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MTH 251 Mechanics

Introduction

MTH 251 is one-semester course. It is a threer@Jits degree course
available to all students to take towards theircBMgathematics, Physics,
Computer Science, B.Sc. Physics and Mathematicsdfidum and other
related programmers in the faculty of science.

What You Learn in this Course

The course consists of units and a course guids.cburse guide tells you
briefly what the course is about, what course neteyou will be using and
how you can work with these materials. In additibadvocates some general
guidelines for the amount of time you are likelyspend on each unit of the
course in order to complete it successfully.

It gives you guidance in respect of your Tutor-MadkAssignment which will
be available in the assignment file. There wilrbgular tutorial classes that
are related to the course. It is advisable fortgoattend these tutorial
sessions. The course will introduce you to the ephof mechanics,
dynamics Vibrations etc.

Course Objectives

To achieve the aims set out, the course has d ebjaxtives. Each unit has
specific objectives which are included at the bemjig of the unit. You are
should read these objectives before you study ite You may wish to refer
to them during your study to check on your progr&esl should always look
at the unit objectives after completions in thet.uni

Working through this Course

To complete this course you are required to reatl smdy unit, read the
textbooks and read other materials which may beiged by the National
open University of Nigeria.

Each unit contains self-assessment exercise ar&ftain points in the course
you would be required to submit assignments foessaent purposes. At the
end of the course there is a final examination. ddwese should take you
about a total of 17 weeks to complete. Below yollifimd listed all the
components of the course, what you have to do andylou should allocate
your time to each unit in order to complete thersetsuccessfully.

This course entails that you spend a lot of timeetw. | would advice that
you avail yourself the opportunity of attending tbeorial sessions where you
have the opportunity of comparing your knowledgthwinat of other learners.
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The Course Materials

The main components of the course are:
1. The course Guide

2. Study Units

3. Tutor Marked Assessment (TMA)

4. Presentation Schedule

5. References/Further Readings

Study Units

The study units in this course are as follows:

CONTENTS PAGES

ModUIE L. e, 1

Unit 1 Vectors

Unit 2 the Electromagnetic Field

Unit 3 Tensors

Module 2 DYNAMICS OF SYSTEMS OF
PARTICLES

Unit 1 Discrete and Continuous Systems

Unit 2 Momentum of a System of Particles

Unit 3 Constraints, Holonomic and Non-HolonomicnGtraints

Module 3  The Simple Pendulum

Unit 1 Simple Pendulum

Unit 2 Hooks law

Module 4

Unit 1 Motion along a curve

Unit 2 Circular Motion with Constant Speed
Unit 3 Force and Motion

Course Aims

This course aims at introducing some importantsfactd developments which
were made to reflect Mechanics.

The first - three units of Module 1 of the courseuses on th¥ectors, the
Electromagnetic Field and Tensoksodule 2, focused on tHBynamics

Of Systems Of Particles and categorized into thuedes as

\Y



MTH 251 Mechanics

follows: Discrete and Continuous Systems, Momentum of aeBysif
Particles and Constraints, Holonomic and Non-HolitoConstraints.
However Module 3, titled The Simple Pendulum camgdivo units vis a
vis Simple Pendulum and Hooks law. Lastly, Modujea4 three units
thus: Motion along a curve, Circular Motion with i@&tant Speed and
Force and Motion as shown above.

Each study unit consists of three hours work. Esady unit includes
introduction, specific objectives, directions ftudy, reading materials,
conclusions, summary, Tutor Marked Assignments (B)Aeferences and
other resources. The units direct you to work ogreige related to the
required readings. In general, these exerciseyaeisbn the materials you
have just covered or require you to apply it in somay and thereby assist
you to evaluate your progress and to reinforce gounprehension of the
material. Together with TMAs, these exercises dllp you in achieving the
stated learning objectives of the individual umitel of the course as a whole.

Presentation Schedule

Your course materials have important dates foetréy and timely
completion and submission of your tutor-markedgrssient and attending
tutorials. You should remember that you are recueeti submit all
assignments by the stipulated time and date. Youldlguard against falling
behind in your work.

Assessment

There are three aspect of the assessment of tihgecdtirst is made-up of self-
assessment exercises, second consists of thentatéed assignments and
third is the written examination/end of the couegamination.

You are advised to do the exercises. In tacklirgagsignments, you are
expected to apply information, knowledge and teghes you gathered during
the course. The assignments must be submittedutofgoilitator for formal
assessment in accordance with the deadlines statied presentation
schedule and the assignment file. The work you s$iutenyour tutor for
assessment will count for 30 % of your total cowrsek. At the end of the
course you will need to sit for a final or end oficse examination of about
two hour duration. This examination will count f& % of your total course
mark.

Tutor-Marked Assignment
The TMA is a continuous assessment component afgaurse. It account for
30 % of the total score. You will be given at lefagtr (4) TMAS to answer.

Three of these must be answered before you aneedito sit for the end of
course examination. The TMAs will be given by yéarilitator and you are to

Vi
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return each assignment to your facilitator/tuteea€ompletion. Assignment
guestions for the units in this course are conthinghe assignment file. You
will be able to complete your assignment from tiferimation and the
material contained in your reading, referencessandy units. However, it is
desirable in all degree level of education to destraite that you have read
and researched more into your references, whidlgivet you a wider view
point and may provide you with a deeper understandf the subject.

Make sure that each assignment reaches your &oilitutor on or before
deadline mentioned by the course coordinator irptkeentation schedule and
assignment file. If, for any reason, you cannot plete your work on time,
contact your facilitator/tutor before the assigniisrdue to discuss the
possibility of an extension. Extensions will notdranted after the due date
unless there are exceptional circumstances.

Final Examination and Grading

The end of course examination for optics will bewtl® hours and it has a
value of 70 % of the total course work. The exammmawill consist of
guestions, which will reflect the type of self-ass®ent exercise, practice
exercise and tutor-marked assignment problems gwa previously
encountered. All areas of the course will be aggskss

You are advised to use the time between finishiiegdst unit and sitting the
examination to revise the entire course. You migta it useful to review

your self-test, tutor-marked assignments and consr@mthem before appear
in examination.

Course Marking Scheme

Assignment Marks

Assignments 1- 4 Four assignments, best three nofrks
the four count at 10 % each — 30 % |of
the course marks

End of course examination 70 % of overall coursekma

Total 100 % of course materials

Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in suppbthis course. You will be
notified of the dates, times and location of thiegerials as well as the name
and phone number of your facilitator, as soon asare allocated a tutorial

group.

Your facilitator will mark and comment on your agsinents, keep a close
watch on your progress and any difficulty you mitgde and provide

vii
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assistance to you during the course. You are eggeotmail your Tutor
Marked Assignment to your facilitator before théestule date (at least two
working days are required). They will be markedybyr tutor and returned to
you as soon as possible.

Do not delay to contact your facilitator by telepkr e-mail if you need
assistance.

The following might be circumstances in which yoouhd find assistance
necessary, hence you would have to contact youitdaar if:
* You do not understand any part of the study oragsgned readings
* You have difficulty with the self-tests
* You have a question or problem with an assignmeniith the
grading of an assignment.

You should endeavour to attend the tutorials. Ttke only chance to have
face to face contact with your course facilitatod &0 ask questions which
may/may not be answered instantly. You can raiggaoblem encountered in
the course of your study.

To gain much benefit from course tutorials preacgiestion list before
attending them. You will learn a lot from participay actively in discussions.

Summary

MTH 251 is a course that intends to give a compisive teaching on the
principles and applications of Mechanics. Upon clatipn of this course, you
will be able to explain the nature of Mechanicsggian insight into the
application and purpose of the course .

The basic thing is to understand all that you Hagent in this course and be

able to apply them in solving different problemstbe course.

| wish you a splendid study time as you go throtighcourse.
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MTH 251 MECHANICS

MODULE 1 STATIC: System of live vectors.

Unit 1 Vectors
Unit 2 the Electromagnetic Field
Unit 3 Tensors

UNIT 1 VECTORS
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Definition and Elementary Properties
3.2  The Vector Product
3.3 Differentiation and Integration of Vectors
3.4  Gradient, Divergence and Curl
3.5 Integral Theorems
3.6  Curvilinear Co-ordinates

4.0 Conclusion

5.0 Summary

6.0  Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION
A vector could be defined as a quantity which hasthb
magnitude and direction. The vectar may be represented
geometrically by an arrow of length drawn from any point in
the appropriate direction. In particular, the positof a pointP
with respect to a given origi@ may be specified by thgosition
vectorr drawn fromO to P.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
Define a vector.
Freely discourse some elementary properties dbvec
Know about vector product.
Know about differentiation and integration of v@ct
Know aboutGradient, Divergence and Curl.
Know about integral theorem.
Know aboutCurvilinear Co-ordinates.

13
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3.0 MAIN CONTENT
3.1 Definition and Elementary Properties

A vector a is a quantity specified by a magnitude, writtgn or
lzl, and a direction in space. It is to be contrasigd a scalar, which is
a quantity specified by a magnitude alone. The oreet may be
represented geometrically by an arrow of lengthdrawn from any
point in the appropriate direction. In particuldre position of a poin®
with respect to a given origi@ may be specified by theositionvector
r drawn fromO to P.

Any vector can be specified, with respect to a giget of Cartesian
axes, by three componentsxlf.z are the Cartesian co-ordinatesRof
then we write r =(x.y.2), and say that.v.z are the components of
(See Fig. A.l.). We often speak Bfas ‘the point’. WhenP coincides
with O, we have thezero vectorO = (0, 0, 0) of length 0 and
indeterminate director. For a general vectar we write a =
[ﬂ’x. ﬂ’:.'a ﬂ’z] .

The product of a vecta and a scalat is ca = (¢ax,ca,,c2:) |f ¢ > 0, it
is a vector in the same direction as a, and oftleng; if c < 0, it is the
opposite direction, and of lengl#la. In particular, if ¢ = 1/a, we have
the unit vector in the direction of a written as; a i .

Addition of two vectorsa and b may be defined geometrically by
drawing one vector from the head of the othernakig. A. 2. (This is
the ‘parallelogram law’ for addition of forces). [8taction is defined
similarly by Fig. A.3. in terms of components,

a+b :{ax + bx,a:.' + b:-'; az + bz}.

It is often useful to introduce three unit vectarg Kk, pointing in the
directions of thex™. ¥~z — axes, respectively. They form what is known
as anorthonomal triad— a set of three mutually perpendicular vectors of
unit length. It is clear from Fig. A.1 that any w&cr can be written as a
sum of three vectors along the three axes.

R =xi+ v/ + zk. (1)

If & is the angle between the vectors a and b, theeldéyentary
trigonometry the length of their sum is given by

[a+ b]* =a®+ b* +2ab cos 4,
It is useful to define the scalar prodach (a dot b) as

14
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@.b =ab cos 6. (2)

Note that this is equal to the length of a mulégliby the projection dj
ona, or vice versa.

In particular, the square dafis:

al

=a.a=al (3)

Thus we can rewrite the relation above as
(a+bf = &+b*+2a.b,

And similarly
(a-bY = &+b*2a.b.

All the ordinary rules of algebra are valid for suand scalar products
of vectors, save one. (For example, the commut#diveof addition, a +
b =b + ais obvious from Fig. A. 2, and the otlaavs can be deduced
from appropriate figures). The exception is theloleing: for two
scalars, the equatios? =0 implies that either=0 or b=0 (or, of

course, that both = 0), but we can find two noreaegctors for which
1

a.b = 0. In fact, this is the caseﬂi’F, that is if the vectors are
orthogonal:

ab=0ifalb.
(i.e vector a is perpendicular to vector b)

The scalar products of the unit vectors i, j, k are

i=F=K=1, (4)

|
ij=jk=ki=0.

Thus, taking the scalar product of each in turdi), we find
Lr=x, jr=y, kr=z. (5)

These relations express the fact that the compsméntare equal to its
projections on the co-ordinate axes.

More generally, if we take the scalar product ob tvectors a and b, we
find

a.b = gb, + ab, + ab,, (6)

15
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and, in particular,

P = P = x+y*+7%, 7)
3.2 The Vector Product

Any two nonparallel vectora andb drawn fromO define a unique axis
through O perpendicular to the plane contaimangndb. It is useful to
define the vector produetAb (‘a crossb’, sometimes writtera x b) to
be a vector along this axis whose magnitude is dhea of the
parallelogram with edges b,

laA bl = ab sin 6 (8)

(See Fig. A.4.). To distinguish between the two agie directions
along the axis, we introduce a convention: thedtiimae of 2A? is that in
which a right-hand screw would move when turnednifeoto b.

A vector whose sense is merely conventional, andldvbe reversed by
changing from a right-hand to a left-hand convemi® called an axial
vector, as opposed to an ordinary or polar veétor.example, velocity
and force are polar vectors, but angular velod@tan axial vector (see
85.1). The vector product of two polar vectordisstan axial vector.

The vector product has one very important, but maiifar, property. If
we interchanga andb, we reverse the sign of the vector product,

bAa = —alb. (9)
It is essential to remember this fact when maningaany expression
involving vector products. In particular, the vacfwoduct of a vector
with itself is the zero vector,
aaa=0.

More generally,aab vanishes if =0 orm ,

aha =0 if allb.

If we choose our co-ordinate axes to be right-hdnthen the vector
products of i, j, k are

IAI=jAj=kAak=0,
inkc=k, jAi=k (10)

16
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Jnk =1, Eaj=—i,
EAL=], iAnk=—].

Thus, when we form the vector productacdndb we obtain
aab=1il(a,b, —a.b,)+jl.b, —a.b)+kla.b, —a,b,).
This relation may conveniently be expressed in tbem of a

determinant.

afb = |0 Qy Az

i j ok
a
b, by b.l, (11)

From any three vectors, b, ¢ we can form the scalar triple product
(@ab).c . Geometrically, it represents the volume V of fherallele-

piped with adjacent edges a, b, c. (See Fig. A&#br) if ¢ is the angle
between c andzA b | then

(aablc=laAablc cos g =ArR=T,

Where A is the area of the base, and h = c®os the height. The
volume is reckoned positive if a, b, ¢ form a riglainded triad, and

Fig. A.5

Negative if they form a left-handed triad. For exden (G Aj-k =1. but
GAk)Lj=—1.

In terms of components, we can evaluate the st¢afde product by
taking the scalar product ofwith (A.11). We find

d. Q, 4
b. by b,
€y Cy €z

(oA blc =

(12)

17
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Either from this formula, or from its geometricaterpretation, we see
that the scalar triple product is unchanged by &mjic permutation of
a, b, c¢,but changes signs if any pair is interchanged,

laAablec=(hAc)a=(cAaa)b

=-WAaa)c=-kAbla=—-(anrcdb. (13)

Moreover, we may interchange the dot and cross,

eAablc=a(Aac) (14)

(For this reason, the more symmetrical notationbjag] is sometimes
used for the scalar triple product.)

Note that the scalar triple product vanishes if amy vectors are equal,
or parallel. More generally, it vanishes if a, lare coplanar.

We can also form the vector triple prodéed ) A c. since this vector is
perpendicular tczA b, it must lie in the plane oh andb, and must
therefore be a linear combination of these two asctlt is not hard to
show, by writing out the components, that

@A b)Ac=bla.c)— a.c). (15)
Similarly,
aAbac)=bla.c)—clab) (16)

Note that these expressions are unequal, so thataweot omit the

brackets in a vector triple product. It is usetuhbtice that in both these
formulae the term with positive sign is the middiector b times the

scalar product of the other two.

3.3 Differentiation and Integration of Vectors
We are often concerned with vectors which are fonstof some scalar

parameter, for example the position of a partideadunction of time,

r(t). The vector distance travelled by the particlaishort time interval
At s

Ar = r(f + A — (L),

(See Fig. A.6.). The velocity, or derivative witkspect to t, is defined
just as for scalars, as the limit of a ratio,

18
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aIT_ . Ar
F=dT" ARt (17)

In the limit, the direction of this vector is that the tangent to the path
of the particle, and its magnitude is the spedatienusual sense. In terms
of co-ordinates,

¥ — (:XI-J }-'1.1 2..').

Derivatives of other vectors are defined similatty.particular, we can
differentiate again to form the acceleration veétor

It is easy to show that all the usual rules forfeddntiating sums and
products apply also to vectors. For example,

d da db

Though in this case one must be careful to presber@rder of the two
factors, because of the antisymmetry of the vamtoduct.

Note that the derivative of the magnituderofdr/dt, is not the same

thing as the magnitude of the denvatl&?é For example, for a particle
moving in a circle, r is constant, so thicgt 0. but clearlylFl is not zero
in general. In fact, applying the rule for diffetesing a scalar product
to r*. we obtain

N AP R
2'-"’-"—a.r g ]_a’t )= 2r.v
Which may also be written

¥ = .7 (18)

Thus the rate of change of the distance r fromotigin is equal to the
radial component of the velocity vector.

We can also define the integral of a vectorv K dr/dt, then we also
write
= IL" dt.

and say that r is the integral of v. If we are giwgt) as a function of
time, and the initial value of r, gft then the position at any later time is
given by the definite integral.

19
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rltg) + L v, (E)dt. (19)

This is equivalent to the three scalar equati@ngie components, for
example

%) = x(g) + IL ©)dt.

One can show, exactly as for scalars, that thegiatan (19) may be
expressed as the limit of a sum.

3.4 Gradient, Divergence and Curl

There are many quantities in physics which aretfans of position in
space; for example, temperature, gravitationalrga@kor electric field.
Such quantities are known as fields. A scalar fisl@ scalar function
d (X, y, z) of position in space; a vector fieldasvector function A
(x,y,2). We can also indicate the position in splagehe position vector
r, and write@ (r) or A(r).

Now let us consider the three partial derivativdsaoscalar field,
deldx, deldy.0eldz . They form the component of a vector field, known
as the gradient o8 and written grad? , or V@ ('del ©'), To show that
they really are the components of a vector, we haw&how that it can
be defined in a manner which is independent ofcti@ce of axes. We
note that ifr andr + dr are two neighboring points, then the difference
between the values of @ at these points 5

o i _de  de OB
de = o(r + dr) E(T]—axax+aya}-+azaz_ar vo. (20)

Now, if the distancddrl is fixed, then this scalar product takes on its
maximum value whenrdis in the direction o¥#. Hence we conclude
that the direction o¥® is the direction in whichd increases most
rapidly. Moreover, its magnitude is the rate ofrease of@ with
distance in this direction. (This is the reason tftg name ‘gradient’.)
Clearly, therefore, we could defir¥® by these properties, which are
independent of any choice of axes.

20
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We are often interested in the value of a scakld ! evaluated at the
position of a particle@(r (t)). From (20) it follows that the rate of change
of 8(r(t)) is

o(r@®)) =7've (21)

The symbolv may be regarded as a vector which is also a diftél
operator (like d/d), given by

veid .09
Tla et e (22)

We can also apply it to a vector field A. The diyemce of A is defined
to be

0A, DA, 0A,

. V.A=—S4%j .
Div A = ox 1oy T az (23)
And the curl of A to be *
i j ok
8 8 8
curf A =vad= ax 8y oz|
Ay Ay A (24)

This latter expression is an abbreviation for tkgamded form

a4 gAa., gA g4 g4, dA
ﬂ=i!:( z_ })'l'_f( x_ z)_l_k( }_ x).
dv dz dz dx ax dv

In particular, we may take A to be the gradienaafcalar fieldA = ve.
Then its divergence is called the Laplacian®pf
%¢ a%p a%e

VeVl T am e o (25)

Just ama a= 0, we find that the curl of a gradient vanishes,
VAVE =0. (26)
For example, itg component is

E(@)_ E(@)z 0.

dx\dyv) dv\dx

21
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Similarly, one can show that the divergence ofh\@anishes,
V.(WAA)= 0. (27)

The rule for differentiating products can also Ippleed to expressions
involving Vv . For example¥.(AAB) is a sum of two terms, in one of
which ¥ acts onA only, and in the other oB only. The gradient of a
product of scalar fields can be written

V(oY) = YVe + evy,

But, when vector fields are involved, we have tmeenber that the
order of the factors as a product of vectors cateothanged without
affecting the signs. Thus we have

V-(AAB)=B.(VAA) - A.(VAB),
And similarly

VA@A)=08(VAd)— AAVe

An important identity, analogous to the expansibrihe vector triple
product (A.16) is

VA(VAA)= V(V.4)— V34, (28)
Where of course
vid - 8%*4 834 8%A
“ et gy3 Tz

It may easily be proved by inserting the expressiam terms of
components.

3.5 Integral Theorems

There are three important theorems for vectors ivare generalizations
of the fundamental theorem of the calculus,
J: z_};dx = flxy) — f(xo)

First, consider a curv€ in space, running fromyto r;. (see Fig. A.7.)

Let the directed element of length alo@gs o . If @ is a scalar field,

then, according to (20), the changegialong this element of length is
do=dr.Vé.

22
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Thus, integrating fromgrto r,, we obtain the first of the integral
theorems,

1
ir. Vo =@ — @ X
J;n ar ) () (29)

The integral on the left is called the line intdggh¥v® along C. This
theorem may be used to relate the potential enkenggtion V(r) for a
conservative force to the work done in going fromme fixed point g,
where V is chosen to vanish, to r. Thug; # —¥V. then

Vi) = L dr.F. (30)
When F is conservative, this integral depends onlyts end-points, and
not on the patlC chosen between them. Conversely, if this condiison
satisfied, we can define V by (30), and the foragsttbe conservative.
The condition that two line integrals of the for@80) should be equal
whenever their end-points coincide may be resthiedaying that the
line integral round any closed path should van#tysically, this means
that no work is done in taking the particle rounld@p which returns to
its starting point. The integral round a closedpl@bis usually denoted

by the symbci: . Thus we require

ia’r.F=ﬂ (31)

for all closed loop<£.

This condition may be simplified by using the setaf the integral
theorems — Stokes’ theorem. Consider a curved ai8abounded by
the closed curv€. If one side of S is chosen to be the ‘positivides
then the positive direction round may be defined by the right-hand
screw convention. (See Fig. A.8). Take a small elgnof the surface,
of area & and letn be the unit vector normal to the element, and
directed towards its positive side. Then the dedatlement of area is
defined to be 8 = ndS. Stokes’ theorem states thatifis any vector
field, then

de.ﬁ'.(‘i’AA]=£dr.A. (32)

The application of this theorem to (31) is immeelidt the line integral
round C is required to vanish for all closed cur@shen the surface
integral must vanish for all surfaces S. But tlssonly possible if the
integrand vanishes identically. So the condition &force F to be
conservative is
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VAF =0, (33)

We shall not prove Stokes’ theorem. However, gasy to verify that it
Is true for a small rectangular surface. SupposeaSectangle in they-

plane of area xtly. Then & = kdxdy, so the surface integral is
— aA.‘z' an PR
k. (WAA)dxdy = (E_ 5 )a:m}-.

(A.34)

The line integral involves four terms, one from feadge. The two
terms arising from the edges parallel to tk@xis involve the x
component ofA evaluated for different values of They therefore
contribute

A
A.0dx — A0+ dy)dx = — a—;a'xa'}-'.

Similarly, the other pair of edges yield the firestm of (34).
We can also find a necessary and sufficient canditor a fieldB(r) to
have the form of a curl,

E= VAA.
By (A. 27), such a field must satisfy
V.E =0. (35)

The proof that this is also a sufficient condit{@vhich we shall not give
in detail) follows much the same lines as beforae @an show it is
sufficient that the surface integral Bf over any closed surface should
vanish,

J]a‘j.B -0,

And then use the third of the integral theoremsyssatheorem. This
states that iV is a volume in space bounded by the closed su$ace
then for any vector fiel@,

Iﬂa'[r v.B = ﬂ;ds. B, (36)

Where & denotes the volume elemer¥ & dxdydz, and the positive
side ofSis taken to be the outside.

It is again easy to verify Gauss’ theorem for alsmegtangular volume
dV = dxdydz. The volume integral is
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0B, 9By @B\, .
(ﬂr + 3y + 3z )axa}-az. (37)
The surface integral consists of six terms, oneefch face. Consider
the faces parallel to the xy-plane, with directadace elementk dxdy
and k dxdy. Their contributions involve B. = B, evaluated for

different values of z. thus they contribute

a5
Bz 4+ dz)dxdy — B;()dxdy = ._FJ_; dxdydz.

Similarly, the other terms of (37) come from thbestfaces.
3.6  Curvilinear Co-ordinates

One of the uses of the integral theorem is to pi®wxpressions for the
gradient, divergence and curl in terms of curvéineo-ordinates.

Consider a set of orthogonal curvilinear co-ordesay;, ¢, Gz, and
denotes the elements of length along the threerdioaie curves by
h,dqs, hdp, hsds. For example, in cylindrical polars,

h, =1, hy =P, R, =1,
(38)

and in spherical polars

h, =1, hg =1 h, =rsinf.

(39)

Now consider a scalar fiell. and two neighbouring points (b, Gs)
and (q, @, s + dg). Then the difference between the value¥ofat
these points is

P

aqs dgz = dy = dr.Vy = hadga(VIY)la,
a

Where¥Iw)l. is the component &¥ in the direction of increasing.q
Hence we find

1Vy

with similar expressions for the other componeftsus, in cylindrical
and spherical polars, we have
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_ (%% 15y oy
v = (G pa0-a) (41)
and

v= (10 L o)
dr'rd@ ' rsinfdp ) (42)

To find an expression for the divergence, we useis§atheorem,

applied to a small volume bounded by the co-oréinsurface. The

volume integral is

(V. 2)h,dq, hadg:hadas,.
In the surface integral, the terms arising from thees which are

surfaces of constant @re of the form¥:h.da,h.dq.. evaluated for two
different values of g They therefore contribute

a
a—%(hlhzha]dqld%dqa-

Adding the terms from all three pairs of faces, anchparing with the
volume integral, we obtain

1 a a a
V.Ad=— 35— (hh34)+ 5—(hahyh;) + =—(h hsh }

kyhzh; {a‘h{ ahate) a‘?:{ akihz) a‘?z{ thshs) (43)
In particular, in cylindrical and spherical polars,
V.A= la{pﬂ?’}+laﬂm 4 2

p dp pde oz

(44)
And

vl a@34,) 1 AGnfAg) 1 94,

A=m % VYisne @8  Yrsmb op (45)

To find the curl, we use Stokes’ theorem in a amilay. If we consider
a small element of a surface ¢ constant, bounded by curves of
constant gand g, then the surface integral is

(VAA)hydg hadg,.

In the line integral round the boundary, the tw@esl of constant,q
involve A.h,dq, evaluated for different values of, @nd contribute
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a
—a—%{ﬁ131]ﬂtﬁ'1dﬁ':-
Hence, adding the contribution from the other agiges, we obtain

1 (@ a
Ny =——4— (R A )= — (R, AL,
\ s hyhg [a@h.( 24z) a‘?:( t 1]} (46)

With similar expressions for the other componeiitaus, in particular,
in cylindrical polars.

184, 94, 94, 84, 1(a{pa¢} a.q?,)}

?‘”‘Azlﬁa@_ 3z '8z Op'p\ Op  Op
(47)

And in spherical polars

1 (ﬂ{sin&'ﬂqp} ~ a.qg)

rsind ag d
VaA= .
1 04, 1(0(rAg) 04,
‘rsind de r( ar a8 ) (48)

Finally, combining the expressions for the diverggeand gradient, we
can find the Laplacian of a scalar field. It is

iy {a (hzh3 an)+ 8 (hshl aq;)+ ) (hlhzﬂq;)}
hy;h;h; (8gq4 |\ hy 3qy dg, \ h; dq, dg;\ h; aq;

(49)
In cylindrical polars
=10 (V) 107 oty
?w_rrﬂp(pﬂp) p2ap?* " 9z%’ (50)

And, in spherical polars,

A I A 1 af, oy
Vi = r—@(’-’“ W)J“ T Smm(ﬂ“‘gﬁ)
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1 8%
pIginigdepl”

(51)

4.0 CONCLUSION

In conclusion, having read through this unit, #tedent should
be able to use vector approach to solve some Esgige, mechanics
and physics related problems. More so, studentadnsed to try all the
trial exercises giving to them to enhance their pahension of the
unit. It worth to mention here that; this unit iparquisite to other units
and some other courses in mathematics and physipsctively.

5.0 SUMMARY

What you have learnt in this unit concerns:

that any vector r can be written as a sum ofetlwectors along
the three axes thus: Rxi+ v/ + zk.
If & is the angle between the vectors a and b, theeldypentary
trigonometry the length of their sum is given by

[a+ b]* =a*+ b* +2ab cos 6,
Obviously, we define the scalar prodadb (‘a dot b) as

a.b =ab cos 6.
Remark; (@b =ab cos [ 6.1 ) is equal to the length of a multiplied
by the projection ob ona, or vice versa.

We alsi note that the squareaois: a® =a.a=a’
Thus we can rewrite the relation above as  (alaf+b*+2a.b,
And similarly  (a-bj = &+b*-2a.b.

All the ordinary rules of algebra are valid for suand scalar products
of vectors, save one. (For example, the commut#diveof addition, a +
b =b + ais obvious from Fig. A. 2, and the otlavs can be deduced
from appropriate figures). The exception is thelolwing: for two
scalars, the equatios? =0 implies that eithez=0 or b=0 (or, of

course, that both = 0), but we can find two normeaegctors for which
1

a.b = 0. In fact, this is the caseﬂﬁ, that is if the vectors are
orthogonal:

ab=0ifalb.
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(i.e vector a is perpendicular to vector b)

The scalar products of the unit vectors i, j, k are

i“=F=K=1,
ij=jk=ki=0.

More generally, if we take the scalar product ob tvectors a and b, we
find

a.b =gb, + ab, + ab,,

and, in particular,

P =1 = X+y+7
Vector product

Any two nonparallel vectora andb drawn fromO define a unique axis
through 0 perpendicular to the plane contairarandb.

laa Bl = ab sim &

The vector product has one very important, but maiifar, property. If
we interchanga andb, we reverse the sign of the vector product,

bAa = —alb.

Thus, when we form the vector productacdndb we obtain
anb=ila,b, —a.b,)+jla.b, —a,b.)+kla,b, —a,b,).

This relation may conveniently be expressed in tbem of a
determinant.

i k
ﬂ'z

N §

ahb =

J
a, a,
b, b,

From any three vectors, b, ¢ we can form the scalar triple product
@A b).c . Geometrically, it represents the volume V of therallele-
piped with adjacent edges a, b, c. (See Fig. A&#br) if ¢ is the angle
between c andzA b | then

laab)c=|aAblc cos p =ArR=V,

29



MTH 251 Mechanics

Where A is the area of the base, and h = cecos the height.

6.0 TUTOR-MARKED ASSIGNMENT

1. By drawing appropriate figures, prove the followitews of
vector
(atb)+c = a+(b+c),
Ala+ b) = Aa + Ab,
a.b+c)= a.b+a.c

Note that a, b, ¢ need not be coplanar.)

2. Show thatlaAB). cAd)=a.cb.d —a.d b. .
3. Evaluatev A (aa b).
4. Prove thataa(+c)=aab+anc. (Hint: Show first that in

aAb,b may be replaced by its projection on the planemabrto
a, and then prove the result for vectors in thisip)a

5. Evaluate the components %4 in cylindrical polar co-ordinates
using the identity (A. 28). Show that they are th& same as the
scalar Laplacians of the component#\of
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1.0 INTRODUCTION

Electromagnetic theory lies outside the scope &f bHook. However,
since we have discussed various examples involelegtromagnetic
fields, it may be useful to summarize some releyaaoperties of these
fields here. We shall simply quote the results wuthproof, and we
shall not consider the case of dielectric or magmaedia. We shall use
Gaussian units, but quote the forms appropriatd tits in brackets.

2.0 OBJECTIVE

At the end of this unit, you should be able to dgsed various examples
involving electromagnetic fields.

2.0 MAIN CONTENT

3.1 THE ELECTROMAGNETIC FIELD

The basic equations of electromagnetic theory aa@vixll's equations.
In the absence of dielectric or magnetic mediay thay be expressed in

terms of two fields, the electric fiel and the magnetic fielB. There
are two equations involving these fields alone,

146 aB
?ﬂE-I—EE:ﬂ, IV?JPILE-l_E:ﬂ‘I (1)
v.B =0, V.5 = 0] )

And two more involving also the electric charge slgnr and current
densityj,
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13E 4w aE
W.E = 4mp. [2,¥.E = p] (4)

The basic set of equations is completed by theriaréorce equation,
which determines the force on a particle of chaggenoving with
velocityv,

1

F=q(E-‘+EvAB). [F =qE +vAB) (5)

From (B.2), it follows that there must exist a wqbotential A such that
BE=VAA. (6)

Substituting in (B.1), we then find that there mesist a scalar potential
@ such that

104 a4
E=-vo-——. |[e

ot T at (7)

These potentials are not uniques i any scalar field, then

] 18A . an
ﬁ_EH_EE‘ [ﬁ—@-l'ﬁ
A =A—-VaA (8)

Define the same fields andB as do® and A. The transformation (B.8)
is called aguage transformationin particular, we can always choose
so that the new potentials obey the Lorentz gaogditon

140

[ -laﬁf L
———+V.4"=0. [——+v._q = ].

c? at

(9)

It is only necessary to chooséo be a solution of

1 93N 130 130
L e a(tea) [ - (A2 v

When the Lorentz guage condition is satisfied, iwd from (3). (4) and
the identity (28) that the potentials satisfy

8 T — — -1
oA I (10)
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And
a2 . 4T .

e

=

When there is no electric charge or current densitgse are three-
dimensional wave equations, which describe a wawepggating with
velocityc.

For the static case, in which all the fields armetindependent;
Maxwell's equations separate into a pair of elestatic equations,

VAE =0, V.E = 4up, [ 7] (12)

Identical with (6.46) and (6.47), and a pair of meifgp static equations,
4T
v.5 =0, VAE = - [= pojl (13)

Equation (10) reduces to Poisson’s equation (6a48),(B.11) expresses
the vector potential similarly in terms of the @nt density. The
solution of (11) for this case is similar to (6.16amely

s09=2 [ e (14)

1 g
[Here and below the SI form is obtained by the aepent ~ #z]
Thus, given a static distribution of charges andresus, we can
calculate explicitly the scalar and vector potdstiand hence find the
fields E andB.

e ) VP

Fig. B.1
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As a simple example, we consider a circular curleop of radiusa in
the xy-plane, carrying a curredt The equation (14) then reduces to a
single integration round the loop,

a0=¢

) (15)

The evaluation of this integral is much simplifieg considerations of
symmetry. Since the current lies in the xy-plangisiclearly zero. Now

let us consider a point P with co-ordinates (xz)0,(See fig. B.1) For
each point Q on the loop, there will be anothemp®)’, equidistant

from P. The contributions of small elements of i@ at Q and Q’ to

the component Awill cancel. Thus the only non-zero component & P
A,. Its value is

e @ cospdp
- _J; ? + a® - 2ax cos)?

Now we shall assume that the loop is small, so &t Then the
denominator is approximately

(_ R | 1 ax
r? — 2ax cos[y) 7] E; '1+Fccsqﬂ)

Whence

x , _ mla®x
A, CT_J; dp =——g—-

It is clear that at an arbitrary point the only a@mishing component of
A will be in the # direction of polar co-ordinates. If we define the
magnetic momend of the loop to be

mat]

H= ; [ =ma]] (16)

C

Then the vector potentials is

using

-
.

A, =0, Ag =10, Ap=
(17)

Mol
[Here and below the SI form is obtained'bY 4= ‘] The co-responding
magnetic field is easily evaluated using (A.48).
It is
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(18)

This is a magnetic dipole field. It has precisdig same form as the
electric dipole field (6.11).

4.0 CONCLUSION

In conclusion the magnetic dipole field has prdgiske same form as
the electric dipole field.

5.0 SUMMARY

What you have learned in this unit concerns thacbaquations of
electromagnetic theory and these are known as wdig equations.
As a simple example, we consider a circular curleop of radiusa in
thexy-plane, carrying a curregt

6.0 TUTOR-MARKED ASSIGNMENT

1. Calculate the vector potential due to a short segroéwire of
directed length g carrying a current], placed at the origin.
Evaluate the corresponding magnetic field. Find thce on
another segment of lengtls' @arrying current J’, at r. Show that
this force does not satisfy Newton’s third law. (G@mpute the
force, treat the current element as a collection naving
charges).
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1.0 INTRODUCTION

Scalars and vectors are the first two members fafraly of quantities

known as tensors, and described by 1, 3, 9, 27.omgonents. Scalars
and vectors are called tensors of rank 0, and ik fa respectively. In
this appendix, we shall be concerned with the maember of the

family, the tensors of rank 2, often called dyadi®e shall use the word
tensor in this restricted sense, to mean a terisané 2.

2.0 OBJECTIVES
At the end of this unit, you should be able to pupe scalar and
vector as the first two members of Tensors ta.enean a tensor of

rank 0 and rank 1 respectively) and the recognitibdyadic to mean a
tensor of rank 2

3.0 MAIN CONTENT

3.1 Elementary Properties: The DOT Product

Tensors occur most frequently when one vebtas defined as a linear
function of another vecta, according to

Tox@y + Ty, + Teza.,
Tyely + Typay, + Tyza., (1)

b,
b,
bz

Toxa, + T, + Toza;.
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We have already encountered one set of equatiotimssafype-the relations

(9.17) between the angular velocity and angular momentudhof a rigid
body.

It will be convenient to introduce a slight charajenotation. We write a &,
ag in place of @ &, &, so that (1) may be written

b = ) Tia;.
Z 2)

Where i and j run over 1, 2, 3. In this notatidre scalar product of two
vectors is

a.b= p2a;b.
Z 3)

Tensors are commonly denoted by sans-serif caplitedsT. The nine
components of a tens®rmay conveniently be exhibited in a square array, o

matrix
Tia Tz Tia
T = Tn T:: T::a .
Tyy Taz Toam (4)

Note that the first subscript labels the rows, tin@lsecond, the columns.

In view of the similarity between the expressio?sdgnd (3), it is natural to
extend the dot notation, and write (2) in the form

b=T.a.
For instance, the relation (9.17) may be written
T=1.w

Where | is the inertia tensor.

We can then form the scalar product of this vewatithh another vector c,
and obtain a scalar

c.T.a= ZZEE- T;a;.
i j

()

For example, it follows from (9.22) that the kimegnergy of a rigid
body is

1 1
T=—w.l.w= —ZZW;'I:'-{&J{ .
2 2 - - a7
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For any tensor T, we define the transposed tehsuyr
Tl_j'- = T:,':'.

This corresponds to reflecting the array (4) in teading diagonal.
From (5) we see that in general c.T.a is not timeesas a.T.c. In fact,

So that

aT.c=cT.a (6)
Note that he dot always corresponds to a sum aljac@nt subscripts.

The tensor T is called symmetricTif=T. or, equivalentlyTi = Tii . In
this case, the array (4) is unchanged by refleciionthe leading
diagonal. An equivalent condition is that, for\adctors a and c,

a.T.c=c.T.a. (7)

Similarly, T is called anti-symmetric (or skew-symimc) if

T=-TorT; =-T;, For example, consider the relation giving the
velocity of a point in a rotating body,

= wAT.

This is a linear relation between the componentsarfdv, and can therefore
be written in the form
v=T.r,

Where T is some suitable tensor. It is easy tdlssdats components are given
by
0 —lUg g
T = ( g 0 —mi)_
— g g 0 (8)

This tensor is clearly anti symmetric. Note thatdtagonal elemenis; are
necessarily zero. In fact, any ant symmetric tensay be associated with an
axial vector in this way, and vice versa.

There is a special tensbicalled theunit tensor oridentity tensorwhich has
the property that
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la=a 9)

For all vectorsa. Its components are

i = i
1..'1' = l:?.' i = [1 f l -I.il,
b H 0 if i+].

Or, written out in detail,
1 0 0
1(2 1 u).
o 1 (10)

3.2 Sums and Products; The Tensor Product

The sum of two tensors may be defined in an obvieayg. The tensor
R =5+ T js the tensor with componenfs; == 5i; + 5Ti;- |ts effect
on a vector is given by

R.a=x= (S.a) +5 (T.a)

For example, it is easy to show that any tef&oan be written as a sum

of a sysmmetric tens@ and an anti symmetric tensfr in fact, T =S
+ A, whereS = \2 7 andA = \2 .

We can also define the dot product of two tens8rsT. if c =S.b and

b =T.a, then it is natural to write =S.( T.a) = (S .T).a. In terms of
components,

£ = ZS(ZT“‘ ﬂ:c) = Z(ZS:‘;T}&)Q:\:-

& i

HenceS .T =R is the tensor with components
Ry = ZS:;'T;':C-

Once again, the dot signifies summation over adjasabscripts. Note
the rule for constructing the elements of the pobdw form the element

in theith row andkth column ofS .T, we take theth row ofS, and the
kth column of T, multiply the corresponding elements, and sumiqih
known as the rule of matrix multiplication.) It iportant to realize
that, in generall .S #8 .T. in fact, T .S = Q has components

(11)
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Qi = E TijSjn-
-

There is one special case in which these produetegual, namely the
caseS=1. It is easy to see that

1T=T1=T,

So that1 plays exactly the same role as the unit in orgirelgebra.
From any two vectorsa and b we can form a tensol whose
components ar&i; = @2+ This tensor is writte = a b, with no dot

or cross, and is called the tensor product or adypdhduct ofa andb.
note that

T-c =(ab)c = a(bc),
So that the brackets are in fact unnecessary. Heeod the tensor

product allows us to write some earlier resultaidifferent way. For
example, for any vecta,

1a=a=i(.a) +jja) + k(ka)
= (il + jj + kk) a,
So that
i +jj+kk=1, (12)

as may easily be verified by writing out the comgais. Similarly, we
may write (9.16) in the form

Zm{rzm —rrew)=lw,
J=

Where the inertia tensor is given explicitly by

| = Zm{r 1-— r'r'} (13)

It is easy to check that the nine components &f ¢lguation reproduce
(9.15).
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It is clear that ifT = ab, therT = ba . In particular, it follows that the
tensor (13) is symmetric

3.3 Eigenvalues; Diagonalization of a Symmetric Teor

Throughout this section, we consider a given symméensorT. A
vectora is called an eigenvector @ if

Ta=4a (14)

Wherel is a number calledigenvalue Equivalently, the equation (14)
may be written

(T-A1la=0,
Or, written out in full,

(T4 —A)ay + T4202 + Tyaa =0,
Tﬂlﬂ‘l + U'f: - /U"-:": + Tﬂzaz =0,
T, + Tazaz + T3z — A)az = 0.

These are the same kind of equations that we disdus Chapter 12 in
connection with normal modes. (Compare (12.15)irAthat case, the
equations are mutually consistent only if the dateant of the
coefficients vanishes,
Ty — 4 Tz Tia
det(T—A1)= | Tay Toz—1 Ty |=0.
Tﬂi TE: TE:; -4

When expanded, this determinant is a cubic equdtioh whose three
roots are all real, or else one real and two comptjugates of each
other.

We shall now show that the latter possibility cam roled out. For.
Suppose. is a complex eigenvalue, and a 1, @, &) the corresponding
eigenvalue, whose components may also be complexshdll denote

the complex conjugate eigenvalue b¥. Then, taking the complex
conjugate of

Ta=>\a,
We obtain
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Ta* =)*a*,

Where a* =(a%a5»az). Multiplying these two equations k& anda
respectively, we obtain

a* Ta=»Aa*a,
a Ta* =\*aa*.

4.0 CONCLUSION
In this unit we want to conclude by consideringjigen symmetric

tensorT. A vectora which is called an eigenvector @ if
T a =4a.

Wherel is a number calledigenvalueEquivalently, T-a =4a.
may be written (T —A1)a =0,

5.0 SUMMARY

The summary of what you have learnt is as in thelsion.

SELF ASSESSMENT EXERCISE

6.0 TUTOR-MARKED ASSIGNMENT

1) define the term Tensor

2) state some properties of Tensor that you aghtau
3) under what consideration can you ascertain that

Ta=4a, may be written agT —\1)a = 0,
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1.0 INTRODUCTION

Up to now we have dealt mainly with the motion of @bject which
could be considered as a particle or point masmadny practical cases
the objects with which we are concerned can mosdisteally be
considered as collections or systems of particsch systems are
called discrete or continuous according as theigbast can be
considered as separated from each other or not.

For many practical purposes a discrete system bawimery large but
finite number of particles can be considered asmticuous system.

Conversely a continuous system can be considereddascrete system
consisting of a large but finite number of partscle

2.0 OBJECTIVES
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At the end of this unit, you should be able to kratvout the distinction
between Discrete and Continuous Systems with exasnpl

3.0 MAIN CONTENT
3.1 Density

For continuous systems of particles occupying aore@f space it is
often convenient to define a mass per unit volunmclvis called the
volume densityor briefly density Mathematically, if &M s the total
mass of a volumé&r of particles, then the density can be defined as

. AM
g = lim —

&7~ Ay (1)

The density is a function of position and can vergm point to point.
When the density is a constant, the systems is tealie of uniform
density or simply uniform.

When the continuous system of particles occupy rdase, we can
similarly define a surface density or mass per arga. Similarly when
the particles occupy a line [or curve] we can defan mass per unit
length or linear density.

3.2 Rigid and Elastic Bodies

In practice, forces applied to systems of particlef change the

distances between individual particles. Such systane often called
deformable or elastic bodies. In some cases, hawdeérmations may
be so slight that they may for most practical psgsbe considered
non-existent. It is thus convenient to define aheatatical model in

which the distance between any two specified pgegiof a system
remains the same regardless of applied forces. 8wwgistem is called a
rigid body. The mechanics of rigid bodies is coasadl in Chapters 9
and 10.

3.3 Degrees of Freedom
The number of coordinates required to specify thgitipn of a system

of one or more particles is called the number arees of freedom of
the system.
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a) A particle moving freely in space requires 3 cooaties, e.g. (X,
y, z), to specify its position. Thus the number dedgrees of
freedom is 3.

b) A system consisting olN particles moving freely in space
requires3N coordinates to specify its position. Thus the nemb
of degrees of freedom &N.

c) A rigid body which can move freely in space hasegreées of
freedom, i.e 6 coordinates are required to speh#yposition.

Examples on Degrees of Freedom

1.

Determine the number of degrees of freedom in eaiclhe

following cases: (a) a particle moving on a givpace curve; (b)
five particles moving freely in a plane; (c) fivarpcles moving
freely in space; (d) two particles connected bigalrod moving

freely in a plane.

(a)

(b)

()
(d)

The curve can be described by the parametric emsati

= X(s), Y = ¥(s), z = z(s\vheres is the parameter. Then the
position of a particle on the curve is determinegd b
specifying one coordinate, and hence there is auysee
of freedom.

Each particle requires two coordinates to spectfy i
position in the plane. Thus 52 = 10 coordinates are
needed so specify the positions of all 5 particies,the
system has 10 degrees of freedom.

Since each particles requires three coordinatespéaify
its position, the system has 8 = 15 degrees of freedom.
Method 1

The coordinates of the two particles can be expresy
(X1, Y1) and &, Y»), i.e. a total of 4 coordinates. However,
since the distant between these points is a cdnatfihe
length of the rigid rod], we havg, — %)* + (y; — y)* = a°
so that one of the coordinates can be expresstedns of
the others. Thus there are 4 — 1 = 3 degrees eddra.
Method 2

The motion is completely specified if we give theot
coordinates of the center of mass and the anglesrbgd
the rod with some specified direction. Thus theee2a+ 1

= 3 degrees of freedom
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Prove that the center of mass of a system of pestimoves as if
the total mass and resultant external force wemieap at this
point.

Let F, be the resultant external force acting on partickehile
fe2 1s the internal force on particle v due to paetil . We shall
assumd,, =0, i.e. particle v does not exert any force on ftsel

By Newton’s second law the total force on particle
_dp, _ d?
'F!-‘ + Z.f:‘)l. - E - E(ﬂ: :.'T':.']
A (1)

Where the second term on the left represents thataat internal
force on particler due to all other particles.

Summing ovew in equation (1), we find

RO

Now according to Newton’s third law of action aneaction,
fua =—Fu so that the double summation on the left of (2em.
If we then write

i ZF and:F= %Zm o

d3F
(2) becomes’ = Mg

3)

(4)

SinceF is the total external force on all particles apglat the
center of mass, the required result is proved

A system of particles consists of a 3 gram masstéatat 91, O, -
1), a5 gram mass at (-2, 1, 3) and a 2 gram ra&3 - 1, 1).
Find the coordinates of the center of mass.

The positive vectors of the particles are givepeesively by

n=i—-k, p=-2i+j+3K, g=3i—)+Kk

then the center of mass is given by
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_ 3G —R+5(-2i+,+30)+2(3i—j+k) _ 1. 3 7

r= 3+5+2 - ﬁH_ﬁ*H_Ek
1
10,3
10,7

Thus the coordinates of the center of mass\ares

4. Find the centroid of a solid regidh as in Fig. 7 — 3
Consider the volume elemeft. of the solid. The mass of this
volume element is

m\"fzr = ‘:‘_vﬂ'f.;= EEML"E'J'!FML‘
Where . is the density [mass per unit volume] afd. Ay, Az,
are the dimensions of the volume element. Thencémroid is

given approximately by

ETFHJHL- _ Ery gyﬂl"u _ Erz;' T ﬂ'x Dﬂ'}"rﬂ‘zr
YAM, Xoyuhr, Yo, Ax Ay Az,

Where the summation is taken over all volume eldmenh the
solid.

Fig.7-3

Taking the limit as the number of volume elemenésdmes
infinite in such a way thefr,= 0 or Ax, = 0,8y, = 0,8z, = 0, we
obtain for the centroid of the solid:

fprdM _ frodr _ redxdydz
-rl dM _rzr dl'- %r dx d}' dz

F=
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Where the integration is to be performed o®eris indicated.

Writing r = Xi + Y] + Zk, ¥ = Xi + ¥ + Zk. this can also be written
in component form as

fgr dM ;?UE r G:ir) _ E(J]]"E*.H o dx dy a‘z]

1= fe dM B Jp = dr J]]"_T(.ydxa:}fdz
5. Find the center of mass of a uniform solid hemesplof radius
a.

Fig. 7-7

By symmetric the center of mass lies on #hexis [see Fig. 7 —
7]. Subdivided the hemisphere into solid circulkatgs of radius
r, such aABCDEA If the centelG of such a ring is at distance z
from the cente© of the hemisphere? + ZZ = a°. Then ifdzis
the thickness of the plate, the volume of eacht i@gh

mridz = mla® — z%)dz
And the mass igozle® - z*)dz | Thus we have
j;'::ua’mz(a: -z 3

z= =-a
[amo(@® —z3) 8

3.4 Center of Mass

Letr, r,....... , Iy be the position vectors of a system of N partides
masses | Ny, ....... , M\ respectively [see Fig. 7 — 1].

Thecenter of masser centroidof the system of particles is define as that
point C having position vector
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- MgTy Mty T +myry 1
7= 1h 2’3 .\..\_l__ZmLTL

m,_+m=+---..+‘m.-.l.- M1:=1 ? (2)
N
M= Zmy _ _
Where =1 is the total mass of the system. We sometimes use
N
Zmor simplyzmin place of;""

Fig- 7'1 - Fig. 7.2

For continuous systems of particles occupying are& of space in
which the volume density i3, the center of mass can be written

.r:g G“T‘r_iz-

.I'_-g odr (3)

F=

Where the integral is taken over the entire redofsee Fig. 7.2). If we
write

¥ =Xi+Vj+ zk, T, = Xl +Vj+ 2.k

Then (3) can equivalently be written as

—_Emyxy T_Emy}.‘y —_EmL‘ZL‘
*TTMm 0 YT T M (4)
- fp oxdr I ovdr - fozdr

And *TTar YT a1 M (5)

where the total mass is given by their

M = Z‘mr

(6)
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or M= J;mir (7)

The integrals in (3), (5) or (7) can be single, leuor triple integrals,
depending on which may be preferable.

In practice it is fairly simple to go from discret@ continuous systems
by merely replacing summations by integrations. seguently we will
present all theorems for discrete systems.

3.5 Center of Gravity

If a system of particles is in a uniform gravitai@d field, the center of
mass is sometimes called the center of gravity.

4.0 CONCLUSION

We shall conclude by saying that In practice ifasly simple to go
from discrete to continuous systems by merely @ptasummations by
integrations.

5.0 SUMMARY

What you have learnt in this unit concerns: ceofrgravity, centre of
mass, density, degree of freedom their definitiang examples of each

also discussed is their real life applicatioRsgid and Elastic Bodies
are also taught extensively in this unit.

6.0 TUTOR-MARKED ASSIGNMENT

Show in tabular form the difference between a éiscand a continuous
system. Also give examples of each.

7.0REFERENCES/FURTHER READING

1.Theoretical Mechanics by Murray, R. Spiegel.

2.Advanced Engineering Mathematics by KREYSZIC.
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3.Generalized function. Mathematical Physics bysUVladinirou.

4. Vector Analysis and Mathematical Method by SAjibola. First
Published (2006).

5.Lecture Notes on Analytical Dynamics from LASLY9R).
6.Lecture Notes on Analytical Dynamics from FUTA((B).
7.Lecture Notes on Analytical Dynamics from UNILONKL999)
8.Differential Games by Avner Friedman.
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1.0 INTRODUCTION

When we say system of particles, this refers totreenf mass, the
motion of a rotating ax thrown between two juggléosks rather
complicated, and very different from the standardjgztile motion
alluded to. We deduce from experiment that onetpafithe ax follows

a trajectory described by the standard equationsmotion of a
projectile. This special point is called the cemtfenass of the ax.

2.0 OBJECTIVES

At the end of this unit, you should be able to knm@mentum of a
system of particles as stated in the main coni@its
3.8) above.

3.0MAIN CONTENT

3.1 Momentum of a System of Particles
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dry .
4t ¥ is the velocity ofn., the total momentum of the system
is defined as

i =

N N

P = Zm:, 1, = ZT”:.J,':.'

= = (8)

We can show [see Problem 7.3] that

ar
P = Mft=M—=Mr
dt

9)

_ dr
Where" ~ @t is the velocity of the center of mass.

This is expressed in the following

Theorem 1 The total momentum of a system of particles caridoind
by multiplying the total masM of the system by the veloci#y of the
center of mass.

3.2 Motion of the Center of Mass

Suppose that the internal forces between any twitclgs of the system
obey Newton'’s third law. Then if F is the resultamternal force acting
on the system, we have

dp  d*F dv

M—=M—

F=i=Mm=Yg (10)

This is expressed in

Theorem 2 The center of mass of a system of particles mages$ the
total mass and resultant external force were agplighis point.

3.3 Conservation of Momentum

Putting F = 0 in (10), we find that

N

P = Z my Vi,

=1

constant (11)
Thus we have

Theorem 3 If the resultant external force acting on a systé particles
Is zero, then the total momentum remains constantis conserved. In
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such case the center of mass is either at rest motion with constant
velocity.

This theorem is often called the principle of comagon of momentum.
It is a generalization of Theorem 2 — 8,

3.4 Angular Momentum of a System of particles

The quantity

w
= 1y, b X1}
Z (12)

is called the total angular momentum [of momeninaimentum] of the
system of particles about origin O.

3.5 The Total External Torque Acting on a System

If F, is the external force acting on particle v, theX F, is called the
moment of the force for torque about O. the sum
N

A= ) nXF,

=1 (13)
is called theotal external torquebout the origin.

3.6 Relation between Angular Momentum and Total
External Torque

If we assume that the internal forces between awy particles are
always directed along the line joining the parsc]ee. they are central
forces], then we can show as in problem 7.12 that

_do
= q@ (14)

Thus we have
Theorem 4 The total external torque on a system of pasicesqual to

the time rate of change of the angular momentumthef system,
provided the internal forces between particlescardral forces.

6. Solved examples on Angular Momentum and Torque
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Prove theorem 4. The total external torque on aesysof

particles is equal to the time rate of change giuéar momentum
of the system, provided that the internal forcesvben particles
are central forces.

we have

_dp, d
Fy +wal = E = E{mytv]

1)
Multiplying both sides of (1) by, X, we have
7, XF, +Z:r~ Xfy =it on,n)
(i w w . i dt -l
7 (2)
x2 =2 Xv
SII’ICG ¥ E(m 1:11:] — E {m L‘(TL‘ 11:]]' (3)

i
T XE + ZTL‘ Xfua = E{m U
(2) becomes F]

(4)

Summing ovev in (4), we find

Z?E XF, + ZZ?,, Xfa= %{Zml,{?y){tﬂy]}
v 3 v

: (5)
Now the double sum in (5) is composed of term$
Ty X fvj + L] X fjv (6)

Which becomes on writings = —fws according to Newton’s
third law,

Ty X fwl —Ta X fwl = (T"L' - TJ]X fvﬂ (7)
Then since we suppose that the forces are cenéraf,a has the

same direction a& — 1 , it follows that (7) is zero and also that
the double sum in (5) is zero. Thus equation (Bphees

d dQ
Zry XF, = EIZmF{TF X 'rsy]} or M= ar

w
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Whereﬁ B ;TF X F.Q= Zmy{ry X v

Suppose that the internal forces of a system ofiges are
conservative and are derived from a potential

.[”:11; {T/h:] = le {Tzri]

Where fiv=—fiz = Ja—x)P2+0-n)P +GE-2)* s the
distance between particlésandv of the systems.

v dr, = - aVy,
255

(@) Prove that™= = v where v is the
internal force on particlesdue to particlet .

S [ Fiu-ar,

(b)  Evaluate the double su% P of problem 7.13

(@) The force acting on particleis

_amvi_amv._avﬂvk

Fw = ax,, ﬂ}-‘u‘r iz,

=—grad, Vi =—-4, 1y

(1)

The force acting on particle is

aly, a8V,
foa=- 5’.’!{.‘?1_ 3}-‘? - asz:_grﬂ'dy Vip=—8; U3y = —fia

The work done by these forces in producing the ldtgments
dr, and

dry of particles v and respectively is

Vs Vs AV,

v,
fia- dr, + fio- dry = — {5 ax, 4 T2y, + ’*

Vi, avy,
dz,, d dy z
dz, 2t %3 xat vy yat dz; }

= —dVy,

Then the total work done by the internal forces is

ZZJ&L‘ ndr, = - %ZZ Ay
v oA voA
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1
The factorz on the right being introduced because otherwise th
terms in the summation would enter twice.

(b) By integrating 8) of part @), we have

2 1 2 S T
D0 Fodr = =g YNt =m0 e
v o1 * v 1 b

4)

Wherel.®™” and¥z*"? denote the total internal potentials

1
3.0V
 H j

At timest; andt, respectively.

®)

8. Prove that if both the external and internal forfesa system of
particles are conservative, then the principle aiservation of
energy is valid.

If the external forces are conservation, then weha

F, = -V, (1)

J-SF:? . ﬂ,]_,.q __ J-zﬂ_'[.-’ _ L,{gx:-] - -[-_;{EIﬂ
From WhiCl‘Z 1 Z 1 ’ (2)

Where/a™? and%*? denote the total external potential

Z"

At times t and § respectively

Using (2) and equation (4) of problem 7.14 (b) qua&tion (5) of
problem 7.13, we find

T2 _ T]_ — Vl(ext) _ Vz(ext) + Vl(int) _ V2(int) — V]_ _ V2 (3)
Where _ _
\[L :Vl(ext) + Vl(lnt) and \é — Vz(ext) + V2(|nt) (4)

Are the respective total potential energies [exdkand internal]
at times t and . We thus find from (3),
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T,+V.=T,+V, or T+ V= constant (5)

Which is the principle of conservation of energy.

3.7 Conservation of Angular Momentum

Puttingh =0 in (14), we find that

N
0= Z m,,XV,)
o= = constant (15)

Thus we have
Theorem 5 If the resultant external torque acting on a eystof
particles is zero, then the total angular momentemains constant i.e.

is conserved

This theorem is often called the principle of camagon of angular
momentum. It is the generalization of Theorem eadiscussed.

3.8 Kinetic Energy of a System of Particles

The total kinetic energy of a system of partickedefined as

w N
1 - 1 -
= —Z myly = —Z M, Ty
2 i 2 i
= v=1

(16)
Work
If ¥. is the force (external and internal) acting ontipkr v, then the

total work done in moving the system of particlesnf one state
[symbolized by 1] to another [symbolized by 2] is
N

W=y [#an

e a7
As in the case of a single particle, we can prinesfollowing
Theorem 6 The total work done in moving a system of paescfrom

one state where the kinetic eneyto another where the kinetic energy
IST,, is
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Wp= T, -T (18)

Potential Energy, Conservation of Energy

When all forces, external and internal, are coreters, we can define a
total potential energy of the system. In such case we can prove the
following.

Theorem 7. If T andV are respectively the total kinetic energy andltota
potential energy of a system of particles, then

T + V = constant (19)
This is the principle of conservation of energy $gstems of particles.
Motion Relative to the Center of Mass

It is often useful to describe the motion of a egsf particles about [or
relative to] the center of mass. The following ttesos are of
fundamental importance. In all cases primes deqogatities relative to
the center of mass.

Theorem 8. The total linear momentum of a system of partiadbsut
the center of mass is zero. In symbols,

im o Vo = im oo = 0 (20)

Theorem 9 The total angular momentum of a system of pasiabout

any point O equals the angular momentum of thd toéss assumed to
be located at the center of mass plus the angubanentum about the
center of mass. It could be expressed mathematithails

N
O=7X Mv+ m,, (reXvy)
Z (21)

Theorem 1Q The total kinetic energy of a system of partideésut any

point O equals the kinetic energy of translationtted center of mass
[assuming the total mass located there] plus thetii energy of motion
about the center of mass. Thus,
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\
Zm 12

Theorem 11 The total external torque about the center ofshegials
the time rate of change in angular momentum aldwitcenter of mass,
l.e. equation (14) holds not only for inertial cdimate systems but also
for coordinate systems moving with the center o§sn&onsequently,

L_]

NII—'-
"'I
3]

NII—'-

(22)

. dQ
A= (23)

If motion is described relative to points otherrththe center of mass,
the results in the above theorems become more ooatgd.

Impulse

If F is the total external force acting on a systermpasticles, then

J; F dt (24)

is called thetotal linear impulseor briefly total impulse As in the case
of one patrticle, we can prove

Theorem 12 The total linear impulse is equal to the changdinear
momentum. Similarly ifA is the total external torque applied to a
system of particles about origin 0, then

f At
ta (25)
Is called the total angular impulse. We can thaver

Theorem 13.The total angular impulse is equal to the changeangular
momentum.

4.0 CONCLUSION

In conclusion, as inTheorem, 10. The total kinetic energy of a system
of particles about any point O equals the kinetiergy of translation of
the center of mass [assuming the total mass locdiex] plus the
kinetic energy of motion about the center of massls,

N

V53 1 'z

MT% + —Zn 2
24

L_]
t\.‘lll-'-
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5.0 SUMMARY

Some thirteen theorems are discussed in this lounst t

1. The total momentum of a system of particles banfound by
multiplying the total mas# of the system by the velocity of the
center of mass.

2. The center of mass of a system of particles smagaf the total mass
and resultant external force were applied at thiatp

3. If the resultant external force acting on a systémarticles is zero,
then the total momentum remains constant, i.e.oiserved. In such
case the center of mass is either at rest or inomowith constant
velocity.

4. The total external torque on a system of partidesqual to the time
rate of change of the angular momentum of the sysprovided the
internal forces between particles are central farce

5. If the resultant external torque acting on a systé particles is zero,
then the total angular momentum remains constanisiconserved

6. The total work done in moving a system of paricdleom one state
where the kinetic enerdl; to another where the kinetic energyfisis

7. If T andV are respectively the total kinetic energy andltptaential
energy of a system of particles, then T+V is a tamts

8. The total linear momentum of a system of partielesut the center of
mass is zero

9. The total angular momentum of a system of pagielbout any point
O equals the angular momentum of the total massreess to be located
at the center of mass plus the angular momentumt débe center of
mass.

10. The total kinetic energy of a system of paggchbout any point O
equals the kinetic energy of translation of theteeof mass [assuming
the total mass located there] plus the kinetic gnef motion about the
center of mass.

11.The total external torque about the center cfsneguals the time rate
of change in angular momentum about the centerassm

12.The total linear impulse is equal to the chandmear momentum.
13.The total angular impulse is equal to the chamgeangular
momentum.

Example

Prove Theorem 10, The total kinetic energy of aesysof particles
about any point O equals the kinetic energy ofcieter of mass
[assuming the total mass located there] plus thetid energy of
motion about the center of mass.

The kinetic energy relative to O is
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1 .1
T= EZmL vy = EZTHL (T'L - 71]

but

(1)

" - af -y
,=F+7, =V 4+

Thus (1) can be written

1 :
T = Eva{(ﬁ+tﬂy]-(ﬁ+vﬂ}
i
1 s T 1 ¥ ¥
5 i

1 . )1 x
w w w

1. .1 -
= EM‘L”‘ + ﬁmy'r:{.‘

_ My, =0
Since=

6.0 TUTOR-MARKED ASSIGNMENT

1. What can be referred to as being the genetmiizaf Theorems
(2-8)?

2.Prof that thetotal angular impulse is equal to the change uéar

momentum.
3. state the law of conservation of energy.
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1.Theoretical Mechanics by Murray, R. Spiegel.
2.Advanced Engineering Mathematics by KREYSZIC.
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1.0 INTRODUCTION

Often in practice the motion of a particle or systef particles is
restricted in some way. For example, rigid bodies [considered in
Chapters 9 and 10] the motion must be such thatigtance between
any two particular particles of the rigid body Ie/ays the same.

As another example, the motion of particles maydstricted to curves
or surfaces.

The limitations on the motion are often callednstraints If the
constraint condition can be expressed as an equatio

SCra e D= 0 (26)

connecting the position vectors of the particled #me time, then the
constrain is calledholonomic If it cannot be so expressed it is called
non-holonomic

2.0 OBJECTIVES

At the end of this unit, you should be able to desed the following:
1.Virtual Displacements
2.Statics of a System of particles. Principle aftval Work
3.Equilibrium in Conservative Fields. Stability Builibrium
4.D’Alembert’s Principle
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3.0 MAIN CONTENT
3.1 Virtual Displacements

Consider two possible configurations of a systempafticles at a
particular instant which are consistent with thecés and constraints.
To go from one configuration to the other, we neetlyy give the,th
particle a displacemelit: from the old to the new position. We céii.

a virtual displacementto distinguish it from atrue displacement
[denoted by d,] which occurs in a time interval where forces and
constraints could be changing. The symiohas the usual properties of
the differential d; for exampléGin 6) = cos 6 6.

3.2 Statics of a System of particles. Principle oVirtual
Work

In order for a system of particles to be in equilibn, the resultant force
acting on each particle must be zero, kg.= 0. It thus follows that
F,-dér, = 0 wheref.: - 87, is called the virtual work. By adding these we
then have

N

2, Fudn= 27)

m=1
If constraints are present, then we can write
F, = F{® + F2 (28)

Where Ef? and F? are respectively thactual forceand constraint
force acting on thgth particle. By assuming that the virtual work bét
constraint forces is zero [which is true for rigpddies and for motion on
curves and surfaces without friction], we arrive at

Theorem 14 A system of particles is in equilibrium if andlpnf the
total virtual work of the actual forces is zere@, iif

N
Z Fl® .dr,=0
(29)

=1

This is often called thprinciple of virtual work
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3.3 Equilibrium in Conservative Fields. Stability d
Equilibrium

The results for equilibrium of a particle in a censtive force field can

be generalized to systems of particles. The folgwitheorems

summarize the basic results.

Theorem 15.If V is the total potential of a system of paes

depending on coordinateg, o, ....... , then the system will be in
equilibrium if

v _ v,

dg, dgy T (31)

Since the virtual work done on the system is

at’ av

av = Sy +
34, q1

e A
34, fz

(31) is equivalent to the principle of virtual work

Theorem 16 A system of particles will be in stable equiliom if the
potentialV is a minimum.

In caseV depends on only one coordinate, sgysgfficient are

av 33V
—_— -

_ =0
dqi

Other cases of equilibrium where the potential a8 @ minimum are
called unstable.

3.4 D’Alembert’s Principle

Although Theorem 14 as stated applies to the staifca system of
particles, it can be restated so as to give anognak theorem for
dynamics. To do this we note that according to Nevgt second law of
motion,

FZP or F:'r_"ﬁ‘:'rzn (30)

Where R is the momentum of thgh particle. The second equation
amounts to saying that a moving system of partickes be considered

to be in equilibrium under a ford@ — 2. i.e. the actual force together
with the added force & which is often called the reversed effective
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force on particlev. By using the principle of virtual work we can the
arrive at

Theorem 17. A system of particles moves in suchag that the total
virtual work

) @ _p).én, =
Z{F B)-ér, =0 (32)

With this theorem, which is often called D’Alembsrprinciple, we can
consider dynamics as a special case of statics.

Example
Motion Relative to the Center of Mass

(1) Letr, andy be respectively the position vector and velocity o
particle v relative to the center of mass. Provat tlia)

Zm o Te =0, ) Zm o = 0.

(@) Letr, be the position vector of particlerelative to0 and
T the position vector of the center of mass C redato O.
Then from the definition of the center of mass,

1)
M= Zm:,
Where >~ . FromFig. 7 — 8 we have

Then substituting (2) into (1), we find
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_ 1 | .
= HZ?."! y(e+7) = HZ?H oty +T

Mmyt, =0
2 3)

From whichs

(b)  Differentiating both sides of (3) with respecttiave have

m, 1., = 0.
Yo,

Example 2

In each of the following cases whether the constra holonomic or
non-holonomic and give a reason for your answey:a(doead
moving on a circular wire; (b) a particle slidingwi an inclined
plane under the influence of gravity; (c) a patisliding down a
sphere from a point near the top under the inflaefayravity.

(@) The constraint is holonomic since the beadclwitan be
considered a particle, is constrained to move om th
circular wire.

(b) The constraint is holonomic since the partide
constrained to move along a surface which is is thise a
plane

(c) the constraint way of seeing this is to notatthis the
position vector of the particle relative to the terof the
sphere as origin and a is the radius of the splieee, the
particles moves so that = a*. This is a non-holonomic
constraint since it is not of the form (26), pagé.1An
example of a holonomic constraint wouldje= a* .

4.0 CONCLUSION
In conclusion, In order for a system of particlede in equilibrium, the
resultant force acting on each particle must be,zer.F, =0

5.0 SUMMARY

The summaries of what you have learnt are as cwdan theorems 14
— 17 above thus:
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Theorem 14 A system of particles is in equilibrium if andlpnf the
total virtual work of the actual forces is zero,ll€a principle of virtual
work.

Theorem 15.If V is the total potential of a system of paes

depending on coordinateg, o, ....... , then the system will be in
equilibrium if

W

da,  'dgz "7 which is equally equivalent to virtual work.

Theorem 16 A system of particles will be in stable equiliom if the
potentialV is a minimum. and

Theorem 17. A system of particles moves in suchag that the total
virtual work given as

N
Y (F&-B)-6m, =0
=1

which is often called D’Alembert’s principle

6.0 TUTOR-MARKED ASSIGNMENT
a) Explain the term virtual displacement
b) Define D’Alembert’s principle
c) define center of mass
d) what do you understand by the momentum of system
particle
e) Explain the terms holonomic and nonholonomic
constraints.
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1.0 INTRODUCTION

The simple pendulum is one of the most common elesnpf simple
harmonic motionat least as far as laboratory observation ofillagmry
motions is concerned. Aarmonic motionis one for which the restoring
force obeys Hooke’s law, provided the displacenferrin equilibrium
position is small. In that case the displacemerd|ocity and
acceleration towards the equilibrium position apresented by simple
sinusoidal functions of time or linear combinatiasfsthem. The term
simplecomes into the definition as a result of the theat the amplitude
and therefore energy of the system is conservedistanot) when
dissipative (friction type) forces are negligiblehen the curves of the
dynamic variables such as displacement, velocity asteleration will
be pure sine or cosine curves.

We are interested in this type of motion becauseg,oa will recall from
your college physics, vibratory motion is one oé ttour fundamental
motions in nature. Vibratory or periodic motionasprototype of the
motions of most physical systems. The structurebuilfiings, bridges
and crystals such quartz used for the construaifoyour wrist watch
are in a state of vibration at all times. The motmf electrons in an
antenna that transmits or receives a radio signabratory.

In this unit you will study the simple mathemati¢aimulation of this
important type of motion and discuss the propemiethe solutions of
its differential equation.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

a. derive the equation of a simple pendulum

b. show that the equation of a simple pendulumparéicular case of the
more general equation of a simple harmonic osoillat

c. demonstrate an understanding of the dependdnite eriod of a
simple pendulum on the length and local gravitati@cceleration.

d. Solve simple problems involving the simple solog of the equation
of the simple pendulum.

e. discuss elastic systems in terms of Hooke’s law

f. calculate the energy stored in an elastic system

g. show that a spring force is conservative.

3.0 MAIN CONTENT

3.1  The Simple Pendulum

Consider a mass m suspended from a light inextlenstling of length
|, such that the mass is free to swing from sidgeide in a vertical plane,
as shown in Fig. a. This setup is known asa@ple pendulumLet® be
the angle subtended between the string and the wlakgn vertical.
Obviously, the equilibrium state of the simple pelodh corresponds to
the situation in which the mass is stationary aaging vertically down
(i.e.,0 =0). The angular equation of motion of the péaniuis simply

19=T (523)

where | is the moment of inertia of the mass, d@nd the torque acting

on the system. For the case in hand, given tratrhss is essentially a
point particle, and is situated a distahdeom the axis of rotation (i.e.,

the pivot point), it is easily seen that h¥.

74



MTH 251 Mechanics

The two forces acting on the mass are the downgardtational force,
mg, and the tensionT, in the string. Note, however, that the tension
makes no contribution to the torque, since its lofeaction clearly
passes through the pivot point. From simple trignewy, the line of
action of the gravitational force passes a distdrgie 8 from the pivot
point. Hence, the magnitude of the gravitatiomajie ism g |sin 6.
Moreover, the gravitational torque igestoring torquei.e., if the mass

is displaced slightly from its equilibrium statee(i ® = 0) then the
gravitational force clearly acts to push the maaskitoward that state.
Thus, we can write

I = mglsin 8. 524

Combining the previous two equations, we obtainftlewing angular
equation of motion of the pendulum:

| 6 = g sin. (525)

Unfortunately, this isnot the simple harmonic equation. Indeed, the
above equation possesses no closed solution whitlbe expressed in
terms of simple functions.

Suppose that we restrict our attention to relayigehall deviations from
the equilibrium state. In other words, supposet tha angled is
constrained to take fairly small values. We knowent trigonometry,
that forldl less than aboufét is a good approximation to write
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sinB ~ 6. (526)

Hence, in thesmall angle limityeduces to
| 6 =986, (527)

which is in the familiar form of a simple harmomiquation. Comparing
with our original simple harmonic equation, and #slution, we
conclude that the angular frequency of small amg@étoscillations of a
simple pendulum is given by

w= |9 (528)

In this case, the pendulum frequency is dependagtan the length of
the pendulum and the local gravitational accelemti and is
independent of the mass of the pendulum and thelitang of the
pendulum swings (provided that si@ =~ 6 remains a good
approximation). Historically, the simple pendulumas the basis of
virtually all accurate time-keeping devices befalee advent of
electronic clocks. Simple pendulums can also leel ie measure local
variations in g.

3.2 Hooke’s Law

Consider a masm which slides over a horizontal frictionless suegac
Suppose that the mass is attached to a light hdekspring whose
other end is anchored to an immovable object. BgelLet x be the
extension of the spring: i.e., the difference bemwéhe spring’s actual
length and its unstretched length. Obviously, ® edso be used as a
coordinate to determine the horizontal displacemehtthe mass.
According to Hooke’s law, the fordethat the spring exerts on the mass
Is directly proportional to its extension, and aj@acts to reduce this
extension. Hence, we can write

f=-kx,
(159)

where the positive quantityis called thforce constantand measures
the stiffnessof the spring. Note that the minus sign in theowab
equation ensures that the force always acts toceedhe spring’'s
extension: e.g., if the extension is positive th@nforce acts to the left,
So as to shorten the spring.
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Mass on a spring

According to Eq. (140), the work performed by tipeirsg force on the
mass as it moves from displacemento xg is

W = j:ff(x)dx: -k j::’xdx: - %kxg —%kx,i

Note that the right-hand side of the above expoassonsists of the
difference between two factors: the first only degeeon the final state
of the mass, whereas the second only depends mritid state. This is
a sure sign that it is possible to associagogential energywith the
spring force. Equation (155), which is the bassfirdtion of potential
energy, yields

— X8 N R
U(xg) — U(Xa) = - j f(9dx=Zlog = —kog. (161)

Hence, the potential energy of the mass takesotime f
_ 1,
U(x) = Ekx : (162)

Note that the above potential energy actually regmes energy stored by
the spring — in the form of mechanical stresseshernwit is either
stretched or compressed. Incidentally, this enemgyst be stored
without loss otherwise the concept of potential energy woukl b
meaningless. It follows that the spring force mother example of a
conservative force
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It is reasonable to suppose that the form of thmggpotential energy is
somehow related to the form of the spring forceet s now explicitly
investigate this relationship. If we leg x> x and % - 0 then Eq.
(161) gives

U) = ~[ f(x)dx (163)

We can differentiate this expression to obtain

_du

f=-==. 164
™ (164)

Thus, in 1-dimension, a conservative force is equalminus the
derivative (with respect to displacement) of itsasated potential
energy. This is a quite general result. For theeoof a spring force: U
= (1/2) k¥, sof = -dU/dx = -kx.

As is easily demonstrated, the 3-dimensional edgmtdo Eq. (164) is

F=_[9Y U U} (165)
ox o0y 0z

For example, we have seen that the gravitationsdnpial energy of a
massm moving above the Earth’s surface is Un¥ g z wherez
measures height off the ground. It follows that thssociated
gravitational force is

f=(0, 0, mg. (166)

In other words, the force is of magnitucheg, and is directed vertically
downward.

The total energy of the mass shown in Fig. 42 esghim of its kinetic
and potential energies:

E:K+U:K+%kx2. (167)

Of course,E remains constant during the mass’s motion. Hetiee,
above expression can be rearranged to give

K=E- %kxz. (168)
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Since it is impossible for a kinetic energy to begative, the above
expression suggests tHatcan never exceed the value

Xo = 2_kE _ (169)

Here, % is termed th@amplitudeof the mass’s motion. Note that when x
attains its maximum valuegxor its minimum value —x the kinetic
energy is momentarily zero (i.e., K =0).

4.0 CONCLUSION
As in the summary.

5.0 SUMMARY

In this unit you have been introduced to the eguatif a simple pendulum. It
is a particular case of the more general equatibra gimple harmonic
oscillator.

The period of the motion is independent of its massdepends on its length
and the value of the local gravitational accelerati

Simple harmonic oscillations are observed onlysimall displacements from
their equilibrium positions. Their restoring forcedl then obey Hook'’s law
of elasticity.

For an elastic system, the work done by the eldstices manifests as the
change in its potential energy. The total energyhes sum the kinetic and
potential energies interchanged as the elastiesyss alternately stretched
and compressed.

6.0TMA
1) Explain the ternHooke's Law
2) show that a spring force is conservative.

7.0REFERENCES / FURTHER READING
1.Theoretical Mechanics by Murray, R. Spiegel.
2.Advanced Engineering Mathematics by KREYSZIC.
3.Generalized function. Mathematical Physics bysUVladinirou.
4.Vector Analysis and Mathematical Method by S.Ajbola. First
Published (2006).
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1.0 INTRODUCTION

In this unit, we shall study the motion of an abjeor particle,
moving in space. The object may be a car speeatioignd a racetrack,
an electron being propelled through a linear acatde, or a satellite in
orbit. We assume that the motion takes place fixed coordinate
system and that the object can be located by gjegia single point, its
centre of gravity

2.0 OBJECTIVES

At the end of this unit, you should be able to:
1. Understand the Motion along a curve
2. Understand and solve simple problems in
Position, Velocity, and Acceleration of
system of particles along curves.

3.0 MAIN CONTENT

3.1 MOTION ALONG CURVES

In this unit, we study the motion of an object, particle, moving in

space. The object may be a car speeding arouace&rack, an electron
being propelled through a linear accelerator, satllite in orbit. We

assume that the motion takes place in a fixed c¢oatel system and that
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the object can be located by specifying a singlentpots centre of
gravity.

3.1.1 Position, Velocity, and Acceleration

The three basic notions for analyzing motion arsitpmm, velocity, and
acceleration. As a particle moves along a path,sugpose that the
coordinates (x,y,z) of its position are twice difietiable functions of
time

X = x(t) y=y® z = z(t)
The vector function
rt) = x(®i + y(t) + z(tk

from the origin to the particle is called tip®sition function of the
particle. Figure 14-36 shows the position of aiplar at timet and at
another time + At.

P e+ 30—

/
/ Position veclors |
i
[ &

Figure 14-36:Ar is the change in position from tinhéo t + At.

The displacement vectdr = r(t + At) — r(t) represents thehange in
position. The scalar multipleAr/At represents th@veragechange in
position from timet to t + At, and the average change in position is
called theaverage velocitpver the time periodt. Now, just as in the
case of motion along a line, we define {lmestantaneousyelocity to be
the limit of the average velocities Asapproaches 0; that is

velocity = lim & = jjm L8021
At-0 At At-0 At

According to (14.36) in the previous section, tintlon the right is the
vectorr’'(t). If v(t) denotes the velocity at tinteit follows that

V(D) =r'()

82



MTH 251 Mechanics

Thus, velocity is the rate of change of positiorthwiespect to time.
Furthermore, the rate of change of velocity witbpect to time is called
theaccelerationand is denoted bg; that is,

a(t) = v(t) = r'(t)

Z .
4 Tungent line

Figure 14-37: The vectord\r/At — v asAt — 0; v is a direction vector
for the line tangent to the pathRat

The discussion above is completely consistent woilr earlier
discussion of position, velocity, and acceleratidifotice, however, that
all three are now considered to be vectors andbearepresented by
arrows. The position vector always has its taithet origin, but the
velocity and acceleration vectors are considerdthte their tails at the
location of the particle. Moreovdhe arrow representing the velocity is
always tangent to the patiio see why this is so, we suppose that the
particle is at poinP at timet. Figure 14-37 indicates that As—0, the
vectorsAr/At approach a direction vector of the tangent limeughP.

It follows that this direction vector is the velbcvectorv. Figure 14-38
shows some typical velocity and acceleration vecadrvarious points
on the path. Notice that acceleration vectors lisyaint toward the
concave side of the path.

an)

")

B X

Figure 14-38: Typical velocity and acceleration vectors on théhpat
motion.

83



MTH 251 Mechanics

The speedv of a particle is defined to be the rate of clengdistance
(along the path) with respect to time. Speed hagniude only and is,
therefore, a scalar. If the particle starts attignthen the distanceit
travels along the path frompto timet is given by the arc length formula
(14.32).

s® = [ JIx@F +[y@F +[z@Fdu

It follows from the Fundamental Theorem that

v(t) = s = JIxOF +[y F +[z0OF

But the expression on the right is the length'@f # v(t) and, therefore,
speed = v(t) Fv(t)|

The entire discussion above can be summarizedlas/$o

For a particle travelling through space, we have

(1) r(t) is the position vector; its tail is at tbeigin and its tip traces
out the path.

(2)  v(t) =r(t) is the velocity vector; it is tangent to thelpa

(3) a(t) = v(t) = r'(t) is the acceleration vector; it usually points

toward the concave side of the path.
(4)  v(t) = $(t) = M) is the speed.

Example 1

The position vector of a particle is r(t) = dos sint] + tk.
Find its velocity, speed, and acceleration at angt.

Solution:
The path of the particle is a circular helix.

v(t) = r(t) = -sinti + costj + k
speed V()| = y/(-sint)? + (cost)? +12 = /2
a(t) = v(t) = -costi — sintj
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Note: The acceleration is n@& even though the speed is constant. The
reason is that the velocity is constantly changlimgction. Also notice
that v(t)- a(t) = 0, which means thatanda are always orthogonal .see
the diagram below.

Figure .5

4.0 CONCLUSION
In conclusion, the motion of an object, movingsipace. it
was assumed that the motion takes place in a tireddinate
system and that the object can be located by gpegifa
single point, its centre of gravity.

5.0 SUMMARY
summarily, we have studied the motion of an object
particle, moving in space. The object may be aspaeding
around a racetrack, an electron being propelledutiit a
linear accelerator, or a satellite in orbit.

6.0TMA
1.Define the followingPosition, Velocity, and Acceleration of a
satellite in orbit.
2.Give a brief introduction of motion in a circle.

3.The position vector of a patrticle is r(t) = tr+ sintj +cogk.
Find its velocity, speed, and acceleration at tings.

7.0 REFERENCES/FURTHER READING
1. Theoretical Mechanics by Murray, R. Spiegel.
2. Advanced Engineering Mathematics by KREYSZIC.

3. Generalized function. Mathematical Physics by WI&dinirou.
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1.0 INTRODUCTION

A Circular Motion with Constant Speed is a phenoana which
a particle moves with constant (uniform) speedde®y) in a circular
path

2.0 OBJECTIVES

At the end of this unit, you should be able to defand solve examples
on Circular Motion with Constant Speed. Here theeseration vector
always points toward the center of the cirdenripetal) acceleration
and / orthe acceleration vector always points toward theuonference
of the circle (centrifugal) acceleration.

3.0 MAIN CONTENT
3.1  Circular Motion with Constant Speed

If a particle moves with constant speed in a cacypath, then the
acceleration vector always points toward the ceotdhe circle; this is
calledcentripetal accelerationTo see why this is so, we observe that a
circular path lies in a single plane, and we mightwell consider the
circle to be in the xy-plane with radiusand center at the origin (Figure
14-40). Since the speed is constant, the ahgle
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v

w o Satellite
T in orhit

/ ( cos Wi, 28It wi)

/ " alt) = =)
‘ﬂ = wi L

\j(; B

A

Figure 14-40. (A) Circular motion with constant speed; centripeta
acceleration points toward the center. (B) Exan®yl&atellite in orbit
around the earth.

from the positive x — axis to the position vect) is changing at a
constant ratev (the Greek letteomegg; that is,0 = wit. It follows that
the position vector is

r(t) = r coswti + r sinwitj
Therefore,

V(t) = -rw sinwiti + rw coswtj
a(t) = -’ coswti + rw’ sin wij

Thus, a(t) = &’ r(t), and this shows that always points toward the
center of the circle; its magnitude [&t)| = rw’. Since the constant

speed is v #(t) = rw, we also have the important relationshfp=v
rla(t)| or

) = =
r

This holds for all circular motion with constanegal.

Example 2

(Satellite in orbit).Suppose that a satellite is in circular orbit 20es
above the earth. What is its speed and period8ufhs the radius of the
earth is 4,000 mi and the acceleration due to trawi32 ft/set.)

Solution

The radius of the circular path is r = 4,200 mg tcceleration vector
points toward the center of the earth and its madgiis 32ft/set To

find the speed, we use (14.43) making sure thes whimeasurement are
compatible.
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vZ =rfa(t) = (4,200 mi)(32 ft/s€3(5,280 ft/mi)

=7.1 x 16 ft%/seé

Taking square roots, we have

v = 2.7 x 10 ft/sec (about 18,409 mph)

The period is the time it takes for one revolution.

2m  _ 27 (4200mi )(5280ft / mi)
speed 2.7x10* ft kec
=5.161 seconds (about 86 minutes)

period =

3.2 Force and Motion

Suppose a particle has constant nras¥hen Newton’s second law of
motion states that the productrafand the acceleraticmof the particle
equals the total external force acting on the glarti

14.44 F = ma (force = mass x acceleration)

If the force is a given function of time, and tinéial velocity and initial
position are known, then it is possible to obtdie path of the particle
by integration.

Example 3

The force acting on a particle at timés F(t) = @i +j. If the particle
starts from the point (3,-1,2) with the velocitYyE 4, find parametric
equations of its path.

Solution

The path is obtained by finding the position vedtorction r¢). SinceF
=ma = nmr", we start this problem with the equation

F(t) = %F = L (6t +j)

=R

Integration of both sides yields
(14.45) 0 =r(t) = %(Stzi +j) + C

We are given that v(0) = 4k; thus, C = 4k and (2%l#ecomes

89



MTH 251 Mechanics

¢(t) = %(Stzi ) + 4K
Integrate once again;
2
rt) = = (G + L+ dtk +C
m 2
The starting point (3, -1, 2) yields r(0) #3j + Z =C. Therefore,

() = [%(tsi +§j]+4tk} +[3—j - %]

= (£+3)i + (Zt—z—le + (4t + 2k

m

It follows that parametric equations of the path ar

2 t2

x:t—+3 y=—-1 z=4+2 t20
m 2m

The method of Example 3 can be applied to objectmation near the
surface of the earth. |If air resistance is neglicsuch objects are
subject only to the force of gravity = mg, which is constant. In this
case, the action takes place in the plane detedhbge and the initial
velocity vectorv,. This is the situation for the motion of a projegt
that is, an object launched into the air and albwemove freely. The
plane of motion is taken to be the xy-plane andabeeleration due to
gravity is

g=39
which points straight down.

i

Y4
/

Example 4
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(Path of a projectile A projectile is launched from the origin with an
initial speed of y ft/sec at an angler from the horizontal (Figure 14-
41); that is, the initial velocity vector ig ¥ Vo cosai + Vg Sinaj. Show
that the path is part of a parabola.

Solution

The acceleration g in this case is known; it positaight down and its
magnitude is always 32 ft/sedherefore,

r'(t)=g=-32

Integration of both sides yields
(14.46) vt)=r'(t)=-32j +C

Since v(0) = y = C, we have

C =y cosai + Vp sinaj

and (14.46) becomes

r'(t) = vo cosai + (Vo sina - 32)j

We integrate again to obtain

r(t) = (Vo cosa) ti + [(Vo Sina)t - 167 + C

Since the projectile starts from the origin, we day0) =0 = C;
therefore,

r(t) = (Vo cosa) ti + [(Vo Sina)t - 167]
Parametric equations for the path are
X = (Vo cosa)t and y = (¢ sina)t - 162

To show that the path is a parabola, we solve itlsé équation fort,
eliminate the parameter, and obtain

16 2

= (1 -
y = (tana)x (Vocosa)zx

which is an equation of a parabola.

4.0 CONCLUSION
As in the summary.
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50 SUMARRY

In summary; Circular Motion with Constant Speéarce and
Motion of particles are discussed and related exasnwere given and
solved for the purpose of more understanding olthieobjectives.
6.0 TUTOR MARK ASSISGNMENT (TMA)

Find the velocity, speed, and acceleration of tbkowing position
vectors.

1. rit) =i—2j +t+ 1k
2. r) =—3i +tj +k
3. r(t) = costi + sinhtj + tk

The acceleration and initial position and velodtfya particle are given.
Find the position functions.

4. a(t) =ti - 6 +k; r(0) =0, v(0) =i
5. a(t) = 2i +tj - 3k; r(0) =i +j, v(0) =0
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