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INTRODUCTION

A real-valued function, f, of x, y, z, is a rule for manufacturing a new number, writteq f
Yy, Z, ...), from the values of a sequence of inddpet variables (x, y, z, ...).

The function f is called a real-valued functiontwb variables if there are two independent
variables, a real-valued function of three variabt¢here are three independent variables,
and so on.

As with functions of one variable, functions of eead variables can be represented
numerically (using a table of values), algebraicélising a formula), and sometimes
graphically (using a graph).

Examples
1.f(x,y) =X y Function of two variables
f(1,2)=12=1 Substitute 1 for x and 2 for y



f2,1)=2(1)=3 Substitute 2 for x andl for y
fly,X) =y X Substitute y for x and x for y

2.h(X,y,2) =X +Yy+xz Function of three variables

h(2,2,2) =2 +2 + 22) _ Substitute 2 for x, 2 for y, ar@ifor z.

OBJECTIVES
At the end of this unit, you should be able to know

e domain

* real function

e value of functions

* types of graph

* types of function
MAIN CONTENT

fis a function from set A to a set B if each el@tein A can be associated with a unique
element in B.

Usually written as £ A =B

The unique element B which f associates with x idedoted by f (x).

A— § —> B

Domain

In the above definition of the function, set A &led domain.

Co-domain



In the above definition of the function, set B &led co-domain.

Real Functions

A real valued function f : A to B or simply a rdahction 'f ' is a rule which associates to
each possible real numbesx A, a unique real nurifke=B, when A and B are subsets
of R, the set of real numbers.

In other words, functions whose domain and co-dam&g subsets of R, the set of real
numbers, are called real valued functions.

Value of a Function

If 'f " is a function and x is an element in therdon of f, then image

f(x) of x under f is called the value of 'f ' at x.

Types of Functions and their Graphs
Constant Function

A function f : A ® B Such that A, B I R, is said b® a constant function if there exist K 1
B such that f(x) = k.

Domain = A
Range = {k}
The graph of this function is a line or line segtegrallel to x-axis. Note that, if k>0, the

graph B is above X-axis. If k<0, the graph is betbe x-axis. If k = 0, the graph is x-axis
itself.



F

fix) =k

¥

Identity Function

A function f : R® R is said to be an identity fuiwet if for all x TR, f(x) = x.

Domain =R
Range = R
AY
e
‘\"j'\'?
¥
2] >

Polynomial Function

A function f : R® R is said to be a polynomial faion if for each x TR, f(x) is a
polynomial in X.



f(x) = + ¢ + X
glx)=x% + 3x% + 23 + 5 are examples of polynomial functions.
H(x) = 3x2 + 2 iz not a polynomial function.

X

Modulus Function

¥ o ox20
fix) =
f: R ® R such that f(x) = |x,. Txoxs is called the magkifunction or
absolute value function.
Domain =R
w20
=3 =
e {12
AY
fiX) = x f(X) = x
X
5 >

Square Root Function

Since square root of a negative number is not veallefine a function f : R® R such that
f(x) = %

Domain of f=R7 (set of all non-negative
real numbers)

10



FRange =R° (set of all non-negative
real numbers)

&Y

2 y =%

¥

Greatest Integer Function or Step Function (floor Finction)
f (X) = [X] = greatest integer less than or eqoak t
[X] = n, where nis an integer such tin = <n+1
Smallest Integer Function (ceiling Function)

For a real number x, we denote by [x], the smaltgsger greater than or equal to x. For
example, [5. 2] =6, [-5. 2] = -5, etc. The funatf:R — R defined by

f(x) = [x], x=R
is called the smallest integer function or theiogifunction.
Domain: R

Range : Z

11
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Exponential Function

The exponential function is defined as f(x)*=les graph is

Logarithmic Function

Logarithmic function is f (x) = log x. Its graph is

12
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Trigonometric Functions

Trigonometric functions are sinx, cosx, tanx, @tee graph of these functions have been
done in class XI.

Inverse Functions

Inverse functions are sim, cos'x, tari’x etc. The graph of these functions have been tione
class XI.

Signum Functions

M . x=0
®

F(x) = 4
o, ==0

13



1 ¥ om0

e, fx)=|0 =0
-1 x=«0
&Y
1 =
R
O Ll

M
-y

Odd Function

A function f: A— B is said to be an odd function if

f(x) = - f(-x) for all xe A

The domain and range of f depends on the defindfche function.
Examples of odd function are

y = sinx, y = X, y = tanx

Even Function

A function f : A— B is said to be an even function if

f(x) = f(-x) for all xe A.

The domain and range of f depends on the defindgfche function.
Examples of even function are

y = COSX, Y = X, Y = secx

14



A polynomial with only even powers of x is an evanction.

Reciprocal Function

f(x) =

W

W [

&Y

¥

CONCLUSION

In this unit, you have defined domain and typesdofnain. You have known real
functions and have also learnt value of functiofsu have also known types of graph
and type of function.

SUMMARY
In this unit, you have studied :

TUTOR —

domain

real function
value of functions
types of graph
types of function

MARKED ASSIGNMENT

1. Function f is defined by f(x) = - 2%+ 6 x - 3 . find f(- 2).

2. Function h is defined by h(x) = 3% 7 x - 5 . find h(x - 2).

3. Functions f and g are defined by f(x) =- 7 x 1ala@(x) = 10 x - 12 . find (f + g)(X)

15



4. Functions f and g are defined by f(x) = 1/x + 3x @(x) = -1/x + 6x - 4 . find (f +
g)(X) and its domain

5.Functions f and g are defined by f(x) =2 x + 1 and g(x) = (x - 1)(x + 3) . find (f/
g)(x) and its domain.

REFERENCES

Boas, Ralph P., Jr.: "A primer of real functionhe Carus Mathematical Monographs, No.
13; Published by The Mathematical Association ofeticra, and distributed by John Wiley
and Sons, Inc.; New York 1960 189 pp. MR22#9550

Smith, Kennan T.: "Primer of modern analysis”, Setedition. Undergraduate Texts in
Mathematics. Springer-Verlag, New York-Berlin, 19836 pp. ISBN 0-387-90797-1
MR84m:26002

Krantz, Steven G.; Parks, Harold R.: "A primer edlranalytic functions”, Basler Lehrblcher
[Basel Textbooks], 4; Birkhauser Verlag, Basel, 29884 pp. ISBN 3-7643-2768-5
MR93j:26013

UNIT 2: Limit of Function of Several Variables

CONTENTS
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1.0 INTRODUCTION

Let f be a function of two variables defined oniskdwith center (a,b), except possibly at
(a,b). Then we say that thmit of f(x,y) as (x,y) approaches (a,b)s L and we write

(xy) - (ab)fxy) = L

If for every numbek > 0 there is a corresponding number 0 such that

[F(x,y) - LO<¢& whenever 0 </(x—a)? +(y-b)? <3

Other notations for the limit are

16



Ixiglf(x,y):L and f(x,y)-» Las (x,y)- (a,b)

y-b

Since [f(x,y) - LO is the distance between the numbers f(x,y) and bhd

\/(x—a)z +(y-b)? is the distance between the point (x,y) and thetpi,b), Definition
12.5 says that the distance between f(x,y) andnLbeamade arbitrarily small by making 1
distance from (x,y) to (a,b) sufficiently small (ot 0). Figure 12.15 illustrates [Lnition
12.5 by means of an arrow diagram. If any smaériral (L - €, L +€) is given around L
then we can find a diskgvith center (a,b) and radiid > 0 such that f maps all the points
Ds [except possibly (a,b)] into the interval - €, L +€).

2.0: OBJECTIVES

At this unit, you should be able to know the digfam of terms

3.0:  MAIN CONTENTS

Consider the function f(x,y) 49— x? - y?> whose domain is the closed disk D = {(*(x® +
y? < 9} shown in Figure 12.14(a) and whose graph is likenisphere shown in Figu
12.14(b)

If the point (x,y) is close to the origin, then mday are both close to 0, and so f(x,y) is cl
to 3. In fact, if (x,y) lies in a small open dis® + y* < &, then

f(x.y) = 9-(x* +y?) >9-5"

Figure 12.14

(a) Domain of f (b) Graph of f

Thus we can make the values of f(x,y) as close & 3ve like by taking (x,y) in a smi
enough disk with centre (0,0). We describe thisasion by using the notati

(xY) » (ab) \J9-(€ +y?) =3

In general, the notation

17



(xy) ~ (ab)fxy) = L

Means that the values of f(x,y) can be made aedgswe wish to the number L by taking
the point (x,y) close enough to the point (a,b)mére precise definition follows.

12.5 Definition

Let f be a function of two variables defined onigkdwith centre (a,b), except possibly at
(a,b). Then we say that thmit of f(x,y) as (x,y) approaches (a,b)s L and we write

(xy) ~ (ab)fxy) = L

If for every numbek > O there is a corresponding number 0 such that

[F(x,y) - LO<¢& whenever 0 </(x—a)? +(y-b)? <3
Other notations for the limit are

IXiErLf(x,y) =L and f(x,y)-» Las(x,y)- (a,b)

y-b

Since [f(x,y) - LO is the distance between the numbers f(x,y) and and
\/(x—a)2 +(y-b)? is the distance between the point (x,y) and thiatp@,b), Definition
12.5 says that the distance between f(x,y) andnLbeamade arbitrarily small by making the
distance from (x,y) to (a,b) sufficiently small ¢(baot 0). Figure 12.15 illustrates Definition
12.5 by means of an arrow diagram. If any smaériral (L -€, L +€) is given around L,
then we can find a diskgvith center (a,b) and radids> 0 such that f maps all the points in
Ds [except possibly (a,b)] into the interval (k,-L + ¢€).

Another illustration of Definition 12.5 is given iRigure 12.16 where the surface S is the
graph of f. Ife > 0 is given, we can find > 0 such that if (x,y) is restricted to lie in tdisk

Ds and (x,y)# (a,b), then the corresponding part of S lies behwke horizontal planes z = L
-gand z =L +&. For functions of a single variable, when wexl@ipproach a, there are only
two possible directions of approach, from the aftright. Recall from Chapter 2 that if
limy_ o — f(X) £ limy_ 5 + f(X), then lim_ 5 f(x) does not exist.

For functions of two variables the situation is astsimple because we can let (x,y) approach
(a,b) from an infinite number of directions in amanner whatsoever (see Figure 12.7).

Definition 12.5 refers only to thdistancebetween (x,y) and (a,b). It does not refer to the
direction of approach. Therefore if the limit @gisthen f(x,y) must approach the same limit

18



no matter how (x,y) approaches (a,b). Thus if we find two different paths of approa
along which f(x,y) has different limits, then itlfmws that lim) . a,0) f(X,y) does not exis

Figure 12.15

Figure 12.16

19



Figure 12.17

A/\/

/7\

|

/ 0 / a \ X

If f(x,y) - Lias (x,y)— (a,b) along a path,, and f(x,y) - L2 as (x,y)- (a,b) along a path
C,, where I3 # L, then Iimx,y)a(a,b) f(x,y)

Example 1

2 2

: : X" =

Find lim 3 y2
xy)- (00 X +y

if it exists

Solution

Let f(x,y) = (¢ — V?)/(x* + Y?). First let us approach (0,0) along tt-axis. Theny = 0 give
f(x,0) = Xé/x? = 1 for all x£ 0, sc

f(x,y) - 1 as (x,y)- (0,0) along the -axis
We now approach along th-axis by putting x = 0. Then (0,y) =%y? = -1 for all yz 0, so
f(x,y) - 1 as (x,y)- (0,0) along the -axis (see Figure 12.18.) Since f has two diffe

limits along two different lines, the given limibds not exis

Figure 12.18

20



Figure 12.19

Example 2

If f(x,y) = Xy/(x2 + y), does liny). 0.0 f(X,y) exist?

21



Solution

If y = 0, then f(x,0) = 0/x= 0. Therefore
f(x,y) - 0 as (x,y)- (0,0) along the x-axis
If x = 0, then f(0,y) = 0/9= 0, so

f(x,y) - 0 as (x,y)- (0,0) along the y-axis

Although we have obtained identical limits along tixes, that does not show that the given
limit is 0. Let us now approach (0,0) along anothree, say y = x. For all ¥ 0.

x? 1
f = ==
0u) x2+x2 2
Therefore f(x,y)- % as (x,y)- (0,0) along y = x

(See Figure 12.19.) Since we obtained differenttéiralong different paths, the given limit
does not exist.

Example 3

2

Xy
X2 +

If f(x,y) = does lim )f(x,y) exist?

y* (xy)~ (00
Solution

With the solution of Example 2 in mind, let us toysave time by letting (x,y} (0,0) along
any line through the origin. Then y = mx, wheresrnthe slope, and if m 0,

x(mY?> m?x®  _ m’x
2+(mx)4 x2 +m4x4 1+m4x2

f(x,y) = f(x,mx) = <

So f(x,y) -» 0 as (x,y)- (0,0) along y = mx

Thus f has the same limiting value along every lim®ugh the origin. But that does not
show that the given limit is 0, for if we now letY) — (0,0) along the parabola x £ we
have

2 \,2 4

yhy: _y
(y)2+y* 2y

N

f(x,y) = f(y2y) =

so f(x,y) - % as (x,y)- (0,0) alongx =%

Since different paths lead to different limitingwes, the given limit does not exist.

Example 4

22



2
. . X
Find lim 3 Y
(xy)-(00) X~ + Yy

5 If it exists

Solution

As in Example 3, one can show that the limit alamy line through the origin is 0. T¥
does not prove that the given limit is 0, but tineits along the parabolas y * and x =
also turn out to be 0, so we begin to suspecitttigalimit does exis

Lete > 0. We want to find > 0 such the

2
Ty —O( <gwhenever 0 </x* +y* <&

X2+y2

3x°
That is, bl <gwhenever 0 <\/x*+y* <&

X2+y2
But x* < x* + y? since ¥ = 0, sc

2
3X |y| 53|y|=3’y2 <3/x2 +y?

X2+y2

Thus if we choosé = €/3 and let 0 <4/x* + y* < 3, then

2
3X°y —O( <3YX+y? <36=3(§J =€

X2+y2

Hence, by Definition 12.5.

3x%y
m 2 2
(xy)- 00 X" +Yy

=0

4.0:. CONCLUSION
In this unit, you have known several definitionsldrave worked various examp
5.0 SUMMARY

In thisunit, you have studied the definition of terms &age solved various exampl
6.0:. TUTOR-MARKED- ASSIGNMENT

1. Find thdimit

x4 2y-3

lim :
= x—1

23



2. Find the limit

3. Calculate the limit

4 .Calculate the limit

5. Find the limit

lim
x =9 x_g
6.Find the limit
I sint—1¢
1IT1
=0 tant
7.Find the limit
) 3x
lim

7.0. REFERENCES/FURTHER READING
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1.0: INTRODUCTION

Just as for functions of one variable, the calonhaof limits can be greatly simplified by the
use of properties of limits and by the use of quunty.

The properties of limits listed in Tables 2.14 &5 can be extended to functions of two
variables. The limit of a sum is the sum of tmeits, and so on.

Recall that evaluating limits afontinuousfunctions of a single variable is easy. It can be
accomplished by direct substitution because thmidef property of a continuous function is

limy_, — f(X) = f(a). Continuous functions of two variabl are also defined by the direct
substitution property.

Definition
Let f be a function of two variables defined on iakdwith center (a,b). Then f is called
continuous at(a,b) if( I;rr} ) f(x,y) = f(a,b)
X,¥)-(a,
2.0:. OBJECTIVE
At this unit, you should be able to know the digiom of terms
3.0: MAIN CONTENTS
Let f be a function of two variables defined on iakdwith center (a,b). Then f is called
continuous at(a,b) if( I;rr} ) f(x,y) = f(a,b)
X,Y)-(a,

If the domain of f is a set @ R? then Definition 12.6 defines the continuity off an
interior point (a,b) of D, that is, a point that is containedairdisk 3 [ D [seek Figure
12.20(a)]. But D may also containb@undary point, that is, a point (a,b) such that every
disk with center (a,b) contains points in D anaadsints not in D [see Figure 12.20(b)].

If (a,b) is a boundary of D, then Definition 12s5modified so that the last line reads

| (x,y) —L| <& whenever (x,yJID and 0 <y/(x-a)? +(y-b)? < &

With this convention, Definition 12.6 also applighen f is defined at a boundary point (a,b)
of D.

26



Finally, we say f izontinuous or D if f is continuous at every point (a,b) in

The intuitive meaning of continuity is tt if the point (x,y) changes by a small amount, t
the value of f(x,y) changes by a small amount. sTheans that a surface that is the grar
a continuous function has no holes or bre

Using the properties of limits, you can see thamsudiffereices, products, ar-quotients of
continuous functions are continuous on their domaibet us use this fact to give examg
of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of terms of
form cX"y", where c is a constant and m and n are-negative integers. rational function
is a ratio of polynomials. For instan

f(x,y) = x*+ 5%y% + 6xy* — 7y + €
is a polynomial, whereas

2xy+1
X2 + y2

g(x.y) =

is a rational function.

Figure 12.20

) Interior points of ID

Boundary points of ID

27



From Definition it can be shown that

im x=a im y=b lim <c=c
(xy)~ (ab) (x.y)~ (ab) (x¥)~ (ab)

These limits show that the functions f(x,y) = xxg§ =y, and h(x,y) = ¢ are continuous.
Since any polynomial can be built up out of theerfunctions f, g and h by multiplication
and addition, it follows that all polynomials arentinuous on R2. Likewise, any rational
function is continuous on its domain since it guatient of continuous functions.

Example 5

Evaluate lim Py = X%y + 3x + 2y).

Xy)- (12)
Solution

Since f(x,y) = Xy* = x%y? + 3x + 2y is a polynomial, it is continuous evehere, so the limit
can be found by direct substitution:

im (AP -y +3x+2y) =121 2%+31+22=11

(xy)- (12)

Example 6

Where is the function

x* +y? :
f(x,y) = Xt y? Continuous?

Solution

The function f is discontinuous at (0,0) becausis ot defined there. Since f is a rational
function it is continuous on its domain D = {(x[¥X,y) # (0,0}.

Example 7

Let

28



2 2 If(x,y) # (0,0)

g(xy) =

X2+y2

0

Here g is defined at (0,0) but g is still discontins at 0 because

Limx)_(0,009(X,y) does not exist (see Example 1).

Example 8
Let

3X2 |f(X;Y) % (OIO)
f(xy) =

X“+y

0

We know f is continuous for (x,y8 (0,0) since it is equal to a rational functionrthe Also,
from Example 4, we have

2
im fxy) = lim Y

——— = 0=10,0
(x.y)-(ab) xy)-(ab) X%+ y? 0.0)

Therefore f is continuous at (0,0), and so it istdmious on R

Example 9
Let

3x? If(x,y) # (0,0)
hxy) = {2

X“+y

17

Again from Example 4, we have

My _

5 =

lim  g(x,y)= lim 0# 17 = g(0,0)

(xy)~ (ab) (xy)-(ab) X% +y

And so g is discontinuous at (0,0). But g is combus on the set S = {(xMjx,y) # (0,0}
since it is equal to a rational function on S.

Composition is another way of combining two contins functions to get at third. The proof
of the following theorem is similar to that of Them 2.27.

29



Theorem

If f is continuous at (a,b) and g is a functionaosingle variable that is continuous at f(a,),
then the composite function h =ogf defined by h(x,y) = g(f(x,y)) is continuous at ).

Example 10

On what set is the function h(x,y) = IA(x y* — 1) continuous?
Solution

Let f(x,y) =xX +y*— 1 and g(t) = In t. Then

g(f(x,y)) = In(¢ + y* — 1) = h(x.y)

So h =go f. Now fis continuous everywhere since it iscdypomial and g is continuous on
its domain {It > 0}. Thus, by Theorem 12.7, h is continuousterdomain

D = {(x.y)IX* + ¥ = 1> 0} = {(x,y)x* + ¥ > 1}
Which consists of all points outside the circfetxy? = 1.

Everything in this section can be extended to fionst of three or more variables. The

distance between two points (x,y,z) and (a,b,d}’iis \/(x—a)z +(y-b)?+(z-c)?, so the
definitions of limit and continuity of a functiorf three variables are as follows.

Definition
Let: DOR® - R.

€)) lim f(x,y,z) =L

(xy,2)- (ab,c)

Means that for every number 0O there is a corresponding number 0 such that

of(x,y,z) - LO <& whenever (x,y,z)] D and

0<y(x-a)?+(y-b)?+(z-0)* <3

(b) fiscontinuousat (a,b,c) if

30



lim f(x,y,z) = f(a,b,c)

(xy,2)- (ab,c)

If we use the vector notation introduced at the eh8ection 12.1, then the definitions of a
limit for functions of two or three variables cae lritten in a single compact form as
follows.

If : D OR" — R, then limy_, f(x) = L means that for every number> 0O there is a
corresponding numbeér> 0 such that

Of(x) - LO<e whenever 0€x—4d <3

Notice that if n = 1, thex = x anda = a, and (12.9) is just the definition of a linhar
functions of a single variable. If n = 2, then x(xy), a = (a,b), and[Xx — a1 =
\/(x—a)2 +(y-b)?, so (12.9) becomes Definition 12.5. If n = 3,nthe= (x,y,z),a =

(a,b,c), and (12.9) becomes part (a) of Definitidh8. In each case the definition of
continuity can be written as

legl f(x) = f(a)

4.0: CONCLUSION
In this unit, you have known several definitionsl drave worked various examples.
5.0. SUMMARY

In this unit, you have studied the definition ofs and have solved various examplebe T

following limits lim x=a, lim y=band lim c=c
(xy) - (ab) (xy) - (ab) (xy) - (ab)

Show that the functions f(x,y) = X, g(x,y) = y,dah(x,y) = ¢ are continuous. Obviously any
polynomial can be built up out of the simple funos f, g and h by multiplication and
addition, it follows that all polynomials are camibus on R2. Likewise, any rational
function is continuous on its domain since it uatient of continuous functions.

6.0:. TMA

In Exercises 1 — 3 determine the largest set ogtwifie given function is continuous

X2+y2 +1

1. Fy)=
(x.y) ry? -1
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X6 +X3y3 + y6
3 3

2. F(x,y) = oty

3. G(X,y) =X+ Yy —{X-Yy

4, For what values of the number r is the function
f(x,y,z) = (x+y+2)" If(x,y,2) # (0,0,0)
X2 + y2 + Z2
0

continuous on R
5. If ¢ O V,, show that the function f:'R- R given by f§) = c.x is continuous on R
6.0 TUTOR — MARKED ASSIGNMENT
1.Show that function f defined below is not contine at x = - 2.
fx)=1/(x+2)
2. Show that function f is continuous for all vadugf x in R.
f(x) =1/ (x*+ 6)
3. Show that function f is continuous for all vadugf x in R.
fx)=1x-5]|
4. Find the values of x at which function f is distinuous.
f(x) = (x-2) /[ (2 X+ 2x - 4)(X* + 5) ]

5. Evaluate the limit
liMyx_, a SIN (2X + 5)

6.Show that any function of the forn”€ is continous everywhere, a and b real numbers.

7.0:  REFERENCES / FURTHER READING

1.Bartle, R. G. and Sherbert, Diroduction to Real AnalysidNew York: Wiley, p. 141,
1991.

2.Kaplan, W. "Limits and Continuity." 82.4 lkdvanced Calculus, 4th eReading, MA:
Addison-Wesley, pp. 82-86, 1992
3. Richard Gill. Associate Professor of Mathematiagdewater Community

32



MODULE 2 PARTIAL DERIVATIVES OF FUNCTION OF SEVERAL
VARIABLES

-Unit 1: Derivative
-Unit 2: Partial derivative.
-Unit 3: Application of Partial derivative.

UNIT 1: DERIVATIVE
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1  The derivative of a function
3.2 Higher derivative
3.3 Computing derivative
3.4  Derivative of higher dimension
3.0Conclusion
4.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In calculus, a derivative is a measure of how tinecfion changes as the input changes.
Loosely speaking, a derivative can be thought of mouch one quantity is changing in
response to changes in some other quantity. Fongea the derivative of the position of a
moving object with respect to time, is the objestantaneous velocity.
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The derivative of a function at a given chosen tnpwalue describe the best line
approximation of the functic near that input value. For a real valued functiba single rea
variable. The derivative at a point equals the slop the tangent line to the graph of
function at that point. In higher dimension, theidkive of a function at a point is line
transformation called the linearization. A closeBlated notion is the differential of
function. The process of finding a derivative ifatentiation. The reverse is Integrati

The derivative of a functiorepresents an infinitesimal change in function with respect t
one of its variables,

The "simple" derivative of a functic.fwith respect to a variablas denoted eithe /* (x)or
df/dx
2.0 OBJECTIVE

In this Unit, you should be able
* Know the derivative of a functic
* Identify higher derivativ
» solve problems by Computing derivai
» identify derivative of higher dimensi

3.0 MAIN CONTENT

3.1 The Derivative of a Functiol

Let f be a function that has a derivative at every pa in the domain of. Because every
pointa has a derivative, there is a function that sendgpthinta to the derivative of ata.
This function is writterf’(x) and is called thderivative functioror thederivative of f. The
derivative off collects all the derivativeof f at all the points in the domain f.

Sometimesf has a derivative at most, but not all, points sfdbmain. The function who:
value ata equalsf'(a) wheneveif'(a) is defined and elsewhere is undefined is also d¢dhe
derivative off. It is stll a function, but its domain is strictly smalldgran the domain cf.

Using this idea, differentiation becomes a functdfiunctions: The derivative is an opera
whose domain is the set of all functions that haeevatives at every point of thedomain
and whose range is a set of functions. If we detlite operator byD, thenD(f) is the
functionf'(x). SinceD(f) is a function, it can be evaluated at a pa. By the definition o
the derivative functiorD(f)(a) =f'(a).

For comparison, conder the doubling functiof(x) =2x; f is a realvalued function of a re:
number, meaning that it takes numbers as inputhaschumbers as outpt
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12,
24,
3 — 6.

The operatoD, however, is not defined on individual numbersisitonly defined ot
functions:

Dz 1)=(z+ 0),
Dz x)=(x— 1),
Dz —2*)=(z— 2-2).
Because the output D is a function, the output @ can be evaluated at a point. |

instance, whel is applied to the squaring functi

2
T,

D outputs the doubling functic

T — 2T,

which we named(x). This output function can then be evaluated tbf(1) = 2, f(2) = 4,
and so on.

3.2 Higher derivative

Let f be a differentiable function, and If’(x) be its derivative. The derivative f'(x) (if it
has one) is writtefi’(x) and is called the second derivatof f. Similarly, the derivative of
secondderivative, if it exists, is writteif”’(x) and is called théhird derivative of f. These
repeated derivatives are calhigher-order derivatives

If x(t) represents the position of an object at tt, then the higheorder derivatives cx have
physical interpretations. The second derivativix is the derivative oX'(t), the velocity, and
by definition this is the object's acceleration.eTthird derivative oix is defined to be th
jerk, and the fourth derivative is defined to be ftunce.

A function f need not have a derivative, for example, if itas continuous. Similarly, even
f does have a derivative, it may not have a secondatiwe. For example, |

+z2, ifx >0

flz) = 2

—x=, if x <0
Calculation shows thdtis a differentiable function whose derivatis

+2zx, ifx =0
—2zr, ifx<0.

fiz) =
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f'(x) is twice the absolute value function, and it does lmave a derivative at zero. Simi
examples show that a function can hk derivatives for any nonegative integek but no(k
+ 1)-order derivative. A function that hak successive deratives is calledk times
differentiable. If in addition thekth derivative is continuous, then the functionagigo be oi
differentiability classC¥. (This is a stronger condition than havk derivatives.) A functior
that has infinitely many derivaies is callednfinitely differentiable .

On the real line, every polynomial function is mifely differentiable. By standal
differentiation rules, if a polynomial of degrn is differentiatech times, then it becomes
constant function. All of its suequent derivatives are identically zero. In patécuthey
exist, so polynomials are smooth functic

The derivatives of a functiof at a pointx provide polynomial approximations to tt
function neax. For example, if is twice differentiable, then

flz+h)~ fx) + f(@)h+ 5" (x)R
in the sense that

i J& R = f2) — fla)h — /(@) _ 0
h—0 hZ2 '

If fis infinitely differentiable, then this is the baging of the Taylor series fif.
Inflection Point

A point where the second derivative of a functidrarmges sign is called einflection
point.At an inflection point, the second derivative mbg zero, as in the case of -
inflection pointx=0 of the functiory=x’, or it may fail to exist, as in the case of thiéeiction
point x=0 of the functiony=x"3. At an inflection point, a function swches from being a

convex function to being a concave function or wieesa

3.3 Computing the derivative

The derivative of a function can, in principle, dmmputed from the definition by consideri
the difference quotient, and computing its limit. gractice, once the derivatives of a f
simple functions are known, the derivatives of othenctions are more easily compui
usingrulesfor obtaining derivatives of more complicated fuons from simpler one
Derivative of Elementary Function

Most dervative computations eventually require taking therivative of some commc

functions. The following incomplete list gives sowfethe most frequently used functions
a single real variable and their derivati

- Derivative power: if
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flz) =",

wherer is any eal number, the
f'(2) =ra"",

wherever this function is defined. For exampld(x) = x*'4 then

/() = (1/4)2~"

and the derivative function is defined only for piee x, not forx = 0. Whenr = 0, this rule
implies thatf'(x) is zero forx # G, which is almost the constanile (stated below

Exponentialandlogarithmfunctions

ddm =
£ L = ln(ﬁ-) L
d 1
—1 = — >0
d 1
]
dr 08a(®) = rIn(a)
Trigonometric Functions
d
ESIH(I) = cos(x).
E cos(x) = —sin(x).
d 1
atan( )= SEGE(I) = m =1 —i—t-ang(:t:).
Inverse Trigonometric Functio
d 1
T arcsin(x) = m
d
— arccos( :
dx (@) = V-2
d ; 1
- arc an(r) = T2

Rules for finding the derivati
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In many cases, complicated limit calculations brecli application o/Newton's differenci
guotient can be avoided using differentiation rul8eme of the most basic rules are

following.

Constant ruleif f(x) is constant, the

=0
Sine rule :
) Il ¥
(ﬂ-f + E‘ﬂ) =af 4 bg for all functionsf andg and all real numbela andb.

Product rule :

(f9) =Ffg+ fdroral functionsf andg.
Quotient rule :

(i)f _f'g—I¢g
g 9*  forall functionsf andg whereg # 0.
Chain rule : Iff(x) = h(g(x)), ther

f'(z) =W (g(z)) - ¢'(z).

Example computation
The derivative of

f(z) = 2" 4+ sin(2?) — In(x)e” + 7

IS
2 I
fllz) = 4z 4 df; ) CGS(IE) - %ez - ln:tdéi ) +0

= 472° + 21 CGS(IE) — lez — In(x)e”.
T

Here the second term was computed using the chlarand third using the product rule. T
known derivatives of the elementary functio?, x*, sin§), In(x) and expx) = &, as well as
the constant 7, were also us¢

3.4 Derivatives in higher dimensins

Derivative of vector valued functior

A vector valued functioy(t) of a real variable sends real numbers to vedétoseme vecto
spaceR". A vectorvalued function can be split up into its coordinfatectionsy(t), y»(t), ...,
yn(t), meaning thay(t) = (ya(t), ..., ya(t)). This includes, for example, parametric curveR?
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or R®. The coordinate functions are real valued funatjoso the above definition
derivative applies to them. The derivativey(t) is defined to be the vector, called thngent
vector, whose coordinates are the derivativesettordinate functions. That

y () = (4(t).. ... y.(1)).

Equivalently,

if the limit exists. The subtraction in the numeras subtraction of vectors, not scalars. If
derivative ofy exists for every value ¢, theny’ is another vector valued functis

If e, ..., & is the standard basis fR", theny(t) can also be written ag(t)e; + ... + yu(t)en.

If we assume that the derivative of a ve-valued function retains the linearity propel
then the derivative of(t) must b

yi(ther +- -+ y,(t)en
because each of the basis vectors is a cor

This generalization is useful, for exampley(t) is the position vectoof a particle at timd;
then the derivativg'(t) is the velocity vector of the particle at tit.

Partial derivative

Suppose that is a function that depends on more than one varidldr instanc
fla,y) =2" +ay+y"

f can be reinterpreted as a family of functions of wariable indexed by the other variak
flz,y) = foly) = 2" + oy + .

In other words, every value x chooses a function, denotigdwhich is a function of one re
number. That is,

T [,
f2(y) =22 + zy + 2

Once a value of is chosen, saa, thenf(x,y) determines a functiofy that sendy to a2 + ay
+ y2:

faly) = a® + ay +y°.
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In this expressiora is aconstan, not avariable sof, is a function of only one real variab
Consequently the definition of the derivative fduaction of one variable appli

faly) = a+2y.

The above procedure can be performed for any choica. Assembling the derivative
together into a function gives a function that digss the variation cf in they direction:

daf

—(x,y) ==+ 2v.

d'y( Y) y
This is the partial derivative (f with respect tg). Hereg is a roundedl called thepartial
derivative symbol To distinguish it from the letted, 0 is sometimes pronounced "de
"del", or "partial” instead of "dee

In general, theartial derivative of a functionf(x,, ..., X,) in the directiorx; at the point&;
..., &) Is defined to be:

of

. flay,...,a;+h oo a,) = flag, ..o a,. .., a6,)
%(ﬂ-lj...,ﬂﬂ) :}LIE}) n .

In the above difference quotient, all the variabdaseptx; are held fixed. That choice
fixed values determines a function of one vari

fu1,...,ag_1,ﬂ5+1,_..,ﬂn (It') = f(ﬂ-l, L PR R LR P ﬂ"ﬂ)

and, by definition,

dfa1,...,ag_1,ag+1,___,an ([I) . 8f
i) =

dz; 8—(1511_,...,{1“).

1

In other wods, the different choices @ index a family of onerariable functions just as
the example above. This expression also showsthieatomputation of partial derivativ
reduces to the computation of ~variable derivatives.

An important example of aihction of several variables is the case of a sealaed functior
f(x1,..%,) on a domain in Euclidean speR" (e.g., onR2 or R3). In this cas¢f has a partial
derivative 0f/ox with respect to each variabx;. At the pointa, these partiaderivatives
define the vector

Vfla) = (%(a},...,%(a}) .

This vector is called the gradient f ata. If f is differentiable at every point in sor
domain, then the gradient is a ve-valued functionVf that takes the poira to the vector
Vi(a). Consequently the gradiedetermines a vector field.
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Generalizations

The concept of a derivative can be extended to nadimgr settings. The common thread is
that the derivative of a function at a point serasslinear approximatiorof the function at
that point.

4.0CONCLUSION

In this unit, you have known the derivative of andtion .Through the derivative of
functions, you have identified higher derivatiamd you have solved problems by
computing derivative through the use of this fumgs. You have also identified
derivative of higher dimension.

5.0 SUMMARY
In this unit, you have studied the following:

o the derivative of a function
o identify higher derivative
0 solve problems by Computing derivative

o identify derivative of higher dimension
6.0TUTOR MARKED ASSIGNMENT

Find the derivative of F(x,y) = 3sin(3xy)
Find the derivative of F(x,y)=x +In6)(\/y)

Evaluate the derivative F(x,y) Xz +3xy—2tan(y)
ysinx

COSX

Find the derivative of F(x,y)
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1.0 INTRODUCTION

Suppose that is a function of more than one variable. For insé
_ 2 2
z=fla,y)=2"+ay+y.
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T
A graph ofz = X* + xy + y*. For the partial derivative at (1, 1, 3) that lesy constant, the
corresponding tangefibe is parallel to thxzplane.

| | L | |
3 ] o ] ]

A slice of the graph above at 1

The graphof this function defines isurfacein Euclidean spacelo every point on thi
surface, there are an infinite numbertangent lines Partial differentiation is the act
choosing one of these lines and findingslope Usually, the lines of most interest are th
that are parallel to thez-plane, and those that are parallel toyzplane.

To find the slope of the line tangent to the fumctat (1, 1, 3) that is parallel to txzplane,
they variable is treated as constant. The graph andotare are shown on the right. On
graph below it, we see the way the function lookstiee pliney = 1. By finding the
derivativeof the equation while assuming tly is a constant, the slope f at the pointX, v,
2) is found to be:

Uz_g
T

So at (1, 1, 3), by substitution, thepe is 3. Therefore

Jz
— =3
dx
at the point. (1, 1, 3). That is, the partial dative ofz with respect tx at (1, 1, 3) is
2.0: OBJECTIVES
After studying this, you should be able f

+ define Partial derivati\
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» know the geometric interpretation
* identify anti derivative analogue
» solve problems on partial derivative for functidrseveral variables
» identify higher order derivatives
3.0 MAIN CONTENT
Let us consider a function

1) u=~fx,y,z,p0q,...)

of several variables. Such a function can be stuthg holding all variables except one
constant and observing its variation with respectohe single selected variable. If we
consider all the variables except x to be consthat)

- -~

du df(x.y,2,p,q,..)

dx dx

represents the partial derivative of f(x, y, z,gp,... ) with respect to x (the hats indicating
variables held fixed). The variables held fixed deved as parameters.

Definition of Partial derivative.

The partial derivative of a function of two or movariables with respect to one of its
variables is the ordinary derivative of the funotmwith respect to that variable, considering
the other variables as constants.

Example 1.The partial derivative of 3y + 2y with respect to x is 6xy. Its partial derivative
with respect to y is 3x+ 4y.

The partial derivative of a function z = f(x, y,) .with respect to the variable x is commonly
written in any of the following ways:

dz of  df(x.v...) _ _ _ _ _
P . Do f(x,yv....), D.f, folxove), fo filxy..)

- -
ox ox ox

Its derivative with respect to any other varialsievritten in a similar fashion.
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¥

Fig. 1
Geometric interpretation. The geometric interpretation of a partial derivatis the same ¢
that for an ordinary derivative. It represents shape of the tangent to that curve represe
by the function at a particular point P. In theeca$a function of two variable

z=1(x,y)

Fig. 1 shows the interpretation -/ /¥ and ¢/ /@Y /18X cqrresponds to the slope
the tangent to the curve APB at point P (where e A®B is the intersection of the surfe

with a plane through P perpendicular to the y ax@nilarly, 7 /¢ corresponds to the
slope of the tangent to the curve CPD at point Refe curve CPD is the intersection of
surface with a plane through P perpendicular tocthgis)

Examples 2

.

The volume of a cone depends on height and r

The volume V of a conedepends on the coneheighth and itsradiusr according to the
formula

mrih

3

The partial derivative o¥ with respect to is

Vir,h) =

3V_2?T’rh
ar 3 7
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which represents the rate with which a cone's veluwmanges if its radius is vari
and its height is kept constant. The partial deirreawith respect th is

3V_ e
E

which represents the rate with which the volumenges if its height is varied and its rus
is kept constant.

By contrast, theotal derivative of V with respect t@ andh are respective

ay ay
i

-
dV' 2mrh wr*dh
dr _ 3 3 dr

|
#

and

v av

G T
—— o —

dV_?T’rE 2arh dr

in ~ 3 T3 dn

The difference between the total and partial déikeais the elimination of indirec
dependencies between variables in partial deriea

If (for some arbitrary reason) the cone's propodibave to stay the same, and the heigh
radius are in a fixed ratiq

h dh

This gives the total derivative with respecr:

dV B 2mrh e

ir - 3 TF3

Equations involving an unknown function's partiaridatives are callepartial differential
equationsand are common irphysics, engineering, and othecience and applied
disciplines.

Notation

For the following examples, I be a function irx, y andz

First-order partial derivative
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o =

Seconderder partial derivative

ai
f fzz — zzf

Second-ordemixed derivative:

d°f af _
or oy (d) Jay = Oyt

Higher-order partial and mixed derivativ
8:+3+F;f

When dealing with functions of multiple variablesme of these variables may be relate
each other, and it may be necessary to specifyiotkplwhich variables are being he
constant. In fields such asatistical mechani, the partial derivative cf with respect tc,
holdingy andz constant, is often expresse(

af
or )

1

— f{f:jjkl

Anti derivative analogue

There is a concepbr partial derivatives that is analogous anti derivative for regular
derivatives. Given a partial derivative, it alloisr the partial recovery of the origin
function.

0z
. ‘_ = I —|— y n H (1 1
Consider the example @ . The "partial” integral can be taken with resptec
X (treatingy as constant, in a similar manner to partial deiovai

z—f dr = 2° + xy + g(y)

Here, the"constant” of integratic is no longer a constant, but instead a functioalbthe
variables of the original function excex. The reason for this is that all the other vaea
are treated as constant when taking the partiavatere, so any functin which does not
involve x will disappear when taking the partial derivatieed we have to account for ti
when we take the antiderivative. The most generay w represent this is to have -
"constant” represent an unknown function of all dkfeer variables. Thus the setfunctions
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X% + xy + g(y), whereg is any on-argument function, represents the entire set aftfans in
variablesx,y that could have produced tx-partial derivative 2+y.

If all the partial derivatives of a function aredamn (for example, with thgradient), then the
antiderivatives can be matched via the above psoeseconstruct the original function up
a constant

Example 3

For the function
flz,9) =2+ 2% +3*

find the partial derivatives ofwith respect to x and y and compute the rates ahgh of the
function in the x and y directions at the poi-1,2).

Initially we will not specify the values of x andwhen we take the derivatives; we will ji

remember which one we are going to hconstant while taking the derivative. First, holi
fixed and find the partial derivative of f with et to x:

gi(zry} = fz(z,y) = 2z + 322y?

Second, hold x fixed and find the partial derivatof f with respect to )

Now, plug in the values x%-and y=2 into the equations. Vobtain f x-1,2)=10 and f_y(-
1,2)=28.

Partial Derivatives for Functions of Several Variables

We can of course take partial derivatives of fumtdi of more than two variables. If f is
function of n variables x_1, x_2, ..., x_n, theridke the partii derivative of f with respect 1
x_i we hold all variables besides x_i constant take the derivative

Example 4

To find the partial derivative of f with respectttor the functior

flz,y,2,8) =22 +y? + 22 +12 + zyz

we hold x, y, and z constant and take the derieatnth respect to the remaining variabl
The result is

%{—{z,y, z,t) = 0+ 0+ 0 + 2t — 3zyzt*
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Interpretation

o |s the rate at which f changes as x changes, figed (constant)
X
of
__Is the rate at which f changes achanges, for a fixed (constant) x.
oy
Higher Order Partial Derivatives

If f is a function of x, y, and possibly other \atrles, thel

o°f o . of
_isdefined to be [ . }
x> X - oOX
Similarly,

ai o  of
__ isdefinedtob [ . J
e oy - oy
of o . of
__ isdefinedtob _ | _ |
0YyOX oy =~ OX
ai o . of
____ isdefinedtob [ . ]
oxoy oX oy

The above second order partial derivatives can bh&salenoted byyy, fyy, fyy, and §x
respectively.

The last two are calleohixed derivatives and will always be equal to each other wher
the first order partial derivatives are continuc

Some examples of partial derivatives of functiomss@veral variables are shown belc
variable as we did in Calculu
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Example 1 Find all of the firt order partial derivatives for the following furarts

(a)f(x,y):x4+6 y—10

oW = x'y-10y'z’ +43x—7tan(4y)
9 7.4

h(ﬁ“,r) = r?].n(f)+ —— NS

(€) 3

f(.x,y)Zf:os[i]exjy‘”j

X

(d)

Solution

(a)f(xjy):xﬂﬂﬁv{y—lo

Let’s first take the derivative with respectx and remember that as we do so ally’s will
be treated as constanfBhe partial derivative with respectx is,

fix,3)= 4x

Notice that the second and the third term diffaegatto zero in this cas¢ It should be clear
why the third term differentiated to ze It's a constant and we know tl constants always
differentiate to zero.This is also the reason that the second term difteated to zer
Remember that since we are differentiating witlpees tox here we are going to treat y's
as constantsThat means that terms that onnvolve y's will be treated as constants &
hence will differentiate to zel

Now, let’s take the derivative with respecty. In this case we treat adls as constants and
so the first term involves onx's and so will differentiate to zero, just te third term will
Here is the partial derivative with respecy.

3
f.? ('x? y) — \/_
¥
4 44
Ly W= XY 10y z" +43x—7 tan(4y)
With this function we’ve got three first order dexiives to comput Let's do the partia
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derivative with respect tg first. Since we are differentiating with respecix we will treat
all y's and allZs as constant This means that the second and fourth terms wikdintiate
to zero since they only involy's andz's.

This first term contains boix's andy's and so when we differentiate with respecx they
will be thought of as a multiplicative constant asalthe first term will be differentiated ju
as the third term will be differentiate

Here is the partial derivative with respecx.

m_ 2xy + 43
Ox

Let's now differentiate with respect ty. In this case alk's and zZs will be treated a
constants.This means the third term will differentiate to @eince it contains onix’s while
the x's in the first term and thzs in the second term will be treated as multiglica
constants.Here is the derivative with respecty.

ow =3t - 20y33 — 28sec’ (4y)

Qy

Finally, let's get the derivative with respectz. Since only one of the terms involZs this
will be the only noreero term in te derivative. Also, thg's in that term will be treated :
multiplicative constantsHere is the derivative with respectz.

ow
—=-30¥%'z’
oz 4

4
© ﬁz{s,.ﬁ) =g 111(.':."2)+£_3—T st

With this one we’ll not put in the detail of thedi two Before takingthe derivative let’s
rewrite the function a little to help us with thiéferentiation proces

a4
h(s,t)=t 111(32)+9f3— 57

Now, the fact that we're usirs andt here instead of the “standard’andy shouldn’t be a
problem. It will work the same wa' Here are the two deatives for this functiot
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s s s 7
_ 5h_ 6 y 4
h(s5,1) = Pl 7t ln(gr )—27:

Remember how to differentiate natural logaritt

2 1 (x)) - £

dx g(x)

flxy)= cos[i]exzy‘ﬂf
(d) X

Now, we can’t forget the product rule with derivais The product rule will work the san
way here as it does with functions one variable. We will just need to be careful
remember which variable we are differentiating wetbpect tc

Let's start out by differentiating with respect x. In this case both the cosine and
exponential contaim's and so we’ve really got a product of two funoBanvolvingx's and
so we’ll need to product rule this 1 Here is the derivative with respectx.

£ (% ¥) =—5in(i][—i2]ef}’_5f3 + cos(i]e”zf"wg (2xy)

X

4 4 4
:—25111[—}33{23”"5)’3 +2xyc05[—}ex2r5j’3

X
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Do not forget the chain ruli®r functions of one variabl We will be looking at the chai
rule for some more complicated expressions for inarible functions in a latter secti

However, at this point we're treating all tly's as constants and ghe chain rule wil
continue to work as it did back in Calculu

Also, don’t forget how to differentiate exponentiahctions

%(Ef(x)) _ £ (x)e’™

Now, let’s differentiate with respect y. In this case we don’t have a product rule to wi
about silce the only place that tty shows up is in the exponentialherefore, sincix's are
considered to be constants for this derivative cthe@ne in the front will also be thought of
a multiplicative constantHere is the derivative with respecty.

s )= (211557 L)

X

Example 2 Find all of the first order partial derivatives fibre following functions

D14
i
(@) w4+ Sv
B xsin( y)

© z= \/xz +1n(5x—3y2)
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Solution
Qs
z= ——
(a) '+ Sv

We also can’t forget about the quotient r Since there isn’t too much to this one, we \
simply give the derivatives.

9(1;2 + Sv)— 9u(2u) Oy + 45y

5 =

) (uz +5v)2 (uz Jrﬁv)2
i (0)(11;2 +5v)— u(5) _ —45u
u (uf2 +5v) (zf +5v)

In the case of the derivative with respeciv recall thatu's are constant and so when
differentiate the numerator we will get ze

B xsiﬂ(y)
o g(x,y.2)= ——=

Now, we do need to be careful however to not usegtiotient rule when it doesn’t need
be used.In this case we do have a quotient, however, dimex’'s andy’'s only appear in th
numerator and th#s only appear in the denominator this reallyt a quotient rule problet

Let's do the derivatives with respectx andy first. In both these cases tz's are constants
and so the denominator in this is a constant andesdon’t really need to worry too mu
about it. Here are the derivativeor these two cases.

D

g (¥ xz)= - ;

54



Now, in the case of differentiation with respectz we can avoid the quotient rule witr
quick rewrite of the functionHere is the rewrite as well as the derivative wibpect t.

g(xy,z)=xsin(y)z

&z (x:vy:vz) — _ZISiH(_y)Z_E — _2'1’-81—1:(-},)

We went ahead and put the derivative back intd'dhiginal” form just so we could say th
we did. In practice you probably don’t really need to dat:

o= .sz +111(5x—3y2)

In this last part we are just going to do a someaw@ssy chain rule proble However, if
you had a good background Calculus | chain rulehis shouldn’t be all that difficult a
problem. Here are the two derivativi

1 = 0
z, = E(xz +11‘1(53c—3y2 )) : a(xz 4—]11(5x—3y2 ))
]. 2 2 _15 5
:E(x +1n(5x—3y )) 2x+—5x—3y2
5 -
_[XJF 2(5x—35") (7 +In(52-35)) 3
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1

So, there are some examples of partial deriva Hopefully you will agree that as long
we can remember to treat the other varialas constants these work in exactly the s
manner that derivatives of functions of one vagaldb So, if you can do Calculus
derivative you shouldn’t have too much difficultydoing basic partial derivativi

There is one final topic that we n¢ to take a quick look at in this section, impli
differentiation. Before getting into implicit differentiation for ritiple variable function:
let’s first remember how implicit differentiationasks for functions of one variab

ay 4 7
Example 3Find dx for 3y +x =35x

Solution

Remember that the key to this is to always thiny as a function ok, or ¥ =»(*) and so
whenever we differentiate a term involviy's with respect tx we will really need to use tt

dy
chain rule which will mean that we will add o1z to that term.

The first step is to differentiate both sides witspect tcx.

d
12y 21 745 = 5
dx
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dy
The final step is to solve for d@x

dy 5-7x°
dx 12y’

Now, we did this problem because implicit diffeiatibn works in exactly the same man

with functions of multiple variable If we have a function in terms of three variakx, vy,

andz we will assume thatis in fact a function ox andy. In other words,? = z(x.¥). Then
1574

whenever we differentiatés with respect tcx we will use the chain rule and add o ox .
i

Likewise, whenever we differentiaz's with respect toy we will add on ¢ &v.

Let’s take a quick look at a couple of implicitféifentiatior problems.

62 82
Example 4 Find ox and 9 for each of the following functions.

@X¥z' —Sxz=x"+y

(b) x sin(2y-5z) =1+ ycos(6zx)

Solution
@) Xz -Sxz=x"+y

de
Let’s start with finding 3x We first will differentiate both sides with respeotx and
5
remember to add on a &x whenever we differentiatez.

iz tk
P 42 5y -ty =2k _ _

% o Remember that since we are assun? =Z(*.¥) then
any product ok's andz's will be a product and so will need the produdel Now, solve for
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J oz
3xiz? 4 ZxEZ—Z—Syjz— Sxyj - —2x oz
Gx ax ox .

(ijz—SxyS)%: 2x—3x'z' +5y°z

z 2x—3x'z’ +5yiz
& 2x°z—5xy°

24
Now we’ll do the same thing fc & except this time we’ll need to remember to add

oz
6'_}’ whenever we differentiatez

Oz 2

o
2x3za—;—25xy4z—5xy5—:3y

8
(2x32—5xy5)52:3y2+25xy4z

dz 3y*+25xy'z

oy - 2x°z —5xy°

(b) x° sin (2y—5z) =1+ ycos(6zx)

0z
We'll do the same thing for this function as we tghdhe previous pa First let’s find ox

2xsin [Ey —5z)+xgcos{2y—52)(—5;ﬁ] = —ysin[ﬁzxj[62+6x%]
x

i

Don't forget to do the chain rule on each of the trigctions and when we are differentiati
the inside function on the cosine we will need lsbaise the product ru Now let’'s solve

oz

for Ox
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2xsin(2y—5z) -5 %xz cos{ 2y—5z) = —6zysin (6zx) — 63xsin (sz)a—z
Ox ox
stin(Zy — 53) +6.zysin(6zx) = (sz cos (Qy— Sz) — 6 yxsin (62.1‘))%
d 2xsin(2y—5z)+ 6zysin (6zx)

ax  5x° cos(2y—5z)—6yxsin( 6zx)

&z
Now let's take care ofdy This one will be slihtly easier than the first or

x> cos(2y— 52)[2— 52—ZJ = cos(6zx)—ysin(6zx)[6x(;£]

Y v

, 5 Oz B . Oz
2x cos(2y —SZ)—Sx cos(2y—52) oy = cos(6zx) 6xy51n(6zx) oy

(6xysin(6zx)—5x2 cos(2y— 52))2—2 = cos(6zx)—2x>cos (2y—5z)
y

Oz cos(6zx)—2x* cos(2y —5z)

5 a 6xysin(6zx) —5x° cos(2y — SZ)

4.0 CONCLUSION

In this unit, you have defined a Partial derivatbfea function of several variables. You h
used the partial derivative of a function of selevariable to know the geomet:
interpretation of a function and anti derivativeabbgue has been idelied. You have
Solved problems on partial derivative for functioinseveral variables and identified higl
order derivatives.

5.0 SUMMARY

In this unit, you have studied the followil

the definition of Partial derivative of functions several variabl

the geometric interpretation of partial derivatofdunctions of several variabl
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the identification of antiderivative analogue ofrt derivative of functions of several
variable

Solve problems on partial derivative for functidrseveral variables
The identification of higher order derivatives ahttions of several variables
TUTOR MARKED ASSIGNMENT

1.Find the partial derivativeg &nd {, if f(x , y) is given by

fix,y) =Xy +2x+y

2: Find fand { if f(x , y) is given by

f(x , y) = sin(x y) + cos x

3.Find f, and {, if f(x , y) is given by
f(x,y)=x¢&’

4.Find f and { if f(x , y) is given by
f(x,y)=In(X+2y)

5.Find §(2 , 3) andf(2 , 3) if f(x , y) is given by
fx,y)=yx+2y

6.Find partial derivatives fand {, of the following functions

Af(x,y)=xe&"Y

B.f(x,y)=In(2x+yXx)

C.f(x,y)=xsin(x - y)
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Unit 3 APPLICATION OF PARTIAL DERIVATIVE

CONTENT
1.0 INTRODUCTION
2.00BJECTIVES
3.0 MAIN CONTENT

3.1 Apply partial derivative of functions afhseral variable in

Chain rule.
3.2 Apply partial derivative of functions of seakvariable in Curl (Mathematics)
3.3 Apply partial derivative of functions of seakvariable in Derivatives
3.4 Apply partial derivative of functions of seskrvariable in D’ Alamber
operator
3.5 Apply partial derivative of functions of seakvariable in Double integral
3.6 Apply partial derivative of functions of seakvariable in Exterior derivative
3.7 Apply partial derivative of function of sevevariable in Jacobian matrix and

determinant

4.0 CONCLUSION
5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS

1.0 INTRODUCTION
The partial derivative of f with respect to x is the derivative of f with respect to x, treating
all other variables as constant.

Similarly, thepartial derivative of f with respect to yis the derivative of f with respect to y,
treating all other variables as constant, and stooother variables. The partial derivatives
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are written af/ox, of/dy, and so on. The symbod™is used (instead oid") to remind us
that there is more than one variable, and thatreéalding the other variables fixe

OBJECTIVES
In this Unit, you should be able

Apply partial derivative of functions of severalrizble in Chain rule
Apply partial derivative of functions of severalriable in Curl (Mathematic
Apply partial derivative of functions of severalrizble in Derivative
Apply partial derivative of functions of severalrizble in D’ Alamber operat
Apply patial derivative of functions of several variableouble integr:
Apply partial derivative of functions of severalriable in Exterior derivativ

Apply partial derivative of function of several \alvle in Jacobian matrix and determir
MAIN CONTENT

APPLICATIONS OF PARTIAL DERIVATIVE OF FUNCTIONS IN  SEVERAL
VARIABLE.

Chain rule
Composites of more than two function

The chain rule can be applied to composites of ntbhean two functions. To take tl
derivative of a composite of more than twoctions, notice that the compositef, g, andh
(in that order) is the composite f with g o h. The chain rule says that to compute
derivative off o g o h, it is sufficient to compute the derivativef and the derivative cg o h.
The derivative of can be calculated directly, and the derivativig o h can be calculated t
applying the chain rule again.

For concreteness, consider the func

. 9
Sln.r-

y=e

This can be decomposed as the composite of thretidas

y = flu) = e,
u = g(v) =sinwv,
= h(I) - IE.

Their derivatives are:
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ﬂ:f(u)zf i
j—i = g'(v) = cosv,
dv ,
ﬁ—h(:t:)—lr,

The chain rule says that the derivative of themposite at the poirx = ais:

(fegoh)(a)= f((goh)(a))(ge h)(a) = f((goh)(a))g(h(a))h(a).
In Leibniz notation, this is:

du

u=g(h@) W

duv

dy _ dy
dr

dr  du

v=hia) I=a

or for short,

dy dy du dv

dr du dv dr

The derivative function is therefo

d :
_y _ Esmm2

dx

Another way of computing this derivative is to vighe composite functiof o g o h as the
composite of o g andh. Applying the chain rule to this situation giv

(fegoh)(a)=(fog)(h(a)k(a) = f(g(h(a))d (h(a))H (a).

This is the same as what was computed above. Tbiddbe expected becaufo g) o h=f
° (g h).

.cos z° - 2.

The quotient rule

The chain rule can be used to derive some-known differentiation rules. For example, 1
guotient rule is a consequence of the chain rutetha product rule. To see this, write
functionf(x)/g(x) as the produd(x) - 1G(x). First apply the product rule:

= (5m) =% (1 5)



To compute the derivative ofg(x), notice that it is the composite gfwith the reciprocal
function, that is, the function that serx to 1k. The derivative of the reciprocal function
-1/x%. By applying the chain rule, the leexpression becomes:

ey ey [ f'(x)g(z) — f(z)g'(x)
f(z) g(:l!)—l_f( ) ( ()2 -‘

1
g(x)?

-y"(r)) =

which is the usual formula for the quotient r

Derivatives of inverse function:

inverse functions and diferentiation

Suppose thay = g(x) has annverse function. Call its inverse functiéiso that we havx =
f(y). There is a formula for the derivativef in terms of the érivative ofg. To see this, note
thatf andg satisfy the formul

fax) =x.

Because the functiorf§y(x)) andx are equal, their derivatives must be equal. Thevakere
of x is the constant function with value 1, and thedgive off(g(x)) is determined by the
chain rule. Therefore we ha

FO())g'(x) = 1.

To expresd’ as a function of an independent variay, we substitutd(y) for x wherever it
appears. Then we can solvef'.

fla(fw))d(fly)=1

fnd(fly)=1

, B 1
I = 5Fmy

For example, consider the functig(x) = €. It has aninverse which is denotef(y) = Iny.
Becausea'(x) = €, the above formula says t

dl 11
dy ny_e'“y'_y'

This formula is true whenevq is differentiable and its inverdas also differentiable. Thi
formula can fail when one of these conditions istnee. For example, considg(x) =, Its
inverse isf(y) = y“® which is not differentiable at zero. If we attentp use the abov
formula to compute the derivative f at zero, then we must evaluatg'@(0)). f(0) = 0 and
g'(0) = 0, so we must evaluate 1/0, which is undefiriEherefore the formula fails in tr
case. This is not surprising becaf is not differentiable at zero.
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Higher derivatives

Faa di Bruno's formulaggeneralizes the chain rule to higher derivativeBe Tirst few

derivatives are

d(fog) _dfdg

da r.ig dx
d*(fog) _ d’f (dg)
dz?  dg? dx |

d*(fog) _d’f (dg)
dr®  dg® \dz )

d'(fog) _ d'f (dg)
da? d dz )

Example

du
and Jt using the chain rule.

t‘)‘_u Ou dx U_uﬂy
ar  Ozxdr  dyor

and

b‘_u Ju dzx dudy
gt Ox ot 6 ot

2

4

df d* g
dg dx?

dfdg g df dg

dg? dr dz? g dg da?

81 (a0 by s [ gy
dg? da: dr?  dg? | dxdz®

= (2x) (sin(t)) + (2) (0) = 2?"5'1112(1‘.}

= (2x) (rcos(t)) + (2) (2sin(t) cos(t))

o

d?

ou

y o . —
Given ¥ = &~ + 2ywhere T = 7 sin(t)ang ¥ = sin (f} determine the value (O

=2 (rsin(t))rcos(t) + 4sin(f) cos(t) = 2 (’r + 2) sin(t) cos(t).

Curl (mathematics)

In vector calculus, theurl (or rotor) is a vector operatathat describes thinfinitesimal
rotation of a 3-dimensionakector fielc. At every point in the field, the curl is repretsthby
a vector. The attributes ¢tis vector (length and direction) characterize ribiation at tha

point.

The curl of a vector field, denoted curF or VxF, at a point is defined in terms of

projection onto various lines through the pointiis any unit vector, the projection of t
curl of F onto ais defined to be the limiting value of a closline integra in a plane
orthogonal tonas the path used in the integriecomes infinitesimally close to the poi

divided by the area enclosed.
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As such, the curl operator meC* functions fromR® to R* to C functions fromR® to R®,

.

Convention for vector orientation of the line intal

Implicitly, curl is defined by?

F -dr
< F)- 7 % i fo O
A L ST

The above formula means that the curl of a veaedd fis defined ashe infinitesimalarea
density of thecirculation of that field. To this definition fit naturally (i)he Kelvin-Stokes
theorem as a global formula corresponding to the debnitiand (ii) the following "easy 1
memorize" definition of the curl in orthogonal cilivear coordinates, e.g. in cartesi
coordinates, spherical, or cylindrical, or eveipéltal or parabolical coordinate

(curl F) 3 = L (a(a’?F?) _ H(alFl))

aq a du o
| ag 1 2

If (X1,%2,%3) are the Cartesiacoordinates andu(,u,,us) are the curvilinear coordinates, tr

'II 3 i 2
w=y % ()
VFI is the length of the coordinate vector correspogpdn=. The remaining
two components of curl result from cyclic in-permutation: 3,1,2> 1,2,3— 2,3,1

Usage

In practice, the above definition is rarely usedauese in virtually all cases, the coperator
can be applied using some setcurvilinear coordinatesfor which simpler representatio
have been derived.

The notationiVxF has its origins in the similarities to the 3 dimenal cross produ, and it
is useful as a mnemonic @artesian coordinat if we takeV as a vectodifferential operatc
del. Such notation involvingoperators is common in physics amadgebri If certain
coordinate systems are used, for instance, -toroidal coordinates (common in plas
physics) using the notatidrxF will yield an incorrect result.

Expanded inCartesian coordinat (see:Del in cylindrical and spherical coording for
spherical anaylindrical coordinat representationsy,xF is, for F composed ofFy, Fy, F]:
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i j k
eI N
dr oy i
F, F, F.

Wherei,[éjl], andk are theunit vector: for thex-, y-, andz-axes, respectively. This expands
follows:

(I8 ) (2208 (52,
Sy Oz 0. oz )V \or oy

Although expressed in terms of coordinates, thaltrés invariant under proper rotations
the coordinate axes but the result inverts undexateon.

In a general coordinate system, the is given by?
(V x F)* = ™o, F,
wheree denotes the LewGivita symbag, the metric tensor is used lmwer the inde on F,

and theEinstein summation conventi implies that repeated indices are summed ¢
Equivalently,

(V = F) - Ekfﬂmame

whereeg are the coordinate vector fields. Equivalentlyngsiheexterior derivativ, the curl
can be expressed as:

V x F=[x(dF)]’

Here » andt are theusical isomorphisn, and » is the Hodge duarhis formula shows ho
to calculate the curl of F in any coordinate systand how to extend the curl to aoriented
three dimensiondRiemannia manifold. Since this depends on a choice of ortertacurl is
a chiraloperation. In other words, if the orientation igseesed, then the direction of the ¢
is also reversed.

Directional derivative

The directional derivative of scalar function

f(:f): f(:II!IE!"'!Iﬂ)

along a unit vector

= (tr,...,Uy)
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is the functiordefined by thdimit

V(@) = i LEED) 1)

h— 0+ h

(See other notations below.) If the functif is differentiable atx’, then the direction:
derivative exists along any unit vec ¥.and one has

Vaf (7) = V1(7) @

where theVon the right denotes trgradient and. is th&uclidean inner produ. At any
point ', the directional derivative  intuitively represents thete of chanc in f along# at
the pointr .

One sometimes permits nomit vectors, allowing the directional derivativele taken in th
direction of &' , wheret'is any nonzero vector. In this case, one must npatlé definitions
to account for the fact thaf may not benormalized, so one has

Ve () = tim LEET) = S

h—s O h| 7 i

or in casd is differentiable a7,

—

(&
13

Such notation for noonit vectors (undefined for the zero vector), hogrevs incompatibl
with notation used elsewhere in mathematics, whezespace of derivations inderivation
algebrais expected to be a vector spi

Vaf(&) = V (&)

Notation

Directional derivatives can be also denotec

Vel (@ ~ P2 L 10) ~ Duf () ~ - V1)

In the continuum mechanics of solid

Several important results in continuum mechanicpiire the derivatives of vectors w
respect to vectors and oénsor with respect to vectors and tensBtsThe directional
directive provides a systematic way of finding these denxest

The definitions of directional derivatives for vauis situations are given below. It is assut
that the funtions are sufficiently smooth that derivatives bantaker
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Derivatives of scalar valued functions of vecto

Let f (V)be a real valued function of the vecv. Then the derivative ¢/ (V}With respect
to v (or atv) in the directior uis thevector defined as

df

2 =D = & f(v+ﬂfu)‘

oe=A0)
for all vectorsu .

Properties:

O e (26228,

1) If f("’) = fl( ) —+ fﬁ("’}then dv v AY
3 N If 5 f(v) = fi(v) fa(V)then
o f1 0 f2
v (e m) B0 (57 0)
9f _0f df

O, U= a7 5—-u
3)1f f(¥) = f1(f2(V) hthen OV dfy Ov
Derivatives of vector valued functions of vectol

Let f(")be a vector valued function of the vecwv. Then the derivative of("’)with
respect tov (or a¥) in the directior uis thesecond order tensodefined a

=0
for all vectorsu .
Properties:
8_f 11 = (3& _I_ Sj) - 11

1 if £(v) = f1(v) + £2(V)hen OV av  dv
2) | I f(v) = fi(v) x f2(Vlhen
g—‘fr’-u= (%u) x fo(v) + fi(v) x (3% -u)

of _of (0f u)
3) 1f £(v) = fi (f5(V) hhen 0¥ of, \ov
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Derivatives of scalar valued functions of secor-order tensors

Let f(S)be a real valued function of the second order te 8. Then the derivative ¢
£ (S hith respect ta9 (or at §) in the directionT” is theecond order tensc defined as

of

il
O m= D) = b f(S +a T)[

=10
for all second order tensofE'.

Properties:

of o _ (5f1 3f2) .
— - T=—-—=+—=—1:T
1y it F(S) = f1(S) + fo(S)hhen0S 2s " 28

Zl%f of ' of f(S) = f1(S) fz(s)then
ps 1~ (dsl' ) f2(8) + £1(S) (a—bf:T)

31t F(S) = fi(f2(S)hendS ~  Ofo

Derivatives of tensor valued functions of secor-order tensors

Let F(S)be a second order tensor valued function of therskorder tenscS. Then the

derivative of F' (S )with respect t(S'(or at §') in the directionl” is thieurth order tensor
defined as

JF

d
55 T =DF(S)T|= [EF(SqLo:T)}

o=

for all second order tensotk'.

Properties:
oF dF 3Fg)
— T = - T
11t F(8) = F1(8) + F2(S)then 98 ( 25 * a8
3 ; If dF(S) = F1(S) - F3(S)then
or Fy . (92
3—S.T—(O_]S T) Fy(S) + F1(S) (as _T)

70



OF . _OF, (apg :T>
2

3) If F(S) = F1(Fy ))thendS JF 08
ay1f f(8) = fi(F2(S))thendS OF, \ 98

Exterior derivative

The exterior derivative of a differential form oégreek is a differential form of degrek + 1.
There are a variety of equivalent definitions ad gxterior derivativi

Exterior derivative of a function

If fis a smooth function, then the exterior derivabtf is thedifferentia of f. That is, ¢f is
the unique one-formsuch that for every smoovector fieldX, df (X) = Xf, whereXf is the
directional derivative of in the direction oX. Thus the exterior destive of a function (o
0-form) is a one-form.

Exterior derivative of a k-form

The exterior derivative is defined to be the uniR-linear mapping fronk-forms to k+1)-
forms satisfying the following propertit

1. df is the differential of for smooth functiong.

2. d(df) = 0 for any smooth functicf.

3. danB) = daAp + (-1)°(andB) where a is a p-form. That is to say, d is ¢
antiderivationof degree on the exterior algebmaf differential forms

The second defining property holds in more gentgraln fact, d(«) = O for anyk-form a.
This is part of théoincaré lemm. The third defining property implies as a specide tha
if fis a function and. a k-form, then dfa) = dfAa + fAda because functions are forms
degree 0.

Exterior derivative in local coordinates

Alternatively, one can work entirely in local coordinate systemxX(...x"). First, the
coordinate differentialsxd,...,ox" form a basic set of orferms within thecoordinate chart.

Given a multi-index | =ig,...ix) with 1<i, < nfor 1< p <k, the exterior derivative of k-
form

o= ffd:{:f = ffi,f?'"fkdxﬁ M dIﬂ Mo N dIik

overR" is defined as

dw = Z dffda:*nd :
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For generak-formsw = %, f; dx, (where the components of the muftdex| run over all the
values in {1, ...n}), the definition of the exterior derivative is texdedlinearly. Note that
wheneveri is one of the components of the m-index | then ciAdx, = 0 (see wedge
product).

The definition of the exterior derivative in locabordinates follows from the precedi
definition. Indeed, itv = f; dx1A...AdXi, then

dw = d(fpda’ A --- A da'F)
=dfi A (da™ A---Ada'™) + frd(da’ A --- A da'E)

k
= dfiAdz A - -mdfuZ(_l)@—nﬁdﬁ,\. . Ad A2 AdgiP A

p=1

=dfadat A--- A da'

= Z dfj d:t: Adz™t A A dxt

Here, we have he interpretecf, as a zerderm, and then applied the properties of
exterior derivative.

Invariant formula

Alternatively, an explicit formula can be given thie exterior derivative of k-form w, when
paired withk+1 arbitrary smootivector fieldsVi, Vo, ..., Vk:

dw(W, ..., Vi) = Z(—l)"‘lﬁ- (m(vl, Vi ‘vi))

(=) l([Vi Vil Vi Vi Vi, Va)
1< j

where M,V;] denoted.ie bracke and the hat denotes the omission of that elel

-~

ﬂ(l’q,...,l’i,...,%):M(H,...,E_l,m+1,...,%)_

In particular, for Iforms we have: w(X,Y) = Xw(Y) — Yo(X) — o([X,Y]), whereX andY are
vector fields.

Examples

1. Consider = u dx'Adx? over a -form basis do',...,&k". The exterior derivative i

do = d(u) N dat A dz?
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= (Z fj—udm ) A drt A da?
dxl

1
:i(%dx M dat ﬂdx)

The last formula follows easily from the propertie§ the wedge produ. Namely,
dz' N dx' = 0.

2. For a 1-formy = u dx + v dy defined ovelR% We have, by applying the above formulz
each term (considet = x andx® = y) the following sum,

d:t: M dy)

[

)

I
_f"-_-."\.
]
|

[

Hﬁ

=

[

=
\""\-|—|-"""".I

_|_
]
@‘ .

= (%dmﬁdm—k udyﬁda:) - (idﬂ:f\dw idyﬂdy)
T Y lﬂiﬁ dy
du v

=0 ——dxnrd —dxr A d 0
Eﬂy T y—|—aI Y+

_(ov  Ou
_(31: 6y)dﬁ:f\dy

D'Alembert operator

In special relativity, electromagnetis and wave theory, thed'Alembert operator
(represented by a box:), also called thed'Alembertian or the wave operatol, is the
Laplace operator dflinkowski spac. The operator is named for Frénmathematician an
physicistJean le Rond d'Alemb. In Minkowski space in standard coordinatt, X, y, 2) it
has the form:

Ny oy L O 02 @ 9P
1= duﬁ‘u :ﬂpufﬂ ' = _zaf_z COr? ay? 022
1 & 1

— 2
“zor ¥ e O

Applications

he Klein—Gordon equatiomas the forr

(O+m*)y =0

The wave equatiofor the electromagnetic d in vacuum is
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JA* =10

whereA" is theelectromagnetic fo-potential.
The wave equatiofor small vibrations is of the for
Teu (z,1) =ty — gy = 0,
whereuiz;tis the displacemel
Green's function
The Green's functiof¥(=—=")for the d'Alembertian is defined by the equa
JG(z —z")=d0(z— )
whered{z—z"] is thDirac delta functio and = andz"are two points in Minkowski spax

Explicitly we have
1
27

where e is théHeaviside step functic

G(t,z,y,2) = —O1)(t" —2° —y" — 2°)

Double Integral
Thedouble integral of f(x, y) over the region R in thexy-planeis defined a:

{ f(x, y) dx dy
R

= (volume above R and under the graph «
- (volume below Fand above the graph of f).

« The following figure illustrates this volume (ineltase that the graph of f is ab«
the region R).
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Computing Double Integrals
If R is the rectangle a x [1 b and ¢1 y [ d (see figure below) the

{ f(x,y)dxdy:[::J:f(x,y)dx]dy
R
= [bxjdf(x,y)dy]dx
a C

If R is the region al x [ b and c(xX)] y [1 d(x) (see figure below) then we integr
over R according to the following equatic

I' b. .dXx)

‘ Rf(x, ) dxdy=Ja1 JC(X)f(x, y) dy | dx

Y
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JACOBIAN MATRIX

The Jacobian of a function describes dhientatior of a tangent plant® the function at a given point. In this w
the Jacobian generalizes the gradieiné scalar valued function of multiple variablebieh itself generalizes tl
derivative of a scalavalued function of a scalar. Likewise, the Jacolian also be thought of as describing
amount of "stretching" that a transformation imogeor xample, if &o,y2) = f(x1,y1) is used to transform an ima
the Jacobian of, J(x3,y;:) describes how much the image in the neighborhoc(xs,y;) is stretched in th& andy
directions.

If a function is differentiable at a point, its dextive is given in coordinates by the Jacobiart, @€unction doesr
need to be differentiable for the Jacobian to Hadd, since only thpartial derivative are required to exist.

The importance of the Jacobian lies in the fact theepresents the belinear approximation to a differentiak
function near a given point. In this sense, th@B&mn is the derivative of a multivariate functi

If p is a point inR" andF is differentiabl¢ at p, then its derivative is given b¥(p). In this case, thlinear map
described byi(p) is the beslinear approximatio of F near the poinp, in the sense th

F(x)= F(p) + Jr(p)(x —p) + o(|lx — pl|)

for x close top and where is the little onotatior (for © — P) and”X - PH is thelistanc: betweerx andp.

In a sense, both the gradiemd Jacobian ardirst derivatives" —the former the first derivative ofscalar function
of several variables, the latter the first derivatof avector functiorof several variables. In general, 'gradientcar
~ be regarded as a special version of the Jacolisnthie Jacobian of a scalar function of seveaailables

The Jacobian of the gradigmas a special name: tHessian matrixwhich in a sense is thsecond derivativeof
the scalar function of several variables in ques

Inverse

According to thanverse function theore, the matrix inversef the Jacobian matrix of éinvertible functionis the
Jacobian matrix of thimversefunction. That is, for some functicF : R" — R" and a poinp in R",

Jr-1(F(p)) = [Je(p)] .

It follows that the (scalar) inverse of the Jacahigterminant of a transformation is the Jacobeterthinant of th
inverse transformation.

Uses

Dynamical systems

Consider a dynamical system of the foxms F(X), wherex' is the (componentsse) time derivative ox, andF : R"
— R"is continuous and differentiable. F(x) = 0, thenxo is a stationary point (also called a fixed poirithe

behavior of the system near a stationary pointelated to theeigenvalues oflz(xg), the Jacobian oF at the
stationary poinil.] Specifically, if the eigenvalues all have a negatreal part, then the system is stable ir
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operating point, if any eigenvalue has a positead part, then the point is unstable.
Newton's method

A system of coupled nonlinear equations can beesbiteratively by Newton's method his method uses t
Jacobian matrix of the system of equations.

The following is the dettail code in MATLAB
function s = jacobian(f, x, tol) % f is a multivalle function handle, x is a starting point

if nargin ==

tol=10";
end
while 1
% if x and f(x) are row vectors, we neech§ose operations here
y = X' - jacob(f, X)\f(x)"; % gthe next point
if norm(f(y))<tol % ehbk error tolerate
s=Y,
return;
end
X=Y,
end

function j = jacob(f, x) % approximately calculatacobian matrix

k = length(x);
j = zeros(k, Kk);
form=1:k
X2 =X;
x2(m) =x(m)+0.001,
j(m, 1) = 1000*(f(x2)-f(x)); % parti@erivatives in m-th row
end

Jacobian determinant

If m=n, thenF is a function frorm-space ta-space and the Jacobian matrix is a square matexcan then fori
its determinant, known as thlacobian determinant The Jacobian determinant is sometimes simplyeddithe
Jacobian."

The Jacobian determinant at a given point givesomapt information about the behavior l6inear that point. Fc

instance, the continuously differentiable functiis invertible near a poing € R" if the Jacobian determinant @t
is non-zero. This is the inverse function theor&umthermore, if the Jacobian determinanpas positive, therf

preserves orientation nepy if it is negative F reverses orientation. The absolute valfighe Jacobian determin:

at p gives us the factor by which the functibnexpands or shrinks volumes ngarthis is why it occurs in tf

general substitution rule.

Uses
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The Jacobian determinant is used when makirchange of variablesvhen evaluating imultiple integralof a
function over a region within its domain. To accoattate for the change of coordinates the magnitddine
Jacobian determinant arises as a multitive factor within the integral. Normally it is reged that the change
coordinates be done in a manner which maintairinjectivity between the coordinates that determine the dc.
The Jacobian determinant, as a result, is usuallydefined

Examples

Example 1.The transformation fromapherical coordinat (r, 4, ¢) to Cartesian coordinat (xi, X, X3) , IS given b
the functionF : R* x [0] x [0,21) — R®with component:

ry =1 st cosg
To =1 sinf sin @
T3 =71 cosfl.

The Jacobian matrix for this coordinateange i

-813]_ 8351 3:1:1‘
Sir gf gﬂ? sinf cos¢ r costl cosg@ —r sinf sin @
Jp(r,0,0) = 3: 8; 8; = |sinfl sing r cosfsing r sinfl cosg
Ors Ors Ors cos f/ —1 sinf 0
L or 09 0¢ |

The determinant is® sin . As an example, sincdV = dx; dx dxs this determinant implies that tidifferential

volume elemendV = r? sin 6 dr d9 dr. Nevertheless_ this determinant varies with coais. To avoid ar

Td

o _ Wy = o, Wo = —cosf, wy =
variation the new coordinates can be defins 3

2 . .
equals to 1 and volume element becoiedr sin @ df do = dw,dwqdurs,

Dz Now the determinai

Example 2.The Jacobian matrix of the functiF : R* > R* with components
=
Yo = O3
Ya = 4$§ — 21,

Y4 = x3sin(xy)
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[ dy1 Oyr Oy |
E?Tq f?if 2 f?i?a - -
dyi dyj dyg 1 0 0

_ E‘ﬂI 1 8:1: 9 8:1: 1| — 0 0 5
Ty, 22, 23) = dys  Oya Oys| — 0 81, —2

dry Ory Ory xzcos(zy) 0  sin(xq)
dys  Oys  Oyy ) )

L 3:1:1 813 9 81: 3

This example shows that the Jacobian need not be aesouzrix
Example 3.

T = T COoSs Q;

Yy = 7T s Q.
dz Oz Arcosg)  Brcos ¢) _ o
Jrd)= | 2| =|0te ostbe|= [cosqﬁ: —’rsxw]
' gy T sin T sim : ‘ X
or e ar 30 sin¢g rcosg

The Jacobian determinant is equat.tdhis shows how an integral in tCartesian coordinate syst is transforme
into an integral in theolar coordinate syste:

J] o= [] revae

Example 4.The Jacobian determinant of the functF : R®* - R* with components

Y1 = DTy
yo = 4x] — 2sin(x933)
UYa = Tal3
is
0 5 0 50
Bxy —2x3cos(xoxy) —2mqcos(xoxs)| = —8xy - = — 40z 25.
&z I
0 T Ia

From this we see th&t reverses orientation near those points wix; andx, have the same sign; the functiol
locally invertible everywhere except near points whx; = 0 orx, = 0. Intuitively, if you start with a tiny obje
around the point (1,1,1) and apyo that object, you will get an object set with epgmately 40 times the volun
of the original one
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CONCLUSION

In this unit you haveapplied partial derivative of functions of sevexariable to solve chain rule and c
(mathematics) . You have also applied partial dénre of functions of several variable solve detilegs and D
Alamber operator. Yolhave applied partial derivative of functions of el variable in Double integral a
Exterior derivative. You also used partial derivatiof function of several variable in Jacobian ma@nd
determinant.

SUMMARY

In this unit, you have studied the :
Application of partial derivative of functions oéeral variable in Chain ru
Application of partial derivative of functions oéeral variable in Curl (Mathemati
Application of partial derivative of functions oégeralvariable in Derivatives
Application of partial derivative of functions oéeral variable in D’ Alamber opera
Application of partial derivative of functions oéweral variable in Double integ
Application of partial derivate of functions of several variable in Exterioridative

Application of partial derivative of function ofseral variable in Jacobian matrix and determi

TUTOR — MARKED ASSIGNMENT

1. Find the equation of the tangent plan = In {2x+y)z =In(2x +y) gt [_1? 3)
2 2
2 Find the linear approximation to 16 Q ATA (at >

—x+43" —2x"y+4

2.Find the absolute minimum and absolute maximu f (x,y)
givenby—1<x<] and 1= y=1

on the rectang

4. Find the absolute minimum and absolute maximum

Y DO 2 2
f(‘x’y) =2x Y +6y on the disk of radius 4% +y = 16
5. Find the partial derivatives of the following in the second order
a. F(xy)= X2—2xy+ 6x—-2y+1

b. F(xy)=g@’
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MODULE 3 TOTAL DERIVATIVES OF FUNCTION OF SEVERANARIABLES
-Unit 1:Derivative
-Unit 2: Total derivative.

-Unit 3:Application of Total derivative.

UNIT 1: DERIVATIVE
CONTENT

1.0 INTRODUCTION
2.0 OBJECTIVES

3.0 MAIN CONTENT

Solve directional derivatives
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Introduction

This article is an overview of the term as usedaltulus. For a less technical overview
the subject, seBifferential calculu. For other uses, s&erivative (disambiguatio.

The graph of a function, drawn in black, antangent linego that function, drawn in red. T}
slope of the tangent line is equal to the deriwatf’the function at the marked po

In calculus, a branch ehathematic, thederivative is a measure of howfunction changes
as its input changes.oosely speaking, a derivative can be thought oh@as much ont
guantity is changing in response to changes in sother quantity; for example, ti
derivative of the position of a moving object wigspect to time is the object's instantane
velocity.

The derivative of a function at a chosen input galescribes the belinear approximatio of
the function near that input value. Forreal-valued functiorof a single real variable, tt
derivative at a point equals tislope of the tangent line to tlggaph of the functic at that
point. In higher dimensions, the derivative of adtion at a point is linear transformatic
called the linearizatiolt! A closely related notion is ttdifferential of a functio.

The process of finding a derivative is calldifferentiation. The reverse process is cal
antidifferentiation . Thefundamental theorem of calcu states that antidifferentiation is t
same as integratiolifferentiation and iregration constitute the two fundamental operat
in single-variable calculus.

OBJECTIVES

In this unit, you should be able f
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Solve directional derivative
Use derivative to solve Total derivative, totafeii&ntial and Jacobian mat
Main content

Directional derivatives

If fis a realvalued function orR", then the partial derivatives ¢fmeasure its variation |
the direction of the coordinate axes. For examplf is a function ofk andy, then its partial
derivatives measure the variatior f in the x direction and the direction. They do no
however, directly measure the variatiorf in any other direction, such as along the diag
liney =x. These are measured using directional derivati¥heose a vect

Thedirectional derivative of f in the direction o¥/ at the poink is the limi

D, f(x) = lim 2 HV) = F(X)

h—s0) h

In some cases it may be easier to compute or dstithe directional derivative aft
changing the length of the vector. Often this is@lto turn the problem into the computat
of a directioml derivative in the direction of a unit vector. $ee how this works, suppc
thatv =\u. Substituteh = k/A into the difference quotient. The difference gentibecome

fx+k/NOW) = f00) _ | flx+ku) - f(x)
k/\ k '

This isA times the difference quotient for the directiodarivative off with respect tau.

Furthermore, taking the limit ¢h tends to zero is the same as taking the limk tends to
zero becaush andk are multiples of each other. TherefD,(f) =ADy(f). Because of thi
rescaling property, directional derivatives aequently considered only for unit vect

If all the partial derivatives of exist and are continuous &t then they determine ti
directional derivative of in the directiorv by the formula:

D, flx)= v;—.

Vf( ) Z F de
j=1
This is a consequence of the definition of total derivative It follows that the direction:
derivative is linear itv, meaning thaDy +w(f) = Dy(f) + Du(f).

The same definition also works whf is a function with values iR™. The above definitio

is applied to each component of the vectors. Is thse, the directional derivative is a ve
inR™.
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Total derivative, total differential and Jacobian matrix

Whenf is a function from an open subselR" to R™, then the directional derivative f in a
chosen direction is the best linear approximatmf at that point and in that direction. E
whenn > 1, no single directional derivative can give anglete picture of the behavior f.

The total derivative, also called thtotal) differential, gives a complete picture |
considering all directions at ce. That is, for any vectov starting ata, the linear
approximation formula hold

fla+v) = f(a)+ f(a)v.

Just like the singleariable derivative,fil’(a) is chosen so that the error in t
approximation is as small as possi

If n andm are both one, then the derivatif(1'(a) is a number and the expressfii'(a)v is
the product of two numbers. But in higher dimensjoit is impossible fof(1'(a) to be a
number. If it were a number, th¢f'(a)v would be a vector iflR" while the other term
would be vectors irR™, and tlerefore the formula would not make sense. For itheat
approximation formula to make senf1'(a) must be a function that sends vectorR" to
vectors inR™, andf[1'(a)v must denote this function evaluatecv.

To determine what kind of function s, notice that the linear approximation formula ba
rewritten as

fla+v)— f(a) = f'(a)v.

Notice that if we choose another vecw, then this approximate equation determines ant
approximate equation by substitutiw for v. It determines a third approximate equatior
substituting bothw for v anda + v for a. By subtracting these two new equations, w:

flatv+w) - fla+v) - fla+w)+ fla) = f(a+v)w— f(a)w.

If we assume that is small and that the derivative varies continugusla, thenfl'(a + v)
is approximately equal tf1'(a), and therefore the rigttand side is approximately zero. T
left-hand side can be rewritten in a different way usheglinear approximation formula wi
v +w substituted for. The linear approximation formula impli

0~ flatv+w) - fla+v) - fla+w)+f(a)
= (fla+v+w) - f(a) - (fla+v) - f(@) - (fla+ w) - f(a))
~ fa)(v+w) - f/(a)v— f(a)w.

This suggests that1'(a) is a linear transformatiorfrom the vector spacR" to the vector
spaceR™. In fact, it is possible to make this a precisevddion by measuring the error in t
approximations. Assume that the error in these lirsggoroximation formula is bounded b
constant times\]|, where the constant is independenv but depends continuously @.
Then, after adding an appropriate error term, fathe above approxime equalities can be
rephrased as inequalities. In particuf(1'(a) is a linear transformation up to a small e
term. In the limit av andw tend to zero, it must therefore be a linear tramsé&bion. Since
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we define the total derivative by taking a limitv goes to zerof(1'(a) must be a linear
transformation.

In one variable, the fact that the derivative is test linear approximation is expressec
the fact that it is the limit of difference quotie. However, the usual difference quotient d
not make sense in higher dimensions because atisisually possible to divide vectors.

particular, the numerator and denominator of tHfiei@ince quotient are not even in the s:
vector space: The nunaor lies in the codomaiR™ while the denominator lies in tf
domainR". Furthermore, the derivative is a linear transfation, a different type of obje

from both the numerator and denominator. To makeipe the idea thif(1'[1(a) is the best
linear gproximation, it is necessary to adapt a differbarimula for the on-variable

derivative in which these problems disappeaf : R — R, then the usual definition of tt
derivative may be manipulated to show that thevddie of f at a is the unique umber
f1'(a) such that

g @t h) = fla) = fla)h _
h—0 h -

This is equivalent to

i flath) = fla) — f'(a)h] _
1—0 |h|

because the limit of a function tends to zero il anly if the limit of the absolute value
the function tends to zero. This last formula carabdapted to the ma-variable situation br
replacing the aolute values witihorms.

The definition of thetotal derivative of f at a, therefore, is that it is the unique lin
transformatiorf 1(a) : R" — R™ such that

o et b) — f(a) — ffa)h]

0.
Ih|[—0 ||

Here h is a vector inR", so the norm in the denominator is the standangtte onR".
However,f'(a)h is a vector inR™, and the norm in the numerator is the standargttean
R™ If v is a vector starting ea, thenf1'(a)v is called thepushforwari of v by f and is
sometimes writterf«v.

If the total derivative exists ia, then all the partial derivatives and directiodativatives of
f exist ata, and for allv, f(1'(a)v is the directional derivative dfin the directionv. If we
write f using coordinate functions, so ttf = (f1, f2 ..., fm), then the total derivative can
expressed using the partial derivatives matrix. This matrix is called thJacobian matrix
of f ata:

la) = Jac, = of:
f(a)_'] o (a$.})1j
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The existence of theotal derivativef’(a) is strictly stronger than the existence of ak
partial derivatives, but if the partial derivativegist and are continuous, then the t
derivative exists, is given by the Jacobian, arukdds continuously ca.

The definition of the total derivative subsumes the definitibthe derivative in one variabl
That is, if f is a realvalued function of a real variable, then the takativative exists if an
only if the usual derivative exists. The Jacobiaatnr reduces to ax1 matrix whose onl
entry is the derivativg’(x). This 1x1 matrix satisfies the property tif(a + h) — f(a) -
fl1'(a)his approximately zero, in other words i

fla+h) = f(a) + f'(a)h.

Up to changing \variables, this is the statement t théhe function
Il
z — f(a) + f(a)(z — a)is the best linear approximation fata.

The total derivative of a function does not giveter function in the same way as the-
variable case. This is because the total derivadiva multivariable function has to recc
much more information tmathe derivative of a sinc-variable function. Instead, the to
derivative gives a function from titangent bundlef the source to the tangent bundle of
target.

The natwal analog of second, third, and hig-order total derivatives is not a line
transformation, is not a function on the tangemdbe, and is not built by repeatedly tak
the total derivative. The analog of a hic-order derivative, called a jetannot be a line:
transformation because hig-order derivatives reflect subtle geometric inforimat such a:
concavity, which cannot be described in terms médr dea such as vectors. It cannot b
function on the tangent bundle because the tangemdle only has room for the base sp
and the directional derivatives. Because jets caphighe-order information, they take
arguments additional coordinates resenting higheorder changes in direction. The sp.
determined by these additional coordinates is ddhejet bundle The relation between tt
total derivative and the partial dertives of a function is paralleled in the relatiogtuween
thekth order jet of a function and its partial derivas of order less than or equak.

Conclusion

In this unit, you have used derivative to solvebpems on directional derivatives a
have also solve problems on total derivative,tdidfrentiation and Jacobian mat

Summary

In this unit you have studie:

Solve directional derivative

Use derivative to solve problems on total derivatiotal differentiation and Jacobian ma

Tutor-Marked Assignment
1.Evaluate the derivative of F(x,y,z) = X2 +y) sin(zz)
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2.Find the derivative of F(X,y,z) ;(y3+ 24
3.Let F(x,y,z) =x + y4 7 +sin2” find the derivative.
4.Evaluate the derivatives of F(x,y,z))(2 - Xy+ 24

sinx+CQS X

5.Find the derivative of F(x,y,z) -
tar x
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UNIT 2: TOTAL DERIVATIVE
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1.0INTRODUCTION

In the mathematical field differential calculu, the termtotal derivative has a number of
closely related meanings.

The total derivative (full derivative) of a functid, of several variables, e.¢, X, y, etc., with
respect to one of its input variables, et, is different from thepartial derivative ).
Calculation of the total derivative « with respect tot does not assume that the ot
arguments are constant wht varies; instead, it allows the other argumentsepetid ort.
The total derivative adds in theindirect dependenciet® find the overall dependency f
ont. For example, the total derivativef(t,x,y) with respect ta is

df df odfdx  0Ofdy
dt at+axdt+8ydt'

Consider multiplying both sides of the equatiorthydifferential d ¢ :

df:%dt—l—g—idx—l—%dy.
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The result will be the differential chand fin the functionf. Becausé depends oit, some
of that change will be due to tlpartial derivative of with respect td. However, some
that change will

also be due to the partial derivativesf with respect to the variablex andy. So, the
differential d tis applied to the total derivatives x andy to find differentialsd xand dy,
which can then be used to find the contributiod [

It refers to aifferential operatc such as
. k .
d _ d n Z d Y d
de Oz — dx oy,

which computes the total derivative of a functiaritli respect tcx in this case).

It refers to the (total) differentialf of a function, either in the traditional languade
infinitesimalsor the modern language differential forms.

A differential of the form

ij(Ilf _-I:.l,;)de
=1

is called atotal differential or anexact differential if it is the differential of ¢
function. Again this can be interpreted infinitesity, or by using differential form
and theexterior derivativ.
- It is another name for the derivative as a lineapm.e., iff is adifferentiable functio
from R" to R™, then the (total) derivative (or differential) f atxeR" is the linear map
from R" to R™ whose matrix is thJacobian matrix of atx.

. Itis a synonym for thgradien, which is essentially the derivative of a functioom R"
to R.

Du

« Itis sometimes used as a synonym formaterial derivative,D_t., in fluid mechanic
2.00BJECTIVE

After studying this unit, you should be able

differentiate with indirect dependt

find the derivative via differentie

solve total derivative as a linear n
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know total differential equatio

3.0MAIN CONTENT

Differentiation with indirect dependencies

Suppose thdtis a function of two variablex andy. Normally these variables are assume
be independent. However, in some situations they bedependent on each other.
exampley could be a function cx, constraining the domain 6fo a curvi in R%. In this case
the partial derivative of with respect tcx does not give the true rate of changef with
respect to changing because changirx necessarily changgs Thetotal derivative takes
such dependencies into acco

For example, suppose
f(xy) =xy.

The rate of change dfwith respect tx is usually the partial derivative f with respect tc;
in this case,

of _
or 7

However, ify depends omn, the partial derivative does not give the true @tchange of as
x changes because it holgdéxed.

Suppose we are constrained to the
y =X
then
f(x,y) = f(x,X) =%
In that case, the total derivativef with respect tx is

df _

=2
dx I.

Notice that lis is not equal to the partial derivati

df 8}“_ B
s~ X7 5, "UTT

90



While one can often perform substitutions to eliatéindirect dependencies, tchain rule
provides for a more efficient and general technigugpposeM(t, pi, ..., pn) is a function of
time t andn variablesp; which themselves depend on time. Then, the tate tlerivative o
M is

dM d

— = —MIi. L), ..., t)).

dt di (pl( ) pﬂ( ))

This expression is often usedphysics for a gauge transformatiohthe Lagrangian, as two
Lagrangians that differ only by the total time dative of a function of time and
generalized coordinatésad to the same equations of motion. Therator in brackets (in th
final expression) is also called the total derivatbperator (with respect t).

For example, the total derivative f(x(t), y(t)) is

df ofdz Jfdy
d _axdt+aydt'

Here there is néf / ot term sincef itself does not depend on the independent vart
directly
The total derivative via differentials

Differentials provide a simple way to understand tbtal derivative. For instance, supp

ﬂ’f(tsﬁ'ls sy P‘n)is a function of timet andn variablesp; as in the previous section. The
the differential oM is

oM — OM
dM = ——dt
dt * i1 8}1@

dpi.

This expression is often interpreteheuristically as a relation betweeinfinitesimals.

However, if the variables and p; are interpreted as functions, aM(f:Ph e !pﬂ)is
interpreted to mean the composite M with these functions, then the above expres
makes perfect sense as an equalitdifferential 1-forms and is immediaterom the chain
rule for theexterior derivativ. The advantage of this point of view is that ikes into

& _
account arbitrary dependencies between the vasatiler example, iiP1 = P2P3then

2p1dpr = padpa + p2dpa. in particular, if the variableg are all functions ot, as in
the previous section, then

oM ", OM 8p;
dM = —dt —
ot ' "L ap, ot

di.

The total derivative as a linear maj
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Let U € R"pe anopen subs. Then a functionf : U — Rmis said to be totally)

differentiable at a point? € U, if there exists a linear mafl fp :R" - R™
denoted [ or Df(p)) such the

g @)= f@) —dfplz =P _

z—p Iz — pl|

The linear map‘:1 f pis called the(total) derivative or (total) differential of f atp. A
function is (otally) differentiable if its total derivative exists at every point is domair

Note thatf is differentiable if and only if each of its commons fi : U — Ris
differentiable. For this it is necessary, but naffisient, that the partial derivatives of ec
function f; exist. However, if these partial derivatives exastd are continuous, thef is
differentiable and its differential at any pointtise liner map determined by tkJacobian
matrix of partial derivatives at that poi

Total differential equation

A total differential equations adifferential equatiorexpressed in terms of total derivativ

Since the exterior derivatiis a natural operatpin a sense that can be given a techr
meaning, such equations are intrinsic geometric

CONCLUSION
In this unit, you have known how to differentiatétwindirect dependent. You have us

total derivative via differentials and have knowne ttotal derivative as a linear map. Y
have

SUMMARY

In this unit, you have studied the followir
Differentiation with indirect depende

The total derivative via differentie

The total derivative as a linear n

The total differential equatic

TUTOR — MARK ASSIGNMENT

1.Find the total derivative for the secc— order of the function
F(X,y,Z):X3+ y4_ Zs

92



2.Find the total derivative for the function

F(x,y,2)= X2 y3+ 23

3.Solve the total derivative to the third - ordéthe function
Fy2=xX Yy +Xy+Y X' 7'
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UNIT 3: APPLICATION OF TOTAL DERIVATIVE OF A
FUNCTION.

1.0 INTRODUCTION
2.0 OBJECTIVES

3.0 MAIN CONTENT
3.1 chainrule
3.2 directional derivative
3.3 differentiation under integral sign
3.4 lebnitz rule

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READINGS

INTRODUCTION

Let us consider a function

1) u=~fx,y,z,p,q,..)

of several variables. Such a function can be stuthg holding all variables except one
constant and observing its variation with respectohe single selected variable. If we

consider all the variables except x to be consthat)

du dfix,v,z,p.q, ...)

dx dx

represents the partial derivative of f(x, y, z,gp,... ) with respect to x (the hats indicating
variables held fixed). The variables held fixed @eved as parameters.

OBJECTIVES
After studying this unit, you should be able toreatly :
apply total derivative on chain rule for funcetgoof functions
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apply total derivative to find directional destwe
apply total derivative to solve differentiatiander integral sign
apply total derivative on lebnitz rule

APPLICATION OF TOTAL DERIVATIVES.
Chain rule for functions of functions.

If w=1(x, y, z, ...) is a continuous function ofvariables x, y, z, ..., with continuous partial

derivatives “ "/ ¢ O WOV EWIES © and if X, y, z, ... are differiable functions x = x(t),

y = y(t), z = z(t), etc. of a variable t, then toéal derivative of w with respect to t is given
by

dw Owdx dwdy dwdz

}
2) di dx dt dy dt dz dt

This rule is called thehain rule for the partial derivatives of functions of funaim

Similarly, if w = f(x, y, z, ...) is a continuousuriction of n variables X, y, z, ..., with

dwldx, dw/dy,dw/idz

continuous partial derivative , ... and if x, y,.z are differentiable

functions of m independent variables r, s, tthen

dw  Owdx | dwdy dwdz

dr dx dr dydr &z dr

v fwegde Swdv Sw =

—_— —_— _\._ —_— -\.— ..... L.-r:
s dx ds dyds Oz ds

This rule is called thehain rule for the partial derivatives of functions of funaim

Similarly, if w = f(x, y, z, ...) is a continuouauriiction of n variables x, vy, z, ..., with

dw/dx,ow/cy,éw/dz

continuous partial derivative , ... and if x, y,.z are differentiable

functions of m independent variables r, s, tthen
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dw  Owdx { dwdy dwdz

dr dx dr dydr &z dr

dw dwdy dwdvy dw d-

—_— ——+ -\._ —_— ‘_ ..... L"fl:
s ox ds (28 ds oz ds

Note the similarity between total differentials aothl derivatives. The total derivative above
can be obtained by dividing the total differential

o 0w 0w

" .
dw = —dv+—dy+—dz+ -
ox oy oz

by dt.

As a special application of the chain rule let amsider the relation defined by the two
equations

z=1x,y); y=9(x)

Here, z is a function of x and y while y in turraigunction of x. Thus z is really a function of
the single variable x. If we apply the chain rule get

dz dz 0Oz dy

- + - _
dx ox Jdydx

which is the total derivative of z with respecixto

Defination of Scalar point function. A scalar point function is a function that assignreal
number (i.e. a scalar) to each point of some regiospace. If to each point (X, y, z) of a
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region R in space there is assigned a real numbeb(, y, z), thend is called a scalar point
function.

Examples. 1. The temperature distribution within some bodyaagtarticular point in time.
2. The density distribution within some fluid aparticular point in time.

Directional derivatives. Let ®(x, y, z) be a scalar point function defined ovems region R
of space. The functio®(x, y, z) could, for example, represent the temipeeadistribution
within some body. At some specified point P(x, yoZR we wish to know the rate of change
of @ in a particular direction. The rate of change dfirrction® at a particular point P, in a
specified direction, is called tltkrectional derivative of ®@ at P in that direction. We specify
the direction by supplying the direction anglesimection cosines of a unit vectepointing

in the desired direction.

Theorem. The rate of change of a functiah(x, y, z) in the direction of a vector with
direction anglesd B, v) is given by

d (Elh ot o
— = —cosa + —cos[} + ——cosy
ds cx av oz

3) :

where s corresponds to distance in the metric efcthordinate system. That direction for
which the functiond at point P has its maximum value is calledghedient of ® at P.

Fig. 4

We shall prove the theorem shortly. First let usistder the same problem for two
dimensional space.
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Let O(x, y) be a scalar point function defined over somgion R of the plane. At some
specified point P(x, y) of R we wish to know théeraf change o® in a particular direction.
We specify the direction by supplying the anglthat a unit vectoe pointing in the desired
direction makes with the positive x direction. $ég. 4. The rate of change of functidnat
point P in the direction of corresponding to angteis given by

db dd o
= —cosa 4+ —sina
ds  Ox ay

4)

where s corresponds to distance in the metric efabordinate system. We show this as
follows:

Let

T=1(X,y)
Y
FI
ﬂsi‘ﬁy
P Ax
X
Fig. 5

where T is the temperature at any point of theepkitown in Fig. 5. We wish to derive
expression 4) above. In other words, we wish tivdehe expression for the rate of change
of T with respect to the distance moved in anydete direction. Suppose we move from
point P to point P'. This represents a displacemenin the x-direction and\y in the y-
direction. The distance moved along the plate is
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PP’ = As=J(Ax)* +(Ay)" .

The direction is given by the angidghat PP' makes with the positive x-direction. Thange
in the value of T corresponding to the displacenfiemh P to P' is

] a7 arT Ilf
AT = — Ax+ — Ay +&84J(Ax)* +(Ay)° .
& x &y

wheree is a quantity that approaches 0 whenandAy approach 0.

If we divide AT by the distance moved along the plate, we have

o ) Tl

AT 0T Ax aT Ay J[mw ’ (ﬂj_.)f
—_— = E .
As  dx As Oy As J".j

ra \\“ \
7 S \\
1 ",

/ A \\
/ | I N
f . /
| /.
| / <t d v

Fig. &

From Fig. 5 we observe thak/As = coso andAy/As = sino . Making these substitutions
and letting P' approach P along line PP’, we have
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drr oT o7 .
= ——COSO + — sind
ds  dx oy

This is the directional derivative of T in the dite®n a.

A geometric interpretation of a directional derivatin the case of a function z = f(x, y) is
that of a tangent to the surface at point P as shiowig. 6.

Def. Directional derivative. The directional derivative of a scalar point fuootd(x, vy, z) is
the rate of change of the functidr(x, y, z) at a particular point P(X, y, z) as meadun a
specified direction.

Tech. Let ®(X, y, z) be a scalar point function possessingt faartial derivatives throughout
some region R of space. Let B (), z0) be some point in R at which we wish to compuge th
directional derivative and let Pi(xy1, z;) be a neighboring point. Let the distance fronoP t
P’ beAs. Then the directional derivative @fin the direction PP’ is given by

d I O P (x,, v 2))=PLP(x,y, .2, )]
— = lIm
5) ds PR As

where P' approaches P along the line PPAanajpproaches 0.

Using this definition, let us now derive 3) abolremoving from P to P’ the functioh will
change by an amount

dO oM o
Ax+ —Av+—Az+e Av+e, Av+e Az
0x ay oz

A =
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whereg;, €;, €3 are higher order infinitesimals which approactozas P' approaches P i.e. as
AX, Ay and Az approach zero. If we divide the change by the distancés we obtain a
measure of the rate at whidhchanges as we move from P to P"

AD D Ax oD Ay i g Az 1 Ax 1 Ay 1 Az
= : £ £, £,
6) As  dx Ay dv As  dz As As T Ag As

We now observe thatx/As, Ay/As, Az/As are the direction cosines of the line segment PP’
They are also the direction cosines of a unit veetocated at P pointing in the direction of '.
If the direction angles of area, B, v, thenAx/As, Ay/As, Az/As are equal to casg cosp, and

cosy, respectively. Thus 6) becomes

AD @ ¢ od Ax Ay Az
= —— 0S8t + ——Cosfi + ——cosy +g, FE, £,
Ax Cx cdy gz Mg Asx As
and
dd AD oD cd ¢ d
= lim = cosat + ——cosfi + —— cosy
7) ds wol Ag ox £ oz

Let us note that 7) can be written in vector fosrttee following dot product:

db [ed o od ab od b |
— == - - : [L‘E}':i{J'. cosfi o cosy ] =|—/— = €
ﬂri X oV 2z X f:_'l‘ (4
8) J
The vector

g g g
- - -

cx dy o=z

is called the gradient @b. Thus the directional derivative df is equal to the dot product of
the gradient ofd and the vectoe. In other words,

( d0)

= grad ¢
s S
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where

{ div)

Vas/,

is the directional derivative @ in the direction of unit vector e.

If the vectore is pointed in the same direction as the gradién® adhen the directional
derivative of® is equal to the gradient af.

Differentiation under the integral sign. Leibnitz’s rule. We now consider differentiation
with respect to a parameter that occurs under tagral sign, or in the limits of integration,
or in both places.

Theorem 1.Let

F(x) = [f(o)de

where a= x = b and f is assumed to be integrable pm]faThen the functiorF(x) is

F'(x)

continuous anc = f(x) at each point where f(x)aattuous.

Theorem 2.Let f(x, o) andof/da be continuous in some regi® (a =x = b, c=a =d) of
the xu plane. Let

9) Gla) = J-'I._\f'{:f,u} dx csa=d

Then
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1G b Of (x,
o) 46 _ o)

dot ot

Theorem 3. Leibnitz’s rule. Let
11) Gla) = J.”:_f[x,u] dx csa=d

where y and y are functions of the parameter.e.

4 = (o)

U = ().

Let f(x, a) and of/do be continuous in both x and in a regionR of the xa plane that

includes the regioniu=x =W, ¢ =a =d. Let y and g be continuous and have continuous
derivatives for c=a =d. Then

12 dG _ j-‘“: f:}f'(f‘{.ﬂe}d_ p du, , du,
H} dot B 1y ot X+ {“:!u]d{]_ - f{”hﬂ}dq,

where f(4, o) is the expression obtained by substituting theression w(a) for x in f(x, ).

Similarly for f(w, a). The quantities f(y o) and f(y, o) correspond t@G/u and 0G/u,
respectively and 12) represents the chain rule.

Order of differentiation. For most functions that one meets

(]

cf_af

¥

-

Ty

-
-~

vox
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However, in some cases it is not true. Under wiratimstances is it true? It is true if bc
functions {x and {, are continuous at the point where the partialdaneg taker

Theorem. Let the function f(x, y) be defined in so neighborhood of the point (a, b). L
the partial derivativesffy, fy, and §x also be defined in this neighborhood. Then, and
fyx are both continuous at (a, by(a, b) = {x(a, b).

EXAMPLE
du
P _ : - -
Givent = ° + 2y where? = TElﬂ(t)andy = sln (f) determine the value (Or
du
and 9t using the chain rule.

Ou _ Oudx  Judy _ | o
ar Ozor " oyor (22) (sin(t)) + (2) (0) = 2rsin”(?)

and

du  OJudx Judy

il s Ty Ot = (2x) (rcos(t)) + (2) (2sin(t) cos(t))

= 2(rsin(t)) rcos(t) 4+ 4sin(t) cos(t) = 2 (’rz + 2) sin(t) cos(?).
4.0 CONCLUSION

In this unit, you have applied total derivative cimain rule. You have solved problems
directional derivatives using total derivative. Ydwave used total derivative to so
differentiation under integralign and leibnitz rul

5,0 SUMMARY
In this unit, you have studied the followil
The application of total derivative on chain |
The application of total derivative on directionl@rivative
The application of total derivative on differenimat unde integral sign
The application of total derivative on leibnitz e
6.0 TUTOR - MARKED ASSIGNMENT
1.Find all directional derivatives of the functi
1

Fixy) = (3X2+ y“)Z
(Where{my}Ej.L 2 ), in the poin1{E':[]'}
2. Find the integral of the functic
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F(x,y,z) = 3)(2 + 2xyz
In the point (0,1)
3.Find the total derivative of the function

F(xy) = 3xy + 4y2

REFERENCES
James & James. Mathematics Dictionary
Middlemiss. Differential and Integral Calculus
Spiegel. Advanced Calculus
Taylor. Advanced Calculus
Spiegel. Vector Analysis
Bernard R. Gelbaum and John M. H. Olmsted. Couxdenples in Analysis.

Dover, 2003.
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MODULE 4

PARTIAL DIFFERENTIABILITY AND TOTAL DIFFERENTIABILI TY OF
FUNCTION OF SEVERAL VARIABLE

-Unit 1: Partial differentials ofrfation of several variables.
-Unit 2; Total differentials ofrfation of several variables.

-Unit 3: Application of partial dntotal differentials of function of several
variables.

UNIT 1 PARTIAL DIFFERENTIABILITY OF FUNCTION OF
SEVERAL VARIABLE

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT
3.1 Partial derivatives
3.2Second partial derivatives

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READINGS

INTRODUCTION

Differentiation is a method to compute the rate at which a depermeputy changes with
respect to the change in the independent irplhis rate of change is called tterivative
of y with respect t. In more precise language, the dependengaupbnx means thay is a
function ofx. This functional relationship is often denoted f(x), wheref denotes the
function. Ifx andy are real numbers, and if the graply @ plotted against, the derivative
measures the slope of this graph at each point.

The simplest case is whgns a linear function o, meaning that the graph pagainsix is a

straight line. In this casg,= f(X) = mx + b, for real numbers andb, and the slopeis
given by
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__ changeiny Ay
~ changein z Az

i

where the symbahk (the uppercase form of the Greek leDeltg) is an abbreviation fc
"change in." This formula is true beca

y+Ay=f(x+tAX)=m(XxX+Ax) +b=mx+b+mAx=y+mAx
It follows thatAy = m Ax.

This gives an exact value for the slope of a diitdige. If the functiorf is not linear (i.e. it:
graph is not a straight line), however, then thengfe iny divided by the change x varies:
differentiation is a method to find an exact valaethis rate of change at any given valu
X.

Rate of change as a limiting valu

Vs
-

tangenk line -

HS]DPE= "
.'.'..-\--\.’-ﬂ_'_/_;-/_/
;

Figure 1. The tangenline at X, f(X))

FxHy e
secant line s
i

xth

A
Figure 2. The secanto curvey= f(x) determined by pointx(f(x)) and &+h, f(x+h))

:
roxth" oxth' xth

Figure 3. The tangent line as limit of seca
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The idea, illustrated by Figure-3, is to compute the rate of change aslimiting value of
the ratio of the differencesy / Ax asAx becomes infinitely small.

In Leibniz's notationsuch arinfinitesimal change ix is denoted bylx, and the derivative ¢
y with respect tx is written

dy
dx
suggesting the ratio of two infinitesimal quansti€The above expression is read as

derivative ofy with respect t", "d y by d X", or "d y over d x". The oral form "d y d is'
often used conversationally, although it may leaddanfusion.

The most common approdgho turn this intuitive idea into a @cise definition uses limit
but there are other methods, suclnon-standard analysf.

Derivatives

Bound as we humans are to three spacial dimengsiuns-variable functions can be ve
difficult to get a good feel for. (Try picturingfanction in the 17th dimension and see |
far you get!) We can at least make tl-dimensional models of tweariakle functions, but
even then at a stretch to our intuition. What isdweal is a way to cheat and look at n-
variable functions as if they were (-variable functions.

We can do this by usingartial functions. A partial function is a oneariable funcion
obtained from a function of several variables lsigreing constant values to all but one
the independent variables. What we are doing isgatkvc-dimensional "slices" of th
surface represented by the equat

For Examplez=x*-y* can be modeled in three dimensio
space, but personally | find it difficult to sketdh the
section on critical pointa picture of a plot of this functic
can be found asneexample of a saddle point. But
alternately setting=1 (red),x=0.5 (white), anck=0.25
(green), we can take slicesm$-y* (each one a plane :
parallel to thez-y plane) and see different partial functio |
We can get a further idea of the behaof the function by
considering that the same curves are obtainex=-1, -0.5
and -0.25.

Food For Thought: How do partial functions compare
level curves antkvel surface? If the functiorf is a continuous function, does the level se
surface have to be continuous? What about pautmtions

All of this helps us to get to our main topic, tigtpartial differentiation. We know how
take the derivative of a singlariable function. What about the derivative of altr-variable
function? What does that even mean? Partial Dévestre th beginning of an answer
that question.

OBJECTIVES
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In this unit, you should be able t
Identify and solve partial derivativ

Solve second partial derivativ

MAIN CONTENT

A partial derivative is the rate of change of a m-variable function whe we allow only
one of the variables to change. Specifically, westkntiate with respect to only ol
variable, regarding all others as constants (noveegethe relation to partial functions
Which essentially means if you know how to takeeawative, you know how to take
partial derivative.

A partial derivative of a functiof with respect to a variabbe sayz=f(x,y1,Y2,..yn) (Where the
yi's are other independent variables) is commonlypiehin the following ways

0z
Ox (referred to as "partiaz, partial x’)
of
E}T (referred to as "“partial f, partial x)

Note that this is not the usual derivativd" . The funny “d" symbol in the notation is el
“roundback d", ““curly d" or ““del d" (to digguish from ““delta d"; the symbol is acly a
“lowercase Greek ‘delta' ).

The next set of notations for partial derivativesnuch more compact and especially L
when you are writing down something that usesdbtzartial derivatives, especially if the
are all different kinds:

“x (referred to as "partial z, partial )
f xr (referred to as "partial f, partial »)
f € (.’ﬂ, y) (referred to as " partial f, partial x"

Any of the above is equivalent to the lir
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£ = lim flx + Ah,y) — f(z,y)

z—Ah Ax

To get an intuitive grasp of partial derivativegpgose you were an i crawling over som
rugged terrain (a tweariable function) where trx-axis is northsouth with positivex to the
north, they-axis is eastwest and thiz-axis is updown. You stop at a poilP=(xo, Yo, Zo) On a
hill and wonder what sort of slope you | encounter if you walk in a straight line nor
Since our longitude won't be changing as we gdwndey in our function is constant. Tt
slope to the north is the valuefy(xo, Yo).

The actual calculations of partial derivativesruost functions is very easy! Treat ev:
indpendent variable except the one we are intetestas if it were a constant and apply
familiar rules!

Example:

Let's findf, andf, of the functiorz=f=x* -3x°y+y". To findf,, we will treaty as a constant and
differentiate. Sof,=2x-6xy. By treatingx as a constant, we firf¢=-3x2+3y2.

Second Partial Derivatives

Observe carefully that the expressfyy implies that the functiohis differentiated first witt
respect toc and then with respect y, which is a natural inference singgis really €y)y.

For the same reasons, in the case of the expre
) [0 )2
C C C

oz \dy ) ~— Ozdy

it is implied that we differentiate first with resgt toy and then with respect x.

Below are examples @ure second partial derivative:

92 f
9y2 Ty

oz faz

Example:
Lets findfy, andf,y of f=€ + y(sinx).

. f=ye? + ycox
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o fy=xye? + cox
. fy=xe¥ + six
- fuexye? + cox

In this exampld,,~f,x. Is this true in general? Most of the time andiost examples that yc
will probably ever see, yes. More precisely

« bothfyy andfyx exist for all points neaixo,yo)
« and are continuous &xo,Yo),

thenf,=fyy.
Partial Derivatives of higher order are definedhe obvious way. And as long as suite

continuity exists, it is immaterial in what ordes@juence of partial differentiation is carr
out.

total differential (Definition)

There is the generaligan of thetheorem in the parent entcpncerning thaeal functions of
several variabledhere we formulate it for three variabl

Theorem. Suppose that S iball in [£3 , the function f:S= £ isontinuou and has partial
derivatives fx: fy : fz in Sand the partial derivatives are continuous poini (x iy :z) of S .
Then the increment

Af=f(x+ Ax y+ Ay z+ A2)—f(x y 2) »

which fgets when one moves frc(x 1y :z) to another point (x£&A x y#\y :z+/Az) of S, car
be split into two parts as follow

Af = [fulz, y, 2)Ax + f(z, y, 2)Ay + flz, y, 2)Az] + (g)o. ()

Here, ¢ :=\/ A x2+A y2+47A72 and' ¢ Jis a quantity tending to 0 along wi .
The former part ofA s called thetotal) differential or thexact differentic of the functior
fin the point (x y z)and it is denoted bdf(x :y -z) of briefly df. In the special casf(x y z)

=x , we see that df& and thus Ax=dx ; similarly A y=dy andA z=dzAccordingly, we
obtain for the general case the more consisteatinc

df = filz,y, z)dx + f,(z, y, z)dy + f.(z, y, z)dz, @

where dx dy danay be thought as independent varial

We now assume conversehat the increment of a functid in [£3 can be split into tw
parts as follows:
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flz+Azx, y+ Ay, z+Az) — flz, y, 2) = [AAz + BAy + CAz| + (o)« (:;>

where the coefficients A E are independent on the quantitiés /X /yz and ¢ L 0 Jare
as in the above theorem. Then one can infer tlegpaintial derivativefx « :fy «fz - exist in the
point (x:y:z)and have the valueA B C , respectively. In fact, if we choo Ay=:Az=0,

then ¢ 5 A X whence (3) attains the for

f(x+ Ax y+ Ay z+ Az)-f(x 1y 1z)=A Ax+{ A Ax
and therefore
A=lim ax —0 Axf(x+ Ax y+ Ay z+ Az)-f(x 1y z)=fxr (X 1y :2).

Similarly we see the values fy - and fzr .
The last consideration showed the uniqueness dbthkdifferential

Definition. A function f in£3, satisfying the conditions of the above theoresaisl to be
differentiable in the point (3% -z) .

CONCLUSION

In this unit, you have identified and solved praoblen partial differential of function ¢
several variables. You have also used partial rdiffeal of function of several variables
solve problems on second partial derivati

SUMMARY

In this unit, you have studie

Partial derivatives

Second partial derivatives

TUTOR — MARK ASSIGNMENTS

1.Find the first order derivative of the followirfignctior
Fxy2) =Xy 7'

2.Find f - f Y f _.given tat F(x,y,z) = sin(xyz
3.Evaluate the second order derivative

LI I e XY +2y+7
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4 Evaluate the second order derivative of
3 2 3

Fxy2)= X+ 7

REFFERENCE

Jacques, |. 199%athematics for Economics and Busin&sd.Edition. Prentice Hall.

UNIT 2 TOTAL DIFFERENTIABILITY OF FUNCTION OF SEVERAL
VARIABLE

CONTENT

1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT

Identify and solve problems on talifferentials of functions of several variables

4.0 Conclusion

5.0- Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Readings

INTRODUCTION

In the case of a function of a single variabledtiterential of the function y = f(x) is the
quantity

Fig. 2

dy = f'(X)AX .

This quantity is used to compute the approxima#ngk in the value of f(x) due to a change
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AX in X. As is shown in Fig. 2,
Ay = CB = f(x +AX) - f(x)

while dy =CT =f'(x\x .

CB=hz
CT=d;

“s{myram, iy +ay)

Fig. 3

WhenAXx is small the approximation is close. Line AT regents the tangent to the curve at
point A.

OBJECTIVES

At the end of this unit, you should be able to tifgrand solve problems on total tifentials
of functions of several variables

MAIN CONTENT

In the case of a function of two variables theatitun is analogous. Let us start at point A(X
Y1, z1) on the surface

z =1(x,y)

shown in Fig. 3 and let x and y change by small@amsh\x andAy, respectively. The
change produced in the value of the function z is

Az = CB =1f(x + AX, y1 + Ay) - f(X1, y1) .
An approximation td\z is given by
r

Oz ) Oz
CT:LA J i‘ur+[ﬁ ) Ay .
éx/ ey

X
A

WhenAx andAy are small the approximationgse. Point T lies in that plane tangent to
surface at point A.
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The quantity

- -
0= oz

dz=——Ax+—_——Ay

-

-
ox dy

is called thdotal differential of the function z = f(x, y). Because is customarygénote
incrementsAx andAy by dx and dy, the total differential of a functia = f(x, y) is defined
as

- -
dz cz
dz=—dx+—_—dy.

-~

ox C)

The total differential of three or more variablsglefined similarlyFor a function z = f(x,
Yy, .., U) the total differential is defined as

-

0z 0z 0z
dz=_—dx+_—dv+--+—_—du.
ox dy du

Each of the terms representpaatial differential . For example, the term

is the partial differential of z with respect toBhe total differential is the sum of the partial
differentials.

4.0 CONCLUSION

In this unit, you have identified and solved prob$eon total differentials of functions of
several variables

5.0 SUMMARY

In this unit, you have studied total differentiafSfunctions of several variables.
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6.0TUTOR — MARKED ASSIGNMENT

Find the total differentiability of the following :

a. F(x,y) =x+2xy + y2

b. F(xy,z)=x +2 y3+ 7
c. F(x\y,z)= )(3 y2 23

d. F(xy,z)=4x y3+ 7’

e. F(x\y,2) = \/Xz + y3 - 2Xyz

7.0 REFERENCES

James & James. Mathematics Dictionary
Middlemiss. Differential and Integral Calculus
Spiegel. Advanced Calculus

Taylor. Advanced Calculus
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MODULE 5 COMPOSITE DIFFERENTIATION, EULER'S THEOREM , IMPLICIT
DIFFERENTIATION.

Unit 1: Composite differentiation
Unit 2: Euler's Theorem

Unit 3: Implicit differentiation.

UNIT 1: COMPOSITE DIFFERENTIATION
1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT
3.1 The chain rule
3.2 Composites of more than two functions
3.4 The quotient rule
3.5 Higher derivative
3.6 Proof of the chain rule
3.7 The rule in higher dimension
4.0 CONCLUSION
5.0 SUMMARY
6.0 TUTOR-MARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS
1.0 INTRODUCTION

In calculus, the chain rule is a formula for conpgithe derivative of the compositiarf two
or more functions. That is, if f is a function amgds a function, then the chain rule expresses
the derivative of the composite function § in terms of the derivatives of f and g.

Calculate the derivatives of each function. Writéraction form, if needed, so that all
exponents are positive in your final answer. Use"thodified power rule" for each.

2.0 OBJECTIVES

At the end of this unit, you should be able to
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use chain rule to solve mathematical probl
solve composites of more than two functi
use the quotient rule to solve composite func

identify problems in composite function which coulé solve by the use of higl
derivative.

Proof the chain rule

Know the rule in higher dimensi

3.0 MAIN CONTENT
Statement of the Rule

The simplest form of the chain rule is for valued functions of oneea variable. It says
that if g is a function that is differentiable gpaint c (i.e the derivative '(c) exists) and f
is a function that is differentiable at g(c), the composite functior e g is differentiable
atc, and the derivative is

(feg)(e)= f(g(c))-g(c).

The rule is sometimes abbreviate:
(fog) =(fog)g.

If y =f(u) andu = g(x), then this abbreviated form is writtenLeibniz notatioi as:

dy dy du

dr ~ du da’

The points where the derivatives are evaluated atsybe stated explicitl
dy| _dy|  du

dr| _. du umgle) dr| __

Further examples
The chain rule in the absence of form

It may be possible to apply the chain rule evenmithere are no formulas for t
functions which are being differentiated. This teppen when the derivatives
measured directly. Suppose that a car is driving tadl mountain. The car's speedonr
measures its speed directly. If igradeis known, then the rate of ascent can be calcu
using trigonometrySuppose that the car is ascending ¢ km/h. Standard models for tl
Earth's atmosphere imply that the temperature dabpst 6. °C per kilometer ascendt
(see lapse rateTo find the temperature drop per hour, we apipdychain rule. Let th
functiong(t) be the altitude of the car at tirt, and let the functiof(h) be the temperatui
h kilometers above sea levf andg are not known exactly: For example, thetude
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where the car starts is not known and the temperatu the mountain is not know
However, their derivatives are knowf’ is —6.5 °C/km, and’ is 2.5km/h. The chain rul
says that the derivative of the composite funcisotine product of the divative off and
the derivative ofy. This is—6.5 °C/km - 2. km/h = -16.25 °C/h.

One of the reasons why this computation is posssdbecausf’ is a constant functiol
This is because the above model is very simple.ofemaccurate description of hithe
temperature near the car varies over time wouldire@n accurate model of how 1
temperature varies at different altitudes. This edaday not have a constant derivative.
compute the temperature change in such a modebulkd be necessary tnow g and not
justg’, because without knowirg it is not possible to know where to evaluf’.

Composites of more than two functis

The chain rule can be applied to composites of riwe two functions. To take tl
derivative of a composite of mothan two functions, notice that the compositf, g, and
h (in that order) is the compositef with g o h. The chain rule says that to compute
derivative off o g o h, it is sufficient to compute the derivativef and the derivative (g o
h. The derivative of can be calculated directly, and the derivativg o h can be
calculated by applying the chain rule ag

For concreteness, consider the func

EII'I.'II2

y=e€
This can be decomposed as the composite of thretidas

y = flu) = e",

u = g(v) =sinwv,

v=h(z)= 2.
Their derivatives are:
dy

du fiu) =

du ,

=9 (v) = coswv,
du

é = h'(z) = 2.

The chain rule says that the derivative of themposite at the poirx = ais:
(fogoh)(a)= f((goh)(a))(goh)(a) = f((goh)(a))d (h(a))h'(a)
In Leibniz notation, this is:

dy_dy|
dr  du dv

e
dx

v=h{a)

w=g(h{a])

=
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or for short,
dy dy du dv

dr  du dv dz

The derivative function is therefo

dy Y

2
— =" Lcosx” - 21,
dr

Another way of computing this derivative is to vidve composite functiof o g o h as the
composite of o g andh. Applying the chain rule to this situation giv

(fogoh)(a)=(fog)(h(a)k(a) = f(g(h(a))g (h(a))k (a).

This is the same as what was computed above. Mbiddbe expected becauf o g) o h
=fo (goh).

The quotient rule

The chain rule can be used to derive some-known differentiation rules. For examp
the quotient rule is a consequence of the chasmantl the product rule. To see this, w
the functionf(x)/g(x) as the produd(x) - 1G(X). First apply the pradtt rule

d T d 1
x \ g(x) dx g(x)
) 1 d [ 1
=flx) ——+flx) - — | —< ).
1@ o+ 10 g (5)
To compute the derivative ofg(x), notice that it is the composite @fvith the reciproca

function, that is, the function that serx to 1k. The derivative of the reciprocal functior
—1/x%. By applying the chain rule, the last expron becomes:

(1 Plae) - S )
F@) s+ @) (=590 ]Szl

which is the usual formula for the quotient r

Derivatives of inverse functio

Suppose that = g(x) has arinverse function. Call its inverse functiosd that we have
= f(y). There is a formula for the derivative ahfterms of the derivative of g. To see tt
note that f and g satisfy the form

f(9(x) =x

Because the functiorigy(x)) andx are equal, their derivatives must be equal.
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derivative ofx is the constant function with value 1, and theagdive off(g(x)) is
determined by the chain rule. Therefore we F

fleM))g(x) = 1.

To expresd’ as a function of an independent varicy, we substituté(y) for x wherever it
appeas. Then we can solve ff'.

fla(f))g(fly))=1
flg(fly)=1

, _ 1
I = ey

For example, consider the functig(x) = €. It has an inverse which is denof(y) = Iny.
Because/'(x) = €, the above formula says t

This formula is true whenevg is differentiable and its inver$és also differentiable
This formula can fail when one of these conditiansot true. For example, consicg(x)
=, Its inverse id(y) = y**, which is not differentiable at zero. If we attertpuse the
above formula to compute the derivativef at zero, then we must evaluatg'(f(0)). f(0)
=0 andg'(0) = 0, so we must evaluate 1/0, which is undeffifenerefore the formula fai
in this case. This is not surprising becaf is not differentiable at zero.

Higher derivatives

Faa di Bruno's formulgeneralizes the chain rule to higher derivativdee first few
derivatives are

d(fog) dfdg

dr  dgdz
P(fog) _ ®f (dg)° dI Py
de®  dg® \dz dg da?

d(fog) _d*f (w @fdgd’g df d

id df \dz) " Cdgf dvda? | dgded

B(fog) 2 (dg\' oS (0 dg B [ dg o, o (o
det dg* \dz) dg® \dx ) dx? dg? | drdxd dx?

Proofs of the chain rule
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First proof
One proof of the chairule begins with the definition of the derivati

(f@gfw)zlmlf@tﬂ)_f@ﬂ@l

T—il T — 11

Assume for the moment thg(x) does not equaj(a) for anyx neara. Then the previou
expression is equal to the product of two fac

o fl9(2) ~ f(9(a))  g(z) — g(a)
=—a g(x) —g(a) rT—a

Wheng oscillates neaa, then it might happen that no matter how closegete tca, there
is always an even closesuch thag(x) equalsg(a). For example, this happens g(x) =
x%sin(1 /X) near the poina = 0. Whenever this happens, the above expressiamisfinec
because it involvedivision by zer. To work around this, introduce a functiQ as
follows:

iy —flgla))
)T o Y7 g(a),
@ {f@@ﬁs y = g(a).

We will show that the difference quotient f o g is always equal to:

Qo(ay - 24D

Wheneveg(x) is not equal tg(a), this is clear because the factorgd) - g(a) cancel.
Wheng(x) equalgy(a), then the difference quotient ff o gis zero becausf(g(x)) equals
f(g(@)), and the above product is zero because it ef’(g(a)) times zero. So the abo
product is always equal to the difference quotiant to show that the derivativef o g at
a exists and to determine its value, we need onlyghat the limit ax goes tca of the
above product exists and determine its vi

To do this, recall that the limit of a product dgig the limits of its factors exist. When t
happens, the limit of the product of these twodectvill equal the product of the limits
the factors. The two factors €Q(g(x)) and ¢(x) - g(a)) / (x - @). The latter is thi
difference quotient fog ata, and becausgis differentiable at by assumption, its limit ¢
X tends taa exists and equag’(a).

It remains to stud®(g(x)). Q is defined wherevdris. Furthermore, becauf is
differentiable apg(a) by assumptiorQ is continuous ag(a). g is continuous aa because |
is differentiable af, and thereforQ o g is continuous a. So its limit asx goes taa exists
and equal€)(g(a)), which isf'(g(a)).

This shows that the limits of both factors exisll #imat they equé’(g(a)) andg'(a),
respectively. Therefore the derivativef o g ata exists and equaf§g(a))g'(a).

Second proof

122



Another way of proving the chain rule is to meagheserror in th linear approximatiol
determined by the derivative. This proof has theaathge that it generalizes to sevi
variables. It relies on the following equivalentideion of differentiability at a point: £
functiongis differentiable aa if there exists a real numbg/(a) and a functiorz(h) that
tends to zero astends to zero, and furtherm:

gla+h) —g(a) = g'(a)h + e(h)h.

Here the lefthand side represents the true difference betweewndlue olg ata and ata +
h, whereas the rightand side represents the approximationrmined by the derivativ
plus an error term.

In the situation of the chain rule, such a functi@xists becausg is assumed to k
differentiable at. Again by assumption, a similar function also &xferf atg(a). Calling
this functiomm, we have

flgla) + k) — f(g(a)) = f(gla))k+ n(k)k.

The above definition imposes no constraints)(@), even though it is assumed th¢k)
tends to zero dstends to zero. If we sg(0) = 0, them is continuous at

Proving the theorem requires studying the diffeef(g(a + h)) — f(g(a)) ash tends to
zero. The first step is to substitute g(a + h) using the definition of differentiability g
ata:

f(g(a +h)) —f(a(a)) =f(g(a) + g'(@h + e(h)h) —f(g(a)).

The next step is to use the definition of differebility of f atg(a). This requires a term «
the formf(g(a) + k) for somek. In the above equation, the corrkataries withh. Setk, =
g'(a)h + ¢(h)h and the right hand side beconf(g(a) + ky) — f(g(a)). Applying the
definition of the derivative give

f(gla) + kn) — flgla)) = f'(g(a))kn + nlkn)En.

To study the behavior of this expressiorh tends to zero, exparg. After regrouping the
terms, the rightitand side become

f'(gla))g (a)h + [f'(g(a))e(R) + n(kn)g (a) + n(kn)e(R)]h.

Because(h) andn(ky) tend to zero ah tends to zero, the bracketed terms tend to zeh
tends to zero. Because the ae expression is equal to the differefigga + h)) — f(g(a)),
by the definition of the derivativf o g is differentiable ah and its derivative i

f(a(@))g'(a).

The role ofQ in the first proof is played by in this proof. They are related by t
equation:

Q(y) = f'(g(a)) +nly — g(a)).

The need to defin® atg(a) is analogous to the need to defipat zero. However, th
proofs are not exactly equivalent. The first progfes on a theorem about product:
limits to show that the derivative exists. The setproof does not need this beca
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showing that the eor term vanishes proves the existence of the liingctly.
The chain rule in higher dimensic

The simplest generalization of the chain rule tghbr dimensions uses ttotal derivative
The total derivative is a linear transformationttb@ptures how the function changes ir
directions. Lef : R™ — R¥andg : R" — R™be differentiable functions, and ID be the
total derivative operator. His a point inR", thenthe higher dimensional chain rule s:
that:

Da(f Og) — Dg{a)f O Dag.-

or for short,

D(fog)=DfoDg.

In terms ofJacobian matric, the rule says

Jalf 0 g) = Jyai(f)Jalg),

That is, the Jacobian of the composite functiahésproduct cthe Jacobians of tt
composed functions. The hig-dimensional chain rule can be proved using a tegha
similar to the second proof given abc

The higherdimensional chain rule is a generalization of the-dimensional chain rule.
k, m, andn are 1, so thdt: R — R andg : R — R, then the Jacobian matricesf andg
are 1 x 1. Specifically, they a

Ja(9) = (¢'(a)),
Jo@ () = (F'(9(a))).

The Jacobian dfe gis the product of these 1 x 1 matrices, sof'(g(a))g'(a), as
expected from the on@gimensional chain rule. In the language of lineansformations
Da(g) is the function which scales a vector by a faoftg'(a) andDg(f) is the functior
which scales a vector by a factorf’(g(a)). The chain rule saybat the composite of the
two linear transformations is the linear transfotioraD4(f o g), and therefore it is tF
function that scales a vector f'(g(a))g'(a).

Another way of writing the chain rule is used wif andg are expressed in terms of ir
components ag = f(u) = (fi(u), ...,f(u)) andu =g(x) = (@(x), ...,dm(X)). In this case, th
above rule for Jacobian matrices is usually wride

The chain rule for total derivatives implies a chaile for partial derivatives. Recall tf
when the total derivative exists, the partial datiive in theith coordinate direction |
found by multiplying the Jacobian matrix by fith basis vector. Bgoing this to the
formula above, we find:
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8(}(‘1! ---,f.l;) . S(fl." "!fk) 8(911 1gm)
E‘ﬂIt' a 6(u1, Ceay um) Eﬂ:r,t- .

Since the entries of the Jacobian matrix are patdavatives, we may simplify the abo
formula to get:

O(fr,- - fn) _ i I fi,. .., fr) Oge
31::’ =1 au;_« 31:3-'

More conceptually, this rule expresses the fadtah@hange in thx; direction may chang
all of g; throughgy, and any of these changes may aff.

In the special case wheke= 1, so thaf is a realvalued function, then this formu
simplifies even further:
Z of dﬂf

tﬂ:{:t * Oy Oz

Example
Ju
Given Ut = T+ 2YwhereT =T SIN(l)andy = sin’ (f} determine the value {1
du
and ausing the chain rul

= Gear+ g = (20) Sin() + (2) (0) = 2rsin’ (1)

and

ou  dudr du My
5% = 9o 0t 6 ot = (2x) (rcos(t)) + (2) (2 sin(t) cos(t))

= 2(rsin(t))rcos(t) + 4sin(t) cos(t) = 2 (’rg + 2) sin(t) cos(t).

derivatives of multivariable functio

Higher

Faa di Bruno's formula for higr-order derivatives of singleariable functions generaliz
to the multivariable case. fifis a function olu = g(x) as above, then the second deriva
of fogis:

P(fog) of &g D*f  Ogr Oge
Oz;01; d:t: E duy, d;07; E OuOug 0x; 0

The composite functioahain rul¢ notation can also be adjusted for the multivarcaige
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Givenz=f{u) and u=g(x )
such that z= f [g [I,}’]]

Then the partial derivatives of z with respecttsativc independent variables are definec

e dy
B du
fr  dy

g_du

@R w|y

Let's do the same example as above, this time tisengomposite function notation whe

functions within the z function are renan Note that either rule could be used for 1

problem, so whers it necessary to go to the trouble of presentiegmore formal composi
function notation?As problems become more complicated, renaming padscompositt

function is a better way to keep track of all pafishe problen It is slightly more tine
consuming, but mistakes within the problem are likssy.

Given z= (2;{ +y° )3

letz=f{u)=0" and u=g(xy)=2x+)"

Bz_c:{j:_é‘u: 2 _ e
then —=—"-— (3u7)(2) = bu

& _d 2 2
and = =2 =%t 2w =6

5 a3 =6

%:6u2=6(2x+}3)
%: Ey{u]j = {6y](2x+y2)

Multivariate function

The rule for differentiating multivariate naturablarithmic functions, witlappropriate
notation changes is as folloy

Givenz= f{u)=In{) and u=g(xy)
such that z=1ng{x )

Then the partial derivatives of z with respectisamndependent variables are definec

& 18 1 %
dx u x gﬁ:x,y] x
E_ lx__1 =%
¥ u & glxy) &
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Let's do an exampleind the partial derivatives of the following furast:

z=In [2x2+4y2]
1 & 1 4x

gl{x.y) ox m-(%ﬂ:m
1 o 1 4y
)'( )

&
dx

i

gzg(x,y] the {2x2+4y2

The rule for taking partials of exponential funcisocan be written ¢

Givenz= f{u)=¢" and w=g(x y)
such that z= 8™

Then the partial derivatives of z with respecttsamndependent variables are definec

% — gE %
& &
% = Eg(x,v} . a_g
ay ay

One last time, we look for partiderivatives of the following function using the exgntial
rule:

(307

tk __EEM ag _ [3?0-'!:] 2% |:3:x;u!:'j
a—é‘ -E—E -(3}:)—(3}3)2
% =g %g = (o ) =( by ) )

Higher order partial and cross partial derivat

The story becomes more complicated when we takeshigrder derivatives of multivaria
functions. The interpretatiaof the first derivative remains the same, but tlaeenow twc
second order derivatives to consi

First, there is the direct secc-order derivative.In this case, the multivariate function
differentiated once, with respect to an independariatle, holding all other variable
constant.Then the result is differentiated a second timajragith respect to the sar
independent variableln a function such as the followir

z=7{x.y)

There are 2 direct secomuder partial derivativess indicated by the following examples
notation:
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i a[azJ_azz:EH

A4
gl &
w3555

These second derivatives can be interpreted aatibe of change of the two slopes of
function z.

Now the story gets a little more complica The cross-partials,fand {,x are defined in th
following way. First, take the partial derivative of z with respicx. Then take th
derivative again, but this time, take it with respp® y, and hold the x conste Spatially,
think of the cross partial as a measure of ho\ slope (change in z with respect tc
changes, when the y variable chan The following are examples of notation for cI-
partials:

- 2(2)- 2
Vowlor) ix
3y &z

f,'l-l?a' = ] — | =
S\ dy) Bxdy
We'll discuss economic meaning further in the rs&dtion, but for now, we'll just show

example and note that in a function where the c-partials are continuous, they will |
identical. For the following functior

z=2x + Sxv+ 2}:2
Take the first and second partial derivati

z= 2:):3+31y+2y2
zx=6x2+3y zy:3x+4y

z,. =12x Z:»:v:4

Now, starting with the first partials, find t cross partial derivatives:

zx=6x2+3_y z,=3x+4y

zv=3 Z}w=3

4.0 CONCLUSION

In this unit, you have been introduced to the cositealifferentiation also called the chi
rule. You have known the Composites of more thamftwctions. You have also known t
guotient ule. You have solved problems on higher derivatvitd the use of composi
differentiation. You have proof the chain rule &mbwn the rule in higher dimensi

5.0 SUMMARY
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In this unit, you have studied :

The chain rule

Composites of more than two functions
The quotient rule

Higher derivative

Proof of the chain rule

The rule in higher dimension

6.0 TUTOR-MARKED ASSIGNMENT

1.0 What are the second — order derivatives ofutthetion F(x,y):xy2 + XS y5
2.0 Express x- and y- derivatives of W(ys) in terms of x,y.

3.0 What are the second - order derivatives ofuhetion F(x,y) :X4 y6.

4.0 What are the second — order derivatives ofithetion K(x,y) = In (2x-3y).

1 1

5.0 What are the second — order derivatives ofuthetion R(X,y) = x2 y§ :

6.0 What are the second — order derivatives ofutthetion N(X,y) =tar_1 x,y).
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UNIT 2: EULER’S THEOREM
CONTENT
1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT
Satement and prove of Euler’s theol
4.0 CONCLUSION
5.0 SUMMARY
6.0 TUTOR-MARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS

1.0 INTRODUCTION

In number theoryizuler's theorem (also known as thEermat—Euler theorem or Euler's
totient theorem) states that in anda are coprime positive integers, then

™ =1 (mod n)

whereo(n) is Euler's totient functic and "...= ... (modn)" denoteongruence modulc.

2.0 OBJECTIVES
In this unit, the student should able to state @mogte the Euler’s theore
3.0 MAIN CONTENT

The converse dtuler's theorem is also true: if the above congradrolds for positiv:
integers a and n, then a and n are cop

The theorem is a generalizationFermat's little theorepand is further generalized
Carmichael's theorem.

The theorem may be used to easily reduce largensawedulcn. For example, consids
finding theones place decimal digit 0% i.e. 7%*(mod 10). Note that 7 and 10 ¢
coprime, andp(10) = 4. So Euler's theorem yield* = 1 (mod 10), and we ge??*= 7%°°*?2
= (7%°°x 7%= 1°°x7% = 49= 9 (mod 10

In general, when reducing a powera modulon (wherea andn are coprime), one needs
work modulog(n) in the exponent ca:

if x=y (modo(n)), thena*=a’ (modn).

Euler's theorem also forms the basis ofRSA encryption system: encryption a

130



decryption in this system together amount to exptaeng the original text bike(n)+1 for
some positive integds, so Euler's theorem shows that the decryptedtrisstle same as the
original.

Proofs

1. Leonhard Euler published a proof in 1789. Usimaglern terminology, one may prove the
theorem as follows: the numbdrsvhich are relatively prime to form a group under
multiplication modn, the group G of (multiplicative) units of the ridgnZ. This group has

¢o(n) elements. The elemeat=a (mod n) is a member of the group G, and the co(®rof

a (the least k > 0 such that = 1) must have a multiple equal to the size of {Be order ofa

is the size of the subgroup of G generated,gnd Lagrange's theorem states that the size of
any subgroup of G divides the size@)

Thus for some integevl > 0,M-0@) = ¢(n). Thereforea”™” = a°@M = @*@)M = 1M = 1. This
means thaa®™ = 1 (modn).

2. Another direct proof: i& is coprime tan, then multiplication by permutes the residue
classes mod that are coprime to; in other words (writindr for the set consisting of the
o(n) different such classes) the sets:{xin R} and { ax: xin R} are equal; therefore, the
two products over all of the elements in each eeegual. Hencé® = a*™P (modn) where
P is the product over all of the elements in thstfeet. Sinc® is coprime ta, it follows that
a®™ =1 (mod

4.0CONCLUSION

In this unit, you have stated and proved the Esilgréorem

5.0SUMMARY

In this unit, you have known the statement of ésifdreorem and proved euler’s theorem.
6.0 TUTOR-MARKED ASSIGNMENT

State and prove euler’'s theorem.

References
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UNIT 3 :IMPLICIT DIFFERENTIATION

CONTENTS
1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT
3.Know the derivatives of Inverse Trigonometric Fuoiat
3.Define and identify Implicit differentiatic
3.&now formula fortwo variables
3.&Know applications in economi
3.5 SolMenplicit differentiation problerr
4.0 CONCLUSION
5.0 SUMMARY
6.0 TUTORMARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS
INTRODUCTION

Most of our math work thus far has always allowsdaisolve an equation fy in terms of
Xx. When an equation can be solved for y we ca explicitfunction. But not all equatior
can be solved foy. An example i¢

x4y =Gy

This equation cannot be solved y. When an equation cannot be solvedy, we call it an
implicit function. The good news is that we can still défgiate such a function. Tl
technique is callednplicit differentiatior.

When we implicitly differentite, we must treey as a composite function and therefore
o

must use the chain rule wigiterms. The reason for this can be seen in Leilmutation: #x
. This notation tells us that we are differentigtwith respect tx. Because y is not native
what are differentiating with respect to, we needefgard it as a composite function. As \
know, when we differentiate a composite functionnmugst use the chain ru

3 =
Let’s now try to differentiate the implicit functip * +y7 =6y

132



This is a folium of Descartéscurve. This would be ver
X+ =6xy difficulty to solve for y, so we will want to useplicit
differentiation

i(xa =6 ) Here we show with Leibnitz notation that we are lisigly
ax g differentiating both sides the equation.

r 4 4 On the left side we need to individually take tleeidative of eact
_(f) +_[_}r3) = d_[ﬁ;term. On the right side we will have to use thedpiai rule.
X 6x ¥ )

Here we take the individual derivatives. Note: \whéid they’
come from? Because we are diffeiating with respect tx, we
need to use the chain rule on y. Notice that we did use tt
product rule on the right sic

2xt + 3y — by '+ Gy

'y'-6xy'=6y-3x  Now we get they’ terms on the same side of the equa

y.{_qyz —ﬁxj = iy - 35 Now we factoly’ out of the expression on the left s

_ by -3z 3(2}” -x

37 —6x 3[;.;2 _z;Now we divide both sides by tl =¥ * factor and simplify
VA
B |
We can see in a plot of the implicit function tha slope of th:
0 tangent line at the point (3,3) does appear t-1.
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2 - —
Another example: Differentiat* 2ty =c

Given
x -2ty =c implicit
functior

Doing
implicit
differentiatior
on the

2x= (24 2p)+ 3"y ' =0 function.
Note the us:
of the produc
rule on the
second teri

Dx—2ap'- 2y + 3ty =0

We do the

algebra tc

3"(33’2 _zx) =Zy-ex solve for y'

i+ 3}*‘2}-" =2y —2x

_ 2y—ix
3}?2 -2x

Here we see
portion of
plot of the
implicit
equation witr
c set equal t
5.. When doe
it appear tha
the slope o
14 the tangen
line will be
zero? It
appearstob
LY at abou
(2.2,2.2)

_eyoex We take oul
3y - 2x derivative, se
e oo ane
Yoo solve
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Now putting
xt-2mitaF =5 X=yin the
a3 B original
®-2xtex =5 implicit
©-x-5=0 equation, we
find that..

We still must
use ¢
computet
algebrs
system tc
solve this
cubic
equation. The
one rea
answer is
shown at the
left. This
x=y=2.116343299 answer doe
seem
consisten
with our
visual
estimate

This can be
done in
Maple with
the following

2.0 OBJECTIVES

At the end of this unit, you should be able to

Know the derivatives of Inverse Trigonometric Fuoict
Define and identify Implicit differentiatic

Know formula for twovariable:

Know applications in economi

Solvelmplicit differentiation problen
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3.0 MAIN CONTENT
Links to other explanations of Implicit Differentiation
Derivatives of Inverse Trigonometric Function:

Thanks to implicit differentiation, we can deve important derivatives that we could r
have developed otherwise. The inverse trigonom#trictions fall under this category. V
will develop and remember the derivatives of theense sine and inverse tang

y=snx Inverse sine function.

sn y=x This is what inverse sine means.

We implicitly differentiate both sides of the egoai

cos dy _ 1 with respect tx. Because we are differentiati

y,:fx with respect tx, we need to use the chain rule
the left side.

d_ 1 d

dx  cosy We solve the equation fo#x

dy _ 1 This is because of the trigonometric ident

dx  fl-sin® y sin2y+|:052y=1.

dy_ 1 Refer back to the equation in step two above.

@r  af1- 1 have our derivative.

d (sin~"%) |

—i8In Xx) = —F/————

dx ora e o
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dd (tan~"%) |
— (tan"'x) = ———
dx | + x°

Implicit differentiation

In
y=tan" x The inverse tangent function.

tany = x This is what inverse tangent means.

We implicitly differentiate both sides of t

secd dy -1 equation with respect to Because we al
Y e differentiating with respect te, we need to use tf
chain rule on the left side.
d__1 id
dx sec’y We solve the equation fofx
dy 1 This is because of the trigonometric ident
dr 1+tta’x tan’ y +1 =sec’ p

dy[ oy 1 Refer back to the equation in step two above.
tan” x) = —— -
% 1+ x* have our derivative.

calculus, a method calleohplicit differentiation makes use of thehain rul¢ to differentiate
implicitly defined functions.

As explained in the introductioy can be given as a functionximplicitly rather thar
explicitly. When we have an equatiR(x, y) =0, we may be able to solve it ty and then
differentiate. However, sometimes it is simpledifferentiateR(x, y) with respect tx andy
and then solve fady/dx.

Examples
1. Consider for example
y+x+o=10

This function normally can be manipulatec using algebr&o change thiequation to one
expressing in terms of arexplicit functior:

y= —r— 3 1
where the right side is the explicit function whasgput value iyy. Differentiation then give

dy _

dx . Alternatively, one catotally differentiatethe original equatiol
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dy dx il .
£+ E—I_ 5(5)—0,

dy
— 4+ 1=0.
d';r,+

: dy
Solving for dx gives:

dy
dr

the same answer as obtained previo

_1.1

2. An example of an implicit function, for which impit differentiaticn might be easier the
attempting to use explicit differentiation

et + 2t =8

In order to differentiate this explicitly with resgt tox, one would have to obtain (v
algebra)

and then differentiate this function. This credtes derivatives: one fcy > 0 and another
fory<0.

One might find it substantially easier to impligitlifferentiate the original functio
dy
47° + dy— = 0,
Y dr :
giving,

dy —4x®  —a®

dr 4y y

3. Sometimes standard explicit differentiation canm®used and, in order to obtain
derivative, implicit differentiation mu be employed. An example of such a case it
equationy® —y = x. It is impossible to exprey explicitly as a function of and therefore
dy/dx cannot be found by explicit differentiation. Usitig implicit methoddy/dx can be
expressed:

1Ay dy  dx
Y4z " dz " da
dr dy
Whereﬁ B Factoring ou@shows that
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dy
da
which yields the final answer
dy 1

dr S5/t — 1

(5y" —1) =1

1
y# t-=.
which is defined for V5

Formula for two variables

"The Implicit Function Theorem states thaF is defined on an open disk contain(a,b),

whereF(a,b) =0, Fy(ﬂ'n b) 7 U, andF, andFy are continuous on the disk, then

equationF(x,y) = 0 definegs as a function ox near the pointg)b) and the derivative of th

function is given by..[% 14

dy  OF/0xz  F,
dr ~ JF/dy  F,

whereF, andFy indicate the derivatives  with respect tx andy.

The above formula comes from using generalized chain ruk® obtain thetotal
derivative—with respect te—of both sides oF(x, y) = 0:

OF dz  OF dy _
dr dx * dy dr
and hence

oF  OFdy
3_$+$£_0'

Implicit function theorem

0,

It can be shown that R(X,y) is given by esmooth submanifolt¥ in ]Rz, and(a,b) is a point

—— #£0
of this submanifold such that ttangent spactnere is not vertical (that 59 7 ), then
M in some small enougteighbourhoo of (a,b) is given by garametrizatio (x,f(x)) wheref
is a smooth function. Iless technical language, implicit functions exisdl @an be
differentiated, unless the tangent to the suppgsapoh would be vertical. In the stand:
case where we are given an eque

R(xy) =0

the condition orR can be checked by meanspartial derivatives .

139



Applications in economics

Marginal rate of substitution

In economicswhen the leveletR(x,y) = 0 is an indifference curfer the quantitiex andy
consumed of two goods, the absolute value of tiptigrhderivative is interpreted as tl
marginal rate of substitutioof the two goods: how much morey one must receive in ord
to be indifferent to a loss of 1 unit x.

IMPLICIT DIF FERENTIATION PROBLEMS

The following problems require the use of impliditferentiation. Implicit differentiation i:
nothing more than a special case of the-known chain rule for derivatives. The major
of differentiation problems in fir-year calculus involve functionswritten EXPLICITLY as
functions ofx . For example, i

y =3z —sin(Tz 4+ 5)

then the derivative of is

However, some functionsare written IMPLICITLY as functions cx. A familiar example
of this is the equation

X +y* =25,

which represents a circle of radius five centeteti@ origin. Suppose that we wish to fi
the slope of the line tangent to the graph of égisation at the point (-4) .

Y
1 2 2

(3, -4)

e

How could we find the derivative iy in this instance ? One way is to fivgtite y explicitly
as a function ok . Thus,
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X +y? =25,

Yy =25-x%,
and
y = +4/25 - z2

where the positive square root represents thedwy-circle and the negative square r
represents the bottom senirele. Since the point (:-4) lies on the bottm sem-circle given

by
y=—+25— z2

the derivative ofy is

. —1/2 . T
¥ = —(1/2)(25 — 2?) "T(-2z) = o
i.e.,
V= V25— 22 _

Thus, the slope of the line tangent to the graghepoint (3-4) is

Unfortunately, not every equation involvix andy can be solved explicitly fcy . For the
sake of illustrabn we will find the derivative cy WITHOUT writing y explicitly as a
function ofx . Recall that the derivative (D) of a functionx squared,f(x))? , can be found
using the chain rule :

D{(£(z))*} = 2f(z) D{f(z)} = 2f(2) f (z)

Sincey symbolically represents a functionx, the derivative of? can be found in the sar
fashion :

D{y*} =2y D{y} =2y

Now begin with
X +y*=25.
Differentiate both sides of the equation, get

D(X+y)=D(25),
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D (xX)+D(y")=D(25),
and

2X+2yy =0,

so that

2yy=-,

and

Thus, the slope of the line tangent to the grapgheapoint (3-4) is

ey —(3) 3

(—4) 4

This second method illustrates the process of oiilifferentiation. It is important to no
that the derivative expression for explicit diffieti@tion involvesx only, while the derivativ
expression for implicit differentiation may invoNBOTHXAND vy .

The following problems range in difficulty from avage to challenging

PROBLEM 1 :Assume thay is a function of . Findy' = dyldxforx® +y*=4 .
SOLUTION 1 :Begin withx® + y* = 4 . Differentiate both sides of the equationtiggt
D(X’+y’)=D(4),

D(X’)+D(y’)=D(4),

(Remember to use the chain ruleD (y*) .)

' +3°y=0,

so that (Now solve foy' .)

3y'y =-3¢,

and
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Yy = _332 — iﬁ
3y? y?

SOLUTION 2 Begin with &y)> =x +y - 1 . Differentiate both sides of the equation, get
D (xy)*=D (x+y-1),

D (xy)*=D(x)+D(y)-D (1),

(Remember to use the chain ruleD (x-y)®.)

z—y) D(z—y)=1+4+y" -0

2(cy) (1-y)=1+y,

so that (Now solve foy' .)
2(xy)-2xy)y=1+y,
“2(Y)Y -y =1-24&y),
(Factor outy' .)
Y[-2ky)-1]1=1-2%y),

and
Y = 1-2(z—-y) 2y—2z+41
2z —y)—-1 2y—22-—1
o y=sin(3z+4y) . . .
SOLUTION 3 Begin with . Differentiate both sides of the equati
getting

D(y) = D(sin(3z + 4y))

. D(sin(3z + 4y))
(Remember to use the chain rule .

¥y = cos(3z + 4y) D(3z + 4y)

y' = cos(3z + 4y)(3 + 4y')

so that (Now solve foy' .)
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y' = 3cos(3z + dy) + 4y cos(3z + 4y)
y' — 4y cos(3z + 4y) = 3 cos(3z + 4y)

(Factor outy' .)

y'[1 — 4 cos(3z + 4y)] = 3 cos(3z + dy)

and

o = 3 cos(3z + 4y)
1 - 4cos(3z + 4y)

SOLUTION 4 Begin withy = x* y* + 2 y? . Differentiate both sides of the equation, get
D(y) =D (XY’ +x*y*),
D(y) =D (Xy*) +D (X' ¥*)

(Use the product rule twice.)

y' = {z°D(y*) + D(2*)y’} + {z*D(y*) + D(=*)y*}

(Remember to use the chain ruleD (y*) andD (y?) .)

v = {22 (3y%y') + (22)°} + {=3(2w/) + (3=)y°}

Y=Yy +Xy+2Cyy+Cy,
so that (Now solve foy' .)

Y -3CYy-2Cyy =Xy + 3¢y,
(Factor outy' .)
y[1-3¢y-2¢y]=2xy + 3¢y,
and

Y = 2xy® + 3z?y?
1 — 3x292 — 223y

SOLUTION 5 Begin with . Differentiate both sides of the equati
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getting

D(e™) = D(e**) — D(e™)
e™D(zry) = e**D(4z) — e D(by)
e™(zy + (1)y) = (4) — e™(5y)

!

Yy
so that (Now solve fo_ .)

re™y' + ye™ = 4ett — By
re™¥y' 4 5y = 4etT — etV

!

Y
(Factor out— )

y'[xe™ + 5e’] = 4e** — ye™?

and

4E4I: . yEry

re™ + 5HedY

!

y:

cos? z + cos?y = cos(2z + 2y)

SOLUTION 6 Begin with . Differentiate both sides of tt
eguation, getting

D(cos®z + cos? y) = D(cos(2z + 2y))
D(cos®z) + D(cos?y) = D(cos(2z + 2y))

(2eosz) D(cosz) + (2cosy)D(cosy) = —sin(2z + 2y) D(2z + 2y)
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2cos z(— sinz) + 2 cos y(—siny)(y') = —sin(2z + 2y)(2 + 2¢')

so that (Now solve foy' .)

—~2coszsing — 2y cosysiny = —2sin(2z + 2y) — 2y sin(2z + 2y)

23/ sin(2z + 2y) — 2y cos ysiny = —2sin(2z + 2y) + 2coszsinz

(Factor outy' .)

y'[2sin(2z + 2y) — 2cosysiny] =2 cos zsinz — 2sin(2z + 2y)

_ 2coszsine - 2sin(2z + 2y)

V= 2sin(2z + 2y) — 2 cosysiny
o = 2[cos z sin & — sin( 2z + 2y)|
2[sin(2z + 2y) — cosysin y]

and
Y = coszsinz — sin(2z + 2y)

 sin(2z + 2y) —cosysiny

z=3+vzit+y’

SOLUTION 7 Begin with . Differentiate both sides of the equati
getting

D(z) = D3+ V&ZF )

1= W2)(¢+y ) D (X +y*),
1=1R2)C+y? )2 (x+2yy),

so that (Now solve foy' .)

1 - (1/2)2)(z + yy')
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VETF —atuy
VTP - r =y

and

vVai+y -«

w_
1

|
S

=xr+2

b

y+x
SOLUTION 8 :Begin with . Clear the fraction by multiplying both sides
the equation by +x*, getting

2y

3',Jﬁ,rg(z.:+m?}= (z + 2)(y + =)

or

X-Y=xy+ 2+ +2¢.

Now differentiate both sides of the equation, get
D(x-y)=D (xy+2y+x2+2¢),
D(x)-D(’)=D(xy)+D(2)+D(x*)+D ("),
(Remember to use the chain ruleD (y*) .)
1-3y'y = (xy + (L)) + 2y + 3 + 4,

so that (Now solve foy' .)
1-y-3C-4x=3yy +xy + 2V,

(Factor outy' .)

1-y-3¢-4x= (3P +x+2)y,

and

y,_l—y—Bmg—aim
3y +x+2
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z
£+—=22y4

3
SOLUTION 9 Begin with E v . Clear the fractions by multiplying both si
of the equation by y* , getting

{z+ i}(maﬂa} ="y (='")

yziy® N zzdy®
k]

v - 223yt
T ﬂ'

y X =y

Now differentiate both sides of the equation, get
D(y'+x")=D (x°y"),

D(y)+D(xX')=xD (") +D (X)y’,
(Remember to use the chain ruleD (y*) andD (y’) .)
4y'y +4x =x (Ty°y) +(5x")Y',

so that (Now solve foy' .)

4y'y -7XCYy =5x'y - 4x°,

(Factor outy' .)

y 4y -7y’ 1=5x"y -4,

and

_ sriy’ — dz®

V=18 —Tahyp

SOLUTION 10 Begin with &+y?)® = 8¢y . Now differentiate both sides of the equati
getting

D (X*+y)* =D (8¢*),
3 (0C+y)° D (C+y) =8¢ D (y*) +D (&) ¥,
(Remember to use the chain ruleD (y*) .)

3G+ (X +2yy) =8¢ (2yy) +(16x) Y,
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so that (Now solve foy' .)

BX (X+y")? + By (C+y)?y = 16Xy Y + 16X ¥,
6y 0C+HY)?Y - 16Xy Y = 16X ¥ - BX ((C+y2)?,
(Factor outy' .)

y [8y (C+y%)* - 16X y] = 16X ¥ - 6 (X+Y°)*
and

_ 16zy? — 6z (2? +y?)?

V= 6y(z? + y2)2 — 16xly

Thus, the slope of the line tangent to the graghepoint -1, 1) is

_ = BEDAP -6+ (1)) 8
Y T S + (D)2 — 16(-1)2(1) 8

and the equation of the tangent lint
y-(1)=(Q1)&-(-1))
or

y=x+2

SOLUTION 11 Begin withx? + (y-x)> =9 . Ifx=1 , then
L7+ (y-1) =9

so that

(y-1y=8,

y-1=2,

y=3,

and the tangent line passes through the point) (IN8w differentiate both sides of t
original equation, getting

D (X +yx°)=D(9),
D (x*)+D (y-x°=D(9),
2x+ 3 (-x)?D (y-x) =0,
2x+3 (%) (y-1) =0,

so that (Now solve foy' .)

149



2x+ 3 (-x2y-3 (y-x)°=0,
3 (y-X)2y =3 (-x)?- 2,
and

3(y —z)* - 2

v = 3y - x)?

Thus, the slope of the line tangent to the gragi,a) is

3—-1)2-2(1) 10

a3 _ 5
m=¥="733-17 12 &

and the equation of the tangent lint
y-(3)=(5/6) x-(1)),
or

y = (7/6)x + (13/6) .

SOLUTION 12 Begin withx?y +y* = 4 + . Now differentiate both sides of the origil
eguation, getting

D(Xy+y")=D(4+X),
D(Xy)+D¥*)=D(4)+D (),
(XY +(2)y)+4y’y=0+2,

so that (Now solve foy' .)

XY +4y’y =2-xy,

(Factor outy' .)

y [ +4y’1=2-xy,

and

(Equation 1)

2 — 2xy

v = 22 4 4y*

Thus, the slope of the graph (the slope of thetlmgent to the graph) «1, 1) is
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_2-2(-1)(1) _ 4
VT

Sincey'= 4/5 , the slope of the graph is 4/5 and thelyiapncreasing at the poir-1, 1) .
Now determine the concavity of the graph-1, 1) . Differentiate Equation 1, gettii

Y= (22 + 45°*)D(2 - 2zy) — (2 — 2zy) D(z? + 4°)
(22 + 44%)2

_ (@ +4®)((—22)y + (—2)y) — (2 22y)(2z + 12%Y)
(22 4+ 4y3)2

Now letx=-1,y=1, andy'=4/5 so that the second derivative

_ [(=1)? + 4(1)°]I(-2(-1)) (4/5) + (=2)(1)] — [2— 2(-1)(1)][2(~1) + 12(1)*(4/5)]

V= (ESVERTRDE
_ (5)(8/5—2) — (4)(~2 + 48/5)
25
-2 (152/5)
o 25
162

125

Sincey" < 0, the graph is concave down at the pc¢-1, 1)
4.0 CONCLUSION

In this unit you havetudied the derivative of inverse of trigonometunctions. You hav:
known the definition of implicit differentiation arhave identified problems implicit
differentiation. You have also studied the formdta two variables and implic
differentiation applications in economics. You haedved various examples on impli
differentiation.

5.0 SUMMARY

In this course you have stud

The derivatives of Inverse Trigonometric Functi
Definition and identification of Implicit differerdtion
The formula for two variabl

The applications in econom
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Implicit differentiation problems

5.0 TUTOR-MARKED ASSIGNMENT
Find the equation of the tangent line to the edli@sx* +y? = 109

if Find y' if y* +4y — 32% sin(y) = 22 + 1.
Findy if xy’ +x? +3¢-6=1.

. Show that if a normal line to each point on aips# passes through the center of an ellipse,
then the ellipse is a circle.
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MODULE 6 TAYLOR'S SERIES EXPANSION

-Unit 1: Function of two variables
-Unit 2: Taylor’s series expansion functions of two variables.

-Unit 3: Application of Taylor’s ses.

UNIT 1:FUNCTIONS OF TWO VARIABLES

CONTENTS

1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT

3.1 Solve problems on partial derivatives in calsul
3.2 Solve problems on higher order partial derixeti
3.3 State and apply clairauts theorem

3.4 Solve problem on maxima and manima

3.5 Identify Taylor series of function of two vdia
3.6 Know analytical function

4.0CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READINGS

1.0 INTRODUCTION

Functions of Two Variables

Definition of a function of two variables

Until now, we have only considered functions ofragke variable.

However, many real-world functions consist of two tfhore) variables. E.g., the area
function of a rectangular shape depends on bothidth and its height. And, the

pressure of a given quantity of gas varies witlpeesto the temperature of the gas and
its volume. We define a function of two variablesfallows:

A function f of two variables is a relation that assigns to evgrordered pair of input
valuesx, y in a set called thedomain ofa unique output value denoted by,(x, y). The set
of output values is called theange

Since the domain consists of ordered pairs, we coagider the domain to be all (or part) of
thex-y plane.
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Unless otherwise stated, we will assume that thalig@sx andy and the output Valug(x,
y)-

2.0 OBJECTIVE
At this unit, you should be able to :

» Solve problems on partial derivatives in calculus
» Solve problems on higher order partial derivative
» State and apply clairauts theorem

» Solve problem on maxima and manima

» |dentify Taylor series of function of two variable

* Know analytical function

3.0 MAIN CONTENT
Partial Derivatives in Calculus
Let f(x,y) be a function with two variables. If wieeep y constant and differentiate f

(assuming f is differentiable) with respect to thariable x, we obtain what is called the
partial derivative of f with respect to x which is denoted by

of
or fy
OX

We might also define partial derivatives of funatioas follows:

P fx+h,y) -f(x,y)
_lim

ox h—0h

of B lim f(X v Y + k) -f(X ’ y)
~ k—0
oy K

We now present several examples with detailed isolubn how to calculate partial
derivatives.

Example 1: Find the partial derivativgsaihd { if f(x , y) is given by
fix,y)=xXy+2x+y
Solution to Example 1:

Assume y is constant and differentiate with respegtto obtain

154



of ©
fyx=_ = [xXy+2x+Yy]
OX OX

0 0 0
= [XPyl+_[2x]+ _[y]=[2xy]l+[2]+[0]=2xy +2
OX OX OX

Now assume x is constant and differentiate witipeesto y to obtain

of 0
fp= = [xX*y+2x+y]
oy oy
0 0 0
= [Pyl + —[2x]+ _[y]=[x*]+[0]+[1]=X+1
oy oy oy
Example 2: Find,fand § if f(x , y) is given by
f(x , y) = sin(x y) + cos x
Solution to Example

Differentiate with respect to x assuming y is canst

o 0
fx=_—_=__[sin(xy) +cos x Fycos(xy)-sinx
OX OX

Differentiate with respect to y assuming X is canst

of 0
fy=__=__[sin(x y) + cos X F x cos(x y)
oy oy

Example 3: Find,fand {; if f(x , y) is given by

f(x,y)=x¢&Y

Solution

Differentiate with respect to x assuming y is canst
o 0

fu=—=_[x€Y]=eY+xy&Y=(xy+1)&Y
OX OX
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Differentiate with respect to y

of 0
fy=__=_[xe€Y]=(x) x&Y)=x* &
oy oy
Example 4: Find,fand {, if f(x , y) is given by
fx,y) =In (X +2y)
Solution
Differentiate with respect to x to obtain
o 0 2X

fu=_ =_[In(x*+2y)]=
X OX X +2y

Differentiate with respect to y

o 0 2
fp=—=_[In(x*+2y)]=
oy oy X +2y
Example 5: Find,{2 , 3) and (2 , 3) if f(x , y) is given by
fx,y)=yxX+2y
Solution to Example 5:
We first find § and
fx(x,y) = 2xy
fy(x,y) = +2
We now calculate,{2 , 3) and (2 , 3) by substituting x and y by their given vedu
fx(2,3) =2 (2)(3) =12
f(23)=2+2=6
Exercise: Find partial derivativegdnd {, of the following functions

1.f(x,y)=xé&"Y
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2.fx,y)=In(2x+yXx)

3.f(x,y)=xsin(x - y)

Answer to Above Exercise:

1. f=(x+21)&"Y, f,=x¢&"’

2.f=1/x,§=1/(y+2)

3.fk=xcos (x-y)+sin (xy),fy=-xcos (x-y)

More on partial derivatives and mutlivariable fuoos. Multivariable Function
Higher Order Partial Derivatives

Just as we had higher order derivatives functions of one variable we will also ha

higher order derivatives of functions of more tlere variable However, this time we wil
have more options since we do have more than amebi@ .Consider the case of a funct

of two variables,/ %3}/ (. ¥) since both of the first order partial derivatives alo
functions ofx andy we could in turn differentiate each with respecxory. This means that
for the case of a function of two variables theri ve a total of four possible second ori
derivatives.Here they are and the notations that we’ll useetwote then

PR A
(fx)x_fxx_éx ox ) oOx*
_ . _o(a_of
(fx)y_f”_ay ox) oydx
_ . o) _of
(fy)x_fyx_ax &) oxdy
PR e i
(fY)y _fyy_ay ay e

The second and third second order partial derigatare often called mixed part
derivatives since we are taking derivatives witspext to more than one varial Note as
well that the order that we take the derivativesigiven by the notatioror each thes If

we are using the subscripting notatie.qg. Fry, then we will differentiate from left t
right. In other words, in this case, we will differentiditst with respect tx and then with
ay

respect toy. With the fractional notation e.g. évdx | it is the oppositeln these cases v
differentiate moving along the denominator fromhtitp left So, again, in this case v
differentiate with respect tofirst and then

Let’s take a quick look at an exam|
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Example 1 Find all the second order derivatives fi
f{x,y:l: cosl{Ex:l—xgesy +3y2

Solution
We'll first need the first order derivatives so éeney are

Folxy)=-2sin{2x) - 2xe”
fo(xy)=-3x%"" +6y

Now, let’s get the second order derivati

Frp =—4cos(2x)— 20
fp =—10xe™

- =—10xe™
fr=—25x"€" +6

Notice that we dropped tH&>) from the derivativesThis is fairly standard and we will |
doing it most of the time from this point « We will also be dropping it for the first ord
derivatives in most cases.

Now let's also notice that, in this cas/w = Jw . This is not by coincidenc If the function
is “nice enough” this will always be the ce So, what's “nice enough The following
theorem tells us.

Clairaut’s Theorem

Suppose thdtis defined on a disD that contains the point la.2) |f the functions
J» and /= are continuous on this disk th

Sy (a,b): S (a,b)

Now, do not get too excited about the disk busiressthe fact that we gave the theorel
for a specific point.In pretty much every example in this class if the tmixed second ordt
partial derivatives are continuous then they walldgua

7x2y2

Example 2 Verify Clairaut’'s Theorem fof (x.7)= e

Solution
We'll first need the two first ordederivatives.
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_f;; {X,y) — E—.xi,v? _ 2}‘52}’2 E—xEJ'?

I __xi}.ii

j;l:x,y)=—2yx e

Now, compute the two fixed second order partialvdives

—nyze"'if —4x2ye"‘2f +4x4y39"‘2"’2 = —6x2ye"'i-”2 +-4x4_;];3e"‘z”'2

Folx.5)
S (7.5]

- 1 _ylpl
—6yxze A +4y3x4e Y

Sure enough they are the sa

So far we have only looked at second order dexiga There arepf course, higher orde
derivatives as wellHere are a couple of the third order partial deéies of function of twc

variables.

_ _a{ery. #f
fx,vx _(f?ﬂ')x _E[@;&J_ Sache dhx

_ _ ()Y
Ty _(f”‘)x Bx [ax@J Ay

Notice as well that for both of these we differatdi once with respect y and twice with
respect tox. There is also another third order partial derivatiiv which we can do thi:

Jaw. There is an extension to Clairaut's Theorem thats si& all three of these a

continuous then they should all be ec
J{;:rxy = fx}lx :f}-xx

To this point we've only looked functions of two variables, but everything that weedone
to this point will work regardless of the numberwairiables that we’ve got in the functi
and there are natural extensions to Clairaut'srémaoto all of these cases as v For
instance,

Sl By.2) = Fp (2.0.2)
provided both of the derivatives are continu

In general, we can extend Clairaut’s theorem to fangtion and mixed partial derivativ
The only requirement is that in each derivativedifterentiate with respect to each varia
the same number of timesn other words, provided we meet the continuity diban, the
following will be equal

j.;.‘?’!‘.‘ be = j!“?’i?’i.‘i"
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because in each case we differentiate with regpd once,sthree times anr three times.

Let's do a couple of examples with high(well higher order than two anyway) orc
derivatives and functions of more than two varial

Example 3 Find the indicated derivative for each of the faling functions

@) Find  Jewss for
i [x,y,zj =z"y*In [x)

Ff
(b) Find &8x* for f{x.y)=e”
Solution

(a)Find Jewss for JLx».2) =z"%"In ()

In this case remember that we differentiate frofitteright. Here are the derivatives for tt
part.

N
5=
X
7y
fw=""3
x
22y
fwz_ o2
7 :_622}‘
pE e
1izy
fw::: -

&
(b) Find Haxtor flx.y)=¢"

Here we differentiate from right to le Hereare the derivatives for this functic
i = ye?‘}'

2
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Maxima and minima

For other uses, seblaxima (disambiguation) andMaximum (disambiguatio. For use in

':_llDI:l J.'il [apl-Ls il'l'l'.ll'l'l

lacal roaxirnum

lacal minirmurm

glabal rminirourm

statistics, seMaximum (statistic. =~ ** 7 ' *F

Local and global maxima and minima for caex)/x, 0.1<x<1.1

In mathematics, thenaximum and minimum (plural: maxima and minima) of function,
known collectively agxtrema (singular: extremum), are the largest and smallekte thal
the function takes at a point either within a givesighborhoodlocal or relative extremum)
or on the function domaiim its entirety global or absoluteextremum)More generally, th
maximum and minimum of set (as defined in set theory) are gneatest nd least element
in the set. Unbounded infinite sets such as theokreal numberdave no minimum an
maximum.

To locate extreme values is the basic objectivoptimization

real-valued functiorf defined on ereal line is said to havelacal (or relative) maximum
point at the pointx:, if there exists some > 0 such thaf(x*) > f(x) when x — x*| <e. The
value of the function at this point is callmaximum of the function. Similarly, a functio
has aocal minimum point atx:, if f(x*) <f(x) when X — x*| <e. The value of the function
this point is calledminimum of the function. A function has global (or absolutg
maximum point atx* if f(x*) > f(x) for all x. Similarly, a function has global (or absolute)
minimum point at x* if f(x*) < f(x) for all x. The global maximum and global minimt
points are also known as tlarg max and arg m: the argument (input) at which t
maximum (respectively, minimum) occt

Restricted domaing'here may be maxima and minima for a function sgdomain does not
include all real numberd rea-valued function, whose domain is asg, can have a global
maximum and minimum. There may also be local maxamé local minima points, but on
at points of the domain set where the concegneighborhoods defined. A neighborhoc
plays the role of the set mfsuch thatx — x| <e.
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A continuous (realralued) function on icompactset always takes maximum and minim
values on that set. An important example is a foncivhose domain is a closed (e
bounded) interval ofeal numbei (see the graph above). Theighborhoo requirement
precludes docal maximum or minimum at an endpoint of an intervabwéver, an endpoit
may still be aglobal maximum or minimum. Thus it inot always truefor finite domains,
that a global maximum (minimum) must also be allazaximum (minimum’

Finding functional maxima and minima

Finding global maxima and minima is the goamathematical optimizatic. If a function is
continuous on a closed interval, n by the extreme value theoreghobal maxima an
minima exist. Furthermore, a global maximum (or imum) either must be a loc
maximum (or minimum) in the interr of the domain, or must lie on the boundary of
domain. So a method of finding a global maximumr@nimum) is to look at all the loc.
maxima (or minima) in the interior, and also lodklee maxima (or minima) of the points
the boundary; and takbe biggest (or smallest) ol

Local extrema can be found Fermat's theorenwhich states that they must occucritical
points One can distinguish whether a critical point is@l maximum or local minimum k
using the first derivative test second derivative test.

For any function that is definepiecewise one finds a maxima (or minima) by finding 1
maximum (or minimum) of each piece separately; t@h seeing which one is biggest
smallest).

Examples

1.5 e
/
!

.
/

2

o 1 2 [ 4 5

i &/
The global maximum o#% occurs ax =e.

. The function< has a unique global minimumx = 0.
- The functiond has no global minima or maxima. Although the fitstivative (5°) is 0
atx = 0, this is annflection poin.

« The function\r/ithas a unique global maximumx =e. (See figure at righ

« The function X has a unique global maximum over the positive meatbers ax = 1/.

. The function/3 - x has first derivative¢ — 1 and second derivati&. Setting the first
derivative to 0 and solving fi gives stationary points afl and +1. From the sign of tl
second derivative we can see t-1 is a local maximum and +1 is a local minimi
Note that this function has no gal maximum or minimum.
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« The function}| has a global minimum x = 0 that cannot be found by taking derivati\
because the derivative does not exix = 0.

« The function cos( has infinitely many global maxima at 0,24z, ..., and infinitely
manyglobal minima at x, £3m, ....

« The function 2 cosj — x has infinitely many local maxima and minima, but giobal
maximum or minimum.

« The function cos(@x)/x with 0.1<x< 1.1 has a global maximum»at 0.1 (a boundary),
a global minimum neat= 0.3, a local maximum near= 0.6, and a local minimum ne
x=1.0. (See figure at top of pac

. The functioné + 3¢ — 2x + 1 defined over the closed interval (segme-4,2] has two
extrema: one local maximum x = -1-"%, one local minimum at = -1+"*%, a global
maximum aix = 2 and a global minimum x = —4.

Functions of more than one variabl
Second partial derivative test

For functions of more than one variable, similanditions apply. For example, in tl
(enlargeable) figure at the right, the necessangitions for alocal maximum are similar t
those of a function with only one variable. Thetfpartial derivativess toz (the variable to
be maximized) are zero at the maximum (the glovdagon top in the figure). The seco
partial derivatives are negative. These are ontgssary, not sufficient, conditions for a loc
maximum because of the possibility csaddle pointFor use of these conditions to solve
a maximum, the functiorz must also be differentiabléhroughout. Thesecond partial
derivative test can helgassify the point as a relative maximum or relatminimum

In contrast, there are substantial differences éetwfunctions of one variable and functi
of more than one variable in the identificationgbdbal extrema. For example, if a bount
differentiable functiorf defined on a closed interval in the real line hasgle critical point
which is a local minimum, then it is also a glomainimum (use theintermediate value
theorem andRolle's theorel to prove this by reductio ad absurdunn two and mort
dimensions, this argument fails, as the func

flz,y) =2’ +y*(1-12)°, a,y€R,

shows. Its only critical point is at (0,0), whicha local minimum with f(0, = 0. However,
it cannot be a global one, because f = -11.
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The global maximum is thpoint at the tofCounterexample

In relation to sets

Maxima and minima are more generally defined fds.skn general, if alordered sef
has a greatest elememi m is a maximal element. Furthermore Sifis a subset of an
ordered seT andmis the greatest element Swith respect to order induced T, mis a
least upper bound @in T. The similar result holds fdeast elemel, minimal element
and greatest lower bound.

In the case of a genenadrtial orde, theleast elementsmaller than all other) should r
be confused with eninimal element (nothing is smaller). Likewise, greatest element of
a partially ordered sd€poset) is arupper boundf the set which is contained within t
set, whereas maximal elemen m of a posef is an element oA such that iim < b (for
anyb in A) thenm = b. Any least element or greatest element of a pesatique, but i
poset can have severalinimal or maximal elements. If a poset has morentbae
maximal element, then these elements will not beually comparable

In a totally orderedet, orchain all elements are muailly comparable, so such a set
have at most one minimal element and at most ordnmah element. Then, due

mutual comparability, the minimal element will alé® the least element and -
maximal element will also be the greatest elem€&htis in atotally ordered set we ct
simply use the termminimum andmaximum If a chain is finite then it will always ha
a maximum and a minimum. If a chain is infinitertneneed not have a maximum o
minimum. For example, the set natural numberdhas no maximum, though it has
minimum. If an infinite chairSis bounded, then the closutd(S) of the set occasional
has a minimum and a maximum, in such case thegalled thegreatest lower bounc
and thdeast upper bounc of the sef§ respectively.

TAYLOR SERIES

The Maclaurin series for applynomia is the polynomial itself.

The Maclaurin series for @x)™* for |x| < 1 is the geometric series

l+az+a’+a2°+---

so the Taylor series for* ata=1 is

l—(z—1)+(z-1)°=(z=1)>+---.

By integrating the above Maclaurin series we find Maclaurin series fdog(1 —x), where
log denotes the naturalgarithm:

1 1. 1
—x— =t -zt — a2t —

2 3 4

and the corresponding Taylor series forx) ata=1is
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(I—l)—g(i‘f—l) —|—§(:c—1) _1(:‘5_1) + -
The Taylor series for thexponential functio € ata= 0 is
I A S RPN AP <
12134 5! B 2 6 24 120 =l

The above expansion holttecause the derivative o* with respect to x is alsc® and &
equalsl. This leaves the tern(x — 0)' in the numerator anal in the denominator for eac
term in the infinite sum.

History

The Greek philosopher Zemonsidered the problem of summing an infinite Setdeachieve
a finite result, but rejected it as an impossiilithe result wasZeno's paradc. Later,
Aristotle proposed a philosophical resolution of the paradmt, the mathematical conte
was apparently unresolved until taken ugDemocritus and theArchimede. It was through
Archimedes'snethod of exhaustic that an infinite number of progressive subdivisioosld
be performed to achieve a finite resiLiu Hui independently employed a similar metho
few centuries later

In the 14th century, the earliest examples of tee af Taylor series and closely rela

methods were given biyladhava of Sangamagra Though no record ofis work survives,
writings of laterindian mathematicial suggest that he found a number of special casie

Taylor series, including those for tltrigopnometric functions of sinegosing, tangent, and
arctangent. Th&erala school of astronomy and mathem: further expanded his worl

with various series expansions and rational appra&ons until the 16th centu

In the 17th centuryJames Grego also worked in this area and published several daii
series. It was not until 1715 however that a gdnaetlod for constructing these series
all functions for which they exist was finally pided by Brook Taylo, after whom the
series are now named.

The Maclaurin series was named r Colin Maclaurin a professor in Edinburgh, wi
published the special case of the Taylor resuthénl18th centur

Analytic functions
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The functioneg **

function is not.

“is not analytic ax =0: the Taylor series is identically 0, although

If f(x) is given by a convergent power series in an ogien (or interval in the real line
centered ab, it is said to beanalytic in this disc. Thus fox in this disc,f is given by a
convergent power series

flz)= iﬂan(:r b,

Differentiating byx the above formuln times, then setting=b gives:

f™)
nl fin

and so the power series expansion agrees withaierTseries. Thus a function is analytic
an open disc centered htif and only if its Taylor series converges to thelue of the
function at each point of the di

If f(x) is equal to its Taylor series everywhere it ilethentire The polynomials and tf
exponential functio® and thetrigonometric functionsine and cosine are examples of er
functions. Examples of functions that are not eniticlude thelogarithrr, the trigonometric
functiontangent, and its inversarctan For these functions the Taylor series doconverge
if x is far froma. Taylor series can be used to calculate the vafugn enire function in
every point, if the value of the function, and dfd its derivatives, are known at a sin
point.

4.0CONCLUSION

In this unit, you have been introduced to partetivhtive in calculus and some higher or
partial derivative. Clainats theorem was stated and applied.You have bdesdiuted tc
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Maxima and minima, functions of more than one atalg and the relation of maxima and
minima to set.

5.0SUMMARY

In this unit you have studied :

Partial derivatives in calculus

Higher order partial derivative

Clairauts theorem

Maxima and manima

Taylor series of function of two variable
Analytical function

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES

1. Stewart, James (2008 alculus: Early Transcendentaléth ed.). Brooks/Cole.
ISBN 0-495-01166-5.

2. Larson, Ron; Edwards, Bruce H. (200@alculus (9th ed.). Brooks/Cole. ISBN 0-
547-16702-4.

Thomas, George B.; Weir, Maurice D.; Hass, JoelL(20Thomas' Calculus: Early
Transcendentalél2th ed.). Addison-Wesley. ISBN 0-321-58876-2.

+ Maxima and Minima From MathWorld--A Wolfram Web Resce.
« Thomas Simpson's work on Maxima and Minima at Cogemece

« Apostol, Tom (1967)Calculus Jon Wiley & Sons, Inc., ISBN 0-471-00005-1.

« Bartle; Sherbert (2000hntroduction to Real AnalysiSrd ed.), John Wiley & Sons, Inc.,
ISBN 0-471-32148-6.

« Hormander, L. (1976).inear Partial Differential Operators, Volume $pringer-Verlag,
ISBN 978-3540006626.

« Klein, Morris (1998),Calculus: An Intuitive and Physical Approacbover, ISBN 0-
486-40453-6.

« Pedrick, George (1994)A First Course in AnalysjsSpringer-Verlag, ISBN 0-387-
94108-8.

« Stromberg, Karl (1981)Introduction to classical real analysiswadsworth, Inc.,
ISBN 978-0534980122.

+ Rudin, Walter (1987)Real and complex analysis, 3rd edlcGraw-Hill Book Company,
ISBN 0-07-054234

167



UNIT 2 :TAYLOR SERIES OF EXPANSION FOR FUNCTIONS OF
TWO VARIABLES

CONTENTS

1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT
3.1Definition of tailors series of expans
3.2 Analytical function
3.3Uses of taylor series for analytical functic
3.4 Approximation and converger
3.5 List of maclaurine series of some common func
3.6 Calculation of tailors seri
3.7 Taylors series in several varia
3.8 Fractional taylor serit
4.0 CONCLUSION
5.0 SUMMARY
6.0 TUTOR-MARKED ASSIGNMENT
7.0 REFERENCES/FURTHER READINGS

Introduction

As the degree of the Taylpolynomial rises, it approaches the correct fumctibhis image
shows sirx (in black) and Taylor approximations, polynomiafsiegree 1, 3,5, 7,9, 11 a
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The exponential functiofin blue), and the sum of the fiin+1 terms of its Taylor series a
(in red).

In mathematics, daylor serie< is a representation of a function asimiimite surr of terms
that are calculated from the values of the funésiderivativesat a single poin

The concept of a Taylor series was formally intr@etli by the English mathematiciBrook
Taylor in 1715. If the Taylor series is centered at zeéhen that series is also callec
Maclaurin series, named after the Scottish mathematicColin Maclaurir, who made
extensive use of this special case of Taylor sémi#ise 18th centur

It is common practice to approximate a functionusyng a finite number of terms of
Taylor series. Taylor's theorel gives quantitative estimates on the error in
approximation. Any finite number of initial term§the Taylor series of a function is calle:
Taylor polynomial The Taylor series of a function is tllimit of that function's Taylo
polynomials, provided that the limit exists. A faion may not be equal tits Taylor series,
even if its Taylor series converges at every pdntunction that is equal to its Taylor ser
in an open intervglor a disc in thicomplex plane) is known as analytic functiol.

OBJECTIVE
At the end of this unit, you should be able

Definition taylor series of functions of two varak

Solve problems on analytical probl

Use the taylor series to solve analytic func

Solve problems that involve approximation and cogeRct
The list of maclaurine series of some common fuome

Calculation of taylor series
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Taylors series in several variak

Fractional taylor series

3.0 MAIN CONTENT
Definition

The Taylor series of a realr complex functionf(x) that isinfinitely differentiable in a
neighborhood of a real @omplex numbea is the power series

f'(a) f"(a) . [¥(a)
T 2l RY

fla) +

(x—a)+ (z — a) (@ —a)®+---.

which can be written in the more compsigma notation as

Ef{n ) .’I:—H-)n

wheren! denotes théactoria of n andf (a) denotes theth derivativeof f evaluated at the

pointa. The zeroth derivative (f is defined to b¢ itself and x —a)° and 0! are both define

to be 1. In the case that= 0, the series is also called a Maclaurin se

Examples

The Maclaurin series for ampplynomia is the polynomial itself.

The Maclaurin series for @x)™* for |x| < 1 is the geometric series
l+az+a’+a2°+---

so the Taylor series for* ata=1 is

l—(z—1)+(z—-1)°=(z-1)"+

By integrating the above Maclaurin series we find Maclaurin series for log(- x), where
log denotes the naturalgarithm:

and the corresponding Taylor series forx) ata=1is

(x—1)— 1(:1:—1) +%($—1)3—£($—1)4—|—---
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The Taylor series for thexponential functio € ata= 0 is

WA S ST U IR WL I A AL AR
TR TIAP TR 276 24" 120 2 or

The above expansion holdscause the derivative of &ith respect to x is alsc® and &
equalsl. This leaves the termx — 0)' in the numerator and! in the denominator for eac

term in the infinite sum.

Analytic functions

X

The functione ™/
function is not.

“is not analytic ax = 0: theTaylor series is identically 0, although |

If f(X) is given by a convergent power series in an ogien (or interval in the real line
centered ab, it is said to beanalytic in this disc. Thus fox in this disc,f is given by a
convergent power series

flx)= iaﬂ(a‘, —b)".

Differentiating byx the above formuln times, then setting=b gives:

F)

——I[Iﬂ

n!

and so the power series expansion agrees withaierTseries. Thus a function is analytic
an open disc centered htif and only if its Taylor series converges to thalue of the
function at each point of the di

If f(x) is equal to its Taylor sies everywhere it is called entir€he polynomials and tf
exponential functio®* ard thetrigonometric functionsine and cosine are examples of er
functions. Examples of functions that are not eninclude thelogarithmr, the trigonometric
functiontangent, and its inver<«arctan For these functions the Taylor series doconverge
if x is far froma. Taylor series can be used to calculate the vafuen entire function i
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every point,if the value of the function, and of all of its detives, are known at a sing
point.

Uses of the Taylor series for analytic functiondule

The partial sums (the Vkor polynomials) of the series can be used as approximationset
entire function. These approximations are goodfficgently many terms are include

Differentiation and integration of power series ¢anperformed term by term and is he
particularly easy.

An analytic functionis uniquely extended to holomorphic function oran open disk in the
complex planeThis makes the machinery complex analysis available.

The (truncated) series can be used to compute itunatalues numerically, (often [
recasting the polynomial into thChebyshev formand evaluating it with th¢«Clenshaw
algorithm).

Algebraic operations can be done readily on thego®eries representation; for instance
Euler's formulafollows from Taylor series expansions for trigondrieeand exponentie
functions. This result is of fundamental importanteuch fields aharmonic analys.

Approximation and convergenct

sinlx]
fix]

The sine function (blue) is closel:yl .approximatedtbyTaonr polynomial of degree 7 (pin
for a full period centered at the oric
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The Taylor polynomials for lo¢l1+x) only provide accurate approximations in the ra—1 <

x < 1. Note that, fox > 1, the Taylor polynomials of higher degree worse approximations.

Pictured on the right is an accurate approximatibsin(x) around the gint x = 0. The pink
curve is a polynomial of degree se\

sin(z) /& — o+ — —

The error in this approximation is no more trx|’/9!. In particular, for-1 <x < 1, the error
is less than 0.000003.

In contrast, also shown is a picture of the natlogarithm functiorlog(1 +x) and some of
its Taylor polynomialsarounda = 0. These approximations convetgethe function only ir
the region -1 « < 1; outside of this region the higl-degree Taylor polynomials aworse
approximations for the function. This is similarRunge's phenomenon.

Theerror incurred in approximating a function by nth-degree Taylor polynomial is calle
theremainder or residualand is «enoted by the functioR,(x). Taylor's theorel can be used
to obtain a bound on the size of the remair

In general, Taylor series need notconvergentt all. And in fact the set of functions witt
convergent Taylor series imv@ager st in the Fréchet space siooth function. Even if the
Taylor series of a functiohdoes converg, its limit need not in general be equal to theue:
of the functionf(x). For example, the functi

1

e 1= if o £ 0

f@) =14, if 7 = 0
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is infinitely differentiableat x = 0, and has all etivatives zero there. Consequently,
Taylor series of(x) aboutx = 0 is identically zero. Howevef(x) is not equal to the zel
function, and so it is not equal to its Taylor esraround the origi

In real analysisthis example shows that there infinitely differentiable function f(x)
whose Taylor series aneot equal tof(x) even if they converge. By contrast complex
analysis there arao holomorphic function f(z) whose Taylor series converges to a vi
different fromf(z). The complex function™? does not approach 0 aspproaches 0 alor
the imagnary axis, and its Taylor series is thus not defithere

More generally, every sequence of real or complaxlrers can appear as coefficients in
Taylor series of an infinitely differentiable funm defined on the real line, a consequenc
Borel's lemma (see alddon-analytic smootHunction#Application to Taylor seri). As a
result, theradius of convergen of a Taylor series can be zero. There are evenitaly
differentiable functions efined on the real line whose Taylor series haveadius of
convergence 0 everywherk.

Some functions cannot be written as Taylor serexsabse they havesingularity; in these
cases, one can often still achieve a series expaifsbne allows also negative powers of
variablex; see Laurent serieBor examplef(x) = € *? can be written as a Laurent sel

There is, however, a generalizat®”! of the Taylor series that does converge to theevafi
the function itself for anypounder continuous function on (), using the calculus dinite
differences. Specifically, @anhas the following theorem, dueEinar Hillg, that for anyt > 0,

lim itn%w = fla+1).

.+ !
h—0t = nl

Here An

h is then-th finite difference operator with step sih. The series is precisely the Tay
series, except that divided differences appearlacepof differentiation: the series

formally similar to theNewton serie. When the functiori is analytic aia, the terms in
the series converge to the terms of the Taylorseand in this sense generalizes
usual Taylor series.

In general, for any infinite sequena;, the following power series identity hol

el TAL 20l

n — —u R . -
E n—rﬂ a; — € E 1 i .
n=>0 """ q=0 J:

So in patrticular,

fla+1t)= lim e %" i f(ﬂ-—l—jh.)(f/j#.

—t
h—0 Jard

The series on the right is tlexpectation value dia +X), whereX is aPoisson distributed
random variabl¢hat takes the valih with probabilitye h(t/h)'/j!. Hence
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h—0+

fla+t) = lim ff(a.—k;t:)dptm,h(a:).

The law of large numbeisplies that the identity holds.

List of Maclaurin series of some common functior

The real part of the cosine function in complex plane.

An 8th degree approximation of the cosine functiothecomplex plan.

The two above curves put togetl

Several important Maclaurin series expansions fokdl these expansions are va
for complex argumenix.

Exponential function:
2 2?

e o
E—Zﬂﬂ!—1—|—$—|—2!—|—3!—i— for all =
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Natural logarithm

lﬂg(l—I):—ZI—fﬂr ~1<x <l
n
n=1
— - _ ﬂ+1ﬂ _ <
log(1+4 ) ;( 1) nfor l<x <1

Finite geometric series:

1_ m+1 T
L:Zx“ for x # 1 and m € Ny

1—=x —

Infinite geometric series:

1 o
:Z:t“ for |z| < 1
- n=>0

Variants of the infinite geometric seri

:Z:ﬁ”‘ for || < 1 and m € Ny

|

L ZZn.:r,“‘ for [z] < 1

Square root:

"(2n)!
) " =14tr—Lir?4lat S aty | for x| <

Z 1_2?1 (n!)2 (411.) o 27 8 16 128

Binomial serieqincludes the square root fa = 1/2 and the infinite geometric series a =
-1):

(14+2)* = Z (i)x“ for all |z| < 1 and all complex «
n=>0

with generalizedbinomial coefficient
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(a) _rra-k+1_ola=1)--(a=n+1)

_E k 7!

Trigonometric functions:

- — (=)™ o z® a?

SIHI—Z_;WI = ﬁ—i—ﬁ—---fﬂrall:c
(), 2t

cﬂsxzz_; (2?1)!1: =1- §+E .. for all =
o~ Bon(—4)?(1 —4") , | r* 2a° m

tanax = " =4+ —4+ —4+--- for x| <
; (2n)! 3 15 2]

where theBs areBernoulli number.

. (=1)"Es,
secT = Z Lf“ for |z| < z

— (2n)! 2
. - (2n)!
arcsina = Z () 2n T IJIE“H for [z| <1
n=>0
arccosT = T_ arcsinxr = — Z 2?1) 22 for lz| <1
2 4dn(nl)2(2n + 1) -
arctanr = i é_l)j ¥ for x| <1
n=>0 n+
Hyperbolic functions:
_ 20 on+l R
smhxzzm —|—3,—|—5’+ - for all
W p2n 22 gl
cﬂshxzz;)(?ﬂ) 1—|—§—|—4—'—|— - for all «
=\ Bg,4m™(4" — 1) 1 1, 2 . 17 m
tanhz = ; 2n)! x =TT —m:t: +--- for |z| <
— (=1)*(2n)! 2n+1
arsinh(x z T2 2n 1):1: for [z] <1

=0
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n+1

artanh(z) = Z ;lﬁ for |x| < 1

n=>0

Lambert's W function:

=y yn—1 1
Wo(zx) = z %Iﬂ for |z| < .

n=1

The numbersBy appeamg in the summationexpansions of tar) and tantx) are the
Bernoulli numbers. ThE&y in te expansion of sex) are Euler numbers.

Calculation of Taylor series

Several methods exist for the calculation of Tagleres of a large number of functions. (
can attempt to use the Taylor serie-is and generalize the form of the coefficientspoe
can use manipulations such as substitution, migéfpbn or divsion, addition or subtractic
of standard Taylor series to construct the Tayknmes of a function, by virtue of Tayl
series being power series. In some cases, onels@mualerive the Taylor series by repeate

applying integration by part$articularly convenient is the usecomputer algebra syste
to calculate Taylor series.

First example

Compute the ¥ degree Maclaurin polynomial for the funct
flz) =logcosz, x € (—w/2,7/2)
First, rewrite the function .
flz) =log(l + (cosz — 1))

We have for the natural logarithm (by using big O notation)

2 3

T n
log(l4+x)=x — 5 T ?—I—O(Id‘}
and for the cosine function
ot af 5
l=—" 4 = L0
cosT > ta1 730 TOW)

The latter series expansion has a :constant termmwhich enables us to substitute the sec
series into the first one and to easimit terms of higher order than th™ degree by using
the big O notation
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f(r) =log(1+ (cosx — 1))

1
=(cosz —1) = =(cosz — 1)+ =(cosz — 1)" + Of(cosz — 1)*
(cos 1) = 5 {(cosz — 1) + 3 (cosz — 1)" + Of(cosz — 1))
2 4 6 2 4 2 2
T T T 1 T T 1 T
= -c=4=—=-c—=+0(2%)) == = =+ =+0(2° | ==+
( RY, ?20+()> 2( ;O] +3( -3+
2 4 6 4 6 6
X €T X X X X P
===+ t 35— 7+ 0z
22472084824()
2 4 6
x T
= —— - — — — + 02
2 12 45 (=)
Since the cosine is aven functio, the coefficients for all the odd powex, X, x°, X', ...
have to be zero.
Second example
Suppose we want the Taylor series at 0 of the fon
I =
9(z) COS T.
We have for the exponential funct
00 om 22 g3
T __ I R T T T
D P B TR TR TS
n=>0
and, as in the first example,
2
cost =1— o7 + YT
Assume the power series is
e’ 2 3
:CQ—I—C]_I—I—CEI —|—C3I -+ .-
COST
Then multiplication with the denominator and suiositon of the seriesf the cosine yielc
e = (co+ 1T + a2’ + cax” + -+ ) cos T
2 4
T T
=(c+az+er’+ar’+ert+--) (1o 4= —--
21 4l
D o9 D 4 €1 32 G 5 R B 3@ 5
=cp— =2+ —1 +01T— ="+ ="+ 01— =1 + —x" + 37" — —x" +
2 41 2 41 ? 2 41 ? 2
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Collecting the terms up to fourth order yie

i C C
o3 (o) (e P

Comparing coefficients with the above series of élkponential function yields the desit
Taylor series
e” o 227 ot
=l4a+2"+ o+ +---
COST 3 2

Comparing coefficients with the above series of élkponentiaffunction yields the desire
Taylor series
T QIJ I‘i

=l+a+a + o +5 + .
COST 3 2

e

Third example

Here we use a method called "Indirect Expansioréxigand the given function. This mett
uses the known function of Taylor series for expam

Q: Expand the following function as a power se¢ of x
(1 +x)€".

We know the Taylor series of functie€® is:

i:t: _q 2 Pzt P
=; -I-I-I—Q’-I—ﬁ-l-ﬂ-l- , =00 < < +00
Thus,
. . . 20 ™ I_n+1 20 T Iﬂ--i—l
(1+x)e” =" +ae” = ) ! :1+ZE+ o
n= n=>0 n=1 n=
= " " /1 1
_1 — :]_ - n
2t o *;(nrﬂn—l))"“
B n+1
=1 Z - T —0o < T < 400
n=1
“n+1
:Z T
~— nl
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Taylor series in several variable
The Taylor series may also be generalized to fanstof more than one variable v

T(z1,...,74) =
_ i i (21— ay)™ - (zq — ag)™ ( grre ) (a, ..., aq).

o o ngd
ny=>0 ng=>0 ﬂ'l!' ﬂ-dr dI]_ "'dId

For example, for a function that depends on twadakdes,x andy, the Taylor series t
second order about the poia, b) is:

f(z.y) & f(a.b) + (= - a) fu(a.b) + (y— b) fy(a.B)

+ % [(;r, — .51.)2 f_,r_r(ﬂ-, b) + Q(I — a-)[y — b) f.ﬁcy(a‘! b) + (y - b)g fw(ﬂ'v b)} !

where the subscripts denote the respepartial derivatives.

A seconderder Taylor series expansion of a sc-valued function of more than one varia
can be written compactly as

T(x) = fla) + (x — a)Df(a) + %(x _a)T{D2f(a)} (x —a) 4.

! 2
ere Df(a)is the gradienof fevaluated atx = a and’ f(a}is the Hessian matrix.
Applying the multiindex notatio the Taylor series for several variables becc

o0 =3 X fy(a),
|a|=0

which is to be understood as a still more abbredimulti-index vesion of the first equatio
of this paragraph, again in full analogy to thegtnvariable cas

Example
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Seconderder Taylor series approximation (in gray) of adtionf(x,y) = €'log (1 +y) around
origin.

Compute a seconorder Taylor series expansion around p(a,b) = (0,0 of a function

fla,y) = " log(1+ y).

Firstly, we compute all partial derivatives we n

fzla,b) = € log(1 + ) =0,
(z,y)=(0,0)
E.’E
a,bh) = =1,
fula,b) L+ yley=00
fm(a15):€$lﬂg(1+9) :D!
(z,y)=(0,0)
@) = — = :
a,b) = — T
w\ @ (1+ )l zw)=(0,0) |
E.T
. ﬂ-,b = Juy=x Hﬂb = =L
fey(a.b) = fya(a,b) 1+ yl(z,y)=(0,0)
The Taylor series

T(z,y) = f(a,b) + (x —a) f.(a,b) + (y — b) fy(a,b)

© % [[:.’I! . EI-)E f.-z:;z:(a'! b) 1 2(;1: — ﬂ)(y — b) fzy(ﬂ., b) + (y — E))E fyy(ﬂ

which in this case becomes

T(r,y) =04+0(x—-0)+1(y—0)+ %[D(:r, —0)*+2(z—0)(y —0)+ (-1)(y

2

Since log(1 y) is analytic iny| < 1, we have
yz
e'log(l+y) =y+ay— T+

for y| < 1.
Fractional Taylor series

With the emergence dfactional calculu, a natural question arises about what the Te
Series expansion would be. Odibat and Shawagfetveaad this in 2007. By using tl
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Caputo fractional derivativell << @@ << 1, and & | indicating the limit as we approacr
from the right, the fractional Taylor seriesn be written as

(ﬂI)EQ

fla+ar) = f(a) + DS (e) g0 s + DD () s +

Mo+ 1)
4.0 CONCLUSION

In this unit, you have defined tailors series afdtion of two variable. You have studi
analytical function and have used tailors seresdlve problem s that involve analytit
functions. You have studieapproximation and convergence. You have also diuitie list
of maclaurine series of some common functions anc ldone some calculation of taile
series. You have also studied tailors in sevemahlbes and the fractional taylor ser

5.0 SUMMARY

In this unit, you have studied the followir

Definition taylor series of functions of two varak

Solve problems on analytical probl

Use the taylor series to solve analytic func

Solve problems that involve approximation and cogeact
The list ofmaclaurine series of some common funct
Calculation of taylor series

Taylors series in several variak

Fractional taylor series

TUTOR —MARKED ASSIGNMENT

1.Use the tailor series to expand F(z%1 about the point z = 1 ,and firthe values of z
z

for which the expansion is val

2.Use the tailor series to expand F(><%2 about the point x = 1 ,and find the values «
X
for which the expansion is val

3.Use the tailor series to expand F(x

about the point x = 2 ,and find the valt
(X=2)

2

of z for which the expansion is val
4.Use the tailor series to expand F(><;2 about the point x = 2 ,and find the vall

(x+4)

of z for which the expansion is val
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5.Use the tailor series to expand F(b)(?—)ZT)3 about the point b = 1 ,and find the values
+

of z for which the expansion is valid.
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UNIT 3 : APPLICATIONS OF TAYLOR SERIES
CONTENT

1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT

3.1 Evaluating definite integrals

3.2 Understanding the asymptotic behaviour
3.3 Understanding the growth of functions
3.4 Solving differential equations

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READINGS

1.0 INTRODUCTION

We started studying Taylor Series because we saidpolynomial functions are easy and
that if we could find a way of representing comaled functions as series ("infinite
polynomials") then maybe some properties of fumgiavould be easy to study too. In this
section, we'll show you a few ways in Taylor segas make life easy.

2.0 OBJECTIVES
At the end of this unit, you should be able to :

Evaluate definite integrals with taylors series
Understand the asymptotic behaviour with taykmses
Understand the growth of functions with taylorsesr
Solve differential equations with taylors series

3.0 MAIN CONTENT

Evaluating definite integrals

Remember that we've said that some functions hawantiderivative which can be expressed
in terms of familiar functions. This makes evalngtidefinite integrals of these functions
difficult because the Fundamental Theorem of Cakghnnot be used. However, if we have
a series representation of a function, we can dftexes use that to evaluate a definite
integral.

Here is an example. Suppose we want to evaluatdetivg@te integral
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J, sin(z?) dz

The integrand has no antiderivative expressibleims of famiiar functions. However, w
know how to find its Taylor series: we know tl

U LR
ant =14 —57!4-5—%4-..,
Now if we substitutet = * . we have

i} 10 14
-2 T T
sine) =" =g g T o

In spite of the fact that we cannot antidifferetgtithe function, we can antidifferentiate
Taylor series:

[rsin(a?) do — J{,‘(xﬁ’—%+$5—!—";—!+,-,)dz
333 :FT 3311 3:15
=G ratma oI
11 1 1

7.3 1.5 15e7

Notice that this is an alteating series so we know that it converges. Ifadd up the firs
four terms, the pattern becomes clear: the seoegerges t(0.31026.

Understanding asymptotic behavic

Sometimes, a Taylor series can tell us useful médion about how a functir behaves in an
important part of its domain. Here is an exampléctviwill demonstrate

A famous fact from electricity and magnetism sdya &2 chargq generates an electric fie
whose strength is inversely proportional to theasguf the distanceom the charge. That i
at a distance away from the charge, the electric fielc

kq

E=—

r2
wherek is some constant of proportionali

Oftentimes an electric charge is accompanied by an eapébpposite charge nearby. S
an object is called an electric dipole. To desctitie, we will put a chargq at the point

¥ =dand achargegat T = —d.

186



Along thex axis, the strength of the electric fis is the sum of the electric fields from e:i
of the two charges. In particul:

kg kq
(#—d)? (z+d)?
If we are interested in the electric field far awiagm the dipole, we can consider wl

happens for values of much larger thard. We will use a Taylor series to study 1
behaviour in this region.

E:

ke kg k¢ kg
(z—d)? (z+d? &(1-9P 22(1+5)°

=

Remember that the geometric series has the

=l4uta®+ud+uts. ..
1 —u

If we differentiate this series, we obt:

m=l+2u—|—3ﬂ.2—|—4ﬂ3—|—...

_d
Into this expression, we can substit %= 20 obtain

— g
In the same way, if we substitt Y = "= , we have
1 2d 3d¢ Ad®

Now putting this together give

E- Mk
S (1-2R 1+
kg 9 3@ A 4 3¢ Ad
L
4dg
N B
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In other words, far away from the dipole whix is very large, we see that the electric fi
strength is proportional to the invercubeof the distance. The two charges partially ca
one another out to produce a weaker electric Aela distance

Understanding the growth of functio

This example is similar is spirit to the previouseo Several times in this course, we h
used he fact that exponentials grow much more rapidgntbolynomials. We recorded tt
by saying that

for any exponent . Let's think about this for a minute because @nsmportant property ¢

e~
exponentials. The ratio® is measuring how large the expntial is compared to th
polynomial. If this ratio was very small, we wouddnclude that the polynomial is larger tt
the exponential. But if the ratio is large, we wibwonclude that the exponential is mi
larger than the polynomial. The fact thats ratio becomes arbitrarily large means that
exponential becomes larger than the polynomial ligckor which is as large as we wol
like. This is what we mean when we say "an expaakgtows faster than a polynomia

To see why this relationshiplds, we can write down the Taylor series €*.

To see why this relationship holds, we can writerddhe Taylor series fc €”.

] " " il
et 1+m+%+§—f+,,,§+tﬁ%ﬁ+.,,
:I::ﬁ'-

:Lﬂi'-
Lttt 13
I e I () I
I
7+ 1)

Notice that this last term becomes arbitrarily éaeg ¥ — 0. That implies that the ratio »
are interested in does as wi

e
g, - =00

Basically, the exponentiat®grows faster than any polynomial because it behéikesan
infinite polynomial whose coefficients are all pinge.

Solving differential equatior

Some differential equations cannot be solved imseof familiar functions (just as sor
functions do not have antiderivatives which carekpressed in terms of familiar function
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However, Taylor series can come to the rescue agksre we will preset two examples to
give you the idea.

Example 1:We will solve the initial value proble!

dy
da
¥y =1

Of course, we know that the solution y(@) = €" but we will see how to discover this ir
different way. First, we will write out the solution terms of its Taylor sies:

Y=y + T+ 67" + 033 + asa’ + . ..

Since this function satisfies the conditil"t:[:':J =1 \we must havé*'[u} =ap=1

We also have

d
= a1+ 200w+ 3aya’ 1 dass® ..

dy
dx

Since the differential equation says t& ~ ¥, we can equate these two Taylor sel

ag+a1T-+as s +asz +auz +. .. = @1+ 2005+ 3035 HAagz 4. . |
If we now equate the coefficients, we obt

a1=2ay, @=%Y=—3

ay=3a3, @3=% =45

a3=4day, @s=Y =51,

Gnt =Mn,  Gn =" = i =
Thismeanstha%’=1+m+§+%+“'+%+‘“=fasweexpec

Of course, this is an intial value problem we knbaw to solve. The real value of tt
method is in studying initial value problems tha @do not know how to solv

Example 2:Here we will studyAiry's equatiorwith initial conditions:
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y' = xy
y(0) =1
y'(0) = 0

This equations important in optics. In fact, it explains whyr@nbow appears the way
which it does! As before, we will write the solutias a serie:

¥ = @y + 017 + a3 + agx® + auz’ + asz® + ...
Since we have the initial conditior ¥0) = @0 =1gnq ¥'(0) =a1 =0
Now we can write down the derivative

Y = a1+ 2a9x + 3aax® + dagz® + Sasz’ + .. .
Yy =% +2-3z+3 - 42°+4-52°+ ...

The equation then gives

y' = ay
2a2+2 - 3a3z + 3 - dayz’ +4-5ase’ + ... = w{ag+ @+ axx’ + asz® +...)
%y + 2+ 3asz + 3 - dasx® +4-5ase® + ... = apw + @@’ + axa® +asa’ +. ..

Again, we can equate the coefficientsx to obtain

2ﬂ.g=0 ﬂ.2=|:]'
2:3a3 =060 a3=34
3'4514:{11 ﬂq:':]'
4.5as=as a5=0
3 - bag = ag g = 2.3%5.5

This gives us the first few terms of the soluti

3 6

€& €&

9.3 2.3.5.6 "

y=1+

If we continue in this way, we can write down mdagms of the series (perhaps you see
pattern already?) and then draw a graph of thaisalulhis looks like this

Notice that the solution oscillates to the leftlod origin and grows like an eonential to the
right of the origin. Can you explain this by loogiat the differential equatir

4.0 CONCLUSION
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In this unit, you have been introduced to the ayapion of taylors series a

some basic ways of using taylors series such asettaduating of definite integrals
understanding the asymptotic behaviour, understgntiie growth of functions and solvi
differential equations. Some examples where usdtugtrate the applicatior

5 SUMMARY
Having gone through this unit, you now know t
In this section, we show you ways in which Taylknies can make life eas'

I. In evaluating definite integrals , we used seriggresentation of a function
evaluate some functions that have no antideriva

Suppose we want to evaluate the def integral
1. o
jl; sin(z”) dz

The integrand has no antiderivative expressibleims of familiar functions. However, v
know how to find its Taylor series: we know tl

R I
Slni=i—57!+a—ﬁ+..,

Now if we substitutet = -’I-'?, we have

9 :u,.ﬁ x‘“ ;1.'14

- 2_ _w v
sin(z’) = TR IR VTR

In spite of the fact that we cannot antidifferetgithe function, we can antidifferentiate -
Taylor series:

(i) We used taylors series to understand asymptmthaviour of functions that behave
the important part of the domain . And some exas are shown to demonstra

(i) Taylors series is used tnderstand the growth of functions. Because wvekiie fact
that exponentials grow much more rapidly than poigials. We recorded this by saying t

lim — =
n—0n0 xﬂ o

for any exponem .
(iv) We usedtaylors series to solve problems which could nosbked ordinarily througtr
differential equations.

Tutor-Marked Assignment

1. Compute a secolorder Taylor series expansion around pca,b) = (0,0) of
a function
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F(x.y)= g log(2+y)
2. Show that the taylor series expansion of f(x,)= about the point (2,3) .
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MODULE 7 MAXIMA AND MINIMA OF FUNCTIONS OF SEVER AL
VARIABLES, STATIONARY POINT, LAGRANGE’'S METHOD OF M ULTIPLIERS

Unit 1: MAXIMISATION AND MINIMISATION OF FUNCTIONS OF SEVERAL
VARIABLES

CONTENTS

1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT
3.1 Recognise problems on maximum and minirfumations of several variables
3.2 Necessary condition for a maxima or minforection of several variable
3.3 Sufficient condition for a maxima or mirarfunction of several variable
3.4 Maxima and minima of functions subjectomstraints
3.5 Method of finding maxima and minima of ¢tions subject to constraints
3.6ldentify the different types of examplesmafixima and minima functions of several
variables
3.7Solve problems on  maxima and minima fumgiof several variables

4.0CONCLUSION

5.0SUMMARY

6.0TUTOR-MARKED ASSIGNMENT
7.0REFERENCES/FURTHER READINGS

1.0 INTRODUCTION

Def. Stationary (or critical) point. For a function y = f(x) of a single variable, atsinary
(or critical) point is a point at which dy/dx = €r a function u = f(x, Xz, ... , %) of n
variables it is a point at which

In the case of a function y = f(x) of a single adle, a stationary point corresponds to a point
on the curve at which the tangent to the curveorizbntal. In the case of a function y = f(x,
y) of two variables a stationary point correspomtalsa point on the surface at which the
tangent plane to the surface is horizontal.

In the case of a function y = f(x) of a single ahile, a stationary point can be any of the
following three: a maximum point, a minimum poimtam inflection point. For a function y =
f(x, y) of two variables, a stationary point can &@enaximum point, a minimum point or a
saddle point. For a function of n variables it t&na maximum point, a minimum point or a
point that is analogous to an inflection or saqutient.

2.0 OBJECTIVE
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At the end of this unit, you should be able to :
- recognise problems on maximum and minimum functafreeveral variables
- know the necessary condition for a maxima or minfumetion of several variable
- know the Sufficient condition for a maxima or mirdrfunction of several variable
- identify the maxima and minima of functions subjectonstraints
- know the method of finding maxima and minima ofdtions subject to constraints
- identify the different types of examples of maxiarad minima functions of several
variables
- solve problems on maxima and minima functionseseral variables

Maxima and minima of functions of several variables

A function f(x, y) of two independent variables famiaximum at a point (¥, o) if f(Xo, Yo)
=f(x, y) for all points (x, y) in the neighborhood o, o). Such a function hasrainimum
at a point (%, yo) if f(xo, Yo) =f(X, y) for all points (x, y) in the neighborhoad (xo, Yo).

A function f(x, X, ... , %) of n independent variables hasmmaximum at a point (X, X2/, ...,
Xn) If f(X1', X2y ..., %) =1(X1, X2, ..., %) at all points in the neighborhood ofi'(x, ... , »%).
Such a function hasrainimum at a point (X, X2/, ... , %) if f(x1', X2', ..., %) =f(X1, X2, ... ,
Xp) at all points in the neighborhood of'(x, ... , %).

Necessary condition for a maxima or minimaA necessary condition for a function f(x, y)
of two variables to have a maxima or minima at pOis o) is that

at the point (i.e. that the point betationary point).

In the case of a function f(xx, ... , %) of n variables, the condition for the functionhtave
a maximum or minimum at point{xx,', ... , %) is that
af af o f

at that point (i.e. that the point betationary point).

To find the maximum or minimum points of a functiae first locate the stationary points
using 1) above. After locating the stationary peiwe then examine each stationary point to
determine if it is @ maximum or minimum. To detemmiif a point is a maximum or
minimum we may consider values of the functionha heighborhood of the point as well as
the values of its first and second partial derxedi We also may be able to establish what it
is by arguments of one kind or other. The followthgorem may be useful in establishing
maximums and minimums for the case of functionswvof variables.
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Sufficient condition for a maximum or minimum of a function z = f(x, y). Let z = f(X, y)
have continuous first and second partial derivatinethe neighborhood of pointy(®p). If at

the point (%, yo)

and

(a*f " a'ré’f
A= — | R
Loxo ) cx oy

then there is a maximum at(¥o) if

i

X

i}

< 0

Cap

and a minimum if

"".'a-

i3
i

If A >0, point (%, Yo) is a saddle point (neither maximum nor minimufh)A = 0 , the
nature of point (¥ Yo) is undecided. More investigation is necessary.

Example. Find the maxima and minima of function z Z#xy + y* - y .

Solution..
oz Oz
— =2x+) —=x+2y-1
o dy
0z £z d<z
- =2, — =1 —=2
X o xcy oy
2x+y=0
Xx+2y=1
x=-1/3,y=2/3

This is the stationary point. At this poifit> 0 and
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— = 0
ox

and the point is a minimum. The minimum value & thnction is - 1/3.

Y/- \\'\
(=, \g":‘
SN 3
r/t R x'_h____ -
:-_.ﬁ,_i R

Maxima and minima of functions subject to constraints. Let us set ourselves the following

problem: Let F(x, y) and G(X, y) be functions definover some region R of the x-y plane.
Find the points at which the function F(x, y) haaximums subject to the side condition G(X,
y) = 0. Basically we are asking the question: Aawpoints on the solution set of G(x, y) =0
does F(x, y) have maximums? The solution set of @ 0 corresponds to some curve in
the plane. See Figure 1. The solution set (i.audpof G(x, y) = 0 is shown in red. Figure 2
shows the situation in three dimensions where fana = F(x, y) is shown rising up above
the x-y plane along the curve G(X, y) = 0. The peobis to find the maximums of z = F(x, y)

along the curve G(x, y) = 0.

=

f

|

|

II ez Fx,v)

I.' ,\ff. R -

.'l / _F ) . ' \
Nl ad s
// .'; e -
L/ y
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Let us now consider the same problem in three blesa Let F(x, y, z) and G(x, y, z) be
functions defined over some region R of space. Enedpoints at which the function F(x, v,
z) has maximums subject to the side condition @(x) = 0. Basically we are asking the
guestion: At what points on the solution set of G(xz) = 0 does F(x, y, z) have maximums?
G(x, y, z) = 0 represents some surface in spacEigare 3, G(x, y, z) = 0 is depicted as a
spheroid in space. The problem then is to findrtfaximums of the function F(x, y, z) as
evaluated on this spheroidal surface.

Let us now consider another problem. Suppose idsté@ne side condition we have two.
Let F(x, Yy, 2), G(X, y, z) and H(x, y, z) be furmis defined over some region R of space.
Find the points at which the function F(X, y, zsmaximums subject to the side conditions

2) G(x,y,2)=0
3) H(x,y, z) =0.
G0y, 2 =
= N )=
- N:“' I."'l‘-'ﬂ-l"a'-r'r'.a.n
- of G and H
C Hiw, ¥, 2)= o
Pt :
Fiq., 4

Here we wish to find the maximum values of F(xz)ypn that set of points that satisfy both
equations 2) and 3). Thus if D represents the isoliget of G(x, y, z) = 0 and E represents
the solution set of H(X, y, z) = 0 we wish to fitile maximum points of F(x, y, z) as
evaluated on set F = | E (i.e. the intersectioret$ D and E). In Fig. 4 G(X, y, z) =0 is
depicted as an ellipsoid and H(x, y, z) = 0 asam@l The intersection of the ellipsoid and the
plane is the set F on which F(x, vy, z) is to beestad.
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The above can be generalized to functions of rabes F(x, X, ... , %), G(X, X2, ... , %),
etc. and m side conditions.

Methods for finding maxima and minima of functionssubject to constraints.

1. Method of direct elimination. Suppose we wish to find the maxima or minima of a
function F(x, y) with the constraim(x, y) = 0. Suppose we are so lucky ttx, y) = 0 can

be solved explicitly for y, giving y = g(x). We cdhen substitute g(x) for y in F(x, y) and
then find the maximums and minimums of F(x, g(y)standard methods. In some cases, it
may be possible to do this kind of thing. We expr&sme of the variables in the equations of
constraint in terms of other variables and thersstute into the function whose extrema are
sought, and find the extrema by standard methods.

2. Method of implicit functions. Suppose we wish to find the maxima or minima of a
function u = F(x, y, z) with the constrai®(x, y, z) = 0. We note thak(x, y, z) = 0 defines z
implicitly as a function of x and y i.e. z = f(x).yWe thus seek the extrema of the quantity

u=F(k,Yy, f(x,y)) .

The necessary condition fostationary point, as given by 1) above, becomes

ou Oz ou )
4) — = F+F— =10 = F,+F,
i

dx kY ay

=0

S | oy

(where K represents the partial of F with respect to x,)etc

Taking partials ofd with respect to x and y it follows that

gz Az
5 4D, — =0 O, + D, -
dx dy

= 0.

(since the partial derivative of a function that@stant is zero).
From the pair of equations consisting of the fegquation in 4) and 5) we can eliminate

0z/dx giving
6) D3 - P =0

From the pair of equations consisting of the secemquition in 4) and 5) we can eliminate
¢2197 giving

7) h®; - P2, =0

Equations 6) and 7) can be written in determinamhfas
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F

1 F
(I

D,

F, F
i =0
Q. 5

2) =10

Equations 8) combined with the equation®(X, y, z) = 0 give us three equations which we
can solve simultaneously for X, y, z to obtain thstationary points of function F(x, y, z).
The maxima and minima will be among the stationarypoints.

This same method can be used for functions of aitrary number of variables and an
arbitrary number of side conditions (smaller thiae number of variables).

Extrema for a function of four variables with two auxiliary equations. Suppose we wish
to find the maxima or minima of a function

u=FXx,y,z1t)
with the side conditions
9) d(x,y,2,t)=0 v(x,y,z,t)=0.
Equations 9) define variables z and t implicitlyfasctions of x and y i.e.
10)  z=1(xy) t=5XxY).
We thus seek the extrema of the quantity

u-= F(Xs y,1(X, y)! f2(xi y)) .

The necessary condition fostationary point, as given by 1) above, becomes

cu oz ot cu 0z ot
11) — = F+F,— +F, —=10 — = F,+F,—+F, — =10
O x T oOx ox cy - T dy ox

Taking partials ofd with respect to x and y it follows that

) ot o f ot
12) @, +d,—+d, =0 o, +0, 0 10, %y

C'x 0x ay cy

Taking partials ofy with respect to x and vy it follows that

. dz ot df ot
13) Wyt ——+y, ——=10 Yty —+y, —= 0.
dx il ay dy

From 12) and 13) we can derive the conditions
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F, F, F, K F
14) :I:I {‘I:-_\ cljl = {) '!Ii': tl:n; t'l]l =1
WoW, v, v.ooW, v,

Equations 14) combined with the auxiliary equationsp(x, y, z, t) = 0 andy(X, y, z,t) =0
give us four equations which we can solve simultanasly for x, y, z, t to obtain the
stationary points of function F(x, y, z, t). The maima and minima will be among the
stationary points.

Extrema for a function of n variables with p auxiliary equations.
The p equations corresponding to equation 14) abwwbe case of a function of n variables

u=F(XX, ... .%)
and p auxiliary equations (i.e. side conditions)

D(X1, X2, o , %) =0
(X1, X2, ... , %) =0

are
!L: !-.I:'i—r"+'| !LH
[I] {'1']1-— 1+ 1 [lju
15) o =10 k=12 P
‘(;1 I3 'E-l.'r—.rj+| e 5‘11

These p equations along with the p auxiliary equabins

D(Xq1, X2, ... , %) =0
W(X1, X2, ... , %) =0

Q(X1, X2, ... , %) =0

can be solved simultaneously for the n variables; xx,, ... .% to obtain the stationary
points of F(x, X, ... .%). The maxima and minima will be among the stationgy points.

kkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkhkkk
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Geometrical interpretation for extrema of function F(x, y, z) with a constraint. We shall
now present a theorem that gives a geometricajpratation for the case of extremal values
of functions of type F(Xx, y, z) with a constraint.

Theorem 1. Suppose the functions F(x, y, z) addx, y, z) have continuous first partial
derivatives throughout a certain region R of spaet.the equatiod(x, y, z) = 0 define a
surface S, every point of which is in the interarR, and suppose that the three partial
derivatives®,, ®,, ®3 are never simultaneously zero at a point of S.nTaenecessary
condition for the values of F(x, y, z) on S to mtan extreme value (either relative or
absolute) at a point of S is that, I, F; be proportional tab,;, ®,, ®3 at that point. If C is the
value of F at the point, and if the constant ofpamtionality is not zero, the geometric
meaning of the proportionality is that the surf&and the surface F(x, y, z) = C are tangent
at the point in question.

Rationale behind theorem.From 8) above, a necessary condition for F(x, yozattain a
maxima or minima (i.e. a condition for a stationpoynt) at a point P is that

kD3 - P =0 @3- RO, =0
or

F F, F, F,
16) — = — = .
i[» . i, i» s i,

Thus at a stationary point the partial derivatittgsF,, F; and ®1, ®,, ®3 are proportional.
Now the partial derivatives;FF,, F; and®,, ®,, ®3 represent the gradients of the functions F
and®; and the gradient, at any point P, of a scalantpgoinctiony(x, y, z) is a vector that is
normal to that level surface ¢fX, y, z) that passes through point P. If C is\hkie of F at
the stationary point P, then the vectoy, (i, Fs) at point P is normal to the surface F(x, y, z)
= C at P. Similarly, the vectofdg, ®,, ®3) at point P is normal to the surfa®¢x, y, z) = 0 at

P. Since the partial derivatives, i, Fs and®,, ®,, ®3 are proportional, the normals to the
two surfaces point in the same direction at P Aedstirfaces must be tangent at point P.

Example. Consider the maximum and minimum values of F(g)y= ¥ + y* + Z on the
surface of the ellipsoid

R

Gix,v,z) = L f—+— = 1
64 36 25

Since F(x, vy, z) is the square of the distance f(ony, z) to the origin, it is clear that we are
looking for the points at maximum and minimum dmstas from the center of the ellipsoid.
The maximum occurs at the ends of the longest ijpah@xis, namely at = 8, 0, 0). The
minimum occurs at the ends of the shortest prihn@ges, namely at (0, C= 5). Consider the
maximum point (8, 0, 0). The value of F at thismas 64, and the surface F(x,y, z) =64 is a
sphere. The sphere and the ellipsoid are tang€Bt @t 0) as asserted by the theorem. In this
case the ratios 35,:Gs and k:F:Fz at (8,0, 0) are 1/4: 0: 0 and 16 : O : O respely.
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This example brings out the fact that the tangesfcthe surfaces (or the proportionality of
the two sets of ratios), is a necessary but nouficent condition for a maximum or
minimum value of F, for we note that the conditmfnproportionality exists at the points (O,
=6, 0), which are the ends of the principal axisntérmediate length. But the value of F in
neither a maximum nor a minimum at this point.

Case of extrema of function F(x, y) with a constrait. A similar geometrical interpretation
can be given to the problem of extremal valueg-{or; y) subject to the constrai(x, y) =

0. Here we have a curve defined by the constrand,a one-parameter family of curves F(x,
y) = C. At a point of extremal value of F the cuiv&, y) = C through the point will be
tangent to the curve defined by the constraint.

3. Lagrange’s Method of Multipiers. Let F(x, y, z) andb(x, y, z) be functions defined over
some region R of space. Find the points at whiehftimction F(x, y, z) has maximums and
minimums subject to the side conditidr{x, y, z) = 0. Lagrange’s method for solving this
problem consists of forming a third function G(xzy given by

17) G(x,Y, z) =F(x, Yy, z) (X, Y, ),

wherel is a constant (i.e. a parameter) to which we haittr assign a value, and then finding
the maxima and minima of the function G(x, y, z)réader might quickly ask, “Of what
interest are the maxima and minima of the functr, y, z)? How does this help us solve
the problem of finding the maxima and minima of ,B(xz)?” The answer is that examination
of 17) shows that for those points correspondinght solution set ofb(x, y, z) = 0 the
function G(X, y, z) is equal to the function F(x, 3) since at those points equation 17)
becomes

G(x, Y, z) =F(x,y,z) 0 .
Thus, for the points on the surfa®€x, y, z) = 0, functions F and G are equal so tlaima
and minima of G are also the maxima and minima .offfre procedure for finding the
maxima and minima of G(x, y, z) is as follows: Wagard G(X, y, z) as a function of three
independent variables and write down the necessargitions for a stationary point using 1)
above:

18) RKR+A01=0 F+AD,=0 F+AD3=0

We then solve these three equations along witlethuation of constrainb(x, y, z) = 0 to
find the values of the four quantities x, yAzMore than one point can be found in this way
and this will give us the locations of the statignpoints. The maxima and minima will be
among the stationary points thus found.

Let us now observe something. If equations 18)tareold simultaneously, then it follows
from the third of them that must have the value

F,
D,

If we substitute this value @finto the first two equations of 18) we obtain
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kD3 - P =0 @3- RO, =0
or

KB,

O, @,

F, F.

19) =0

®, O,

We note that the two equations of 19) are ideritidhe same conditions as 8) above for the
previous method. Thus using equations 19) alonfy thié equation of constraift(x, y, z) =

0 is exactly the same procedure as the previoukadeh which we used equations 8) and
the same constraint.

One of the great advantages of Lagrange’s methed te method of implicit functions or
the method of direct elimination is that it enahlissto avoid making a choice of independent
variables. This is sometimes very important; itnpés the retention of symmetry in a
problem where the variables enter symmetricalthatoutset.

Lagrange’s method can be used with functions oframgber of variables and any number of
constraints (smaller than the number of variablesjeneral, given a function R(xx, ... ,
Xn) Of n variables and h side conditiofrg = 0, d, = 0, .... ,®, = 0, for which this function
may have a maximum or minimum, equate to zero dnéigb derivatives of the auxiliary
function F +A1®; + D5 + ... +in®n With respect to ¥ xo, ... , % , regarding\y, Ao, ..... M

as constants, and solve these n equations simalialyewith the given h side conditions,
treating thé\'s as unknowns to be eliminated.

The parametex in Lagrange’s method is called Lagrange’s mukipli
Further examples

Example 1.

Let us find the critical points of
. _ _} 3 a2
¢=flzy)=exp|—37 +z -y
The partial derivatives are

fo@9) = (-2 + Dexp(—32* +2-?)

1
fy(z,4) = —2yexp (— 59:3 +x— yﬂ)

f x=0 if 1-x"2=0 or the exponential term is 0. f O/ -2y=0 or the exponential term is O.
The exponential term is not 0 except in the degdrarase. Hence we require 1-x*2=0 and -
2y=0, implying x=1 or x=-1 and y=0. There are twiical points (-1,0) and (1,0)

The Second Derivative Test for Functions of Two Vaables
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How can we determine if the critical points fourmbae are relative maxima or minima? We
apply a second derivative test for functions of waoiables.

Let (x_c,y_c) be a critical point and define

D(Ze,yc) = fralTe, Yo) Fiy(Te, 3e) — [fmy(xc,yc}]u-

We have the following cases:

. IfD>0and f (X, yc)<0, then f(x,y) has a relative maximum gt , Yy,
. IfD>0and f (X, yc)<0, then f(x,y) has a relative minimum &t , Yy,

« 1f D<Q, then f(x,y) has a saddle point gt, Yy,
- If D=0, the second derivative test is inconclusive.

An example of a saddle point is shown in the exanelow.
Example: Continued

For the example above, we have

fanle,) = (22 + (1= 2*P)eap(—32° +2 -7,
Fay(®,4) = (—2+ 4y?)ezp (— %—":3 +x— yﬂ) :

e 1) = ~2(1 = Pyeap (~32° +2—4*),

For x=1 and y=0, we have D(1,0)=4exp(4/3)>0 witkx{(1,0)=-2exp(2/3)<0. Hence, (1,0) is
a relative maximum. For x=-1 and y=0, we have M(3-4exp(-4/3)<0. Hence, (-1,0) is a
saddle point.

Example 2: Maxima and Minima in a Disk

Another example of a bounded region is the distadius 2 centered at the origin. We
proceed as in the previous example, determinirigar8 classes above. (1,0) and (-1,0) lie in
the interior of the disk.

The boundary of the disk is the circle x*2+y"2=4.flhd extreme points on the disk we

parameterize the circle. A natural parameterizagsot=2cos(t) and y=2sin(t) for
0<=t<=2*pi. We substitute these expressions intifxzy) and obtain

z= f{r,y) = f{cos(t),sin(t)) = exp Ii—g 05  t + 2 cogt — 4gin’ t) = (1)
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On the circle, the original functions of 2 variable reduced to a function of 1 variable. We
can determine the extrema on the circle using igades from calculus of on variable.

In this problem there are not any corners. Heneeg@termine the global max and min by
considering points in the interior of the disk awdthe circle. An alternative method for
finding the maximum and minimum on the circle is thethod of Lagrange multipliers.

4.0 CONCLUSION

You have been introduced to maximum and minimumctions of several variables,
necessary condition for a maxima or minima functadn several variables, problems on
maximum and minimum functions of several variab&etc

5.0 SUMMARY

A summary of maximum and minimum functions of seVgariables are as follows :

A function f(x, y) of two independent variablesshEmaximum at a point (¥, Yo) if f(Xo, Yo)
=f(x, y) for all points (x, y) in the neighborhood o, o). Such a function hasrainimum
at a point (%, yo) if f(xo, Yo) =f(X, y) for all points (x, y) in the neighborhoad (xo, Yo).
Solve the following problem, Find the maxima anidima of function z = &+ xy + y* - y .
Solution..

_.-
T
Ly

in 1]
b

‘\?
o} ]

2x+y=0 , x+2y=1
x=-1/3,y=2/3

This is the stationary point. At this poifit> 0 and

-

Oz
— = 0
ox”

and the point is a minimum. The minimum value & thnction is - 1/3.

6.0 TUTOR-MARKED ASSIGNMENT

1.Determine the critical points and locate anytretaminimum, maxima and saddle points of
functions f defined by

F(x,y) = 2)(2 —2xy+2 y4 - 6X

2.Determine the critical points and locate anytreéaminimum, maxima and saddle points of
functions f defined by

F(x)y) = 2x4—4xy+ y3+ 4
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3.Determine the critical points and locate anytreéaminimum, maxima and saddle points of
functions f defined by

F(x,Y)=X - y4+ 4xy
Determine the critical points of the functions beland find out whether each point

corresponds to a relative minimum, maximum and lga@dint, or no conclusion can be
made

4.F(x,y):)<2 +3 y2 —2xy—8x
5. F(xy)=x_+12x+ Yy +3y -9y
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Taylor. Advanced Calculus
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INTRODUCTION

Hx.w)

¥

- el

S sy =

.

Figure 2: Contour map of Figure 1. The red linevehdhe constraing(x,y) = c. The blue
lines are contours dfx,y). The point where the red line tangentially touschélue contour i
our solution.

In mathematical optimizati, the method ofLagrange multipliers (named afterJoseph
Louis Lagranggprovides a strategy for finding the maxima andima of afunction subject
to constraints.

For instance (see Figure 1), consider the optinaagiroblen

maximizef(i’a 'y)
subject tod(T,y) = c.

We introduce a new variable))(called a Lagrange multiplier, and study the Lage
function defined by

Az,y, \) = flz,y)+ A~ (glz,y) — ),
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where thel term may be either added or subtracted(x,y) is a maximum for the origini

constrained problem, then there exiswich thatx,y,\) is astationary poir for the Lagrange
function (stationary points are those points whire partial derivatives oA are zero)

However, not all stationary points yield a solutminthe original problem. Thus, the mett

of Lagrange multipliers yieldsnecessary conditioior optimality in constrained problel

2.0 OBJECTIVES

After studying this unit, you should be to corrgt

I. Identify problem which could be solve by langrangestiplier
il. Know single and multiple constrai

iii. Know the interpretation of lagrange multip

Iv. Solve problems with the use of langranges multipli

3.0 MAIN CONTENT

One of the most common problems in calculus is tfainding maxima or minima (i
general, "eirema") of a function, but it is often difficult find a closed form for the functic
being extremized. Such difficulties often arise wlome wishes to maximize or minimize
function subject to fixed outside conditions or swaints. The method of Lrange
multipliers is a powerful tool for solving this sla of problems without the need to explic
solve the conditions and use them to eliminateaexdriables

Consider the twalimensional problem introduced abc

maximizef (%, )
subject tod(x,y) = c.

We can visualize contours bgiven by

flz,y)=d
for various values df, and the contour (g given byg(x,y) =c.

Suppose we walk along the contour line wg = c. In general the contour lines f andg
may be distinct, so following the contour line g = ¢ one could intersect with or cross i
contour lines of. This is equivalent to saying that while movingraj the contour line fcg
= c the value off can vary. Only when the contour linor g = ¢ meets contour lines
tangentially do we not increase or decrease the vallf — that is, when the contour lin
touch but do not cross

The contour lines of andg touch when th¢angent vectorsf the contour lines are parall
Since the gradiendf a function is perpendicular to the contour lindss is the same
saying that the gradients bhndg are parallel. Thus we want pointsy) whereg(x,y) = ¢
and

vz,yf = —AV zyd,
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where

_ (9F of
vz,yf - (aI! ay)

and

_ (09 0y
Vayl = (6:1:’ 6y)

are the respective gradients. The consh is required because although the two grac
vectors are parallel, the magnitudes of the gradiectors are generally not eqt

To incorporate these conditions into one equatMintroduce an auxary functior

Ay, N) = f(z.9) + A (g(z.9) — ),
and solve

vzs'ﬂ:)‘tﬁ(x! 4, ‘J\) =0.

This is the method of Lagrange multipliers. Notat1v.kﬂ($a B /“‘) = Dimplies axy) =
C.

Not necessarily extrema

The constrained extrema bfre critical points of the Lagrangiam\, but they are nclocal
extremaof A (see Example Below).

One mayreformulate the Lagrangi as a Hamiltonianin which case the solutions are lo
minima for the Hamiltonian. This is done ioptimal control theory, in the form o
Pontryagin's minimum princig.

The fact that solutions of the Lagrangian are restessarily extrema also poses difficul
for numerical optingation. This can be addressed by computing magnitudeof the
gradient, as the zeros of the magnitude are nedgskaal minima, as illustrated in tt
numerical optimization examy.

Handling multiple constraints
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.

A paraboloid, some of its level sets (aka contgd) and 2 line constrair

6 : : >
i level sets r

L

Zooming in on the levels sets and constraints, e@eetlsat the two constraint lines intersec
form a "joint" constraint that is a point. Since there dsly one point to analyze, tl
corresponding point on the paraboloid is autombyiGa minimum and maximum. Yet tt
simplified reasoning presented in sections aboeensdo fail because the level setinitely
appears to "cross" the point and at the same tsrgradient is not parallel to the gradient:
either constraint. This shows we must refine oyslaxation of the method to handle -
kinds of constraints that are formed when we hageertharone constraint acting at on

The method of.agrange multiplier can also accommodate multiple constraints. To see
this is done, we need to reexamine the problem shighatly different manner because f
concept of “crossing” discussed above becorapidly unclear when we consider the ty,
of constraints that are created when we have nharredne constraint acting togetl

As an example, considerparaboloic with a constrainthat is a single point (as might

created if we had 2 line constraints that inte)jselhe level set(i.e., contour line) clearl
appears to “cross” that point andgradientis clearly not parallel to the gradients of eitbé
the two line constraints. Yet, it is obviously axilmum anda minimum because there is ol
one point on the paraboloid that meets the comt.
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While this example seems a bit odd, it is easynenstand and is representative of the
of “effective” constraint that appears quite oftehen we deal with multiple constrair
intersecting. Thus, we take a slightly differenpagach below to xplain and derive th
Lagrange Multipliers method with any number of doaisits

Throughout this section, the independent variabidisbe denoted by*1,¥2,-- ., TNand,
as a group, we will denote them P = (1, L9, ..., ZTN), Also, the function bein

analyzed will be denoted k and the constraints will be represented by the teans
g1(P)=0,02(p) =0, ....9m (p) =0,

The basic idea remains essentially the same: itavesider only the points that satisfy

constraints (i.e. aren the constraints), then a poi(P: ! (P))is a stationary point (i.e.
point in a “flat” region) off if and only if the constraints at that point do abbw movemen
in a direction wheréchanges valu

Once we have located the stationary points, we meeatb further tests to see if we he
found a minimum, a maximum or just a staticy point that is neither.

We start by considering the level setf at (P.u f [P)} The set of vector"lUL}containing
the directions in which we can move and still remiai the same level set are the directi
where the value dfdoes not change (i.e. the changeals zero). Thus, for every vectv in

{ve} the following relation must hol
d d d
apo b, F o

=~ Up b U+t Uy =
l[f&?]_ * [f{I?g * d:i?p,,r N

where the notatior’zrxabove means thxc-component of the vector. The equation aboy
can be rewritten in a more compact geometric fdrat helps our intuitiol

— #‘ — — —
drq Ury
d.;:i Uzp
2
: . : =0
: = Vi . v=10
& Uz
L dz py L

— S, e’
Vi v

This makes it lear that if we are é&p, thenall directions from this point that cnot change
the value of must be perpendicul to Vf (P)(the gradient dofatp).

Now let us consider the effect of the constraik&ch constraint limits the directions that
can move from a particular point and still satisfye constraint. We can use the st

procedure, to look for the set of vect({UC‘}containing the directions iwhich we can
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move and still satisfy the constraint. As above, deery vectorv in ‘[UC’} the following
relation must hold:

dg dg dy
'&g — Eﬂm + Eﬂzg + - + HUEH =10

= Vg. v =10

From this, we see that at poip, all directions from this point that will still gafy this
constraint must be perpendiculanvﬂ (P)

Now we are ready to refine our idea further and gete the methoda point onf is a
constrained stationary point if and only if theebtion that changt f violates at least one «
the constraints (We can see that this is true because if a dmethat changef did not
violate any constraints, then there would a “legadint nearby with a higher or lower val
for f and the current point would then not be a statyppaint.)

Single constraint revisited

For a single constraint, we use the stant above to say that at stationary points

direction that changefsis in the same direction that violates the constraio determine i
two vectors are in the same direction, we note ifnato vectors start from the same pc
and are “in the samdirection”, then one vector can always “reach” ttieer by changing it
length and/or flipping to point the opposite wagrad the same direction line. In this way,

can succinctly state that two vectors point ingame direction if and only if one them can
be multiplied by some real number such that thesobree equal to the other. So, for «
purposes, we require that:

Vf(p)=AVyg(p) = Vip)—AVg(p) = 0

If we now add another simultaneous equation to antae that we only perform this t
when we are at a point that satisfies constraint, we end up with 2 simultaneous equal
that when solved, identify all constrained statigr@oints

g(p)=0 means point satisfies constraint
Vf(p)—AVg(p) =0 means point is a stationary point

Note that the above is a succinct way of writing #guations. Fully expanded, there N +

1 simultaneous equations that need to beed for the N + lvariables which ari. and
L1, L2,...,LN:
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g (Il!l-'g! . -;II'I.,-') _ []

d d
E(II,IQ,...,IN)— é(i:l,ﬂ:g,...,:{:w):[]
e d
E-:(IIEIE!"'!IN)_ Egz(II!IE!"'!IN):D
d d
ﬁ(mhxz,...i?m)— Ei(:tl,xg,...,xh-):[]

Multiple constraints

For more than one constraint, the same reasoniplgeaplf there is more than one constr:
active together, each constraint contributes actiine that will violate it. Together, the:
“violation directions” form a “violation space”, wene infinitesinal movement in an
direction within the space will violate one or marenstraints. Thus, to satisfy multig
constraints we can state (using this new termingldpat at the stationary points, t
direction that changédss in the “violation space” crted by the constraints acting join

The violation spacecreated by the constraints consists of all poingt tan be reached |
adding any combination of scaled and/or flippedsimrs of the individual violation directic
vectors. In other words, athe points that are “reachable” when we use theviaheal
violation directions as the basis of the space.sThee can succinctly state thv is in the
space defined byblabE! .-+ barif and only if there exists a set of “multiplier

-Ji'l : A? 1- =3 "jiﬂfSUCh that:

A
E }‘F.:bﬁ: = u
k=1

which for our purpsees, translates to stating that the direction ¢hangesf at p is in the
“violation space” defined by the constraid1, 42, - - - ; 9asif and only if:

i MV (p)=Vilp) = Vflp) - i MV gi(p) =0

k=1 k=1

As before, we now add simultaneous equation toaguee that we only perform this ti
when we are at a point thsatisfies every constraint, we end up with sim@tars equation
that when solved, identify all constrained statiyr@oints

an(p) =0
go(p) = 0 these mean the point satisfies all constraints

The method is complete now (from the standpoint of isgvthe

QM(IJ) =0
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vV flp) — Z Ae Vgu(p) = 0 this means the point is a stationary point
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problem of finding stationary points) but as mathénians elight in doing, these equatio
can be further condensed into an even more elegahsuccinct form. Lagrange must hi
cleverly noticed that the equations above look [degtial derivatives of some larger sce

function L that takes all thé®1, T2, - - -y Tvand all theMs A2, - - - Anras inputs. Next,
he might then have noticed that setting every eguagqual to zero is exactly what o
would have to do to solve for trunconstrainedstationary points of that larger functic
Finally, he showed that a larger functiL with partid derivatives that are exactly the or
we require can be constructed very simply as bt

L(Il,Ig,...,Iﬁ,‘r,;\l,lg,..._.)\j,;)
M
_f(i:l Lgy..n, IN)—Z /‘\;;Q.tb (I1 To,..., In,‘.)
k=

Solving the equation above for unconstrainedtationary points generates exactly the s
stationary points as solving for ticonstrainedstationary points of under the constrain

In Lagrange’s honor, the function above is called Lagrangiar, the scalars

Ay A2, - Anrare calledLagrange Multipliersand this optimization method itself
calledThe Method of Lagrange Multiplie.

The method of Lagrange multipliers is generalizgdhe Karush—KuhrTucker conditions,
which can also take into account inequéeconstraints of the forrh(x) <c.

Interpretation of the Lagrange multipliers

Often the Lagrange multipliers have an interpretatas some quantity of interest. To
why this might be the case, observe 1

oL _
Ogn B

So, Ak is the rate of change of the quay being optimized as a function of the constr.
variable. As examples, ihagrangian mechani the equations of motion are derived

finding stationary points ohe action the time integral of the difference between kmanhd
potential energy. Thus, the force on a particle ua scalar potentia £ = —V V| can be
interpreted as a Lagnge multiplier determining the change in actioarfsfer of potential t
kinetic energy) following a variation in the paléis constrained trajectory. In economics,
optimal profit to a player is calculated subjectaaonstrained space of actiowhere a
Lagrange multiplier is the increase in the valug¢hef objective function due to the relaxat
of a given constraint (e.g. through an increasen@ome or bribery or other mear- the
marginal cosbf a constraint, called ttshadow price.

Ak

In control theory this is formulated insteadcostate equations.
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Examples

Example 1

Fig. 3. o lllustration of the constraine
optimization problem

Suppose one wishes to maximf(x,y) = x + y subject to the constrain + y* = 1. The
feasible set is the unit circle, and llevel sets of are diagonal lines (with slof-1), so one

can see graphically that the maximum occur(‘/Q/Qn ‘/2/2}, and the minimum occu

at(—V2/2,-V2/2)
Formally, seg(x,y) —c=x*+y* - 1, and

AGGYL) =fY) +AQ(KY) =€) =X +y +A0C + Y2 — 1)
Set the derivative A = 0,which yields the system of equatic

oA

5y = 1+2\ =0, (i)
‘;_‘: =142y =0, (i)
A

%zxﬂ+y?_1 =0, (i)

As always, thel) Aequation ((iii) here) is the original constra

Combining the first two equations yielx =y (explicitly, A F U, otherwise (i) yields 1 = (
soone hag=-1/(2) =vy).
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Substituting into (i) yields2x® = 1, so® =Y = :IZ‘/E/Q andA = :|:\/§/2’ showing

the stationary points are('*/_/2 ‘/_/Q)and (_‘/_/2 _‘/_/2) Evaluating the

objective function these yielc

F(vV2/2,4/2/2) = V2 and f(—x/?/? \/2/2)

thus the maximum ig/i which is attained E(V@/Qa \/E/Q} and the minimum i—\/E
‘which is attained at—V'2/2, —V/2/2)

Example 2

e ~SzE=ce”

il e
. (v’ﬁ.},z}

Fig. 4. |lllustration of the
constrained optimizatio

problem

Suppose one wants to find the maximum valus

flz,y) =2’y

with the condition that the andy coordinates lie on the circle around the originhwidius
3, that is, subject to the constri

2 2
glz,y) =2 +y* = 3.

As there is just a single coraint, we will use only one multiplier, say

The constrainig(x, y)-3 is identically zero on the circle of radin3. So any multiple o

g(x, y)-3 may be added tifx, y) leavingf(x, y) unchanged in the region of interest (above
circle where ouoriginal constraint is satisfied). L

Alz,y,\) = flz,y) + Mg(z,y) — 3) = 2y + Ma* + o° - 3).

The critical values oA occur where its gradient is zero. The partial denes ar
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OA =2zy + 2\ =0, (1)

o

3—3 = 2?4+ 2\y =0, (ii)
d—‘ﬁ‘za:% 2_3 =0. iii
N y (i)

Equation (iii) is just the original constraint. Eggion (i) impliesx = 0or A = —y. In the first

case, ifx =0 then we mushave I/ = j:‘/gby (i) and then by (ii)» = 0. In the second
case, ifA = -y and substituting into equation (ii) we have t

r?— 25" = 0.
Thenx? = 2y%. Substituting into equation (i) and solving fy gives this value oy:
y = =+1.
Thus there are six critical poir
(V2,1); (—V2,1); (V2,-1); (=V2,-1); (0,V3); (0,—V3).

Evaluating the objective at these points, we

f(EV2,1) =2 f(£V2,—1)=—-2; f(0,+V3)=0.
Therefore, the objective function attains global maximum(subject to the constraints)

(:IZ‘/QJ 1)and theglobal minimun at (::I:\/Q_, _1)-The point([]n ‘/3}is alocal minimum

and ([].1 _‘/3) is alocal maximun, as may be determined by consideration ofHessian
matrix of A.

Note that while(‘/i 1, —Uis a critical point ofA, it is not a local extremum. We ha

*"’L(V@—F e,1,-14+4)=2+ 5(52 =+ (2‘/6)5) Given any neighborhood

(‘/i: 1, —1), we can choose a small positieand a smalb of either sign to geA values
both greater and less than 2.

Example: entropy

Suppose we wish to find thediscrete probability distributic on the points
{1, T2, .. ., Tn fwith maximalinformation entropy This is the same as saying that

wish to find the least biasgarobability distribution on the pointi'«sIlaIE: 3 Tnt n
other words, we wish to maximize tShannon entropy equation:
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n
f(pl!pﬂ! et "pn) - — Epj lﬂggpj
i=1
For this to be a probability distribution the sumtloe prcbabilitiesp; at each poinx must
equal 1, so our constraintib(}ﬂ= 1:

g(plapZ! s !pﬂ) = Z-p.]‘
i=1  We use Lagrange multipliers to find the point
—

maximum entropy, * , across all discrete probability distribution P on
{21, 2, .. Tt we require tha

¥

d _
5§f+M§—U) =0,

—

p=p*
which gives a system tm‘equationsIic =1,... y It such that:
a T n
. — > _pilogapi+ A | D pi—1 =0.
Pre j=1 j=1

PE=Py
Carrying out the differentiation of then equations, we get
( ! +1 "‘) +A=0
—|—=+1lo . = 0.
ll'l 2 L2 P
This shows that aIP.T;are equal (because they dependiamly). By using the constraiiX;

p = 1, we find
1

e
Pr = —.
n

Hence, the uniform distribution is the distributiomith the greatest entropy, amo
distributions om points.

Example: numerical optimization
Lagrange multipliers cause the critical points ¢tow at saddle poin
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V(22 + 2202 + (22 = 1)2

The magnitude of the gradient cbe used to force the critical points to occur atals
minima.

With Lagrange multipliers, the critical points occat saddle pointsrather than at loc:
maxima (or minima). Unfornately, many numerical optimization techniques,hsashill
climbing, gradient descensome of he quasi-Newton methodamong others, are desigr
to find local maxima (or minima) and not saddlerp®i For this reason, one must eit
modify the formulation to ensure that it's a mirgation problem (for example,
extremizing the square of thgradient of the Lagrangian as below), or else use
optimization technique that finostationary points (such dsewton's methc without an
extremum seeking line seajdnd not necessarily extrer

As a simple example, consider the problem of figdime value ox that minimizesf(x) = X,
constrained such thaf = 1 (This problem is somewhat pathological becauseetlare onl

two values that satisfy this constraint, but ituseful for illustrtion purposes because 1
corresponding unconstrained function can be vigadlin three dimension

Using Lagrange multipliers, this problem can be varted into an unconstrain
optimization problem:

A(XL) =X +0E - 1)

The two critical points occur at saddle points veéx = 1 andx = — 1.

In order to solve this problem with a numerical imjzation technique, we must fir
transform this problem such that the critical pgintcur at local minima. This is done
compuing the magnitude of the gradient of the uncoms& optimization probler

First, we compute the partial derivative of the amstrained problem with respect to ei
variable:
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6—1:_21‘,4—21‘,)\
3—!:—1:2—1

If the target function is not easily differentiapthe differential wih respect to each varial
can be approximated as

OA Az +e )) — Alz,))

Lo

dx € :
OA Az, A+ €) — Alz,))
oN €

wheree is a small value.

Next, we compute the magnitude of the gradientciwliis the square root of the sum of
squares of the partial derivativ

h(x,A) = /(22 + 2002 + (22 — 1)? & J (ﬁ(:H € A) — fi(fcv\))g N (A(I,,\Jre) ~ f‘x(a:,,\))z

£ [
(Since magnitude is always r-negative, optinmging over the squar-magnitude is
equivalent to optimizing over the magnitude. Thihg ~“square root" may be omitted fr
these equations with no expected difference irr¢belts of optimization

The critical points oh occur aix = 1 andx = — 1, just as in\. Unlike the critical points iIA,
however, the critical points ih occur at local minima, so numerical optimizatioohteiques
can be used to find them.

CONCLUSION

In this unit, you have studied howidentify problem which could be sohby langranges
multiplier. You studied single and multiple congtta. You have studied the interpretat
of lagranges multiplier.You couls solve problem$hwhe use of langranges multipl
Summary

In this unit, you have :

I. identified problem which culd be solved by langranges multip
il. known single and multiple constrai

iii. known the interpretation of lagrange multip

iv. solved problems with the use of langranges mudtipli

Problems
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h(x,yj:x2+.3y2+.4y+l

Problem 1. Let be our objective function. (Note that t
- . o glxy)=1
coefficients are decimals 0 .3 and 0 .4 and nadd84) Let and the ellips be

hix, y)
our constraint. Find the maximum and the minimumues of subject to
glx,yi=1

following the steps belov

bz, ») o glxy=1
(a) Plot the 3d graph of the iction , the ellipse in the xy-plane, and

z=hix, ¥l _ hix, ») _
the curve on the grap corresponding to the values along the ellipse

in one coordinate system. Use a parametric reptatsam of the ellipse that you should kni
from last semester. How many solutions yoll expect the Lagrangian system of equati
to have. Explain your reasonir

(b) Define the Lagrangian function for the optintiaa problem and set up the corresponc
system of equations.

(c) Find solutions to the system using the solvemand. Check that you didn't obtain ¢
extraneous solutions. Is the number of solutionatwbu expected

hiz, »)
(d) Using results of (c), find the minimum and tim@ximum values o subject to

Cglxyi=1
the constrain

TUTOR-MARKED ASSIGNMENT

3. Find the maximum and minimum f(x, _}’) =5x— 3ysubject to the
2 g
constraint¥ + ¥~ =130

4. Find the maximum and minimum valuesf(xﬂ y?‘z) = Ayz

subject to the constraiftt ¥ +2 =1 Assume
that¥» ¥, 2 =0

=4x' +10y°

5. Find the maximum and minimum valuesf(x? _}’)
2 2
the diskX + ) =4

6. Find the maximum and minimuof f (x, Vs Z) — 4_}’ -2z
f(#,7,2) = 4y~ 2zsubject to the constrain
2x—y—z= 2and X —I—y"" =1
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1.0 Introduction

Optimization problems, which seek to minimize orxmaze a real function, play an
important role in the real world. It can be clagsif into unconstrained op timization
problems and constrained optimization problems. Waractical uses in science,
engineering, economics, or even in our everyday @&n be formulated as constrained
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optimization problems, such as the minimizationtled energy of a particle in physics;[1]
how to maximize the profit of the investments irmmemics.[2]In unconstrained problems,
the stationary points theory gives the necessamngliton to find the extreme points of the
objective functiorf (x1; ¢ ¢ ¢ ; xn). The stationary points are the points where tiagligntrf

is zero, that is each of the partial derivativegaro. All the variables if(x1; ¢ ¢ ¢ ; xnare
independent, so they can be arbitrarily set to eelextreme of. However when it comes to
the constrained optimization problems, the arbdrabf the variables does not exist. The
constrained optimization problems can be formulatéalthe standard form.

2.00bjectives
At the end of this unit, you should be able to :

I. Apply the lagranges multiplier on a pringle surface

il. Apply lagranges multiplier on Economics

iii. Apply lagranges multiplier on control theory

iv. Solve problems with the application of lagrange tiplier

3.0Main content

There are many cool applications for the Lagrangdéiptier method. For example, we
will show you how to find the extrema on the wolddnous Pringle surface. The Pringle
surface can be given by the equation

2

fOoy) =x'—y

Let us bound this surface by the unit circle, givims a very happy pringle. :) In this
case, the boundary would be

Glx,y) =+ gy —1

The first step is to find the extrema on an unbeahid

. Economics
Constrained optimization plays a central role ioremnics. For example, the choice problem
for a consumer is represented as one of maximiaingility function subject to a budget
constraint. The Lagrange multiplier has an economterpretation as the shadow price
associated with the constraint, in this examplentlaeginal utility of income.
Control theory
In optimal control theory, the Lagrange multipliene interpreted as costate variables, and

Lagrange multipliers are reformulated as the mimation of the Hamiltonian, in Pontryagin's
minimum principle.
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Example 1 Find the dimensions of the box with largest volufrtee total surface area is 64
cn?

We first need to identify the function that wefyeing to optimize as well as the constraint.
Let's set the length of the box to kethe width of the box to bgand the height of the box to
bez Let's also note that because we’re dealing tighdimensions of a box it is safe to
assume that, y, andz are all positive quantities.

We want to find the largest volume and so the tionadhat we want to optimize is given by,

f(x: ¥, Z) = XVZ  Next we know that the surface area of the box rhest constant
64. So this is the constraint. The surface af@abmx is simply the sum of the areas of each
of the sides so the constraint is given by,

2xyv+ 2xz+2yz =04 — Xy+ xz+ yz =32

Note that we divided the constraint by 2 to siiypihe equation a little. Also, we get the
function g( Ay }’,Z) from this.

glxy.z)=xy+txz+yz

Here are the four equations that we need to solve.

W  E=A(y+z) (/.= g, )

) xz:/l(erz) (J‘;:/'Lg},)
xy+xz+yz=32 (g(x,y,z):32)

3) xy=A(x+) (/. =4g,)

(4)There are many ways to solve this system. Vgelle it in the following way. Let's
multiply equation (1) by, equation (2) by and equation (3) bx This gives,

Xz = ﬁx(er z)
(5)%7= =Ay(x+z)xz=Ay(x+z)

6)MZ :ﬁz(ery)
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(7)Now notice that we can set equations (5) aneé@6pl. Doing this
gives,

/’Lx(erz): /?,y(er z)
Z,(xy+xz)—£(}ax+}z): 0
}L(.xz—}z):(] = A=0 or xz=yz

This gave two possibilities. The firs?p =0 A=04A=0 is nasgible since if this
was the case equation (1) would reduce to

yz =10 — y=0or z=10

Since we are talking about the dimensions of armther of these are possible so we can
discountA =0 This leaves the second possibility.

Xz =yz

Since we know thag # (J (again since we are talkinguakthe dimensions of a box)
we can cancel thefrom both sides. This givess = ¥  (8)

Next, let's set equations (6) and (7) equal. Ddhig gives,

Ay(x+z)=Az(x+y)
/’t(yx+}z —z:.x:—zy) =0

ﬁ(yx—zx):() — A=0o0or w=2zx
As already discussed we know tae= O won't work anthsoleaves,
YX = zZXx
We can also say thaf = 0 since we are dealing withlithhensions of a box so we
must have,
Z=¥
9)

Plugging equations (8) and (9) into equation (é)get,
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y iy +yt=3y" =32 y =1 %:ﬂzﬁﬁ

However, we know that must be positive since we are talking about theedisions of a
box. Therefore the only solution that makes plalssense here is

x=y=z=3.266
So, it looks like we've got a cube here.

We should be a little careful here. Since we’ng/@ot one solution we might be tempted to
assume that these are the dimensions that willteéargest volume. The method of
Lagrange Multipliers will give a set of points thaill either maximize or minimize a given
function subject to the constraint, provided thectually are minimums or maximums.

The function itself,f(‘x? ¥ Z) = XYz will clearly have neithermmnums or

maximums unless we put some restrictions on thiebas. The only real restriction that
we’ve got is that all the variables must be positivhis, of course, instantly means that the
function does have a minimum, zero.

The function will not have a maximum if all theriables are allowed to increase without
bound. That however, can’'t happen because ofdhstiaint,

Xy+ xz+ yz =32

Here we’ve got the sum of three positive numbkeesguse, y, andz are positive) and the
sum must equal 32. So, if one of the variables gety large, say, then because each of the
products must be less than 32 bptindz must be very small to make sure the first two germ
are less than 32. So, there is no way for alvdr@ables to increase without bound and so it

should make some sense that the functi r("xﬂ y,z) = XVZ | Wikt lamaximum.

This isn’t a rigorous proof that the function withve a maximum, but it should help to
visualize that in fact it should have a maximum aadve can say that we will get a

maximum volume if the dimensions ar&:= ¥ = Z = 3.266

Notice that we never actually found values #r  the above example. This is fairly

standard for these kinds of problems. The valuglofisn't really important to determining
if the point is a maximum or a minimum so oftenwi# not bother with finding a value for
it. On occasion we will need its value to helpvsol

226



Example 2

Find the maximum and minimum Kf(‘x? _}’) =X - 3y subject to the camst
x'+y* =136
Solution

This one is going to be a little easier than thevjmus one since it only has two variables.
Also, note that it's clear from the constraint thegion of possible solutions lies on a disk of

radiu5\/1 36 which is a closed and bounded region andeneynthe Extreme Value
Theorem we know that a minimum and maximum valustraxist.

Here is the system that we need to solve.
5=27x
3= 24y
2 2
x +y =136
Notice that, as with the last example, we canvehd, = O since that would not satisfy the

first two equations. So, since we know tawt O we salue the first two equations
for x andy respectively. This gives,

5 3

¥ = —
22 24

Plugging these into the constraint gives,

25 9 17

+ = =136
43 4% o2
We can solve this fopl
1 1
A== — A=+ =
16 4

Now, that we knowd  we can find the points that W&l potential maximums and/or
minimums.

P

If 4 weget, 4 __ 19 y="6

227



and if

To determine if we have maximums or minimums v& peed to plug these into the
function. Also recall from the discussion at thertsof this solution that we know these will
be the minimum and maximums because the ExtremaeViEieorem tells us that minimums
and maximums will exist for this problem.

Here are the minimum and maximum values of thetfan.
f(-10,6)=-68 Minimum at (—10,6)
£(10,-6) =68 Maximum at (10,—6)

Example 3

« Set up equations for the volume and the cost dflimgj the silo.
« Using the Lagrange multiplier method, find the giesst way to buld the silo.
« Do these dimensions seem reasonable? Why?

Next, we will look at the cost of building a siléd wolume 1000 cubic meters. The curved
surface on top of the silo costs $3 per square mietbuild, while the walls cost $1 per
square meter.

Of course, if all situations were this simple, theavould be no need for the Lagrange
multiplier method, since there are other methodsstiving 2 variable functions that are
much nicer. However, with a greater number of \des, the Lagrange multiplier method is
much more fun.

For the next example, imagine you are working atShate Fair (since you're so desperate for
money that you can't even buy a bagel anymore). fifmlyourself at the snowcone booth,
and your boss, upon hearing that you are good #t,ro#fers you a bonus if you can design
the most efficient snowcone. You assume the snowveah be modelled by a half-ellipsoid
perched upon a cone.

Your boss only wants to use 84 square centimetepmger per cone, and wants to have it
hold the maximum amount of snow. This can be remtesl in 3 variables: r (the radius of

the cone), h (the height of the cone), and s (thght of the half-ellipsoid). In order to keep

the snow from tumbling off the cone, s cannot keatgr than 1.5*r. We have provided hints
for the equations if you need them.

CONCLUSION:
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In this unit, you should be able to apply the lages multiplier on a pringle surface, apply
lagranges multiplier on Economics, apply lagrangestiplier on control theory and solve
problems with the application of lagrange multiplie

SUMMARY

The Lagrange multipliers method is a very suffiti¢ool for the nonlinear optimization
problems,which is capable of dealing with both ditpiaconstrained and inequality
constrained nonlinear optimization problems.Manynpatational programming methods,
such as the barrier and interior point method, jmEng and augmented Lagrange
method, The lagrange multipliers method and its redee methods are widely applied in
science, engineering, economics and our everyéay li

TUTOR-MARKED ASSIGNMENT
1. Find the dimensions of the box with largest vollifritee total surface area is 64 tm

2.Consider two curves on the xy-plane: yeé and y = (x—2)2. Find two points (X,y),

(X,Y) on each of the two curves, respectively, whdsstance apart is as small as possible.
Use the method of Lagrange multipliers. Make a lgtdyat illustrates your solution

3. Find the maximum and minimum values/(r){xﬂ Vs Z) = Xyz subject odbnstraint
X+ ¥+z=1 assume tha¥» ¥,z =V

Jxy)=4x +10y°
4 Find the maximum and minimum values‘ot. **> Y Y on the disk

x:"+y2 =4

5.Find the maximum and minimum Jfﬂ (xﬂ Y Z) =4y—iz subject to thest@ints
2x—y—z= 2 andX” —I—y"" =1
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3.1 Recognise the Jacobian

3.2 How to use the Jacob
CONCLUSION

SUMMARY

TUTOR-MARKED ASSIGNMENT
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0 N O O

1.0 INTRODUCTION
Jacobian

The Jacobian of functions(f.. X2, ...Xn),i= 1, 2, ...n, of real variables; is the determinant
of the matrix whoséth row lists all the firc-order partial derivatives of the functio;(x,xo,
..., Xn). Also known as Jacobian determin

(or functional determinant), a determini @iliwith elementsy = dyi/oxx wherey; = fi(xy, . .
. Xn), 1<i<n, are functions that have continuous partial déitrea in some region. It is
denoted by

D(yi, -,
Dix,.....x,)

The Jacobian was introduced by K. Jacobi in 183B1841. If, for examplen = 2, then the
system of functions

(1) yi = fa(Xa, X2) Y2 = fa(X1, X2)

defines a mapping of a regian which lies in the planxix,, onto a region of the plaryyys,.
The role of the Jacobian for the mapping is largaiglogous to that of the derivative fo
function of a single variable. Thus, the absolutdug of the Jeobian at some poirM is
equal to the local factor by which areas at thenipare altered by the mapping; that is, i
equal to the limit of the ratio of the area of theage of the neighborhood M to the area of
the neighborhood as the dimensionthe neighborhood approach zero. The JacobiM is
positive if mapping (1) does not change the origoain the neighborhood cM, and
negative otherwise.

OBJECTIVE

At the end of this unit, you should be able
recognise the Jacobian rule
how to use rhe Jacobian

MAIN CONTENT
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If the Jacobian does not vanish in the regloand if ¢(yi, y») is a function defined in tr
regionA; (the image of\), ther

Iﬁltblyl'yz}d}-'ld_yz -

Diy,.y,)

JJsolfix ) Sl 0 | 55 x| i

(the formula for change of variables in a doublegnal). An analogous formula obts for
multiple integrals. If the Jacobian of mapping (Des not vanish in region, then there
exists the inverse mapping

X1 = (Y1, Y2) X2 = wa(Y1, ¥o)

and

D(xy, x3) _ T s ¥2)
D(-FI ' -PE) I D{-T] 1 -xg]

(an analogue of the formula for differentiationaf inverse function). This assertion fir
numerous applications in the theory of implicit ¢tions

In order for the explicit expression, in the neighibod of the poin

M, .. Oy -."}r[P]], of the functiongy, . . . .ymthat are implicitly defined by th
equations

Q) Fk (X1. . - X V1. - .¥Ym) =01 <k<m

to be possible, it is sufficient that the coordesadfM satisfy equations (2), that the functic

Fx have continuous partial derivatives, and that the Jacot
D(F,,....F,)
Diy,..... Vi)

be nonzero a¥l. The Jacobian is been classified into t
TheJacobian matrix and the Jacobian determi

Examples

1.Let F:R2 - R2 be the mapping defined t

F(x.y) = X y2 [f " V)J
e loxy)
Find the Jacobian matriyf . (p) for p = (1,1)
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The Jacobian matrix at an arbitrary point (X,y) is

df df

dx dy _ 2ny 2y
dy dg| (ye xe
dx dy

2 2
Hence when x=1 ,y=1 ,we find (1, 1) :(e ej

2.LetF: R’ - R’ be the mapping defined by
Xy
F(x,y) =| sinx
XY
. . I
Find J_ (P) at the point P =N’E) .

The Jacobian matrix at an arbitrary point(x,y) is

y X
J. (X y)=|cosx O
2Xy X2
n

n 2

Hence,JF(I'I,E) =-10

2 2

[l

CONCLUSION

In this unit, you have been able to recognise #welian rule and how to use the formular.
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SUMMARY

In this unit, you have studied the basic concepfafobian with the identification of tl
formular below as :

D(F,....F,)

be nonzero ayl.
Tutor — Marked Assignment
1.Definethe Jacobian matrix and the Jacobian determ

2.Compute the Jacobian matrix of the followingesalselow

a. Fxy) = (X Y)
b. F(x,y) = (sinx,cosxy)

c. F(x,y,2) = (xyz,)(2 2)
REFERENCE

D.K. Arrowsmith and C.M. PlaciDynamical System$&ection 3.3, Chapman & Ha
London, 1992. ISBN 0-413908(-9.

Taken from http://www.sjothers.plasmaresources.com/schwarzschili- On the
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INTRODUCTION

The Jacobian of functionfi(xi, X, ..., X»), I = 1, 2, ...,n, of real variablesx is the
determinant of the matrix whosth row lists all the firsbrder partial derivatives of tf
function fi(xg, X2, ..., X,). Also known as Jacobian determine

In vector calculus, thdacobian matrix : is the matrix of all first-ordepartial derivative of
a vector- or scalar-valugdnctior with respect to another vector. SuppF : R" — R™is a
function from Euclideam-spac: to Euclideanm-space. Such a function is given m real-
valued component functiony(xi,...Xn), ..., Ym(X1,...Xn). The partial derivatives of all the
functions (if they exist) can be organized inm-by-n matrix, the Jacobian matrJ of F, as

follows:

81:1 31:“
J = : .. :
(‘ayﬂl ay‘ﬂl
| 0z Or,
Y1, - Ym)
This matrix is also denoted 1JF (Z1, - - - s Tn)and O(T1, . .., Tn) if (X1,... %) are the

usual orthogonal Cartesian coordinates,i th row { = 1, ...,n) of this matrix corresponds
the gradient of thé&" commnent functiory;: (vyi). Note that some books define
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Jacobian as the transpose of the matrix given a

The Jacobian determinant (often simply called thelacobian) is the determinant of the
Jacobian matrix (ifn =n).

These concepts are named aftermathematiciarCarl Gustav Jacob Jac.
OBJECTIVE
After reading through this unit, you should be able

I. apply the jacobian conce

il. know the Jacobian mat

iii. apply the inverse transformat

V. solve problems on Jacobian determi

MAIN CONTENT
Jacobian matrix

The Jacobian of a function describes orientation of a tangent plarte the function at a
given point. In this way, the Jacobian generalibesgradientof a scalar valued function
multiple variables which itself generalizes theidsive of a scal~valued function of a
scalar. Likewise, the Jacobian can also be thoofgas describing the amount of "stretchi
that a transformation imposes. For examplexy,y») = f(x3,y1) IS used to transform an imag
the Jacobian of, J(x1,y1) describes how mucthe image in the neighborhood ©,y1) is
stretched in th& andy directions

If a function is differentiable at a point, its detive is given in coordinates by the Jacob
but a function doesn't need to be differentiabletli@ Jacobian to be dned, since only th
partial derivativesre required to exit

The importance of the Jacobian lies in the fact ith@presents the belineal approximation
to a differentiable function near a given pointthis sense, the Jacobian is the derivative
multivariate function.

If p is a point iNR" andF is differentiable aip, then its derivative is given kJx(p). In this

case, the linear magescribed b\J:(p) is the best linear approximation F near the poinp,
in the sense that

F(x)= F(p) + Jr(p)(x — p) + of[x — pl|)

for x close top and where is thelittle o-notation (forT — ¥) andX — Pliis the distance
betweerx andp.
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In a sense, both thgradien and Jacobian are "first derivatives" the former the firs
derivative of ascalar functiol of several variables, the latter the first derivatifeacvector
functionof several variables. In general, igradientcan be regarded as a special versio
the Jacobian: it is the Jacok of a scalar function of several variables.

The Jacobian of the gradiegmis a special name: the Hessian matvixich in a sense is tt
"second derivativeof the scalar function of several variables iresfion

Inverse
According to theinverse function theore, the matrix invers®f the Jacobian matrix of ¢
invertible functionis the Jacobian matrix of ttinversefunction. That is, for some functic

F:R"— R"and a poinpin R",

Tr-1(F(p)) = [Te(p)] "

It follows that the (scalar) inverse of the Jacabdeterminant of dransformation is th
Jacobian determinant of the inverse transforme

Examples

Example 1.The transformation frorspherical coordinates,(d, ¢) to Cartesian coordinat
(X1, X2, X3) , is given by the functioF : R* x [01] x [0,2r) — R®with component:

ry =1 sinf cosg
ro =1 sin f sin ¢
T3 =71 cosfl.

The Jacobian matrix for theoordinate change

'3:1:1 6I1_ 8.’1:1_ T
g gﬂ? gﬂ? sinf! cos¢ 71 cosf cos¢g —r sinf sin @
Jp(r, 0, ¢) = 8: 86'2 8; — |sinfl sing r cosfsing r sinf coso
Ors Ors Ors cosf —71 sin @ 0
L Or 08 9o

The determinant is sin 6. As an example, sincdV = dx, dx dx; this determinant implie
that thedifferential volume eleme dV = r? sin @ dr dd diJ. Nevertheless this determine
varies with coadinates. To avoid any variation the new coordimatan be defined :

T_d

w = —, Wy = —cosf, wy = o. ,
=3 72 W =P Now the determinant equals to 1 and volt
element become"ézd?“ sin 6 dff d¢ = dwyduodws,
Example 2.The Jacobian matrix of the functiF : R®* — R* with component
Y1 =T
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Uz = 51173
Yz = 4$2 — 214
Y4 = Tzsin(xy)

is
[Oy1 Oy Oy ]
d’.ﬁ d:l?g (?21?3 - -
dyi dyg dyg 1 0 0
_ |9z Oxy Oxs| _ 0 0 5
Tr(21,2, 23) dya Oyz Oys 0 Bry =2
dry Odrg Oy rzcos(xy) 0  sin(zy)
dys  Oys  Oys ) )
_SIl 8$2 81:3_
This example shows that the Jacobian need noshj@are matri:
Example 3.
T =T COS @,
Yy = T8 .

dzx Oz dircosg)  Olrcos ¢) . .
(’r qb) r 00 T KL _ COS@ —TsIng
gf %3 a{’;;“ @) ’3{’;:; ¢) sing rcoso

The Jacobian determinant is equal r. This shows how an integral in tfCartesian
coordinate systens transformed into an integral in tpolar coordinate syste:

/dedy:/[grdrdqﬁ'

Example 4.The Jacobian determinant of the functF : R®* - R® with component

Y1 = DIy
Yo = 41:% — 2sin(zox3)
Yz = Taly
is

0 5 0 50

Bry —2x3cos(xoay) —2acos{aox3)| = —8xy - = — 40z, 25.
Tz I
0 T g
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From this we see th&t reverses orientation near those points wix; andx, have the same
sign; the function is locallynvertible everywhere except near points wrx; = 0 orx, = 0.
Intuitively, if you start with a tiny object arourtie point (1,1,1) and appF to that object,
you will get an objecset with approximately 40 times the volume of thiginal one
CONCLUSION

In this unit, you have studied the application loé tlacobian concept. You have known
Jacobian matrix and the application of the invéraasformation of Jacobiedeterminants.
You have solved problems on Jacobian determi

SUMMARY

In this unit ;

i you have studied application of the Jacobiarcepi

il you have known the Jacobian ma

iii you have known the inverse transformation afal@ian determina

iv you have solve problems on Jacobian determinatit &si

. The Jacobian matrix of the functiF : R®* — R* with components

1=

Yo = 5:{33

Yz = 4$§ — 214
Ys = Tzsin(xy)

IS
[Jy1 Oy Oy ]
ory 9oy O
dyi dyg dyg 1 0 0
— 8131 8I2 81:3 _ 0 0 5
Tp(x1, 29, 73) = dys Oys dys| — 0 89 —2
dry Jdzy Oy rzcos(xy) 0 sin(xy)
dys  dys Oys
_BIl 8Ig 81:3_

This example shows that the Jacobian need noshj@ae matri:
Tutor-Marked Assignment

1.In each of the followingcases, compute the Jacobian matrix of F, and eeaktathe
following points;
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F(x,y) = (sinx,cosxy) at points (1,2)
F(x,y,z) = (sinxyz,xz) at points (2,-1,-1)
F(x,y,z) =(xz,xy,yz) at points (1,1,-1)

2. Transform the following from spherical coordiest(rd,¢) to Cartesian coordinate (
X, X,» X;) by the function FR+>< O, mxo21m - R3 with components :

[,=rtanfcoss

[,=rsindtand

r=rsiné.

3.The Jacobian matrix of the functionfg? - R" with components
Y. = X

Y, 4%

Y,=5%: -4,

y4 = Xlsin X

4.The Jacobian matrix of the functiong’ -~ R® with components
y1= 4xf— 3sin X, Xs

Y.=3X%

Y= X3 %

The Jacobian matrix of the function FR® ~ R’ with components
X=rtang

y=rcosg

REFERENCES
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INTRODUCTION

If m=n, thenF is a function fromm-space tan-space and the Jacobian matrix is a square
matrix. We can then form its determinant, known the Jacobian determinant The
Jacobian determinant is sometimes simply called Jtdcobian.”

OBJECTIVE
MAIN CONTENT

Dynamical systems

Consider a dynamical system of the foxhn= F(x), wherex' is the (component-wise) time
derivative ofx, andF : R" — R" is continuous and differentiable. F{(Xo) = 0, thenx, is a
stationary point (also called a fixed point). Thehavior of the system near a stationary point
is related to the eigenvalues{xo), the Jacobian df at the stationary point.Specifically, if
the eigenvalues all have a negative real part, thersystem is stable in the operating point,
if any eigenvalue has a positive real part, thenpibint is unstable.

The Jacobian determinant at a given point givenapt information about the behavior of
F near that point. For instance, the continuoustfedintiable functiorf is invertible near a
point p € R" if the Jacobian determinant ptis non-zero. This is the inverse function
theorem. Furthermore

if the Jacobian determinant ptis positive, thenF preserves orientation negr if it is
negative F reverses orientation. The absolute value of tkeklan determinant gt gives us
the factor by which the functidf expands or shrinks volumes ngathis is why it occurs in
the general substitution rule.

Uses

The Jacobian determinant is used when making agehah variables when evaluating a
multiple integral of a function over a region withits domain. To accommodate for the
change of coordinates the magnitude of the Jacateserminant arises as a multiplicative
factor within the integral. Normally it is requir¢dat the change of coordinates be done in a
manner which maintains an injectivity between tberdinates that determine the domain.
The Jacobian determinant, as a result, is usuallydefined.
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Newton's method

A system of coupled nonlinear equations can beesbiteratively byNewton's methc. This
method uses the Jacobian matrix of the systemuadten:

CONCLUSION

In this unit, you have known the application Jacobian concept. You have studied
application of Jacobian matrix. You have used Jaroln in the application of invers
transformation and have also solved problems oobiac determinar

SUMMARY

In this unit, you have studied the followir

Application of the Jacobian conc

Application of Jacobian on the Jacobian mi

Application of the Jacobian on the inverse cor

Application of the Jacobian to solve problems accobéan determina

TUTOR — MARK ASSIGNMENTS

1.Find the Jacobian determiit of the map below, and determine all the pointenshthe
Jacobian determinants is equal to zer

a.F(x,y,z) = (xy,y,xz)

b.F(xy) = @& %)

c.F(xy) = (xy,X)

2.The transformation frompherical coordinat (r, 6, ) to Cartesian coordinat (X, X2, X3) ,
is given by the functiofr : R* x [0] x [0,21) — R® with components:

Ty =71 sinf cosg
re =1 sinf sin @

Ta =T cosf.

3.The Jacobian determinant of the funciF : R®* — R* with components

1=

Yo = D'z
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Yz = 4:1:3 — 21,

Y4 = T3sin(x)

4.The Jacobian determinant of the funciF : R® — R* with components

T =T COoS ¢
Yy =71 sin @,

5.The Jacobian determinant of the funciF : R* — R® with components

yp = 9Ty

yo = 4x? — 2sin(zy23)

Yz = Tal3
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