysis course. In this block we shall dealing with the
problem of finding approximate roots of a non-lineguation in one
unknown. In the Elementary Algebra course you hsitelied some
methods for solving polynomial equations of degrpeo and including
four. In this block we shall introduce you to somenerical methods for
finding solutions of equation. These methods areliegble to

polynomial and transcendental equations.

This block consists of four units. In Unit 1, wegbewith a recall of our
important theorems from calculus which are refemedroughout the
course. We then introduce you to the concept ebrethat arise due to
approximation. In Unit 2, we shall discuss two typ# errors that are
common in numerical approximation methods, namdsection
method and fixed point iteration method. Each esthmethods involve
a process that is repeated until an answer or nedjuaccuracy is
achieved. These methods are known as iterationadetiwWe shall also
discuss two accurate methods, namely, secant amdoNdrRaphson
methods in Unit 3. Unit 4, which is the last unittlois block, deals with
the solutions of the most well-known class of eoures, the polynomial
equations. For finding the roots of polynomial etuas we shall
discuss Birge-Vieta and Graeffe’s root squaringhods.

As already mentioned in the course introduction, shiall be using a
scientific calculator for doing computations thrbogt the block. While

attempting the exercises given in this block, yoould also need a
calculator which is available at your centre. Werdfiore suggest you to
go through the instructions manual, supplied whih talculator, before
using it.

Lastly we remind you to through the solved exampglafully, and to
attempt all exercises in each unit. This will hglpu to gain some
practice over various methods discussed in thiskblo

1.0 INTRODUCTION

The study of numerical analysis involves conceptsmf various
branches of mathematics including calculus. In timig, we shall briefly
review certain important theorems in calculus wrach essential for the
development and understanding of numerical methéds.are already
familiar with some fundamental theorems about cwus functions
from your calculus course. Here we shall revieve¢htheorems given in
that course, namely, intermediate value theorenielRolrheorem and
Lagrange’s mean value theorem. Then we state anothportant
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theorem in calculus due to B. Taylor and illustrdie theorem through
various examples.

Most of the numerical methods give answers thatapproximation to
the desired solutions. In this situation, it is orant to measure the
accuracy of the approximate solution compared & abtual solution.
To find the accuracy we must have an idea of ttssipte errors that can
arise in computational procedures. In this unitshell introduce you to
different forms of errors which are common in nuitercomputations.

The basic ideas and result that we have illustratethis unit will be
used often throughout this course. So we suggastggothrough this
unit very carefully.

2.0 OBJECTIVES

After studying this unit you should be able to:

° apply
0 Intermediate value theorem
o Rolle’s Theorem
0 Lagrange’s mean value theorem
o Taylor’s theorem;
. define the term ‘error’ in approximation
. distinguish between rounded-off error and truncatssror and
calculate these errors as the situation demands.

3.0 MAIN CONTENT

3.1 Three Fundamental Theorems

In this section we shall discuss three fundametitebrems, namely,
intermediate value theorem, Rolle’s Theorem andrdage’'s mean
value theorem. All these theorems give propertiéscontinuous

functions defined on a closed interval [a, b]. virialsnot prove them
here, but we shall illustrate their utility with naus examples. Let us
take up these theorems one by one.

3.1.1 Intermediate Value Theorem

The intermediate value theorem says that a fundhan is continuous
on a closed interval [a, b] takes on every interiatedvalue i.e., every
value lying between f(a) and f(b) if f(&) f(b).

Formally, we can state the theorem a follows:
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Theorem 1

let f be a function defined on a closed intervallh let ¢ be a number
lying between f(a) and f(b) (i.e. f(a) < c < f(lb)f(a) < f(b) or f(b) < c <
f(a) if f(b) < f(a)). Then there exists at leastegooint % | [a, b] such
that f(x) = c.

The following figure (Fig. 1) may help you to vidise the theorem
more easily. It gives the graph of a function f.

)

f(b)+ /

/ =

: /\— —

a/ O % b x
f(a)+
Fig. 1

In this figure f(a) < f(b). the condition f(a) << f(b) implies that the
points (a, f(a)) and (b, f(b)) lie on opposite sidd the line y = c. This,
together with the fact that f is continuous, imgltbat the graph crosses
the line y = ¢ at some point. In Fig. 1 you sed tha graph crosses the
line y = c at (¥, C).

The importance of this theorem is as follows: If a@ve a continuous
function f defined on a closed interval [a, b], rih¢he theorem
guarantees the existence of a solution of the equf{) = c, where c is
as in Theorem 1. However, it does not say whasthation is. We shall
illustrate this point with an example.

Example I
Find the value of x in @ x £ % for which sin (x) :%.

Solution: You know that the function f(x) = sin x is conious on
P . _ _ p
(O’Ej' since f(0) = 0 and(E) = 1, we have (0) <% < 1(5). thus f

satisfies all the conditions of Theorem 1. Therefdhere exists at least
one value of x, saygxsuch that sin @ = % that is, the theorem
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guarantees that there exists a pogguch that sin @ = % Let us try to
find this point from the graph of sin x (ro,g) (see Fig. 2).

Y
ﬁ=sin X

o p6 pr2_ x

Fig. 2
From the figure, you can see that the line %:cuts the graph at the

point (%%) Hence there exists a poirg x % in (Ogj such that sin

(o) = .

Let us consider another example.
Example 2

Show that the equation 2x x* — x + 1 = 5 has a solution in the interval
1, 2].

Solution:

Let f(x) = 2 + X — x + 1. Since f is a polynomial in x, f is contisus
in[1, 2]. Also f(1) = 3, f(2) = 19 and 15 lies baten f(1) and f(2). Thus
f satisfied all conditions of Theorem 1. Therefdiesre exists a number
Xo between 1 and 2 such thatd(x 5. That is, the equation 2x »* — x

+ 1 =5 has solution in the interval [1, 2].

Thus we saw that the theorem enables us in estatgishe existence of
the solutions of certain equations of the type #x) without actually
solving them. In other words, if you want to find mterval in which a
solution (or root) of f(x) = 0 exists, then finddawaumbers a, b such that
f(a) f(b) < 0. Theorem 1, then states that thetswiulies in ]Ja, b[. We
shall need some other numerical methods for fintiegactual solution.
We shall study the problem of finding solution bétequation f(x) = 0
more elaborately in Unit 2.

Let us now discuss another important theorem iocutas.

3.1.2 Rolle’s Theorem
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In this section we shall review the Rolle’s Theorehhe theorem is
named after the seventeenth century French matieamaMichel Rolle
(1652 - 1719).

Theorem 2 (Rolle’s Theorem)

Let f be a continuous function defined on [a, bl aifferentiable on ]a,
b[. If f(a) = f(b), then there exists a numbaerix ]a, b[ such that f'(}) =
0.

Geometrically, we can interpret the theorem ea3ibu know that since
f is continuous, the graph of f is a smooth cusee(Fig. 3).

YA
@fen) (1)
0
_____ NS R
P
Fig. 3

You have already seen in your calculus coursetti@terivative f'(%)

at some pointxgives the slope of the tangent &, (xo)) to the curve y

= f(x). Therefore the theorem states that if thd ealues f(a) and f(b)
are equal, then there exists a poinirx]a, b[ such that the slope of the
tangent at the point P{xf(xo)) is zero, that is, the tangent is parallel to
x-axis at the point (see Fig. 3). In fact we camehmore than one point
at which f'(x) = 0 as shown in Fig. 3. This showsattthe numberin
Theorem 2 may not be unique.

The following example gives an application of R@l&heorem.
Example 3

Use Rolle’s Theorem to show that there is a satutibthe equation cot

—vinlo ®
x—xm]0,2[.

Solution: Here we have to solve the equation cot x — x W8.rewrite

COSX Xsinx COSX XSInX
cot X — X asT Solving the equat|0H— 0in]0,

T .. . . .
E[ is same as solving the equation cos x — x sinOx row we shall see

whether we can find a function f which satisfie® tbonditions of
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Rolle’s Theorem and for which f'(x) = cos x — x inOur experience in
differentiation suggests that we try f(x) = x costRis function f is

continuous in ]o,g[, differentiable in ]o,g[ and the derivative f'(x) =

cos X — X sin x. Also f(0) = 0 = fg). Thus f satisfies all the

requirements of Rolle’s Theorem. Hence, there sxagpoint ¥ in Ja, b[
such that () = cos % — X Sin % = 0. This shows that a solution to the

equation cot x — x = 0 exists in ]%,[.

Now, let us look at Fig. 3 carefully. We see tha line joining (a, f(a))
and (b, f(b)) is parallel to the tangent ag, (xo)). Does this property
hold when f(a) f(b) also? In other words, does there exists atpgiin
]a, b[ such that the tangent ap,(X)) is parallel to the line joining (a,
f(a)) and (a, f(b))? The answer to this questiothéscontent of the well-
known theorem. “Lagrange’s mean value theorem”,civiwe discuss
next.

3.1.3 Lagrange’s Mean Value Theorem

This theorem was first proved by the French matlieraa Count
Joseph Louis Lagrange (1736 — 1813).

Theorem 3

Let f be a continuous function defined on [a, b{l @ifferentiable in ]a,
b[. Then there exists a numbeyrin ]a, b[ such that

_ f(b)-f@ (1)

f'(Xo) b-a

geometrically we can interpret this theorem asmineFig. 4.

Yh

%(b, {(0)
Saf@)

O] a X b X>

Fig. 4

In this figure you can see that the straight linareecting the end points
(a, f(a)) and (b, f(b)) of the graph is parallelstume tangent to the curve
at an intermediate point.

344



MTH 213 MODULE 3

You may be wondering why this theorem is called amevalue
theorem’. This is because of the following physicéérpretation.

Suppose f(t) denotes the position of an objednha t. Then the average
(mean) velocity during the interval [a, b] is givien

f(b)-f@)
b-a

Now Theorem 3 states that this mean velocity duaingnterval [a, b] is
equal to the velocity f'(¥) at some instantoXn ]a, b[.

We shall illustrate the theorem with an example.

Example 4

Apply the mean value theorem to the function f(x}/x in [0, 2] (see
Fig. 5).

(v=x

»2,/2)

ol 12 1 X
Fig. 5: Graph of f(x) = Jx
Solution:
We first note that the function f(x) ¥/x is continuous on [0, 2] and
1

differentiable in O, 2[ and f'(x0 =—+.

10, 2 and F(x0 =
Therefore by Theorem 3, there exists a pogrhq0, 2[ such the

f(2) = ¥2 and f(0) = f(%) (2 - 0)

Now f(2) = +/2 and f(0) = 0 and f'() = %
0

Therefore we have
1
2=t

Xo

ie——iandx)—1
.e. 72 5
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Thus we get that the line joining the end pointsd)0and (2.4/2) of the
graph of f is parallel to the tangent to the cuavéhe point (%, %).

We shall consider one more example.
Example 5

Consider the function f(x) = (x — 1) (x — 2) (x }i18 [0, 4]. Find a point
Xo In ]0, 4[ such that

f(4)- (0)

f'(xo) = 4-0

Solution: We rewrite the function f(x) as
fX) = (x—1) (x—=2) (x=3) =% 6X¥ + 11x - 6

we know that f(x) is continuous on [0, 4], sinces fa polynomial in x.
Also the derivative

f(x) = 3x*—12x = 11
exists in ]0, 4[. Thus f satisfies all conditiorfstioe mean value theorem.
Therefore, there exists a pointin ]0, 4] such that

iy = 1(4)- T(0)

f(xo) = 4-0

. - _6+6 _
e, 3x -12x% + 11 2.0 3
e, 3¢ -12%+8=0

This is a quadratic equation ig. X' he roots of this equation are

6+§\/§ and 8" 2\/5

Taking /3 = 1.732, we see that there are twp values §dyirg in the
interval 10, 4].

The above example shows that the numlgen xheorem 3 may not be

unique. Again, as we mentioned in the case of #merl and 2, the
mean value theorem guarantees the existence ohbquy.
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So far we have used the mean value theorem to giwexistence of a
point satisfying Eqn. 1. Next we shall considereaample which shows
another application of mean value theorem.

Example 6
Find an approximate value &6 using the mean value theorem.
Solution:

Consider the function f(x) =*8. Then f(26) =3/26. The number nearest

to 26 for which the cube root is known is 27, if€27) = /27 = 3. Now
we shall apply the mean value theorem to the fondifx) = X® in the
interval 126, 27[. The function f is continuous [86, 27] and the
derivative is

Therefore, there exists a pointbetween 26 and 27 such that

1
327 -3/26 =308 (27 - 26)

) 1
I.G.,%/Z_ :3-?3/3 (2)
Since x is close to 27, we approxim ! b _1 I.e.;
)é ) pp ag?(? y 3(27)2/3’ ]
1 1
X 27

Substituting this value in Eqgn. (2) we get

3/26 :3-2—17 = 2.963.

Note that in writing the value of we have rounadflithe number after
three decimal places. Using the calculator we firvad the exact value of

3/26 is 2.9624961.

We have given this example just to illustrate thsefulness of the
theorem. The mean value theorem has got many afipication which
you will come across in later units.

Now we shall discuss another theorem in calculus.
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3.2 Taylor's Theorem

You are already familiar with the name of the Esiglmathematician
Brook Taylor (1685 — 1731) from your calculus caurk this section
we shall introduce you to a well-known theorem tw®. Taylor. Here
we shall state the theorem without proof and discesme of its
applications.

You are familiar with polynomial equations of therh f(X) = @ + & x
+...+ax" where g, & .....,  are real numbers. We can easily compute
the value of a polynomial at any point x = a byngsthe four basic
operation of addition, multiplication, subtractiamd division. On the
other hand there are function liké, &os x. In x etc. which occur
frequently in all branches of mathematics whichnmdrbe evaluated in
the same manner. For example, evaluating the famd{x) = cos x at
0.524 is not so simple. Now, to evaluate such fonet we try to
approximate them by polynomial which are easieevaluate. Taylor's
theorem gives us a simple method for approximafimgtions f(x) by
polynomials.

Let f(x) be a real-valued function defined on R ebhiis n-times
differentiable. Consider the function

P1(X) = f(Xo) + (X — %) F'(Xo)
where ¥ is any given real number.

Now Py(x) is a polynomial in x of degree 1 angd>B) = f(xo) and P1(Xo)
= f'(Xq). The polynomial KXx) is called the first Taylor polynomial of
f(x) at x. Now consider another function

Pa(xo) = f(x0) + (X — )f (xo) + &2 prx )

2
Then B(x) is a polynomial in x of degree 2 angB) = f(xg), P’>(Xo) =
(X o) and P%(Xg) = f'(Xg). Px(X) is called the second Taylor polynomial
of f(x) at x.

Similarly, we can define thé"rTaylor polynomial of f(x) at xwhere 1
<r <n. The 'Taylor polynomial at xis given by

P00 = 0) + (=) Fc0) + oo+ L0 (). ©

You can check that,@o) = f(xo), P’i(Xo) = f'(Xo), ...
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PO (xo) = f(xo) (see E6)
Let us consider an example.

Example 7
Find the fourth Taylor polynomial of f(x) = In x abt x=1.
Solution:

The fourth Taylor polynomial of f(x) is given by

P = 1) + (x - Dr(@) + 0 pay + g0y + Loy

(x-1)*
A

Now, f(1) =In1=0

Hm:%ﬁmzl

PO = () P(1) = -1

f@@z%ﬂ@bzz

f(4)(X) - )'(_?; f(4)(1) -6

(x-D? (D) (x-D)’
2 3 4

Therefore, Rx) = (x = 1) -

We are now ready to state the Taylor's theorem.
Theorem 4 (Taylor's Theorem)

Let f be a real valued function having (n + 1) @ombus derivatives on
]a, b[ for some n= 0. Let % be any point in the interval ]a, b[. Then for
any x € Ja, b[, we have

109 = fxg) + Z2X pxg) + B0 @) +

(X X,)" (n) (x- Xo)n+1 n+l
+ 50 ) + 22 —F7e), (4)
where c is point between and x.

+ ...

The series given in Eqn. (4) is called the nth ®dglexpansion of f(x)
at x.

We rewrite Eqn. (4) in the form

f(X) = Pu(X) + Rosa(X)
where R(x) is the nth Taylor polynomial of f(x) aboug and
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n+1

) — (X-X,) n+l
R, =2 )
Rn+1(X) depends on x,p@and n. R.(X) is called the remainder (or error)
of the nth Taylor's expansion after n + 1 terms.

Suppose we putpx= a and x = a + h where h > 0, in Eqn (4). Theyp an
point between a and a + h will be of the form ah;/0 <6 < 1.

Therefore, Eqn (4) can be written as
KmM-ﬂ@Mf@ﬂ—ﬁ@ﬁ 4 ﬁWm Wm@wm (5)

Let us now make some remarks on the Taylor’s thmore

Remark 1: Suppose that the function f(x) in Theorem a polynomial
of degree m. Therf(x) = 0 for all r > m. Therefore Ry(x) = O for all n
> m. Thus, in this case, thé"rTaylor's expansion of f(x) about il
be

100 = 10x0) + X ) + .o+ XX,
Note that the right hand side of the above equat®rsimply a
polynomial in (X — ¥).

Therefore, finding Taylor's expansion of a polynamfunction f(x)
about x is the same as expressing f(x) as a polynomi& i x,) with
coefficients from R.

Remark 2:

Suppose we putex=a, x = b and n = 0 in Egn. (4). Then Eqn (4)
becomes

f(b) =f(a) + f'(c)(b — a)

or equivalently

f(b) —f(a) =f(c) (b - a)

which is the Lagrange’s mean value theorem. Thesei@ can consider
the mean value theorem as a special case of Taylwbrem.

Let us consider some examples.
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Example 8

Expand f(x) = £ — 52 + 5 + x + 2 in powers of (x — 2).

Solution:

The function f(x) is a polynomial in x of degreeHence, derivatives of

all orders exists and are continuous. Therefor&dgtor’'s theorem, the
4™ Taylor expansion of f(x) about 2 is given by

f(x) = f(2) + %f’(z) x-2)7 2) X2 pigy ¢ X 32) 13(2) + % 19(2).
Here f(2) =0
f(x) 4x3 - 15% + 10x + 1, f(2) = -
g ) = 12x* — 30x + 10, (2) = -2
f&(x) = 24x — 30, ®2) =18
f9(x) = 24, (2) = 24

Hence the expansion is
2 3 _n\4
f(x) = 7(x — 2) 2(x 2) 18(x 2) 24(x 2)

4
=-7(x-2) - 22)+ 3(x — 2?+(x 2)‘1

Example 9

Find the nth Taylor expansion of 1n (1 + x) aboet& for x €]-1, 1[.
Solution:

We first note that the point x = O lies in the givaterval. Further; the

function f(x) = 1n (1 + x) has continuous derivatvof all orders. The
derivatives are given by

P(x) = % £(0) = 1
P(x) = —i)z #(0) = -1
f(3)( ) — ( 1))(?3 ’ f(3)(0) =2

351



MTH 213 NUMERICAL ANALYSIS 1

Moy — CDO-DY oy
) = LD 1000) = (70 - )

Therefore by applying Taylor's theorem we get floatany x €]-1, 1|

X2 X3 X4 (_1) n—1Xn (_1) n-ln! X n+l
In(l+X)=X-—+—-—+ ..+ +
( ) 2 3 4 n (n+1)!(@+c)™

where c is a point lying between 0 and x.

Now, let us consider the behaviour of the remaindexr small interval,
say, [0, 0.5]. then for x in [0, 0.5], we have

_| (_l)nn!Xn+l |
|Rh+1(x)| - ‘ (n+1)!(1+c)n+l

where 0 < c < X.

Since |x| < 1, [X* < 1 for any positive integer n.

: 1
Also since ¢ > 0;——; < 1. Therefore we have
(L+c)

Ry < ——

n+1

Now ni+1 can be made as small as we like by choosing ncgaritly

large i.e.lim il = 0. This shows thatm [R.4(x)| = 0.

n—co N + n

The above example shows that if n is sufficiengdarthe value of the
nth Taylor polynomial {x) at any x will be approximately equal to the
value of the given function fgx In fact, the remainder R(x) tell(s) us
how close the value, o) is to ().

Now we shall make some general observations abwitrémainder
Rn+1(X) in the Taylor's expansion of a function f(x).

Remark 3: Consider the nth Taylor expansion ofdudbg given by
f(x) = Pa(X) + Rnsa(X).

Then R+1(X) = f(X) - By(x). If lim Rn+1(X) = O for some x, then for that x

we say that we can approximate f(x) by and we write f(x) as the
infinite series.

) (n)
00 = o) + PO + o (x = ..ot 0 ()
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o f (n) (Xo)
n=0 n'

Xn

Is called Maclaurin’s series.

Remark 4: If the remainder,R(x) satisfies the condition that JRX)| <
M for some n at some fixed point x = a, then M adled the bound of
the error at x = a.

In this case we have

[Ria(X)] = [f(X) - [ <M
That is, f(x) lies in the interval iX) — M, By(x) + M.

Now if M is considerably small for some n, thenstimterval becomes
very small. In this case we say that f(x) is appr@ately equal to the
value of the nth Taylor polynomial with error M. 0$the remainder is
used to determine a bound for the accuracy of ppeoximation.

We shall explain these concepts with an example.

Example 1Q

Find the 2nd Taylor’s expansion of f(x)+Ll+x in ]-1, 1] about x = 0.
find the bound of the error at x = 0.2.

Solution:

Since f(x) =v1+x , we have

f(0) = 1

] — 1 — E

Pl = 2@’f(0)_ 2

PO) =5 (L+X% F(0) = -5

f(3)(x) - g (l + X)-5/2’
Applying Taylor’'s theorem to f(x), we get
11, 1 3 512
=1l+=X-=X"+— +
Vi+x =1 2x 8x 16x(l C)

where c is a point lying between 0 and x.
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The error is given by Rx) = —(1 +c)

When x = 0.2, we have
_ (02°
R3(0-2) - 16(1+C)5/2

Where 0 < ¢ < 0.2. Since ¢ > 0 we have

<1.

Hence,
(0 2)

=(0.5) 10°

Hence the bound of the error for n = 2 at x = 8.Qi5) 10.

There are some functions whose Taylor's expansarsed very often.
We shall list their expansion here.

& = 1+—I +X7?+...+XF:+ (::)'eC (7)
Sinx=x- § + %5 + .. ((1;:1;]1 + ((;)nﬁ)ll cos (c) (8)
Cosx=1 X?Z XZ? C (_(1;:)(!2n + ((1;:)(22;2 cos (c). 9)
ﬁ:1+x+>5+ X+ (1;)1”2 (10)

where ¢, in each expansion, is as given in Taylbesrem.

Now, let us consider some examples that illusttage use of finding
approximate values of some functions at certaimtgoiising truncated
Taylor series.

Example 11

Using Taylor's expansion for sin x about x = 0,dfithe approximate
value of sin 10with error less than 10

Solution:

The nth Taylor's expansion for sin x given in E). is
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) X3 X5 ( 1) nl 2n1 (_1) nX 2n+l
=X-= t+t— - ... + :
sin X = X 3 ' @2n-1)] 2n+1)! cos (c) (11)

where x is the angle measured in radians.

Now, in radian measure , we have
10° = radlans
18

Therefore, by putting x =— 8 in Eqn. (11) we get
i T ﬂ S 2 (s Tys T
Sm18 3 (18) 5 (18) -+ Ruag)

where F?,+1( ) is the remainder after (n + 1) terms.

Now

(D"

Rn+( 8) = @n+1)! (4

18 ) 2n+l CcoS C.

If we approximate sm— by P( ) then the error introduced will be

less than 10 if
sint=) -P, = i(i)z'”lco <10’
(18 (2n +1)! ‘18

Maximizing cos ¢, we require that

n+1 (1_8

1

@n+1)! ) <10 (12)

(18

Using the calculator, we find that the value of lednd side of Eqn. (12)
for various n is

n 1 2 3
Left hand side 8% 10° 13 x 10° 99 x 10°

From the table we find that the inequality in (12)satisfied for n = 3.
Hence the required approximation is

sm(—) ~1 E(E)3 a(ﬁ)5 0.1745445

with error Iess than 1.0 10°.

Let us now find the approximate value of e usingldias theorem.
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Example 12

Using Maclaurin’s series for*gshow that e2.71806 with error less
than 0.001. (Assume that e < 3).

Solution:

The Maclaurin’s series for'és

X  x°

ef‘:jl_-i-I-+—:i +
Putting x = 1 in the above series, we get
e:1+14—1 +1+...
2 3
Now we have to find n for which
le — R(1)| = [Rw+1(1)] < 0.001.

Now |R.4(1)| <€

(n+1)!

Since we have choseg x 0 and x = 1, the value c lies between 0 and 1
i.e. 0 <c<1. Since’& ¢ < 3, we get

|Rn+1(1)| <ec (n+1)!

The bound for R.4(1) for different n is given in the following table

n 1 2 3 4 5 6
Bounds forR.; | 1.5 5 A 125 .004 .0006

From this table, we see that
R:1<.001ifn=6

Thus R(1) is the desired approximation to e. i.e.

e~1+14—;+é+i+ L + L +1957%2.71806

24 12C 72C 72C

In numerical analysis we are concerned with dewvetppa

sequence of calculations that will give a satisfactanswer to a
problem. Since this process involves a lot of cotapons, there is
a chance for the presence of some errors in tr@sputations. In
the next section we shall introduce you to the ephof ‘errors’

that arise in numerical computations.
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3.3 Errors

In this section we shall discuss the concept ofearor’. We consider
two types of errors that are commonly encountenednimerical
computations.

You are already familiar with the rounding off anmber which has non-
terminal decimal expansion from your school arithme~or example
we use 3.1425 for 22/7. These rounded off numbersjpproximations

of the actual values. In any computational procedue make use of
these approximate values instead of the true valuelsx denote the
true value and xdenote the approximate value. How do we measare th
goodness of an approximation ¥ x? The simplest measure which
naturally comes to our mind is the difference betwe: and x%. This
measure is called the ‘error’. Formally, we defereor as a quantity
which satisfies the identity.

True value ¥ = Approximate value x+ error.

Now if an ‘error’ in approximation is considered ain(according to
some criterion), then we say thaj ‘% a good approximation to x'.

Let us consider an example.

Example 13

The true value oft is 3.14159265 ... In some mensuration problems the
value 22/7 is commonly used as an approximatior tdNVhat is the
error in this approximation?

Solution:

The true value oft is
n = 3.14159265 (13)

Now, we convert 22/7 to decimal form, so that wen dand the
difference between the approximate value and trakiev Then the
approximate value of is

22

- = 3.14285714 (14)
Therefore,
error = True value — approximate value = -0.0012644 (15)
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Note that in this case the error is negative. Egan be positive or
negative. We shall in general be interested in labswalue of the error
which is defined as

|error| = |True value — approximate value|

For example, the absolute Error in Example 13 is

lerror | = |-0.00126449...| = 0.00126...

Sometimes, when the true value is very small wdepr® study the
error by comparing it with the value. This is knoas Relative error and
we define this error as

|Relative error]| LTrue value - approxima valug
T True value |

In the case of Example 13,

. 10.00126449..
|Relative error| 31415026, 0.00040249966...

But note that in certain computations, the truaigahay to be available.
In that case we replace the true value by the coedpapproximate
value by the computed approximate value in thendedn of relative

error.

In numerical calculations, you will encounter mgitwo types of errors:
round-off error and truncation error. We shall dss these errors in the
next two subsections 1.4.1 and 1.4.2 respectively.

3.3.1 Round-off Error

Let us look at Example 13 again. You can see that numbers
appearing in Egn. (13), (14) and (15) consists oflidits after the
decimal point followed by dots. The line of dotslitates that the digits
continue and we are not able to write all of th&imat is, these numbers
cannot be represented exactly by a terminating nticiexpansion.
Whenever we use much numbers in calculations we t@adecide how
many digits we are going to take into account. &mmmple, consider
again the approximate value af If we approximater using 2 digits
after the decimal point (say), chopping off theeosttligits, then we have

n =3.14

The error in this approximation is
error = 0.00159265 (16)

If we use 3 digits after the decimal point, themgshopping we have
n ~3.141

358



MTH 213 MODULE 3

In this case the error is given by
error = -0.00059265 (17)

Now suppose we consider the approximate value exHoff to three
decimal places. You already know how to round afiuenber which has
non-terminal decimal expansion. Then the valuer abunded-off to 3
digits is 3.142. The error in this case is

error = -0.00040734...

which is smaller, in absolute value than 0.0005926&en in Eqn.
(17). Therefore in general whenever we want to osly a certain
number of digits after the decimal point, thensitalways better to use
the value rounded-off to that many digits becang#is case the error is
usually small. The error involved in a process whee use rounding-
off method is called round-off error.

We now discuss the concept of floating point arighim

In scientific computations a real number x is usuedpresented in the
form

X = i(. d]_dz... dn) 10"

where d d, ... d, are natural numbers between 0 and 9 and m is an
integer called exponent. Writing a number in thesni is known as
floating point representation. We denote this repngation by fl(x).
Such a floating point number is said to be nornealizf d, = 0. To
translate a number into floating point represeatatve adopt any of the
two methods — rounding and chopping. For examplppsse we want

to represent the number 537 in the normalized ifigatpoint
representation with n = 1, then we get

fl (637) = .5x 10’ chopped
= .5x 10°rounded

In this case we are getting the same representaticwunding and
chopping. Now if we take n = 2, then we get

fl (537) = .53x 10’ chopped
= .54x 10’ rounded

In this case, the representations are different.
Now if we take n = 3, then we get

fl (537) = .537x 10’ chopped
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= .537x 10’ rounded
The number n in the floating point representatsaoalled precision.
The difference between the true value of a numksrdkrounded fl(x) is
called round-off error. From the earlier discussibms clear that the
round-off error decreases when precision increases.
Mathematically, we define these concepts as follows
Definition 2:
Let x be a real number and x* be a real numberngawion-terminal
decimal expansion, then we say that x* represent®unded to k

decimal places if

1

X — X*| < 3 10%, where k > 0 is a positive integer.

Next definition gives us a measure by which we canclude that the
round-off error occurring in an approximation pregas negligible or
not.

Definition 3:

Let x be a real number and x* be an approximatmor. Then we say
that x* is accurate to k decimal places if

L1000 gy —xx < L10% (18)
2 2

Let us consider an example.

Example 14

Find out to how many decimal places the value of7 2idbtained in
Example 13 is accurate as an approximation t03.14159265?

Solution:
We have already seen in Example 13 that

n-272 =0.00126449...

Now .0005 < .00126... <0.005
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or % 102 < .00126... <% 102

Therefore the inequality (18) is satisfied for R=

Hence, by Definition 3, we conclude that the appr@ation is accurate
to 2 decimal places.

Now we make an important remark.
Remark 5:

Round-off errors can create serious difficultieseingthy computations.
Suppose we have a problem which involves a longutaion. In the
course of these computations many rounding ersos€ positive, and
some negative) may occur in a number of ways. A&t ¢hnd of the
calculations these errors will get accumulated meddon’t know the
magnitude of this error. Theoretically it can beg& But, in reality
some of these errors (between positive and negatik@s) may get
cancelled so that the accumulated error will belmsroaller.

Let us now define another type of error called Tation error.

3.3.2 Truncation Error

We shall first illustrate this error with a simg&ample. In Sec. 1.3. we
have already discussed how to find approximate evaiti a certain
function f(x) for a given value of x using Tayloiseries expression. Let

f@%=§%@—mf

denote the Taylor's series of f(x) abowt ¥ practical situations, we
cannot, in general, find the sum of an infinite f@&mof terms. So we
must stop after a finite number of terms, say NsTheans that we are
taking

f@zéu—w”

and ignoring the rest of the terms, that ii 3 (X — )"

n=N+1

There is an error involved in this truncating prsscevhich arises from
the terms which we exclude. This error is calleel huncation error’.
We denote this error by T E. Thus we have
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TE =f(x) - N§Oan(X—>@)” S g (x—%)"

n=N+1

You already know how to calculate this error froecS1.3. There we
saw that using Taylor's theorem we can estimate é¢ner (or
remainder) involved in a truncation process in Scages.

Let's see what happen if we apply Taylor’'s theoternthe function f(x)
about the point x= 0. We assume that f satisfies all conditions of
Taylor's theorem. Then we have

N+1

_ n, X N+1
f(x) = ann X+ N+l +ﬂf (© (19)

(n)
Whereazfnﬁ and 0 <c<x.

N
now, suppose that we want to approximate f(x)Xiya, x".

n=0

Then Eqgn. (19) tells us that the truncation emoapproximating f(x) by
NZ a, X" is given by

n=0

N+1

X
TE=Rui(X) = N+1

*4(c) (20)
Theoretically we can use this formula for truncatierror for any
sufficiently differentiable function. But practidglit is not easy to
calculate the nth derivative of many functions. &8ese of the
complexity in differentiation of such functions, ig better to obtain
indirectly their Taylor polynomials by using one oe standard
expansions we have listed in Sec. 1.3.

For example consider the function f(x) ¥ elt is difficult to calculate
the nth derivative of this function. Therefore, Gamvenience, we obtain

Taylor's expansion of ®using Taylor's expansion of &y putting y =
x2. We shall illustrate this in the following example

Example 15

Calculate a bound for the truncation error in agjnation & by

4 6 8

. X X X
“al+ ¥+ + = + = forx €]-1, 1[.
€ a vyt forx L
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Solution:

Put u = X. Then & = €. Now we apply the Taylor's theorem to
function f(u) = € about u = 0. Then, we have

2 3 4

e“:1+u+% tg +% + Rs(u) where

eu’

Rs(u) =

And 0 <c<u. Since |x| <1,u 2x 1ie.c<1. Therefore‘e& e < 3.
Thus

IRs(u)| <

3X10
S

3_1
< —=— =,
3 40 025

Hence the truncation error in approximatingley the above expression
is less than 2% 10"

If the absolute value of the TE is less, then wetkat he approximation
is good.

Now, in practical situations we should be ableital fout the value of n
for which the summatiort_a, x" gives a good approximation to f(x). For

this we always specify the accuracy (or error bourefuired in

advance. Then we find n using formula (20) such tinva absolute error
|IR.+1(X)] is less than the specified accuracy. This givihe

approximation within the prescribed accuracy.

Let us consider an example.
Example 16

Find an approximate value of the integral

1
s e dx
0

with an error less than 0.025
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Solution:
In Example 15 we observed that
> x> x*  x* Xt
e ~l+—+—+— +—
1 2 3 4
2,10

€ X

with TE = dx.

Now we use this approximation to calculate thegraé We have

4 6 8
X

Vo, b X X
Je dx~OJ(1+x2+E+5+Z)dx (20)

with the truncation error

2
1 ex XlO
TE = dx.
oJ 5
We have
RS 10
e |x] 3
TE < — = .25x 10?
| | oJ 5! 5!

Integrating the right hand side of (21), we get

1 1 6

2 x* X x8
P + X + —_— + - + — =
oJe oJ (1 2! [ 3 4 )dX J

1
N X3 5 7 XQ
X —

+ + +
3 ox2l 7x3 9x4l

x2 x®* x' x°
= [X+—+—+—+
[ 3 10 42 216}0
1 1 1 1
+

=1+ 4+ =+ — +
2 10 40 21¢

=0.0048

Here is an important remark.

Remark: The magnitude of the truncation error cdaddeduced within
any prescribed accuracy by retaining sufficiengéanumber of terms.

Likewise the magnitude of the round-off error coldd reduced by
retaining additional digits.
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You can now try the following self assessment asesc

SELF ASSESSMENT EXERCISE

a)

b)

Calculate a bound for the truncation error ipragimation f(x) =
sin x by

3 5 7
X

. X X
sinx~1-— +— + — where-1<x <1.
3 5! i

Using the approximation in (a), calculate anragjnate value of
the integral

1 sinx

) ——dx

0 X

with an error 10.

SELF ASSESSMENT EXERCISE

a)

b)

4.0

Calculate the truncation error in approximating

4

e'xzbyl—f+x7,-1 <x <1.

Using the approximation in (a) calculate an agpnate value of

1
,e™ dx within an error bound of 10
0

CONCLUSION

We end this unit by summarizing what we have learhis unit.

5.0

SUMMARY

In this unit we have:

recalled three important theorems in calculus, hame

) Intermediate value theorem
1)) Rolle’s Theorem
1)) Lagrange’s mean value theorem

State Taylor's theorem and demonstrated it with hied¢p of
examples.
The nth Taylor’'s expansion:

f09 = fxg) + X xg) + L Xek

O) f(Z)(X ) +
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(X x (x %)™

a n! o ) + (n+1)! )
. Defined the term ‘error’ occurring in numerical couatations.
. Discussed two types of errors namely
) Round-off error: Error occurring in computations est

we use rounding off method to represent a number is
called round-off error.

1)) Truncation error: Error occurring in computationsese
we use truncation process to represent the sumnof a
infinite number of terms.

. Explained how Taylor's theorem is used to calculdbe
truncation error.

6.0 TUTOR-MARKED ASSIGNMENT

1) Show that the following equations have a sofutiothe interval
given alongside.

2) Using Rolle’s Theorem show that there is a sotutto the
equationtan x—1+x=01in]0, 1].

3) Let f(x) = %x3 + 2X. Find a numbergXn ]0, 3[ such that

f@- O

f'(xo) = 3.0

4) Find all numbersgin the interval ]-2, 1] for which the tangent to
the graph of f(x) = X+ 4 is parallel to the line joining the end
points (-2, f(-2)) and (1, f(1)).

5) Show that Rolle’s Theorem is a special case of meaoe
theorem.

6) If P, denotes the rth Taylor polynomial as given y E8)) then
show that Hxo) = f(Xo), P’i(X0) = F(Xo), ... P (Xo) = fO(xo).

7) Obtain the third Taylor polynomial of f(x) = about x = 0.
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8) Obtain the nth Taylor expansion of the function) f}‘xﬁ in J-

%, 1[ about ¥ = 0.

9) Does f(x) =+/x have a Taylor series expansion about x = 0?
Justify your answer.

10) Obtain the 8 Taylor expansion of the function f(x) = cos x in [
T T

1 4] about x = 0. Obtain a bound for the errog(R).

11) Using Maclaurin’s expansion for cos x, find the appmate

value of cos% with the error bound 10

12) How large should n be chosen in Maclaurin’s expam$or € to
have |&— P(x)| <10° -1 <x <1.

13) In some approximation problems where graphic methack

355 . . .
used, the valueﬁ IS used as an approximation to =

3.14159265....To how many decimal places the va%grg IS

-
-

accurate as an approximationi@
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1.0 INTRODUCTION

We often come across equation of the foffa8xt + 2x + 1 = 0 or &=
X — 2 or tan h x = x etc. Finding one or more valoé x which satisfy
these equations is one of the important problendathematics. From
your elementary algebra course, you are alreadylifsnwith some
methods of solving equations of degrees 1, 2, 3 arejuations of
degree 1, 2, 3 and 4 are called linear, quadretibic and biquadratic
respectively. There you might have realized the vtery difficult to use
the methods available for solving cubic and bigatidrequations. In
fact no formula exists for solving equations of egyn =5. In these
cases we take recourse to approximate methodbedatdtermination of
the solution of equations of the form.

fx)=0 (1)

The problem of finding approximate values of roofspolynomial

equations of higher degree was initiated by Chinms¢hematicians.
The methods of solution in various forms appearethe 13th century
work che’ in kiu-shoo. The first noteworthy work ihis direction was
done in Euope by the English mathematician Fibondaer in the

year 1600 Vieta and Isaac Newton made significantrdution to the
theory.

In this unit as well as in the next two units wealshdiscuss some
numerical methods which gives an approximate swiutif an equation
f(x) = 0. We can classify the methods of solutintoitwo types namely
(i) Direct methods and (ii) Iteration methods. Birenethods produce
solution by in finite number of steps whereas tieramethods give an
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approximate solution by repeated application ofumearical process.
You will find later that for using iteration methedve have to start with
an approximate solution. Iteration methods imprdvis approximate
solution. We shall begin this unit by first discugs methods which
enable us to determine an initial approximate smhuand then discuss
iteration methods to refine this approximate soluti

2.0 OBJECTIVES
After studying this unit you should be able to:

. find an initial approximation of the root using (13bulation
method (2) graphical method.

. use bisection method for finding approximate roots.
. use fixed point iteration method for finding approate roots.
3.0 MAIN BODY

3.1 Initial Approximation to a Root

You know that in many problems of engineering ahgigcal sciences
you come across equations in one variable of thma f(x) = 0.

For example, in Physical, the pressure-volume-teatpee relationship
of real gases can be described by the equation

PV:RT+%+%+% )

where P, V, T are pressure, volume and temperagsggectively. R,
r, s are constants. We can rewrite Eqgn. (2) as

PV - RTV-BV3-1V-s=0 (3)
Therefore the problem of finding the specific vokiof a gas at a given
temperature and pressure reduces to solving theathigtic equation

Eqgn. (3) for the unknown variable V.

Consider another example in life sciences, theystidjenetic problem
of recombination of chromosomes can be describdigeifiorm

p(l-p)=p-p+k-0,
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where p stands for the recombination fraction wiité limitation 0 <p
< % and (1 — p) stands for the non-recombination imactThe problem
of finding the recombination fraction of a geneueegs to the problem
of finding roots of the quadratic equatioh-pp + k = 0.

In these problems we are concerned with findingedbr values) of the
unknown variable x that satisfies the equation £X). the function f(x)
may be a polynomial of the form

fX)=a+tax+..+aX,

or it may be a combination of polynomials, trigoreinc, exponential
or logarithmic functions. By a root of this equatizve mean a number
Xo such that f(¥) = 0. The root is also called a zero of f(x).

If f(x) is linear, then Eqgn. (1) is of the form axb = 0, a0 and it has
only one root given by x :g-. Any equation which is not linear is

called a non-equation. In this unit we shall discaeme methods for
finding roots of the equation f(x) = 0 where f(%)a non linear function.
You are already familiar with various methods fatcalating roots of
guadratic, cubic and biquadratic equations. Buteth® no such formula
for solving polynomial equations of degree morentldaor even for a
simple equation like

X—cosx=0

Here we shall discuss some of the numerical appraton methods.
These methods involve two steps:

Step 1: To find an initial approximation of a root.

Step 2: To improve this approximation to get a nmaweurate value.

We first consider step 1. Finding an initial approation to a root
means locating (or estimating) a root of an equaapproximately.
There are two ways for achieving this-tabulationthond and graphical

method.

Let us start with Tabulation method.
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3.1.1 Tabulation Method

This method is based on the intermediate valuerémedl\VV Theorem),
(see Theorem 1, Unit 1). Let us try to understamel warious steps
involved in the method through an example.

Suppose we want to find a root of the equation

2X —logox =7

We first compute value of f(x) = 2x — lgg — 7 for different value of x,
say x =1, 2, 3 and 4.

Whenx=1,we havef(l)=2 -l —7=-5
Similarly, we have

f(2) =4 —loge2 — 7 =-3.301
(Note that logg2 is computed using a scientific calculator.)

f(3) =6 —loge2 — 7 =-1.477
f(4) =8 —log4d — 7 =-0.3977

These values are given in the following table:

Table 1
X 1 2 3 4
f(x) -5 -3.301 -1.477 0.397

We find that f(3) is negative and f(4) is positivdow we apply IV
Theorem to the function f(x) = 2x — lgg — 7 in the intervalql= [3, 4].
Since f(3) and f(4) are of opposite signs, by I'€dfem there exists a
number % lying between 3 and 4 such thatg)(x 0. That is, a root of
the function lies in the interval ]3, 4[. Note thhis root is positive.

Let us now repeat the above computations for scahees of x lying in
13, 4] say x = 3.5, 3.7 and 3.8. In the followirgpke we report the
values of f(x).

Table 2
X 3.5 3.7 3.8
f(x) -0.544 -0.168 0.0202

We find that f(3.7) are of opposite signs. By apmdylV theorem again
to f(x) in the interval 4 = [3.7, 3.8], we find that the root of f(x) lies i
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the interval 13.7, 3.8[. Note that this intervalsimaller than the previous
interval. We call this interval a refinement of theevious interval. Let
us repeat the above procedure once again for teevat b. In Table 3
we give the values of f(x) for some x between 3@ a.8.

Table 3
X 3.75 3.78 3.79
f(x) -0.074 -0.017 -0.00137

Table 3 shows that the root lies within the intéfda78, 3.79[ and this
interval is much smaller compared to the origimdkival 13, 4[. The
procedure is terminated by taking any value of txveen 3. 78 and 3.79
as an approximate value of the root of the equd{idr= 2x — logox — 7
=0.

The method illustrated above is known as Tabulatr@thod. Let us
write the steps involved in the method.

Step 1:

Select some numbers, X, ...., % and calculate f( and f(%), ...., f(%,).
If f(x;) = O for some i, then;xs a root of the equation. If none of the x
are zero, then proceed to step 2.

Step 2:

Find values xand x.; such that f(} f(xj+1) < 0. Rename;x & and X.;
= b.. Then by the IV Theorem a root lies in betweemd Q. Test for
all values of f(y, j = 1, 2, ...., n and determine other intervélany, in
which some more roots may lie.

Step 3:

Repeat Step 1 by taking some numbers betweandh. Again, if f(x)
= 0 for some xbetween athen we have found the rogt ©Otherwise,
continue step 2.

Continue the step 1, 2, 3 till we get a sufficigrgimall interval]a, b[ in
which the root lies. Then any value between Jagdj be chosen as an
initial approximation to the root. You may have inetl that the test
values x j = 1, 2, ..., n chosen are dependent on thareatf the
function f(x).

We can always gather some information regardingrdlo¢ either from
the physical problem in which the equation f(x) =o6cur, or it is
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specified in the problem. For example, we may asktlhe smallest
positive root or a root closest to a given numher e

For a better understanding of the method let ussiden one more
example.

Example I

Find the approximate value of the real root ofeéljaation
2Xx—-3sinx-5=0.

Solution:

Let f(x) = 2x — 3 sin x — 5.

Since f(-x) = -2x + 3 sin x — 5 < 0 for x > 0, thenction f(x) is negative
for all negative real numbers x. Therefore the fiamchas no negative
real root. Hence the roots of this equation mustiti [0, o<[. Now
following step 1, we compute values of f(x), forX, 1, 2, 3, 4, ....

We have

f(0) = -5.0,
f(1)=2-3sin1-5=5.5224

using the calculator. Note that x is in radianse Thalues f(0), f(1), f(2)
and f(3) are given in Table 4.

Table 4
X 0 1 2 3
f(x) 5.0 5.51224 | -3.7278 0.5766

Now we follow step 2. From the table we find th@)fand f(3) are of

opposite signs. Therefore a root lies between ® ZanNow, to get a

more refined interval, we evaluate f(x) for soméea between 2 and 3.
The values are given in Table 5.

Table 5
X 2 2.5 2.8 2.9
f(x) -3.7278 -1.7954 -0.4049 0.0822

This table of values shows that f(2.8) and f(2.8) af opposite signs
and hence the root lies between 2.8 and 2.9. Weatdpe process once
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again for the interval [2.8, 2.9] by taking soméues as given in Table
6.

Table 6
X 2.8 2.85 2.88 2.89
f(x) -0.4049 -1.1624 -0.0159 0.0232

From Table 6 we find that the root lies between82a8d 2.89. This
interval is small, therefore we take any value leetw2.88 and 2.89 as
an initial approximation of the root. Since f(2.88)near to zero than
f(2.89), we can take any number near to 2.88 damiial approximation
to the root.

You might have realized that the tabulation metisod lengthy process
for finding an initial approximation of a root. Hawer, since only a
rough approximation to the root is required, wenmafy use only one
application of the tabulation method. In the nexb-section we shall
discuss the graphical method.

3.1.2 Graphical Method

In this method, we draw the approximate graph ef ifx). The points
where the curve cuts the x-axis are taken as theirsel approximate
values of the roots of the equation f(x) = 0. Lettonsider an example.

Example 2 Find an approximate value of a root of the bidyadéic
equation

X*+4X3+ 48 -2=0
using graphical method.

Solution:
We first sketch the fourth degree polynomial f(xx=+ 4x% + 4% — 2.
This graph is given in Fig. 1.

A
Y

-1 -

2 5E \/‘g/-o.sf X
2

Fig. 1: Graph of f(x) = + 4% + 4% — 2
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The figure shows that the graph cuts the x-axisvatpoints -2.55 and
0.55, approximately. Hence -2.55 and 0.55 are talsethe approximate
roots of the equation

XA+ 43 +4%-2=0

Now go back for a moment to Unit 1 and see Exaniple Sec. 1.2.
There we applied graphical method to find the rabdtthe equation sin x
1

5

Let us consider another example.
Example 3
Find the approximate value of a root of

X*—&=0
using graphical method.

Solution:

First thing to do is to draw the graph of the fimetf(x) = X — €. It is
not easy to graph this function. Now if we spli¢ flunction as

f(x) = fa(x) — f2(x)

where f(x) = ¥’ and §(x) = &, then we can easily draw the graphs of the
functions {(x) and §(x). The graphs are given in fig. 2.

The figure shows that the two curves y=axd y = & intersect at some
point P. From the figure, we find that the approxien point of
intersection of the two curves is -0.7. Thus we

> 1T P O 1T 2

Fig. 2: Graphs of f;(x) = x* and f,(x) = €".

have §(-0.7) — £(-0.7), and therefore f(-0.7) 5(£0.7) — %(-0.7) ~ 0.
Hence -0.7 is an approximate value of the roohefdquation f(x) = O.
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From the above example we observe the followinggpBae we want to
apply the graphic method for finding an approximedet of f(x) = O.
Then we may try to simply the method by splittihg equation as

f(x) = fa(x) = fo(x) = 0 (4)

where the graphs of(k) and §(x) are easy to draw. From Eqgn. (4), we
have f(x) = f,(x). The x-coordinate of the point at which the tawgves

y1 = fi(X) and y = f,(x) intersect gives an approximate value of thd roo
of the equation f(x) = 0. Note that we are intezdsbnly in the x-
coordinate, we don’t have to worry about the poinintersection of the
curves.

Often we can split the function f(x) in the form) 4 a number of ways.
But we should choose that form which involves mimmcalculations
and the graphs of() and §(x) are easy to draw. We illustrate this point
in the following example.

Example 4

Find an approximate value of the positive real mfa3x — cos x—1=0
using graphic method.

Solution:
Since it is easy to plot 3x — 1 and cos x, we rethie equation as 3x —

1 = cos x. The graphs of y 5(X) = 3x — 1 and y =,{x) = cos x are
given in Figure 3.

vA

Y»=COS»

of 2 4 6 8 10

Fig. 3: Graphs of fy(x) = 3x — 1 and $(x) cos x

It is clear from the figure that the x-coordinaté the point of
intersection is approximately 0.6. Hence x = 0.&risapproximate value
of the root of the equation 3x —cos x—1 =0.
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We now make a remark.
Remark 1:

You should take some care while choosing the stmlegraphing. A
magnification of the scale may improve the accumicihe approximate
value.

We have discussed two methods, namely, tabulati@thod and
graphical method which help us in finding an inia@proximation to a
root. But these two methods give only a rough axpmation to a root.
Now to obtain more accurate results, we need taowg these crude
approximations. In the tabulation method we fouhdttone way of
improving the process is refining the intervalshivitwhich a root lies.
A modification of this method is known as bisectimethod. In the next
section we discuss this method.

3.2 Bisection Method

In the beginning of the previous section we havetioeed that there

are two steps involved in finding an approximatkison. The first step

has already been discussed. In this section wedmnthe second step
which deals with refining an initial approximatitma root.

Once we know an interval in which a root lies, thare several

procedures to refine it. The bisection method s ohthe basic methods
among them. We repeat the steps 1, 2, 3 of thdatatmu method given

in subsection 3.3.1 in a modified form. For conesce we write the

method as an algorithm.

Suppose that we are given a continuous functiondétined on [a, b]
and we want to find the roots of the equation #x0 by bisection
method. We described the procedure in the follovsitegps:

Step 1:
Find points X, X in the interval [a, b] such that f(x f(x,) < 0. That is,
those points xand % for which f(x) and f(>) are of opposite signs-(see

Step 1 subsection 3.3.1). This process is calledditig an initial
bisecting interval”. Then IV theorem a root liesthe interval Jx, x,[.
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Step 2:

X, + X,

Find the middle point ¢ of the interval x| i.e., ¢ = L f(c) =

0, then c is the required root of the equation amed can stop the
procedure. Otherwise we go to Step 3.

Step 3:
Find out if
f(xy) f(c) <0

If it holds, then the root lies in {xc[. Otherwise the root lies in ]cy[x
(see Fig 4). Thus in either case we have foundtnval half as wide as
the original interval that contains the root.

(X1, f(x2)) (X1, f(x2))

y = f(x)
I

% \‘E\’x’z
(e, )

(X2 f(X2)) (X2 f(x2))

Fig. 4: The decision process for the bisection metd
Step 4:
Repeat Step 2 and 3 with the new interval. This@se either gives you
the root or an interval having width ¥4 of the omai interval ]x, X[
which contains the required root.
Step 5:
Repeat this procedure until the interval width sssanall as we desire.
Each bisection halves the length of the preceditgrval. After N steps,
the original interval length will be reduced byaator 1/2'.

Now we shall see how this method helps in refirtimg initial intervals
in some of the problems we have done in subse2tdA.
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Example 5

Consider the equation 2x — lgg — 7 lies in ]3.78, 3.79[. Apply
bisection method to find an approximate root of ég@ation correct to
three decimal places.

Solution:

Let f(x) = 2x — logox — 7. From Table 2 in subsection 3.3.1, we firat th
f(3.78) = -0.01749 and f(3.79) = 0.00136. Thusa tes in the interval
13.78, 3.79].

Then we find the middle point of the interval ]3,7879[. The middle
point is ¢ = (3.78 + 3.79)/2 = 3.785 and f(c) =7&b) = -0.0806+ 0.
Now, we check the condition in Step 3. Since f(3.f{8.785) > 0, the
root does not lie in the interval 13.78. 3.78[. lderthe root lies in the
interval 13.785, 3.9]. We have to refine this in@rfurther to get better
approximation. Further bisection are shown in tikWwing Table.

Table 7
Number of Bisection Bisected valug|x f(xi) Improved Interval
1 3.785 -0.00806 13.785, 3.79[
2 3.7875 -3.3525¢x10° 13.7875, 3.79[
3 3.78875 9.9594x 10" 13.78875, 3.79[
4 3.789375 1.824x10* 13.78875, 3.789375]
5 3.7890625 -4.068x10* 13.78906, 3.7989375]

The table shows that the improved interval aftbrsgctions is ]3.78906,
3.789375[. The width of this interval in 3.789378.78906 = 0.000315.
If we stop further bisections, the maximum absoleteor would be
0.000315. The approximate root can therefore bentas (3.78906 -
3.789375)/2 = 3.789218. Hence the desired apprdgimalue of the
root rounded off to three decimal places is 3.789.

Example 6:

Apply bisection method to find an approximationthe positive root of
the equation.

2x—3sinx—-5=0

rounded off to three decimal places.
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Solution: Let f(x) = 2x — 3 sin x — 5.

In Example 1, we had shown that a positive rod ilethe interval 2.8,
2.9[. Now we apply bisection method to this intérvEhe results are
given in the following table.

Table 8
Number of Bisection Bisected valug|x f(x;) Improved Interval
1 2.85 -0.1624 12.85, 2.79]
2 2.875 -0.0403 12.875, 2.79[
3 2.8875 0.02089 12.875, 2.8875]
4 2.88125 -9.735x10° 12.88125, 2.8875[
5 2.884375 5.57781x10° 12.88125, 2.884375[
6 2.8828125 -2.0795x10° 12.8828125, 2.884375]
7 2.8835938 1.7489%10° ]2.8828125, 2.8835938
8 2.8832031 -1.6539x10* ]2.8832031, 2.8835938

After we bisection the width of the interval is 235938 - 2.8832031 =
0.0003907. Hence, the maximum possible absoluta éorthe root is
0.0003907. Therefore the required approximatiatiméoroot is 2.883.

Now let us make some remarks.
Remark 2:

While applying bisection method we must be caredudheck that f(x) is
continuous. For example, we may come across fumctike f(x) =

il' If we consider the interval 1.5, 1.5[, then f(#%).5) < 0. In this

case we may be tempted to use bisection methodv8utannot use the
method here because f(x) is not defined at the migdint x = 1. We

can overcome these difficulties by taking f(x) te krontinuous

throughout the initial bisecting interval. (Noteathf f(x) is continuous

by IV theorem f(x) assumes all values betweenrtbervals.)

Therefore you should always examine the continaftyhe function in
the initial interval before attempting the bisentimethod.

Remark 3:

It may happen that a function has more than oneinoan interval. The

bisection method helps us in determining one rooly.oWe can
determine the other roots by properly choosingrhgl intervals.
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While applying bisection method we repeatedly amigps 2, 3, 4 and
5. You recall that in the introduction we classifisuch a method as an
Iteration method. As we mentioned in the beginnofgSec. 3.1, a
numerical process starts with an initial approxioratand iteration
improves this approximation until we get the debieecurate value of
the root.

Let us consider another iteration method now.

3.3 Fixed Point Iteration Method

The bisection method we have described earlier rdépen our ability

to find an interval in which the root lies. The kasf finding such

intervals is difficult in certain situations. In @u cases we try an
alternate method called Fixed Point Iteration Mdthe/e shall discuss
the advantage of this method later.

The first step in this method is to rewrite the &tpn f(x) = 0 as
X = g(X) (5)

For example consider the equatidn-@x — 8 = 0. We can write it as

X =+/2x+8 (6)
_ 2X+8

x== (7)
_ x*-8

x=" @)

We can choose the form (5) in several ways. Si()Qge=f0 is the same s
x = g(x), finding a root of f(x) = 0 is the same fasling a root of x =

g(x) i.e., a fixed point of g(x). Each such g(xy@n in (6), (7) or (8) is
called an iteration function for solving f(x) = 0.

Once an iteration function is chosen, our next sejo take a point x
close to the root as the initial approximationted toot.

Starting with %, we find the first approximation,>as

X1 = g(Xo)

Then we find the next approximation as

X2 = g(%)
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Similarly we find the successive approximationx, X, ... as

X3 = 0(%)
X4 = g(X)
Xpr1 = G(%)

Each computation of the type.x = g(x,) is called an iteration. Now,
two questions arise (i) when do we stop thesetiters? (i) Does this
procedure always give the required solution?

To ensure this we make the following assumptiong(aix

Assumption*

The derivative g'(x) of g(x) exists g'(x) is continus and satisfies
|g’(x)| < 1 in an interval containing,x(That would mean that we require

|g’(x)| < 1 at all iterates;y

The iteration is usually stopped wheneven|xs less than the accuracy
required.

In Unit 3 you will prove that if g(x) satisfies tteove conditions, then
there exists a unique point such that g¢) = o and the sequence of
iterates approach:, provided that the initial approximation is close
the pointa.
Now we shall illustrate this method with the follmg example.
Example 7.
Find an approximate root of the equation

2 —
X—2x-8=0
using fixed point iteration method, starting with=x5. Stop the iteration
whenever
|Xi+1 — %| < 0.001.
Solution:
Let f(x) = ¥ — 2x — 8. We saw that the equation f(x) = O canvhigten

in three forms (6), (7) and (8). We shall take ki three forms one by
one.
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Case 1. Suppose we consider form (5). In this fdnen equation is
written as

x = (2x + 8}

Here g(x) = (2x + 8}% Let's see whether Assumption (*) is satisfied for
this g(x). We have

vron 1
000 = g

Then |g'(X)| < 1 whenever (2x +'8)> 1. For any positive real number
X, we see that the inequality (2x +'8)> 1 is satisfied. Therefore, we
consider any interval on the positive side of isa®ince the starting
point is % = 5, we may consider the interval at | = [3, 6hiSTcontains
the point 5. Now, g(x) satisfies the condition thgk) exists on I, g’(x)
is continuous on | and |g’(x)| < 1 for every x hetinterval [3, 6]. Now
we apply fixed point iteration method to g(x).

We get
X, = g(5) =+/18 = 4.243
X, = g(4.243) = 4.060

X3 = 4.015
X4 = 4.004
Xs = 4.001
Xs = 4.000.

Since |¥ — x| = [-0.001| = 0.001, we conclude that an approtamalue
of a root of f(x) = 0 is 4.

Case 2: Let us consider the second form,

2X+8
X =
X
Here g(x) = 2x+8 and g’(x) :'—f. The |g'(x)| < 1 for any real number x

X X
= 3. Hence g(x) satisfies Assumption (*) in the &g [3, 6]. Now we
leave is as an exercise for you to complete thepcoations (See TMA
6).

2

)i 2

X

2_8. Then g(x) = 2_8 and g'(x) = x. In

this case |g’(X)| < 1 only if [x| < 1 i.e. if x $ien the interval ]-1, 1. But

Case 3: Here we have x
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this interval does not contain 5. Therefore g(xegloot satisfy the
Assumption (*) in any interval containing the iaitiapproximation.
Hence, the iteration method cannot provide apprakon to the desired
root.

Note: This example may appear artificial to youuYare right because
in this case we have got a formula for calculatimgroot. This example
is taken to illustrate the method in a simple way.

Let us consider another example.

Example 8

Use fixed point iteration procedure to find an apomate root of 2x = 3
sin x — 5 = 0 starting with the poing x 2.8. Stop the iteration whenever
X1 + %] < 10°.

Solution: We can rewrite the equation in the form,

x—gsinx+E
2 2

Here g(x) :g sin x +g and g’(x) :g COS X.

Now at % = 2.8, we have

|g’(2.8)| = 1.413

which is greater than 1. Thus g(x) does not sa#sfgumption (*) and
therefore in this form the iteration method fails.

Let us now rewrite the equation in another form. We

] 2x -3sinx-5
2-3cos)

2X - 3sinx-5

Then g(x) = x 5 -3co5

You may wonder how did we get this form. Note thate g(x) is of the
f(x)
f'(x)
iterated formula for another popular iteration noeth

form g(x) = x - . You will find later that the above equation i€ th
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, (2-3cosx)(2-3cos X)-(2x-3sin x+5)3sin x]
Theng'(x) =1 [

g (2-3cos x)?

_ 2x-3sin x+5

3 sin x
(2-3cosxy

At Xo = 2.8 |g'(%)| = 0.0669315 (or 0.02174691) < 1

Therefore g(x) satisfies the Assumption (*). Usirthe initial
approximation asg= 2.8, we get the successive approximation as

X; = 2.8839015
X, = 2.8832369
X3 = 2.8832369

Since |% — x| < 10° we stop the iteration here and conclude that
2.88323 is an approximate value of the root.

Next we shall use another form
X = sin‘l[—zx_sj
3

Here g(x) = sift [%] and g'(x) =

2
J9-(2x -5

At Xo = 2.8, g'(%) = 0.6804 < 1. In fact, we can check that in amgalé
interval containing 2.8 |g’(X)|] < 1. Thus g(x) ségs the Assumption
(*). Applying the iteration method, we have

Xy = sin'l[z(z'—?-ﬂ = 0.201358

We find that there are two values which satisfydbeve equation. One
value is 0.201358 and the other #s - 0.201358 = 2.940235. In
situations, we take a value close to the initigdragimation. In this case
the value close to the initial approximation is40235. Therefore we
take this value as the starting point of the n@gtraximation.

X1 = 2.940235

Next we calculate

‘- Sin_{z(z.942235 -5]
= 0.297876 or 2.843717
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Continuing like this, it needed 17 iteration to ahtthe value ¥ =
2.88323, which we got from the previous form. Timeans that in this
form the convergence is very slow.

From examples 7 and 8, we learn that if we chobeefdrm x = g(x)
properly, then we can get the approximate root igexi that the initial
approximation is sufficiently close to the root.€Timitial approximation
Is usually given in the problem or we can find gsihe IV theorem.
Now we shall make a remark here

Remark: The Assumption (*) we have given for amai®n function, is
a stronger assumption. In actual practice there areariety of
assumptions which the iteration function g(x) maeisfy to ensure that
the iterations approach the root. But, to use thassumptions you
would require a lot of practice in the applicatioh techniques in
mathematical analysis. In this course, we will estnicting ourselves to
functions that satisfies Assumption (*). If you Waulike to know about

the other assumptions, you may refer to ‘Elementhhymerical
Analysis’ by Samuel D Conte and Carl de Boor.

4.0 CONCLUSION

Let us now briefly recall what we have done in timst.
50 SUMMARY

In this unit we have covered the following points:

. We have seen that the methods for finding an ajpmabe
solution of an equation involve two steps:

)] Find an initial approximation to a root.

1)) Improve the initial approximation to get a more wede
value of the root.

. We have described the following iteration methaatsirinproving
an initial approximation of a root.

) Bisection method

1)) Fixed point iteration method.
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6.0

1)

2)

3)

4)

5)

6)

7

7.0

TUTOR-MARKED ASSIGNMENT (TMA)

Find an initial approximation to a root of the etjoa 3x -
VJ1+sinx = 0 using tabulation method.

Find a initial approximation to a positive roottble equation 2x
— tan x = 0 using tabulation method.

Find the approximate location of the roots of thalofving
equations in the regions given using graphic method

a) fx)=e*-x=0,in0<x <1

b) f(x)=e®¥-0.4x-9=0,in0<x7

Starting with the interval [a by], apply bisection method to be
the following equations and find an interval of Wid).05 that
contains a solution of the equations

a) g€—-2-x=0,[g ] =[1.0, 1.8]

b) Inx-5+x=0, [@by] =[3.2, 4.0]

Using bisection method find an approximate roothef equation
x> =X —4 = 0in the interval ]1, 2[ to two placddecimal.

Apply fixed point iteration method to the form @ starting

with X, = 5 to obtain a root of’% 2x — 8 = 0.

a) Apply fixed point iteration method to the folliong
equations with the initial approximation given ajside.

In each case find an approximate root rounded @ff} t
decimal places.

) X =-45 +§ Xo = 20.

i) x:%+sinx,>@:1.

b) Compute the exact roots of the equatibrx5x — 2 = 0
using quadratic formula and compare with the
approximate root obtained in (a) (i).
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UNIT 3 CHORD METHOD FOR FINDING ROOTS
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1.0 INTRODUCTION

In the last unit we introduced you to two iteratimethods for finding
roots of an equation f(x) = 0. There we have showat a root of the
equation f(x) = 0 can be obtained by writing theatgpn in the form x =
g(x). Using this form we generate a sequence ofcepations X, =
g(x) fori =0, 1, 2, ... We had also mentioned thiat the success of
the iteration methods depends upon the form of gfxd the initial
approximation ¥ In this unit, we shall discuss two iteration nusth:
regula-falsi and Newton-Raphson methods. These adstlproduce
results faster than bisection method. The first sgotions of this unit
deal with derivations and the use of these two odgthYou will be able
to appreciate these iteration methods better if gan compare the
efficiency of these methods. With this in view viroduce the concept
of convergence criterion which helps us to che&kdfficiency of each
method. Sec. 3.3 is devoted to the study of ratearfvergence of
different iterative methods.

2.0 OBJECTIVES

After studying the unit you should be able to:

. apply regula-falsi and secant methods for findimgts

. apply Newton-Raphson method for finding roots

. define ‘order of convergence’ of an iterative sclkbem

. obtain the order of convergence of the followingrfmethods:

0 bisection method
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o fixed point iteration method
o0 secant method
o Newton-Raphson method

3.0 MAIN BODY

3.1 Regula-Falsi Method (or Method of False Positig

In this section we shall discuss the ‘regula-faigthod’. The Latin

word ‘Regula Falsi’ means rule of falsehood. It sio®@t mean that rule
Is a false statement. But it conveys that the rd@swe get according to
the rule are approximate roots and not necessawxbct roots. The
method is also known as the method of false posifihis method is

similar to the bisection method you have learftmt 3.

The bisection method for finding approximate rdwas a drawback that
it makes use of only the signs of f(a) and f(b)Jddes not use the values
f(a), f(b) in the computations. For example, if)f@700 and f(b) = -0.1,
then by the bisection method the first approxinvatiee of a root of f(x)
is the mid value xof the interval ]a, b[. But atyxf(xo) is nowhere near
0. Therefore in this case it makes more sensekedavalue near to -0.1
than the middle value as the approximation to tiee. rThis drawback is
to some extent overcome by the regula-falsi metiwe. shall first
describe the method geometrically.

Suppose we want to find a root of the equation £>9 where f(x) is a
continuous function. As in the bisection method,fins find an interval
]a, b[ such that f(a) f(b) < 0. Let us look at tiraph of f(x) given in Fig.
1.

f (a,f(a))
(a (?)) \\ (€1(0)

N
N
I~

(b.f(b)) (b.f(b))
Fig 1: Regula-Falsi

The condition f(a) f(b) < 0 means that the poirisf(a)) and (b, f(b)) lie
on the opposite sides of the x-axis. Let bus camndide line joining (a,
f(a)) and (b, f(b)). This line crosses the x-axisame point (c, 0) [see
Fig. 1]. Then we take the x-coordinate of that poais the first
approximation. If f(c) = 0, then x = c is the reepa root. If f(a) f(c) < O,
then the root lies in ]a, c[ (see Fig. 1 (a)). hmstcase the graph of y =
f(x) is concave near the root r). Otherwise, i fi@@) > 0, the root lies in
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]c, b[ (see Fig. 1 (b)). In this case the graply &f f(x) is convex near
the root. Having fixed the interval in which theots lies, we repeat the
above procedure.

Let us now write the above procedure in the mathiealaform. Recall
the formula for the line joining two points in tl@artesian plane. The
line joining (a, f(a)) and (b, f(b)) is given by

_f( )_

f(b) f(a)
“Px-a)

We can rewrite this in the form

y-f@ _ x-
f(b)-f(@) b-

)

a
a

Since the straight line intersects the x-axis aj¢ he point (c, 0) lies
on the straight line. Putting x = ¢, y = 0 in E{h), we get

-f@ _ c-a
f(b)-fa) b-a
a

o C _ -f@)
" b-a b-a f()-f@)

4 1@

Thus c = 1) -f@)

a_ .~ (b-a) (2)

This expression for ¢ gives an approximate valueaafoot of f(x).
Simplifying (2), we can also write as

af(b) - bf @)
f(b) -f(a)

Now, examine the sign of f(c) and decide in whicterval ]Ja, c[ or ]c,
b[, the root lies. We thus obtain a new intervatrsuhat f(x) is of
opposite signs at the end points of this inten&y. repeating this
process, we get a sequence of intervals Ja, bf[lala, al, ... as shown
in Fig. 2.
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A (b, f(b))

(a, f(a))
Fig. 2

We stop the process when either of the followinigifio

) The interval containing the zero of f(x) is of saikéntly small
length or

i) The difference between two successive approximatisn
negligible.

In the iteration format, the method is usually terit as

_X of (X:L) - le (Xo)
o f(x)-(x,)

where ]%, X[ is the interval in which the root lies.

2

We now summarise this method in the algorithm fofims will enable
you to solve problems easily.

Step 1. Find numbersgxand x such that f(¥) f(x;) < O, using the
tabulation method.

X of (X:L) - le (Xo)

Step 2: Setx= fx) - (x0)
0

. This gives the first approximation.

Step 3: If f(%) = 0 then x is the required root. If fgx =0 and (%) f(x»)

< 0, then the next approximation lies in,]x;[. Otherwise it lies in ]x
Xq[.

Step 4: Repeat the process till the magnitude efdifference between
two successive iterated values and X.; is less than the accuracy
required. (Note that Jx — x| gives the error afteliiteration).

Let us now understand these steps through an egampl
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Example 1

It is known that the equatiori x 7X¢ + 9 = 0 has a root between -8 and -
7. Use the regula-falsi method to obtain the raminded off to 3
decimal places. Stop the iteration whem |x x| < 10*

Solution:
For convenience we rewrite the given function #x)

fX) =x3+7¢+9
=x(x+7)+9

Since we are given thag x -8 and x = -7, we do not have to use Step
1. Now to get the first approximation, we apply tbhemula in Step 2.

Since, f() = f(-8) = -55 and f(¥) = f(-7) = 9 we obtain

_ (-8)9-(7)(5) _
Xy = 9+ 55 =-7.1406

Therefore our first approximation is -7.1406.

To find the next approximation we calculate,j(with the signs of f(}
and f(x). We can see that f{kand f(»%) are of opposite signs. Therefore
a root lies in the interval ]-8, -7.1406[. We appihe formula again by
renaming the end points of the interval asx8, % = -7.1406. Then we
get the second approximation as

v = ~8 f(-7.1406)+ 7.1406 f(-8) _

1.86285(+ 55 -7.168174.

We repeat this process using Step 2 and 3 givemeallhe iterated
values are given in the following table.

Table 1

I\'lumb'er of Interval Iterated Values The function value f(X
iterations Xi

1 1-8,-7[ -7.1406 1.862856

2 ]1-8,-7.1406] -7.168174 0.3587607

3 ]1-8,-7.168174] -7.1735649 0.0683443

4 ]-8,-7.1735649] -7.1745906 0.012994

5 ]1-8,-7.1745906] -7.1747855 0.00246959

6 ]-8, -7.1747855] -7.1748226 0.00046978
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From the able, we see that the absolute valueeotliffierence between
the 5th and 6th iterated values is |7.1748226 #47855| = .0000371.
Therefore we stop the iteration here. Further,vliees of f(x) at 6th
iterated value is .00046978 = 4.69%810* which is close to zero.
Hence we conclude that -7.175 is an approximateabg® + 7¢ + 9 =
0

Rounded off to three decimal places.

You note that in regula-falsi method, at each stagefind an interval
X0, X4[ Which contains a root and then apply iteratiomfala (3). This
procedure has a disadvantage. To overcome thiglaréglsi method is
modified. The modified method is known as secanthow In this
method we choosegyand % as any two approximations of the root. The
Interval Jx, X[ need not contain the root. Then we supply form@ka
with Xo, X1, f(Xo) and f(x).

The iterations are now defined as:

_ X of (X)) - X f(Xp)
2T H(x)-f(x)
X (X,)-X,f (X))
5T f(x,)-F(x,)

....... i
X0 = ) T () )

Note: Geometrically, in secant Method, we repldee graph of f(x) in
the interval Jx, X,+i[ by a straight line joining two points {(Xf(Xp+1),
(Xn+1), f(Xn+1)) ON the curve and take the point of intersectiaih x-axis
as the approximate value of the root. Any lineijagntwo points on the
curve is called a secant line. That is why thishmdtis known as secant
method. (see Fig. 3).

A (X1, f(x1))

(X0, f(x0))

Fig. 3
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Let us solve an example.
Example 2
Determine an approximate root of the equation

cosXx—Xx&=0

using

) secant method starting with the two initial apgmations as x=
landx=1

and

1)) regula-falsi method.

(This example was considered in the book ‘Numericethods for
scientific and engineering computation’ by M. KinJ&. R. K. lyengar
and R. K. Jain).

Solution:
Let f(x) =cosx-x &

Then f(0) = 1 and f(1) = cos 1 — e = -2.1779795%8w we apply
formula (4) with x =0 and x= 1. Then

Cxfx)-x.f(x,) _ 0(-217797983+ (-1)1
2T f(x)-(x,) -2.17797953-1

-1 1

= 5177979531 = 317797953 - 0-3146653378.

Therefore the first iterated value is 0.31466533@&)et the 2nd iterated
value, we apply formula (4) withyx 1, % = 0.3144653378. Now f(1) =
-2.177979523 and f(0. 3144653378) = 0.519871175.

Therefore
,= X, f(X,)-X,f(X,)
f(x,) - f(x,)

_1(0.51987175)- 0.314665338(-2.17799523)
B 0.51987115+ 2.17797953

= 0.4467281466

395



MTH 213 NUMERICAL ANALYSIS 1

We continue this process. The iterated values abaldted in the
following table.

Table 2: Secant Method
Number of iterations lterated Values x| f(x;)

0.5177573637 0.178663x 10'?
0.5177573637 0.222045x 10%°

1 0.3146653378 0.519871

2 0.4467281466 0.203545

3 0.5317058606 -0.0429311

4 0.5169044676 .00259276

5 0.5177474653 0.00003011

6 0.5177573708 -0.215132x 10’
7

8

From the table we find that the iterated values7itbr and 8th iterations
are the same. Also the value of the function attheiteration is closed
to zero. Therefore we conclude that 0.517757363&nisapproximate
root of the equation.

1)) To apply regula-falsi method, let us first notettf(@) f(1) < O.
Therefore a root lies in the interval ]O, 1[. Nove &pply formula
(3) with X, = 0 and x = 1. then the first approximation is

_0(-217797923+ (-1)1
-2.17797953-1

X2

= 0.3146653378

You may have noticed that we have already calcdildite expression on
the right hand side of the above equation in part (

Now f(xp) = 0.51987 > 0. This shows that the root lieshia interval
]0.3146653378, 1[. To get the second approximat@compute

_ 0.3146653378f (1) -1f(0.314663378) _
Xs = f(1)-f(0.314663378) = 0.4467281446
which is same asz)obtained in (i). We find f( = 0.203545 > 0. Hence
the root lies in ]10.4467281446, 1[. To get the dhapproximation, we
calculate

o, = 044672814461 (1) -1f(0.446728144F
4 f (1) - f(0.446728144%

The above expression on the right hand side isemdifft from the
expression for xin part (i). This is because when we use reguk-fa
method, at each stage, we have to check the condf,) f(x;,) <O.
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The computed values of the rest of the approximatiare given in
Table 3.

Table 3: Regula-Falsi Method

No. Interval lterated value x f(xi)

1 [0, 1] 0.3146653378 0.519871

2 1.04467281446, 1] 0.4467281446 0.203545

3 10.4940153366, 1[ 0.4940153366 0.708023x 10*
4 10.5099461404, 1] 0.5099461404 0.236077x 10*
5 10.5152010099, 1] 0.5152010099 0.776011x 10°
6 10.5176683450, 1[ 0.5177478783 0.288554x 10*
7 10.5177478783, 1] 0.5177573636 0.396288x% 10°

From the table, we observe that we have to perf2@niterations using
regula-falsi method to get the approximate value tbé root
0.5177573637 which we obtained by secant methast 8ftiterations.
Note that the end point 1 is fixed in all iterasogiven in the table.

Next we shall discuss another iteration method.

3.2 Newton-Raphson Method

This method is one of the most useful methods ifatig roots of an
algebraic equation.

Suppose that we want to find an approximate rodhefequation f(x) =
0. If f(x) is continuous, then we can apply eithe@section method or
regula-falsi method to find approximate roots. Nibwi{x) and f'(x) are
continuous, then we can use a new iteration metiagd Newton-
Raphson method. You will learn that this methodegithe result more
faster than the bisection or regula-falsi methddwe underlying idea of
the method is due to mathematician Isac Newton. tBeatmethod as
now used is due to the mathematician Raphson.

Let us begin with an equation f(x) = 0 where féod f'(x) and are
continuous. Let x be an initial approximation and assume thatisx

close to the exact roet and f'(x) #0. Leta = X, + h where h is a small
guantity in magnitude. Henceodf} = f(xo + h) = O.

Now we expand f(x+ h) using Taylor’'s theorem. Note that f(x) saésf
all the requirements of Taylor's theorem. Therefore get

f(Xo + h) = f(%) + hf(xo) + ... = 0

Neglecting the terms containing &nd higher powers we get
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f(xo) + hf(xo) = O.

— f(Xo)
Then, h _f'(Xo)

This gives a new approximation toas

- f(x
X1:X0+h:)f)'—f.EXO§
0

Now the iteration can be defined by
f(xo)

TR
-l
X = Y- ol ()

f' (X5

Egn. (5) is called the Newton-Raphson formula. Befsolving some
examples we shall explain this method geometrically

Geometrical Interpretation of Newton-Raphson Method

Let the graph of the function y = f(x) be as shawkig. 4.

Vai

P (%, f(Xo)

T/T (X, 0) X

Fig. 4 Newton-Raphson Method

If Xo Is an initial approximation to the root, then t@responding point
on the graph is Pgxf(xp)). We draw a tangent to the curve at P. Let it
intersect the x-axis at T. (see Fig. 4). Lebe the x-coordinate of T. Let
S(a, 0) denote the point on the x-axis where the cums the x-axis.
We know thata is a root of the equation f(x) = 0. We takeas the new
approximation which may be closer tothan %. Now let us find the
tangent at P f(Xo)). The slope of the tangent at R (KXo)) is given by
(X o). Therefore by the point-slope form of the expi@sgor a tangent
to a curve, we can write
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y —f(x0) = F'(Xo) (X1 — %)

This tangent passes through the point,,TQ} (see fig. 4). Therefore we
get

0 — () = '(X0) (X1 — X0)

i.e. % f'(Xo0) = Xof' (X o) — f(xo)
: _ f(xo)

l.e. X =X F(x0)

This is the first iterated value. To get the secivachted value we again
consider a tangent at a point B(Kx1)) on the curve (see Fig. 4) and
repeat the process. Then we get a poi(#,J0) on the x-axis. From the
figure, we observe that,Tis more closer to S(, 0) than T. therefore
after each iteration the approximation is comingset and closer to the
actual root. In practice we do not know the actt@t of a given
function.

Let us now take up some examples.
Example 3

Find the smallest positive root of
2x—tanx =0
by Newton-Raphson method, correct to 5 decimalgsdac

Solution:

Let f(x) = 2x — tan x. Then f(x) is a continuouséion and f'(x) = 2 —
seéx is also a continuous function. Recall that theegi equation has
already appeared in an exercise in Unit 2 (see TiMAInit 2). From

that exercise we know that an initial approximatiorthe positive root
of the equations is x = 1. Now we apply the NewRaphson iterated
formula.

X1 = X1 - ff'(z;)) i=1,2,3 ...

Here = 1. Then f(¥) = (1) = 2 —tan 1 = 0.4425922
f'(xo) = (1) = 2 — setl = 2 — (1 + tafl)

=1 -tafl

=-1.425519

0.4425922

Therefore x=1 - ~{ 475511
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=1.31048
Fori= 2, we get
X3 =1.17605
X4 = 1.165926
X5 = 1.165562
Xg = 1.165561

Now x5 and % are correct to five decimal places. Hence we shap
iteration process here. The root correct to 5 dakptaces is 1.16556.

Next we shall consider an application of Newton4Ram formula. We

know that finding the square root of a number ise@asy unless we use
a calculator. Calculators use some algorithm taiakguch an algorithm
for calculating square roots. Let's consider amepia.

Example 4

Find an approximate value af2 using the Newton-Raphson formula.

Solution:

Let x = +/2. Then we have®>= 2 i.e. ¥ — 2 = 0. Hence we need to find
the positive root of the equatiohx 2 = 0. Let

f(x) = x* — 2.

Then f(x) satisfies all the conditions for applyildewton-Raphson
method. We chooseg % 1 as the initial approximation to the root. This

is because we know thaf2 lies betweenyl and+/4 and therefore we
can assume that the root will be close to 1.

Now we compute the iterated values.
The iteration formula is

X%, -2
2X, 4

i, L2
2[I-1 Xi—l]

Puttingi=1,2,3 ..... we get

1 2
= — + —|=
X1 2[x0 Xo] 15

Xi = X1 -

400



MTH 213 MODULE 3

_1 2\ _
X2 = [1.5 + 15} = 1.4166667
1 2
X3 = 2@..4166667 m}
= 1.41242157

Similarly

X4 = 1.4142136
Xs = 1.4142136

Thus the value of/2 correct to seven decimal places is 1.4142136.
Now you can check this value with the calculator.

Note 1:

The method used in the above example is applidablénding square
root of nay positive real number. For example ssppee want to find
an approximate value of A where A is a positive real number. Then
we consider the equatio % A = 0. The iterated formula in this case is

« _[1 N +A]
i 2 i-1 Xi—l

This formula involves only the basic arithmetic mgi@ns +, -,x and

Note 2:

From examples (3) and (4), we find that Newton-Rapohmethod gives
the root very fast. One reason for this is thatdéevative |f'(x)| is large

f(x)
f(x)
difference between two iterated values is smalthis case. In general
we can say that if [P'(} is large compared to [f{k then we can obtain

the desired root very fast by this method.

which is the

compared to [f(x)| for any x =.xThe quantity

The Newton-Raphson method has some limitationsthén following
remarks we mention some of the difficulties.

Remark 1:
Suppose f'(¥ is zero in a neighbourhood of the root, thenatyrhappen

that f'(x;) = 0 for some x In this case we cannot apply Newton-Raphson
formula, since division by zero is not allowed.
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Remark 2:

Another difficulty is that it may happen that f'(x3 zero only at the
roots. This happens in either of the situations.

)] f(x) has multiple root at.. Recall that a polynomial function f(x)
has a multiple root. of order N if we can write

f(x) = (x - a)" h(x)
where h(x) is a function such thatdo)(= 0. For a general
function f(x), this means &) = 0 = f(a) = ... = f"}(a) and
fN(a) 0.

1)) f(x) has a stationary point (point of maximum ofnmaum) point
at the root [recall from your calculus course thdt(x) = 0 at
some point x then x is called a stationary point].

In such cases some modifications to the Newton-Baphmethod are
necessary to get an accurate result. We shall nstusk the
modifications here as they are beyond the scoplei®tourse.

You can try some exercise now. Whenever neededyldhose a
calculator for computation.

In the next section we shall discuss a criteriangugvhich we can check
the efficiency of an iteration process.

3.3 Convergence Criterion

In this section we shall introduce a new concepiedaconvergence
criterion’ related to an iteration process. Thidetion gives us an idea
of how much successive iteration has to be camedo obtain the root
to the desired accuracy. We begin with a definition

Definition 1:

Let X, X1 ..... X, .... be the successive approximation of an iteration
process. We denote the sequence of these apprdm'nm{x n}j’fzo. We

say that{x n}‘;":O converges to a roat with order p= 1 if

Xosr - @] <Axo - af” (6)

for some numbef. > 0. p is called the order of convergence ant
called the asymptotic error constant.
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For each i. we denote by = X - a. Then the above inequality be
written as

|8i+1| <)\‘|8i |P (7)

This inequality shows the relationship betweendhers in successive
approximations. For example, suppose p = 2 andt:er'z for some 1.

then we can expect that,}|~110" Thus if p is large, the iteration
converges rapidly. When p takes the integer valyed 3 then we say
that the convergences are linear, quadratic and cabpectively. In the
case of linear convergence (i.e. p =1). Then weaireghat) < 1. In
this case we can write (6) as

[Xas1 - o] <A |%, - o] for all n =0 (8)

In this condition is satisfied for an iteration pess then we say that the
iteration process converges linearly.

Setting n = 0 in the inequality (8), we get

X1 - o] <\[|X- af

Forn =1, we get

X2 - o] <A|xq- o] <K% - af

Similarly for n = 2, we get

X - a] <A|xo- o <A°|Xy- a| <H’|xo- af

Using induction on n, we get that

X - | <A"[X - a| for n =0 (9)

If either of the inequality (8) or (9) is satisfietthen we conclude that
{x n} =0 converges to the root.

Now we shall find the order of convergence of ttexation methods
which you have studied so far.

Let us first consider bisection method.
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Convergence of bisection method

Suppose that we apply the bisection method onrtteevial [, ly] for
the equation f(x) = 0. In this method you have s#et we construct
intervals [@, by] [a, ] [a&, ] ... each of which contains the
required root of the given equation.

Recall that in each step the interval width is [miilby% le.

b. -
b —a = ozao
b, - b, -
== DB - Doty
and h—a = b°2_na° (10)

We know that the equation f(x) = 0 has a root i§) bg]. Let o be the
root of the equation. Thea lies in all intervals [ab], i =0, 1, 2, ....

For any n, let ¢= a”Tb” denote the middle point of the interval,[&].

Then ¢, ¢, &, ... are taken as successive approximations tocibieor.
Let’s check the inequality (8) fc{lcn}‘:zo converges to the roat Hence

we can say the bisection method always converges.

For practical purposes, we should be able to deidéhat stage we can
stop the iteration to have an acceptably good ampite value ofa.
The number of iterations required to achieve amjigecuracy for the
bisection method can be obtained. Suppose thatam an approximate
solution within an error bound of 10 (Recall that you have studied
error bounds in Unit 1, Sec. 3.4). Taking logarithon both sides of
Egn. (10), we find that the number of iteration uiegd, say n, is
approximately given by

In(b, -a,) - In10™
In2

n=int (11)

where the symbol ‘int’ stands for the integral pafrthe number in the
bracket and ]g Iy is the initial interval in which a root lies.
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Let us work out an example.

Example 5

Suppose that the bisection method is used to fiadra of f(x) in the
interval [0, 1]. How many times this interval besétted to guarantee
that we have an approximate root with absoluterdess than or equal
to 10°.

Solution:

Let n denote the required number. To calculateeapply the formula
in Eqn. (11) withb=1,g=0and M =5.

Then

N = im[lnl- In10°
In2

Using a calculator, we find

n = int 115129254T
~ 06931471
= int [16.60964047] = 17
The following table gives the minimum number ofatgons required to

find an approximate root in the interval ]0, 1[ fearious acceptable
errors.

E 10 10° 10" 10 10° 10
n 7 10 14 17 20 24

This table shows that for getting an approximateevavith an absolute
error bounded by 10 we have to perform 17 iterations. Thus even
though the bisection method is simple to use,quires a large number
of iterations to obtain a reasonably good approi@maot. This is one of
the disadvantages of thee bisection method.

Note: The formula given in Eqn. (11) shows thategi an acceptable
error, the number of iterations depends upon tligalinnterval and

thereby depends upon the initial approximation lué toot and not
directly on the values of f(x) at these approximias.

Next we shall obtain the convergence criteria igr secant method.
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Convergence criteria for Secant Method

Let f(x) = O be the given equation. Let denote a simple root of the
equation f(x) = 0. Then we have &} #0. The iteration scheme for the
secant method is

X - Xjq

T - () (12)

Xir1 = X

For each i, set, = x; - a. Then x+ a. Substituting in Egn. (12) we get

iy t0 =g ta - Lo
f(e; +a)- (e, + )

i (e, +a) (13)

f(e +a)

U (e +0) - f(s,, )

8i+1:

Now we expand # +a) and f(, -a) using Taylor's theorem about the
point X =a.

We get e, +a) = f(a) + f'(l‘*) o+ D gy
e f(e,+0) = F(a) |s + ;',((03) £ + (14)
since f'(a) = 0.
Similarly,
o
e + @) = F(0) [0 5y s * o (15)
Therefore f, +a) - (e, + a) = : 22y la)
[ g, ta)=F(a) |g - g, + (g gi)zf.(a) +
o
= F(0) (5 - e L+ 6+ e i) * o (16)

Substituting Eqn. (14) and Eqn. (13), we get

€ =& -l T % &’ il:((;x)) + .1 +%(ai + gi_l)ff':((z)) + ]1
, 1"() 1 ()

=g -lg + - € (o) + .. 1-2(8i + 8“1)f'(a) +..]

—& "|§ + % frl:((::“)) (gl R 8|1) +
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By neglecting the terms involving &7, + ¢ ¢ the above expression,
we get

f* (o)
2f"(a)

(17)

€y TE &,

This relationship between the errors is called éh@r equation. Note
that this relationship holds only if is a simple root. Now using Eqn.
(17) we will find a number p and such that

g =AeP1=0,1,2, .. (18)

Setting i = — 1, we obtain

— p
g = A €4
or
g = Aeb,

Taking p" root on both sides, we get

1/p — al/
gP =\"P¢g,

i.e.g, =AY el? (19)
Combining Egns. (17) and (18). We get

f"(a)
12 ()

Lel =g ¢

Substituting the expression fog,, from Eqn. (19) in the above
expression we get

A gP QM € X-llp 8_1/p

2f'(a) !
. f"(0) ,ap 14w
P 7 p o 1+l/p
l.e. A e 2F' (o) AP e (20)

Equating the powers af on both sides of Eqn. (20) we get
1
p=1+7 org-p-1=0.

This is a quadratic equation in p. The roots avergby
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p= 1+f ~1.618.

Now, to get the number, we equate the constant terms on both sides of
Egn. (20). Then we get

_ f" (a) P/1+p
h= [2f'(a)

Hence the order of convergence of the secant mashopd 1.62 and the

£ ((1) P/1+p
asymptotic error constant [Sm

Example 6

The following are the five successive iterationdaoted by secant
method to find the root = -2 of the equation®- 3x + 2 = 0.

X1 =-2.6,%= -2.4, % =-2.106598985.
X4 = -2.022641412 and;x -2.000022537.

. 2
Compute the asymptotic error constant and ShOWelghaté €,

Solution:
Let f(x) = — 3x + 2

Then
f(x) =3¢ —=3,f(-2) =9
(x) = 6x, f(-2) = -12

Therefore) = Hg

]618

618

= |-2]" = -0.778351205

Now
& = | % - a | =]-2.000022537 + 2

= 0.000022537
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and

g, =|-2.022641412 + 2 | = 0.022641412.

Theni g, =0.77835120% 2.022641412

= 0.000021246
~0.00002253
Hence we get that ¢, ~¢,

Convergence criterion for fixed point iteration metod
Recall that in this method we write the equatiothie form
x=g(x)

Let o denote a root of the equation. Lgtize an initial approximation to
the root. The iteration formula is

Xit1 = 0(%),1=0,1, 2, ... (21)
We assume that g’(x) exists and is continuous |agi@x) | < 1 in an
interval containing the root. We also assume thag, %, .... lie in this
interval.

Since g’'(x) is continuous near the root and | g|(x) 1, there exists an
interval] o - h, a + h[, where h > 0, such that | g'(x)q k for some Kk,
where 0 <k < 1.

Sincea is a root of the equation, we have

a =g(a). (22)
Subtracting (22) from (21) we get

Xi+1 - @ = g(X) = g(a)

Now the function g(x) is continuous in the interjal, o[ and g'(x)
exists in this interval. Hence g(x) satisfies b tonditions of the mean

value theorem [see Unit 1]. Then, by the mean vaheorem there
exists at between xando such that

| X1 - al <[90¢) —9(@) | <1g'€) [ (- al

Note that¢ lies in Ja - h, a + h[ and therefore | g&) | < k and hence
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| %1 - o <[%-al

Settingi=0, 1, 2, ..., n we get
| % - a] <k|X-af
| % - o] <K|x-a|<K]|X- ol

| Xo- o <k"| X% - af

This shows that the sequence of approximation || converges tax
provided that the initial approximation is closehe root.

We summarise the result obtained for this iteratmocess in the
following Theorem.

Theorem &

If g(x) and g’(x) are continuous in an interval ab@ roota of the
equation x = g(x), and if | g'(x) | < 1 for all r the interval, then the
successive approximationg X,, ... given by

Xi=09(%1),1=1,2,3, ...

converges to the root provided that the initial approximation, s
chosen in the above interval.

We shall now discuss the order of convergenceisfritethod. From the
previous discussions we have the result.

| X1 - o] <g'(&) | (% - a)]

Note that& is dependent on each. Now we wish to determine the
constanth and p independent of guch that

| X1 -] <c | (%-a)[

Note that as the approximations get closer to the root., g'(¢)
approaches a constant valueog'( Therefore, in the limiting case, as i

— o< ,the approximation satisfy the relation

| %1 - a] <g'(a) | (% -a)]

Therefore, we conclude that if g =0, then the convergence of the
method is linear.

If g'(a) = 0, then we have
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1m0 = g(X) -o
=g(¢-a)*ta-a

=g(a) + (% - a)g'(a) +—5
(X(X)

6 g(e) -

9"(¢)
since g(x) = a and g’'(e) = 0 and¢ lies betweenpanda.

Therefore, in the limiting case we have

1, .
| %1 -0l <5 1g°(@) [ 05- o) F

Hence, if f'(a) = 0 and g’¢) #0, then this iteration method is of order
2.

Example 7

Supposen. andp are the roots of the equatioh«ax + b = 0. Consider
a rearrangement of this equation as

_ (@x+b)
B X
Show that the iteration,x = _@x +b)

la]> 1B

will converge near x = when

Solution:

The iteration are given by

- +Dbh) .
XI+1:g()q):-(aXlX )! Izol 11 21

By Theorem 1, these iterations convergextd |g’(X) | < 1 neara i.e. if

Ig'(x) | =

< 1. Note that g’(x) is continuous near If the iterations

2

<1].

. b
converge to x =, then we require |g'(x) | ‘:F

Thus | b|<h P
e laB>[Db]. (23)
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Now you recall from your elementary algebra coubhse if o andp are
the roots, then

a+p =-aandap =b
Therefore | b | =|| |B|. Substituting in Eqgn. (23), we get
laff>]b|=¢|[B].

Hence | > |B|

Finally, we shall discuss the convergence of thewtde-Raphson
method.

Convergence of Newton-Raphson Method
Newton-Raphson iteration formula is given by
oy f(x)
X1 =X (24)

To obtain the order of the method we proceed akansecant method.
We assume that is a simple root of f(x) = 0. Let

Xi-(XZSi,i:O,l,Z,...

Then we have

— fle +a)
gy T O =g +a'm
e e = gf'(e +a)-f(e, +a)
Tt i fl(8i+a)

Now we expand f + o) and f'(s;, + a), using Taylor's theorem about
the pointa. We have

e @+ e (@) + 55 (o) +..)

) -{f(a)aif'(a)+%f" (a)+..}]
ST ) e (o) + e () +oon

But f(a) = 0 and f'(a) #0. Therefore

_ [eten 1 [ ef"(0) ]‘1
8i+l_[7f (X+...]f"(a) 1+ f'((l) +..
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= [ ][1 Sff (S) ]

Hence, by neglecting higher powersef we get

L@
i+l 2f ((1.)
: . _ f"(a)
This shows that the errors satisfy Eqn. (6) witk pnd A = Zf—()
(0

Hence, Newton-Raphson method is of order 2. That sach step, the
error is proportional to the square of the previeusr.

Now, we shall discuss an alternate method for shgwhat the order is
2. Note that we can write (24) in the form x = gi®)ere

90 = x g0

o [# G0 - 100 ()
e T
_00f" (9

[F ()

Now, g'(a) = LE%](S—): 0, since ff) = 0 and f'(a) #O0.

Hence by the conclusion drawn just above Examptbée’ method is of
order 2. Note that this is true onlydfis a simple root. It is a multiple
root i.e. if g'(a) = O, then the convergence is not quadratic, lmly o
linear. We shall not prove this result, but we Ehiaistrate this with an
example.

Let us consider an example.

Example 8

Let f(x) = (x — 2f = 0. Starting with the initial approximation x 2.1,
compute the iterations; xx,, X3 and % using Newton-Raphson method.
Is the sequence conveying quadratically or lin€arly

Solution:

The given function has multiple roots at x = 2 &ndf order 4.
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Newton-Raphson iteration formula for the given diunais

— (Xi'2)4 — 1
Xi+1—Xi'W—Xi'Z(Xi_2)
- T(%-2) (25)

Starting with ¥ = 2.1, the iteration are given by
-1 6.3+2 _83 =2.075
X1 = 4( . ) - 2 - &

Similarly,

X, = 2.05625
X3 = 2.0421875
X4 = 2.031640625

NOW €,= Xo— 2 = 0.1,¢,= X, -2 = 0.075¢, = 0.05625¢, = 0.0421875,
e, = 0.031640625.

Then
= 075—§><01—§
g = =2 . —480
and
_3
€2 =4 &
3
832282
3
842283

Thus the convergence is linear in this case. Thar & reduced by a

3
factor ofz with each iteration. This result can also be otadidirectly

from Eqn. (25).
4.0 CONCLUSION

Same as in Summary
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5.0

SUMMARY

In this unit we have

6.0

1)

described the following methods for finding a rat an
equation f(x) =0

) Regula-Falsi method:
The formula is
_af(b)-bf(a)
-~ f(b)-f(a)
where ]a, b[ is an interval such that f(a) f(b).< 0

1)) Secant method:
The iteration formula is
- Xi-lf(xi)'xif (Xi—l) .
BT TG, e
where x and x are any two given approximation of the
root.

1)) Newton-Raphson method:
The iteration formula is
f(x)
Xi+1 = X - f'(X-) ’
where ¥ is an initial approximation to the root.

1=0,1, 2, ...

introduced the concept called convergence criterain an
iteration process.

discussed the convergence of the following iteeathethods
)] Bisection method.

1)) Fixed point iteration method.

i)  Secant method.

iv)  Newton-Raphson method.

TUTOR-MARKED ASSIGNMENT (TMA)

Obtain an approximate root for the following eqoasi rounded
off to three decimal places, using regula-falsihoeit

a) Xlogypx—1.2=0

b) xsinx—1=0
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2.)  Use secant method to find an approximate rootecetjuation X
— 2x + 1 =0, rounded off to 5 decimal places,tstgrwith x, =

2.6 and x = 2.5. Compare the result with the exact root-{2+

3.) Find an approximate root of the cubic equatidr ¢ + 3x — 3 =
0 using

a) )] regula-falsi method, correct to three decimailcels.

i) secant method starting with a = 1, b = 2, roeohd
off to three decimal places.

b) compare the results obtained by (i) and (ii) int ay.
4)  Starting with % = 0 find an approximate root of the equatidn-x
4x + 1 = 0, rounded off to five decimal places gsMewton-

Raphson method.

5.)  The motion of a planet in the orbit is governedanyequation of
the form y = x — e sin x where e stands for theepticcity. Let y

=lande :%. Then find a approximate root of 2x —2 —sin @ =

in the interval [0,x] with error less than 10 Start with % = 1.5.

6.) Using Newton-Raphson square root algorithm, firelftllowing
roots within an accuracy of T0

i) 82 starting with x = 3
i) 912 starting with ¥ = 10

7.) Can Newton-Raphson iteration method be used toesthe
equation X* = 0? Give reasons for your answer.

8.)  For the problem given in Example 5, Unit 2, finé thumber n of
bisection required to have an approximate root vabsolute
error less than or equal to"10

9.) For the equation given in Example 7, show thatitdetion x.,

b .
=Y +a will converge to the root x =, when | < [B].

7.0 REFERENCES/FURTHER READINGS

Engineering Mathematics P.D.S. Verma.
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UNIT4  APPROXIMATE ROOTS OF POLYNOMIAL
EQUATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Some Results on Roots of Polynomial Equations.
3.2  Birge-Vieta Method.
3.3 Graeffe’'s Root Squaring Method.

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

In the last two units we discussed methods forifigépproximate roots
of the equation f(x) = 0. In this unit we restriour attention to
polynomial equations. Recall that a polynomial ¢gumis an equation
of the form f(x) = O where f(x) is a polynomial x. Polynomial

equation arise very frequently in all branches @érsce especially in
physical applications. For example, the stabilitf electrical of

mechanical systems is related to the real parhefal the complex roots
of a certain polynomial equation. Thus there issadto find all roots,
real and complex, of a polynomial equation. The fiteration methods,
we have discussed so far, applies to polynomiahtgus also. But you
have seen that all those methods are time consuniihgs it is

necessary to find some efficient methods for olginroots of

polynomial equations.

The sixteenth century French mathematician Franboéta was the
pioneer to develop methods for finding approxinratas of polynomial

equations. Later, several other methods were dpedldor solving

polynomial equations. In this unit we shall disctwe simple methods:
Birge-Vieta’'s and Graeffe’'s root squaring methods. apply these
methods we should have some prior knowledge otimtand nature of
roots of a polynomial equation. You are already ifiamwith some

results regarding location and nature of roots frdma elementary
algebra course. We shall begin this unit by lissogne of the important
result about the roots of polynomial equations.
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2.0 OBJECTIVES
After reading this unit you should be able to:

. apply the following methods for finding approximateots of
polynomial equations
0 Birge-Vieta method
o Graeffe’s root squaring method

. list the advantages of the above methods over teéhads
discussed in the earlier units.

3.0 MAIN BODY

3.1 Some Results on Roots of Polynomial Equations

The main contribution in the study of polynomialuatjons due to the
French mathematician Rene Descartes’ The resybisaaed in the third
part of his famous paper ‘La geometric’ which medie geometry’.

Consider a polynomial equation of degree n
pO) = ax" + @ X" + .. tax + & (1)

where g, &, .... ¢ are real numbers angd & 0. You know that the roots
of a polynomial equation need not be real humbérsan be complex
numbers, that is numbers of the form z = a + ibr@leeand b are real
numbers. The following results are basic to thely of roots of

polynomial equations.

Theorem 1

(Fundamental Theorem of Algebra): Let p(x) be aypoimial of degree
n =1 given by Eqn. (1). Then p(x) = 0 has at least wot: that is there

exists a numben € C such that pg) = 0. In fact p(x) has n complex
roots which may not be distinct.

Theorem 2

Let p(x) be a polynomial of degree n ands a real number. Then
P(X) = (X - &) Go(X) + I (2)

for some polynomial ¢fx) of degree n — 1 and some constant numper r

Jo(X) and p are called the quotient polynomial and the remaind
respectively.
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In particular, ifa is a root of the equation p(x) = 0, thgr=r0: that is (x
- a) divides p(x).

Then we get

p(x) = (x - &) Go(X)

How do we determineq(k) and §? We can find them by the method of
synthetic division of a polynomial p(x). Let us nakgcuss the synthetic
division procedure.

Consider the polynomial p(x) as given in Egn. (1)
P() = ax" + X"+ ... tax + &
Dividing p(x) by x -a we get

P(X) = op(x) (X - o) + 1o 3)
where ¢(x) is a polynomial of degree n — 1 apds a constant.

Let gp(X) be represented as
Go(X) = b + b + L+ bx + by

(Note that for convenience we are denoting thefmeht by b, ..., b
instead of b by, .... b.1). Set B = ro. Substituting the expressions for
Jo(X) and g in Eqn. (3) we get

PO) = (x - o) (b + baxX™2 + L+ bx + by) + by (4)
Now, to find lp, by ..... ky we simplify the right hand side of Eqn. (4) and
compare the coefficients of,x = 0, 1, .... n on both sides. Note that

p(a) = k. Comparing the coefficient we get

Coefficientof X  :a&,=h, b, = &
Coefficient of X! :a,1=b,1-ab, b.i=a.+ ab,

Coefficient of ¥ - a—b- obey b= a8+ by

Coefficientof ¥ :a=hy- a, h=a+ ab;
It is easy to perform the calculations if we wiite coefficient of p(x)

on a line and perform the calculatiopn g + a by, below a as given
in the table below.
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Table 1. Horner’s table for synthetic division proedure

a & &1 a2 2l 2a a a
obg o bpg o R ab o by a by
b, B-1 B2 o D B h=po(a)

We shall illustrate this procedure with an example.

Example I
Divide the polynomial

p(x) =X — 65X + 8 + 8% + 4x — 40
by x — 3 by the synthetic division method and fihd remainder.

Solution:

Here p(x) is a polynomial of degree 5. , &, &, &, &, & are the
coefficients of p(x), then the Horner’s table imsthase is

Table 2
& a a a a a
1 -6 8 8 4 -40
3 9 -3 51 57
1 -3 -1 5 19 17
bs o} b b 2] 2]

Hence the quotient polynomial(®) is

Qo(X) = xX* =3¢ — ¢ + 5x + 19
and the remainder ig # by = 17. thus we have p(3) = b =17.

Theorem 3
Suppose that z = a + ib is a root of the polynoraguation p(x) = 0.
Then the conjugate of z, namely, = a — ib is also a root of the

equation p(x) = 0, i.e. complex roots occur in pair

We denote by p(-x) the polynomial obtained by repig x by —x in
p(x). We next give an important Theorem due to Reescartes.

Theorem 4

(Descartes’ Rule of signs): A polynomial equati@gr)p= O cannot have
more positive roots than the number of changes ign f its
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coefficients. Similarly p(x) = 0 cannot have moegative roots than the
number of changes in sign of the coefficients ex)p(

For example, let us consider the polynomial equatio

p(x) =X —15¥ + 7x—11=0

=1X' - 158+ 7x-11=0

We count the changes in the sign of the coeffisie@bing from left to
right there are changes between 1 and -15, betw¥gerand 7 and
between 7 and -11. The total number of changesasd3dhence it can
have at most 3 positive roots. Now we consider

p(-x) = (-x}' = 15(-xf + 7(-x) =11 =0

=x*—15¢ - 7x - 11

Here there is only one change between 1 and -1%hancke the equation
cannot have more than one negative root.

We now give another theorem which helps us in logahe real roots.
Theorem 5

Let p(x) = 0 be a polynomial equation of degreesri. Let a and b be
two real numbers with a < b. Suppose further tliaj gz 0 and p(b)#

0. Then,

)] if p(a) and p(b) have opposite signs, the equatich = 0 has an
odd number of roots between a and b.

1)) if p(a) and p(b) have like signs, then p(x) = erthas no root or
an even number of roots between a and b.

Note: In this theorem multiplicity of the root igkien into consideration
l.e. if a is a root of multiplicity k it has to lm®unted k times.

As a corollary of Theorem 5, we have the followregults.

Corollary 1: An equation of odd degree with reatfficients has at least
one real root whose sign is opposite to that olaketerm.

Corollary 2: An equation of even degree whose @risterm has the
sign opposite to that of the leading coefficiers lat least two real roots
one positive and the other negative.

Corollary 3: the result given in Theorem 5(i) ie theneralization of the
Intermediate value theorem.
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The relationship between roots and coefficients aofpolynomial
equation is given below.

Theorem 6 Let a,, a,, ... ,a, be a roots (n= 1) of the polynomial
equation

p(X) = ax"+a. X"+ .. +ax+a=0

_ _a'n—l
Thena, +a, +...+ta, = 1

In the next section we shall discuss one of theplmmmethods for
solving polynomial equations.

3.2 Birge-Vieta Method

We shall now discuss the Birge-Vieta method fodifig the real roots
of a polynomial equation. This method is based rolaginal method
due to two English mathematicians Birge-Vieta. Thiethod is a
modified form of Newton-Raphson method.

Consider now, a polynomial equation of degree p, sa
pa(X) =ax"+ ... +ax+ & =0. (5)

Let X, be an initial approximation to the roat. The Newton-Raphson
iterated formula for improving this approximatian i

P, (Xi4)

Xi=X1-75 ,
Xil pn(xi—l)

i=1,2, .. (6)

To apply this formula we should be able to evaluad¢h p(x) and
p’'n(X;) at any x The most natural way is to evaluate

Pu(X) = ax] + X"+ L+ ax? +ax + &
P'n(xi) = nax™" + (n-1)axX"” +..+2ax + g

However, this is the most inefficient way of polynial because of the
amount of computations involved and also due tgothesible growth of
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round off errors. Thus there is a need to looksfmme efficient method
for evaluating p(x;) and pn(X;).

Let us consider the evaluation af>p) and pn(X;) at % using Horner’s
method as discussed in the previous section.

We have

pn(xi) = (X - )6) Qn-l(x) + 1 (7)
where

Ona(X) = BX" + DX+ L+ X+ Iy

and B = py(Xo) = o 8)

We have already discussed in the previous sectantb find b, | = 1,
2, ..., N.

Next we shall find the derivative jf%,) using Horner's method. We
divide g,.4(x) by (X — %) using Horner’'s method. That is, we write

qn-l(x) = (X - XJ) Qn-z(X) + g1
Ona(X) = GX"Z+ GaX™C H L+ X+ G

Comparing the coefficients, we gets given in the following table

Table 3
Xo XoCn aCr+1 ¥Cs %C2
szbn G-1 kC < €

As observed in Sec. 1, we have
C1 = Ch-1(Xo) (9)

Now, from Eqgn. (7) and (8), we have
Pr(X) = (X = %) Gn-2(X) + Pr(Xo) (10)

Differentiating both sides of Eqn. (10) w.r.t.x, get
P'n(X) = Ch-a(X) + (X — %) q'n-2(X) (11)

Putting x = % in Eqn. (11), we get
P'n(X0) = Ch-1(X0) (12)

Comparing (9) and (12), we get
P'n(X0) = Gh.a(X0) =

Hence the Newton-Raphson method (Eqn. (6)) simpdies

b,
Xi = X1~ (13)
1
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We summarise the evaluation ¢famd ¢in the following table.

Table 4
& A @ A a a
Xo Xobn e D1 %03 %02 %b
a=hn B s) 23] b Bo=pn(Xo)
Xo XoCn . oCri1 . %Cs %Co
Cri=by, 61 kC L &=P’n(Xo)

Let us consider an example.
Example 2

Evaluate p’(3) for the polynomial
p(x) = X — 6X' + 8% + 8¥ + 4x — 40.

Solution:

Here the coefficients arg & -40,a=4,3=8,a4=8,a =-6 and a=
1. To compute & we form the following table.

Table 5
3 1 6 8 8 4 -40
3 -9 3 15 57
3 1 -3 1- 5 19 | 17=p(3)=h
3 0 3 6
1 0 1 2 25'(3)=c,

Therefore p’'(3) = 25

Now we shall illustrate why this method is mora@ént than the direct
method. Let us consider an example. Suppose we toagnaluate the
polynomial

p(X) = -8X + 7' —6X + 5 —4x + 3
for any given x.

When we evaluate by direct method, we compute @aster of x by
multiplying with x the preceding power of x as

x3 = x(8), x* = x(x°) etc.
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Thus each term*ctakes two multiplications for k > 1. Then the tota
number of multiplications involved in the evaluatipf p(x) is1 + 2 + 2
+2+2=09.

When we use Horner’'s method the total number otiplidations in 5.
The number of additions in both cases are the s&@me.shows that less
computation is involved while using Horner's methadd therapy
reduces the error in computation.

Let us now solve some problems using Birge-Vietdhg:
Example 3

Use Birge-Vieta method to find all the positivelrezots, rounded off to
three decimal places of the equation

X"+ 7¢+24¥ +x-15=0
Stop the iteration wheneverijx % | < 0.0001
Solution:

We first note that the given equation

pa(x) =X + 75+ 24X +x—-15=0

is of degree 4. Therefore, by Theorem 1, this egundtas 4 roots. Since
there is only one change of sign in the coeffigeat this equation,
Descartes’ rule of signs (see Theorem 4), stataestiie equation can
have at most one positive real root.

Now let us examine whether the equation has aipes#al root.

Since p4(0) = -15 and p4(1) = 19, by Intermedisdtu® theorem, the
equation has a root lying in ]0, 1J.

We take ¥ = 0.5 as the initial approximation to the root.eThrst
iteration is given by

(%)
P4 (%)

b, (05)

P, (05)

X1=Xo
=0.5

Now we evaluate 40.5) and py(0.5) using Horner's method. The
results are given in the following table.
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Table 6
1 7 24 1 -15
0.5 0.5 3.75 13.875 7.4375
1 7.5 27.75 14.87575625=p(0.5)
0.5 0.5 4.00 1587
1 8.0 31.75 | 30.750 = p;(0.5)
-7.5625
Therefore x=0.5 30 78 0.7459

The second iteration is given by
P, (X,)

, = 0.7459 -
p', (Xy)

Xo=Xq -

p, (0.7459
p', (0.7459

Uisng synthetic division, we form the following talof values

Table 7
1 7 24 1 -15
0.7459 0.7459 5.7777 2229 17.3138
1 7.7459 29.7777 232 | 2.3138
0.7459 0.7459 6.3340336 26.935717
1 8.4918 36.111701 | 50.17468
2.3132
Therefore x = 0.7459 ———— = 0.
erefore x=0.7459 50.146¢ 0.6998
Third iteration is given by
p, (0.6998)
X3= X" T Faoon
p', (0.6998
Table 8
1 7 24 1 -15
0.6998 0.6998 5.3881 5839 15.0905
1 7.6998 29.3881 1% 0.0905
0.6998 .6998 5.8778 4.6780
1 8.3996 35.2659 46.2429
0.0905
X5 = 0. - = 0.697
3 =0.6998 16,2429 0.6978

For the fourth iteration we have

p, (0.6978)
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Table 9

1 7 24 1 -15
0.6978 0.6978 5.3715248 498459 14.999525

1 7.6978 29.3715248 95459 0.0905
0.6978 6978 5.8584497 4.583476

1 8.3956 35.229975 46.0B9

0.0005
X, =0.6978 26,0789 0.6978

Since % and x are the same, we gety|xx | < 0.0001 and therefore we
stop the iteration here. Hence the approximateevafithe root rounded
off to three decimal places is 0.698.

Next we shall illustrate how Birge-Vieta’'s methodlps us to find all
real roots of a polynomial equation.

Consider Eqgn. (4)

P(X) = (X - &) (bX"" + X" + ... + bx + by) + by

If a is aroot of the equation p(x) = 0, then p(xX)xadly divisible by x

- a, that is, B = 0. In finding the approximations to the root the
Birge-Vieta method, we find that,lapproaches zero {b—0) as x
approaches (x; — a). Hence, if x is taken as the final approximation,
to the root satisfying the criterion |, % X,1 | < €, then to this
approximation, the required quotient is

Ona(X) = X" + b xP + L+

where b} are obtained by using,xand the Horner's method. This
polynomial is called the deflated polynomial or wedd polynomial.
The next root is now obtained using,(k) and not g(x). Continuing
this process, we can successively reduce the dedrde polynomial
and find one real root at a time.

Let us consider an example.
Example 4
Find all the roots of the polynomial equatiog}) = xX* + x — 3 = 0

rounded off to three decimal places. Stop the timmavhenever fx; —
x| < 0.0001.
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Solution:

The equation 4§x) = 0 has three root. Since there is only onenghan
the sign of the coefficients, by Descartes’ rulesigins the equation can
have at most one positive real root. The equates o negative real
root since g(-x) = 0 has no change of sign of coefficients.cBig(x) =

0 is of odd degree it has at least one real roehcd the given equation
x® + x — 3 = 0 has one positive real root and a cemphir. Since p(1) =
-1 and p(2) = 7, by intermediate value theoremefeation has a real
root lying in the interval ]1, 2[. Let us find theal root using Birge-
Vieta Method. Let the initial approximation be 1.1.

First iteration

Table 10
1 0 14 -3
1.1 1.1 1.21 2.431
1 1.1 2.21 0.0905
1.1 1.1 2.42
1 22 | 463
Therefore x= 1.1-20:299 = 1.22289

Similarly, we obtain
X, =1.21347
X3=1.21341

Since | x — X | < 0.0001, we stop the iteration here. Hencedheired

value of the root is 1.213, rounded off to threeihal places. Next let
us obtain the deflated polynomial of;(x). To get the deflated
polynomial of, we have to find the polynomigl(g by using the final
approximation x=1.213 (see Table 11).

Table 11
1 0 1 -3
1.213 1.213 1.4714  2.9978

1 1.213 2.4714 -0.0022
Note that p(1.213) = -0.0022. That is, the magnitude of therem
satisfying p(x3) = 0 is 0.0022.

We find g(x) = + 1.213x + 2.4714 =0

This is a quadratic equation and its roots arergbse

. -1.213+4/(1.213} -4x2.4714
B 2
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_ -1.213+ 2.9009i
2

= 0. 6065:1.4505 i

Hence the three roots of the equation roundedodtiree decimal places
are 1.213, 0.6065 + 1.4505 i and -0.6065 — 1.4505 i

Remark: We now know that we can determine all #a roots of a
polynomial equation using deflated polynomials.sTiiocedure reduces
the amount of computations also. But this method lwrtain
limitations. The computations using deflated polymal can cause
unexpected errors. If the roots are determined aplyroximately, the
coefficients of the deflated polynomials will comtaome errors due to
rounding off. Therefore we can expect loss of aacyiin the remaining
roots. There are some ways of minimizing this erie shall not be
going into the details of these refinements.

3.3 Graeffe’s Root Squaring Method

In the last section we have discussed a methotinfding real roots of
polynomial equations. Here we shall discuss a timezthod for solving
polynomial equations. This method was developeckpeddently by
three mathematicians Dandelin, Lobachesky and @&raBtit Graeffe’s
name is usually associated with this method. Theaatdge of this
method is that it finds all roots of a polynomigluation simultaneously:
the roots may be real and distinct, real and e@ualtiple) or complex
roots.

The underlying idea of the method is based on tieviing fact:
Supposef,, B,, ..., B, are the n real and distinct roots of a polynomial
equation of degree n such that they are widelyragpad, that is,

Bl >> B[ >>Bs|>> ... >>B, |
where >> stands for ‘much greater than’. Then we adtain the roots

approximately from the coefficients of the polynamiequation as
follows:
Let the polynomial equation whose roots frep,, ...., 3, be

+tax+ax’+..+ax"=0,a #0.

Using the relations between the roots and the woerfits of the
polynomial as given in Sec. 4.2, we get
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_ an,;
B1+Bz +"'+Bn - a

n

an—2
BB + BBy +. BB, =

an—3
a

n

BlBZB3 +---+Bn-2Bn-1Bn =" (14)

Since B,| >> B,| >> |B,| >> ... >> B,|, we have from (14) the
approximations

— an—l \
Bl ~r a

n

a'n—2
BB, ~ =

n

a5

BlBZB3 ~- a, > (15)
A~ n A

BlBZ"'Bn N('l) a_n )

These approximations can be simplified as

B lman.l )
1 an
a,., a, a,
1B, [~ ~—
an an—1 an—l
“3 |%an—3 anl an :an3 >
: a'n an—2 an—l an—2
(16)
a, /
B, I~
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So the problem now is to find from the given polgmal equation, a
polynomial equation whose roots are widely sepdrakbis can be done
by the method which we shall describe now.

In the present course we shall discuss the apalicaf the method to a
polynomial equation whose roots are real and distin

Let a,, a,, ..., o, be the n real and distinct roots of the polynomial
equation of degree n given by

Q+ax+ax’+..+ax"=0. (17)
where g, &, &, ..., &.1, & are real numbers and & 0. We rewrite Eqn.

(17) by collecting all even terms on one side alheb@d terms on the
other side, i.e.

ptaxl+taxtt .o (ax+al+ad’+..) (18)
Squaring both sides of Eqn. (18), we get
(B+ax+ax'+ .= (ax+a+ax’+ ..y

Now we expand both the right and left sides andpifynby collecting
the coefficients. We get

a; - (& - 2a@)x’ + (& - 243 + 2aa)X" —
(@2 - 23 + 283 - 2a3)X° + ... + (-1 @i x*"= 0 (19)

Putting X = -y in Egn. (19), we obtain a new equation gitgn

bo+ by + by’ + ...+ B =0 (20)
where

b():a(z)

by =a - 2aa

b, =&, - 2aa + 2aa,

The following table helps us to compute the coédfits B, by, ..., i of
Eqgn. (20) directly from Eqn. (17).
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Table 12

3 1a 24 3a an

2 2 2 2 2

d 2 A 2 R

0 @2 -3 -2, 0
0 0 -2@a, -2@as 0
0 0 0 28 0
r) b b f. b

To form Table 12 we first write the coefficientg a;, &, ...., @ as the

first row. Then we form (n + 1) columns as follows.

The terms in each column alternate in sign stamiitg a positive sign.
The first term in each column is the square ofdbefficients @ k = 0,

1, 2, ..., n. The second term in each column isdwie product of the
nearest neighbouring coefficients, if there are naiy negative sign:
otherwise put it as zero. For example, the secemdh tin the first
column is zero and second term in the second colisnfg .
Likewise the second term of the (k +th]Qqumn IS 2R1 au1. The third
term in the (k + 1§ column is twice the product of the next
neighbouring coefficients,a and a.., if there are nay, otherwise put it
as zero. This procedure is continued until there @o coefficients
available to form the cross products. Then we dbitha term in each
column. The sum gives the coefficienisftr k = 0, 1, 2, ..., n which are
listed as the last term in each column. Since thmstitution X = -y is
used, it is easy to see thataif, a,, ..., a, are the n roots of Eqgn. (17),

then w2, aZ, ...,a? are the roots of Eqn. (20).

Thus, starting with a given polynomial equation, a#ained another
polynomial equation whose roots are the squareth@froots of the
original equation with negative sign.

We repeat the procedure for Eqn. (20) and obtamthen equation
Co+CX+..+6x"=0.

Whose roots are the squares of the roots of Ed)). W&h a negative
sign i.e. they are fourth powers of the roots @f dhniginal equation with
a negative sign. Let this procedure be repeatetiest Then, we obtain
an equation

Qo+ X+ ...+ gx"=0 (21)

whose rootsy,, v,, ...., v, are given by
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v, =i=0,1,2, ...n. 22}

Now, since all the roots of Eqn. (17) are real distinct, we have

log] > oy >, >,
qn-
Hence {,| = [0 | = |2
an
m qn-2
Iv,l =3 | =
2 qn-l
_ om . qO
v, [=lon | = R

The magnitude of the roots of the original equatiare therefore given
by

m qn-l
o] =2
oty | ‘, a.
m|dn-2
o, =2
oy | ‘,qn-l

qu
(0 =2 |—
oy | ‘/ql

This gives the magnitude of the roots. To deterntime sign of the
roots, we substitute these approximations in thgir@al equation and
verify whether positive or negative value satisftes

We shall now illustrate this method with an example
Example 5

Find the roots of the cubic equatiod x 15X + 62x — 72 = 0 by
Graeffe’s method using three squaring.
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Solution:
Let Py(x) = x> — 15X + 62x — 72 = 0.

The equation has no negative real roots. Let us apply the root
squaring method successively. The get the followesyllts:

First Squaring
Table 13
@ a a 3a
72 62 -15 1
a5 =5184 3=3844 5=225 %=1
0 -2aa,=-2160 2a=-124 0
5184 1684 101 1
k b b b

Therefore the new equation is
x>+ 101X + 168x + 5184 = 0.

Applying the squaring method to the new equationgethe following
results.

Second Squaring

Table 14
5184 1684 101 1
26873856 2835856 10201 1
0 -1047168 -3368 0
26873856 1788688 6833 1
Thus the new equation is
x3 + 6833X + 1788688x + 26873856 = 0.
For the third squaring, we have the following résul
Third Squaring
Table 15
26873856 1788688 6833 1
7.2220414% 10"  3.1994048 10% 46689889 1
0 -36725810" -3577376 0
7.2220414% 10**  2.8321&10% 43112513 1
q 19 2q k!|
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Hence the new equation is
X3 + 43112513%+ (2.83214x 10")x + (7.2220414x 10" = 0

After three squaring, the roots, v,, andy 5 of this equation are given
by

.| = | 22| = 43112513
k!

ol = e 2.83214x10"
d, 4311251

v = |22 = 7.22204x10™
di| 2.8321¢x10%

Hence, the roots

lo,| =¥/44311251 =9.0017

| = Ei/2.83214><1012
| =

4311051 001l
0| = E{/ 7.22204x10" _ | 5000
3" Vosg3210x102 T

Since the equation has no negative real rootghalloots are positive.
Hence the roots can be taken as 9.0017, 4.001118990. If the

approximations are rounded to 2 decimal placeshawe the roots as 9,
4 and 2. Alternately, we can substitute the apmpnexeé roots in the
given equation and find their sign.

4.0 CONCLUSION

We have seen that Graeffe’'s root squaring methadirolall real roots
simultaneously. There is considerable saving iretatso. The method
can be extended to find multiple and complex ra@$®. However the
method is not efficient to find these roots. Wellshat discuss these
extensions.

We shall end this block by summarizing what we heoeered in this
unit.
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5.0 SUMMARY

In this unit we have

. discussed the following methods for finding appneaie roots of
polynomial equations.

) Birge-Vieta method.
i) Graeffe’s root squaring method.

. Mentioned the advantage and disadvantages of thw/eab
methods.

6.0 TUTOR-MARKED ASSIGMENT (TMA)

1)  Find the quotient and the remainder whef 26X + 3x — 1 is
divided by x — 2.

2) Using synthetic division check whetheg = 3 is a root of the

polynomial equation %+ x> — 13¥ — x + 12 = 0 and find the
guotient polynomial.

3)  How many negative roots does the equatioh3%x + 4x +
10x — 6 = 0 have? Also determine the number oftpesioots, if
any.

4) Show that the biquadratic equation
p(x) = X' + x* — 2¥¢ + 4x — 24 = 0 has at least two real roots one
positive and the other negative.

5) Using synthetic division, show that 2 is a simpt®trof the
equation
p(x) =X — 28— 7¥ + 8x + 12 = 0.

6) Evaluate p(0.5) and p’(0.5) for
p(x) = -8X + 7X' —6X + 5 —4x + 3

7) Find an approximation to one of the roots of theatipn
p(x) =2X =3¢ +3x—-4=0
using Birge-Vieta method starting with the initegpproximation
Xo = -2. Stop the iteration wheneverjx % | < 0.4x 102,

8) Find all the roots of the equatiorf x 2x — 5 = 0 using Birge-
Vieta method.
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9)

10)

7.0

Find the real root rounded off to two decimal pla the
equation X — 4% — 3x + 23 = 0 lying in the interval ]2, 3[ by
Birge-Vieta method.

Determine all roots of the following equations bya€ffe’s root
squaring method using three squaring.

i) x>+ 6xXX —36x +40=0
i) xX*-2¢-5x+6=0
i) x*—5¢—-17x+20=0
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