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Introduction

This course – Mathematical Modeling -  is  meant to teach us how to 
transfer scientific, physical and mechanical problems into mathematical 
formulation using parameters to represent events.  The examples given 
are drawn from contents you are already familiar with e.g. motion of a 
simple pendulum, ratio active mecary  is illustrated with the help of real 
world problems by beginning with a non trivial word problem.

Problems are described in terms of words and about the world around 
us.  The different approaches to modeling a particular problem shall be 
discussed.

The Course

The status of this course is 2 units.  It is packed into two Modules i.e. 
Module 1 and Module 2 respectively.  Module 1 is grouped into two 
units, while module 2 has only one unit.  Therefore the course can be 
summarized as having 2 modules and 3 units in all.

This Course Guide gives a brief summary of the contents of the course 
material: methodology of the model building, identification of a model, 
solution of problems, course-effect diagrams, equation types, algebraic, 
ordinary  differential,  partial  differential,  differential  integral  and 
functional equations are fully discussed, as adapted from IGNOU.

Course Objectives

Students should be able to:

4.0 Identify different types of modeling.
5.0 Convert  a  worked  problem  into  its  equivalent  mathematical 

formulation
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6.0 Explain the importance and define mathematical modeling.
7.0 Identify  many  of  the  formulae  already  familiar  with  as  the 

mathematical models of the real situation.

Working through the Course

This course involves that you would be required to spend lot of time to 
read.  The contents of this material is very dense and will require a lot of 
your  time.  I  would advise  that  you avail  yourself  the  opportunity  of 
attending the tutorial sessions where you would have the opportunity of 
exchanging ideas with your pears.

The Course Material

You will be provided with the following materials;
Course guide
Study units.

In addition, the course comes with a list of recommended text books, 
which though are not compulsory for you to acquire or indeed need, but 
are necessary as supplements to the course material.

Study Units

The following are the study units contained in this course.  The units are 
arranged into three identifiable but related modules.

Module 1

Unit 1 Methodology of the Model Building 

This unit takes you through the definition of mathematical modeling i.e 
what  and  why,  identification  and  formulation  of  a  model,  types  of 
modeling and limitations of a mathematical model.

Unit 2 Identification and Formulation of a Model

This unit deals with identifying the essentials of a problem and 
Mathematical formulation.

Module 2

Unit 1
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This  unit  contains  about  the  solution  of  problems,  course-effect 
diagrams,  equation  types  algebraic,  ordinary  differential,  partial 
differential, differential integral and functional equation.

Assessment

There are two components of assessment for this course.  The Tutor- 
Marked Assignment (TMA) and the end of course examination.

Tutor-Marked Assignment

The (TMA) is the continuous assessment component of your course.  It 
accounts for 30% of the total score.  You will be given four (4) TMAs to 
answer.  Three of these must be answered before you are allowed to sit 
for the end of course examination.  TMAs would be given to you by 
your facilitator and returned after you have done the assignment.

Final Examination and Grading

This examination concludes the assessment for the course.  It constitutes 
70% of the whole course.   You will  be informed of the time for the 
examination.  It may or may not coincide with the university semester 
examination.

Summary

In this course, we have been able to cover the following:

1.0 Mathematical model is a translation of a real life problem into a 
mathematical description.

2.0 The process of mathematical modeling involves three main steps 
–  for  formulation,  finding  solution  and  interpretation  and 
evaluation.

3.0 Caution: Lots of simplifications are made while translating a real 
life problem into mathematical language.  One should be aware 
of it at every step.

4.0 Mathematical  models  can  be  classified  into  linear/nonlinear, 
static/dynamics, discrete/continuous and deterministic/stochastic.
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MODULE 1

Unit 1 Methodology of the Model Building
Unit 2 Identification and Formulation of a Model

UNIT 1 METHODOLOGY OF THE MODEL BUILDING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Mathematical Modelling – What and Why? 
3.2 Types of Modelling
3.3 Limitations of a Mathematical Models

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

5.0 INTRODUCTION

In the introduction to this block, we indicated the need for mathematical 
modelling i.e., the use of mathematics to solve real life problems.  In 
this  unit,  we  shall  introduce  you  to  basic  concepts  of  mathematical 
modelling.  Our main aim is  to develop the process of mathematical 
modelling in which a physical system or a real life problem is translated 
into  a  mathematical  problem.   The  examples  given  are  taken  from 
contexts  you  are  already  familiar  with  e.g.,  motion  of  a  simple 
pendulum,  ratio  active  decay,  population  growth  etc.,  The  need  for 
modelling is illustrated with the help of real life problems by beginning 
with a non-trivial life problem – a problem described in terms of words, 
about the world around us.   The different approaches to modelling a 
particular problem are discussed.  Simple exercises based on real life 
problems are inserted at various places so that you can convert the life 
problems into abstract form by selecting a particular type of modelling. 
At  the  end  of  the  unit  we  have  given  an  appendix  where  we  have 
discussed  the  method  of  dimensional  analysis.   In  case  you  are  not 
familiar with the method, this would help you in understanding various 
examples  wherever  we  have  used  it  for  modelling  various  physical 
situations.
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6.0 OBJECTIVES

After reading this unit you should be able to:

• define mathematical modelling and explain its importance
• identify different types of modelling
• convert a life problem into its equivalent mathematical formulation
• identify many of the formulas you are already familiar with as the 

mathematical models of the situation.

7.0 MAIN CONTENT

7.1 Mathematical Modelling – What and Why?

Real life problems arise from different disciplines-sociology, chemistry, 
biology,  physics,  management,  finance  etc.   At  some  point  of  time, 
while  studying  mathematics,  you  must  have  attempted  solving  the 
following problems:

i) Finding the height of a tower
ii) Estimating the yield of wheat in Nigeria in a particular harvest 

year.
iii) Estimating the population of Nigeria in the year 2001 A.D.
iv) Find  the  effect  of  a  30% reduction in  income tax rate  on  the 

economy.

It is possible that you might have solved some of these problems with 
the help of mathematics and mathematical modelling without actually 
knowing  what  mathematical  modelling  is.   How  do  we  treat  the 
foregoing problems?

For  (i)  we  try  to  express  the  height  of  the  tower  in  terms  of  some 
distances and angles which can be measured from the ground.

For (ii)  we try  to  find the area under wheat  cultivation and find the 
average  yield  per  acre  by  cutting  and  weighing  crops  from  some 
representative fields.

For  (iii)  we  extrapolate  population  data  available  from  previous 
censuses and develop a model expressing the population as a function of 
time (years).  In simple words we can say that we examine the previous 
data and try to calculate what is likely to happen in the future.

For (iv) we examine the effects of similar cuts in the past or develop a 
mathematical  model  giving  relation  between  income-tax  cuts, 

2
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purchasing power in hands of individuals, its effects on productivity and 
inflation etc.

Examples of some more real life problems that may be amenable to a 
mathematical treatment and are of interest to people are as follows:

i) How do the eye muscles move the eyeball around in its socket?
ii) Forecast a monsoon with precision a month in advance
iii) How and why do different parts of the personality of a person 

compete for control over him/her?
iv) Suppose the tenth refrigerator produced in a factory took half as 

long as the first.  What is the progress rate of production.

The choice of approach to a real life problem depends on how the results 
are to be used.  If the aim is to get knowledge for knowledge’s sake, 
then  practical  applications  is  of  no  importance.   A  present  day 
engineer/industrialist  will  not  undertake any strenuous task without  a 
well  defined purpose.   Anyone  who likes  to  invest  on  the  industrial 
production of a product would like to make calculations either to avoid 
the  unrealistically  high  cost  of  real  scale  experiments  or  to  estimate 
some future situation.  It is in this context a mathematical model of a life 
problem gains enormous significance.

The concept of mathematical modelling is not a new one.  The Chinese, 
the  ancient  Egyptians,  Indians,  Babylonians  and  Greeks  indulged  in 
understanding  and  predicting  the  natural  phenomena  through  their 
knowledge of mathematics.  The architects, artisans and craftsmen based 
many of their works of art on geometric principles.

A  natural  question  which  could  arise  is  “What  is  mathematical 
modelling?” Mathematical modelling consists of simplifying real life 
problems  and  representing  them  as  mathematical  problems 
(mathematical  model),  solving  the  mathematical  problems  and 
interpreting these solutions in the language of the real  life.   In other 
words,  we  can  divide  the  modelling  process  into  three  main  steps: 
formulation, finding solution and interpretation and evaluation.

Formulation: Formulation can, in turn, be divided into three steps

i) Stating  the  Question: Understanding  natural  phenomena 
involves describing them.  An accurate description answers such 
questions  as:  How long?  How fast?  How loud?  etc.   But  the 
questions we start with should not be vague or too complicated. 
In  problem  drawn  from  the  real  life  this  should  be  done  by 
describing  the  context  of  the  problem  and  then  stating  the 
problem within this context.

3
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ii) Identifying  Relevant  Factors: Decide  which  quantities  and 
relationships that are important or unimportant for your question 
and also which can be neglected.  The unimportant quantities are 
those  that  have  very  little  or  no  effect  on  the  process.  For 
example, in studying the motion of a falling body, its colour is 
usually of little interest.

iii) Mathematical Description:  Each important quantity should be 
represented by a suitable mathematical entity e.g.  a variable,  a 
function,  a  geometric  figure  etc.  Each  relationship  should  be 
represented  by  an  equation,  inequality,  or  other  suitable 
mathematical assumption.

Finding  the Solution:  The mathematical  formulation rarely gives  us 
answer directly.   We usually have to do some operations.   This may 
involve a calculation, solving an equation, proving a theorem etc.

Fig. 1

Evaluation:   Since  a  model  is  a  simplified  representation  of  a  real 
problem,  by  its  very  nature,  has  built-in  assumptions  and 
approximations.  Obviously, the most important  question is to decide 
whether our model is a good one or not i.e., when the obtained results 
are  interpreted physically  whether  or  not  the  model  gives  reasonable 
answers.   If  a  model  is  not  accurate  enough,  we  try  to  identify  the 
sources  of  the  shortcomings.   It  may  happen  that  we  need  a  new 
formulation,  new  mathematical  manipulation  and  hence  a  new 
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evaluation.  Thus mathematical modelling can be a cycle of the three 
modelling shown in the flowchart of fig. 1.

Before going further into the details of modelling let us consider some 
of the mathematical models or representations you are already familiar 
with.

i) Any interval of time can be modeled by an algebraic variable t, 0 
< t< ∞ .   The numerical values of t  must be obtained from the 
reading s of suitable clocks-a starting time t1 and the current time 
t2 so that t = t2 – t1.

ii) A distance is modeled by a positive algebraic variable, say ‘d’ (0 
≤  d < ∞ ).   This distance ‘d’ between two points is assigned a 
numerical  value  based  on  the  measurement  using  a  rigid 
measuring rod (e.g., a metric rule).

iii) The modelling of  space is  more interesting and has led to the 
development of many different axioms and theorems in geometry 
which  in  turn  have  played  a  larger  role  in  the  application  of 
mathematics  (or  more  precisely  in  civil  engineering)  to  the 
construction of buildings, dams etc.  To start with, space can be 
thought of as a collection of points.   This  basic model can be 
supplemented by further ideas such as direction and distance.  We 
can further supplement these by different results e.g.

(a) There  is  a  unique  circle  passing  through  three  distinct  non-
collinear points

(b) The medians of a triangle are concurrent.

You are familiar with the representation of the points of space using 
coordinate  system  e.g.,  the  Cartesian  system  (x,  y,  z).   This 
representation introduces you automatically to the important features of 
space:  (i)  its  three  dimensionality,  (ii)  its  infiniteness  (if  x,  I,  z  are 
allowed to take all real values) (iii) its continuity in the three directions.

Various  axioms and geometrical  proofs  you are  familiar  with  follow 
from these basic models of distance and space.

Example 1:  How would you model speed and velocity?

Solution: From their definition, speed/velocity is the rate of change of 
distance travelled.  Since speed is a scalar, we model it as L/T, where L 
is  the  distance  travelled  and  T  is  the  time  required  to  travel  (Refer 
Appendix).   While  modelling  velocity,  the  direction  too  should  be 
specified and hence, the model for velocity is v = L/T where the vector 

5



MTH 308                                         INTRODUCTION TO MATHEMATICAL MODELLING

notation is used additionally.  Using Calculus, the model can be further 
improved by writing the elementary distance as ds = (dx, dy, dz), so that 

v = 
dt
ds

.

Note that the bold letters represent vectors.

SELF ASSESSMENT EXERCISE 1

As you know every branch of knowledge has two aspects, one of which 
is  theoretical  involving  mathematical,  statistical  and  computer-based 
methods and the other of which is empirical based on experiments and 
observations likewise, mathematical models are basically of two kinds.

i) Empirical models.
ii) Theoretical models.

Empirical: models  are  based on  experimentally  founded hypotheses. 
They lead to the construction of an underlying theoretical framework. 
In other words, they more often lead to ‘laws of nature’ which represent 
a fundamental characteristic of nature.  Such models are formulated by 
giants of mathematics – Newton, Einstein etc. Typical examples are: the 
theory of gravitation by Sir  Isaac Newton, Electromagnetic waves by 
Maxwell, theory of relativity by Einstein, planetary motion by Kepler, 
wave equation by Schrödinger etc.   Only those hypotheses that  have 
withstood large amounts of fact  that  the proposed model agrees well 
with a small amount of data does not suffice since the agreement could 
be just coincidental.  It should be tested against a large amount of data 
before accepting it as a law.  This aspect should be clear from the fact 
that  nearly  half  a  century  elapsed between the  works  of  Galileo and 
Newton.

Theoretical models  are  inspired  by  the  formulations  or  guidelines 
provided by the modelling schemes.  The objective is to apply the basic 
laws or ideas in small ways and to particular cases.  We shall discuss 
these formulations in greater detail in Unit 2.

To illustrate the foregoing discussion, we refer to the problem of the 
simple pendulum with which you are all very familiar.  This pendulum 
is simply a mass attached to one end of a string whose other end is fixed 
at a point.  The mass is constrained to move in the plane of the paper, 
and we have chosen the (x,  y) coordinates system so that  the origin 
coincides with the lowest point of the pendulum swing.  The symbol ‘m’ 
is  used to  denote  the  mass  of  the  pendulum and ‘  ’  symbolizes  the 
length of the pendulum.

6
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Our  objective  is  to  describe  the  motion  of  the  pendulum  using  a 
theoretical model.  The starting point of such a theoretical model will be 
an empirical law-Newton’s law –  The net force on a particle causes 
that particle to be accelerated in direct proportion to its mass.  Our 
theoretical model, based on Newton’s law, has to account for the force 
acting on the mass and relate them to the coordinates (x, y) and their 
time  rates  of  change.   Thus,  the  model  of  force  follows  from  the 
Newton’s law: F = ma where F is the force, m is the mass and a is the 
acceleration.  Did you notice the difference here? In the model obtained 
here acceleration followed from its definition whereas force was based 
on an empirical law-Newton’s in this case.

We shall not go into further details of the formulation at this stage.  We 
shall take this up in Unit 2.  but those of you who are familiar with the 
simple harmonic motion know that  the theoretical  model is  given by 
differential  equation.   Before  we  go  further  how  about  trying  these 
exercises?

SELF ASSESSMENT EXERCISE 2

Why is it necessary to formulate a Mathematical Model?
Understanding and solving real-life problem can be done in many ways.

We can do experiments either with scaled physical models i.e., we can 
do experiments in the laboratory on a smaller scale simulating all the 
conditions of the real problem in a corresponding scale, or with the real 
life  directly.   But  these  may  be  highly  risky  as  they  may  involve 
corrosive or explosive materials difficult to obtain in large quantities etc. 
a  mathematical  model  is  very  inexpensive  and  we  know  how  to 
represent a real problem in terms of appropriate equations and to solve 
them.  Moreover, in many situations like finding the mass of the earth or 
predicting the Nigerian population in the year 2500 A.D., mathematical 
modelling is the only recourse.

The mathematical approach has a number of advantages which can be 
illustrated by considering the following specific examples:

i) What  is  the  corrosive  effect  of  the  discharge  of  the  Kaduna 
Refinery on the mosaic of Arewa House?

For  safety  and cost  reasons  it  would be  undesirable  to  carry  out  the 
experiments  on  the  Arewa  House  itself  without  first  knowing  the 
outcome.  A scaled physical model could be used to obtain the desired 
information,  but  this  would  required  facilities  and  will  not  be  cost 
effective.  What do we do then? For this kind of study a mathematical 
approach is preferred.

7
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ii) What will be the growth in the number of tourists to a historic 
city like Kaduna over the next five years?

Information of this nature is frequently needed for planning purposes 
e.g., building more hotels or arranging tourists attractions etc.  There is 
really no scientific alternative to a mathematical treatment for problems 
of this kind.  There are more situations like these where mathematical 
treatment of the problem becomes necessary.  Can you think of any?

SELF ASSESSMENT EXERCISE 3

In  our  earlier  discussion,  we  broadly  classified  mathematical  models 
into  two  distinct  types  –  empirical  and  theoretical.   Models  can  be 
further classified as given in the following section.

7.2 Types of Modelling

According  to  the  nature  of  the  model  we  can  classify  mathematical 
models into the following four types:

i) Linear or Non-Linear

According  to  the  resulting  equations  which  may  be  algebraic, 
differential  or  difference,  being  linear  or  non-linear,  models  are 
classified as linear or non-linear.  For instance, consider the equation

dt
dN

 = λ± N ……………………………………………..     (1)

when we take negative sign on the right hand side of Eqn. (1) i.e., 
dt
dN

 = 

- λ N, then equation models the radio active decay.  Where we assume 
that  the  rate  of  decay  of  a  radio  active  atom is  proportional  to  the 
number N of radio active atoms present and λ > 0 is a decay constant. 
For  a  positive  sign  on  the  right  hand  side  Eqn.  (1)  represent  linear 
models  being  linear  differential  equation.   You  know  from  your 
knowledge of MTE-08 that it is very easy to handle this equation.  Its 
solution can be written as

N = N0e λ± t …………………………………………….. (2)

Where N0 in the case of decay denotes the original number of radio-
active  atoms  at  t  =  0.   This  model,  though  very  simple,  agrees 
excellently with experimental results.  In the case of population growth 
No would be the initial population.

8
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We are not as lucky always.  Most of the real life problems are not 
amenable  to  such  simple  mathematical  treatment.   Many a  time,  the 
resulting equation is non-linear or highly non-linear but still you are able 
to solve it.  Without going into the details here we give an example of 
the population growth model, better than the one given by Eqn. (1), as

0B0,λN),λN(B
dt

dN(t) >>−= (3)

where N is the size of the population and λ  and B are the constants of 
proportionality.

This is a non-linear model but it is still easy to find the solution as

N = λBtke1
B

−+
,

(4)

Where k > 0 is an arbitrary constant.  There are numerous experimental 
growth data, say, that of bacteria with which the model agrees extremely 
well with.  Why we call this model better would become clear to you 
when we discuss the biological models in details in Block 3

ii) Static or Dynamic

In static systems, time does not play any part, and hence the variables 
and  relationships  describing  the  system  are  time-independent.   In 
contrast, in dynamic systems, time plays a very important role with the 
variables and/or relationships describing the system changing with time. 
Consider for instance a fluid flowing through a rigid diverging tube (see 
fig. 2)

Fig. 2

Note:  the point in a fluid flow at which the flow is directed radially 
outwards symmetrically in all directions is a source.  The fluid enters the 
system at this point.  The point at which the fluid leaves the system is a 
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sink.   The  flow  is  directed  radially  in-wards  at  this  point  in  a 
symmetrical manner.
Let the velocity of the fluid be V1 at the point P1 at which the area of 
cross-section of the tube is A1.  Let V2 be the velocity at the point P2 at 
which  the  area  of  cross-section  of  the  tube  is  A2.   The  principle  of 
conservation of mass states that the rate of flow in at P1 is equal to the 
rate of flow out at P2 since the tube is rigid and no at P1 extra fluid is 
produced inside or nothing is taken out.  In other words, there are no 
sources or sinks inside or surrounding the tube.

Now the rate of mass entering the tube at P1 = area x velocity = A1V1 

rate of mass leaving the tube at P2 = A2V2.

Conservation law can be written therefore in the form of an equation.

 A1V1 = A2V2 (5)

(Rate of mass entering the tube at P1 = Rate of mass leaving the tube at 
P2).

Eqn. (5) is the conservation equation corresponding to the steady state 
i.e.,  all  variables are independent of time.   Such a system is  a  static 
system.

In  the  dynamic  formulations, the  equations  describing  the  model 
involve derivatives of the dependent variables with respect to time.

Most of the real life problems e.g., the population growth (Eqn. (3)), the 
bacterial  growth,  simple  harmonic  oscillator,  rocket  launch  are  time 
dependent and come under the category of dynamic systems.

iii) Discrete or Continuous

Mathematical  model  may  be  discrete  or  continuous  as  the  variables 
involved are discrete or continuous.  In a discrete model, the dependent 
variable  assumes  a  range  of  values  and  is  characterized  by  discrete 
values of the independent variable e.g.,  suppose a population of cells 
divides  synchronously,  with each member producing a  daughter  cell. 
Let us define the number of cells in each generation with a subscript, 
that is M1, M2,…….., Mn are respectively the number of cells in the first, 
second,  ….  Nth  generations.   The  number  of  generation,   the 
independent variable, is the discrete variable here.  A simple equation 
relating successive generations is the difference equation

Mn+1 = aMn, a>0 (6)

10



MTH 308                                         INTRODUCTION TO MATHEMATICAL MODELLING

If, initially, there are M0 cells, after n generations the population will be

Mn+1 = aMn = a(aMn-1) = a[aMn-2)] = …... = an+1 M0 (7)

If |a| > 1, Mn increases over successive generations
If |a| < 1, Mn decreases over successive generation
and if a = 1, Mn is constant.

Most of the discrete models result in difference equation similar to Eqn. 
(6).  We shall talk about these equations in more detail in Block 4.

Models  based  on  continuous  variables  are  continuous  models. The 
problem  of  radioactive  decay  is  best  described  by  treating  the  time 
element as being continuous with the variable of the system description 
i.e., number N of radio active atoms present.  (Refer Eqn. (1)).  Most of 
the continuous models result in differential equations ordinary or partial, 
the derivatives being instantaneous rates of change.  Continuous models 
appear  to  be  easier  to  handle  than  the  discrete  models  due  to  the 
development  of  calculus  and  differential  equations.   However, 
continuous  models  are  simpler  only  when  analytical  solutions  are 
available, otherwise we have to approximate a continuous model also by 
a discrete model so that these can be handled numerically.

Deterministic or Stochastic

A  system  is  said  to  be  deterministic  if  the  values  assumed  by  the 
variables  (for  a  static  system)  or  the  changes  to  the  variable  (for  a 
dynamic system) are predictable with certainly.  Consider for instance, 
the well known examples are the position and velocity of the bob of the 
pendulum.  Since the laws of classical dynamics describe the motion 
fairly accurately the changes in position and velocity can be predicted 
with a high degree of certainty.  Hence, in this case we can view the 
system as being deterministic.

If the values assumed by the variables or the changes to the variables are 
not predictable with certainty, then uncertainty  is a significant feature 
of the system.  Such systems are called either probabilistic or stochastic 
system.  For example, if one drops a rubber ball from a given height and 
measures the height of the bounce with sufficient accuracy it  will  be 
found that  if  the same process is  repeated many times,  the height of 
bounces are not the same every time.  Even if all the maintained, the 
results show lot of variability.  In such cases, the system must be viewed 
as a stochastic system.

Very often,  when you go to a big shop what strikes you is  the long 
queue in front of the cash desk.  The question “Why can’t this popular 
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shop have more than one cash counter?” comes to  you mind.   How 
many counters the shop needs will depend on the number of customers 
and their arrival rate, their departure rate, service time, peak periods etc. 
if the arrival rate is same as departure rate the queue length will remain 
the same.  If the departure rate is more than the arrival rate, the queue 
will  disappear after some time.   If  the departure rate is  less than the 
arrival rate, then the queue will grow indefinitely and it is this situation 
that requires more cash counters.  Here in this situation the arrival time, 
departure time and the service time of a customer are not deterministic. 
They follow certain probability distributions with mean rate of arrival, 
departure and service time.  Arrival and departure times satisfy Poisson 
distribution  whereas  service  time  obeys  exponential  distributions. 
Models based on fitting these probability distributions to the  arrival, 
arrive  every  five  minutes  (given  time  interval)  then  from  Poisson 

distribution e-z, ze-z, 
2

2z e-z etc. give the probability that 0, 1, 2 etc people 

will join the queue within that time.  We shall not go into the details of 
these models here.  We shall take up such models in Unit 14, when we 
discuss probabilistic models.

Every real system must be considered to be subject to randomness of 
one type or another, all of which are ignored in the formulation of a 
deterministic model.  Hence, deterministic models generally present few 
mathematical difficulties but can only be considered to describe system 
behaviour  in  some  average  sense. Stochastic  models  are  required 
wherever  it  is  necessary  to  explicitly  account  for  the  randomness  of 
underlying events.

Most of the discrete and stochastic models lead to difference/algebraic 
equations  whereas  linear/nonlinear,  static/dynamic  and  continuous 
models require the knowledge of algebraic/differential equations.  With 
the advent of fast computers, it should be possible (wherever analytic 
solutions are not available) to solve these equations numerically.  Apart 
from these, the success of mathematical modelling will also depend on 
the  skills  you  have  in  algebra,  calculus,  geometry,  trigonometry, 
transcendental  equations,  integral  equations,  integro-differential 
equations etc.

As discussed earlier, the type of model will more or less decide the type 
of mathematics required to deal with the resulting equations.

Consider the following example.

Example 2:  Which type of modelling will you use for the launching of 
a rocket/satellite for meteorological purposes?

12
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Solution:  Modelling  used  will  be  dynamic,  continuous  and 
deterministic.
It  is  dynamic  and  continuous  because  the  flight  velocity  will 
continuously  depend  on  time.   It  is  deterministic  because  equations 
describing the flight can be set up based on established laws and the 
path of the satellite/rocket can be predicted with certainty.

And now an exercise for you.

SELF ASSESSMENT EXERCISE 4

7.3 Limitations of a Mathematical Model

Mathematical modelling is a multi-stage activity requiring a variety of 
concepts and techniques.  Utmost caution is required in framing proper 
models for otherwise an absurd model will lead to an absurd solution.  If 
the  basic  formulation  is  wrong,  no  amount  of  sophistication  in  the 
treatment  of  resulting  equations  can  lead  to  a  right  answer.   It  is 
important to remember that the model is only a simplification of the real 
life problem and that the two are not the same.  In fact lack of distinction 
between  models  and  reality  has  often  slowed  down  the  progress  in 
modelling.   It  is  paradoxical  that  some  models  which  were  very 
successful  initially  in  understanding  the  problem,  have  become 
stumbling-blocks to progress.  The reason is we get used to a model and 
continue to use it even after it is discredited.  For instance, consider the 
solar system.  Till 16th century, it was believed that earth was the centre 
of the universe and all the other planets and sun moved around the earth. 
Because of this theory the model used to study the solar systems were 
circular paths with earth as the centre.  It was called a Geocentric model. 
This model was successful in explaining night, day, seasons etc.  But 
there were many observations, the model could not explain.

Later  in  16th century  Copernicus  proposed  another  theory  called 
Heliocentric  theory which describes  that  the  sun is  the  centre  of  the 
universe, and that all planets moved around the sun in elliptical paths. 
So in this  case the models  used is  an elliptical  path with sun as the 
centre.   This  model  successfully  explained  most  of  the  problems 
connected with solar system, but people simply refused to accept this 
model, initially.  One of the reason for this is that the geocentric model 
put the earth as the centre of the universe and people were unwilling to 
discard such a favourite notion.

The model is only as good as the assumptions made while constructing 
it  and  any  extrapolation  which  violates  the  assumptions  may  be 
dangerous.

13



MTH 308                                         INTRODUCTION TO MATHEMATICAL MODELLING

Consider for instance, Eqn. (1) viz.,

λN
dt
dN ±=

it does not give good results when used for modelling the population 
growth.   This  is  because,  the  solution  N(t)  =  N0e λ t of  the  equation 

λN
dt
dN = , gives N(t)  →  ∞  for t  →  ∞ .  This means population grows 

exponentially without any bound.  Whereas, solution N(t) = N0e- λ t of 

the  equations  λN
dt
dN −= gives  N(t)  →  0  as  t  → ∞ ,  implying  that 

population is ultimately driven to extinction.

Both  these  outcomes  are  extreme and are  not  found to  occur  in  the 
nature. In this sense, the model has severe limitations.  Thus, there is a 
need to modify this model.  Such a modified model is the logistic model 
which we shall discuss in detail in Unit 8 of Block 3

8.0 CONCLUSION

To end the unit we now give the summary of what we have covered in 
it.

9.0 SUMMARY

In this unit we have covered the following points.

1) Mathematical model is a translation of a real life word problem 
into a mathematical description.

2) Performing  experiments  to  understand  and  solve  real-life 
problems may be risky and expensive.  Also, at times, it may not 
be  feasible  at  all  to  perform  experiments.   Mathematical 
Modelling  is  the  only  recourse  in  such  situations.   It  is  very 
inexpensive  if  we  can  represent  a  real  problem  in  terms  of 
appropriate equations and solve them.

3) The  process  of  mathematical  modelling  involves  three  main 
steps-  for  formulation,  finding  solution  and  interpretation  and 
evaluation.

4) Mathematical  models  may  be  classified  into  linear/nonlinear, 
static/dynamics, discrete/continuous and deterministic/stochastic.

5) Mathematical  modelling  require  basic  knowledge  of  algebra, 
geometry, calculus, difference, differential and integral equations. 
Different types of Modelling require one or other of these at the 
formulation stage or at the time of finding solution.

14
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6) One has  to  be  cautions  about  mathematical  Modelling:  Lot  of 
simplifications are made while translating a real life problem into 
mathematical language.  One should be aware of it at every stage.

10.0 TUTOR-MARKED ASSIGNMENT

1. How would you model acceleration of a particle?

2. How would you model momentum and work?
(Hint: momentum = mass x velocity, work = force x distance)

3. What is the objective of modelling a simple pendulum? What are the 
important factors you need here before you apply the Newton’s laws 
of motion?

4. Give two situations where mathematical treatment of problem is 
necessary to get the required solution.

5. State  the  type  of  modelling  you  will  use  for  the  following 
problems.

Also give reasons in support of your answer.

i) Estimating the world population in the year 2005.
ii) Finding the concentration levels of pollution in the River Niger 

due to discharge of waste.
iii) Certain  diseases  like  Heamophilia  (Non-stop  bleeding  due  to 

inadequate clotting agents) are genetically transmitted only by the 
females.   Predicting  the  spread  of  this  disease  in  successive 
generations,  given  the  fraction of  males  and females  suffering 
from it at a particular point of time.

iv) Reducing the costs in large hospitals is to optimize the allocation 
of  resources  (beds,  doctors,  nurses)  to  types  of  activities 
(orthopedics,  intensive  care  units,  surgery  etc.).   helping  the 
hospital administrators reduce the cost of operating hospitals.

v) Annual plant produce seeds at the end of summer.  A fraction of 
these seeds survive the winter, and some of these germinate at the 
beginning  of  the  season  (say  May),  giving  rise  to  the  new 
generation of plants.  The process depends on the age of the seeds 
understanding this process.

The successful use of dynamic models is based on the understanding of 
three  closely  related  concepts  –  dimensionality,  units  and  scaling. 
Natural laws, when properly written in mathematical form are equally 
valid whatever system of scientific unit is used to express them.  To say 
that the universal laws should be independent of the system of units is 
another  way  of  saying  that  they  should  be  dimensionally  consistent. 
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One  should  not  equate  trains  with  match  boxes,  nor  can  one  add 
cabbages to kings.  If you ran 25 kilometres and earned 20 naira, would 
it be right to say that you ran as much as you earned? No, because the 
equation.

N. 20 = 20 kilometres (1)

does not make sense.  Distance is measured in kilometres and no amount 
of naira can ever equal a kilometer.  Technically speaking, we say that 
distance has the dimension of length i.e.,

[distance] = L (2)
while income has the dimension of value, or

[income] = V (3)
so, it is dimensionally inconsistent to write Eqn. (1).  However, if you 
were paid N1 for every kilometer you ran, it would be absolutely right to 
say that

N 20 = 20km x (N1 per k.m. (4)

This equation is dimensionally correct, because [naira per kilometer] = 
V/L.  Thus, the right hand side of Eqn. (4) has the dimensions of L x V/
L = V, agreeing with the left hand side.

Units are either  Fundamental (or primary) or  derived (or secondary). 
The nature of the fundamental units is somewhat arbitrary.  They are 
independent of one another.  If certain of the measurable properties of 
physical  quantities  are  chosen  as  fundamental,  then  the  units  of 
measurement of all the remaining quantities can be expressed in terms 
of these fundamental quantities.  Hence the latter units are called derived 
units.

We can express all the mechanical quantities in terms of units of mass 
m, length 1, and time t.  But when we consider problems involving heat, 
we  have  to  introduce  a  new  fundamental  unit  namely  the  absolute 
temperatureθ .   This  is  necessary  as  the  thermometric  scale  is 
independent  of  the  definitions  of  mechanical  units.   Modelling  in 
Sociology  or  Economics  needs  an  additional  dimension,  namely  the 
value of a product or income.  Thus mass m, length 1, time t, absolute 
temperature  θ and the value V are the five fundamental units.  All the 
physical quantities can be expressed in terms of these fundamental units. 
We shall  denote  the  dimensions  of  these  fundamental  units  of  mass, 
length,  time,  temperature  and  value  by  [M],  [L],  [T],  [θ ],  [V] 
respectively.
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Formulation of the dimensional formulas: Dimensional formulas for 
velocity,  acceleration,  force,  work-done,  pressure,  power  etc.  can  be 
obtained from their definitions directly.

Velocity = time rate of displacement
= distance/time
= [LT-1]

Acceleration = time rate of change of velocity = velocity/time
= [LT-2]

Force = mass x acceleration 
= [MLT-2]

Work = Force x displacement = [ML2T-2]
Pressure = force acting on unit area

= [ML-1T-2]
Power = time rate of doing work = work/time = [ML2T-3]

We  may  not  always  be  able  to  write  the  dimensional  formula  for  a 
quantity  from  its  definition.   Sometimes,  we  have  to  use  a  relation 
involving  the  quantity  under  consideration  and some other  quantities 
whose dimensional formulas are known.

For example, to fix up the dimensional formula for elastic modulus, we 
can use the Hook’s law, according to which

Tension = Elastic Modulus x lengthIntial
lengthInitiallengthfinal −

From this,  it  is  clear  that  elastic  modulus  has  the  same dimensional 
formula  as  the tension i.e.  force/unit  area.   Thus [elastic  modulus]  = 
[ML-1T-2]

Dimensions of a quantity: The exponent of the power of any particular 
quantity  in  the  dimensional  formula  of  a  quantity  is  called  the 
“dimension” of  that  quantity  in  that  fundamental  quantity.   For 
example, the acceleration has dimension zero in mass, dimension 1 in 
length and dimension -2 in time.

The importance of knowing the dimensions of each variable is that there 
are certain rules which specify how dimensional entities can be related 
to  each  other.   To  be  valid,  any  equation  which  states  a  general  or 
theoretical relationship between two or more variables must follow these 
rules for dimensional correctness.

i) Quantities added or subtracted must have the same dimensions.
ii) Quantity equal to each other must have the same dimensions.
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iii) Any quantity may be multiplied or divided by any other quantity 
without regard to dimensions.  However, the resulting product or 
quotient must have appropriate dimensions so that the above rules 
are not violated.

iv) The  dimensions  of  an  entity  are  entirely  independent  of  its 
magnitude.  Hence dx must have the same dimension as x, even 
though the differential dx is infinitesimally small.

For example, consider the equation for a radioactive decay where the 
quantity disappearing at a given time t is proportional to the quantity 
Q(t), present at that time, i.e.,

dt
dQ

 = kQ (5)

with solution
Q = Q0e-kt (6)

Where Q0 is the amount present at time t = 0.  k is a proportionality 
constant.  Does k have any dimensions?

Assuming that Q(t) is expressed as a mass, and letting [k] stand for the 
dimensions of k, the dimensional equation corresponding to Eqn. (5) is

[MT-1] = [k][M] (7)
which leads to

[k] = [T-1] (8)

meaning that k must have the dimension of reciprocal time, i.e., k must 
be a rate – a rate constant.

Magnitude of Units

We have not used any numerical magnitudes of the fundamental units in 
the above discussion related to dimensional analysis.  After a quantity’s 
dimensionality has been settled, the number that determines its actual 
value will still depend upon the units in which those basic dimensions 
are measured.  For example, velocity has the dimensions of length per 
units of time.  Thus, if length is measured in kilometer and time in hours 
then a car travelling at 50 km. P.h.,  will travel at nearly 14 metre per 
second.

Two frequent choices for the basic dimensions of mass, length and time 
are  kilogramme,  metre  and  second  (Systeme  Internationale,  SI)  and 
gram, centimeter and second (CGS system).

In  the  SI  system,  the  units  of  length,  ass  and  time  are 
primary/fundamental.  But the unit of force is a derived one: it is the 

18



MTH 308                                         INTRODUCTION TO MATHEMATICAL MODELLING

Newton (N) which is defined as the force which when acting on a mass 
of  1  kg.  Produces  an  acceleration  of  1m/s2 i.e.,  IN  =  1  kg.m/s2. 
Similarly, the derived unit of work is the Joule (J) which is defined as 
the work done by a force of 1 N in moving a distance of 1m in the 
direction of the force.

i.e., 1J = 1Nm = 1kg m2/s2 (9)

The derived unit of power is the watt (W) which is defined as the rate of 
doing work = 1J/s.

7.0 REFERENCES/FURTHER READINGS

 Mathematical Modelling from School of Sciences, IGNOU.
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UNIT 2 IDENTIFYING  AND  FORMULATING  A 
MODEL
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2.0 Objectives
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1.0 INTRODUCTION

In unit 1, we introduced you to the concept of mathematical modelling. 
We  discussed  the  necessity  and  advantages  of  studying  a  real  life 
problem through  mathematical  modelling.   Here  we  have  taken four 
problems.  From mechanics, biology and economics and tried to relate 
them to the new concept of  mathematical  modelling.   You might  be 
familiar with some of these problems even at your school level.

In this unit, we shall proceed with the next step in modelling- i.e., given 
a real life problem, how do you convert it to model abstraction leading 
to  a  mathematical  equation?  We  shall  herein  discuss,  through  some 
simple examples, how to

i) identify the problem with all its complexities
ii) identify the essential characteristics of the problems which have 

to be incorporated into the model
iii) simplify the model by neglecting features which are of secondary 

or lesser importance
iv) write  the basic equations based on the basic laws of nature or 

intuitive  logic,  which  retain  the  essential  characteristics  of  the 
model.

As in unit 1, we shall deal with examples you are already familiar with 
so that your attention is focused more on the modelling aspect.
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2.0 OBJECTIVES

After reading this unit you should be able to:

• explain a real life problem and register all the complexities involved 
in the problem

• distinguish the essential characteristics of the problem from the non-
essential ones

• look for mathematical equations based on laws of nature or intuitive 
logic for the problem.

3.0 MAIN CONTENT

3.1 Identifying the Essentials of a Problem

Primarily,  mathematical  modelling  utilizes  analogy  to  help  you 
understand the behaviour of complex systems.  For example, the phrase 
“cool as cucumber” introduces a conceptual model of ‘cool’ into our 
minds.  Similarly, we often make use of familiar things or situations to 
understand or explain new or unfamiliar situations.

The word ROSE and the picture pf the rose flower are both models of 
smelling in reality.  They may not be precise representations of the rose 
flower

          
Fig. 1

but they do communicate and bring the idea of the flower to your mind 
(see fig.1).  Children model adulthood by playing mothers and fathers; 
medical  students  practise  injections  using  oranges.   Each  of  these 
activities  involves  some  idealization  of  reality.   No  medical  student 
confuses an orange with a human organ.  He is aware that his training 
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under that simulated condition (i.e. a model) is to prepare him for the 
understanding of the real situation.  Thus, modelling is an activity which 
is fundamental to the scientific method.

 

Fig. 2

Models  rarely  replicate  a  system.   Also,  they  are  not  a  unique 
representation  and  so  can  mean  different  things  to  different  people. 
Consider how a business man and biologist view a mango tree. (see fig. 
2)

Their conceptual views of the same object are rather different since they 
are both heavily influenced by their own environment, background and 
objectives.   The  same  is  true  when  we  come  to  the  mathematical 
modelling of any system or process.

Thus, there is no hard and fast approach to developing a model.  But, 
you need to broadly follow the following steps in the beginning:

i) Establish a Main Purpose for the model.  Real situations are 
quite  complex.   If  one wishes  to  develop a model  which will 
explain  and  account  for  all  aspects  of  a  phenomenon,  such  a 
model will most likely be difficult to develop, very complex and 
unmanageable.  On the other hand, a model with limited purpose 
will  be  easy  to  handle  and  still  many  important  conclusions 
related  to  the  main  purpose  can  be  drawn.   Thus,  before 
developing a model we must be clear about the purpose of doing 
it.
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For  example,  in  the  case  of  a  problem concerned with simple 
pendulum, what is our main purpose? It is to find the period of 
oscillation of the pendulum.

ii) Observe the Real Life Situation and understand what is going 
on.  These observations may be direct, as with using one of our 
senses or indirect, in which case we may use elaborate scientific 
equipment.   This  step  allows  you  to  gather  data  and  inform 
yourself  well  about  the  problem.   You  then  analyze  the 
observations  and know facts  about the system or phenomenon 
being  modelled  and  identify  possible  elements  (observations, 
measurements, ideas) related to the purpose.  This step is crucial 
to the developments of a realistic model since you will  get an 
idea of what to expect.   For example,  before we venture on a 
mathematical model to describe the movement of the pendulum, 
we  conduct  some simple  experiments  to  see  how a  pendulum 
behaves.  We take two wooden balls of two different masses and 
conduct the experiment with each of them attached in turn to two 
strings of different lengths.  We measure the period of oscillation. 
We make the observation that there is no appreciable variation of 
the period with mass, but there is a clear dependence result which 
will have to be used to  validate any mathematical model for a 
simple pendulum.

iii) Sift  the  Essentials  from the  Non-Essentials of  the  problem. 
The degree of detail needed to describe a system appropriately 
depends on various factors.  If all the details are included in the 
description,  it  can become unmanageable and hence of limited 
use.   On the  other  hand,  if  significant  details  are  omitted,  the 
description  is  incomplete  and,  once  again,  of  limited  use  in 
carrying out the study.  We need to find a sensible compromise. 
We explain this to you through the following example:

To study the rate of growth of world population, a realistic study 
is one which differentiates the population by (i) age, (ii) gender 
and  (iii)  geographic  location.   This  study  will  be  definitely 
superior but more complex.  The model developed would involve 
more dependent variables and hence more number of differential 
equations to be solved as compared to the model where all the 
different groups are lumped together.

The  Search  for  Essentials  of  the  Problem  is  related  to  the  main 
purpose of the model.  We may be dealing with the same system but the 
objective of our study related to the system may be different in each 
study.   For  example,  consider  modelling  the  blood  flow  in  the 
circulatory system.  The blood cells are of a diameter approximately 10-6 
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cms and hence their individual motion or rotation may not contribute 
much  to  the  fluid  mechanics  of  blood  flows  in  large  arteries  whose 
diameter range from 1 mm to 1 cm.  But in small capillaries of diameter 
1 micro metre, the cell sizes are comparable to the area of cross-section 
of the important.  In other words, a mathematical model trying to depict 
the flow of blood in large arteries can assume blood to be homogeneous 
whereas a model of blood in capillaries has to emphasize the individual 
cell motion.  We shall discuss the modelling of blood flows in detail in 
Block 3

Let us see if you can search for the essentials and two non-essentials 
each of the following problems.

Let  us  now see  that  given  a  real  life  problem how to  relate  it  to  a 
mathematical formulation, keeping our objectives in mind.

3.2 Mathematical Formulation

In unit 1, we discussed different types of modelling.  In this section, we 
concentrate  on  one  of  the  most  important  aspects  of  mathematical 
modelling  viz,  relating  the  real  life  problem  to  a  suitable  abstract 
mathematical formulation.  In order to carry out this step, we need a 
good understanding of the various mathematical formulations available. 
We  also  need  to  develop  the  skill  to  select  the  most  appropriate 
formulation.   This  is very important,  for often,  one can choose more 
than  one  type  of  formulation.   What  is  most  appropriate  can  be 
identified from how much detail we want to find out about the problem 
or  the  facilities  we  have  to  study  a  problem.   If  we  have  a  limited 
purpose, say, we want to have a rough idea about the problem, then, a 
simple model will suffice.  i.e., the limitations and approximations are 
acceptable for our purpose.  If the problem has to be studied in depth, an 
appropriate model would be the one with finer details.  Let us illustrate 
this point through the following examples.

Example1: Let  us  consider  the  problem  of  finding  the  period  of 
oscillation of a simple pendulum.  We shall consider here two formulas:

Formulation  1: First  we  make  a  preliminary  model  based  on 
dimensional  analysis  (see  Appendix  of  unit  1  for  the  details  about 
dimensional  analysis)  to  understand  the  oscillation  of  a  simple 
pendulum.  Let us see if we can make something of the dependence of 
the period on the length of the pendulum.  We need to consider the 
variables,  the  period  T0,  the  string  length   ,  and  the  gravitational 
constant g, since it is obviously gravity that makes the pendulum swing.
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Remark: g, is in fact, the gravitational acceleration of the surface of the 
earth.   The  value  of  g  depends  upon  the  precise  location  of  its 
measurement, but it is nearly constant.  Dimension of g = [LT-2] and its 
value in the SI unit is 9.8m/s2.

We start with

T0 = T0( , g) (1)

i.e., T0 is a function of   and g.

It is clear that if we leave out some important quantities, we shall be in 
error.   Similarly,  if  we have included some quantities,  which are,  in 
reality,  irrelevant to the problem we will  not only make the problem 
unnecessarily complicated but also will arrive at an unreal answer.  Very 
clear understanding of the problem can only help us in making a correct 
choice of these quantities.

Since T0 has the dimension of time, the right hand side should also have 
the same dimension.   Since the length dimension appears in a linear 
fashion in both   and g, it follows that

T0 = T0( /g) (2)

You may wonder why is it  /g and not   + g or  2 + g2 etc. in Eqn. (2)? 

This is because [T0) = time and [g] = 2T
L

. Now if we want that length 

should not appear on right hand side also, then   and g should appear as 

the ratio g


.

Also since [T0] = time, and [ g


]  = (time)2, it follows that

T0(g/l )1/2 = A, (3)

Where A is a constant to be determined.

We use the experimental values to determine this constant A. In Table-I 
we have given the results obtained from experiments with two different 
masses,  230  gms and 385  gms  respectively,  attached in  turn  to  two 
strings of lengths equal to 275 cm and 225 cm.  The results are for small 
oscillations  of  the  four  pendulums  obtained  by  permuting  the  two 
masses with the two strings.

Table – 1
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Period obtained experimentally for four different pendulums

Mass (gms) Length (cms) Time (secs)
385 275 3.371
230 275

225
3.352
3.042

For l  = 275 cm, one measured valued of the period is 3.371 sc. With g 
= 9.8m/sec2 or 980 cm/sec2,  we can use data in Eqn.  (3) to find the 
constant A.

i.e., A = (3.371) 980
275

 = 6.35 (4)

which is approximately 2 π .  If we assume, from this similarly that the 
period of the pendulum is in fact given by

T0 = 2 π / gl (5)

Then  we  can  calculate  periods  for  strings  of  lengths  used  in  the 
experiment.   Thus,  we have in a way established a formula.   Let  us 

calculate the period using this formula (with π  = 
22
7

).  The values are 

given in Table – 2.

Table – 2

Periods  obtained  theoretically  using  Eqn.  (5)  for  two  different 
pendulums.

l 225 cm 275 cm
T 3.04 sec 3.36 sec

The agreement with the measured values given in Table 1 is quite good. 
In fact the difference between measured and calculated value (for both 
the masses)_ is less than 1.5%.  thus, dimensional analysis gives us a 
fairly  good insight  into  the  pendulum behaviour.   However,  there  is 
much more to know about the pendulum, so we need to develop some 
more detailed analytical model.  Let us now try to do that in Formulation 
2.

Formulation 2:  Formulation 1 was helpful  in finding the period of 
oscillation of a simple pendulum.  But, what if we want to know more 
about the pendulum, for instance, the tension in its string? We find that 
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Formulation 1 is not enough.  Hence,  we need to formulate a model 
which will improve our understanding of the problem beyond Eqn. (5) 

In the present formulation, we take recourse to the Newton’s laws of 
motion.  Here since we are concentrating on the tension in the string we 
shall assume that the string has so little mass of its own that it can be 
neglected in the model.  We shall also assume that the air offers little 
resistance.  Then the only forces acting on the mass are the tension T in 
the string and the gravitational force mg.  the tension in the string must 
act  along  the  line  of  the  string,  while  the  gravitational  force  acts 
vertically downward along the y-axis where we have assumed that the y-
axis is roughly perpendicular to the earth’s surface (see Fig. 3).

Fig. 3

Newton’s second law tells us that the net force on a particle cause that 
particle to be accelerated in direct proportion to its mass.  Here the 
forces acting on the particle are its weight mg and the tension.  T. if f 
denotes the total force acting on the system then we would write

2 2

x y2 2

d x d yF m , F m
dt dy

∑ = ∑ = (6)

where xF∑ , yF∑  are net forces acting on the mass in directions parallel 

to the x and y axes and the terms 
2

2

d x
dt

 and 
2

2

d y
dt

 are the components of 

the acceleration of the mass parallel to the axes.

What is the component of T acting in the x-direction? It is – T sin  θ . 
(Note that the negative sign is because T acts upwards and the resolved 
components falls in the negative x-direction).

What is the components of T acting in the y-direction? It is T cos  θ  - 
mg.
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It then follows that
xF∑  = - T sin θ (7)
yF∑  = T cos θ  - mg (8)

also, note that

x = l  sin θ  and y = l (1 - cos θ ). (9)
Combining Eqns. (6), (7) and (8) we can obtain the following pair of 
differential equations:

m
2

2

d x
dt

 = - T sin θ (10)

m
2

2

d y
dt

 = T cos θ  - mg (11)

Eqns.  (10)  and  (11)  can  be  solved  to  obtain  the  values  of  x,  y  by 
eliminating T.  we shall not into the details of solving these equations 
here.  We shall solve them in unit 3 once solved, this formulation helps 
us not only to find the period of oscillation and the tension in the string 
but also the position vector of the bob at different time ‘t ' .

If  you  now  compare  the  two  formulations,  you  will  find  that  the 
Formulation 1 based on dimensional analysis is quick and gives you a 
first guess about the nature of the solution or the main purpose of your 
study.   But  Formulation  2,  though  more  length,  gives  you  a  deeper 
insight into the problem.  Thus, the choice of a formulation depends on 
how far you want to go, how much details you want to gather in hand.

Given two or more different adequate models, the question that arises is 
the following.  Is one of them better than the rest in some sense?  There 
can be two factors that can be used to rank different models to indicate 
the best.

i) A  model  M1 is  preferred  to  a  model  M2 if  M1 has  fewer 
parameters.  Thus models can be ranked in terms of the number 
of parameters in the model.   Estimation of the parameters and 
design of experiments are not only costly but also very tedious 
and hence to be avoided.

ii) If a model response is highly sensitive to the parameters of the 
model, then the model is of limited use for prediction purposes, 
as  small  errors  in  parameters  will  result  in  large  errors  in  the 
model response.  Thus, the models can be ranked in terms of the 
sensitivity of the response to changes in parameter values.
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Before we take up another example you may like to try the following 
exercises.

SELF ASSESSMENT EXERCISE 1

Note Ecology is the study of the interrelation between living organism 
and their environment.

We are getting more aware of our environment, the pollution caused by 
the  industries,  the  need  to  conserve  our  forest  and  to  maintain  an 
ecological balance.  In this context, understanding the role played by the 
plants and trees around us on the earth as well as those in the lakes, 
rivers or the seas becomes relevant.

We now take up in Example 2 the modelling of a problem related to 
ecology.

We  discuss  simple  formulations  to  understand  the  distribution  of 
phytoplanktons.  Phytoplanktons, as you may know, are microscopic 
plants, which, under certain conditions exhibit directed motion (metres 
per  day)  along gradients  of  light,  density  or  chemical  concentration. 
They are the basis of marine food cycle supporting life from shrimps 
and cod to blue whales and lastly  man.   They also contribute to the 
global changes in atmospheric carbon. Thus, understanding the plankton 
population is of major importance in predicting future fish harvests and 
in assessing the possible consequences of global warming.

Example  2:  Observations  about  the  phytoplanktons  reveal  that  their 
populations  spatial  pattern  is  often  patchy  i.e.,  the  organism  is 
distributed  in  a  patchy  manner  in  space.   The  mechanism  which 
maintains this patchiness is still not very well understood.  Though there 
may be various reasons (wind, velocity of water, temperature, salinity, 
nutrient distribution, consumption by the fishes etc.), two mechanisms 
seem to play important roles: (i) Diffusion of the phytoplanktons due to 
turbulence  in  surrounding  media  and  (ii)  random  movement  of  the 
organisms.   In  fact  aggregates  can  give  rise  to  a  more  uniform 
distribution.

Note: Turbulence is a type of random motion consisting of many whirls, 
moving in an irregular fashion. 
Diffusion is  a  phenomenon by  which  the  particle  group  as  a  whole 
spreads according to the irregular motion of each particle.

Let us now see how we can formulate this ecological problem:

Formulation 1:  Consider a water mass within which phytoplankton 
grows and diffusion takes lace.  We may assume that this water mass is 
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surrounded by water in which plankton cannot survive.  (see Fig. 4). 
Since a part of the population is continuously lost to the surroundings 
owing  to  diffusion,  the  plankton  patch  would  cease  to  exist  unless 
reproduction within it counterbalances this loss.

Now, the  loss of organisms due to diffusion takes  place  through the 
boundary of the patch; hence its rate is proportional to the surface area 
of the patch.  On the other hand, reproduction takes place locally within 
the patch, and hence its state is proportional to its volume.

We know that for a sphere of radius r 

The surface area of a sphere =  4 π r2

(12)

The volume inside a sphere  = 
4
3

π r3.

Note:

                                        

Fig. 4: Region of water mass

Therefore, ration of surface area to the volume of a sphere is 
1
r

∝ .  This 

means that a larger sphere carries less surface area relative to its volume 
than a smaller sphere.  As the volume of water mass decreases, (i.e. r 
becomes smaller and smaller),  diffusion plays an important  role,  and 
eventually a limit is reached beyond which reproduction can no longer 
compensate  for  the  loss  due  to  diffusion.  We  want  to  estimate  the 
critical increase of plankton population.

Let D be the diffusivity,  α  be the rate of growth and L the size of the 
water mass.  It is obvious that the critical size Lc can be determined by 
the two parameters Dd and α

i.e. Lc = f(D, α ) (13)

dimensionally
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D = [L2 T-1] (14)

(You can  assume this  now but  will  be  obvious  to  you when we do 
formulation 2).

Also you know, α  = [T-1], Lc = [L]  (15)

Dimensional analysis leads us to

Lc = A 
1
2D 

 α 
(16)

Where A is  a non-dimensional constant.

Thus, we have arrived at a formula which gives us the critical size in 
terms of the diffusivity as well as the rate of growth.  The constant A is 
not known.  But, you know by now, as we discussed in the case of the 
simple pendulum (Unit 1), the dimensional analysis leads to formulas 
with a constant left undetermined.  The constant A has to be determined 
by making observations or conducting experiments.  The data collected 
should  be  estimated.   (Recall  how we  estimated  the  constant  in  the 
expression for period of oscillation of the pendulum as 2 π ).  You will 
see in Unit 3, when we solve the equations obtained in Formulation -2 
this constant A actually turns out to be π .

Formulation 2: In  this  formulation,  we go for  a  little  more detailed 
method  for  estimating  Lc.   This  method  is  based  on  the  equations 
describing the diffusion of a substance in a medium in which it diffuses 
is given by

C C CD D
t x x y z

∂ ∂ ∂ ∂ ∂   = +   ∂ ∂ ∂ ∂ ∂   
(17)

where D is the diffusivity and C is the concentration of the substance, 
(x,  y; z) corresponds to the Cartesian coordinates and ‘t’ is the time. 
The derivation of this equation based on Fick’s law will  be given in 
Blocks 2 and 3.  For the present discussion, it is enough for you to know 
that this equation is based on the principle of conservation of mass.  The 
left hand of the equation represents the rate of change of concentration 
while the right hand side represents the change of flux due to diffusion. 
Let us now check the dimension in Eqn. (17)
Note: Flux is the amount of transport of matter in the (x, y, z) direction 
across a unit normal area in a unit time.
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The L.H.S. is dimension
[C]
T

.

R.H.S.  is  of  dimension  [D]
2

2

[C] L[D]
L T

⇒ = ,  fact  we  assumed in  Eqn 

(14).

Now, let us formulate the model for dinging the critical length Lc using 
the diffusion equation.   We shall  construct  a  simple one-dimensional 
model.   Let  the  phytoplankton  be  limited  to  grow  only  in  a  one-
dimensional region say along the x-axis, and let the region of bloom be 
limited to (O, L) as shown in fig. 5.

Fig. 5

The diffusion equation of the organism concentration C, is then given by

2

2

C CD C
t x

∂ ∂= + α
∂ ∂

(18)

This  is  the  one dimensional  diffusion  equation  (refer  Eqn.  (17)  with 
constant  diffusivity  D.   The  last  term  Cα is  added  to  the  equation 
because,  there  is  an  additional  production  in  the  region,  α being  the 
growth rate.

Our aim is to find the solution of Eqn. (18) that vanishes at x = 0 and x = 
L and corresponds to a given initial concentration C(x, 0) = f(x).  We 
shall do so in Unit 3.  But, what is interesting to note here is that this 
formulation is more detailed than formulation 1 in the sense that we can 
find  not  only  the  critical  length  Lc of  the  water  mass  but  also  the 
distribution of the concentration of the phytoplanktons at different times 
and different points x in the region 0 ≤  x ≤ L.  Thus, this formulation 
allows us to get more details about the population.

Let us now imagine that the interchange between internal growth and 
loss at the boundary has been going on for a long time and now a steady 
state has reached i.e.,  C does not explicitly  depend on t.   What will 
happen then? Can you formulate the problem in that situation? You may 
try to do that.

There is a lot of scope for improving Formulation 2.  for example,
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i) You can relax the assumption of a one dimensional model and 
consider a three dimensional model.  But, you must realize that 
this  will  make the equations more difficult  to solve.  Still,  for 
getting better insight into the problems more difficult to solve. 
Still, for getting better insight into the problem, you should not 
mind the complications on the mathematical analysis.   Even if 
you cannot solve equations analytically using existing techniques, 
you may try to solve them numerically.

ii) We have, so far, not discussed the movement of the water mass. 
The patchiness of the phytoplankton growth is very often wind 
driven and hence the velocity of the movement of the water mass 
can also be included in refining the model.  This refinement will 
also call for more mathematical difficulties since you will have 
more equations to solve.  You will  have to solve for the three 
velocity components of the water mass and use them to solve the 
modified diffusion equations which include terms corresponding 
to the contribution of the velocity of the water mass.  So, in this 
formulation,  you may have to solve four differential  equations 
(three  for  the  three  velocity  components  plus  one  diffusion 
equation).

Thus,  more  the  accuracy  you  require  the  more  the  model  closely 
represents  the  real  problem,  the  formulation  results  in  solving  more 
complicated equations.  But that does not mean that a model is a good 
one only if it results in solving complicated equations. Formulations (1) 
and (2), are simplified models, they preserve the essential features of the 
problem and give the critical size by the balance of diffusion rate and 
growth rate.  Thus, what is important is preserving the essential features 
of  the  problem.  We  shall  now  illustrate  through  an  example,  how 
simplifying a model without the inclusion of the essentials can lead to 
wrong results.

Let us think about modelling the following problem:

Example 3: A raindrop, beginning at rest, falls from a cloud 705.6 m 
above the ground.  How long does it take to reach the ground?

Formulation 1: We first model the raindrop as a freely falling body. 
For freely falling bodies you know that the distance x travelled by a 
particle in a time duration‘t’ is given by,

x = ut + 
2gt

2
(19)

Where u is the initial velocity and g = 980 cm/sec2.
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Since u = 0 in our present problem, we get,
70560 = 490t2

therefore, t2 = 144 or, t = 12 seconds (20)

However, if we actually perform the experiment, we would discover two 
things which contradict the model.

i) the weight of the raindrop makes an important difference in the 
time it takes to fall

ii) the  fastest  time (for  the  largest  raindrop) is  about 40 seconds. 
Nearly three and a half times more than  the one predicted by our 
simple model based on the theory of falling bodies.

Where is the snag? Before applying any theorem or a rule it is important 
to remember the conditions or restrictions on which the theorem or the 
formula rests.  In the case of the foregoing analysis, we have tried to use 
a formula which is only valid if the object is subjected only to the force 
of gravity. On the contrary, in the case of the raindrops,. The force of 
gravity  is  opposed  by  a  significant  amount  of  air  drag  –  a  blessing 
indeed for otherwise we might be killed by falling raindrops.  You can 
test it with a golf ball.  Air drag is present because of the greater density 
of the golf ball and the shorter distance of fall.

Since our finding that the raindrop takes 12 seconds does not tally with 
the experimentally observed findings, there arises a need to improve the 
model by understanding the essentials of the problem – air drag in this 
case – and including it in the formulation.  We now consider another 
formulation of this problem.

Formulation 2: Stoke’s law states that for spherical droplets falling in 
motionless air and having a diameter D < 0.762 cm, the acceleration due 
to gravity is opposed by an amount proportional to the velocity of the 

raindrop, specifically by an amount equal to (0.329 x 
5

2

10
D

−

) 
dx
dt

.  Thus 

we can write the equation for the rain drop as,

2

2

d x
dt

 = 980 - 
5

2

0.329x10 dx
D dt

−

(21)

This  is  a  simple  ordinary  differential  equation  which  can  be  easily 
solved but we shall not do that here.  What you must notice here is the 
improvement  we have introduced into the  Formulation of  the  model. 
Incidentally, this formulation goes beyond the objectives of Formulation 
1.  We can predict from this model the existence of a terminal velocity – 

34



MTH 308                                         INTRODUCTION TO MATHEMATICAL MODELLING

i.e., the velocity which is an upper round to how fast the body can go at 
any time during its fall.  

To make this statement clearer we explain as follows:

When the acceleration  
2

2

d x
dt

is  zero,  we get  the value of  
dx
dt

,  i.e.,  the 

velocity as

dx
dt

= 
5 2980x10 xD

0.329
(22)

If the droplet ever achieves this velocity, then the acceleration rate of 
change of velocity is zero.  In such a situation the body continues with 
the same velocity and we are able to predict the terminal velocity.

Vterm = 
5 2980x10 xD

0.329
 cm/sec. (23)

Actually, although we shall not prove it,  in practice, a droplet falling 
according to Eqn. (19) never quite reaches its terminal velocity but gets 
closer  and  closer,  to  it.   Unless  its  fall  is  interrupted  by  hitting  the 
ground,  the  velocity  eventually  becomes  so  close  to  vterm that,  for 
practical purposes we consider it equal to vterm.

Furthermore, clouds are sufficiently high and a water droplet gets close 
to its terminal velocity quickly enough that it is not a bad assumption to 
suppose that the droplet travels at its terminal velocity for its whole trip.

How about trying this exercise.

SELF ASSESSMENT EXERCISE 2

Formulation  2  was  an  improvement  over  formulation  1  in  that  it 
introduced a very essential item – the air drag – into the model.  But this 
formulation too has its limitations.  It was based on Stoke’s law valid for 
very small droplets.  
We therefore consider yet another formulation.

Formulation 3: In formulation 3 we shall use the fact that for spherical 
raindrops  falling  in  still  air  and  having  diameter  D  >  0.12  cm,  the 
acceleration due to gravity is opposed by an amount proportional to the 

square  of  its  velocity,  specifically  an  amount  equal  to  (
D

0.00046
) 

( ) 2

dt
dx

. Thus, the equation corresponding to this formulation is given 

by:
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2

2

dt
xd  = 980 - 

2

dt
dx

D
0.000460






 (24)

This model too can give the terminal velocity which can be obtained as 

before by setting 2

2

dt
xd  = 0 and solving for 

dt
dx

.  The result is

Vterm = .cm/sec
0.000460

D980 (25)

So far, models considered in Examples 1-3 were all continuous models 
leading to differential equations but you know from unit 1, this is not the 
case always.  Models may be discrete as well.  To illustrate this we shall 
now take  up  an  example  from economics,  in  particular  from market 
equilibrium  analysis  which  leads  to  a  discrete  model  resulting  in 
difference equations.

Before going into the formulation of the model we shall familiarize you 
with the terminologies like demand, supply, equilibrium price, stability 
of equilibrium etc, associated with the market behaviour.  We shall talk 
about them in detail in Unit 11 of Block 4 when we discuss modelling in 
economics.

Economists often divide goods into two categories:  commodities and 
manufactured items.  Commodities  are  the  primary  products  of  the 
earth, such as oil, corn, lumber and so on.  In both of these categories 
there  are  year-to-year  fluctuations  in  prices  of  manufactured  goods 
which  usually  follow  fairly  smooth  trends  whereas  the  prices  of 
commodities often fluctuate up and down sharply.

Where do these fluctuations come from? Economists look for the answer 
in the concepts of supply and demand.

The supply of a commodity in a given time period is simply the amount 
available for sale in that period.  But how does the supply come to exist 
in exactly that amount? A fundamental fact about commodities is that 
one must plan far in advance for their production.  To get more wheat in 
the autumn, you must plant more in the spring.  Therefore, in the period 
between planting and harvesting, there is little that can be done to affect 
the supply.  This is called the Production lag.

The demand for a commodity is the amount that will be bought at a 
given price.   When the price goes up, demand goes down, and vice-
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versa.  Further, the response of demand to price changes is immediate, 
there is no lag.

The market forces which determine the price and the quantity sold can 
be regarded as manifesting themselves through the aggregate demand 
(D(p))  and  supply  functions  (S(p))  where  p  denotes  price  of  the 
commodity.  In general, Pi stands for the price of the commodity Qi and 
qi  denotes  the  quantity  of  the  commodity  Qi.   Demand  function  of 
thecommodity  Qi  is  qi  =  Di (pi)  and  the  supply  function  of  the 
commodity Qi is qi = Si (Pi).  But here we shall confine our discussion 
to  a  single  commodity  Q.   Now for  any  commodity  Q the  quantity 
demanded must equal the quantity supplied at the equilibrium, price pe 
such that

D(p) – S(p) = 0 for some p = pe (see Fig. 6).

Note

Fig. 6

There is no guarantee that the equilibrium price will be established if the 
market is not in equilibrium when the contracting begins.  Changes in 
consumer preference and innovations both tend to disturb an established 
equilibrium situation.  The change defines a new equilibrium, but there 
is again no guarantee that is will be attained.  In general, a disturbance 
denotes  a  situation  in  which  the  actual  price  is  different  from  the 
equilibrium price.  An equilibrium is stable if a disturbance results in 
a return to equilibrium and unstable if it does not.  A disturbance 
usually creates an adjustment process in the market.  For example if the 
actual  price  is  less  than  the  equilibrium  price,  the  adjustment  may 
consist of some buyers raising their bids for the commodity.

Static Analysis investigates at a particular time the adjustment process 
and considers only the nature of the change, i.e., whether it is towards or 
away from, equilibrium.

Define  E(p)  =  D(p)  –  S(p)  as  the  excess  demand  at  price  p.   the 
Walrasian stability condition is based on the assumption that buyers tend 
to raise their bids if excess demand is positive and sellers tend to lower 
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their prices, if it is negative.  Assuming this, a market is stable (static) 
if a price rise diminishes excess demand, i.e. if

0(p)S(p)D(p)E
dp

dE(p) ''' <−==

In this case, nothing is said about the time path of the adjustment one 
might not expect instantaneous adjustments in the present model.  If the 
initial  price  is  not  equal  to  the  equilibrium  price,  it  changes,  and 
recontracting takes place.   If  the new price is  still  different from the 
equilibrium price, it is again forced to change.  The dynamic nature of 
the recontracting may be formalized in a model in which recontracting 
takes  place  during  periods  of  fixed  length;  say  one  hour,  with  the 
auctioneer announcing the new price at the beginning of each period. 
The analysis of dynamic stability investigates the course of price over 
time, i.e., from period to period.  Equilibrium is stable in the dynamic 
sense if  the price converges  to  (or  approaches)  the  equilibrium price 
over  time  and  it  is  unstable  if  the  price  change  is  away  from  the 
equilibrium.

Example 4:  Let us now see how we can formulate the dynamic stability 
of market equilibrium.

Formulation 1:  Suppose the demand function Dt for the periods t are 
given as follows:

Dt = apt + b (26)

St = Apt + B (27)

Where a, b, A and B are all consonants

Then the equilibrium price pe determined by setting Dt – St = 0 for pt = pe 

is given by

Pe = 
aA
Bb

−
−

(28)

The assumption that a positive excess demand tends to raise price can be 
modelled  in  many  different  ways.   A  commonly  used  mathematical 
model is given by

Pt – pt -1 = kE(pt-1) (29)
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Where pt is the price in period t and k is a positive constant.  It means 
that a positive excess demand E(pt-1) includes buyers to bid a price pt = 
pt-1 + kE(pt-1) > pt – 1 in the following period.

The excess demand of period (t – 1) is then given by
D(pt – 1) – S(pt – 1) = E(pt – 1) = (a – A)pt – 1 + (b – B) (30)

Substituting from Equ. (30) in Eqn. (29) we have,

Pt – pt – 1 = k[(a – A)pt – 1 + b – B]

Or,

Pt = [1 + k(a – A)]pt – 1 + k(b – B) (31)

This is a first order difference equation describing the time path of price 
on the basis of the behaviour assumption contained in Eqn. (29).  We 
shall give the method of solving Eqn. (31) in unit 11 when we discuss it 
in detail.  But if you are familiar with difference equations it will not be 
difficult for you to verify that given the initial condition p = p0 when t = 
0, it s solution is given by

Pt = (p0 – pe) [1 + k(a – A)]t + pe (32)

Where pe = 
aA
Bb

−
−

is the equilibrium price.

The price level converges to pe without oscillations if

- 1 < 1 + k(a – A) < 1

more of this will be discussed in unit 11, Block 4.

Remark: if  we assume that  the adjustment takes place continuously, 
then Eqn. (29) is replaced by

dt
dp

 = kE(p)

and Eqn. (31) takes the form 
dt
dp

 = k(a – A)p + k(b – B) with solution 

p(t)  = (p0 – pe)ek(a  –  A)t + pe where p0 is  the initial price at t  = 0 The 
equilibrium price is dynamically stable, that is, p → pe as t → ∞ , if (a – 
A) < 1
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as we have already mentioned production takes time.  The adjustment 
may not be instantaneous, but may become perceptible in the market 
only  after a period of time.  Agricultural commodities often provide 
good examples of lagged supply.  Production plans are made after the 
harvest.  The output corresponding to these production plans appears in 
the  market  a  year  later.   We  thus  give  another  formulation  of  the 
dynamic stability but with lagged adjustment this time.

Formulation  2:  Let  the  demand  and  supply  functions  be  as  given 
below.

Dt = apt + b (33)

St = Apt – 1 + B (34)

(Note that the supply function is a linear function of pt – 1)

The market is in dynamic equilibrium if the price remains unchanged 
from period to period i.e. if pt = pt – 1.  from Eqn. (33) and (34) we get the 

unique equilibrium price pe  = 
Aa
bB

−
−

The quantity demanded in any period depends upon the price in that 
period, but the quantity supplied depends upon the price in the previous 
period.  It is assumed that the quantity supplied in period t is always 
equal to the quantity demanded in that period i.e. Dt – St = 0 This gives

Pt = 
a

bBp
a
A

1t
−+− (35)

Eqn. (35) is a difference equation and its solution is given by 

Pt = (p0 – pe) ( a
A

)t + pe where pt = p0 at t = 0.  the market is dynamically 

stable if pt →  ∞ .  This is possible if 
a
A

< 1 (since (
a
A

)t →  0 as t →  ∞ ). 

Geometrically, this happens if the slope (
a
1

) of the demand curve has 

smaller absolute value than slope (
A
1

) of the supply curve, i.e.,  |a|
1

 < 

|A|
1

.  Pictorially, the stable equilibrium and the unstable equilibrium are 

as shown in Fig. 7 (a) and 7 (b) respectively.
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(a) Stable equilibrium        (b) Unstable equilibrium
Fig. 7

You may now try the following exercise for a better understanding of 
the above discussion.

SELF ASSESSMENT EXERCISE 3

8.0 CONCLUSION

We now end this unit by giving a summary of what we have covered in 
it.

9.0 SUMMARY

In this unit we have covered the following:

• Real-life  problem  may  be  analyzed  to  sift  the  most  essential 
characteristics  of  the  problem  from  details  of  minor  importance. 
Examples of simple pendulum, rate of growth of world population or 
blood flow in the circulatory system are discussed to make you think 
what  is  of  foremost  importance  in  the  problem that  needs  to  be 
included in the model.

• Once the essential characteristics of the model are listed according to 
their  priority,  there  can  be  more  than  one  way  to  approach  the 
problem.  In other words, the conversion of the real life problem into 
a mathematical description in terms of the equations can be done in 
different ways.  The particular familiar examples- (i)  Motion of a 
simple  pendulum,  (ii)  Growth  of  phytoplankton  population  were 
formulated in two different ways through (a) dimensional analysis 
and (b) deterministic method.  The former served for developing a 
preliminary  model  whereas  the  latter  could  take  you  farther  in 
understanding/explaining  the  observations.   Two  formulations  of 
dynamic  stability  of  market  equilibrium  are  also  considered,  one 
with lagged supply and one without it.

• You  can  get  erroneous  results  if  you  miss  some  essential 
characteristic of the model.  This is shown through an example of the 
falling of a rain drop.
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• It is important that you should have a clear objective in mind when 
you deal with a real-life problem.  If you want to have a rough idea 
of the problem, a crude model which does not take into account all 
the details of the problem (but certainly the essentials) will suffice. 
But if the objective is to understand the problem with all the minutest 
details, a thorough model which incorporates most of the parameters 
has  to  be  formulated.   It  must  be  borne  in  mind  that  if  more 
parameters  are  introduced  in  the  problem  it  involves  more  cost 
(calculations  using  computers)  and  effort  to  solve  the  resulting 
mathematical equations.

6.0 TUTOR MARKED ASSIGNMENT

1) Identify  the  essentials  and  two  non-essentials  in  each  of  the 
followings:

(a) Traffic flow in Kaduna depends critically on the traffic control 
scheme.  If the scheme is poor, long lines can result at one or 
more intersections increasing the time to travel across the city. 
The problem is to evolve a scheme which minimizes the expected 
time to travel across the city.

(b) Proper flow of blood is essential to transmit oxygen and other 
nutrients to various parts of the body in humans as well as in all 
other animals to various parts of the body in humans as well as in 
all  other animals.  Any constriction in the blood vessel or any 
change in the characteristics of blood vessels can change the flow 
and  cause  damages  ranging  from minor  discomfort  to  sudden 
death.   The problem is  to  find the  relationship between blood 
flow and physiological characteristics of blood vessel.

(c) Suppose you own an automobile industry.  You require a set of 
standard bolts.  For this purpose you float a tender.  In response 
to the tender you receive quotations from ten different vendors. 
The  problem  which  you  face  is  to  choose  one  of  those  ten 
vendors whose quotation maximizes your profit.

2) As in E1),  propose at  least  two real  life  problems and list  the 
essentials and non-essentials in the problems.

3) Consider the free fall of a body in a vacuum.  The fall must be 
related to the gravitational acceleration g and the height h from 
which the body is released.  Use dimensional analysis to show 
that  the  velocity  V  of  the  falling  body  is  determined  by  the 
dimensional equations V/ gh  = constant.
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4) A string of length l  is connected to a fixed point at one end and 
to a stick of mass m at the other.  The stick is whirling in a circle 
at constant velocity v.  Use dimensional analysis to show that the 
force in the string is determined from the dimensionless equation 

2

F
mv
l

= constant.

5) The volume rate of flow Q of a fluid through a tube is thought to 

depend on the pressure drop per unit length 
p∆
l

, the diameter d, 

and the viscosity µ .  Show that only one dimensionless equation 

can be formed, from which it follows that Q = (constant)  
4d 

 µ 
4d 

 
 l

.

[Hint: Dimension of viscosity µ is 
M
LT

]

6) Formulate Example -2 in the case of a steady state i.e., when C 
does not explicitly depend on the time t.  What type of equation 
you obtain in this case.

7) Find the terminal velocity of a drizzle drop with diameter D = 
0.01 cm Compare it to the terminal velocity of a fog droplet with 
one third of that diameter.

8) For  a  rain  drop  of  diameter  D  =  0.24  cm,  find  the  terminal 
velocity.  Also find how long it takes to reach the ground if it 
starts its descent in a cloud 4000 metre high.

9) Discuss the static stability and dynamic stability for the following 
demand and supply  functions where  we assume k = 6 for  the 
latter case.

Dt = - 0.5pt + 100
St = - 0.1pt + 50

10) Discuss the following market which is characterized by lagged 
supply response.

Dt = 40 – 10 pt

St = 2 + 9pt – 1 

7.0 REFERENCES/FURTHER READINGS
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Mathematical Modelling from School of Sciences, IGNOU.

Quantitative Analysis in Management by Kirk Patrick.

Quantitative Analysis in Management by C.N. Lomoba.

MODULE 2

Unit 1 Solution  of  Problems Course-Effect  Diagrams,  Equation 
Types,  Algebraic,  Ordinary  Differential,  Partial 
Differential, Difference Integral and Functional Equations
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UNIT 1 SOLUTION OF PROBLEMS COURSE-EFFECT 
DIAGRAMS, EQUATION TYPES, ALGEBRAIC, 
ORDINARY DIFFERENTIAL, PARTIAL 
DIFFERENTIAL, DIFFERENCE INTEGRAL 
AND FUNCTIONAL EQUATIONS

CONTENTS
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3.0 Main Content

3.1 Solution of Formulated Problems
3.1.1 Motion  of  a  Simple  Pendulum  (Ordinary 

Differential Equation) Non-Linear Model (Integral 
and Functional Equation)

3.1.2 Phytoplankton  Growth  (Partial  Differential 
Equation)

3.2 Interpretation of the Solution
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In the two previous units, we introduced you to some of the aspects of 
mathematical  modelling.   Unit  1  helped  you  to  recall  many  of  the 
definitions in mathematics,  physics and biology with which you may 
already be familiar.  But these very familiar concepts were presented to 
you as a part of mathematical modelling.  In unit 1, we have discussed 
different  types  of  modeling.   In  unit  2  we dealt  detail  with  the  first 
important  stage of  mathematical  modelling,  viz.,  identifying essential 
characteristics of the problem at hand, bringing out the most important 
features of the problem and formulating mathematical  representations 
are algebraic / differential / difference equations and their combinations.

In unit 2 you have seen that some equations are easy to handle with such 
that we can deduce the relevant information from the equation, directly 
as in the case Formulation 1 in Example 1.  In the other cases we need to 
go  further  and  solve  these  equations  depending  upon  what  type  of 
equations they are.  Here we shall discuss the second important stage of 
modelling, viz. solving the formulated equations and the interpretation 
of the solutions.  We shall solve some of the problems formulated in unit 
2.  We have given some of them as an exercise for you to try.  In Sec 3.2 
we have mainly discussed two problems – one related to motion of a 
simple pendulum, and the other related to the growth of phytoplankton. 
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You will find that the different techniques you have learnt in differential 
equations will be extremely useful in solving these problems.

A model is complete only when we interpret the mathematical solution 
of the model.  In Sec. 3.3 we shall discuss this aspect of mathematical 
modelling namely interpreting/evaluating the solution.  We shall explain 
how  we  interpret  the  solutions  obtained  for  the  problem  of  simple 
pendulum  and  that  of  phytoplankton.   You  will  see  that  the 
interpretation  helps  us  to  gauge how effective  the  model  is.   In  this 
section  we  shall  also  talk  briefly  about  limitation/shortcoming  of  a 
model.

You may notice that in this unit we have used only the techniques in 
differential  equations  to  obtain  a  solution  because  the  resulting 
equations were differential equations.  But this is not the case always. 
In  the  later  blocks  you  will  see  that  there  are  other  techniques  like 
techniques in probability and linear algebra which are used in obtaining 
a solution.

Do try the exercises given in this unit sincerely.  This will help you to 
gauge whether you have followed concepts and the techniques we have 
explained.

Let us list the objectives of this unit now.

2.0 OBJECTIVES

After reading this unit you should be able to

• Use  the  techniques  in  differential  equations for  solving  a 
formulated problem resulting in differential equations

• Interpret the solution obtained in the context of the real situations.

3.0 MAIN CONTENT

3.1 Solutions of Formulated Problems

We  learnt  in  unit  2  that  we  can  choose  more  than  one  type  of 
formulation for the same problem.  The choice of a mathematical model 
to be developed must depend on the purpose for which the model is 
required.  In Sec. 2.3 Example 1 of unit 2 we saw that if the purpose of 
studying the movement of a simple pendulum is to find its period of 
oscillation, a quick solution based on dimensional analysis will  serve 
our purpose.  But if the objective of the study is to have a deeper insight 
into the problem we have to use a different model.  In this case a model 
based on Newton’s law by resolving the forces acting on the bob of the 
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pendulum will serve the purpose.  Similarly, we have shown in Example 
2 of Sec. 2.3 of unit 2 that if we want to have a cursory knowledge about 
marine  ecology,  a  simple  model  based  on  dimensional  analysis  will 
suffice.  With that we can easily have a rough estimate of the critical 
length  or  water  mass  required  for  the  phytoplankton  population  to 
increase.  But if we want to get more details, a model based on a system 
of differential equation would be required.

We  discuss  in  this  section  the  solutions  of  the  deeper  problems 
formulated in unit 2.

We shall first consider the second formulation related to the movement 
of simple pendulum.

3.1.1 Motion  of  a  Simple  Pendulum  (Ordinary  Differential 
Equation)

In the last two unit we discussed the problem of finding the period of 
oscillation, tension in the string and the position of the bob at any time 
of  a  simple  pendulum.   There  we  formulated  the  problem  using 
Newton’s law (Example 1, formulation 2, unit 2).  We shall now discuss 
how we find the solution.

In the last unit we saw that the formulation resulted in two differential 
equations (see Eqn. (8) and Eqn. (9) of unit 2, which we give below:

m 2

2

dt
xd  = - T sin θ (1)

m 2

2

dt
yd  = Tcos θ - mg (2)

where the tension T and the amplitude θ  are not known.

Our objective is to find the position of the pendulum and the tension in 
the string at any time.  This is possible if we know either the position (x, 
y) of the bob at that instant or the angle  θ  the string makes with the 
vertical at that instant (see Fig. 1)
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Fig. 1

You know that x, y and θ  are connected by the relation.

x  =   sin θ , y =  (1 – cos θ ),

  being the length of the pendulum.  Let us now solve θ  by eliminating 
the terms x and y.

to eliminate the terms m 2

2

dt
xd and m 2

2

dt
yd  from Eqn. (1) and Eqn. (2), we 

apply the chain rule

dt
dx

 = 
dt
dθ

dθ
dx

.

By repeated application of the chain rule, we get

2

2

dt
xd  =  cos θ

2

2

dt
d θ -  sin θ  

2







dt
dθ (3)

2

2

dt
yd =  sin θ

2

2

dt
d θ +  sin θ  

2







dt
dθ (4)

so (1) and (2) become

m cos θ
2

2

dt
d θ + 

















−

2

dt
dmT θ

  sin θ  = 0 (5)

m sin θ
2

2

dt
d θ + 

















−

2

dt
dmT θ

  cos θ  =  - mg (6)

Have we improve the situation? Eqn. (5) and (6) still look quite 
formidable! What if we multiply (5) by cos θ  and (6) by sin θ and add 
the two equation? Well, we get
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m (cos2 θ  + sin2 θ ) 2

2

dt
d θ  = -mg sin θ (7)

or

i.e., m
2

2

dt
d θ + mg sin θ  = 0 (8)

Thus, we have found the equation, in terms of θ  alone as a function of t.

We try to find a similar formula for the tension T also.  For this, we 
multiply (5) by sin θ , (6) by cos θ  and then take the difference.  We 
then find that 

















−

2

dt
dmT θ

  (sin2 θ  + cos2 θ ) = mg cos θ , (9)

i.e., T = m 
2







dt
dθ  + mg cos θ                (10)

This is another equation of motion, in a direction along the string, from 
which the tension can be calculated once θ (t) has been determined from 
Eqn. (8).

Now, have a close look at Eqn. (8) and (10).  What type of differential 
equation are they? You might have noticed that both (8) and (10) are 

non-linear differential equation.  (Note that sin θ  - 
!3

3θ + …..).  From 

your previous knowledge of differential equations you must have 
observed that it is not easy to find the solutions of non-linear differential 
equations, in general.

One way of getting a quick solution is to make some approximations 
which will  change  the  non-linear  equations  to  a  linear  one  and then 
solving the resulting linear equations by known methods.   But  while 
doing so, we should always see that these approximations do not omit 
the essential details of the problem.
Next we shall show you how both these equations (8) and (10) can be 
simplified if we are ready to make an approximation i.e. the oscillations 
are  small.   With  this  approximation  you  will  see  that  the  equations 
become linear and the solutions are easy to obtain.

Solution using Linear Model (D.E)

To begin with, let us assume that the oscillations are small which means 
that θ  is small.  This will enable us to approximate sin θ  by θ since as 
θ  →  0,  sin  θ → θ .   This  will  certainly  reduce  the  accuracy  in  our 
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calculations.  But the mathematics involved gets much reduced.  In fact, 
even  for  fairly  large  angles,  i.e.,  angles  whose  magnitude  may  be 
anywhere up to 30o, i.e., - 30o ≤ θ ≤  30o, we can take

Sin θ ≈  θ
Cos θ  ≈  1

As you can expect, these approximations will introduce some errors. For 
example, let θ  = 15o.  then from the table of sine you can find that sin 
10o = 0.25881.  To compare this with the given value of θ  we have to 
find  θ  in radian measure.  The radian measure of  θ  = 15o is 0.26196. 
the error in this approximation is 0.26196 – 0.25881 = 0.00315.

Using the approximations, we write Eqn. (8) as

2

2

dt
d θ  + θ



g
 = 0 (11)

and Eqn. (10) as

T = mg 
















+

2

1
dt
d

g
θ

(12)

We can further simplify Eqn. (12) by using the argument that when θ  is 

small  
2







dt
dθ < 1  and  hence  the  second  term  in  the  bracket  is  much 

smaller than the first term.  Therefore we can neglect the second term. 
This would imply 

T = mg (13)

Isn’t this an interesting result? Even for swings of the pendulum up to ±
30o, the tension is a constant.

Let us now go back to Eqn. (11).  For you recognize it? It is nothing but 
the classical simple harmonic equation with which you were familiar 
even at high school.

Eqn. (11) is a simple second order ordinary differential equation with 
constant  coefficients.   From your  knowledge  of  ordinary  differential 
equations you know that

θ  = A cos 





tg


 + B sin 





tg


(14)

where A and B are arbitrary constants.
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Now what  are  A and B?  These  constants  will  depend  on  the  initial 
position of the bob and the velocity with which it  is  started.  Let us 
assume that

θ  = θ 0 at t = 0, where θ 0 is some arbitrary angle (15-a)

dt
dθ

 = at t = 0 (15-b)

(15-a)  would  imply  that  at  t  =  0,  the  amplitude  of  motion  of  the 
pendulum is θ 0.  (15-b) implies that the initial speed of the pendulum is 
zero.  Thus, conditions (15-a) and (15-b) correspond to initially holding 
the pendulum at rest at any arbitrary angle θ 0 and then letting it go.

When we put t = 0 and apply Eqn. (15-a) in Eqn. (14), we get A = θ 0.

Then we obtain  
dt
dθ

 from Eqn. (14 and apply the condition 
dt
dθ

 = 0, t = 

0 to get

- θ 0 sin 





tg


 g

l
 + B cos 





tg


  g

l
 = 0, when t = 0.

This implies that B = 0.

Therefore the solution is given by

θ  = θ 0 cos g t
l

 (16)

instead of Eqn. (15-a) and Eqn.(15-b), suppose we assume that
θ  = 0, at t = 0

 and 
dt
dθ

 = ω , at t = 0

This means that at t = 0, the initial amplitude of the motion is 0 i.e. the 
bob is at the equilibrium position and the initial speed is  ω .  Now we 
have it as an exercise for you to check that the solution in this case is 
given by 

θ  = ω
g
l

 sin 





tg


(17)

Thus, individually Eqn. (16) and Eqn. (17) is also a solution of Eqn. 
(11), being the solutions of a linear differential equation.
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Therefore,

θ   =  θ 0 cos 





tg


 +  ω

g
l

 sin  





tg


(18)

is the solution of (11) with the conditions

θ  = θ 0, at t = 0 and

dt
dθ

  = ω , at t = 0

Can you guess what physical situation the solution will correspond to? 
This corresponds to the pendulum being release with an initial velocity 
ω  from  a  point  with  angular  distance  θ 0.   We  shall  discuss  the 
interpretation of the solution in detail in Sec. 3.3

Try this exercise now.

In the foregoing discussion, you have seen that the approximations we 
introduced enable us to have a linear model which corresponded to the 
simple  harmonic  oscillation.   But  you  must  keep  in  mind  that  any 
simplification we introduced in the model will  cost you something-in 
this  case  there  had to  be  a  restriction  on  the  range  of  values  of  the 
amplitude i.e. |θ | ≤  30o

Now, suppose you have  a  problem in which you cannot  assume the 
oscillation to be small.  Then in that case the non-linear characteristic of 
Eqn.  (8)  and  Eqn.  (10)  has  to  be  maintained  which  means  that  the 
resulting model will be a non-linear model.  Next we shall discuss the 
solution in this case.

Solution using non-linear model (Integral and Functional Equation)

We begin with rewriting Eqn. (8) after multiplying by 
dt
dθ

. We get

2

2

d g sin
dt

 θ + θ 
 l dt

dθ
 = 0 (19)

which we can also rewrite as

d
dt

21 d g cos
2 dt

 θ  −     l
 = 
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This implies that

1
2

 
2d

dt
θ 

  
 - 

g
l

cos θ  = a constant (20)

If the initial condition is such that the pendulum is started at rest from an 
arbitrary angle θ 0, then at t = 0

θ (t) = θ 0, dt
dθ

 = 0

Therefore if we put θ  = θ 0 and 
dt
dθ

 \= 0 in Eqn. (20), we get that the 

constant is ( - 
g
l

 cosθ 0)

i.e. 
1
2

2d
dt

θ 
  

- 
g
l

cos θ  = - 
g
l

 cos θ 0

Therefore,  
2d

dt
θ 

  
 = 4

g
l

2 20sin sin
2 2

θ θ −  
(21)

(Using the identity cos θ  = 1 – 2 sin 
2
θ

).

Substituting Eqn. (21) in eqn. (12) we get the value of the tension T in 
terms of θ .  The can check that the express for T is

T = mg 2 201 4 sin sin
2 2

 θ θ + −    
(22)

Also from Eqn. (21) we have

2 20

d g2 dt
sin sin

2 2

θ
θ θ−

l

Eqn. (22) has to be integrated to find θ , the position of the pendulum as 
a function of t.  What would be the limits of integration? The pendulum 
swinging from - θ 0 to θ 0 and back again.  Suppose we denote as T0 the 
period of the pendulum, during the period.  A quarter period would be 

the time interval 0  ≤ t  ≤ 0T
4

 say, from  θ  =  θ 0 to  θ  = 0 (see Fig. 2). 

Thus Eqn. (22) can be integrated as follows: of the total period.
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Fig. 2: The time taken to go from A to O is 
1
4

0

T0
04

0
2 20

g d2 dt dt
sin sin

2 2

− θ

θ∫ ∫
θ θ−

l

Integrating the left hand side, we get

T0 = 2 
0

0g
− θ∫

l
   2 2 20

d

sin sin
2 2

θ
θ θ−

Now we make sole change of variable.
Put θ  = - Ø .  Then we get

T0 
0

0g
θ∫l

 2 20

d

sin sin
2 2

θ
θ θ−

(23)

Let sin 
2
ø

 = sin 0

2
θ

 sin ψ .  Differentiating both sides, we get

2
1

cos 
2
ø

dø  = sin 0

2
θ

 cos ψ d ψ

Then

dø  = 
02sin cos

2 d
cos

2

θ ψ
ψø  = 

2 20

2sin cos
2 d

1 sin sin
2

θ ψ
ψθ− ψ

Substituting for dø  in the integral on the R.H.S. os Eqn. (23), we get
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T0 = 

0

2
0

20

2 20 0

2

2sin cosc d
22

g
sin sin

2sin 1 sin sin 1
2 2 sin

2

π
θ ψ ψ

∫
θ ψθ θ− ψ − θ

l

= 

0

2
0

2 20 0

2sin cosc d
22

g
sin cos 1 sin sin

2 2

π
θ ψ ψ

∫
θ θψ − ψ

l

= 
2

0
2 20

2d2
g

1 sin sin
2

π ψ∫
θ− ψ

l

(24)

= 
2

0
2 20

d2
g

1 sin sin
2

π ψ∫
θ− ψ

l

As you may recognize it,  the integral in the R.H.S. of Eqn. (24) is a 
definite integral which gives you T0 as a function of θ 0 say f( θ 0).  The 
integral is called an  elliptic integral.  Tables are available to find the 
values  of  elliptic  integrals.   We  have  given  one  such  table  in  the 
appendix.

We shall now illustrate through an example, how we find T0 for a given 
l  and g, using the table.

Example 1:  Find T0 if  θ 0  = 20o, given that  l  = 20 cm and g = 980 
cm/sec2

Solution:  Substituting for θ 0 and l  in Eqn., (24) we get,

T0 = 
2

0
2 2

20 d4 sec
980 201 sin sin

2

π ψ∫
− ψ

.

You compare the integral on the R.H.S. with the integral given in the 
appendix, [look at the colume of 90o and row of 10o].  Then we get 

2
0

π

∫  2 2

d
1 sin 10sin

ψ ≈
− ψ

 1.58284 sec.
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∴ T0 ≈  
4
7

 x 1.58284 sec.

         ≈ 1.00448 sec.

Try these exercises now.

SELF ASSESSMENT EXERCISE 1

Let us now find the solution of the other problem we had mentioned at 
the beginning of this section.

3.1.2 Phytoplankton Growth (Partial Differential Equation)

You may recall that in sec. 2.3 of unit 2, we discussed a problem from 
ecology,  namely  the  effect  of  growth  of  phytoplanktons  on  our 
environment.  In unit 2 we have seen two formulations of this problem. 
We  have  seen  that  Formulation  2  resulted  in  a  differential  equation 
(Eqn. (17), unit 2)

2

2

c CD C
t x

∂ ∂= + α
∂ ∂

(25)

where C(x, t) is the organism concentration of the phytoplankton.

You  know  that  Eqn.  (25)  is  a  one-dimensional  partial  differential 
equation  and  can  be  solved  using  separation  of  variables.   Let  us 
assume.

C(x, t) = X(x) Y(t)
Then from Eqn.(25), we have

X(x) 
dY(t)

dt
 = D

2

2

d (X)
dx

 Y(dt) + α  X(x) Y (t)

1 1 dY
D Y dt

 ⇒ − α  
 = 

2

2

1 d (X)
X dx

the left hand side of the above equation is purely function of Y and the 
right  hand  side  is  purely  a  function  of  X.  so,  we  equal  them  to  a 
constant, say K.  The constant has to be negative, otherwise the model 
will predict an exponential growth of phytoplankton’s which will not be 
realistic.  Therefore for convenience, we take K = –  λ 2 , where  λ is a 
constant.  You may again recall from your PDE course that, when we 
take the constant as – λ 2, then non-triavial solution exists.  We now get, 
two equations for determining X(x) and Y(t) as
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2
2

2

1 d X
X dx

= − λ

1 1 dY
D Y dt

 − α  
 = 2− λ

the solution is given by.

X(x) = A cos λ x + B sin λ x, Y(t) = C1e
2( D)tα − λ (27)

Where C1, A and B are some constant to be determined [see MTE-08, 
Block 4]

Now  we  find  the  constant  A,  B  and  C1 by  applying  the  boundary 
conditions C(x;t)_ = 0 when x = 0 when x = 0 and x = L.

We have
C(x,t) = X(x) Y(t)
C(0,t) = X(0) Y(t), ∀ t
C(L,t) = X(L) Y(t), ∀ t

When we apply the boundary condition C(x,t) = 0 when x = 0.  we get 
that 
0 = C(0,t) = X(0) Y(t), ∀ t i.e. X(0) = 0.
Similarly by applying the boundary condition, C(x,t) = 0 when x = L, 
we get

0 = C(L,t) = X(L) Y(t), ∀ t
i.e. X(L) = 0

Hence we get that X(0) = X(L) = 0.
X(0) = 0 implies that

A = 0

Next we have to find B and C1.
From Eqn. (27) we have

X(x) = B sin λ x, since A = 0
This together with the fact that X(L) = 0, implies that

B sin λ L = 0.

If  B = 0, we a trivial solution i.e., C ≡ 0, in which we are not interested. 
The other possibility is that sin λ L = 0 which implies that λ L = n π  for 

each integer n and hence λ  = 
n
L
π

. This shows that, for each, n, we get a 

solution of the PDE as
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Zn = Bn sin 
n
L
π

x

Thus corresponding to each value  nλ  =  
n
L
π

, n = 0, 1, 2, …. We get a 

solution of the PDE.  Therefore, we get the most general solution of 
Eqn. (25), as

C(x, t) = 
2
n( D) t'

n nB sin xe α − λ∑ λ (28)

Where nλ  = 
n
L
π

 and '
nB  = C1Bn.  we now apply the boundary condition 

C(x,0) = f(x) at t = 0, in Eqn. (28, which gives

f(x) = 
n 1

∞

=
∑ '

nB  sin nλ x (29)

where  '
nB  are  constants  to  be  determined.   To  determine  '

nB ,  we 

multiply both sides of Eqn. (29) by sin 
m x

L
π

, where m is an integer, and 

perform term by term integration.  Then we get

L
0∫  f(x) sin 

m x
L
π

dx = 
n 1

∞

=
∑ L

0∫ '
nB sin 

n x
L
π

sin 
m x

L
π

dx

= 
n 1

∞

=
∑

L
π

 0
π∫  '

nB  sin ny sin my dy where y = 
x

L
π

Now, using the orthogonality condition, namely

0
π∫  sin n π x sin m π x = 

0 if m n
if m n,2

π
≠

 =
we get that

'
nB  = 

2
L

L
0∫  f(x) sin 

n x
L
π

dx (30)

You can notice that for given value of f(x), we can always evaluate the 
integral on the right-hand side which gives the value of '

nB .  Thus, the 
resulting solution for C as given by Eqn. (27) is

C(x,t) = 
n 1

∞

=
∑ '

nB sin 
n x
L
π 

  
 exp 

2 2Dn t
L

 πα − 
 

 (31)
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Where '
nB  is defined by Eqn. (30)

We shall focus on the first term, i.e. the term corresponding to n = 1, of 
the series  on the right hand side of Eqn.  (31).   The argument of the 

exponential function is time-dependent, being given by 
2

2

D
L

 πα − 
 

 t. If 

2

2

D
L

πα < ,  the  exponent  becomes  negative  and hence  the  exponential 

function approaches  zero as  t  increases  i.e.  as  time progresses.   The 
second and higher order terms in the population of phytoplankton will 
then  be  unable  to  maintain  itself  against  diffusion,  and  the  patch 

disappear.  On the other hand, if
2

2

D
L

πα < ,  at least the first  term will 

increase indefinitely with time.

Therefore,  the  critical  size  Lc,  is  determined  from  the  condition 
2

2

D
L

πα <  i.e.

Lc = 
1
2D π  α 

(32)

You may recall, at this stage, the expression for Lc we derived in unit 2 
based on dimensional analysis. If is

Lc = 
1
2DA  

 α 
(33)

Where A is a non-dimensional constant.  After the present calculations, 
based  on  the  diffusion  equation,  we  identify  the  constant  of 
proportionality as π .  Thus a more detailed model as the present one is 
more  specific  about  the  critical  size,  below which  no  phytoplankton 
population is possible.   This model also gives you the distribution of 
plankton as a function of space and time i.e., C(x, t), (see Eqn. (31)).

This  solution  based  on  Formulation  2  in  Unit  2  is  definitely  more 
informative  than  the  solution  using  dimensional  analysis  based  on 
Formulation 1.  But you must also realize that Formulation 1 was quick 
and served a, limited purpose of getting preliminary information but the 
derivation  involved more mathematical  tools,  solving a  second order 
partial differential equation in this case.

The discussion above tells us that each formulation of a model has some 
advantages and disadvantages.  In fact we have to consider many other 
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factors to evaluate the effectiveness of a model.  In the next section we 
shall  talk  about  this  in  detail.   Before  that  why  don’t  you  try  this 
exercise.

SELF ASSESSMENT EXERCISE 2

In the next section we shall see what the significances of the solution 
obtained is, in the context of the real-problem.

3.2 Interpretation of the Solution

As you have been reading throughout this block, a mathematical model 
is an attempt to capture, in abstract form, the essential characteristics of 
an observed phenomenon.  We will accept a model if it explains all the 
facts that we would like it to explain. Otherwise, we will reject it, or 
else, improve it, then test it again. In other words, we measure the worth 
of a model by comparing the results obtained, with the observed facts 
about the real  problem.  This process is  called the  validation of the 
model.

This process of validating a model should be preceded by the process of 
understanding the solutions of the mathematical model.  In other words, 
the mathematical expressions obtained as solution have to be analyzed 
and  the  essential  facts  which  the  solution  represents  have  to  be 
understood.  This process is known as “interpreting the solution of a 
model”.  You will see that in some cases, we can interpret the solution 
merely by looking at it.  But, in most cases, a graphical representation of 
the expression will be necessary and the interpretation of the graphs will 
demand a thorough knowledge about the problems being modelled.
We shall illustrate these facts using an example.

Example 1:  Interpret the solution obtained for different formulations of 
the model of a simple pendulum.

Solution:   We  have  already  shown  you  in  formulation  1  how  the 
constant of proportionality was derive as 2 π . This was done by relating 
our formula for period of oscillation (Eqn. 3, unit 2) to the experiment 
results  with  pendulums  of  different  lengths  and  masses.   After 
establishing the formula for the period of the pendulum as

T0 = 2 π
g
l

(34)

We can interpret our result in the following way:

i) The period is independent of the mass of the pendulum.
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ii) It is directly proportional to the square root of the length of the 
pendulum.

iii) it is inversely proportional to the square root of the acceleration 
due to gravity.

So, in this case we could interpret the solution by directly looking at the 
expression (34)  in our Formulation 2 of the same problem, we could 
find the position of the pendulum at any particular instant of time and it 
was also possible to estimate the tension in the string [See Eqn. (16)]. 
Eqn. (16), being a cosine function which is periodic clearly brings out 
the oscillatory nature of the pendulum.  Here, we make use of the graph 
of the cosine function to illustrate the behaviour of the pendulum.  Fig. 3 
gives the graph of the function.  You can see the amplitude  θ  of the 
pendulum oscillates between  - θ o and + θ o.  in the figurre you can see 
that T0 is the period of the pendulum after which the motion reproduces 
itself exactly.

Fig. 3
The solution corresponding to a different set  of boundary conditions, 

i.e.,  θ  = 0 
d
dt

θ
 = ω  at t = 0 was given by Eqn. (17), Sec. 3.2.1. In this 

case,  the  amplitude  is  (ω
g
l

).  The  graph  of  this  equation  is  give 

bellow. (See. Fig. 4)

Fig. 4

The solutions which are cosine/sine function imply that the oscillation of 
a pendulum will carry on the fever and the traveling wave will travel to 
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infinity  without  reduction  of  its  amplitude.   This  is  where  the 
interpretation  of  the  results  leads  to  all  contradiction  –  i.e.,  a  result 
which contradicts the observations.  All real oscillations die out, unless 
forced to continue by additional external forces.  This is because there 
always are  other  forces  present  which  damp the  oscillations.   These 
forces result  from frictional  or viscous action and you may recall  no 
provision was made in either of our two formulations to include these 
damping forces.  We shall be talking about the damped simple harmonic 
motion  and  forced  oscillations  in  Unit  4  of  the  next  block.   Thus 
interpretation of our results  highlights the shortcomings of the model 
and leads to other factors which will modify the model.

In a similar way we can make observations regarding the problem in 
ecology also.

Example 2: Discuss the solution obtained for the phytoplankton growth 
problem.

Solution:  In formulation 1 given in Unit 2 we could find the constant 
‘C’ given by Eqn. (13) of unit 2, if you have observational data about 
the planktons.  Also if we know the diffusivity of the planktons and the 
rate of growth,  we can measure the planktons patches in the area of 
interest  and  from there  calculate  the  value  of  C.   (Incidentally,  if  it 
is worth knowing that the plankton patches in the open sea appear to 
occur in the order of 10-100 km).  Thus we could interpret the solution 
by directly looking at the expression.  

Next let us consider Formulation (2).  Eqn. in unit 3 gives a solution of 

this  problem.   There  we  have  shown  that  if  
2

2

D
L

πα <  then  the 

exponential  function  in  Eqn.  (31)  approaches  zero  as  time  increases. 
(See the paragraph preceding Eqn. (31) of Sec. 3.2.2.) we also know that 

Lc = 
2D

2
π .  Therefore the condition 2

D
L

πα <  can be replaced by L < Lc. 

Therefore,  we  get  that  for  any  L  <  Lc,  no  sustainable  growth  of 
Phytoplankton  occur.   You can also note  from Eqn.  (32)  that  as  the 
growth  α  increases,  the  critical  size  Lc gets  smaller;  whereas  if  the 
intensity  of  diffusion  D  increases,  Lc also  increases.   Both  the 
conclusions are in keeping with what we expect.

Even  this  model  leaves  ample  scope  for  modification.   We  have 
assumed  in  both  the  formulations  that  the  planktons  cannot  survive 
outside a particular region.  Again, we make no mention of the winded 
driven displacement of the planktons.  Including many more factors will 
enhance the model and take it closer to reality.  But it should be borne in 
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mind that the sophistication in the model may bring, along with it, more 
mathematical complexities.

Why don’t you see if you have understood what has been discussed in 
this section.

As the two examples, we formulated and solved in detail, show, there is 
lot  of  room for  improvement  of  the  model.   The major limitation in 
Example 1 was the absence of a term representing air resistance whereas 
in Example 2 it was the absence of details surrounding the patch – the 
velocity of the steam etc.

Sometimes it may happen that when we interpret the solution to fit the 
real-life  situation,  we  find  that  there  is  vast  difference  between  the 
theoretical model that has been created (with all the assumption) and the 
real-life situation.  In such a situation as you have seen and will see, the 
model needs to be either scrapped or revised.

4.0 CONCLUSION

With this we come to the end of this unit.  Let us now summarize what 
we have discussed in this unit.

5.0 SUMMARY

In this unit, we have discussed the following points:

• The solutions of those problems formulated in unit 2 which resulted 
in differential equations.  We have discussed mainly two problems:

i) motion of a simple pendulum
ii) growth of phytoplankton.

The  formulations  of  above  two  problems  resulted  in  differential 
equation:  a  non-linear  ordinary  differential  equation  in  the  case  of 
simple pendulum and a one-dimensional partial differential equation in 
the case of phytoplankton.

o We have discussed the solutions in different parts.
• The interpretation of the solutions obtained.
• The  interpretation  of  a  solution  is  very  essential  to  assess  the 

effectiveness of a model.  Though the models could explain many of 
the observed phenomena, there were lots of scopes for improvement.

• In  most  situations,  a  better  model  involves  more  parameters  and 
complications.   You  will  need  more  and  more  sophisticated 
mathematical tools as you go on refining the model.
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6.0 TUTOR MARKED ASSIGNMENT

1) Obtain the solution given in Eqn. (17) under the initial condition 

dt
dθ

 = ω , at θ  = 0 at t = 0.

2) Show  from  hat  the  bob  of  the  simple  pendulum  achieves  its 
maximum angular  velocity  at  θ  =  0.   Why is  this  physically 
reasonable? Show that your results are applicable to both linear 
and nonlinear problem.

3) Using the non-linear model of the pendulum, find the period of 
oscillation for θ 0 = 12 sec. and l  = 4.

4) How would you modify Formulation 2 in unit 2 by including an 
external force, say, air resistance? Find the solution of the new 
model.

5) In  the  last  unit  you  must  have  formulated  the  model  for  the 
problem in E6. Recall that the situation is that the interchange 
between the internal growth and loss of phytoplanktons has been 
going on for a long time, and a steady state has been reached 
(steady  state  means,  the  organism  concentration  C  does  not 
depend on time t)

Find a solution of the mathematical formulation you obtained.

6) Interpret the solution you derived in E5.
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APPENDIX

Ellipic integrals of the first kind ( ) ( ) 1
22 2

0

F | 1 sin sin d
ϕ

−
ϕ α = − α θ θ∫ .

TABLE
0      5O                               10O 15O 20O 25O 30O

0
2
4
6
8
10
ϕ 2
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0

0.08726646   0.17453293 
0.08726660   0.17453400 
0.08726700   0.17453721 
0.08726767   0.17454255 
0.08726861   0.17454999 
0.08726980   0.17455949 
0.08727 124  0.17457102 
0.08727294   0.17458451 
0.08727487   0.17459991 
0.08727703   0.17461714 
0.08727941   0.17463611 
0.08728199   0.17465675 
0.08728477   0.17467895 
0.08728773   0.17470261 
0.08729086   0.17472762 
0.08729413   0.17475386 
0.08729755   0.17478119 
0.08730108   0.17480950 
0.08730472   0.17483864 
0.08730844   0.17486848 
0.08731222   0.17489887 
0.08731 606  0.17492967 
0.08731992   0.17496073 
0.08732379   0.17499189 
0.08732766   0.17502300 
0.08733149   0.17505392 
0.08733528   0.17508445 
0.08733901   0.17511455 
0.08734265   0.17514397 
0.08734619   0.17517259 
0.08734962   0.17520029 
0.08735291   0.17522691 
0.08735605   0.17525232 
0.08735902   0.17527640 
0.08736182   0.17529903 
0.08736442   0.17532010 
0.08736681   0.17533949 
0.08736898   0.17535712 
0.08737092   0.17537289 
0.08737262   0.17538672 
0.08737408   0.17539854 
0.08737528   0.17540830 
0.08737622   0.17541594 
0.08737689   0.17542142 
0.08737730   0.17542473 
0.08737744   0.17542583

0.26179939 
0.26180298 
0.26181 374 
0.26183 163 
0.26185656 
0.26188 842 
0.26192707 
0.26197234 
0.26202 402 
0.26208 189 
0.26214568 
0.26221 511 
0.26228 985 
0.26236 958 
0.26245 392 
0.26254 249 
0.26263 487 
0.26273 064 
0.26282 934 
0.26293 052 
0.26303 369 
0.26313836 
0.26324 403 
0.26335 020 
0.26345 633 
0.26356 191 
0.26366 643 
0.26376 936 
0.26387 020 
0.26396 842 
0.26406 355 
0.26415 509 
0.26424 258 
0.26432 556 
0.26440 362 
0.26447 634 
0.26454 334 
0.26460 428 
0.26465 883 
0.26470671 
0.26474 766 
0.26478 147 
0.26480 795 
0.26482 697 
0.26483 842 
0.26484 225

0.34906 585 
0.34907 428 
0.34909 952 
0.34914 148 
0.34919998 
0.34927 479 
0.34936 558 
0.34947200 
0.34959 358 
0.34972 983 
0.34988016 
0.35004 395 
0.35022 048 
0.35040901 
0.35060 870 
0.35081 868 
0.35103 803 
0.35126576 
0.35150083 
0.35174218 
0.35198869 
0.35223 920 
0.35249254 
0.35274 748 
0.35300280 
0.35325 724 
0.35350955 
0.35375 845 
0.35400 269 
0.35424 101 
0.35447217 
0.35469 497 
0.35490 823 
0.35511 081 
0.35530 160 
0.35547958 
0.35564377 
0.35579 326 
0.35592721 
0.35604 488 
0.35614560 
0.35622 880 
0.35629 402 
0.35634 086 
0.35636908 
0.35637 850

0.43633231 
0.43634 855 
0.43639719 
0.43647 806 
0.43659 086 
0.43673518 
0.43691 046 
0.43711 606 
0.43735 119 
0.43761 496 
0.43790 635 
0.43822422 
0.43856733 
0.43893 430 
0.43932 364 
0.43973 377 
0.44016296 
0.44060 939 
0.44107 115 
0.44154622 
0.44203 247 
0.44252 769 
0.44302 960 
0.44353 584 
0.44404 396 
0.44455 151 
0.44505 593 
0.44555 469 
0.44604519 
0.44652 487 
0.44699 117 
0.44744 153 
0.44787 348 
0.44828 459 
0.44867252 
0.44903 502 
0.44936 997 
0.44967 539 
0.44994 944 
0.45019046 
0.45039 699 
0.45056 775 
0.45070 168 
0.45079 795 
0.45085 595 
0.45087533

0.52359878 
0.52362636 
0.52370903 
0.52384653 
0.52403839 
0.52428402 
0.52458259 
0.52493314 
0.52533449 
0.52578529 
0.52628399 
0.52682887 
0.52741799 
0.52804924 
0.52872029 
0.52942863 
0.53017153 
0.53094608 
0.53174916 
0.53257745 
0.53342745 
0.53429546 
0.53517761 
0.53606986 
0.53696798 
0.53786765 
0.53876438 
0.53965358 
0.54053059 
0.54139069 
0.54222911 
0.54304111 
0.54382197 
0.54456704 
0.54527182 
0.54593192 
0.54654316 
0.54710162 
0.54760364 
0.54804587 
0.54842534 
0.54873947 
0.54898608 
0.54916348 
0.54927042 
0.54930614
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65o 70o 75o 80o 85o 90o

35o 40o 45o 50o 60o 65o

0O 0.61086524 0.69813170 0.78539816 0.87266463 0.95993 109 1.04719755
2 0.61090819 0.69819436 0.78548509 0.87278045 0.96008 037 1.04738465
4 0.61103691 0.69838220 0.78574574 0.87312784 0.96052821 1.04794603
6 0.61125108 0.69869 484 0.78617974 0.87370649 0.96127450 1.04888194
8 0.61155010 0.69913161 0.78678644 0.87451593 0.96231911 1.05019278
10 0.61193318 0.69969159 0.78756494 0.87555 545 0.96366180 1.05187911
12 0.61239927 0.70037358 0.78851403 0.87682412 0.96530224 1.05394 160
14 0.61294707 0.70117608 0.78963221 0.87832076 0.96723998 1.05638099
16 0.61357504 0.70209730 0.79091768 0.88004389 0.96947438 1.05919813
IS 0.61428140 0.70313511 0.79236827 0.88199174 0.97200462 1.06239384
20 0.61506406 0.70428706 0.79398143 0.88416214 0.97482960 1.06596891
22 0.61592071 0.70555037 0.79575422 0.88655 254 0.97794790 1.06992405
24 0.61684871 0.70692183 0.79768324 0.88915992 0.98135773 1 .07425976

26 0.61784515 0.70839788 0.79976461 0.89198071 0.98505681 1.07897628
28 0.61890682 0.70997451 0.80199389 0.89501076 0.98904227 1.08407347
30 0.62003018 0.71164728 0.80436610 0.89824524 0.99331059 1.08955067
32 0.62121138 0.71341124 0.80687558 0,90167852 0.99785743 1.09540656
34 0.62244622 0.71526098 0.80951599 0.90530415 1.00267749 1.10163899
36 0.62373019 0.71719052 0.81228024 0.90911465 1.00776438 1.10824474
38 0.62505840 0.71919335 0.81516039 0.91310148 1.01311039 1.11521933
40 0.62642563 0.72126235 0.81814765 0.91725487 1.01870633 1.12255667
42 0.62782630 0.72338982 0.82123227 0.92156370 1.02454127 1.13024880
44 0.62925446 0.72556741 0.82440346 0.92601535 1.03060230 1.13828546
46 0.63070385 0.72778615 0.82764941 0.93.059558 1.03687427 1.14665369
48 0.63216783 0.73003640 0.83095712 0.93528 835 1.04333948 1.15533 731
50 0.63363946 0.73230789 0.83431247 0.94007568 1.04997735 1.16431637
52 0.63511149 0.73458 970 0.83770010 0.94493756 1.05676412 1.17356652
54 0.63657639 0.73687,028 0.84110344 0.94985177 1.06367248 1.18305833
56 0.63802636 0.73913751 0.84450468 0.95479381 1.07067 128 1.19275650
58 0.63945343 0.74137870 0.84788483 0.95973682 1.07772516 1.20261907
60 0.64084 944 0.74358071 0.85122375 0.96465156 1.08479434 1.21259661
62 0.64220 613 0.74572998 0.85450024 0.96950647 1.09183436 1.22263139
64 0.64351 520 0.74781266 0.85769220 0.97426773 1.09879601 1.23265660
66 0.64476 839 0.74981 471 0.86077677 0.97889946 1.10562535 1.24259576
68 0.64595 751 0.75172208 0.86373057 0.98336406 1.11226392 1.25236238
70 0.64707 458 0.75352 078 0.86652 996 0.98762253 1.11864920 1.26185988
72 0.64811189 0.75519716 0.86915135 0.99163506 1.12471530 1.27098218
74 0.64906209 0.75673800 0.87157159 0.99536 166 1.13039401 1.27961482
76 0.64991829 0.75813076 0.87376830 0.99876 287 1.13561610 1.28763696
78 0.65067414 0.75936376 0.87572037 1.00180067 1.14031304 1.29492436
80 0.65132394 0.76042640 0.87740833 1.00443 942 1.14441892 1.30135321
82 0.65186270 0.76130931 0.87881481 1.00664678 1.14787262 1.30680495
84 0.65228621 0.76200457 0.87992495 1.00839470 1.15062010 1.31117166
86 0.65259 116 0.76250582 0.88072675 1.00966028 1.15261652 1.31436170
88 0.65277510 0.76280 846 0.88121143 1.01042658 1.15382828 1.31630510
90 0.65283 658 0.76290 965 0.88137359 1.01068319 1.15423455 1.31695790
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0O

2
1.13446401 
1.13469294

1.22173048 
1.22200477

1.30899694 
1.30931 959

1.39626340 
1.39663672

1.48352986 
1.48395543

1.57079633 
1.57127495

4 1.13537994 1.22282810 1.31028822 1.39775763 1.48523342 1.57271243
6 1.13652576 1.22420 180 1.31190491 1.39962909 1.48736769 1.57511 361
8 1.13813 158 1.22612810 1.31417314 1.40225598 1.49036470 1.57848658
10 1.14019906 1.22861 010 1.31709778 1.40564522 1.49423361 1.58284280
12 1.14273032 1.23165 180 1.32068514 1.40980577 1.49898627 1.58819721
14 1.14572789 1.23525808 1.32494296 1.41474871 1.50463742 1.59456834
16 1.14919471 1.23943470 1.32988047 1.42048728 1.51120474 1.60197853
18 1.15313409 1.24418827 1.33550840 1.42703700 1.51870904 1.61045415
20 1.15754967 1.24952627 1.3418390! 1.43441 578 1.52717445 1.62002590
22 1.16244535 1.25545700 1.34888616 1.44264399 1.53662865 1.63072910
24 1.16782525 1.26198957 1.35666531 1.45174466 1.54710309 1.64260414
26 1.17369362 1.26913385 1.36519359 1.46174360 1.55863334 1.65569693
28 1.18005472 1.27690045 1.37448981 1.47266958 1.57125942 1 .67005 943
30 1.18691 274 1.28530059 1.38457455 1.48455455 1.58502624 1.68575035
32 1.19427 162 1.29434605 1.39547013 1.49743384 1.59998406 1.70283594
34 1.20213489 1.30404906 1 .40720 064 1.51134644 1.61618906 1.72139083
36 1.21050542 1.31442210 1.41979 198 1.52633523 1.63370398 1.74149923
38 1.2193852 1.32547772 1.43327 179 1 .54244 734 1 .65259 894 1.76325618
40 1.22877499 1.33722824 1.44766938 1.55973441 1.67295226 1.78676913
42 1.23867392 1.34968545 1.46301565 1.57825301 1.69485 156 1.81215985
44 1.24907904 1.36286013 1.47934287 1.59806493 1.71839498 1.83956672
46 1.2599S475 1.37676 148 1.49668438 1.61923762 1.74369264 1.86914755
48 1.27138210 1.39139640 1.51507416 1.64184453 1.77086836 1.90108303
50 1.28325798 1.40676855 1.53454619 1.66596542 1.80006176 1.93558 110
52 1.29559414 1.42287717 1.55513354 1.69168665 1.83143068 1.97288227
54 1.30836604 1.43971 560 1.57686709 1.71910 125 1.86515414 2.01326657
56 1.32154 149 1.45726934 1.59977378 1.74830880 1.90143590 2.05706 232
5b 1.33507910 1.47551 372 1.62387409 1.77941482 1.94050873 2.10465766
60 1.34892643 1.49441 087 1.64917867 1.81252953 1.98263957 2.15651 565
62    1.36301803 1.51390609 1.67568359 1.84776547 2.02813 570 2.21319469
64 1.37727323 1.53392332 1.70336398 1.88523335 2.07735219 2.27537 643
66    1.39159384 1.55435972 1.73216516 1.92503509 2.13070051 2.34390 472
68 1.40586195 1.57507940 1.76199085 1 .96725 237 2.18865839 2.41984 165
70 1.41993796 1.59590624 1.79268736 2.01192798 2.25177995 2.50455 008
72 1.43365925 1.61661 644 1.82402292 2.05903 582 2.32070416 2.59981973
74 1.44684001 1.63693 134 1.85566 175 2.10843282 2.39615610 2.70806761
76 1.45927266 1.65651 218 1.88713308 2.15978295 2.47892 739 2.83267258
78 1.47073163 1.67495873 1.91779814 2.21243977 2.56980281 2.97856 895
80 1.48098006 1.69181 489 1 .94682 23 1 2.26527 326 2.66935 045 3.15338525
82 1.48977975 1.70658456 1.97316665 2.31643896 2.77736 748 3.36986 803
84 1.49690410 1.71876033 1.99562 118 2.36313736 2.89146664 3.65185597
86 1.50215336 1.72786543 2.01290452 2.40153358 3.00370926 4.05275817
88 1.50537033 1.73350464 2.02384 126 2.42718003 3.09448 898 4.74271727
90 1.50645424 1.73541 516 2.02758 942 2.43624 605 3.13130 133         ∞

BLOCK SUMMARY
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In  this  block,  we  have  looked  at  there  main  stages  involved  in  the 
mathematical modeling of a real-life situation.  These are

1) Formulation of the mathematical equivalent
2) Obtained a mathematical solution.
3) Interpreting the solution in terms of the situation and validating 

the solution.

In Unit 1, you learnt the basic objectives of modelling and the different 
types of modelling.

In Unit 2, you were introduced to the formulation of our problems

i) A very familiar problem of motion of a simple pendulum
ii) An ecological  problem – Growth  of  phytoplankton  in  a  water 

mass.
iii) Time taken for a raindrop to fall from the clouds and reach the 

ground.
iv) a problem related to economics from market equilibrium

While going through these example, you would have realized that while 
formulating a model you need to

i) understand the essentials of the problem,
ii) have the  objectives  (limited (limited or  detailed)  clear in  your 

mind
iii) have the appropriate mathematical skills

In  Example  3,  we  also  indicated  how mindless  simplification  of  the 
problem without the inclusion of the essentials can lead to wrong results.

In  unit  3  the  first  two  examples  of  unit  2  (the  third  and  the  fourth 
examples were solved in Unit 2 itself) were analyzed using the solutions 
of  the  resulting  differential  equations.   After  reading  this  unit,  you 
should have realized that merely getting the solutions of the formulated 
problem is  not  enough.   You need to  relate  solution  to  the  real-life 
problem concerned by interpreting it appropriately to see if it reflects the 
observed phenomena.  You may need to modify the model by relaxing 
the assumptions or including some important characteristic (for e.g., air 
resistance in the case of simple pendulum model).

As we have stressed throughout this block, and as you will see in the 
unit that follow, the modelling of any problem must go through these 
stages broadly.  The following flow chart given at the end may help to 
give you a quick overview of the whole process.
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Note that  some  of  the  options/steps  given  in  the  flow chart  are  not 
discussed in detail in the examples discussed in this block.  But we have 
given them here for the sake of completeness.  You would realize their 
importance when we discuss more models in the latter blocks.

While formulating a model for any real life situation use this flowchart 
to see if you have followed the procedure shown in it.  You may do this 
by asking for instance, in the case of simple pendulum these questions 
can be of the following type.

i) Did  we  make  any  assumptions?  (Yes,  we  ignored  the  air 
resistance)

ii) Could we find an analytic solution?

(Yes, when we linearlised.  But No, when we retained the non-linearity. 
We had to solve the elliptic integral numerically).

We  have  not  discussed  computer  simulation  in  this  block  but  we 
included that possibility in the flow chart for completeness.

iii) Could we validate the result using experimental values? (Yes, as 
far as the period of the pendulum was concerned.  The answer is 
NO  if  we  are  verifying  the  instantaneous  position  of  the 
pendulum.  Our  result  showed  that  the  pendulum  oscillated 
indefinitely whereas in reality, it comes to rest. This aspect takes 
you  back  to  model  abstraction,  you  will  have  to  include  air 
resistance and do the whole process again).

Interpretation  of  the  results  definitely  allows  you  to  understand  the 
physics of the problem in a better way.  It is economical too, since after 
establishing the formula for period of oscillation, you do not have to 
repeat the experiments for different lengths of the pendulum any more. 
The comparison with experimental  results  helped to fix the unknown 
parameter – the constant of proportionality in T0 / gα l  - as 2 π . 
After the solutions are tested and validated, no more experiments will be 
necessary and you can predict the values using the derived formulae.

FLOW CHART
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MODEL ABSTRACTION

ASSUMPTIONS OR APPROXIMATIONS
TO BE INTRODUCED

FORMULATE MATHEMATICAL EQUATIONS
AND FIND THEIR SOLUTIONS

NUMERICALANALYTICAL COMPUTER SIMULATION

VALIDATE THE RESULTS USING
EXPERIMENTAL VALUES

DO THE THEORETICAL AND EXPERIMENTAL
RESULTS COMPARE WELL?

UNDERSTAND THE
PHYSICS OF THE 
PROBLEM IN A 
BETTER WAY

ESTIMATE UNKNOWN
PARAMETERS IN

THE SYSTEM

PREDICT VALUES
WHERE 

EXPERIMENTAL 
RESULTS ARE NOT 

AVAILABLE

RECONSIDER

MODIFY

NO

YES

IF POSSIBLE


