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1 Introduction

An ordinary differential equation (ODE) is an equation that contains one or several derivatives
of an unknown function, which could be called y(x) (or sometimes y(t) if the independent
variable is time t). The equation may also contain y itself, known functions of x (or t), and

constants. For example
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Q) y = C0SX
(2) y +9y=0
(3) X2y y +2e%y = (X% +2)y?

are ordinary differential equations (ODES).

An ODE is said to be of order n if the nth derivative of the unknown function y is the highest derivative
of y in the equation. The concept of order gives a useful classification into ODEs of first order, second
order, and so on. Thus, (1) is of first order, (2) is of second order, and (3) of third order.

In this unit, you shall be introduced to first, and second order ordinary differential equations and also
you shall have a brief grasp of systems of ordinary differential equations.

2 Objectives

At the end of this unit, you should be able to

(i) Solve firstorder ordinary differential equations of different kinds.

(i) Solve second order ordinary differential equations, both homogeneous and non homogeneous equa-
tions.

(iii) Solve systems of ordinary differential equations.

3 Main Content

3.1 FirstOrder ODEs

A first order ordinary differential equation is an equation that contains only the first derivative y and may
contain y and any given function of x. Such equations can be of the following forms

y =f(x,y) (1)
when written explicitly, and
F(xy,y)=0 (2)
in its implicit form. For instance, the implicit first order ODE x~3y — 4y? = 0 (x /= 0) can be
written explicitly asy = 4x3y?

3.1.1 Concept of Solution

A function

y = h(x)
is called asolution of agiven ODE (1) on some open interval a < x < bif h(x) is defined and differentiable
throughout the interval and is such that

y =h(x)

2




3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Example 3.1 Verify thaty = h(x) = c/x, x /= 0is asolution of xy = -y, where cis anarbitrary constant.
Solution.
To verify this, you have to differentiate, y = h (x) = — ¢/x2, and multiply by x to getxy = —c¢/x =

—Yy.Thusxy = —y,the given ODE.

Example 3.2 The ODEy = %(‘ = cos X can be solved directly by integration on both sides. Indeed by
calculus, you have

y= cosxdx =sinx +c¢

where c is an arbitrary constant.

Observe that in each of the ODEs given in the above examples, the solution contain arbitrary constant.
Such a solution containing arbitrary constant ¢ is called general solution of the ODE. While a solution
of an ODE that does not contain an arbitrary constant c is called a particular solution of the ODE. For
instance in Example 2, if you fix ¢ = 3,theny = sinx + 3is a particular solution of the ODE y = cos X.

3.1.2 Initial Value Problem (IVP)

The value
y(Xo) = Yo 3)
given at an initial value xo of x in the interval a < x < his called aninital condition. An ODE

y =f(x,y), y(Xo) = Yo 4)

with an initial condition is called aninitial value problem (IVP).

Example 3.3 Solve the initial value problem

y = & =3y, y(0) = 5.7

dx
Solution.
The general solution to the above differential equation is y = ce®. From this solution an the inital
condition, you have y(0) = ce® = ¢ = 5.7. Hence the initial value problem has y(x) = 5.7¢* as the

particular solution.

In what follows, you will learn different approaches to solving different kinds first order ordinary dif-
ferential equations.
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3.1.3 Separable ODEs.

Many practically useful ODEs can be reduced to the form
aly)y =*f(x) ®)
by purely algebraic manipulations. Then you can integrate on both sides with respect to x, to obtain
g(y)ydx = f(x)dx +c. (6)

Buty = %‘f( so that y dx = dy, and by substitution in (6) you have

glydy = f(xjdx +c (7)
If f and g are continuous functions, the integral in (7) exist, and by evaluating them you obtain a
general solution of (5). This method of solving ODEs is called the method of separating variables, and

(5) is called a separable equation, because in (7) the variables are now separated; x appears only on the
rightand y only on the left.

Example 3.4 Solve the ODE y = 1 + y?,

Solution.

This ODE is separable because it can be written as

1_?_yy2 = dx. Thus by integration, 1 _ciyyz = dx+c

you obtain, arctany = x +c¢ or y =tan(x + c)

Example 3.5 Solve the initial value problem
y =Kky, y(0) = Yo
where k is a constant.
Solution.
By separation of varibles and integrating, you have
Y _ . O)',yz kdx, sothat Inly| = kt+%, ie., y=cek

Using the initial condition, you have that ¢ = y,. Hence

y = yoe
is the solution of the initial value problem.
4




3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Reduction to Separable Form

Certain nonseparable ODEs can be made separable to transformations that introduce for y a new unknown
function. This technique is discussed for a class of ODEs of practical importance, namely, for equations

y =f

X I<

(8)

Here, T is any (differentiable) function of y/x, such as sin(y/x), (y/x)*, and so on. (Such an ODE is

sometimes called a homogeneous ODE, aterm that shall be reserved for a more important purpose.)

For this form of an ODE, you shall sety/x = u; thus,
y = UX and by product differentiation, y =ux-+u

Substituting intoy = f(y/Xx) then gives

ux +u=f(u) or ux =f(u) — u.

You can seethat this can be separated as follows;

du _ dx
fluy—u x
Example 3.6 Solve
2xyy =y?— x°

Solution.
To get the usual explicit form, divide the given equation by 2xy,

yzf—%_y X

2xy  2x 2y

(9)

Now lety = ux, and as before, y = ux +y Thus substiting for y and y and then simplifying by

subtracting u on both sides gives you

UX+U_u L ux = u
22U T2 2u 2u

You see that in the last equation you can now separate the variables,

2udy — _dx By integration, IN(1+u®==In[x|+T=In hiﬁ“L €.

1+u? X

Take exponets on both sidesto get 1 + u? = ¢/x or 1+ (y/x)? = c/x. Multiply the last equation by

x? to obtain

X2 +y? = cx. Thus X —

5




3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

3.1.4 Exact ODEs.

You remember from calculus that if a function u(x,y) has continuous partial derivatives, its differential (also
called its total differential) is

From this it follows thatif u(x, y) = ¢ = const, thendu =0

For example, if u = x + x?y3 = ¢, then

du = (1 + 2xy3)dx + 3x%y?dy =0
or

_dy_ 142xy°

T dx - 3xyy?

an ODE that you can solve by going backward. This idea leads to powerful solution method as follows.
A first-order ODE M (X, y) + N(x, y)y = 0, written as (use dy =y dx)

y

M (X, y)dx + N(x,y)dy =0 (10)

is called an exact differential equation if the differential form M (x, y)dx + N(x, y)dy is exact, that is,
this form is the differential

Ju Ju
du= a—xdx + @dy (11)

of some function u(x,y). Then (10) can be written

du=0.
By integration you immediately obtain the general solution of (1) in the form

u(x,y) =c. (12)
This s called an implicit solution, in contrast with a solution y = ¢(x) as defined earlier, whichis also
called an explicit solution, for distinction.

Comparing (10) and (11), you see that (10) is an exact differential equation if there is some function
u(x, y) such that

ou ou
@ 3 ®) 3 (13)
From this, you can derive a formula for checking whether (10) is exact or not, as follows.

Let M and N be continuous and have continuous first partial derivatives in a region in the xy-plane
whose boundary is a closed curve without self-intersections. Then by partial differentiation of (13),

am _ o N _ o
ay  ayox’ Ox  oxay’
6




3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

By the assumption of continuity, the two second partial derivatives are equal. Thus
oM _oN
oy  ox’
This condition is not only necessary but also sufficient for (10) to be an exact differential equation.

(14)

If (10)is exact, the function u(x, y) can be found by inspection or in the following systematic way.
From (13a) you have by integration with respect to x

u= Mdx+k(y) (15)

in this integration, y isto be regarded as a constant, and k(y plays the role of a “constant” of integration. To
determine k(y), you have to derive du/dy from (15), use (13b) to get dk/dy, and integrate dk/dy to get k.

Formula (15) was obtained from (4a). Instead of (4a), you may equally use (13b). Then instead of (15)
you will first have by integration with respect to y that

u= Ndy+ I(X). (15
) To determine 1(x), you can derive du/dx from (6 ), use (4a) to get dl/dx, and integrate. The following

are
examples for illustration

Example 3.7 Solve
cos(x + y)dx + (3y? + 2y + cos(x + y))dy =0 (16)

Solution.

Step 1. Test for exactness. Our equation is of the form (10) with

M = cos(x +Y) N = 3y2+ 2y + cos(x +Y)
Thus
oM _ oN
oy — sin(x +vy) Vi sin(x +y)

From this and (14), you see that (16) is exact.
Step 2. Implicit general solution. From (15) you obtain by integration

u= Mdx+k(y) = cos(x+y)dx +Kk(y) =sin(x +y) + k(y) 17)
To find k(y), differentiate this formula with respect toy and use formula (13b), to obtain

0 d
ou dk Y d
— =cos(x +vy) +7—
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=N = 3y?+ 2y + cos(x +Y)
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Hence dk/dy = 3y?+2y. By integration, k = y3+y?+¢. Inserting this result into (17) and observing
(12), you obtain the answer

u(x,y) =sin(x+y) +y>+y?=c

Step 3. Checking an implicit solution. You can check by differentiating the implicit solution
u(x, y) = cimplicitly and see whether this leads to the given ODE (16):

du= gidx + g;dy = cos(X + y)dx + (cos(x + y) + 3y?+ 2y)dy=0 (18)

This completes the check.

Example 3.8 WARNING! Breakdown in the Case of Nonexactness
The equation — ydx + xdy = 0 is not exact becauseM = —yand N = X, so that in (14), 0M/oy = — 1
but 9N/dx = 1. You can show that in such a case the present method does not work. From (15),

u= Mdx+k(y) = —xy+k(y), hence g;‘ = X+ ;j:;

Now, du/dy should equal N = x, by (13b). However, this is impossible because k(y) can depend only on
y. Try (15 ); it will also fail. Solve the equation by another method that is discussed below.

Reduction to Exact Form. Integrating Factors

The ODE in Example 3.8 is — ydx + xdy = 0. It is not exact. However, if you multiply it by 1/x2, you will
get an exact equation [check exactness by (14)!],

—ydx+xdy

X2 -

Integration of (19) then gives the general solution y/x = ¢ = const.

y 1o_q4Y _
?dx+;(dy—d ” 0 (29)

This example gives the idea. All you did was multiply a given nonexact equation, say,

P (X, y)dx + Q(x, y)dy = 0 (20)
by a function F that, in general, will be a function of both x and y. The result was an equation
FPdx+FQdy=0 (21)

that is exact, so you can solve it as justdiscussed. Such a function F (X, y) is then called an integrating
factor of (20).

Example 3.9 Integrating Factor
The integrating factor in (19) is F = 1/x2. Hence in this case the exact equation (21) is

FPdx+FQdy= —YIHXdY _ 4 ¥

5 =0. Solution
X X

X<

These are straight lines y = cx throught the origin.
It is remarkable that you can readily find other integrating factors for the equation — ydx+xdy = 0, namely,
1/y?, 1/(xy), and 1/(x? + y?), because
X X
M/:d 5 1M:_d |n§ ,M[:d arctanx . (22)
y? y Xy y X* +y? X

9
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3.1 First Order ODEs ORDINARY DIFFERENTIAL EQUATION

Solution.

Step 1. Nonexactness. The exactness check fails:

P 9

=7 ac‘?:i(xey—l)zey
dy oy

X+Y 1+ yveY) = XY + @Y + yeY but _ <
(e ye’) =e e’ +ye u Ix  ox
Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)]
depends on both x andy,

X
Rl 0P _0Q7 _ 1

— = ey + e +yel — &Y).
Q ody ox xey — 1( y )

Try Theorem 2. The rightside of (26) is

_10Q_ P71
TP Ox  dy e +yey
Hence (27) give the integrating factor F (y) = e™Y. Fromthis result and (28) you get the exact
equation

R -V -e-y)=-1

(e +y)dx+(x — e Y)dy =0.
Test for exactness: you will get on both sides of the exactness condition. By integration, using (13a).

u= (eX+y)dx=¢e"+xy +k(y)

Differentiate this with respect toy and use (13b) to get

%:X+%=N=X—e_y, dk—

dy dy dy ~

Hence the general solution is

-7, k=eY+¢ .

uix,y)=e*+xy+e v =c.
Step 3. Particular solution. The initial condition y(0) = 1 givesu(0, — 1) = 1+0+e = 3.72. Hence
the answerise* +xy +e ™Y =1+e =3.72.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the
initial condition.

3.1.5 Linear ODEs. Bernoulli Equation.

Linear ODEs or PDEs that can be transformed to linear form are models for various phenomena, for in-
stance, in physics, biology, population dynamics, and ecology, asyou shall see.

A first-order ODE is said to be linear if it can be written

y +p(X)y = r(x) (29)

The defining feature of this equation is that it is linear in both the unknown function y and its derivative
y = dy/dx, whereas p and r may be any given functions of x. If in an application the independent variable
is time, you should write t instead of x.

11
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If the first term is f (X)y (instead of y ), divide the equation by f (x) to get the “ standard form” (1),
with y as the firstterm, which is practical.

For instance,y cosx + ysinx = x isalinear ODE, and its standard formisy + ytanx = X sec X.

The function r(x) on the right may be a force, and the solution y(x) a displacement in a motion or an
electrical current or some other physical quantity. In engineering, r(x) is frequently called input, and y(x)
is called the output or the response to the input (and, if given, to the initial condition).

Homogeneous Linear ODE.

You are expected to solve (29) in someinterval a < x < b, call it I. Two cases are possible for r(x) = 0;
i.e., eitherr(x) = Oorr(x) /= 0.

If r(x)=0, thenthe ODE (29) becomes
y +p(x)y =0 (30)

and is called homogeneous. By separating variables and integrating you obtain

dy_ _ p(x)dx, thus Inly|= - p(X)dx +c

y

Takin exponents on both sides, you obtain the general solution of the homogeneous ODE(30),

R
y(X) = ce™ POId (c=%e° when yz= 0) (31)

here you may choose ¢=0 and obtain the trivial solution y(x) = Ofor all x in the interval 1.

Nonhomogeneous Linear ODE.

The next is to consider the case r(x) /= 0in (29) for all x in the interval | considered. In this case, the

ODE(29) is called nonhomogeneous. It turns out that in this case, (29) has a pleasant property; namely,
it has an integrating factor depending only on x. You can find this factor F (x) by theorem 3.1 in the last
section. For this purpose you write (29) as

(py — rdx+dy =0

This is Pdx + Qdy = 0, where P = py — r and Q = 1. Hence the right side of (24) is simply 1(p-0)=p, so
that (24) becomes

1dF
Fax ~P¥
Separation and integration gives
dF = pdx and In|F| = pdx.

F

Taking exponents on both sides, gives the desired integrating factor F(x),

R
F(x) =e P
12
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Now, multiply (29) on both sides by this F. Then by the product rule,
R R R
e Py +py)=(e "y) =e PO,
By integrating the second and third of these three expressions with respect to X, you get

R R
e Py = e P&rdx+c.

R J
Dividing this equation by e P and denoting the exponent ~ pdx by h, you obtain
X
yx) =e " erdx+c h=  pxdx. (32)

(The constant of integration in h does not matter.) Formula (32) is the general solution of (29) in the form
of anintegral. Thus, solving (29) is now reduced to the evaluation of an integral.

Example 3.11 First-Order ODE, General Solution

Solve the linear ODE
y —y=e*

Solution.

Here
p=-1, r =e”, h= pdx=-x

and from (32) you obtain the general solution
X
y(x) =e* e XeFdx+c =e*(e*+c)=ce*+e

In simpler cases, such as the present, you may not need the general formula (32), but may wish to
proceed directly, multiplying the given equation by e" = e~*. This gives

(y — y)e™=(ye™) =ee X =e~
Integrating on both sides, you obtain the same result as before;
ye X =¢eX+c, hence y = e + ceX
Example 3.12 First-Order ODE, Initial Value Problem.

Solve the initial value problem

y +ytanx = sin 2x, y(0) = 1.

13
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Here p =tanx, r = sin 2x = 2sinx cosx, and

pdx= tanxdx = In|secx]|.

From this you seethat in (32),
e" = secx, e~ " = cosx, e"r = (secx)(2 sinx cosx) = 2sinXx,

and the general solution of our equation is
X
. — 2
y(X) =cosx 2 sinxdx+c = CCOSX — 2C0S"X.

From this and the initial condition, 1 =c -1 — 2 - 12, thus ¢ = 3 and the solution of our initial value
problem isy = 3cosx — 2cos?X.

Reduction to Linear Form. Bernoulli Equation

Numerous application can be modeled by ODE's that are nonlinear but can be transformed to linear ODESs.
One of the most useful ones of these is the Bernoulli equation.

y +p(x)y = g(x)y* a R (33)
If a=0ora= 1, Equation (33) is linear. Otherwise it is nonlinear. Then you will set
u() =yl =,
Differentiating this and substituting y from (33), you obtain

u=@01-ay? =01-ay *gy*-
py).

Simplification gives L
u=(1-a)g-py %,

where y1~2 = u on the right, sothat you get the linear ODE
u+(1-apu=(1- ag. (34)

Example 3.13 Logistic Equation.

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation)

y =Ay — By? (35)

Solution.

14
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Write (34) in the form (35) in the form (33), that is,
y — Ay =B — By’
toseethat a = 2, sothat u = y'~2 = y~1, Differentiating this u and substitute y from (35),
u=-y? =-y *Ay - By’) =B - Ay
-1
The last term is — Ay~—! = — Au. Hence you have obtained the linear ODE
u+Au=_B

The general solutionis [by (32)]
u=ce '+ B/A.
Since u=1/y, this gives the solution of (35),
1
ceAt + B/A

Directly from (35) you seethat y = 0 (y(t) = Ofor all t) is also a solution.

_1_
y=:= (36)

3.2 Second Order Linear ODEs

A second-order ODE is called linear if it can be written in the form
y +pXx)y +q(x)y =r(x) (37)
and nonlinear if it cannot be written in this form.

The distinctive feature of this equation is that it is linear in y and its derivativs, whereas the function
p, g and r on the right may be any given functions of x. If the equation begins with say f (x)y then divide
by f(x) to have the standard form (37) with'y as the firstterm, which is practical.

If r(x) = O(thatis, r(x) = Ofor all x considered; read “r(x) is identically zero”), then (37) is reduced
to

y +p(X)y +aq(x)y =0 (38)
and is called homogeneous. If r(x) /= 0, then (1) is called nonhomogeneous.
For instance, a nonhomogeneous linear ODE is
y + 25y =e *cosx

and a homogeneous linear ODE is
. 1
Xy +y +xy =0, in standard form y +-y +y=0.
X

An example of anon linear ODE is

yy+y?=
The functions p and q in (37) and (38) are called the coefficients of the ODEs. Solutions are defined
similarly as for first-order ODEs in section. A function

y = h(x)

is called a solution of a (linear or nonlinear) second-order ODE on some open interval | if h is defined and
twice differentiable throughout that interval and is such that the ODE becomes an identity if you replace
15
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the unknown y by h, the derivative y by h, and the second derivative y by h . Examples are given below.

16
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Homogeneous Linear ODEs: Superposition Principle
Linear ODEs have a rich solution structure. For the homogeneous equation the back bone of this structure
is the superposition principle or linearity principle, which says that you can obtain further solutions from

given ones by adding them or by multiplying them with any constants. Of course, this is a great advantage
of homogeneous linear ODEs. The following is an example.

Example 3.14 Homogeneous Linear ODEs: Superposition of Solutions

The functions y = cos x and y = sin x are solutions of the homogeneous linear ODE

y +y=0
for all x. You can verify this by differentiation and substitution. This gives you (cos x) = — cos x; hence
y +y=(cosx) +cosXx = — coSX +cosx =0

Similarly fory = sinx. You can go animportant step further. You multiply cos X by any constan, for instance, 4.7 and
sinx by say, — 2, and take the sum of the results, claiming that it is a solution. Indeed differentiation and substitution
gives

(4.7cosx — 2sinx) + (4.7cosx — 2sinx) = —4.7cosx +2sinx +4.7cosx — 2sinx =0

In this example you have obtained fromy; (= cos x) and y,(= sinx) afunction of the form

Yy = C1y1 + CoYo (c1, c, arbitrary constants). (39)

This is called alinear combination of y; and y,. In terms of this concept you can now formulate the result
suggested by your example, often called the superposition principle or linearity principle.

Theorem 3.3 Fundamental Theorem for the Homogeneous Linear ODE (38)

For a homogeneous linear ODE (38), any linear combination of two solutions on an open interval | is
again a solution of (38) on I. In particular, for such an equation, sums and constant multiples of solutions
are again solutions.

Proof. Lety; andy, be solutions of (38) on I. Then by substituting y = c;y; +c,y, andits derivatives
into (38), and using the familiar rule of derivatives, you get

y +py +qy = (Ciy1 +Cays) +p(Ciy1 + Cayz) +q(Ciys + CoYa)
= Gy +Cy +p(Cry; + CaY,) +q(Cuys + C2Y2)

= ci(y +py;+ays)+co(y, +py,+qy:) =0

since in the last line, (- - - ) = 0 because y; and y, are solutions, by assumption. This shows that y is a
solution of (38) on I. [ ]

Remark 3.1 You should not forget that this highly important theorem holds forhomogeneous linear ODEs
only but does not hold for nonhomogeneous linear or nonlinear ODEs, asthe following example illustrate.

17




3.2 Second Order Linear ODEs ORDINARY DIFFERENTIAL EQUATION

Example 3.15 A Nonhomogeneous Linear ODE Verify by substitution that the functions y = 1 + cos x
andy = 1 + sinx are solutions of the nonhomogeneous linear ODE

y +y=1

but their sum is not a solution. Neither is, for instance 2(1 + cos x)or5(1 + sin x).

Example 3.16 A Nonlinear ODE Verify by substitution that the functions y = x? and y = 1 are solutions
of the nonlinear ODE

yy-xy =0
but their sum is not a solution. Neither is — x2, so you cannot even multiply by — 1!

Initial Value Problem. Basis. General Solution

Recall that from section 3.1, that for a first-order ODE, an initial value problem consists of the ODE and
one initial condition y(Xy) = Yo. The initial condition is used to determine the arbitrary constant c in the
general solution of the ODE. This results in a unique solution as you need it in most applications. That
solution is called a particular solution of the ODE. These ideas extend to second-order equations as follows.

For a second-order homogeneous linear ODE (38) an initial value problem consists of (38) and two
initial conditions

y(Xo) = Ko, y (Xo) = Ki. (40)

These conditions prescribe given values Ko and K; of the solution and its first derivative (the slope of its
curve) at the same given X = Xq in the openinterval considered.

The conditions (40) are used to detem the two arbitrary constants c; and ¢, in general solution

Yy = Ciy1 + CY» (41)

of the ODE; here, y; and y, are suitable solutions of the ODE, with “suitable” to be explained after the
next example. This results in a unique solution, passing through the point (Xo, Ko) with K; as the tangent
direction (the slope) at that point. That solution is called a particular soluion of the ODE (38).

Example 3.17 Initial Value Problem
Solve the initial value problem

y +y=0, y(0) = 3.0, y (0) = -0.5.

Solution.

Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by example 3.14),
and you can take
Yy = €1 COS X + C, Sin X

This will turn out to be the general solution asdefined below.
Step 2. Particular solution. You need the derivative y = c; Sin X + ¢, cos X. From this and the initial
values you will obtain, since cosO = 1andsin0=0,
y(0)=c¢;, =3.0 and y (0) =c, = - 0.5.
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This gives asthe solution of your initial value problem the particular solution
y = 3.0cosx — 0.5sinx.
Definition 3.1 General Solutin, Basis, Particular Solution
A general solution of an ODE(38) on an open interval | is a solution (41) in which y; and y, are solutions
of (38) on I that are not proportional, and c; and c, are arbitrary constants. These y,, y, are called the basis

(orafundamental system) of solutions of (38) on I.
A particular solution of (38) on I is obtained if you assign specific values to ¢, and ¢, in (41).

Note that y; and y, are called proportional on I if forall x on I,
(@) y1 = ky> or (b) y2 = ly, (42)
where k and | are numbers, zero or not. (Note (a) implies (b) if and onlyif k /= 0).

Actually, you can reformulate your definition of a basis by using a concept of general importance.
Namely, two functions y; and y, are called linearly independent on aninterval | where they are defined if

kiy1(X) + koyo(x) =0 everywhere on I implies k; =0and k, = 0. (43)
And y; and y, are called linearly _de(j)endent on | if (43) holds for some constants k;, ko not both zero.
Thenif k, /= 0k, /= 0,you can divide and seethat y, and'y, are proportional,
=_l or =_l

In contrast, in the case of linear independence these funcitons are not proportional because then you cannot
divide in (43). This gives the following

Definition 3.2 Basis (Reformulated)
A basis of solutions of (38) on an open interval | isa pair of linearly independent solutions of (38) on I.

If the coefficients p and q of (38) are continuous on some open interval I, then (38) has a general
solution. It yields the unique solution of any initial value problem (38), (40). It includes all solutions of
(38) on I; hence (38) has no singular solutions (solutions not obtainable from the general solution).

Example 3.18 cos x and sin x in example 3.17 from a basis of solutions of the ODEy + y = 0 for all
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3.2.1 Homogeneous Linear ODEs with Constant Coefficients

In this section, you shall study second-order homogeneous linear ODEs whose coefficients a and b,
y +ay +by=0. (44)

How to solve (44)? You remember that the solution of the first-order linear ODE with a constan coefficient
k
y +ky =0
is an exponential function y = ce~¥*. This gives you the idea to try as a solution of (44) the function
y = eM, (45)

Substitutin (45), and its derivative
y = AeM and y = A%eM
into your equation (44), you obtain

(A +ax + b)e™ =0.

Hence if A is asolution of the important characteristic equation (or auxiliary equation)

M+ar+b=0 (46)

then the exponential function (45) is a solution of the ODE (44). Now from elementary algebra you recall
that the roots of this quadratic equation (46) are

v v
A = 21(— a+ — 4b), M= 21(— a— — 4b) (47)

a2 a2
(46) and (47) will be basic because our derivation shows that the functions
y; = eMX and  y,=eM (48)

are solutions of (44). Verify by substituting (48) into (44).

From algebra you further kn0\£v that the quadratic equation (46) may have three kinds of roots, depending
on the sign of the'discriminant a“ — 4b, namely,

(Case I) Two real and distinct roots if a2 — 40> 0,
(Case Il) A real and repeated root if a®> — 4b =0,

(Case I11) Complex conjugate roots if a> — 4b < 0.
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Case I. Two Distinct Real Roots A; and A,

In this case, a basis of solutions of (44) on any interval is
y1 = eMX and y, = eMX

because y; and y, are defined (and real) for all x their quotient is not constant. The corresponding general
equation is

y = ¢ eMX + el (49)

Example 3.20 Youcannow solve y — y = 0in Example 3.19 systematically. The characteristic equation

iSA2 — 1 =0.Itsroots are \; = 1and A, = — 1. Hence a basis of solutions is €< and e~ and gives
the
same general solution as before.

y = C1e* +ce” .
Example 3.21 Solve the initial value problem
y +y - 2y=0, y(0) = 4, y(0)=-5
Solution.

Step 1. General solution. The characteristic equation is

M4+A-2=0.
Its roots are
1 \/7 1 A/
M=3(-1+ 9)=1landl =*(-1- 9)=-2
so that you obtain the general solution

y = €% + e~ 2%,

Step 2. Particular solution. Since y (X) = c,e* — 2c,e~ 2%, you obtain from the general solution and
the initial conditions

y(0) =c, +c, =4
y(0)=c;—- 2c;=-5

Hence ¢, = 1 and ¢, = 3. This gives the answery = e* + 3e~ 2%,
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Case Il. Real Double Root A = —a/2

If the discriminant a? — 4b is zero, you see directly from (47) that you get only oneroot, A = A\, = A, =
— a/2, hence only one solution,

y1 = . (a/2)x.

To obtain a second independent solution y, (needed for a basis), you use the method of reduction of order
discussed in the last section, setting y, = uy;. Substituting this and its derivatives y, = uy; + uy, and y,
into (44), you first have

(Uyr+2uy, +uy;) +a(uy; +uy;) +buy; =0
Collecting termsinu , u, and u, as in the last section, you obtain
uy,+u(2y;, +ayi)+u(y, +ay, +by)=0.

The expression in the last parentheses is zero, since y; is a solution of (44). The expression in the first

parentheses is zero, too, since
—ax/2 —

2y, = —ae —ays.

You are thus left with u y; = 0. Hence u = 0. By two integrations, u = c;X + ¢,. To get a second
independent solution y, = uy;, you can simply choose ¢; = 1, ¢, = 0 and take u = Xx. Theny, = Xxy;.
Since these solution are not proportional, they form a basis. Hence in the case of a double root of (46) a
basis of solutions (44) on any interval is

e~ ax/2 xe~ ax/2

The corresponding general solution is
y = (cy + cpx)e” (50)

Example 3.22 The characteristic equation of the ODEy + 6y + 9y isA2 + 6A + 9 = (A + 3?2 = 0.
It has the double root A = — 3. Hence a basis is e~ * and xe~3*. The corresponding general solution is

y = (Cc1 + Cox)e™ .
Example 3.23 Solve the initial value proble
y +y +0.25y =0, y(0) = 3.0,y (0) = — 3.5

Solution.

The characteristic equation is A2 + A +0.25 = (A + 0.5)? = 0. It has the double root A = — 0.5. This

gives the general solution

y = (C; + CcpX)e” 0%,

You need it derivative

y = e %% — 0.5(c; + cox)e” %,

From this and the initial conditions you obtain
y(0)=c¢;,=3.0, y(@©)=c,- 05¢c,=-35; hence ¢c¢,=-2.
The particular solution of the initial value problem isy = (3 — 2x)e™ %%
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Case I1l. Complex Roots — ;a+ iwand —ta— iw

This case occurs if the discriminant a® — 4b of the characteristic equation (46) is negative. In this case, the
roots of (46) and thus the solutions of the ODE (44) come at first out complex. However, you show that
from them you can obtain a basis of real solutions

y; = e” 72 /2 5in wx (w > 0) (51)

where w? = b — a2 It can be verified by substitution that these are solutions in the present case. You can

C0S WX, y,=¢e

4
derive them systematically after the two examples by using the complex exponential function. They form a
basis on any interval since their quotient cot wx is not constant. Hence areal general solution in Case Ill is

y = e®/2(A cos wx + B sin wx) (A, B, arbitray). (52)

Example 3.24 Solve the inital valued problem

y +0.4+04y =0, y(0) =0 y (0) = 3.
Solution.

Step 1. General solution. The characteristic equation is A> + 0.4A + 9.04 = 0. It has the roots
— 0.2+ 3i. Hence w = 3, and the genral solution (52) isy = e~ %2(A cos 3x + B sin 3x).

Step 2. Particular solution. The firstinitial condition gives y(0) = A = 0. The remaining expresion
isy = Be~ %% sin 3x. You need the derivative (chain rule!)

y = B(—0.2e~%%sin 3x + 3e~ %?* cos 3x).

From this and the second initial condition, you should obtain y (0) = 3B = 3. Hence B = 1. Your
solution is then

y = e~ %% sin 3x.

Example 3.25 Complex Roots
A general solution of the ODE

y +wly=0 (w constant, not zero)
is
y = Acos wx + B sin wx.

With o = 1, this comfirms example 3.17.
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3.2.2 Nonhomogeneous ODEs
Method of Undetermined Coefficients

In this section you will be introduced to nonhomogeneous linear ODES

y +pXy +a(x)y =r(x) (53)
where r(x) /= 0. You will see that a “general solution” of (53) is the sum of a general solution of the
corresponding homogeneous ODE

y +p(xy +aq(x)y =0 (54)
and a “particular solution” of (53). These two new terms “general solution of (53)” and a particular solution
of (53)" are defined as follows.

Definition 3.3 General Solution, Particular Solution
A general solution of the nonhomogeneous ODE (53) on an open interval | is a solution of the form

y(X) = Yn(X) + Yp(X); (55)

here, y, = C1y1 + CyY, is a general solution of the homogeneous ODE (54) on | and y, is any solution of
(53) on I containing no arbitrary constants.

A Particular solution of (53)on I is a solution obtained from (55) by assigning specific values to the
arbitrary constants ¢; and ¢, in yp.

Your task is now two fold, first to justify these definitions and then to develop a method for finding a
solution y, of (53).

Accordingly, you should first show thata general solution as just defined satisfied (53) and thatthe
solution of (53) and (54) are related in a very simple way.

Theorem 3.4 Relations of Solutions of (53) to Those of (54)

(a) The sum of a solution y of (53) on some open interval 1 and a solution ¥ of (54) on | is a solution (53)
on I. In particular, (55) is a solution of (53) on I.

(b) The difference of two solutions of (53) on | is a solution of (54) on .
Proof.
(a) LetL[y] denote the left side of (53). Then for any solutions y of (53) and ¥ of (54) on I,
Lly +¥] =Ly +L[yl=r+0=r.
(b) For any solutionsyandy of (53) onl you havelL]ly —y ]=L[yl]-Lly ]=r-r=0.

Now for homogeneous ODEs (54) you know that general solutions include all solutions. You show that
the same is true for nonhomogeneous ODEs (53).
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Theorem 3.5 A General Solution of aNonhomogeneous ODE includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in (53) are continuous on some open interval I , then
every solution of (53) on | is obtained by assigning suitable values to the arbitrary constants ¢, and ¢, in a
general solution (55) on I.

Proof. Lety be any solution of (53) on I and x, and x in I. Let (55) be any general solution of (53)
on | This solution exists Indeed, y,, = ¢y, + CyY, exists (why?) because of the continuity assumption, and
Yp exists according to a construction (how?) Now, by theorem 1(b) just proved, the difference Y =y -y,
is a solution of (54) on I. At Xo you have

Y (X0) =Yy (Xo) — Yp(Xo), Y (%) =Y (Xo) = Yp(Xo)-

Existence and uniqueness theorem (proved in the next unit) implies that for these conditions, as for any
other initial conditions in I, there exists a unique particular solution of (54) obtained by assigning suitable
values to ¢, C; in yn. From thisandy =Y + Yy, the statement follows. [

Method of Undetermined Coefficients

Your discussion suggests the following. To solve the nonhomogeneous ODE (53) or an initial value problem
for (53), you have to solve the homogeneous ODE (54) and find any solution y, of (53), so that you obtain
a general solution (55) of (53)

How can you find a solution y, of (53)? One method is the so-called method of undetermined coeffi-
cients. It is much simpler than another, more general method, (which may not be discussed in this book).
Since it applies to models of vibrational systems and electric circuits. It is frequently used in engineering.

More precisely, the method of undetermined coefficients is suitable for linear ODEs with constant
coefficients aand b

y +ay +by=r(x) (56)

when r(x) is an exponential function, a power of X, a cosine or sine, or sums or products of such functions.
These functions have derivatives similar to r(x) itself. This gives the idea. You choose a form for y, similar
to r(x), but with unknown coefficients to determined by substituting that y, and its derivatives into the
ODE. Table 1 shows the choice of y, for practically important forms of r(x). Corresponding rules are as
follows.

Table 1: Method of Undetermined Coeffients

Term in r(x) Choice for y,(x)
keY* Ce¥
kx" (n=0,1,--) KnX"+ Ky X" + -+ Ky x + Ky
kcgs wx K coswx + M sin wx
k sin wx
ke™ cos wx ox ,
; +
Ke®™ sin wx e™(K coswx + M sin wx)
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Example 3.26 Application of the Basic Rule (a)
Solve the initial value problem

y +y=0.001x2 y(0) =0, y (0) = 1.5. (57)
Solution.
Step 1. General solution of the homogeneous ODE. The ODE y +y = O hasthe general solution

Yh = AcosXx + B sinx.

Step 2. Solution y, of the nonhomogeneous ODE. First try y, = K x2. Then Yp = 2K. By substitu-
tion. By substitution, 2K + K x?> = 0.001x2. For this to hold for all x. the coefficient of each power
of x (x2 and x°) must be the same on both sides; thus K = 0.001 and 2K = 0, a contradiction.

The second line in Table 1 suggests the choice
Yp = Kox* +Kix + K. Then y, +y, = 2K; + Kox* + Kyx + Ko = 0.001x%,

Equating the coefficients of x2, x, x° on both sides, you have K, = 0.001, K; = 0.2K, + K, = 0.
Hence Ko = — 2K, = —0.002. This gives y, = 0.001x* — 0.002,
and

Y =V¥n +Yp,=Acosx + B sinx +0.001x* - 0.002.

Step 3. Solution of the initial value problem. Setting x=0 and using the first initial condition gives
y(0)=A-0.002=0, hence A=0.002. By differentiation and from the second initial condition.

Y =Yn+Y,=—Asinx+Bcosx +0.002x and y(0)=B =15
This gives the answer

y = 0.002 cos x + 1.5sin x + 0.001x* — 0.002.

Example 3.27 Application of the Modification Rule (b)

Solve the initial value problem
y +3y +225y=—-10e 1, y(0)=1, y(0)=0. (58)
Solution.

Step 1. General solution of the homogeneous ODE. The characteristic equation of the homogeneous
ODE isA\? + 3\ + 2.25 = (A + 1.5)? = 0. Hence the homogeneous ODE has the general solution

Yn = (1 + c2)e™ M,

Step. 2 Solution y, of the nonhomogeneous ODE. The function e~V
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yp = Cx?e~ 15X Then y, = C(2x — 1.5x%)e"™,
Yp = C(2 - 3x — 3x+2.25x%)e” %,

Substituting these expressions into the give ODE and omit the factor e~ 1%, This yields

C(2 — 6x + 2.25x%) + 3C(2x — 1.5x%) + 2.25Cx? = — 10.

Comparing the coefficients of x2, x, x° gives 0 = 0,0 = 0, 2C = - 10, hence C = — 5. This gives
the solution y, = — 5x?e~**. Hence the given ODE has the general solution

1.5x _ —1.5x

Y =Yn+Yp=(CL+Cr)e” 5x2%e

Step 3. Solution of theinitial value problem. Setting x = 0iny and using the firstinitial condition,
you obtain y(0) = ¢, = 1. Differentiation of y gives

y = (C, — 1.5¢; — 1.5c,x)e™ 1% — 10xe™ >+ 7.5x%e~
1.5x

From this and the second initial condition you havey (0) = ¢, — 1.5¢; = 0. Hence ¢; = 1.5¢; = 1.5.
This gives the answer

y = (1+ 1.5x)e™ 1> — 5x%e~ 1> = (1 + 1.5x — 5x%)e”
1.5x

Example 3.28 Application of the Sum Rule (c)
Solve the initial value problem
y + 2y + 5y =e% +40cos 10x — 190 sin 10x, y(0) = 0.16 y (0) = 40.08 (59)
Solution.

Step 1. General solution of the homogeneous ODE. The characteristic equation

M+2A+5=A+1+2)(A+1-2)=0
shows that a real general solution of the homogeneous ODE is

Yh = e~ *(Acos 2x + B sin 2x)

Step 2. Solution of the nonhomogeneous ODE. Writey, = y,, + Y,,, Where y,, corresponds to the
exponential term and y,, to the sum of the order two terms. Set

Yp, = Ce&*> then 'y, =05Ce®>* and y, =0.25Ce®,
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Substitution into the given ODE and omission of the exponential factor gives (0.25+2.05+5)C = 1,
hence C = 1/6.25 = 0.16, and y,, = 0.16e %>,

Now set y,, = K cos 10x + M sin 10x, asin Table 1, and obtain

Yp, = — 10K sin10x + 10M cos 10x, y,, = — 100K cos 10x — 100M sin 10x.

Substitution into the given ODE gives for the cosine terms and for the sine terms

—100K+2-10M +5K =40, -100M- 2-10K +5M = -190

The solution isK = 0,M = 2. Hence y,, = 2sin 10x. Together,

Y = Yh +Yp, + Yp, = € %(A cos 2x + B sin 2x) + 0.16e* + 2 sin 10x.

Step 3. Solution of theinitial value problem. From y and the first initial condition, y(0) = A+0.16 =
0.16, hence A = 0. Differentiation gives

y =e *(—= Acos2x — B sin2x — 2Asin 2x + 2B cos 2x) + 0.08e%>* + 20 cos 10x.

From this and the second initial condition youhave y0 = — A + 2B + 0.08 + 20 = 40.08, hence
B = 10. This gives the solution

10e™* sin 2x + 0.16e% + 2 sin 10x.

3.2.3 Solution by Variation of Parameters

Here is a continuation of the discussion of nonhomogeneous linear ODEs

y +pX)y +aqx)y = r(x). (60)

In previous sections you have seenthat a general soluton of (60) is the sum of the general solution yy, of
the corresponding homogeneous ODE and any particular solution y, of (60). To obtain y, when r(x) is not
too complicated, you can often use the method of undetermined coefficients, asyou have shown in the last
section.

However, since this method is restricted to functions r(x) whose derivatives are of a form similar to r(x)
itself (powers, exponential functions, etc.), It is desirable to have a method valid for more general ODEs
(53), which you shall now develop. It is called the method of variation of parameters and is credited to
Lagrange. Here p, g, r in (1) may be variable (given functions of x), but you should assume that they are
continuous on some open interval 1.

Lagrange's method gives a particular solution y, of (53) on I in form

— r r
Vo) = = V1 yﬁdx + Y, yﬁolx (61)
where y;, y, forma basis of solutions of the corresponding homogeneous ODE

y +p(X)y +q(x)y =0 (62)
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on I, and W is the Wronskian of y4, y»,

X

w=det 72 =yy vy, (63)
Y1 Y2
Example 3.29 Method of Variation of Parameters
Solve the nonhomogeneous ODE
1
y +y=secx = ——.

COS X

Solution.

A basis of solutions of the homogeneous ODE on any interval is y; = cos X, Y, = sin X. This gives
the Wronskian

W (y1,Y2) =cosxcosx — sinx(— sinx) = 1.

From (61), choosing zero constant of integratio, you get the particular solution of the given ODE
Yp = —C0sX sinxsecx dx+sinx cosxsecx dx

= cosxIn]|cos x|+ xsinx

From y, and the general solution y, = c1y; + C,Y, of the homogeneous ODE you obtain the answer

Y =Yn+Yp=(cy+In|cosx|)cosx + (C, + X) sinx.

Had you included integration constants — c;, C, in (61), then (61) would have given the additional

€1 C0S X + C,SiN X = C1Y; + CyY», that is, a general solution of the given ODE directly from (61). This
will always be the case.

3.3 Higher Order Linear ODEs

Recall that an ODE is of nth order if the nth derivative y™ = d"y/dx" of the unknown function y(x) is
the highest occurring derivative. Thus the ODE is of the form

X
dvy.
dxn

where lower order derivatives andy itself may or may not occur. Such an ODE is called linear if it can be
written

FOLY,Y,...y™) =0 y® =

Y + P (YT P+ p (Y + (K = r(X). (64)

(For n = 2 you return to second order equation with p; = p and po = q). The coefficients py, ..., pn—1 and
the function r onthe right are any given functions of x, and y is unknown. y™ has coefficient 1. This is
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practical, and it is called the standard form. (If you have p,(x)y™), divide by p,(X) to get this form.) An
nth-order ODE that cannot be written in the form (64) is called nonlinear.

If r(x) isidentically zero, r(x) = O (zero for all x considered, usually in some open interval 1), then
(64) becomes

YO +paa QYT+ p(X)y + po(x)y =0 (65)
and is called homogeneous. If r(x) is not identically zero, then the ODE is called nonhomogeneous.

A solution of an nth-order (linear or nonlinear) ODE on some open interval | is a function y = h(x)
that is defined and n times differentiable on I and is such that the ODE becomes an identity if you replace
the unknown function y and its derivatives by h and its corresponding derivatives.

The extension of the concepts and methods of section 3.2 for linear ODEs from order n=2 to arbitrary
order n is easily obtained. This is straightforward and needs no new ideas. However, the formulas become
more involved, the variety of roots of the characteristic equation becomes much larger with increasing n,
and the Wronskian plays a more prominent role. For a detailed study on higher order ODE, see unit 3.

4 Conclusion

In this unit, you have studied ordinary differential equations (ODES) of first order, second order and of
higher order (n > 2). You have used different approach in solving some first order differential equation
and second order ordinary differential equation. You have also proved some important theorem of higher
order differential equation, which are obvious extensions of the theorems proved for second order ordinary
differential equations.

5 Summary

Having gone through this unit, you now know that
(i) first order ODEs are equations of the form
Fx,y,y)=0 orin explicit form y =Tf(x,y)

involving the derivative y = dy/dx of an unknown function y, given functions of x, and, perhaps, y
itself. If the independent variable x istime, you denote it by t.

(i) A general solution, of a first-order ODE is a solution involving an arbitrary constant, which you
denoted by c.

(iii) unique solutions can be found by determining a value of ¢ fromaninitial condition y(Xo) = Yo.

(iv) An ODE together with an initial condition is called an initial value problem

y =f(xy), y(Xo) =Yo (%o, Yo given numbers)

and its solution is a particular solution of the ODE.
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(v) A separable ODE is one that you can put into the form
g(y)dy = f(x)dx
and solve by integrating both sides

(vi) An exact ODE is of the form
M (x, y)dx + N(x, y)dy =0

where M dx + Ndy is the differential
du = u,dx + uydy

of a function u(x, y), so that from du=0 you immediately get the implicit general solution u(X, y) = c.
This methods extend to nonexact ODEs that can be made exact by multiplying then by some function
F(x, y), called the integrating factor

(vii) Linear ODEs are such of the form
y +pX)y =r(x)

(viii) The Bernoulli equation are equations of the form
y +pX)y =g(x)y*
(ix) A second-order ODE is called linear if it can be written
y +p(X)y +a(x)y =r(x)
(x) it is homogeneous if r(x) is zero for all x considered, usually in some open interval; this is written

r(x) = 0.Then

y +p(X)y +a(x)y =0.
(xi) If r(x) /= Ofor some x considered, then the second order linear ODE is called nonhomogeneous.

(xii) by superposition principle the linear combination y = ky; + ly, of two solutions y,, y» is again a
solution.

(xiii) Two linearly independent solutions y;, y, of a homogeneous ODE on an open interval 1 form a basis
(or fundamental system) of solutions on 1 andy = cy; + C,y, with arbitrary constants cy, ¢, is a
general solution of the homogeneous ODE on I . From it you can obtain a partic6(r)-3ular solutigou
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the method of undetermined coefficients. The latter applies when second order ODE has constant

coefficients p and g, and r(x) is a power of X, sine, cosine, etc. Then you can write the second order
ODE as

y +ay +hy=r(x)

The corresponding homogeneous ODE y + ay + by = 0 has solutions y = e*¥, where A is aroot of

M +aA+b=0.
Hence there are three caseswhich are
Case | Type of Roots General Solution
I Distinct real A, A, y = c,eMX + c eheX
I Double — ta y = (Cq + cpX)e~ X2
I Complex — fa=+iw y=e ®”(Acosw x+Bsinw x)

6 Tutor Marked Assignments(TMAS)

Exercise 6.1 First-Order ODEs

Find the general solution using suitable method.
Ly =x*(1+y?)
(a) y =3tan(2x +c)
(b) y =tan(x® +c)
(c) y =2tan(x® — ¢)
(d) y =tan(§ +o)
2. yy +xy?=x
v_
(@Qy= 1+ce*
(b)y=1+ce™*
c)y=1+ce™ ™
©y=1
(d)y= 1l+ce X
3.y +ysinx =sinx
(@) y=ce®*+1
(b) y=rce™ X +1
(c)y=ce™+1
(d) y=ce™S"*+1
4. 3sin2ydx + 2xcos2ydy = 0
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(@) sin2y = —cx®
(b) siny = cx®
(c) sin2y = cx~3
(d) sin2y =x®
5. (ycosxy — 2x)dx + (x cosxy + 2y)dy =0

(@) siny — x2+ xy=c¢
(b) sinxy — x> +y2=¢
(c)sinxy — xX>+y=c¢
(d) siny? — xy +y?=¢
6. sin(y — x)dx + [cos(y — X) — sin(y — x)]dy =0

(@) e*sinfy — x) = ¢

(b) e¥cos(y — x) = ¢

(c) &siny — x) =c¢

(d) eXcos(y— x) =¢

Solve the following initial value problems using suitable method in each case.

7.yy +x=0, y@)=4

(@) y>+ x> = 16

(b) y2+ x2 =25

(c) y>- x2 =16

(d) y?— x2 =25
8.y =1+y% y(iEm=0

(a) y =tan(x — tm)

(b) y = tan(x + £m)

(c) y =tan(2x — rm)

(d) y = tan(2x + £x)
9. (2xy? — sinx)dx + (2 +2x?y)dy=0, y(0)=1

(@ Xy + sinx + 2y =¢

(b) X2y + cosx + 2y = ¢

(c) xX?y?+ sinx + 2y =¢

(d) x?y?+cosx +2y=c

Exercise 6.2 Second Order ODEs

Find a general solution in the following
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1.y — 2y — 8y =52co0s6x

(@) cie™ + c,e” 2 — 1.1cos 6x + 0.3 sin 6x
(b) c.e™ + c,e” 2 + 1.1cos6x — 0.3 sin 6X
(c) cie™ + c,e” 2 — 1.1cos 6x — 0.3 sin 6X
(d) c1e* + ce™ 2 + 1.1 cos 6x + 0.3 sin 6x

2.y + 8y + 25y = 265sin3X

(@) e=™(A cos 3x + B sin 3x) — 2cos 3x — Lsin
3X

4 2
(b) e=*(Acos3x + B sin3x) — 2 cos 3x + } sin 3x
(c) e=*(Acos3x + B sin3x) — 43 sin 3x + 21 oS 3x
(d) e=*(Acos 3x + B sin3x) + 2sin3x — ; cos 3x

Solve the following initial value problems.

3.y +5y - 14y=0, y(0)=6, y(@0)=-6

(@) y = 4> — 2e= 7
(b) y =46 +2e= ™
(c) y = 4e®* + 2e™
(d) y = 4> — 2’

4. X%y —xy —24y=0, y(1)=15, y(@1)=0

(@) y =9x 4+ 6x°
(b) y = 9x* + 6x°
(c) y=9x"4+6x"°
(d) y =9x*+6x°

5.y +5y +6y=108x? y(0)=18,y(0)=-26

(@ y = e - 2"+ 18x2 - 30x +
19 (b) y = e~ + 273+ 18x% - 30x
+ 19 (c)y = e — 273+ 18x> +
30x + 19 (d) y = e"& — 273+ 18x°
— 30x - 19

Exercise 6.3 Higher-Order ODEs

Solve the given ODE.
1. 4x%y +12xy +3y =0
(@) ¢1 + cxM2 + cox~ M2

(b) c1 + cox!? + caxt? an
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(c) c1+ Cox~ Y2+ cgx 12
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2.8y +12y — 2y — 3y=0
(a) cie” 0.5x + Cze0.5x + Cgel.SX
(b) Cle0.5x +coe” 0.5x + c3e” 1.5x
(C) cie” 0.5x + Cze0.5x + cze” 1.5x

(d) CleO.5x +Czeo'5X +03e1.5x

Solve the given initial value problem.
3.x3y +7x%y —2xy — 10y=0, y)=1, y(1)=-7, y(1)=44

(@) 0.5x=1— 1.56x7°
(b) 0.5x 1+ 1.5x=°
(c) —0.5x 11— 1.5x-
5(d) — 0.5x~ 1+ 1.5x

-5
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1 Introduction

In Unit 1, you were introduced to basic methods of obtaining solutions of some nth order (n _
1) ordinary differential equation. In this unit, your attention shall be directed to the more

theoretical aspects of differential equation.

2 Objectives

At the end of this unit, the student should be able to; (i) say when a first order ODE has a

solution, a unique solution or no solutions.
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3 Main Content

(i) say when afunction of two variables satisfies a Lipschitz condition on the second variable.
(i) approximate a solution of an ODE using the Picard’s iteration.
(iv) describe the dependence of a solution on initial condition on the function f.

(v) state and apply the existence theorem for linear differential equations.

3 Main Content

3.1 Existence and Uniqueness Theorem of First-Order Equations
In order to fully understand the proof of this theorem and those which follow, you will need to be familiar

with certain concepts of real function theory. Since you may not be familiar with all these topics, the first
section will be devoted to a brief survey of some of them.

3.1.1 Some Concepts from Real Function Theory
Uniform Convergence

Definition 3.1 (Convergent Sequence of Real Numbers) A sequence {x,} of real numbers is said to
converge to the limit x if, given any E > 0, there exists a positive number N such that

[Xn — X| <E

for all n > N. This you canindicate by writing Lim Xn = X.

Definition 3.2 (Pointwise Convergence) A sequence {f,} of real valued functions f, : | R - R
(n = 1) defined on aninterval 1 of R is said to converge to areal valued function f : 1 - R if given any
E>0,andx I,thereexists N = N(E x) N suchthat

[fa(X) — F(X)| = E
foraln= N

Definition 3.3 (Uniform Convergence) A sequence {f,} of real valued functions f, : I R - R
(n = 1) defined on aninterval 1 of R is said to converge to areal valued function ¥ : 1 — R if given any
E> 0, there exists N = N(E) N such that

[fa () — F(X)| = E
foralln = N and forallx 1.

Example 3.1 Consider the sequence of functions {f,} defined for all x on the real interval 0 < x < 1 by

2

f.(x) = O=sx=<=1 (n=123,..)

nx +1

Solution.
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3.1 Existence and Uniqueness Theorem of First-Order Equations

For x = 0, The corresponding sequence {f,(0)} of real numbersis0,0,0, ... and lim f,(0) = 0. For every x
n —» o
such that 0 < x < 1, you have

nx?2

fn(x) = X+ 1

and nIim fa(X) = x

Thus the sequence {f} converges pointwise on 0 < x < 1 tothe limit function f defined by f(x) = x,
0 = x = 1. Futher the convegence is uniform on 0 < x < 1. Tothis, consider

(200 — Tol = _ x =
n nx + 1 Tnx+1

GivenE > 0, you have - X

X+1
% —%( S}E — 1.Thus if you choose N Z}E — 1,you have that n >1E ] « foralln > N. Hence, given E >

Ol

there exists N = ¢ — 1 (depending only upon E and not on x) such that [fn(x) — f(X)| <Eforalln > N for
every x such that 0 < x < 1. In other words, the convergence is uniform on0 < x < 1.

=< E provided n > El_ %( But for x such that0 = x =< 1, you have

The following are two important theorems on uniformly convergent sequences which shall be used in
the proof of existence theorem. You can find the proofs of this theorem in most texts on advanced calculus
and real analysis.

Theorem 3.1 Let {f,} be a sequence of real valued functions which converges uniformly to ¥ on the
interval a < x < Db. Suppose each function f,(n = 1, 2, 3,...) is continuous on a < X < b. Then the
limit function f is continuous ona< x < b.

Example 3.2 In Example 3.1 you saw that the sequence of functions {f,} defined on the real interval
0=sx=1
by

nx?2

fa09 = nx +1’
converges uniformly to a limit function f on 0 < x < 1. Further, each function f,(n = 1,2,3,...) is
continuous on 0 < x < 1. By theorem 3.1, you could conclude at once that the limit function T is also
continuous on 0 < x < 1. Indeed, in this example, the limit function T is thatdefined by f(x) = Xx,
0 =< x = 1, and clearly this function f is continuouson0 < x <
1

(n=1,23,..)

Theorem 3.2 Let {f,} be a sequence of real functions which converges uniformly to f on the interval
a < x < bh. Suppos each function f,(n = 1,2, 3, ...) is continuous on a < X < b. Then for every a and
Bsuchthata< a<f < b,

B B
lim fa(x)dx = lim f,(x)dx
n- oo a a n-oo

Example 3.3 You could illustrate this theorem by again considering the sequence of functions {f,} dis-
cussed in Examples 3.1 and 3.2 and defined by

, 0=x=<1 (n=1,23..)

The hypothesis of Theorem 3.2 is identical with that of theorem 3.1, and you have already noted in Example
3.2 that the sequence under consideration satisfies this hypothesis on 0 < x < 1. Thus you could
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conclude

that
1

lim f,(x)dx
n-R

1
lim (X =
lim (g

0
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Sincer!im f.(x) = f(X) = x in this example, you conclusion here would be that

1 2 1
, nx
lim dx = xdx
n- oo 0 nx + 1 0
You could verify this directly,
r 1
1 nXZ 1 1
dx = X——+——"— dx
o Nx+1 0 n n(nx +1)
_ X x 1 ' _1_ 1 In(n+1)
= g Tp kD) =5- e
This r 1
. b nx? .1 1 Inn+1)" 1
lim dx=Iim Z -+ —~_"2 =2
n-eo o NX+ n- oo n n2 2

1

Clearly  xdx =
0

, also, and your conclusion is thus verified.

N[ =

~ Nextisto consider briefly the uniform convergence of aninfinite series of real functions, each of which
isdefined on areal interval a< x < b

Definition 3.4 Consider the infinite series u, of real functions u,(n = 1,2,3,...), each of which is
n=1
defined on areal interval a < x < Db. Consider the sequence {f,} of so-called partial sums of this series,

defined as follows:
fi=u
fz =Uu; + Uy

f3=U1+U2+U3

The infinite series Un is said to uniform uniformly to f ona < x < b if its segeunce of partial sums
n=1
{f.} converges uniformlytof anda< x < bh.

The following theorem gives you a very useful test for uniform convergence of series.

Theorem 3.3 (Weierstrass M-Test) Let {M,} be a sequence of positive constants such that the series of

constants M, converges. Let u, be aseries of real functions suchthat |u,(x)] < M,, for all x such
n=1 n=1

thata< x < band forn =1,2,3,.... Then the series U, converges uniformly ona< x < b.

n=1
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X . 1 .
ontheinterval 0 < x < 1. The sequence P IS a sequence

Example 3.4 Consider the series 5

n=1

n2

>
of positive constants which is such that the series n% is convergent.

n=1
1

You can take M,, = e and observe that

sin nx 1

UnGl = =5 = 5 =My
_ Dsinnx
for all x such that0< x=< 1 and for each n = 1,2,3,... Thus by theorem 3.3, the series
n=1

converges uniformlyon 0 < x < 1.

Functions of Two Real Variables; the Lipschitz Condition.
Definition 3.5

1. A set of points A of the xy plane will be called connected if any two points of A can be joined by a
continuous curve which lies entirely in A.

2. A set of points A of the xy plane is called open if each pointof A is the center of a circle whose
interior lies entirely in A.

3. A open, connected set in the xy plane is called a domain.

4. A point P is called a boundary point of a domain D if every circle about P contains both points in
D and points not in D.

5. A domain plus its boundary points will be called aclosed domain.

Example 3.5 The set of all points (X, y) lying within the ellipse x?+2y? = 1 and characterized by x?+y? <

lisa domaig D. The boundary points of D are the points of the ellipse itself. The set of points (X, y) such
that x> + 2y? < 1 within and on the ellipse is a closed domain.

It is assumed that you are somewhat familiar with functions T of two real variables x and y, defined on a
domain of the xy plane or on such a domain plus its boundary. The following are few concepts and results.

Definition 3.6 Let f be a real function defined on a domain D of the xy plane, and let (Xo, Yo) be an
(interior) point of D. The function T is said to be continuous at (Xo, Yo) if, given any E > 0, there exists a
d > Osuch that

[F(x, y) — (X0, yo)| <E

forall (x,y) D such that

[X = Xo| <3 and |y — yo| <9

Definition 3.7 Let T be a real function defined on D, where D is either a domain or a closed domain of
the xy plane. The function f is said to be bounded on D if there exists a positive number M such that
|F(X,y)| < M forall (x,y) inD.
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Theorem 3.4 Let T be defined and continuous on a closed rectangle

R:rasx=sbc=sy<
d

Then the function f is bounded on R.

Example 3.6 The function f defined by f(x, y) = x2 + y? is continuous on the closed rectangle R : 0 <
X =< 1,0 < y = 2. Thus by theorem 3.4, the function f is bounded on R. In fact, you have |f (X, y)|

|x? +y?| < 5forall (x,y) R.

Having disposed of these preliminaries, you would now be introduced to a concept which will be of
paramount importance in the existence and uniqueness proof.

Definition 3.8 Let T be defined on D, where D is either a domain or a closed domain of the xy plane. The
function f is said to satisfy a Lipschitz Condition (with respect to y) in D if there exist a constant k > 0
such that

[F(X, y1) — (X, y2)l = Kkly: — 2l (1)
for every (x, y1) and (X, y») which belongto D. The constant k is called the Lipschitz Constant.

The following theorem will help you to determine when a function f satisfies the Lipschitz condition.

Theorem 3.5 Let f be such thatgf exists and is bounded for all (x,y) D, where D is a domain or

y
closed domain such that the line segment joining any two points of D lies entirely within D. Then T satisfies
a Lipschitz Condition (with respect toy) in D, where the Lipschitz Constant is given by

k= suyp 2T&Y)
xy) o Oy

Example 3.7 Consider the function f defined by f(x, y) = y?, where D is the rectangle defined by |x| < a,
ly| < b. afg;’ ) = 2y, and so g; exists and is bounded for all (x,y) D. Thus by theorem 3.5,
Then

the function T satisfies a Lipschitz Condition in D, where the Lipschitz Constant k is given by 2b. If you
directly apply the definition of Lipschitz condition instead of theorem 3.5, you would find that

[F(X, y1) = F(X, y2)| = |y2 - y2| = |y1 +Yaolly:r — Yol = 2bly; —
1 2 Yol

forall (x, y1),(x,y2) D.

Note that the sufficient condition of theorem 3.5 is not necessary for f to satisfy a Lipschitz condition
in D. That is, there exist functions T such that T satisfies a Lipschitz condition (with respect to y) in D but
such that the hypothesis of theorem 3.5 is not satisfied.

Example 3.8 Consider the function T defined by f(x,y) = X|y|, where D is the rectangle defined by
|X| = a, |y| = b. Note that

[T(x, y2) = £0x, y2)l = [Xlya| = XIyall = [x]lys = yo| = aly: -



3.1 Existence and Uniqueness Theorem of First-Order Equations

Yol

for all (x,y1),(X,y2) D. Thus f satisfies a Lipschitz Condition (with respect to y) in D. However the
partial derivative 3y does not exist at any point (x, 0) D for which x 1=0.
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3.1.2 Existence and Uniqueness of Solutions
The Basic Problem and aBasic Lemma

The basic problem with which this unit is primarily concerned is formulated below as follows.

Let D be a domain in the xy plane and let (Xq, Yo) be an (interior) point of D. Consider the differential
equation
dy
-2 =f(x, 2
3 = Ty )
where T is a continuous real valued function defined on D. Consider the following problem. Your wish is

to determine:
1. aninterval a < x < 3 of real x axis suchthat a < x, < 3, and

2. a differentiable real function @ defined on thisinterval [a, ] satisfying the following three require-

ments:
(@) (X, 9(x)) D, anthus f(x, @(x)) is defined, forall x  [a, B].
do(x) - . : :
(b) 7d = T[x, @(x)], an thus @ satisfies the differential equation (2), forall x [a, B].
X

(c) (Xo0) = Yo

You should call this problem the initial-value problem associated with the differential equation (2) and
the point (Xo, Yo). And denote it briefly by

dy _ f

— =Tf(x,y)

dx (3)
y(Xo) = Yo,

and call a function @ satisfying the above requirements on an interval [a, 3] a solution of the problem on
the interval [a, B].

If @ is a solution of the problem on [a, B], then the requirement (b) shows that ¢ has a continuous first
derivative @' on [a, B].

In ordet to investigate this problem you shall need the following basic lemma.
Lemma 3.1 Let f be a continuous function defined on a domain D of the xy plane. Let ¢ be a continuous
function defined on arealinterval a < x < 3 and suchthat [x, 9(x)] DTorall x [q, B]. Let xq be
any

real number such that a < x < B. Then @ is a solution of the differential equationﬂ = f(x,y) on [a, B]

dx
and is such that @(xo) = Yo if and only if @ satisfies the integral equation
X
o) =yo+  f[t, @(t)]dt 4)
Xo
forallx [a,B].
-, : : . dy do(x) _
Proof. If @ satisfies the differential equation— = f(Xx, y) on [a, B], then = f[x, @(x)] for all
x [a, B] and the integration yields at once d dx

Xf[t, e(t)]dt+ c

o(x) = 40
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If also @(xg) = Yo, then you have ¢ =y, and so ¢ satisfies the integral equation (4) forallx  [a, B].
Conversely, if @ satisfies the integral equation (4) for all x  [a, B], then differentiation yields

do(x) _
Tdx f[x, o(x)]

forall x [a, ] and so @ satisfies the differential equation gl)): = T(x, y) on[a, B]; also the equation (4)

shows that @(Xg) = Yo. [ ]

The Existence and Uniqueness Theorem.
The following is the statement of the main theormem of this chapter.

Theorem 3.6 LetD be a domain of the xy plane, and let f be a real function satisfying the following two
requirments

(i) fiscontinuousin D; and

(i) fsatisfies a Lipschitz Condition (with respect toy) in D; that is, there exists a constant k>0 such that
[F(x, y1) = F(x, y2)| = Kly1 — y2l
forall (x, y1), (X, y2) in D.

Let (Xo, Yo) be an (interior) point of D; leta and b be such that the rectangle R : [Xx — Xo| < a,|y — Yo| = b,
liesin D; letM = max|f(x,y)|for (X,y) R;andleth= a,'\kjl

Then there exists a unique solution @ of the initial-value problem

dy _ f

— =Tf(x,y)

dx (5)
y(Xo) = Yo

on the interval [Xx — Xg| =< h. That is, there exists a unique differentiable real function @ defined on the
interval [Xx — Xo| =< h which is such that

(0) d‘gg‘) = £[x, ¢(x)] for all x on this interval; and
(i) ©(x0) =Yo

Remark 3.1 Since R liesin D, T satisfies the requirements (i) and (ii) of the Hypothesis in R. In paticular,
since T is thus continuous in the rectangular closed domain R, the constant M defined in the second
hypothesis actually does exist. If you examine more closely the number h defined in the second hypothesis

of the theorem, you would discover if a < :/I then h = a and the solution @ is defined for all x in the

. . - b b
interval [Xx — X | =< aused in defining the rectangle R. If, however,— < a, then h :M < aand so the

solution @ is assured only for all x in the smaller interval [x — Xo| =< h < a associated with the smaller
rectangle R, defined by |[x — Xo| < h <a,|y — yo| <bh.

Due to the lengthy nature of the proof of this theorem, you shall be refered to more advanced textbooks
on Ordinary Differential Equations. The ones given in the reference could be of help. But you shall be
given the method and steps of proof. 41



3.1 Existence and Uniqueness Theorem of First-Order Equations

Method of Proof

You shall prove this theorem by the method of successive approximations. Letx be such that |[x — Xo| < h.
You could define the sequence of functions

01,02, 03, ..., Qp, ...

called the successive approximations or (Picards Iterants) as follows:

0{x) = yot+  f[tygdt

Xo

9200 = yo+  Flt g:(D]dt

Xo

) (6)
@3(x) = yo+  F[t, g (¥)]dt

Xo

(Pn(X) = Yot f[L On- l(t)]dt

Xo

The proof is divided into five main steps in which you would show the following

1. The functions {@,} defined by (6) actually exist, have continuous derivatives, and satisfy the inequal-
ity [@n(X) — Yol =< bon |X — Xg| = h; and thus f[x, @,(X)] is defined on this interval.

2. The functiions {@,} satisfy the inequlity

I(pn(x) = On- 1(X)| M . (kh)n
k nl

on |X— Xo| = h.

<

3. Asn - o, thesequence of functions {¢,} converges uniformly to a continuous function @ on
[X — Xo| = h.

dy = f(X,y) on |x — Xo| = hand is such that

4. The limit function @ satisfies the differential equation q
X

?(Xo) = Yo.
5. This function @ is the only differentiable function on [x — Xo| =< h which satisfies the differential

equation 3){ = f(x, y) and is such that @(xo) = Yo.

Remarks and Examples

Notice carefully that Theorem 3.6 is both an existence theorem and a uniqueness theorem. It tells you that

if

(i) f iscontinuous, and

(i) f satisfies a Lipschitz condition (with respect toy) in the rectangle R,

Then
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3.1 Existence and Uniqueness Theorem of First-Order Equations

(a) there exists a solution ¢ of ?)/( = f(x,y), defined on|[X — X | < h, whichiissuchthat (% ) = y ;
and

(b) this solution @ is unique solution satisfying these conditions.

Example 3.9 Consider the initial-value problem

dy _ 2
dx (7)
y(0) = 0.

Here f(x,y) = y% is continuous in the rectangle R : |X| < a, |y| =< b about the origin. Thus there exists at
: d 1
leat one solution of 2 = y3 on || < h such that y(0) = 0.

X
Being assured of the existence of a solution of problem (7), you can now examine the uniqueness aspect.
If T satisfies a Lipschitz Condition on R, then Theorem 3.6 will apply and uniqueness will also be assured.
You have ) )
f(x y1) = (X y2) — ly? — ¥3
Yi— Y2 Yi— Y2

If you choosey; =& > 0andy, = — 9, this becomes

85— (=83) _ 1

6- (=98 &3

Since this becomes unbounded as & approches zero, you see that ¥ does not satisfy a Lipschitz Condition
throughout any domain containing the liney = 0, and hence notin R. Thus you can not apply theorem
3.6 to obtain a uniqueness conclusion here. On the other hand, you must not conclude that uniqueness is
impossible simply because a Lipschitz Condtion is not satisfied. The simple truth is that at this point you
can draw no conclusion one way or the other about uniqueness in this problem.

In fact, the problem does not have a unique solution; for you can actually exhibit two solutions. Indeed, the
functions @, and @, defined, respectively, by @,(x) = O for all x and

WIN
Njw

0.(x) =
0, X< 0,
are both solutions of problem (7) on the interval — oo <X < o
You can observe that theorem 3.6 is a “local” existence theorem and an existence theorem “in the small.”

For it states that if T satisfies the given hypothesis in a domain D and if (X, Yo) is a point of D, then there
exists a solution @ of

dy _
a;—ﬂxw
Y(Xo) = Yo

defined on aninterval |[x — Xg| =< h, where h is sufficiently small. It does not assertthat ¢ is defined for all
X, even if T satisfies the given hypotheses for all (x, y). Existence “in the large” can not be asserted unless
additional, very specialized restrictions are placed upon f. If f islinear in y, then an existence theorem in

the large may be proved. 43



3.1 Existence and Uniqueness Theorem of First-Order Equations

Example 3.10 Consider the initial value problem
dy 2
- —_ y
dx (8)

y(1) = -

Here f(x,y) = y? and

af(‘;(’ y) = 2y are both continuous for all (x, y). Thus using theorem 3.5 you

observe that T satisfies the hypothesis of theorem 3.6 in every rectangle
Xx-1=a, |y+1l<h

about the point (1, — 1). Asin theorem 3.6, letM = max|f(x,y)|for(x,y) R,andh =min a, Vi
Then theorem 3.6 asserts that the initial-value problem (8) possesses a unique solution definedon |x — 1| <
h.

Now in this caseM = (—1 — b)?2 = (b + 1)? and so
r

h=min a,

b
(b+1)

Now consider F (b) = 5. From Fi(b) = (g_:lb)3 you see thatthe maximum value of F (b)

L
(b+1)>
forb > Ooccurs ath = 1;and youfind F(1) = €. Thusif a = 1
' 4 4 (b+1)2

h = 5 f 1)2 , regardless of the value of a. If, however, a < =, 1 then certainly h < %1. Thus in any case
r 1

— = 1 = mi - =mi y=1
.For b l,a=z, ,h =min a,(b+1)2 min(a, £) e
This is the “best possible” h, according to the theorem. Thatis, at best theorem 3.6 assures us that
the initial-value problem (8) possesses a unique solution on an interval % = X< 45. Thus, although
the

hypotheses of theorem 3.6 are satisfied fO{ all (x,y), the theorem only assures us of a solution to our
problem on the “small” interval [x — 1] <

< aforallb > 0and so

—~
-PH—‘

h<

B

On the other hand, this not necessarily mean that the actual solution of problem (8) is defined only on
this small interval and nowhere outside of it. It may actually be defined ona much larger interval which
includes the small |x — 1| < 1 on which it is guaranteed by the theorem. Indeed, the solution of problem
(8) isreadily foundtobey = — and this is actually defined and possesses a continuous derivatives on the
interval 0 < X < o0,

Theorem 3.7 Let T be continuous in the unbounded domain D :a< x < b, —o <y < +oo . Letf satisfy

a Lipschitz Condition (with respect to y) in this unbounded domain. That is, assume there exists k > 0 such
that

[T(x, y1) — F(X, y2)| = Kly1 — Y2l
forall (x,y1),(X,y.) D.

Then a solution @ of 33)/( = f(x, y) such that @(Xq) = Yo, Where (Xq, Yo) is any pointof D, is defined

on the entire open interval a < x < b. In particular, if a= — o and b = +oo , then @ is defined for all x,
—00 <X < 400,

For example, a solution of the initial-value problem

d
d))/( =FX)y, Yy(Xo) = Yo,
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where F is continuous for — o < x < 4+ ,isdefned forall X, — 0 <X < 4+,
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3.1.3 Dependence of Solutions on Initial Condition and on the Function f

You shall be introduce to how the solution of the differential equationg = f(x, y) depends upon a slight

: i . . : . dx :
change in the initial conditions or upon a slight change int function f. It would seem that slight changes
would cause only slight changes in the solution.

In the first place, you shall consider the result of a slight change in the initial condition y(xo) = Y,. Let
T Dbe continuous and satisfy a Lipschitz Condition with respect to y in a domain D, and let (xo, Yo) be a
fixed point of D. Then by theorem 3.6 the initial-value problem

y
2 =F

y(Xo) = Yo

has a unique solution @ defined on some sufficiently small interval |x — Xo| =< ho. Now suppose the initial
y value is changed from yg to Yo. Our first concern is whether or not the new initial-value problem.

dy _ f
—= =T(x,y)
dx (9)

y(Xo) = Yo

also has a unique solution on some sufficiently small interval |x — Xo| < h;. If Ygissuch that |Yo — Yol
is sufficiently small then you can be certain that the problem (9) does posses a unique solution on some
such

interval |[x — Xo| < h;. In fact, letthe rectangle R : |[Xx — Xo| < a,|y — Yo| =< b, liein D and let Yq

be

such that |Yo — Yol 2 Then an application of theroem 3.6 to problem (9) shows that this problem has a
<<
b

unique solution Y which is defined and contained in R for [x — Xo| < hi, where h; = min a, oM and

M = max|f(x,y)| for (x,y) R. Thus you may assume that there exists & > 0 and h > 0 such that for
each Y satisfying |Yo — Yo| =< & problem (9) possesses a unique solution @(X, Yo)on [X — Xo| < h

The following is the basic theorem concerning the dependence of solutions oninitial conditions. You
can obtain the proofs of these theorems in most advanced book on Ordinary differential Equations.

Theorem 3.8 Let T be continuous and satisfy a Lipschitz Condition with respect to y, with Lipschitz Con-
stant k, in adomain D of the xy plane; and let (X, Yo) be afixed point of D. Assume there exists 6 > 0 and
h > 0 such that for each Yy satisfying |Yo — Yo| =< & the initial-value problem

= =f(xy) .
y(Xo) = Yo
possesses a unique solution @(x, Yo) defined and contained in D on |[x — Xo| < h.
If @ denotes the unique solution of (10) when Y, = y,, and @ denotes the unique solution of (10) when

Yo = Yo, where |Jo — Yo| = 81 < 9, then

lo(X) = o(X)| < 3" on |x — Xo| < h.
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Thus the solution @(X, Y,) of problem (10) is a continuous function of the initial value Yoat Yo = yo.
45
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Thus under the conditions stated, if the initial values of the two solutions @ and ¢ differ by a sufficiently
small amount, then their values will differ by an arbitrary small amount at every point of |[x — Xo| < h.

The following shows how the solution ofg = f(x, y) will change if the function f is slightly changed.
X
In this connection you have following theorem.
Theorem 3.9 1. Inadomain D ofthe xy plane, assume that

(i) T iscontinuous and satisfies a Lipschitz Condition with respect toy, with Lipschitz constant k.
(i) F iscontinuous.
(i) |F(x,y)— f(x,y)|< Efor(x,y) D.
2. Let (Xo, Yo) be apoint of D, and let

(i) @ be the solution of the initial-value problem

dy _

& - f(X, y)v

y(Xo) = Yo,
(i) W be asolution of the initial-value problem

dy _

& - f(X’ y)1

y(Xo) = Yo

(i) [x, e(x)] and [x, Y (X)] in D for |[x — Xo| < h.
Then

lo(X) — Y(X)| sEk(é‘h— 1) on [Xx= X < h.

Thus, under the hypothesis stated, if E is sufficiently small, the difference between the solutions ¢ and
Y will be arbitrary small on |[x — Xo| =< h. The following example illustrates how this result can be used to
advantage.

Example 3.11 Consider the initial-value problem.

W ryray,
y(0)=0

The differential equation of this problem may not be solved explicitly by any of the methods which you

know, but the differential equationi =y + 1can be. If x and y are sufficiently small, the difference

X
(X2 +y2+y+1)— (y+ 1) = |x*+ y?| will be less than or equal to any given E > 0. Thus the solution
of problem (11) will differ from that of the problem

dy _ y+1
y(0)=0

by an arbitrarily small amount if x and y are sufficiently small. You can thus use the explicit solution of
problem (12) to obtain information about the solution of the problem (11) in a sufficiently small neighbour-
hood of (0, 0). 46
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3.2 Existence and Uniqueness Theorem of Linear Differential Equations

This section is an extension of what you have studied in the previous section about existence and uniqueness
theorem of first order equation to that of nth other Linear Differential Equations.

3.2.1 The Basic Existence Theorem

The first concern here is the basic existence theorem for an initial value problem involving the nth order
linear differential equation

2000 Y + 810 1Y -+ a1 + 8a(y = b (13)
O axn T T dxn-1 n- 100 Ay =
where ag, ay, ..., &, 1, &n, and b are continuous on areal interval a< x < b,and ag(x) I=0ona< x <
b.
Recall thatin the lastsection you obtained an existence theorem for the general first-order initial value

d : N ,
problem d—i = (X, y),Y(Xo) = Yo, by means of the method of successive approximations. As a first step

toward obtaining an existence theorem for above mentioned existence theorem of the section 3.1 to obtain
a similar theorem concerning a system of n first-order differential equations in n unknowns.

Specifically, you have to consider a system of n first-order differential equations of the form

d

% = fl(X,Y1yY2’ T yn)

d

% =fa(X, y1,¥2, .-, Yn) 1)
dyn

a — fn()(, Y1,Y2,s ..ry Yn)

the n unknownsyy, y,, ..., ¥n, Where T, 5, ..., T, are n continuous real functions defined in some domain
D of real (n + 1)— dimensional x, y1, Y2, ..., Yn Space.

Definition 3.9 By a solution of the system you would mean an ordered set of n differential real functions

((p11 (p21 ey (pn)
defined on some real X interval a < x < bsuch that
[X1 (pl(x)! (p2(x)1 reny (pn(x)] D
and

9200 — £,1x, 010, 9200, - 0o ()]

90200 — ¢ 1,0 (9, 0 £, @ o()

don :
(pd(xX) = X, 91(X), P2(X), .., Pn(X)]

forall x suchthata< x < b.

Corresponding to theorem 3.6, you have the followiing theorem dealing with the system (14). Since its
proofs parallels that of theorem 3.6 you would merely have the outline of the major steps of the proof and
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omitthe details. 47
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Theorem 3.10 Let the functions f1, 2, ..., T, be continuous in the (n+1)— dimensional rectangle R defined

by
IX = Xo| =< a,ly1 — ¢ = by, oo, [Yn — Col =

bn

where (X, Cy, ..., Ch) is a point of real (n +1)— dimensional (X, y4, ..., Y») Space and a, by, ..., b, are positive
constants.
LetM besuch that [fi(X,y1,Y2, .. Yn)] < M fori = 1,2,..,n for all (X,y1,Y2, ..., Yn) R. Let
h=min a, — by bz b—”
MM M
Let the function f;(i = 1,2, ..., n) satisfy a Lipschitz condition with Lipschitz constant k in R. That is,
assume there exists a constant k > 0 such that

|fi(x’)71y)721 reey y_n) - fi(xlyllVZ! 17!'1)' = k(|)71 - Vll + |YZ - VZ' + .+ |)7n - Vﬂl) (15)
for any two points (X, Y1, Y2, ..., Yn), X, V1, ¥2,....¥,) R,andfori=1,2,...,n
There exists a unique solution

(pl,(pz,...,(pn
of the system

d

% = fl(X,ylvyZ’ LR yn)

d

% =T2(X Y1, Y2, . Yn) (o
d

% — fn(X,yllyZa ey Yn)

such that
©1(X0) = C1, P2(Xo) = Cy, ..., Pn(Xo) = Cp
defined for |x — Xo| < h.

Outline of Proof.
First of all define functions @; j by

(pi,O(X) = Ci (I = 11 21 ey n)
and
(pi,j(x) =C;+ fi[t, (pl,j—l(t)---w (pn,j - 1(t)]dt
Xo
(i=12,..,n;j=123.)).
Then prove by mathematical induction that all of the functions @; ; so defined are continuous and satisfy the

relations . .
M (kn)I =[x — Xo)!

|9i,;(X) — @i,j—1(X)|

J!
<

(i=1,23,..,n;) =1,2,3,...;|X = Xo| = h). Thus
also M (knh)]

|9i,i(X) — @i,j-1(9| S# 17)

kn
i=12 n'i = 1,2,3,...). This would enable you to conclude thatfor each i = 1,2,..., n, the
sSequence {(pI J} defined by
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>
9i,j(X) = @io(X) + [(pi,plg() - 0ip-1¥], 0=123,..)
p=1
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converges uniformly to a continuous function @;. You may then show that each @;(i = 1,2, ..., n) satisfy
the integral equation

0i(X) =¢; + Tilt, @.(0), ..., on(1)]dt,

Xo
on [X — Xp| =< h. From this you have at once that

<ﬂ<g(xx) =filt, Q1(0), ..., Pn(D)]

on [X — Xo| = hand @i(xo) =ci(i =1,2,...,n).

Our outline of the existence proof is thus completed. It is clear that it parallels that for the casen = 1
given for theorem 3.6. Th proof of the uniqueness in the present case also parallels that of theorem 3.6, and
you expected to make necessary changes and complete the present outline.

Theorem 3.10 can be used to obtain an existence and uniqueness theorem for the basic initial-value

problem associated with an nth order differential equation of the form

I
y®W =f (x, Yoy, y®m (18)

Definition 3.10 Consider the differential equation

y® = fxy, v,y (19)
where f is a continuous real function defined in adomain D of real (n+1)— dimensional (X, y, y', ..., y"~ Y)-

space. By a solution of the equation (10) you mean a real function ¢ having an nth derivative (and hence
all lower ordered derivatives) on areal interval a < x < b such that

X, 9(x), 9'(x), ..., 0"~ V¥] D
and @M(x) = F[x, ®(x), ¢'(X), ..., =D (x)] for all x such that a < x < b.

Theorem 3.11 Consider the differential equation
y©O =fx .y, y ] (20)

where the functiion f is continuous and satisfies a Lipschitz Condition of the form (15) in a domain D of
real (n + 1)— dimensional (x, y, Y, ...,y )-space. Let (Xq, Co, C1, ..., Cn1) be a point of D.

Then there exists a unique solution @ of the nth-order differential equation such that

®(X0) = Co, 9'(Xo) = C1, ... P V(Xg) =cCn_, (21)
defined on someinterval |x — Xo| =< h about x = X,.

3.2.2 Basic Existence and Uniqueness theorems on Linear Systems

Now, your attention will be shifted to the linear system

y1 = au(X)y1 +aw(X)yz + -+ am(X)yn +bi(x)
Yo = an(X)y1r +an(X)yz + -+ an(X)yn +ba(x)

(22)
Y = anXy: +anp(X)yz + -+ ann(X)yn + bn(x)

where the coefficients a;; and the functions b; are continuous on the interval a< x < b.
The following lemma is of great importance. 49
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Lemma 3.2 Letthe functions a;; and bj(i = 1,2,..,n;j =1,2,...,n) be continuous onthe interval a <
X<bh

Then the functions f; defined by
Fi(X, Y1, Y2, s Yn) = @in(X)y1 + @i2(X)y2 + - - + @in(X)yn + bi(%),
(i=1,2,..,n), satisfy a Lipschitz Condition on
asxsbh - <y;j<+ow(i=12,..n).
That is, there exists a constant k > 0 such that
IF(X, Y1, Y2, Yn) = FOG V1, 20 ¥l < k(Y2 — Vil +ly2 = Fol + -+ |yn —
¥nl)
forall x suchthat a < x < band any two sets of real numbersys, y,, ..., yaand ¥1, ¥, ..., ¥ (i = 1, 2, ..., n).

Proof.  Since each of the functions a;; is continuous ona < x < b, corresponding to each of these
functions there exists a constant kj; such that |a;;(x)| < kjjforallx [a,b],(i=1,2,..,n;j =1,2,..,n).
Letk = max{kj;} fori = 1,2,..,n;j = 1,2,..,n. Then |a;;(x)| = k forallx [a, b]. Then for every
X [a,b]and any two sets of real numbersys, Y-, ..., Yo and ¥, ¥, ..., ¥, you have

ITi(yu, Y2, - Yn) = §i(FL, T2, .. )l = [@in(X)y1 + @i(X)y2 + - - - + @in(X)yn + bi(X)
—ai1(X)¥1 — a2(X)¥2 — -+ = ain(X)¥n — bi(X)]

[ainpolyr = Y1l + @izpoly2 — Yol + -+ + @inpolYn — Yall
= Jlain(X)lyr = $1l + l@ai2(¥)|ly2 = T2l + - + [@in ()[lyn = nl

=< k(yr—= %l+1ly1 = Vul + -+ |y1 = $1l).

The following gives you the existence theorem concerning the linear system (22).

Theorem 3.12 Let the coefficients a;; and the functions b;, (i, ] =1, 2, ..., n) in the linear system (22) be
continuous on the realinterval a< X < b.

Let Xo be a point ofthe interval a< x < b, and letcy, c,, ..., C, be a set of n real constants.

Then there exists a unique solution
(pl’ (p2’ ey (pn
of the system (22) such that

@1(X0) = C1, @2(X0) =C2, ..., @n(Xo) = Cp,

and this solution is defined on the entire interval a< x < b.

Outline of Proof.

The system (22) is a special case of the system (16) with which theorem 3.10 is concerned, and the present
outline of proof parallels that given for theorem 3.10. You would first of all define the functions @; j by

QioX)=¢ (1=12..,n)

and 0ij(X) = ¢+



o
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[
1(
t)

01

50

1(
t)

n(
t)
Pn

1(
t)

bi (
)]
dt (23)
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(i=12,..,n;j=123.)onas x<h

The functions @; ; so defined are continuous onthe entire interval a < X < b. Also, by hypothesis there
exists M > Osuch that |aj;(X)c; + - - - + ain(X)c, +hi(X)| = M, (i=1,2,...,n),as x< h.

By the lemma the functions defined by

air(X)y1 + @ia(X)y2 + -+ + @in(X)yn + bi(X)
satisfy a Lipschitz condition ona < x < b. You can thus use the formulas (23) and this Lipschitz
condition to obtain by induction the inequality

M (kn)) =[x — Xo)!

|9i,j(X) — @i,j-1(X)] _
]!

<

(i=1,2,..,n;j =1,2,3,...) on the entire interval a < x < b. Thus also

M (knH )]

i (24)

l9i,i(X) — @ij-1(X)| =
kn

(i=12..,nj =123,..),a< x < b, where H = max(l]a — Xq|, [0 — Xo|). Theinequality
(24)

here corresponds to the inequality (17) in the proof of theorem 3.10. The remainder of the proof outlined
:‘jor thegrem 3.10 now carries over to the present case for a < x < b and you would obtain the
esire

conclusion.

Now you are in a position to obtain the basic existence theorem for the initial value problem associated
with the nth-order linear differential equation (13).

Theorem 3.13 Consider the differential equation of (13) where ay, ay, .., @,-1, &, and b are continuous
ontheinterval a< x < band ag(x) I=0ona< x < b.

Let Xo be a point ofthe interval a< x < b, and letcy, ¢4, ..., Ch_ 1 be a set of n real constants.
Then there exists a unique solution @ of (13) such that

®(X0) = Co, @'(Xo) =C1, ..., @ D(x0)cn1, (25)

and this solution is defined over the entire interval a< x < b.

Proof. Let
dy dn—l

Yi=Y, Y2 = dx’ Yn :Wr
Then the nth order linear differential equation (13) is equivalent to the linear system

Yi =Yz

}é =Y3

3 (26)
yn—l :yn

P JUE M B O N G

2 (X) a ()" A’ oa(x)
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If @isasolution of (13) which satisfies the conditions (25), then the ordered set of functions @4, @,, ..., @y,
where @, = @, @, = @', ..., @, = @1 is asolution of the linear system (26) which satisfies the conditions

©1(Xo) = Co, P2(XG1L= Cy, ..., Pn(X0) = Cn_1, (27)



5 Summary

Conversely, if @4, ..., @, is a solution of (26) which satisfies (27), then the function ¢ = @, is a solution of
the differential equation (13) which satisfies conditions (25).

The system (26) is simply a special case of the linear system (222 to which theorem 3.12 applies. Thus
the system (26) possesses a unique solution @, ..., @, defined on the entire intervala < X < b which

satisfies the conditions (27). Thus if you set @ = @, the above-noted equivalence of (13) and (25) with (26)
and (27) gives the desired conclusion. [ |

Example 3.12

Consider the initial-value problem:

d%y dy
- X—6 + (€ +4) 2+ =g X

(¢ = )&2 ( 4)dx 2x+3y ¢

y2)=0

y@2)=4
The coefficient of y is continuous except at x = — 3/2. The remaining coefficients and the non-homogeneous
term are continuous for all values of x, —o < x < o . The leading coefficients (x> — x — 6) equals
zero at x = — 2 and x = 3. Thus the hypothesis of theorem 3.13 is satisfied in every closed interval a <

X < bsuchthat —3/2 < a < xo = 2 < b < 3. Therefore the given initial-value problem has a unique
solution, and you are assured that this solution is defined over every such closed interval a< x < b.

An important corollary to this theorem concerning the homogeneous equation

dMy de-Dy
dxn +ai(x) dxn-1

This corollary, is stated and proved below

ao(x) +..+a, 1(x)?§( +a,(X)y =0 (28)

Corollary 3.1 The function @ is a solution of the homogeneous equation such that

P(X0) =0, 9'(X0) =0, ..., V(xo) =0, (29)
where X, is a point of an interval a < x < bon which the coefficients ay, as, ..., a, are all continuous and
ao(x) 1=0.

Then @(x) = Ofor all x suchthata< x < h.

Proof. Firstnotthat @ such that @(x) = Ofor all x  [a,Db] is indeed a solution of the differential

equation (28) which satisfies the initial conditions (29). But by theorem (3.13) the initial-value problem
composed of Equation (28) and conditions (29) has a unique solution ona < x < b. Hence the stated
conclusion follows. |

4 Conclusion

In this unit you have studied the Existence and Uniqueness theorem of Ordinary Differential Equations of
First order and Linear System. This has enabled you to know when a given Ordinary differential equation
has a solution, a unique solution or no solutions.

52



4 Conclusion

5 Summary

Having gone through this section, you are now able to

(i) say when afirstorder ODE has a solution, a unique solution or no solutions.

(i) saywhen afunction of two variables satisfies a Lipschitz condition on the second variable.
(iii) approximate a solution of an ODE using the Picard’s iteration.
(iv) describe the dependence of a solution on initial condition on the function f.

(v) state and apply the existence theorem for linear differential equations.

6 Tutor Marked Assigments(TMAS)

Exercise 6.1

1. Consider the initial-value problem

ﬂ — A3 _
dx_y , Y(Xo0) = Yo.

(a) Discuss the existence of a solution of this problem.
(b) Discuss the uniqueness of a solution of this problem.

2. For each of the following initial-value problems show that there exists a unique solution of the prob-

lem if yo 1= 0. In each case discuss the existence and uniqueness of a solution if y, = 0.

2/3

@ P =y Yoo =yo

® = . yxo =y

3. Foreach of the following initial-value problems find the largest interval |x| < h onwhich theorem
3.6 guarantees the existence of a unique solution. In each case find the unique solution and show that

it actually exists over a larger interval that that guaranteed by the theorem.
d
(@)Y =1+y? y0O=0.
dx

dy=¢¥, y()=0.

b
(b) o
4. Show that theorem 3.6 guarantees the existence of a unique solution of the initial-value problem
dy 2 2
— =X +y°, 0)=0
Ty vO)

Vo
: 2
on the interval |x| < 3

5. Which of the following sequences of functions {f,} defined on0 < x < 1 does not
converge uniformlyon0< x < 1.

@) Fo(x) = Xin, 0= x=1, (n=123,..).
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(b) Fr(X) = X — Xn 0=x=1 (N=123.).

1

(c) fn(x) = 1 O=sx=1 (n=123,..).
2

(d) fa(x) = m?%l 0=sx=<1, (n=123.).

6. Which of the following functions does not satisfy a Lipschitz Condition in the rectangle D defined
by x| = a,|ly| = b.
(@) T(x,y) =x* +y2
(b) f(x,y) =xsiny + ycosX.
(c) f(x,y) = x%e**Y,
(d) F(x,y) =y5

7. Consider the third-order differential equation
dy _ , ., dy, d¥y ?
o~ X YT axe
of the form (20) of the text.

(a) Does there exist a unique solution ¢ of the given equation such that

9(0) = 1,¢'(0) = - 3,¢"(0) = 0?

Explain precisely why or why not.

(b) Find the system of three first-order equations to which the given third order equation is equiva-
lent.

8. Does there exist a solution of the initial value problem

dly . dy oo
e + 2x@ + (sinx)y =0

¢~ 4)
y(0) =0,y'(0) = 1,y*(0) = 1,y*(0) = - 1?
If so, is the solution unique and over what interval are you assured that it is defined? Explain precisely.
9. Give that each of the functions f, and T, defined for all x by

) (_ 1)n+1X2n—1

fi(x) =sinx and f(x) = @n= 1)

n=1
are solutions of the initial-value problem

2
ey,
dx2
y(0)=0, y(0) =1

For all X, — o < xoo , what theorem enables us to conclude that f,(x) = f,(x) forall x, — 0 <x <
o ? Explain. 54
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10. Consider the differential equation

NG d
a0(X) d% + a1(X) % +ay(x)y =0 (30)

where ay, a; and a, are continuous for all X, — o < x < o0, and ao(x) 1= 0 for all values of x.
(a) Let  be a nontrivial solution of differential equation (30), let f* denote the derivatives and let
Xo [a,b]. Prove that if £(xo) = 0, then f!(x,) 1= 0.

(b) Let f and g be two distinct solutions of differential equation (30), and suppose there exists
Xo [a,b]such that f(Xq) = g(Xo) = O.Prove that there exists a constant ¢ such that f =cg.
[Hint: Observe that the function h defined by h(x) = Af(x) — Bg(x), where A = g'(x,) and

B = f!(Xp), is also a solution of differential equation (30).]
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1 Introduction

The subject of linear ordinary differential equations is one of great theoretical and practical
importance. Theoretically, the subject is one of simplicity and elegance. Practically, linear
differential equations originate in a variety of applications to science and engineering.

Fortunately many of the linear differential



2 Objectives

equations which thus occur are of a special type, linear with constant coefficients, for which explicit meth-
ods of solution are available.

2 Objectives

At the end of this unit, you should be able to;

(i) Use certain methods to obtain solutions of linear ordinary differential equations with constant coeffi-
cient.

(i) know some basic theorems which could be used to solve such problems.

3 Main Content

3.1 Basic Theory of Linear Differential Equations
3.1.1 Definition and Basic Existence Theorem
Definition 3.1 A Linear differential equation of order n is an equatio of the form

ao(y™ +a; )y + -+ 2,1 ()Y + an(x)y = b(x) (1)

where agq is not identically zero. It shall be assumedthat ay, ag, ..., a, and b are continuous real functioins
on arealinterval a < x < band that ag(x) /=0foranyxona<sx <bh.

The right hand member is called the nonhomogeneous term. If bisidentically zero the equation reduces
to
ao()y® +ar()y P + .- +a,1y' +an(x)y =0

and is then called homogeneous.
Example 3.1 y" + 3xy' + x3y = eXisalinear differential equation of the second order.
Example 3.2 y" + xy" + 3x?y! — 5y = sin x is a linear differential equation of the third order.

You can recall from the last unit the following basic existence theorem for initial-value problems asso-
ciated with an nth order linear differential equation:

Theorem 3.1 Consider

ao(X)y™ +a; QY + -+, 1 (XY + an(x)y =b(x) 1)

where ay, a4, ..., @, and b are continuous real functions of arealinterval a < x < band ap(x) /= x for any
xonasx<sh.
Let Xo be any point of the interval a < x < b, and letc, ¢4, ..., Ch—1 be n arbitrary constants.

Then there exists a unique solution f of (1) such that f(xo) = ¢ f'(Xo) = €1, ..., F"™D(Xo) = ¢n 1,
and this solutiion is defined over the entire interval a< x < bh.
57
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Example 3.3 Consider the initial-value problem
vl + 3xy! + x3y = e
y(1)=2

y'(1) =5

The coefficients 1, 3x and x? as well as the nonhomogeneous term eX, in this second-order differential
equation are all continuous for all values of X, —oo < x < oo. The point X, here is the point 1, which
certainly belongs to this interval; and the real numbers ¢, and c; are 2 and —5, respectively. Thus theorem
3.1 tells you that a solution of the given problem exists, is unique, and is defined for all X, —co < x < oo,

Example 3.4 Consider the initial-value problem

2y + xy''+ 3x%y! — 5y = sinx

y(4)=3

y'(4)=5
__r

y'(4) = 5

Here you have a third-order problem. The coeffiecients 2, x, 3x2, and —5, as well as the nonhomogeneous
term sin x, are all continuous for all x, —oo < X < oo. The point X, = 4 certainly belongs to this interval,
the real numbers c,, ¢; and ¢, in this problem are 3, 5 and — %, respectively. Theorem 3.1 tells you that this
problem has a unique solution which is defined for all x, —oo < x < oo,

A useful corollary to theorem 3.1 is the following:

Corollary 3.1 Lety be asolution of the homogeneous equation
ag()y™ +a;(x)y" P + - +any' +an(x)y =0 2

such that y(Xo) = 0,y'(X0) = 0, ..., yY("™1(xo) = 0, where X, is a point of the interval a < x < b in which
the coefficients ag, ay, ..., &, are all continuous and ag(x) /= 0.

Theny(x) =0forallxona<x <h.

Example 3.5 The solution y of the third-order homogeneous equation

y||| + 2y|| + 4Xy| + XZy =0

which is such that
y=y'2=y"2=0
is the trivial solution y such that y(x) = Ofor all x.

3.1.2 The Homogeneous Equations

Here you shall be considering the fundamental results concerning the homogeneous equations (2). First is
the statement of the basic theorem: 58
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Theorem 3.2 Basic Theorem on Linear Homogeneous Differential Equations Let yy, Y, ..., Ym be any
m solutions of the homogeneous linear differential equation (2).

Thencyy; + ¢y, + -+ - + CYm IS @lso a solution of (2), where ¢4, ¢y, ..., C, are arbitrary constants.

You could put this theorem in a very simple form by means of the concept of linear combination, which
is now introduced to you.

Definition 3.2 If y4,Y>, ..., Ym are m given functions, andc, ..., C;, are constants, the the expression

Ciyr +Cy2 + - +Cmym

is called alinear combination of yy, Y5, ..., Ym-
In terms of this concept, theorem (3.2) may be stated as follows:

Theorem 3.3 (Theorem 3.2 restated) Any linear combination of solutions of the homogeneous linear dif-
ferential equation is also a solution of (2)

Example 3.6 You could verify that sin x and cos x are solutions of
y” +y=0.
Theorem 3.2 statesthat ¢, sin X + ¢, cos X is also a solution for any constants ¢, and c,. For example,
5sinx + 6.cos X

is a solution.

Example 3.7 Youshould be able to verify that X, e, and e?¥ are solutions of
y||| _ 2y|| _ yl + 2y: 0

Theorem 4.2 states thaty(x) = c;€% + c,e™ + cze®* is a solution for any constants ¢, ¢, and c;. For
example,

2
y(X) =2* =3 + éezx
is a solution.

Here you shall consider what constitutes the general solution of 4.2. To understand this, you would first
be introduced to the concepts of linear dependence and linear independence.

Definition 3.3 Then n functions yq, Y, ..., ¥, are called linearly dependentona < x < b if there exists
constants, ¢4, C, ..., C,, not all zero such that

C1y1(X) + Cay2(X) + -+ Cryn(x) =0

forall x suchthata< x < h.

In particular, two functions y; and y, are linearly dependent ona < x < b if there exists constants
C4, C», NOt both zero, such that

C1y1(X) + Coy2(x) =0
forall x suchthata< x < h. 59



3.1 Basic Theory of Linear Differential Equations

Example 3.8 You could observe that x and 2x are linearly dependent on the interval 0 < x < 1. For there
exists constants ¢, and ¢, not both zero such that

CiX+Cy(2X) =0

for all x on the interval —1 < x < 2. For example, letc; = 2,¢, = —2.

Example 3.9 You could observe that sin X, 3 sin x, and — sin x are linearly dependent on the interval —1 <
X < 2 for there exists constants ¢y, C,, C3, not all zero, such that

CySin X + Cy(3sinx) + c3(—sinx) =0

for all x on the interval —1 < x < 2. For example, letc, =1,¢c, =1,¢c3 = 4.

Definition 3.4 The n functions y,, ...y, are called linearly independent on the interval a < x < b if they
are not linearly dependent there. That is, the function yy, ..., y, are linearly independentona < x < b if
the relation

Ciyp+ - +Cyn =0

for all x suchthat a < x < bimplies that
Ci=¢c=--=¢,=0.

(in other words, the only identically vanishing linear combination of y,, ..., y, is the “trivial” linear combi-
nation
0-y1+0-yo+ - +0-yn).

Example 3.10 You could observe that x and x? are linearly independent on 0 < x < 1, since ¢;X+C,x%> =0
for all x on 40 < x < 1implies that both ¢, = 0and ¢, = 0.

Theorem 3.4 The nth order homogeneous linear differentia equation (2) always possesses n solutions
which are linearly independent. Further, if yq, Y,, ..., y» are n linearly independent solutions of (2), then
every solution y of (2) can be expressed as a linear combination

y =Ciy1 + -+ Cn¥n

ofthese n linearly independent solutions by proper choice of the constants, ¢, ..., Cn

The above theorem helps us to formulate the meaning of a general solution of an nth order homogeneous
linear differential equation as follows:

Definition 3.5 (General Solution) If yq, Y5, ..., Y, are n linearly independent solutions of the nth order
homogeneous linear differential equation (2) on a < x < b, then the function y defined by

Y(X) = C1y1(X) + -+ Cpyn(X), asx<bh,

where ¢y, ..., C, are arbitrary constants, is called a general solution of (2)ona<x <b.

Thus if you can find n linearly independent solutions of (2), you can at once write the general solution
of (2) as a linear combination of these n solutions.
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Example 3.11 You have observed that sin x and cos x are solutions of y" +y = 0 for all x, —co < X < oo.
Further, you can verify that these two solutions are linearly independent. Thus the general y solution may
be expressed as the linear combination

y(X) = ¢y sin X + ¢, CoS X

where ¢, and ¢, are arbitrary constants.

Example 3.12 The solutions €%, ™! and e* of
y||| _ 2y|| _ yl + 2y: 0

may be shown to be linearly independent for all X, —oo < x < oo. Thus the general solution y may be
expressed as the linear combination

y(X) = ci€* + ce % + cge?,

where ¢y, C,, and ¢ are arbitrary constants.

The next theorem gives you a simple criterion for determining whether or not n solutions of (2) are
linearly independent. Before that, you need the following concept.

Definition 3.6 Lety;, ..., Yy, be n real functions each of which hasan (n — 1)st derivative on areal interval
a < x < b. The determinant

Y1 Y2 - Yn
i Y Yh
W(yl! y2! ey Yn) =
y:En—l) yZ(n—l) yr(]n—l)

in which primes denote derivatives, is called the Wronskian of these n functions. You can observe that
W (Y1, Yo, ..., Yn) is itself areal function defined ona < x < b. Its value at x is denoted by W (y1, Yo, ..., Yn)(X).

Theorem 3.5 The n solutions y,, Y,, ..., Y» Of the nth order homogeneous linear differential equation (2)
are linearly independenton a < x < b if and only if the Wronskian of y4, y», ..., ¥, is different from zero for
some x ontheinterval a< x < b,

You have further:

Theorem 3.6 The Wronskian of n solutions yy, ys, ..., Y, Of (2) is either identically zeroona < x < bor
elseisneverzeroona<x < h.

Thus if you can find n solutions of (2), you can apply the theorems (3.5) and (3.6) to determine whether
or not they are linearly independent. If they are linearly independent, then you can form the general solution
as a linear combination of these n linearly independent solutions.

In the case of the general second-order homogeneous linear differential equation
ao(x)y"+ a1 (x)y' + ax(x)y =0,

the Wronskian of two solutions y; and y; is the second-order determinant

;’.1 2 =yl —yly,.
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Example 3.13 You can apply theorem 3.5 to show that the solutions sin x and cos x of
y'+y=0
arelinearly independent.

. sinX  cosXx .
W (sinx, cosx) = : = —sin’x —cos’x = —1/=0.
COSX —sinx

Thus since W (sin x, cos X) /= 0, you would conclude that sin x and cos x are indeed linearly independent.
Example 3.14 The solutions €%, e7, and ** of
y||| _ 2y|| _ yl + 2y: 0

arelinearly independent, for

eX e X e 1 11
W(eX, e ™ e*)= e —e* 2% = 1 —1 2 =—-6e>/=0.
X eX e 1 14

3.1.3 Nonhomogeneous Equation
You shall now consider breifly the nonhomogeneous equation
ap()y™ +a;(y"H + -+ a1 (X)y' + an(x)y = b(x) 1)

The basic theorem dealing with this equation is the following

Theorem 3.7 Let v be a any soluton of the given (nonhomongeneous) nth-order linear differential equation
(2). Let u be any solution of the corresponding homogeneous equation

ao()y™ +ai )y + -+ a1 ()Y +an(x)y =0 2
Then y=u+v is a solution of the given (nonhomogeneous) equation (1).

Example 3.15 Observet that y = x is a solution of the nonhomogeneous equation
y'+y=x

and that y = sinx is a solution of the corresponding homogeneous equation
y'+y=0.

The by theorem 3.7, the sum
y =sinx + X

is also a solution of the given nonhomogeneous equation
y'+y=x

You can check that this is indeed true. 62
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Definition 3.7 Consider the nth-order (nonhomogeneous) linear differential equation
ao(y™ +a ()y" ™V + -+ a, 1 (X)y' + an (X)y =b(x) 1)
and the corresponding homogeneous equation
ao()y™ +a, )y + -+ a1 ()Y +an(x)y =0 (2)
1. The general solution of (2) is called the complementary function of equation (1) and is denoted by

Ye-

2. Any particular solution of (1) involving no arbitrary constantsis called a particular integral of (1),
denoted by y,.

3. The solution y = y.+Y, of (1), where y_ is the complementary function andy, is a particular integral
of (1) is called the general solution of (1).

Thus to find the general solution of (1), you need merely find:

(a) The complementary function, that is the general linear combination of nlinearly independent solutions
of the corresponding homogeneous equation (2); and

(b) a particularintegral, that is, any particular solution of (1) involving no arbitrary constants.

Example 3.16 Consider the differential equation.
y'+y =X
The complementary function is the general solution
Yc = €1 Sin X + €, COS X
of the corresponding homogeneous equation
y'+y=0.

In particular integral is given by
Yp = X.
Thus the general solutionof the given equation may be written

Y =Yc+Yp=CiSiNX+CC08X + X.

The remaining sections of this unit, shall be devoted to study methods. of
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3.2.1 Homogeneous Linear Equations with Constant Coefficents.

As you have already said, the general form of a homogeneous linear Ordinary Differential Equation with
constant coefficients is given by (4) i.e.,

agy® +ayy™H 4.+, qy +ay =0 4)

where ag, ay, ..., an—1, a, are constants.

In order to solve this equation, you would first of all assume a trial solution of the form

y(x) =e™ )
Differentiating and substituting this in (4), gives you
QA" e™ + a A"+ g, e +a,e™ =0
or
@A\ +a A"t + - +ap A +a,) =0.

Since e™ /= 0, you obtain that the polynomial equation in the unknown A :
a\" +a A"+ +a, 4 A+a,=0 (6)

This equation is called the auxilliary equation or the characteristic equation of the given differential equa-
tion (6). If y = e is a solution of (4) then you see that the constant A satisfy (6). Hence to solve (5), you
write the auxiliary equation (6) and solve it for A. Observe that (6) is formally obtained form (4) by merely
replacing the kth derivative in (4) by AX(k = 1, 2, ..., n). Three cases arises, according as the roots of (6)
are real and distinct, real and repeated, or complex.

3.2.2 Case |. Distinct Real Roots

Suppose the roots of (6) are the n distinct real numbers
A A2,y e A

Then
ghix ghaX @AX

are n distinct solutions of (4). Further, using the Wronskian determinant one may show that these n solutions
are linearly independent. Thus you have the following result.

Theorem 3.8 Consider the nth-order homogeneous linear differential equation (4) with constant coeffi-
cients. If the auxilliary equation (6) has the n distinct real roots A4, A, ..., Ay, then the general solution of
(6)is

y= Cle)\lx + Cze}\zx .+ Cne)\nx

where ¢4, C,, ..., C, are arbitrary constants.

Example 3.17 y"-3y' +2y=0
The auxiliary equation is
M —3\+2=0.

Hence
A=—2DA—2px=0, \{ =1\, =2.
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The roots are real and distinct. Thus eX and e2* are solutions and the general solution may be written
y = c;€° + ce®
You can verify thzt ex g(nd e? areindeed linearly independent. Their Wronskian is
W (eX,e?) = v = 3 /= 0. Thus by theorem 3.5, you are sure of their linear independence.
ex 2e%
Example 3.18 y'' — 4y'' + y' + 6y = 0. The auxilliary equation is
N —4AN+A+6=0,

You could observe that A = —1 isaroot of this equation. By sythetic division, you obtain by factorization

A +1)(A2—5\A+6)=0

or
(\+ 1)\ —2)A —3) =0

Thus the roots are the distinct real numbers
)\l = —1,)\2 = 2,}\3 =3

and the general solution is
y = e + g0 + ¢,

3.2.3 Case Il. Repeated Real Roots
For a better understanding, you can begin the study of this case by considering a simple example.

Example 3.19 Anintroductory Example. Consider the differential equation

y'—6y'+9y=0. (7)
the auxilliary equation is
M —B6A+9=0
or
A—3)2=0
The roots of this equation are
)\1 = 3, )\2 = 3.

(real but not distinct). Corresponding to the root A;, you have the solution e, and corresoponding to A, you
have the same solution e3%. The linear combination c,e®* + ¢,e>* of these “two” solutions is clearly not the
general solution of the differential equation (7), for it not a linear combination of two linearly independent
solutions. Indeed, you may write the combination c,e® + c,e¥ as simply coe®*, where ¢, = ¢; + ¢,; and
clearly y = cqoe®*, involving one arbitrary constant, is not the general solution of the given second-order
equation.

You must find a linearly independent solution; but how can you proceed to do so? Since you already
know the one solution 3%, you may set
y =e%u (8)

where u is to be determined. Then 65
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y' = e3¥u6l + 3e®*u.
yII = o3yl + 63y + 9634,

Substituting into equation (7) you have

@>u'" + 6e>u' + 9e*u) — 6(e>*ubl + 3e®u) + 9e>u.

or
eSXyll =0
Letting w = u', you have the first-order equation
e3XW| =0
Or simply
w'=0

The general solution of this first-order equation is simply w = ¢, where c is an arbitrary constant. Choosing
the particular solution w = 1 and recalling that u' = w, you find

u=X-+Cco

where ¢, is an arbitrary constant. For any constant co, you could verify that ue® = (x + cy)e® is a solution
of the given second order equation (7). Now you can also verify that this solution and the previously known
solution e3* are linearly independent. Choosing ¢, = 0, you obtain the solution

y = Xe3x,
and thus corresponding to the double root 3 you find the linearly independent solutions

e>andxe®

of equation (7) Thus the general solution of equation (7) may be written
y = 183X + coxe® 9)

or

y = (c1 + cox)e. (10)
With this example as a guide, you can return to the general nth-order equation (4). If the auxilliary equation
(6) has the double real root A, you would surely expect that e™ and xe™ would be the corresponding

linearly independent solutions. This is indeed the case. Specifically, suppose the roots of (6) are the double
real root A and the (n — 1) distinct real

)\11 )\21 LRRS} AI’]—2
Then linearly independent solutions of (4) are

e)\x1 Xe)\x, eMX, e)\2x1 - e)\n_gx

and the general solution may be written

y = Cle)\x + sze)\x + C3e)‘1x + C4e)\2x + ..+ CneAn_zx.

or

y= (Cl + sz)eAx + C3e)‘lx + C4e)\2x + ..+ CneAn_zx.

In like manner, if the auxilliary equation (6) has the triple real root A, corresponding linearly independent
solutions are 66
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e xeMandxZeMx,

The corresponding part of the general solution may be written
(C1 + CoXx + c3x2)e™.
Proceeding further in like manner, you could summarize case Il in the following theorem:
Theorem 3.9 (i) Consider the nth order homogeneous linear differential equation (4) with constant

coefficients. If the auxilliary equation (6) has the real root A recurring k times, then the part of the
general solution of (4) corresponding to this k-fold repeated rootis

(C1 + CoX + Cax2 + - - + gxK1)e?,

1. (ii) If, further, the remaining roots of the auxiliary equation (6) are the distinct real numbers Ag.1, ..., An,
then the general solution of (4) is

Y = (C1+ CoX + CaX2 + -+ - + XM + g M+ e,

2. If, however any of the remaining roots are also repeated, then the parts of the general solution of (4)
corresponding to each of these other repeated roots are expressions similar to that corresponding to
A in part (i)

Here are some examples

Example 3.20 Find the general solution of

Yl — 4yl — 3y + 18y = 0
The auxilliary equation.

N —4N—-3A+18=0
hasroots 3, 3, —2. The general solution is

y = 183X + coxe® + ciem

or
y = (C1 + Cox)e>* + cze ™,
Example 3.21 Find the general solution of

y(iv) _ 5y||| + 6y” + 4y| — 8y =0.

The auxilliary equation is
M —BN+6M+41—-8=0

with roots 2, 2, 2, —1. The part of the general solution corresponding to the threefold root 2 is
y = (C1 + CoX + C3x*)e™

and that corresponding to the simple root —1 is simply

X

y = Cse”

Thus the general solution is
Y = (C1 + Co%7+ Cax?)e™ + e
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3.2.4 Case Ill. Conjugate Complex Roots

Now suppose that the auxiliary equation has the complex number a + bi (a, breal, i? = —1,b /= 0) as
a nonrepeated root. Then, sinc the coefficients are real, the conjugate complex number a — bi is also a
nonrepeated root. The corresponding part of the general solution is

kle(a+bi)x + kze(a—bi)x’

where k; and k; are arbitrary constants. The solutions defined by e®@*P)* and e@~P)* gre complex functions

of the real variable x. It is desirable to replace these by two real linearly independent solutions. This can be
accomplished by using Euler’s Formula,

e® =cosf+isind

which holds for all real 6.
Using this you have:

kye@+bDX 4 k,e(@-b)x = | @axabix 4 |, gaxg=bix
= e[ke® + koe7iP¥]
= e®[ky(cos bx + isinbx) + ky(cos bx — i sin bx)]
= e*[(ky + k) cosbx + i(k; — k) sin bx]

= e¥[cy sinbx + ¢, cos bx]

where ¢; = i(ky — k»), ¢, = ky + k, are two new arbitrary constants. Thus the part of the general solution
corresponding to the nonrepeated conjugate complex roots a + bi is

e®[cy sinbx + ¢, cos bx].
Combining this with the results of case I, you have the following theorem covering case Ill.
Theorem 3.10 1. Consider the nth order homogeneous linear differential equation (4) with constant

coefficients. If the auxiliary equation (6) has the conjugate complex roots a+bi and a-bi, neither
repeated, then the corresponding part of the general solution of (4) may be written

y = e¥(c; sinbx + ¢, cos bx).

2. If, however, a+bi and a-bi are each k-fold roots of the auxiliary equation (6), then the corresponding
part of the general solution of (4) may be written

y = e¥[(Cy + CoX + C3x2 + -+ + XN 1) sinbX + (Caq + ChaaX + CragX? + - + CuX¥7 1) cos bx]
Here are some several examples.

Example 3.22 Find the general solution of
y'+y=0
You have already used this equation to illustrate the theorems of section 3.1. You could now obtain its

solution using theorem 3.10. The auxiliary equation A> + 1 = 0 has the roots A = =i. this are the pure
imaginary complex numbers a £ bi, where a = 0, b = 1. The general solution is thus

y =r®™(c;sin1-x+cycos1 - Xx),

which is simply
Y = Cy §) X + C, COS X
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Example 3.23 Find the general solution of
y'—6y' +25y =0

The auxiliary equationis A> — 6\ + 25 = 0.
Solving it, you find vV
6= 36— 100 _ 6*8i

2 2
Here the roots are the conjugate complex numbers a = bi, where a = 3, b = 4. The general solution may be
written

A= =3x4i.

y = e¥(cy sin 4x + ¢, cos 4X).

Example 3.24 Find the general solutio of
y™ — 4y + 14y" —20y' + 25y = 0

The auxiliary equation is
m* — 4m3+ 14m?— 20m + 25 = 0.

The solution of this equation presents some ingenuity and labor. Since our purpose in this example is not
to display your mastery of the solution of algebraic equation but rather to illustrate the above principles of
determining the general solution of differential equation, you can verify that the roots are

1+2i,1—2i,1+2i,1—2i
Since each pair of conjugate roots is double, the general solution is

y = e*[(cy + ) Sin 2X + (C3 + C4) €OS 2X]

3.2.5 An Initial-Value Problem

Here is an application of the results concerning general solutions of homogeneous linear equation with
constants to an initial-value problem involving such an equation.

Example 3.25 Solve the initial-value problem

y'—6y' +25y =0 (11)
y(0) = -3 (12)
y'(0) = -1 (13)

First note that by theorem 3.1, this problem has a unique solution defined for all X, —co < x < co. You can
now proceed to find this solution; that is, you seek the particular solution of the differential equation (11)
which satisfies the two initial conditions (12) and (13). You have already found the general solution of the
differential equation (11) in example 3.23. It is

y = e¥(c; sin 4x + ¢, cos 4Xx). (14)

From this, you find
y' = e[(3c; — 4c,) sin 4x + (4c¢, + 3c,) cos 4x]. (15)

You can now apply the initial conditions. Applying condition (12), y(0) = —3. to equation (14), you find

—3 = e%wpsin 0 + ¢, cos 0)



3.2 General Theory for Linear Differential Equations with Constant Coefficent

which reduces at once to
c,=-3 (16)

Applying condition (13), y'(0) = —1, to Equation (15), you obtain
—1 = e°[(3c; — 4c,) sin 0 + (4c; + 3c,) cos 0]

which reduces to
4cy +3c, = —1 a7
Solving Equation (16) and (17), you find
=2
c, = —3.

Replacing ¢, and ¢, in Equation (4.19) by these values, you obtain the unique solution of the given
initial-value problemin the form
y = e¥(25sin 4x — 3cos 4x).

/7 N
You may write this in an alternate form by first multiplying and dividing by  (22) + (-3)2 = 13 to

obtain v r |
y= 13X o sindx — v cos 4x
13 3

from this you may express the solution in the alternate form
V__
y = 13e¥*sin(4x + o),

where the angle @ is defined by the equations

sing = —\A
13
cosQ = \%

3.2.6 The Method of Undetermined Coefficients

You will be dealing with the (nonhomogeneous) differential equation
aoy™ +ay" YV + - an gy +any = b(x) (18)

where the coefficients ay, a;, ..., &, are constants but where the nonhomogeneous term b is (in general) a
nonconstant function of x. Recall that the general solution of (18) may be written

Y=Yt VYp

where y. is the complementary function. that is the general solution of the corresponding homogeneous
equation (equation (18) with b replaced by 0), and y, is a particular integral, that is, any solution of (18)
containing no arbitrary constants. In last section, you learnt how to find the complementary function, now
you will consider methods of determining a particular integral.

You shall first consider the method of undetermined coefficients. Mathematically speaking, the class of
functions b to which this method applies is actually quite restricted; but this mathematically narrow class
includes functions of frequent occurrence and considerable importance in various physical applications.
And this method has one distinct advantage - when it does apply, it is relatively simple.

The following are some preliminary definitior®
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Definition 3.8 You should call a function UC function if it is either

1. A function defined by any of the following

(@) x", where n is a positive integer or zero.

(b) e®, whereaisaconstant /= 0.

(c) sin(bx + c), whereband c are constants, b /= 0.
(d) cos(bx + c¢), whereband c are constants, b /= 0.

or

2. A function defined as a finite product of two or more functions of these four types.

The method of undetermined coefficients applies when the nonhomogeneous function b in the differ-
ential equation is a finite linear combination of UC functions. Observe that given a UC function f, each
successive derivative of T is either itself a constant multiple of a UC function or else a linear combination
of UC functions.

Definition 3.9 Consider a UC function f. The set of functions consisting of f itself and all linearly in-
dependent UC functions of which the succesive derivatives of f are either constant multiples or linear
combinations will be called the UC set of T.

Example 3.26 The function f defined for all real x by f (x) = x® is a UC function. Computing derivatives
of f, you find

f'(x)=3x%, fl'(x)=6x, f'=s¢,
fW(x) =0 forn>2.

Examples

Below are a few illustrative examples which gives you the procedure for finding the particular integral using
the method of undetermined coefficients.

Example 3.27
y'— 2y! — 3y = 2e* — 105sinx.
The corresponding homogeneous equation is
y'-2y'=3y=0

and the complementary function is

X

Ve = C1€¥ + ce”

The nonhomogeneous term is the linear combination 2e* — 10sin x of the two UC functions given by e*
and sin x.

1. Form the UC set for each of these two functions. You find

S;={e*}
S, = {sinx, cos x}.

2. Note that neither of these sets is identical with nor included in the other; hence both are retained.
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3. Furthermore, by examining the complementary function, you see that none of the functions €*, sin x, cos x
in either of these sets is a solution of the corresponding homogeneous equation. Hence neither set
needs to be revised.

4. Thus the original setS; and S, remain intact in this problem, and you form the linear combination
Ae* + B sinx + C cos x
of the three elements €%, sin x, cos x of S; and S,, with the undetermined coefficients A, B, C.

5. You can determine these unknown coefficients by substituting the linear combination formed in step
(4) into the differential equation and demanding that it satisfies the differential equation identically.

That is, you take
Yp = Ae* + B sinx + C cos x

is a particular solution. Then
yp = Ae*+ B cosx — Csinx
yp = Ae*— B sinx — C cosx

Substitution, gives you
[Ae* — B sinx — C cosx] — 2[Ae* + B cosx — C sinx] — 3[Ae* + B sinx + C cos x] = 2e* — 10sinx

or
—4Ae* + (—4B + 2C) sinx + (—4C — 2B) cos x = 2e* — 10sin x.

Equating coefficients of like terms, you should obtain the equations

—4A =2
—4B +2C =-10
—4C — 2B = 0.
From these equations, you find that .
A=
B=2
c=-1
and hence you obtain the particular integral
¥y = ;ex+ 2sinx — cos X

Thus the general solution of the differential equation under consideration is
1 .
Y =Y+ Y, =18+ e — éex + 25sinX — cos X
Example 3.28 Initial-Value Problem This section will be closed by applying the results to the solution to
the initial-value problem

y!'—2y! — 3y = 2eX — 10sinx,

y(0) =2

y'(0) =4.72
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By theorem 3.1, this problem has a unique solution, defined for all X, —co < X < oo; So you can now
proceed to find it. In example 3.27, you found that the general solution of the differential equation is

1 .
y = Ce3X + e — > + 2sin X — COS X.
From this, you have
_ 1 .
yl = 3c.e® —ce X — éex + 2c0sX + sinx.

Applying the initial conditions to the last two equations, respectively, you have

2=’ +ce’ — ;e°+23in0—coso

1 .
4 = 3c,e% — el — éeo +2c0s0+sin0
These equations simplify at once to the following:

7
C]_+C2=§

5
3C1—C2:§

From these two equations you obtain

6=
179

C, = 2.

Substituting these values for ¢, and c, into the general solution you obtain the unique solution of the given
initial-value problem in the form

y = ;’e?»x +2e7 X — ;ex + 2sinX — COS X.

3.2.7 Variation Of Paramenters
The Method

While the process of carrying out the method of undetermined coefficients is quite straightforward (involv-
ing only techniques of college algebra and differentiation, the method applies in general to a rather small
class of problems. For example, it does not apply to the apparently simple eqution

y'+y=tanx

You thus need a method of finding a particular integral which applies in all cases of variable coefficients) in
which the complementary function is known. Such a method is called method of variation of parameters,
which you would now consider.

This method shall be developed with the general second order differential equation with variable coef-
ficients
ao(x)y"+ ar(x)y' + a2(x)y = b(x) (19)
Suppose that y; and y, are linearly independent solutions of the corresponding homogeneous equation

ao(X)y"+ azéx)y' + ax(x)y =0 (20)
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Then the complementary function of equation (19) is

C1y1 + CoYa,

where ¢, and ¢, are arbitray constants. The procedure in the method of variation of parameters is to replace
the arbitray constants c; and c, in the complementary function by respective functions v; and v, which will
be determined so that the resulting function

Viy1+ Vayo (21)

will be a particular integral of equation (19) (hence the name, variation of parameters). conditions that (21)
be a solution of (19). Since you have two functions but only one conditions on them, you are thus free to
impose a second condition, provided this second condition does not violate the first one. You shall see when
and how to impose this additional condition asyou proceed.

You thus assume a solution of the form (21) and write
Yp = Viy1 + VaYa, (22)
Differentiating (22) you would have
Yo = Vay} + Vayh + Viy1 + Vhyo (23)

At this point, you should impose the condition;

Viy1+V3y2 =0 (24)

With this condition imposed, (33) reducesto
Yp = ViY1 + V2. (25)

Now differentiating (25), you should obtain
Yo = ViY] + VoY + ViY + Voys. (26)

Now impose the basic condition that (22) be a solution of equation (19). Thus you substitute (22), (25), and
(26) fory,y', and y', respectively, in equation (19) and obtain the identity

aolvayy + Voyy + Wiy + Y]+ ag[vayy + vays] + aviys + Vayo] = b

This can be written as

vi[aoy] + aiy; + azy1] + Va[aoyh + aiyyazyz] + aolVyy + Vhyy] = b (27)

Since y; and y; are solutions of the corresponding homogeneous differential equation (20), the expressions
in the first two brackets in (27) are identically zero. This leaves merely

b
Viyy + VoY, = P (28)

This is actually whatthe basic conditioin demands. Thus the two imposed conditions require thatthe
functions v, and v, be chosen such that the system of equations

Y1Vi "'yz\é =0

. (29)

Iyl 4 ylyl =
YV Y2V a
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is satisfied. The determinant of coefficients of this system is precisely

_ Y1 ¥
W (y1,Y2) =
(Y1, Y2) R
Since y; and y, are linearly independent solutions of the corresponding homogeneous differential equations
(20) you know that W (y, y») /= 0. Hence the system (29) has a unique solution. Actually solving the
sytem you obtain
0 Y2

b
v = ao % _ by,
= =

Y1 Y2 aoW (Y1, Y2)
V1 Y2

yr 0
y
T b

d  _ Y1

Y1 Y2 aW (y1,Y2)
Vi Vi

Thus you obtain the functions v; and v, given by

I —
V2—

* b(t)yo(t)dt

vi(X) = —
169 ALOWIY 10, yAD]
(30)
X b(t)y, (t)dt
o) = Oy
ag(t)W [ya(t), y2(t)]
Therefore a particular integral of equation (29) is
Yp = Viy1 + VaYa,
where v, and v, are defined by (30)
Examples
Example 3.29
y'+y =tanx (31)
The complementary function is
Ye = €1 SiN X + C, COS X.
Assume
Yp = ViSiNX + V,COS X, (32)

where the functions v; and v, will be determined such that this is a particular integral of the differential
equation (31). Then using the formulas above, you obtain

0 COoS X
tanx —sinx —cos X tan X .
V), = — = = sinXx
siInX  COoS X -1

COSX —sSinX
75
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sin X 0
CosSX tanx —sinx tan x sin®x  cos?x —1
VI1 — . e - -
SinX CoSX =— = =C0SX SEecX.
COSX —sSinX -1 COS X COS X

Integrating you find:
Vi = —CO0SX + C3
Vo, =sinX —In|secx +tanx| + ¢4

Substituting (33) into (32) you have

(33)

Yp = [—cC0sX +cz]sinx + [sinx — In|secx + tan x| + ¢4] cos x
= —sinXcosXx + Cc3Sin X + sinx cosx — In | secx + tan x|(cos x) + ¢4 oS X

= C3Sin X + ¢4 c08X — (cos x)[In | secx + tan x|].

Since a particular integral is a solution free of arbitrary constants, you may assign any particular values A
and B to ¢z and ¢, respectively, and the result will be the particular integral

Asinx + B cosx — (cos x)[In | secx + tan x|].
Thusy =y, + y, becomes:
y = CySinX + c,cosX + Asinx + B cosx — (cosx) In| secx + tan x|
which you may write as
y = C;sinx + C,c0sX — cosX — (cosXx) In|secx + tan x|,

where C;, =c¢; + A, C, =¢, + B.

Thus you see that you might as well have chosen the constants c; and ¢, both equal to 0 in (33). for
essentially the same result, y = ¢, sin X + ¢, cos X — (cos x) In | sec X + tan x|, would have been obtained.
This is the general solution of the differential equation (31).

The method of variation of parameters extend to higher order linear equations. The proof of the validity
of this method for the general nth-order equation will not be given in this work, you can find it in advanced
text of ODE.

4 Conclusion

In this unit, you have studied the basic theory of linear differential equations and have used the explicit
methods described in this unit to obtain the general and particular solutions of differential equations with
constant coefficients.

5 Summary

Having gone through this unit, you now know;

1. the basic theory of nth order linear ordinary differential equations.

2. how to obtain the solutions to a given ODExsing the explicit method described in this unit.
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Exercise 6.1

1. Theorem 3.1 applies to one of the following problems but not to the other. Determine to which the
problems applies and state precisely the conclusion which can be drawn in this case. Explain why the
theorem does not apply to the remaining problem.

yll+5yl+6y:ex yll+5yl+6y:ex
@ y(0)=5 (b) y(0)=5
y'(0) =7. y'(1) =7.

2. Answer orally: What is the solution of the following initial-value problem? Why?
y(1)=0
y'(1)=0.
3. Consider the differential equation
y'—s5y' + 6y = 0.
(a) Show that €2 and e3* are linearly independent solutions of this equation on the interval —oco <
X < oo,
(b) Write the general solution of the given equation.
(c) Find the solution which satisfies the condition y(0) = 2, y'(0) = 3. Explain why this solution is

unique.

4. Consider the differential equation

x2y'+ xy'— 4y =0

(a) Show that x? and x—lz are linearly independent solutions of this equations of this equation on the
interval 0 < X < oo.

(b) Write the general solution of the given equation.

(c) Find the solution which satisfies the conditions y(2) = 3, y'(2) = —1. Over what interval is this
solution defined?

5. The functions e* and e** are both solutions of the differential equation
y'—5y' +4y=0.

(a) Show that these solutions are linearly independent on the interval —co < x < co.

(b) What theorem enables you to conclude at once that 2eX — 3e** is also a solution of the given
differential equation?

(c) Show that the solution of part(b) and the solution e* are also linearly independent on —co <
X < oo,

77
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6. Given that e™, e3* and e** are all solutions of
y||| _ 6y" + 5y| + 12y — 0’

show that they are linearly independent on the interval —co < x < oo and write the general solution.
Exercise 6.2

Find the general solution of each of the differential equations in the following exercises.

1. y"-5y' +6y=0.
2. y"-2y'—3y=0.
3. 4y" —12y' + 5y = 0.
4. 3y" —14y' — 5y = 0.
5.yl — 3yl —y! +3y =0
6. y"—6y" +5y' +12y =0
7.y"-8y'+16y =0
8. 4y"+4y' +y=0
9.y'"—4y'+13y =0
10. y"+6y' +25y =0
11.y"+9y=0
12. 4y +y =0
13. y" -5y +7y!' —3y =0
14. 4y + 4y —7y' + 2y =0
15. y" - 6y" + 12y' —8y =0
16. y" + 4y + 5y + 6y =0
17.y"—yl+yl—y=0
18. y™ +8y!' + 16y = 0

[EEN
(o]

LYW —2y@ 4yl =g

N
o

. y(iv) _ yIII _ 3yll + yI + 2y =0

N
[y

. y(iv) _ 3ylll _ 2yll + 2yl + 12y — O

N
N

cy®™ + ey + 15y + 20y + 12y = 0

N
w

Ly +y=0.

N
N

Solve the initial-value problems in the exerc7i£saes that follow.
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y' —y'—12y =0
25. y(0)=3

y'(0)=5

9" —6y'+y =0
26. y(0)=3

y'(0) = -1

y' —4y' +29y =0
27. y(0)=0

y'(0)=5

4y + 4y +37y =0
28.  y(0)=2

y'(0) = —4

yIII — 6y” + 11y| —_ 6y =0

y(0)=0
29.
y'(0)=0
y'(0) = 2.
yIII — 2y|| + 4y| _ 8y =0
y(0) =2
30.
y'(0)=0
y"(0) = 0.

31. The roots of the auxiliary equation, corresponding to a certain 10th-order homogeneous linear differ-
ential equation with constant coefficients, are

4,4,4,4,2+3i,2—3i,2+3i,2—3i,2+ 3i,2 — 3i
Write the general solution.
32. Given that sin x is a solution of
y(iv) + 2y||| + 6y" + 2y| +5y=0,

find the general solution.

Exercise 6.3 79
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Find the general solution of each of the differential equations following
yll = 3yl + 2y = 4x2

yll = 2yl — 8y = 4x2 — 2173,

y''+ 2y! + 5y = 6sin 2x + 7 cos 2x

y'" + 2yt — 3y! — 10y = 8e™>¥,

y"+ y!'+ 3y! — 5By = 5sin2x + 10x? — 3x + 7.

y(iv) _ 3y||| + 2y|| — 3e—x + 6e2x — BX

N o 0o M w0 DM PE

y™) — 5yl 7yt — 5y! + 6y = 5sinx — 12sin 2x
Solve the initial-value problem in Exercises 18 through 21.

yII _ 4y| + 3y = 9X2 + 4,
8. y0)=6
y'(0) =8.
y'"+ 4y' + 13y = 5sin2x.
9. y(0)=1
y'(0) = —2.
y'+y =3x2—4sinx.
10. y(0)=0
y'(0) =1.
y = ay" + y' + 6y = 3xe* + 2eX —sinx.
33
y(0) = =
11. 40
y'(0)=0

y'(0) =0

80
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1 Introduction

In your previous studies, you know that equation such as

d"x X d"x + ol d" 2z N n dr + ot £t
ap(t) az(t) —+ -+ —+a,lt)r = f(t)
R A T dt A

where ai; i = 1; 2; :::; n are variable coefficient can be reduced to vector form

r=Ar+ F(t) = f(l,x)
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2 Objectives LINEAR SYSTEM

where the unknown functions x R", A is n x n matrix function of t defined on some interval 1 and
F : 1 - R"isdefined and continuous on I. Whilef : | x R" - R" isa vector function of two variable t
and x defined on R"™1,

In this unit, you shall study Linear systems of ODE of the form (2). And you shall see some results
concerning the solution of this linear systems.

2 Objectives

At the end of this unit, you should be able to

(i) identify different forms of systems of ODE.

(i) understand the nature of solutions of systems of ODE, both homogeneous and nonhomogeneous
ODE.

(i) define and obtain the adjoint of a system.

(iv) characterize fundamental matrices in terms of exponential functions.

3 Linear System

3.1 Properties of Solution of Homogeneous Linear System

Definition 3.1 If F(t) = 0, then the system (2) is called a linear homogeneous system otherwise the
system (2) is alinear nonhomogeneous system. The order of (2) isthe order of A.

Definition 3.2 A function ®: 1 - R" isasolution of

x = f(t, x)

(f:G - R",where G R xR", anopen subset.) If fort I, you have that the pair (t, d(t)) G and

d(t) is differentiable on I and
(1) = f(t, x(1))

Definition 3.3 A function ®: 1 - R" isasolution of IVP

x =T(t, x), X(to) = Xo
if to | and @ satisfies definition 3.2 and X(tg) = Xq
It is evident from existence and uniquenesstheorem that forany givents  1,X,  R" with \xo\ < o,

the system (2) has a unique solution satisfying X(to) = Xo.

Your attention will be drawn first to the homogeneous equation,
X = A(t)x 3)

the following results are immediate

[0e]
N
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Theorem 3.1
1. If x = P(t) is a solution of (3) satisfying P(tp) = 0,t 1, then P(t) = OonI.

r

2. 1f O, d?, ..., ®" are solutions of (3)on I. Then  ¢;®; are also solutions on I.
i=1

Proof.

1. The proof of this follows fromthe fact that X = 0is a solution of (3) and the uniqueness property of
solution (3).

2. Note that given ®*, @2, ..., O,

1_ 2 _ ro_
@ = A0, @ =paA02 ..., &=
Therefore
d : o
&(Ciq)l) :ACiq)l, i=123,..,r
Let .
P=c, P+, P*+ ..+, P = O
i=1
Thus
d r r d ) r r _
= — Gd = —(c;®") = Ach,i=A ¢ =AD.
dt dt
i=1 i=1 i=1 i=1

This follows from the linearity of (2)

Theorem 3.2 The set of all solutions of (3) on I forman n— dimensional vector space over the real field
called solution space.

Proof.  That the solution space is a vector follows from property (2) and the factthat X = Ois a
solution of (3)on 1.
To prove that the space is n— dimensional, you have to prove the existence of n-linearly independent

solutions of (3) on | such that any other solutions of (3) on I can be written as a linear combination of this
independent set.

Leta', (i = 1,2, ..., n) be alinealy independent setin R". In particular, you can choose a' = (0,0, ...,0,1,0, ...

with 1 atthe ith position. They by the existence theorem, given to I, a'  R", there exists n solutions
o'(t),i =1,2,..., nof (3) such that ®'(t) = a'. These solutions are uniquely defined by ty and a'. Suppose
the ®'’s are linearly dependent, then there exist constants ¢; (i = 1, 2, ..., n) not all equal to zero sunc that

¢d'(t) =0, t .
i=1
83
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In particular,

gal= Cid'(t) =0 b |

which contradicts the assumption that the a'’s are linearly independent.
Now let ® be any solution such that

PD(to) = a, a R"

for some unique constants cy, ...cy,

Since the a'’s form a basis in R". Hence the function ci®' is a solution of (3) on I, which assumes the
i=1
value aatt = ty and by uniqueness
n

o= Ciq)i
i=1
Thus every other solution of (3) can be expressed as a unique linear combination of the ®'’s. Hence the
proof of theorem (1.2) is complete. |

Definition 3.4 1. If ® &2, ..., ®"are linearly independent solutions of (3) on I, then the set ®*, 2, ..., ®"
is called a fundamental set of solutions of (3)on I.

2. If ®Y, ®?, ..., ®"are solutions of (3) on I, the matrix with ®, ®?, ..., ®" as a column is called a matrix
solution of (3)
q)%l cbzlz e fn

1 2 n
(])21 CD22 2n

1 2 n
chl cl)n2 (Dnn

and it is easy to verify that .
X =A()X ()]

is the matrix differential equation associated with the system (3). The problem of determining n
linearly independent solutions of (3) is the same as finding a particular solution of such that the
columns are linearly independent.

3. If X is a matrix solution such thatall its column are linearly indpendent. Then X is said to be
fundamental matrix solution of (3).

Theorem 3.3 A solution matrix X of (3) on | is fundamental if and only if the determinant

detX (t) /=0 foratleastonet |

fo')
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3.1 Properties of Solution of Homogeneous Linear System LINEAR SYSTEM

The proof of the above theorem requires the following lemma.

Lemma 3.1 Let X be a solution matrix of (3) on | then

W (t) = detX (t) )
satisfies on | the differential equation
W (t) = {tr(A)}W () (6)
with initial condition.
W (to) = Wy, to |
indeed fort 1,
W (t) = Woexp ttrA(s)ds (7)
where the trace of A n0
tr(A) = a

i=1

Proof of Lemma LetX;; and a;j be components of X and A respectively. Since X is a solution matrix,
we have .
X =AX

and hence

Xjj = AikXj » L] =12,..,n
i=1
By definition W=W(t) is differentiable in t. Futhermore, the derivative

W (t) = ) W; (1)

i=1

where the terms is obtained from W by differentiating ith row of W and leaving all other rows. Indeed

n n n
A1k Xk1 AikXk2 v A1k Xkn
k=1 k=1 k=1
W =
X21 X22 e Xon
Xn1 Xn2 Xnn
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3.1 Properties of Solution of Homogeneous Linear System LINEAR SYSTEM

The determinant remains unchanged if you subtract from the 1st row { a;»>x second row +a,3X third row
+... + a;,x nth row}. In deedyou shall obtain

A11X11 A11X12 '+ A11X1n
X21 X22 e Xon
W =
Xn1 Xn2 e Xnn

By treating W, W3, ..., W, in similar way, you see that

W (1) = (11 + @z + - - - + am)W (t)
which proves (6). The result (7) follows by

W) = @r(A@)HW (1)

t
W) = Woexp trA(s)ds

to
]
Note: As a consegence of the lemma, it is clear that if W (t;) /= Othen W (t) /= Ofort 1. This

E:Sorcl)ﬁ\r/\i&ltlﬁ from the fact that exp( ' trA(s)ds) does not vanish except at a singularity of A(t). The

ensures that this does not happeﬁ.
Alsothe fact that W (t) /= Oforallt 1 proves that the column of X = X (t) are linearly independent.

Proof of Theorem1.3 Let X be a fundamental matrix of (3) on I, with column vector xJ, j = 1,2,..., n.
Suppose that x is a nontrivial solution of (3) on I . By theorem (1.1), there exists a unique constant c;,
i=1,2,..,nnotall zero such that

X = Ci X
i=1
or equivalently
x=XC

where C = (cy, ..., ¢,)", a column matrix, and X is the matrix with x', i = 1, ..., n as columns. At any
pointt, I, X is asystem of n linear equations in n— unknowns cy, ..., C,. It has a unique solution for any
choice of x(tp). Hence from the theory of linear algebradet(X (tg)) /= Ofort 1. Then the columns of X
are linearly independent, and so X is a fundamental matrix of (3)on 1. [ ]

Remark 3.1 A matrix of linearly independent vectors on | may have its determinant equal to zero. The
main point of Theorem 1.2 is that this cannot happen for column vectors which are solutions of (3)

t t?
X (1) =
00
Xllzl X12:2t

X1 =0 X2 =0

@
(02}




3.3 Linear nonhomogeneous System LINEAR SYSTEM

Not possible.

Theorem 3.4 If ® is a fundamental matrix of (3) on I so also is ®C where C is a constant nonsingular
n > n matrix. Every fundamental matrix of (3) on I is of the form (®C) for some nonsingular constant
matrix C.

Proof. By definition, if ® is afundamental matrix, then
= A@N)D, t |

and q
a(cDC) =$C = A()dC

Thus ®C is a solution matrix.

The fact that ®C is a fundamental matrix follows from the fact

det(®C) = (det®d)(detC) /=0
If ®;, ®,, are fundamental matrix on I for (3) then we prove that for some nonsingular constant matrix C,
®,=0,C
To verify this, set
D(t) = O] D, or oY =0,

Differentiating, the last equation . . _
o, =0,¥ +0,¥
and so

Aq)z = A¢1LP + <D1‘-|J or q)l‘-IJ =0
This implies that

Y=0 ie, ®&=C, where C is a constant.

By definition, C is nonsingular |

3.2 The Adoint of the System (3)
Let ® be a fundamental matrix of (3) on I, then by definition ®~* exists on I and
o0t =1, (8)

where I, isthe unitn x n constant matrix . Differentiating (8) yields

PO 1+0d =0 sothat AMN)PPL+dd =0
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3.2 The Adoint of the System (3) LINEAR SYSTEM

Thus .
Ot = - dTA(Y)

Taking the transpose of both sides, then
@™ =AT R
so that (®~1)T is a fundamental matrix of
x = — AT (t)x 9)
The equatioin (9) is known asthe adjoint of the system (3). The matrix differential equation
X = — AT (H)X

associated with (9) is also the adjoint of the matrix associated with (3).
The relationship is symmetric. Thus, (3) is called the adjoint of (9) and (9) the adjoint of (3).

Theorem 3.5 If ® is a fundamental matrix for (3) then W is a fundamental matrix for its adjoint (9) if and
only if

YTo=C
for some constant nonsingular n < n matrix C.

Proof. Suppose ® is a fundamental matrix of (3). Then (®~1)T is a fundamental matrix of (9). Also

W is a fundamental matrix of (9) . By theorem (1.4), (®~1) is a fundamental matrix ()" C is also a
fundamental matrix. Therefore

Y=(@@"hH'C (10)

Taking transpose of both sides of (10) you have

YT =01C and Wd=cC

and hence the proof. |

3.3 Linear nonhomogeneous System

You will refer to the system (2) as a linear inhomogeneous slzstem_with A(t), F(t% defined as before. By
the existence and uniqueness theorem given to 1, X N, with \xo\ < o then there exist a unique

solution x(t) of (2) satisfying Xo(t) = Xo.

3.3.1 Variation of Parameter Technique

Recall that if ®(t) is a fundamental matrix solution for (3) then
X(t) = P(t)C (11)

where C is a constant n-vector is a solution of (3). For a particular solution Xx(t), with Xq(t) = Xo, C is given
by ®(tg)Xo. Then C in (11) is a vector parameter. Now you have to consider C as a variable in t and seek a
condition on C=C(t) suchthat (11) is a solution of (2) on | satisfying some prescribed initial condition.

Q9
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3.3 Linear nonhomogeneous System

LINEAR SYSTEM

Indeed let
X(t) = O(H)C (1)

be a solution of (2). Differentiating both sides of (12), you have

x(t) = O (t)C(t) + P(HC(L)
AX(t) = AR)D(H)C (L) + PH)C(t)

From (2),
AX(t) = AR)D)C(L) + F (1)

since @ is a fundamental matrix solution and (12) is a solution of (2),
C(t) = O (HF (1)

A particular case of equation (15) satisfying C(tg) = Ois given by

C(t) = t<1>‘1(T)F (t)drt.

to

Thus .
x(t) = OO L(1)F (1)dt

to

is a solution of (2). Now, the solution x(t) of (2) satisfying the initial condition

X(to) = Xo

is given by

x(t) = O)D(to)xo + t(D(T)(D_l(T)F (T)dt

to

(12)

(13)

(14)

(15)

(16)

Theorem 3.6 Given the system (2), with A(t) (n > n matrix), F (t) n— vector (functions) defined and con-
tinuous on the interval 1. Let @ = ®(t) be a fundamental matrix solution of (3) on the interval I, then the

function
t

X() = D) O Hte)xo+  OTI(T)F (T)dt

to

is a solution of (2) on the interval 1, satisfying the initial condition X(tg) = Xo.

Proof. ®(t) is afundamental matrix solution of (3), then
X(t) = P(H)C(t)

By straightforward differentiation . _
X(6) = ®(OC (1) + P(HC()

From (13) and (14) D(H)C(t) = F (1)

yielding C(t) = dL(F (1)
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3.3 Linear nonhomogeneous System LINEAR SYSTEM

Integrating (17), you will obtain
t

Ci)= O }r)F(t)dt

to

Therefore, .

dMCH) =) O7H(1)

to
Now the solution of the system (2) satisfying the initial condition x(tg) = X is given by

x(t) = DD (to)xo + D(t) tqu(r)F (1)dt

to

and
t

X(t) = d@) D Hto)xo +  OH(T)F (1)dt

to
and this completes the proof of theorem (1.6). [ |

Theorem 3.7 Let A(t), F (t) be defined as in theorem 1.6, Let @ = P(t) be a fundametal matrix solution
for the adjoint system (9). Then the equation

X()= (@)™ O (to)xo + tCDT (T)F (1)dt (18)

to
is a solution of (2) satisfying X(tg) = Xo.
Proof. Nowletx be asolution of (2) and ® be a fundamental matrix of solution of (18). Then
X(t) = O ()x(t) (19)
Differentiating both sides of (19) you have
X(1) = 0T ()x(1) + OT (X (D)
From (9), you have that

X(t) = — AQ)DTX(t) + OT()[AD)X(L) + F(t)]orx(t) = T (H)F (1)
Integerating fromt = ty tot, you have

OTOX(M) — DT(tX() = &7 (1)F (1)dr

to

OT ())x(1) = ' (to)x(to) + o (T)F (t)dt

to
which yields
t
X)) = (@) O(to)xo+  OT(T)F (1)dt
to
and the proof of theorem (1.7) is complete. [ |

©
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3.4 Linear Homogenous Equation with constant Coefficients LINEAR SYSTEM

3.4 Linear Homogenous Equation with constant Coefficients

Consider the system
x(t) = Ax(t) (20)
where A is a constant n < n matrix. Suppose that

x(t) = ceM

is a solution of (20), then
x(t) = AceM = Ace™
That is
(A= Aly)=0
Thus
x = ceM

isasolution of (20) if and only if A is an eigenvalue and c is the corresponding eigenvector.

Theorem 3.8 Let Ay, Ay, ..., A, be distinct eigenvalues of A with corresponding eigenvectors cq, Cy, ..., Cn,

then
n

x(@t) = cielt
i=1
is the general solution of (20).

Proof. Assuming that all the eigenvalues of A are distinct, then there exists a nonsingular matrix T
which reduces A to its diagonal form that is

TAT =D
where
AN O 0 - 0 0
0O A O 0 0]
0 0 As 0 0
D =
O 0 0 - A\po1 O
O 0 0 -+ 0 A,
Now let
y=T7"'x
y=T x=T"1Ax=T ATy =Dy
That is
Vi = AiYi
and so
yi = cieM*

where the c;’s are arbitrary constants.
You can now exhibit n-linearly independent solutions of the vector equation
y = Dy
They are
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3.4 Linear Homogenous Equation with constant Coefficients

LINEAR SYSTEM

ehit 0
0 e)\zt
) Y1 = )
0 0

These vectors are linearly independent since the determinant

Mt 0 0 -~ 0 0
0 e 0 -~ 0 0
0 0 e&' ... 0 0
0O 0 0 ehn-it Q
0 0 0 .- 0 et

Yn

e)\nt

— e()\1+)\2+---+>\n)t

whichis nonzero. Since x = Ty, Tys, Tya, ..., Ty, form a fundamental solution for (20) and the matrix

whose columns are Ty, TY,, ..., TY, is the fundamental matrix.

Example 3.1 Find the general solution of the system

._ 01 _
X= 4, X% x(0) =
Solution. The eigenvalues of the matrix
_ 01
A= 12
is obtained as follows
0-A 1 _ e, —AM2-AN-1=
1 2-A
so that
= v
2x2 2
Mo = e, M=1+ 2
2
Now, forA, =1+ 2,
VA
-1- 2 1 Cy
v =0 or
1 1- Co

~ O

0 or M-2\-1=0

.\/
and A =1- 2

.\/
(—1— 72)01+C2= 0

VA
C1+(1— 2)C2= 0




3.4 Linear Homogenous Equation with constant Coefficients LINEAR SYSTEM

So that a
Cy —/=
_ 1+ 2
Co a
.\/
ForA, =1- —
2,
V_ Vo
-1+ 2 1 Cy (-1+ 2o+ =0
V- =0 o VA
1 1+ C2 a+(1+ 2= 0
2
So that X
Cq —
- 1- 2
Co b
Therefore,
a b
—a/ v A v
yi = 1+ 2 e(1+°t  and Yo = 1- 2 (-2
a b
are linearly independent solutions of the system
._ 01 _ 0
X= 1 5 % x(0) = 1
The fundamental matrix for the system is
® = col(y1,y2)
The general solution of the system is
X=y1+Yy>
a b a b .
—af + [ 0 —a +——=L = 0 (i)
_ 1+ 2 1- 2 _ 1+ 2 1- 2
x(0) = = or
a+b 1 a+b = 1 (i)
From (i) a = b, thus, a =% = b so that
2(1 — \/2) 2(1 v 1
+ v -
x(t) = ol + 1+ 52
1 1
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- 2)t
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3.4 Linear Homogenous Equation with constant Coefficients LINEAR SYSTEM

Example 3.2 Solve the differential equation
X'—=2X—x+2x=0
Subject to

x(0) =0, x(0) = 0, X(0) = 1

Solution. The given differential equation is equivalent to the system

X = AX
where
0 10
A= 0 01
-2 12
The eigenvalues of A are the roots of
-\ 1 0
0O -2 1 =0 or N —2N2-A+2=0
-2 1 2-A

From which we obtain

M =1, MN=-1 and AN =2
Forh\; =1
-1 1 0 Cq 0 - +Cc+0 = 0
0O -11 c;, = 0 or O-c,+c; =0
-2 1 1 Cs 0 —-2c;+Cc+¢c3 = 0

from this you obtain ¢; = ¢, = ¢; = a. Thus, the eigenvector associatedtoA; = 1is

Cq a
Co = a
C3 a

Forh, = =1
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1 10 C1 0 ct+c,+0 = 0
0 11 Co = 0 or c,+c3 = 0
-213 C3 0 —2c;+Cc+3c; = 0
from this you obtain ¢, = — ¢, and ¢3 = c;. If ¢c; = bthen, the eigenvector associated toA; = 1is
C1 b
c, = -b
Cs3 b
ForA; =2
-2 1 0 C 0 -2c,+c,+0 = 0
0O -21 c, = 0 or 0-2c,+¢c3 = 0
-2 1 0 C3 0 -2c,+c+0 = 0

from this you obtain ¢, = 2c¢; and c3 = 4c;. If ¢; = c then, the eigenvector associatedtoA; = 1is

Cq C
c, = 2
Cs3 3c

are linearly independent. The general solution of the system

0 10 X1
x= 0 01 X,
-212 X3
with x(0) = 0,%(0) = 0,and X(0) = 1is
a b c
x()= a e'+ -b et+ 20 %
a b 4c
Using the initial condition, you obtain
a+b+c =0 (0
a-b+2c = 0 (i)

a+b+4c = 0 (iii)

a6
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Solving the above system gives you that

2 6 -3
Therefore the solution is

-1 1 1

2 6 3

x()= -2 e'+ -1 e+ 2

-1 1 4

2 6 3

Example 3.3 Solve completely the differential equation
X+x=0, x(0) =0, x(0)=1

Solution.
The auxiliary equationis

M+1=0 or, N=-1, ie, A==i

Thus, the general solution is
X(t) =cysint+cycost

X(t) =cycost— cysint

Using the initial values, you obtain
X(0) =c, =0 and x(0)=c; =1
Therefore, ¢, = 0and ¢, = 1. Thus, the solution to the initial value problem is x(t) = sint.

Example 3.4 Solve the system

X = X + , x(0) =
10 sint 1

Solution.

Consider the homogeneous system
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The eigenvalues of A = are the roots of

A= All=0

That is the roots of

M—-1=0 o A==l
the eigenvector for A = 1is
-1 1 C1 0
1 -1 Co 0
a
This implies thatc; = ¢, = aand so et isasolution of the system.
a
Fora = -1,
11 C1 0
11 C2 0
b
Gives you that ¢c; = — ¢, = b. Thus, e tisalso a solution of the system
-b
01
X = X
10

Set a = b = 1, then the two solutions are linearly independent. The fundamental matrix solution
® = P(t)is given by

et et
D) =
et _— et
and . .
e- e~
1
OHY) =5
2 et _—et

using (16), the desired solution
X(1) = O()PL0)xo + ()  OI(T)F (1)dt
et et 1 1 0 et et ¢ e’ e’ 0

dt
gt —e™! 0 et —eg! sint
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Example 3.5 Find the general solution for the system

Solution.

Consider the homogeneous linear differential equation

0 1
X =
-w? 0
The eigenvectors are
sinot cos wt
and
cos wt —wsin wt

They are linearly independent and the fundamental matrix solution is given by

cos wt %d sin ot
P(t) =
—wsinwt coswt

The general solution of the system

0 1 0 a
X = , X + , x(0) =
-0 0 sint b
is
t
x(t) = OEHOL0)X(0)+ D)  dL(T)sintdr
0
cos wt %d sinwt 10 a cos wt %d sin wt
= +
—wsinwt coswt 01 b —wsinwt coswt
c CoS WT (% sinwT 0
dt
0 - WSINWT CcoSWT sint
from (16)

Example 3.6 Solve the nonlinear differential equation
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! x(0) =
0

1
X(t) = 5 + dt
gt —e™! 1 -1 1 gt —e! 0 el —¢' sint
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The eigenvalues of A = are the roots of

A= All=0

That is the roots of

M—-1=0 o A==l
the eigenvector for A = 1is
-1 1 C1 0
1 -1 Co 0
a
This implies thatc; = ¢, = aand so et isasolution of the system.
a
Fora = -1,
11 C1 0
11 C2 0
b
Gives you that ¢c; = — ¢, = b. Thus, e tisalso a solution of the system
-b
01
X = X
10

Set a = b = 1, then the two solutions are linearly independent. The fundamental matrix solution
® = P(t)is given by

et et
D) =
et — gt
and . .
e- e~
1
o) =2
2 et _—et

using (16), the desired solution

X(t) = )P IO0)xo + DY) O L(T)F (1)dt

0

98




3.5 Characterization of Fundamental Matrix in terms of exponential functions  LINEAR SYSTEM

1 1 -1 -1
®(0) = and ©71(0)=
-1 - 1 2

From (16), the general solution of the system

0 1 0 1
X = X + , x(0) =
-2 - e~ 3t 0
3
is given by
t
X(t) = OR)PI0)xe + d(t) O H(r)Ff(1)dr
0
et et -1 -1 1
—et -2 1 2 0
—t —2t — —2
e e t 4 et et 0
+
_et _og2t 0 7% _gt _2e e—3t

3.5 Characterization of Fundamental Matrix in terms of exponential functions

Let the function e, where A is a constant n % n matrix be defined by

[ee)

t"A"
etA
n!

(21)

n=0

That is interpreting e as a Taylor series expansion. Now define the norm of A \A\ by
n
\A\ = |ai,-|

ij=1
and the expression

loand 1y

*n ' n!

and since the exponential series rn—", converges for all finite values of r, you conclude from the inequality

n=0
J J N
N inan It]" n
' CA = \A\
et et 1 13, nol ont et ¢ e el 0

X(t) = + dt
That the( s?erieQ(Zl)eeonyeéges for eyery cpnstant{matrix P\ ang:for glHinite yaluegof t. o1 sintT

It is also readily verifiable that 97
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d tA
_ =A tA
dt e e
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3.5 Characterization of Fundamental Matrix in terms of exponential functions  LINEAR SYSTEM

so that the matrix e satisfies (20), that is e** is a matrix solution of (20).

Since e =1 and the determinant of e”* = exp(T race of A) you conclude that e”* is a fundamental
matrix solution for (20). On the basis of the fact, the following result is stated.

Theorem 3.9 A fundamental matrix solution for (20) is given by
d(t) = e |t] < oo
and the solution x(t) satisfying (20) with x(t) = & is given by

x(t) = e ¢

It is of interest to investigate the form of ®(t) = e**. For this purpose, you require the following results
from linear Algebra.

Proposition 3.1 Every complex n < n matrix A is similar to a matrix of the form

Jb 0O 0O O -~ O
O Jg O 0 --- 0
0o 0J 0 - O
0O 0 0 J3 -+ O
O 0 0 0 - Jy

where Jo is a diagonal matrix with diagonal elementsAq, A, ..., Ay and

A+i 1 o o .- 0 0 O
0 Asi 1 O - 0O 0 O
0 0 Agi 1 -~ O 0 O
Ji = (23)
0 0 0 O Avi 10
0 0 0 0 -+ 0 Agi 1
The Ajs, 1 = 1,2,.., q + s are the eigenvalues of A which need not be distince. If A; is a simple

eigenvalue, it appears in Jo and if all the eigenvalues are distinct, then A is similar to the diagonal matrix
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J given by
A O O -0 O
0O M O 0
J = 0 O )\3 0
0O 0 0 - A,
The J;s can be rewritten in the form
Ji = )\q_._ilri +Zi
where J; has r; rows and columns and
100 - 0
010 - 0
Zi: 001 0
00O 1

Another valid form of J; is
)\q+i + ilri +Zi

Where r is a non-zero complex number. Note that Z; is nil-potent (Z ' = 0). Indeed Z3 has its diagonal of
one’s moved one element to the right of what of Z; and all other elements zero. Thus Z°~* is the matrix
with zero everywhere except for a single 1 in the firstend last column.

For 3 x 3 matrix,

010
Zi= 001
000
001
Z?= 000
000
000
Z3= 000
000

Now Let J be the canonical form of A defined by (22). Suppose P is a non-singular matrix such that
PIAP =] PJP1=A

Then
—1 —
etA — etPJP — PetJP 1

Proof. For any matrix M
(PMPH<=PM P
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Since J has the form (22), then J¥ is of the form

JY 0 0 -+ 0
0 Jl" o --- 0
Jk= 0 0 Js ... 0
0O 0 O Js"
and -
. thk
€ ki
k=0
RN
k T 0 0 0
=0
A kqk
0 ) 0 0
- k!
= ° thzk
0 0 e 0
k=0
1k qk
0 0 0 %
k=0 '
et\]O O O O
0O e 0 ..~ 0
— 0 0 eth 0
0 0 0 els
It is obvious that
e 0 0 0
0 e 0 0
etdo — 0 0 e 0

103
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and since
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Ji = Ag+i + Z;
etJi — et)\q+ietZi
2 ri—1
1t E2! B )Y
tri—2
01 t - %oy
[ A +i { i
eli=e 00 1 - (B (26)
000 - 1

Where Jj are ri % ri matrix andn = q+ ry + ro + - - - + rs. Thus if the canonical form of A is known, then
a fundamental matrix e** of (20) is given explicitly by (24) where e can be obtained from (24), (25) and
(26). [ ]

3.6 Linear Nonhomogeneous System

Example (4), (5) and (6) have been are using the method of variation of parameter techniques. Now, consider
it from direct differentiation and integration.

Consider the nonlinear system
X = A(t)x+ f(t) t | (27)

where as before A(t) is continuous n < n matrix definedon I, and f : I - R" is continuous function by
the basic existence theorem, for any given t,  1,X,  R" \xg\ < oo there is a unique solution x(t) of

(27) satisfying the initial condition X(to) = Xo.

In the special case
X = A(t)x (28)

You know that if ®(t) is a fundamental matrix solution of (28) then the solution x(t) with x(tg) = Xq is
given by
x(t) = O(t)® ™ (to)xo

You now have a stepping stage for the solution of (28)

Theorem 3.10 Let ® = P(t) be a fundamental matrix for the adjoint
x = — AT (t)x (29)

of (28) of I, then the function ® = @(t) defined by
t
D)= D) L O (tgxo+  OT(1)F(T)dr (30)
to

is a solution of (28) satisfying the initial condition ®(ty) = Xo.
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3.7 Linear Homogeneous System with Periodic Coefficients LINEAR SYSTEM

Proof. Let® = ®(t) be afundamental matrix solution for (29) and let x be a solution of (27). Then

L Ix = CI:JTX +®Tx
= O'x+OT{A()x + F(1)}
But®T = — dTA(L).
Hence
c;jt PTx = -OTAMX+ OTAD)X+ OTF(t) = OTF(1)
Integrating betweent = ty and t, you have

OTOX(M) - O ()X(t) = &7 (1)F()dr

to

so that .
OT(OX(t) = D' (to)X(to) +  PT(T)F(T)dr
to
Therefore .
x()= OT(EM) " OT(tgx(tg +  OT(1)F()dt
to
and the proof of theorem 1.10 follows. [ ]

You can also obtain a representation of the solution of (27) in terms of fundamental matrix of (28). See
theorem (1.6).

Example 3.7 See examples 3.4, 3.5 and 3.6

3.7 Linear Homogeneous System with Periodic Coefficients
Consider the system (28) where A(t) as before is a continuous n x n matrix definedonl R and
A(t+w) = A forallt 1. (31)

for some constant w > 0. In this case (28) is called a periodic system.

The basic result here is that a fundamental matrix can be expressed as a periodic matrices and a solution
matrix for a system with constant coefficients.

Theorem 3.11 If ® = P(t) is a fundamental matrix for (28) on I, then so also is ¥, where

WO = O+ ) t 1Lo>0

Corresponding to every such @, then there exists a periodic nonsingular matrix P, with period ® and a
constant R such that
d(t) = P (t)e'R, t o1 (32)

Proof. Let® = ®(t) be afundamental matrix solution for (28) on I. Then

d
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3.6 Linear Nonhomogeneous System LINEAR SYSTEM

5 (@)= ADO© t 1
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And so g
SPt+w) = A+ w)P(t+w)
= AQMQ)P(t+ w)
Therefore ®(t+ w) is a solution matrix of (28). It is fundamental since
[det D(t+ w)],_, = detd(w) /=10

Thus there exists a constant nonsingular n < n matrix C such that

P(t+ w) = P(1)C (33)
What is more there exists a constant matrix R such that
C =e®R (34)
From (33) and (34), you have that
D(t+ 0) = O(t)eR (35)

Then by (36),
Pt+w) = P(t+ w)e TR

— (D(t)eu)R . e—(t+w)R

= O(t)e R =P(t)
by (36). Thus P (t) is periodic with period . Since ®(t) and e R are nonsingular on 1, so also isP (). m
You can now examine the following implicatiion of theorem 1.11.
Let @(t) be a fundamental matrix solution of (28) such that
e0)=1
where | is the identity matrix. Then

1 d(t+ w) = DHDOW)
2. (- w) =0 Hw)

3. O(pw) = ®P(w) for some p > 0 an integer.
Clearly,
P(t+ w) = P(t)C
where C is a constant n < n nonsingular matrix. At t = 0, you have that
d(w)=C
So that ®(t+ ) = P()P(w) Nowsett = —w
I =P(0) = O(— 0)P(w)

Thus
d(- w) = d 1 (w)

Sett=win
Pt+ w) = D)D)

d(2w) = P?(w)

By induction, it follows that
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d(pw) = PP(w) for p> Oand integer

4. If A(t)= A = constant, then A is periodic with arbitrary period, and if ®(t) is a fundamental matrix
solution such that ®(0) = I, then for arbitrary s,

P(t+ s) = DEH)D(S)

Ot — s) = P()D(-s) = DD (S)
5. Observe that the result implies the existence of at least one solution ® = ®(t) of (28) such that
P(t+ w) — pd(t) =0 (36)

for all t, where p is some convenient constant. Indeed if @ = ®(t) is a solution of (28) thenthereisa
constant n-vector Xq such that
D(t) = P(t)X,

where @©(t) is afundamental matrix solution of (28). That is
(1) = p(t)e™xo
If ®(t) is to satisfy (37), then a simple calculation will show that p, X must satisfy
(e“R - pl)xo =0
Thus if pis an eigenvalue of e“R and x, the corresponding eigenvector then ®(t) satisfying (37).

Note, the eigenvalues of e“R are called the characteristic multipliers of the system (28).
To each characteristic multipliers of (28) you can define a characteristic exponent T by

p:eTo)

4 Conclusion

In this section, you have studied Linear Systems of ODE. You saw the properties of solution of Linear
systems for both homogeneous and nonhomogeneous systems. You also had knowledge of the adjoint
system of a given linear system of ODE.

5 Summary

Having gone throught this unit, you now know that;
(i) A linear system of ODE is of the form
X =Ax + F(t) = f(t, X)

where A, F and f have their usual meaning
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5 Summary LINEAR SYSTEM

(i) Afunction ®:1 - R"isasolution of the system
x =T(t, xX)
If fort 1, you havethat the pair (t, ®(t)) G and ®(t) is differentiable on | and satisfy
o (t) = f(t, x)
(i) the solution space forms an n-dimensional vector space over R"

(iv) The equation
X = A(t)x

has n-linearly independent solutions.

(v) anysolution of y = A(t)y is a linear combination of the n-linearly independent solutions the
system.

(vi) A matrix whose columns comprises of the n-linearly independent solutions of y = A(t)y is also a
solution of the system and is called the fundamental matrix of solutions.

(vii) If y is any particular solution of the nonhomongeneous equation
y = Ay + b(t)
Then any solution of the nonhomongeneous system can be written in the form
y =y®+Y(@®)-C

where Y (t) is a fundamental matrix of solutions to the corresponding homogeneous equation

y =A(y
(viii) (method of variation of constants) if Y(t) is a fundamental matrix to
y =A(by

then
t

YO =Y@® Y (s)b(t)ds

a
(with A(t) continuous on [a, b)) is a particular solution to the nonhomogeneous equation

y =Ay+b

(ix) ageneral solution of the nonhomogeneous system

y =Ay +b

y=Y({t) C+ tY ~1(s)b(c)ds

a
where Y (t) is the fundamental matrix of solutions and C is an n > n nonsingular constant matrix.

(x) The adjoint of the system
X = A(t)x

is given by .
x = A" ()x
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6 Tutor Marked Assignments(TMAS)

LINEAR SYSTEM

6 Tutor Marked Assignments(TMAS)

Exercise 6.1

Find areal general solution of the following systems.

y. = 3y
1.
y, = 12y,
(@) y1 = cie™> + coe™,
(b) y1 = cre™" + e,
() y1 = cre % + ce®,
(d) y1 = cre7® + cpe®,
Y1 = VitV
2.
Yo = VitV
(@) y1 =cie7 % + ¢y,
(b) y1 = c1e?t — ¢y,
(€) y1 = cie?t + ¢y,
(d) y1 =cie72 = ¢y,
y, = 4y2
3.
y, = —4y,

(a) y1 = Acos 4t + B sin 4t,
(b) y1 = Acos 2t + B sin 2t,
(c) y. = Acos 2t + B sin 2t,
(d) y. = Acos 4t + B sin 4t,

Y1 =

Yo = — 2¢,673t + 2¢,e%
Yo = 2,873 — 2¢,e%
Yo = — 2c,87 % + 2¢,e%t
Yo = 2¢,87% + 2¢,e5t

Yo =c1e7 = ¢,
Yo =82t + ¢,
Y2 =cie®t — ¢,

Y2 = Cie 2t + ¢,

—y1+Yy,+0.4y;

4. y, = yi— 0.1y,+ 1.4y,

y; = 0.4y, +14y, +0.2y;

Yy, = Bcos4t — Asindt where A=c + ¢, B =i(c;— ¢)
yo = Bcos2t — Asin2t where A=c +¢c;, B =i(c;— ¢)
y, = —Bcos2t+ Asin2t where A=c¢;+¢c;, B =i(ci— ¢p)
yo = —Bcos4t+ Asindt where A=c;+c,, B =i(c;— ¢y)

() y1=2c; +coe™®, y, = —c; + e, y3=—c; - 2(cp + )™
(b) y1 = 2c; + %, y, = —Cy + e, y3 = — ¢y +2(Cp + Cp)et

(C) y1=2C; + ™%, y, = —Cp +C3e™%, y3= =y +2(C, +Cp)e™™
(d) y1 =201 — 67, y, = —cp + e, y3=—C; +2(c; +cr)e ™
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y; = 2y1+8y,— 4y;

S. Y, = —4yi— 10y, + 2y,
Ys = —4yi— 4y,— 4y;
Solve the following initial value problems.
Y1 = y1+2y
6. Yo = %yl +VY2
y1(0) = 16,
y2(0) = -2
yi = yi— 2y
- _3y. +
7 Y = Y1 tYye
y1(0) = 0.4,
y2(0) = 3.8
Y1 = 2y;+23y;
g Y = 5y;+12.5y,
y1(0) = 12,
y2(0) = 1
9. If Y isafundamental matrix for
y = Ay
and T is anonsingular constant n > n matrix, find the vector equation for which T -Y is afundamental

matrix.

Find the vector differential eqution with Fundamental matrix Y (t) as

sint cost
10.

cost — sint

et tet
11.

et (t+ 1)et

Find particular solution for the following equations

1 1 1
12.y = y +

0 -1 0

1 1 1
13.y = y +

0 -1 0
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1 1 1
14 .y = y +
0 -1 0
Determine a general solution ofy = Ay, where
0 -31
15, A= -2 -11
0O 0 2
11 -1

16. A= 11 1

18. A =
—4 0

2 -1 3
19.A= 2 -13

2 -1 3

Solvey = Ay, y(0) =y, where

-1 4 3
20. A = : y(0) =

2 3 0

2 -1 3 -4
21.A= 3 10 |, y0)= 4

2 -1 3 4

02 1
22. A = , y(0) =




6 Tutor Marked Assignments(TMAS) LINEAR SYSTEM

Find e”t by determining a fundamental matrix fory = Ay

1 2
23. A =

0 -1

1 2
24. A =

0 -1

20 O

25.A= 0 1 —8  A,=-3+i A3=2

02 -7
-8 6 -3
26.A= —12 10 —3 , P\ + 220\ - 4)
~12 —12 -
2
0-10 O
1 00 0
27. A = , P =0 +1)?
1 00 -1
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1 Introduction

In this unit, you shall have a detail of the study you were introduced to in unit 4, which are

Adjoint systems.

2 Objectives

At the end of this unit, you should be able to
0] Define and give examples of Adjoint Equations.
(i) Establish some results related to adjoint equations
(iv)  Define self - adjoint equations and give examples

(V) Transform a system to a self-adjoint one.

113



3.1 Definitions and Examples

3 The Adjoint Equation

3.1 Definitions and Examples

Definition 3.1 Consider the nth-order linear differential operator

dn n—1
Ln = ao(X)w + al(X)W

And the corresponding nth-order linear differential equation

d
+ .+ an_l(x)& + an(X)

L.y =0

The nth order linear operator

n—1

Lo = (1" fa0(] + (<1 S fai(9] 4+ = < fan 1001 + 800

dxn—l
is the adjoint operator of the operator L,,, and the differential equation

Eny =0
is called the adjoint equation to the equation L,y = 0. That is, the adjoint equation to
dn dn—ly

y
dxn +ai(x) dxn—1

ao(x) +.. + an_l(x)gz +an(x) =0 (1)

is the equation

n—1

(Y] + = S (Y] ey =0 (2)

n d
(1" S ay] + (-1

Note: In your knowlege of equation (1) you have assumed that ay, as, ..., an—1, @, are all continuous on
aninterval a < x < band that ap(X) /= 0ona < x < b. In order that the adjoint Equation (2) shall shall
possess such continuity properties on a < x < b you must now further assume that the coefficients ay in
Equation (1) have continuous (n — k)th derivatives (k =0,1,...,n—1)onasx <bh.

3.1.1 The Second-Order Case

Consider in particular the second-order linear differential operator
L, =a (x)iz +a (x)E + a(x)
2 —a dX2 1 dx 2
and the corresponding second-order linear differential equation
oy
dx?
From equation (2) the adjoint equation to equation (3) is

2
(12 facxy] + (—1) o [ (x)y] +ax()y =0

2009 § 3+ 21() 3 + 223y = 0 @

This reduces to )

d%y
dx?
where the primes denote differentiations with respect to x. Thus the adjoint equation to the second-order
equation (3) is the equation (4). 115

ao(X) 1 + [28, — a1(X)] S&/ +[ag(x) — ay(x) +ax(x)y] =0, (4)



3 The Adjoint Equation

Example 3.1 Consider

P d
XZTX{ +7x%+8y= 0. 5)

Here ag(X) = X2, a1(X) = 7x, a,(x) = 8. By (4) the adjoint equation to equation (5) is
d’y dy
XZ@ =T +[2-7+8ly=0

or simply

fy . dy
x2W - 3X& +3y=0. (6)

Of course you could have obtained equation (6) directly from (2) without using the special result given in

(4).

3.1.2 Lagrange ldentity

Theorem 3.1 Langrange Identity.

1. Let the coefficients ay in

n n—1

d d
L, = aO(X)ﬁ + a1(x) = +..-+ an_l(x)& + an(X)

have continuuous (n-k)th derivatives, (k =0,1,2,...,n) ontheinterval a< x < h.

2. Letu and v be any two functions having nth derivatives ona < x < b.

Then B q
VLa[u] = uLa[v] = - [P (U V)] (7)
where r 1
P(u,v) = > 2 (=)t u*D(va, )07 (8)
k=1 j=1

Note: You should refer to the form P (u, v) asthe bilinear concomitant associated with L,. The notation
u®=h denotes the (k — j)th derivative of u with respect to x, and in like manner (va, _ )4~ denotes the
(J — 1)stx derivative of va,—.

Proof. By differentiating the expression
U(k—l)V _ U(k—Z)vt + ...+ (_l)n—ZUtV (k—2) + (_l)k—luv (k—1)

one obtains the formula
vV U(k) — (_1)kv (k)U + dd[U (k—l)V _ U(k—2)vt + .o+ (_1)k—2utv (k—-2) + (_1)k—lUV (k—l)] (9)
X
(k =0,1,2,...,n). Apply formula (9) with U = u and V = vay, vay, ..., va,—1, successively, in
n dn—lu

L _ d u., - du+
\Y n[u] —_ Vaow Va]_W e Van—]_& Vanu.
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You obtain
VL] = (1) va0) DU+ [ (vae) — U D vag) + -+ (1) u(vag) ")
()M ) DU+ S UOD(vay) — e+ - (<1 Pu(va) )
d
+ o+ (=1)Y(va,)u + &[uvan_l] +va,u
> > '
= 07 CDHEa) o (1) D (vag Y
k=0 X j=1
r 1 r 1
el +g DL(_l)j_1u(n_l_j)(Val)(j_1) + ...+ g ) (_1)j_1u(1_j)(van_l)(i_1)
dx dx
Jj=1 j=1
But
(_1)(n—k)(Vak)(n—k)=Ln[V]
k=0
Thus r 1
— D4 D> : _
vLn[u] — uL,[v] = d (1Y tucD(va,_ )0V
_dx
k=1 j=1
and hence r 1
— > > . _
VLl L] = o T (DD (vay 0
X k=1 j=1
[ |
Corollary 3.1 Green’s formula
With the Hypothesis of Theorem 3.1. Then for any two points x; and x, ofa < x < b,
X2 _
{vLn[u] —uLn[vI}dx = P (U, V)lx=x, = P (U, V)|x=x,
X1
Proof. Merely integrate the Lagrange Identity (7) from x; to Xs. [ ]

The Second-Order Case.

Consider the Lagrange Identity (7) in the second-order case. In this case

d?2 d
L, = ao(x)d—x2 + al(x)& + ax(x)

and from (4) you see that the adjoint operator L, may be written

— 2
L2 = 2009 5 + 200 — ()] 4+ (850 — alx) +a200).

Thus the left member vL,[u] — uEz[v] of the Lagrange Identity reducesto

agvu" + a;vu' — aouv" +18aguv' + a;uvt — ajuv + ajuv, (10)
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where the primes denote differentiations with respect to x. Now the right member of the identity is EdX[P (u, v)],
where in this case
r 1

_ . . > : : D . . _
P(u,v) = (_1)1—1u(k—1)(va2_k)(1—1) — (—1)1_1u(1_1)(va1)('_1)+ (_1)1—1u(2—1) (Vao)(J—l).
k=1 j=1 j=1 j=1

This reduces to
P (u, V) = uva, + u'(vag) — u(vap)"

or
P (u, V) = agvu'+ (a; — aj)vu — apVv'u. (11)

Thus the right member of (7) in the second-order caseis
d
&[aovut + (a; — aj)vu — agVv'ul. (12)

You should perform the indicated differentiation in (12) and observe that the result is indeed the expres-
sion given by (10).

Theorem 3.2 A necessary and sufficient condition that ¥ be a solution of the nth order linear differential
equation L,y = 0Ois that f be a solution ofthe (n — 1)st-order linear differential equation.

Ply,g(x)] =c, (13)

where P (u, v) is the bilinear concomitant associated with L,,, the function g is a nontrivial solution of the
adjoint equationL,y = 0, and c is an arbitrary constant.

Proof. Since g is a solution of[ny =0, [n[g(x)] = 0 and the Lagrange Identity (7) withu =y, and
v = g(Xx) becomes

d
90Lnlyl = 5, Py, 9001} (14)
If ¥ isasolution of L,y =0, then L,[f(x)] = 0. Thusletting y = f(x) in (14), you seethat (14) reduces to

d _
&{P[f(X), g1} = 0.
Thus
PIf(x), g(x)] =c,

where c is anarbitrary constant. Thus if T is a solution of L,y = O, then it also satisfies the equation
Py, 9(x)] = c, which is actually an (n — 1)st order linear differential equation in the dependent variable .

Conversely, suppose T satisfies P[y, g(x)] = c, where cis an arbitrary constant. Then P[f(x), g(X)] =c¢
andi(iP [F(x), g(X)]; = 0. Then (14) gives g(X)L ,[F(x)] = 0. Since g is a nontrivial solution of [ny =0,
you seethat T is asolution of L,y = 0. Thus if T satisfies P [y, g(x)] = c, it also satisfies L,y = 0. [ ]

The Second Order Case

The bilinear concomitant P (u, v) associated with the second order linear operator L, has been given ex-
plicitly in (11). Using this, you find that in the second order case

Ply, 9(x)] = a0(x)g(x) 33(/ + f18: () — a' (91g(x) — ao(x)g'()}y.
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Hence T is a solution of the second-order linear equation

d?y dy _
ao(x)W + al(x)d—x +a(x)y =0 (15)
if and only if it is a solution of the first-order linear equation
dy
20099(x) 5 + {[ac(x) — a,()]1g(x) —ao(x)g'(x)}y = ¢ (16)
where g is a solution of the adjoint equation to (15) and c is an arbitrary constant.
Example 3.2 Solve
d?y . dy
277 - =
X e + 7de +8y=0 (17)

by finding a solution of its adjoint equation by inspection.

Solution.

The adjoint equation to the given equation is given by (6). It is

oy dy
29 4 Y
e 3de 3y =0.

Clearly g suchthat g(x) = x isasolution of this equation. In Equation (17) ag(x) = X2, a;(X) = 7x,

and a,(x) = 8. Thus in this case Equation (16) becomes

X2 - xy+{[7x—2x]-x—x2-1}y=c
dx
or simply g
3 dy 2y, —
X dx + 4x°y = c. (18)

substituting this first-order linear equation in the standard form, you have that x* is an integrating

factor. Thus the equation (18) reduces to

d 4
—[x"y] = cx
OIX[ y]
integrating will give you
v = o
y= 5 2

Y = CX 2+ CoX 74

where ¢, and c, are arbitrary constants. Thus f defined by f(x) = ¢;x™2 + ¢,x* is a solution of
(17), where ¢, and c, are arbitrary constants. In other words, you have obtained the general solution
of equation (17) by finding a solution of its adjoint and then solving the related first order equation
(18).

Theorem 3.3 LetEn be the adjoint operator ofL,,. Then L, is the adjoint operator of [n.

117 0



3.1 Definitions and Examples

Proof. Letfn denote the adjoint operator of[n Then
— — d —
uLn[v] — vL[u] = —{P (u,Vv)},
dx
where 5(u, V) isthe bilinear concomitant associated with the operator L. By hypothesis,

VLol — UL = 4P @},

where P (u, v) is the bilinear concomitant associated with L,,. Thus

VLl = U} = £ 4P (V) + P (v, W)},

Now (8) shows that the bilinear concomitant associated with an nth order linear differential operator is a
homogeneous linear formin v, v, ..., v, Thus

P(U,v)+Pv,u) =cv®D + v + .+ gy, (19)

where the coefficients ¢;(i = 1, ..., n) are functions of u, ut, ..., u™=1, the various coefficients in the opera-

: : : o : , d -
tors under consideration, and certain derivatives of these various coefficents. Thus a}P (u,v) +P(u,v);
is the homogeneous linear form

cv® + [of + VTV -+ el eV + g (20)
inv,v, ..., v, Thus by (19) you seethat
v{L[u] — L,[u]} is equal to the form (21).

Thus the coefficients of v, v~ vtin (21) must be zero. From this it follows at once that ¢; = ¢, =
-+« =€y = 0, and hence (20) shows that P (u, v)+P (v, u) = 0. Thus from (19) you seethat L,[u] = Ln[u].
Thus the adjoint operator of the adjoint operator L, is the original operator L. [ ]

_ Thusif Ly = Oisagiven nth order homogeneous linear equation and [ny = Ois the adjoint equation
L,y = Oisthe original equationL,y = O.

Example 3.3 You have already seenin Example 3.1 that the adjoint equation to

Py dy

x2W + 7xd—X +8y=0 (21)
is @ g
xzd—XZ — 3xd—){ +3y=0 (22)

In equation (23) ag(X) = x?, a;(x) = —3x, and a,(x) = 3. Using (4) you find that the adjoint equation to
(23)is ,

ng'xi + [4x+3x]g§+[2+3+3]y: 0
which is the original equation (22).
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3.2 Self Adjointness

Definition 3.2 An nth order homogeneous linear differential equation L,y = 0 is called self adjoint if it is
identical with its adjoint equationL,y = 0.

In what follows you should be concerned with self-adjoint equations of the second order. In this con-
nection, you have the following theorem.

Theorem 3.4 Consider the second-order linear differential equation

2

dy
dx2

where ag has a continuous second derivative, a; has a continuous first derivative, a, is continuous, and
ao(X) /=00na =< x <h. Anecessary and sufficient condition that equation (24) be self-adjoint is that

ao(x) + ai(x) g){ + ax(X)y =0, (23)

d
dx [a0(X)] = a1(x) (24)

onasx<h.

Proof. From Equation (4) the adjoint to equation (24) is

2
0(x) .2 + [2afx) — ax(0] . + [a3(x) — a(x) + a0y = 0. (25)

If condition (75) is satisfied, then
2a5(X) — ay(X) = acx)
and
ag(x) — ay(x) + ax(x) = ax(x)
These relations show that Equations (24) and (26) are identical; that is, equation (24) is self-adjoint.
Conversely, If Equation (24) and (26) are identical then

23,(x) —ay(x) = axx)
and
ag(x) — &,(x) + ax(x) = a(x)

The second of these conditions shows that a'{x) = a;(x) + c, where c is an arbitrary constant. From the
first condition, you seethat af(x) = a;(x). Thus ¢ = 0and you have the condition (25). [ |

Corollary 3.2 Suppose the second-order equation
20() &3 +a (g +a:()y =0, (24)

is self-adjoint.

Then Equation (24) can be written in the form

r |
d dy _
dx ao(X)—dX +ax(x)y =0 (26)
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4 Conclusion

Proof. Since Equation (24) is self-adjoint, condition (25) is satisfied. Thus equation (24) may be

written & ’
y y —
aO(X)@ + al(x)& +ax(x)y =0,
or r |
d dy _
ax ao(X)d7 +ax(x)y =0
Example 3.4 (Legendre’s Equation)
dy _ . dy
— L oyt =
(1 X)dx2 2de+n(n+1)y 0

is self-adjoint, for ag(x) = 1 — x?, a;(X)

d

r

dy
_ 2 —
7X (1 X )7dX + n(n + 1)y =0

Theorem 3.5 The coefficients agy, a; and a, in the differential equation

a0(x) 52 +a (), + ax(x)y = 0

are continuousona<x < b,and apg(x) /=0ona<sx <bh.

Then Equation (24) can be transformed into the equivalent self-adjoint equation

ona< x < b, where

"
P(X) =e 2e®™ Q(x) =

d

dx

by multiplication throughout by the factor

r

|
P +Qy =0

as (X)
do (X)

Rax
1 o LB
ap(X)

noag (X)dx

ap(x)

Proof. Multiplying equation (24) through by the factor (30) you obtain

ag (X) d
e ag 6o dx y
dx2

al(x) Ra00g, dy az(x)

a(

ag (x)
x) dx Qo (x)

This equationis clearly self-adjoint and may be written as

gr
dx

or

where P and Q are given by (29).

r

|
R aq (X) aq (x)
L0 dx dy + & () Famg,

—— ‘e a (x)
dx ao %)

d d
=~ PO +QMy =0
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R a
a1 (X)
ag (x) ax

y=0

0

= —2x and dCL(l —x?) = —2x. Written in the form (27), it is

(24)

(27)

(28)

(29)
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Example 3.5 Consider the equation

¢y . dy

227 — =

X e 2X dx +2y=0 (30)
Here ag(x) = X2, a1(X) = —2x. Since al(x) = 2x /= —2x = a;(x), Equation (31) is not self-adjoint. You
can form the factor (30) for this equation. You have

Ra(x) R _
1 e a(l)(x)dX :ie %dx :i

ao(x) X2 x4

1 : : . .
Multiplying Equation (31) by;1 on any interval a < x < bwhich does not include x = 0, you obtain

1dyy 2dy 2
x2dx2 x3dx x4

y =0.
C

Since— @ = @ this equation is self adjoint and may be written in the form
dx

r 1
d 1dy 2
Ty =0

dx x2dx

4 Conclusion

In this unit, you studied adjoint equations, you saw some examples, and learnt of self-adjoint equations and
how to transform an equation to a self adjoint equation.

5 Summary

Having gone through this unit, you can now

1. Give the meaning of adjoint equations.
2. obtain an adjoint equation of a given Linear ODE
3. identify self adjoint equations

4. transform an equation to an equivalent self adjoint equation.

6 Tutor Marked Assignments(TMAS)
Exercise 6.1

1. Find the adjoint equation to each of the following equations:

2
@) xzj)?; + 3x3§ +3y=0.

d’y  ady _
(b) 2x+1)— +x>—=+y =0. 123



4 Conclusion

dy

2

dy  _dy

(c) ngx3+X2@+X&+y=O'
3 2
(d) L% + X(lexg + ngTZ+ x3—gi+ x%y = 0.
2. Solve o g
x% y+(2x3 + 7X) - Y+ +8)y =0.

dx?
(o

by finding a simple solution of its adjoint equation by inspection.

3. Transform each of the following equations into an equivalent self-adjoint equation:
dy  dy . _
(@) XZW+X&+y—O
d’y dy
4 A A ¥y —
(b) (x* +x )dx2+2X dX+3y 0
d’y dy . . _
(c) a2 tanxd—x+y =0
(d) F(x) &+ 9(x)y =0

dx2 dx 122
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1 Introduction

In this unit, you shall be introduced to a special kind of boundary value problem known as a
Sturm-Liouville Problem. Your study of this type of problem will introduce you to several
important concepts including characteristic function, orthogonality, and Fourier series (which
are beyond the scope of this book). These concepts are frequently employed in the

applications of differential equations to physics and engineering.

2 Objectives

At the end of this unit, you should be able to
0] Define and give examples of Sturm-Liouville problems

(ii) Know the meaning of characteristic values and characteristic functions.



3.1 Sturm-Liouville Problems

3 Main Content

3.1 Sturm-Liouville Problems
3.1.1 Definition and Examples

The first concern in this unitis a study of the special type of two-point boundary value problem given in the
following definition:

Definition 3.1 Consider a boundary value problem which consists of

1. asecond-order homogeneous linear differential equation of the form

1
q r

2P0+ 1060+ MO0l =0 )

where p, g and r are real functions such that p has continuous derivative, g and r are continuous, and
p(x) > 0and r(x) > O forall x on areal interval a < x < b; and A is a parameter independent of Xx;
and

2. two supplementary conditions
Ary(a) +Azy'(a) =0,

(2)
B1y(b) + Boy'(b) =0

where A1, A,, B; and B, are real constants such that A; and A, are not both zero and B; and B, are
not both zero.

This type of boundary-value problem is called a Sturm-Liouville Problem (or Sturm-Liouville System).

Two important special cases are those in which the supplementary conditions (2) are either of the form

y'(@ =0, y()=0 3)

or of the form
y'(@ =0, y'(b)=0. 4)

Example 3.1 The boundary-value problem

d?y

y(0)=0, y(m=0 (6)
is a Sturm-Liouville problem. The differential equation (5) may be written
r 1
d dy _
dx l-& +[0+A-1ly=0

124
and hence is of the form (1), where p(x) = 1, q(x) = 0, and r(x) = 1. The supplementary conditions (6)
are of the special form (3) of (2).



3 Main Content

Example 3.2 The boundary-value problem

d r dyI
—_ e 2 3 =
ix de +[12x“+ AX°ly =0 (7

3y(1) +4y'(1) =0,

(8)
5y(2) —3y'(2)=0

is a Sturm-Liouville Problem. The differential equation (7) is of the form of (1), where p(x) = X, q(X) =
2x2, and r(x) = x3. The conditions (8) are of the form (2),wherea = 1,b = 2,A; = 3,A, = 4,B; = 5,
and B, = —3.

You are now due to be introduced to what is involved in solving a Sturm-Liouville Problem. You must
find a function T which satisfies both the differential equation (1) and the two supplementary conditions
(2). Clearly one solution of any problem of this type is the trivial solution ¢ such that @(x) = 0 for all
values of x. Equally clear is the fact that this trivial solutiion is not very useful. You should therefore focus
you attention on the search for nontrivial solutions of the problem. That is, you should attempt to find
functions, not identically zero, which satisfies both the differential equation(1) and the two conditions (2).
You shall see that the existence of the nontrivial solutions depends upon the value of the parameter A in the
differential equation (1). To illustrate this, you have to return to the Sturm-Liouville Problem of Example
(1) and attempt to find nontrivial solutions

Example 3.3 Find nontrivial solutions of the Sturm-Liouville Problem

2
3)(32’ +ly =0, (5)
y(0) =0, y(m)=0. (6)

Solution.

You would need to consider three cases accordingasA = 0, A < 0and A > 0. In each case you should
first find the general solution of the differential equation (5). You shall then attempt to determine the
two arbitrary constants in this solution so that the supplementary conditions (6) will also be satisfied.

Case I: (A = 0). Inthis case the differential equation (5) reduced at once to
Py _
dx2

and so the general solution is

y =Cp + CoX. 9)

You can now apply conditions (6) to the solution (9). Applying the first condition y(0) = 0, you
obtain ¢; = 0. Applying the second condition y(rt) = 0, you find that ¢; + c,m = 0. Hence, since
c; = 0, youmust have also that ¢, = 0. Thus in order for the solution (9) to satisfy the conditions
(6), you must have c; = ¢, = 0. Butthen the solution (9) becomes the solution y such that y(x) = O
for all values of x. Thus if the parameter A = 0, the only solution of the given problem is the trivial
solution.
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Cage IIl: (A < 0). The auxiliary equation of the differential equation (5) is m2_V+ A = Oand the roots
+ =A.Since in this case A < 0, these roots are real and unequal. Denoting =A by a, you can see
that for A < 0 the general solution of (5) is of the form

y = cie™ +cem ™ (10)
Applying the conditions (6) to the solution (10) starting with the first, gives you
CL+C=0 (11)
Applying the second condition y(1t) = 0, you find that
ce™+cem=0 12)

You must thus determine c; and c, such that the system consisting of (11) and (12) is satisfied. Thus
in order for the solution (10) to satisfy the conditions (6), the constants ¢, and ¢, must satisfy the
system (11) and (12). Obviously c¢; = ¢, = 0is a solution of this system; but these values of ¢, and c,
would only give the trivial solution of this given problem. You must therefore seek nonzero values of
c; and ¢, which satisfy (11) and (12). By some theorems of ODE, this system has nonzero solutions
only if the determinant of the coefficient is zero. Therefore you must have

1 1
eC{T{ e—(XTl' = 0
But this implies that e®™ = ™" and hence that a. Thus in order foga nontrivial function of the form
(10) to satisfy the conditions (6) you must have a = 0. Since a = —A, you must have A = 0. But
A < 0inthis case. Thus there are no nontrivial s&lutions of the given problem in the case A < 0. Case

I1: (\ > 0). Since A > 0, rl?rg theroots £ —A of the auxiliary equation of (5) are the

conjugate complex numbers = Ai. Thus in this case the general solution of (5) is of the form

VL v _
y =cCySin AX + C,C0S  AX. (13)

Applyining now the conditions (6) to this general solution, begining from the first condition y(0)=0,
you obtain
c1Sin0+c,c0s0=0

and hence c,. Applying the second condition y(rt) = 0, you would find that

V_ V_
c1Sin ATt +cy,c0s At=0

Since ¢, = 0, this reduces at once to v
cisin Am=0 (14)

You must therefore satisfy (14). At firgt glance it appears that you can do this in either of two ways:
you can setc; = Ooryou cansetsin Attt = 0. However, if you setc; = 0, then (since ¢, = 0 also)
the solution (13) reducesimmediately to the unwanted trivial solution. Thus to obtain a nontrivial
solution you cannot setc; = 0 but rather you must set

V_
sin Am=0 (15)

If kK > 0, then sinkm = 0 only if k is a positive integer n = 1,2,3,.... Thus in order thatthe
differential equation (5) have a nontrivial solution of the form (13) satisfying the conditions (6), you
must have

A=n?  where n=123.. (16)
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In other words, the parameter A in (5) must be a member of the infinit sequence
1,4,9,16,...,n%, ...

You can now summarize you result as follows. If A < 0 the Sturm-Liouville problem consisting of
(5) and (6) does not have a nontrivial solution; if A > 0, a nontrivial solution can exist only if A is
one of the values given by (16). You now note that if A is one of the values (16), then the problem
does have nontrivial solutions. Indeed, from (13) you see that nontrivial solutions corresponding to
A =n?n=1,23,..) are given by

y =c,sinnx(n =1,2,3,..), (17)

where ¢,(n = 1, 2, 3, ...) is an arbitrary nonzero constant. That is, the functions defined by c; sin X,
C, Sin 2x, c3sin 3x, ..., where ¢y, C,, Cs, ... are arbitrary nonzero constants, are non trivial solutions of
the given problem.

3.1.2 Characteristic Values and Characteristic Functions

Example 12.3 shows that the existence of nontrivial solution of a Sturm-Liouville Problem does indeed
depend upon the value of the parameter A in the differential equation of the problem. Those values of
the parameter for which nontrivial solutions do exist, as well as the corresponding nontrivial solutions
themselves, are singled out by the following definition.

Definition 3.2 Consider the Sturm-Liouville Problem consisting of the differential equation (1) and the
supplementary conditions (2). The values of the parameter A in (1) for which there exist nontrivial solutions,
of the problem are called the Characteristic values of the problem. The corresponding nontrivial solutions
themselves are called the characteristic functions of the problem.

Example 3.4 Consider again the Sturm-Liouville Problem

2
& =o0, ©)
y(©)=0, y(m)=0 ©

In Example 12.3 you found that the values of A in (5) for which there exist nontrivial solutions of this
problem are the values

A =n? wheren=1,2,3,... (16)

These then are the characteristics values of the problem under consideration. The characteristic function of
the problem at the corresponding nontrivial solutions

y=cpsinnx (n=1,23,..) (17)
where c,(n =1, 2,3,...) isan arbitrary nonzero constant.

Example 3.5 Find the characteristic values and the characteristic functions of the Sturm-Liouville Problem

r |
d dy Ao
dx X& + ;y =0, (18)
y'(1) =0, y'(e™) =0 (19)

where it is assumed that the parameter A in (18) i%gonnegative.
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Solution.

Consider separately the casesA = 0and A > 0. If A = 0, the differential equation (18) reduces to

drdI
y
— x=2 =0
dx dx

The general soltion of this differential equation is
y =ClIn|x| + C,,

where C and C, are arbitrary constants. If you apply the conditions (19) to this general solution, you
will find that both of them require that C = 0 but neither of them imposes andy arbitrary constant.
These are nontrivial solutions for all choices of Cq /= 0. Thus A = 0 is a characteristic value and
the corresponding characteristic functions are given by y = Cg,, where Cq is an arbitrary nonzero
constant.

If A > 0, you seethat for x /= 0 this equation is equivalent to the Cauchy-Euler Equation

dy dy
27 —_— =
X a2 + de + Ay = 0. (20)
Letting x = €', then equation (20) transforms into
d?y _
e + Ay = 0. (21)

Since A > 0, the general solution of (21) is of the form

_ V_
y=ciSin At+cpcos At

Thus for A > 0 and x > 0the general solution of (18) may be written
.\/

y =csin( Alnx) +c,cos( AX). (22)
Differentiating (22) and Applying the supplementary conditions (19) gives you that
y_ah Vo oAV
F))/( =9 Aoos( ) — 2 2sin( Alnx) (23)
for x > 0. Applying the first conditiioin y*(0) = 0 of (19) to (23), you would have

4 Vv _ v Vv
¢y Acos( Alnl)—c, Asin( Alnl)=0

V_
orsimply ¢c; A = 0. Thus you must have
C, = 0.

Applying the second condition y'(e?™) = 0 of (19) to (23), you obtain
- V_ v V_
¢, A ?"cos( Alne®™) —c, Ae ?sin( Alne?™) = 0.
Since ¢; = 0 by (24), and In 2™ = 2m, this reduces at once to
V_ V_
c; Ae Zsin(2m A) =0.

V_
Since ¢; = 0, the choice ¢, = Owould lead to the trivial solution. Thus you must have sin(2m A) =0
and hence 2m A = nm,where n = 1,2,3,.... Thus in order to satisfy the second condition (19)

nontrivially you must have
2

A= o (N=1,2,3,..) (24)
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Corresponding to these values of A you obtain for x > 0 the nontrivial solutions

nin
y=Crcos — X (=123, (25)

where C,(n = 1,2,3,...) are arbitrary nonzero constants.
Thus the values

1.9 25 2
=0,-,1,>,42 L
A=0pbpd g

given by (25) for n = 0, are the characteristic values of the given problem. The functions

In 3In
Co, C;cos TX , Cocos(Inx), Cscos 5 X -
given by (26) for n = 0, where C,, C4, C,, Cs, ... are arbitrary nonzero constants, are the correspond-

ing characteristic functions.

For each of the Sturm-Liouville Problems of Examples (3.3) and (3.5), you must have found an infi-
nite number of characteristic values. You could observe that in each of these problems the infinite set of
characteristic values thus found can be arranged in a monotonic increasing sequence

AN <A<AN< -

suchthat A, —» +oo asn - oo. For example, the characteristic values of the problem in example (3.3) can
be arranged in the monotonic increasing sequence

1<4<9<16< - (26)

such that A, — +oco asn — +oo. You also note that in each problem there is a one-parameter of character-
istic functions corresponding to the same characteristic value are merely nonzero constant multiples of each
other. For example, in the problem of example 3.3, the one-parameter family of characteristic functions
corresponding to the characteristic value n? is ¢, sin nx, where ¢, /= 0is the parameter.

You might now inquire whether or not all Sturm-Liouville Problems of the type under consideration
possess characteristic values and characteristic functions having the properties noted in the preceding para-
graph. You can answer in the affirmative by stating the following important theorem.

Theorem 3.1 Consider the Sturm-Liouville Problem consisting of

(i) the differential equation r I

d

=+ 400+ N0l =0, @)

where p, g and r are real functions such that p has a continuous derivative, g and r are continuous
and p(x) > 0and r(x) > 0for all x on the real interval a < x < b; and A is a parameter independent
ofx; and

(i) the conditions
Ary(a) +Azy'(a) =0
(28)
B1y(b) + Boy'(b) =0

where Ay, Ay, B; and B, are real constants such that A; and A, are notboth zero and B; and B,
are not both zero. 130
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Then

(i) There exists an infinite number of characteristic values A,, can be arranged in a monotonic increasing
sequence
M<Ah<AN<--

suchthat A, - +ooasn — +oo,
(ii) correspoinding to each characteristic value A, there exists a one-parameter family of characteristic
functions @,,. Each of these characteristic functions is defined on a < x < b, and any two character-

istic functions corresponding to the same characteristic value are nonzero constant multiples of each
other.

(iif) Each characteristic function @, corresponding to the characteristic value A, (n = 1,2, 3, ...) has
exactly (n — 1) zeros in the openinterval a < x <.

Example 3.6 Consider again the Sturm-Liouville Problem of Examples 3.3 and 3.4

2
;'XZ +ay =0, (29)
y(0) =0, y(m)=0. (30)

You have already noted the validity of conclusions (i) and (ii) of theorem 3.1 for this problem. The infinite
number of characteristic values A, = n?(n = 1,2,3,...) can bearranged in the unbounded monotonic
increasing sequence indicated by (27); and the characteristic functions c, sin nx(c,, /= 0), corresponding to
A» = n? possess the properties stated.

Conclusion (iii) is illustrated by showing that each function ¢, sin nx corresponding to A, = n? has exactly
(n — 1) zeros in the open interval 0 < x < 1. You know that sin nx = 0 if and only if nx = k1, where k is
an integer. Thus the zeros of ¢, sinnx are given by



4 Conclusion

6 Tutor Marked Assignments(TMAS)

Exercise 6.1

Find the characteristic values and characteristic functions of each of the following Sturm-Liouville Prob-
lems.

d%y _
o) +Ay =0
1. y(0) =0,
T
y 5 = 0.
d?y _
el +Ay =0
%y =0,
y'(m) = 0.
d?y _
o) +Ay =0
> yo=o,
y(L) =0, where L >0
d?y _
el +Ay =0
4. yt(o) — 0,
y'(L) =0, where L >0.
d?y _
vl +Ay =0
> y(0) =0,
y(m) —y'(m) = 0.
d?y
el +Ay =0
6. Uty —
y(0) —y'(0) =0,
y(m) —y'(m) = 0.
a oyt oA
_ )(7y +-y=0
dx dx X
7.
y(1) =0,
Liouville problem. 131

y(e") = 0. 132
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r |
dx dx X
8.
y(1) =0,
y'(e") = 0.
r |
d A
E (x2+1)—y +——y=0
dx dx X +1
9.
y(0) =0,
y(1) = 0.
[Hint. Letx = tant.]
r |
d 1 dy 2 —
& FeFTax T AT Dy=0
10.
y(0) =0,
y(mt) = 0.

[Hint. Lett = x® + X]
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1 Introduction

The mathematical formulation of numerous physical problems results in differential equations
where are actually nonlinear. In many cases it is possible to replace such a non-linear
equation by a related linear equation which approximates the actual nonlinear equations
closely enough to give useful results. However, such a “linearization” is not always feasible;
and when it is not, the original nonlinear equation itself must be considered. While the general
theory and methods of linear equations are highly developed, very little of a general character
is known about nonlinear equations. The study of nonlinear equations is generally confined to
a variety of rather special cases, and one must resort to various methods of approximation. In

this unit, you shall be introduced briefly to certain of these methods.
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2 Objectives

At the end of this unit, you should be able to;

(i) define phase plane, paths and critical points.
(ii) describe types of critical points
(i) define and describe stability of a critical point.
(iv) determine the critical points of linear system.
(v) describe the nature of the critical point (0, 0)
(vi) describe the stability of the critical point (0, 0)

(vii) linearize a nonlinear differential equation and describe the nature and stability of the critical point
(0,0

3 Main Content

3.1 PhasePlane, Paths, and Critical Points
3.1.1 Basic Concepts and Definitions

For simplicity, you should be concerned with second-order nonlinear differential equations of the form
X = F(x, X) 1)
where x=x(t). As a specific example of such equation you have the important van der Pol equation
X+ u(x® —1)x +x =0, (2)
where W is a positive constant. For the time being, you could observe that you can put (2) in form (1), where

F(X, X) = —pu(x*— 1)x — X

Suppose that the differential equation (1) describes a certain dynamical system having on degree of
freedom. The state of this system at time t is determined by the values of x (position) and x (velocity). The
plane of the varibles x and x is called a phase plane.

If you lety = X, you can replace the second-order equation (1) by the equivalent system

X=y
©))
y=F(xy)

You can determine information about the equation (1) from a study of the system (1). In particular you
should be interested in the configuration formed by the curves which the solutions of (3) define. You should
regard t as a parameter so that these curves will appear in the xy plane. Since y = X = dx/dt, this xy plane
is simply the x, dx/dt- phase plane mentioned in the preceeding paragraph.
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More generally, you should consider the system of the form

X=P(x,y)
(4)
y =Q(X,Y)

where P and Q have continuous first partial derivatives for all (x, y). Such a system, in which the inde-
pendent varible t appears only in the differentials dt of the left members and not explicitly in the functions
P and Q on the right, is called an autonomous system. You shall now proceed to study the configurations
formed in the xy-phase plane by the curves which are defined by the solutions of (4).

From the existence theorem, it follows that given any number t, and any pair (Xo, Yo) Of real numbers,
there exists a unique solution
x = f(t)
(5)
y=9()
of the system (5) such that
f(to) = Xo

g9(to) = Yo
If ¥ and g are notboth constant functions, then (5) defines a curve in the xy plane which you shall call a
path of the system (4).

If the ordered pair of functions defined by (5) is a solution of (4) and t, is any real number, then it is
easy to seethat the ordered pair of functions defined by

X = f(t_ tl)
(6)
y=g(t—1t)

is also a solution of (4). Assuming that f and g in (5) are not both constant functions and that t; j= 0, the
solutions defined by (5) and (6) are two different solutions are simply different parametrizations of the same
path. You can observe that the terms solution and path are not synonymous. On the one hand, a solution
of (4) is an ordered pair of functions (f, g) such that x = f (t), y = g(t) simultaneously satisfy the two
equations of the system (4) identically; on the other hand, a path of (4) is a curve in the xy-phase plane,
which may be defined parametrically by more than one solution of (4).

Through any point of the xy-phase plane there passes at most one path of (4). Let C be a path of (4) and
consider the totality of different solutions of (4) which define this path C parametrically. For each of these
defining solutions, C is traced out in the same direction as the parameter t increases. Thus with each path
C there is associated a definite direction, the direction of increase of the parameter t in the various possible
parametric representations of C by the corresponding solutions of the system. In your figures, you shall use
arrows to indicate this direction associated with a path.

Eliminating t between the two equations of the system (4), you obtain the equation

dy _ Q(x,y)
dx P(x,y)

(7)

This equation gives the slope of the tangent to the path of (4) passing through the point (X, y), provided
the functions P and Q are not both zero at this point. The general solution of (7) thus provides the one-
parameter family of paths of (4). However, the description (7) does not indicate the directions associated
with these paths.

At a point (X, Yo) atwhich both P and Q are zero, the slope of the tangent to the path, as defined by
(7), isindeterminate. Such points are singled outiigethe following definition.
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Definition 3.1 Given the autonomous system

X=P(X,y)
| @)
y =QKxY)
a point (Xo, Yo) at which both
P(Xo,Y0) =0 and Q(Xo, Yo) =0
is called acritical point of (4).
Example 3.1 Consider the linear autonomous system
X=y
(8
y = —x

Solving this, using the methods developed in unit 4, you would find that the general solution of the system
may be written
X =cySint—cycost

y =cicost+cysint

where c¢; and c, are arbitrary constants. The solution satisfying the conditions x(0) = 0,y(0) = 1l isreadily
found to be
X =sint
9)

y =cost

This solution defines a path C, in the xy plane. The solution satisfying the conditions x(0) = —1,y(0) =0
is
X = sin(t—mn/2)
(10)
y = cos(t —m/2)

The solution (10) is different from the solution (9), but (10) also defines the same path C,. That is, the
ordered pairs of functions defined by (9) and (10) are two different solutions of (8) which are different
parametrizations of the same path C,. Eliminating t from either (9) or (10) you obtain the equation x?+y? =
1 of the path C, in the xy phase plane. Thus the path C, is the circle with center at (0, 0) and radius 1. From
either (9) or (10) you seethat the direction associated with C, is the clockwise direction.
Eliminating t between the equations of the system (8) you obtain the differential equation

dy  x

=Ty (11)
which gives the slope of the tangent to the path of (8) passing through the point (X, y), provided (X, y) j=
The general solution

X2 + y2 =2

of equation (11) gives the one-parameter family of paths in the xy phase plane. Several of these are shown
in figure 1. The path C; referred to above is of course that for which ¢ = 1
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3.1 PhasePlane, Paths, and Critical Points

2

Figure 1:

Looking back at the system (8), you seethat P (x, y) = y and Q(X, y) = —X. Therefore the only critical
point of the system is the origin (0, 0). Given any real number ty, the solution x = f (t), y = g(t) such that

T(to) = g(ty) = Ois simply
x=0
y=0
for all t.
You can also interpret the autonomous system (4) as defining a velocity vector field V, where

V(X y) =[P(xy), Qx y)]

The x component of this velocity vector at a point (X, y) is given by P (X, y), and the y component there is
given by Q(X, y). This velocity vector of a representative point R describing a path of (4) defined paramet-
rically by a solution x = f(t), y = g(t). At acritical point both components of this vector velocity are zero,
and hence at a critical point the point R is at rest.

In particular, you can consider the special case (3) which arises from a dynamical system described by

d dy dy _ d¥%

the differential equation (1). At a critical point of (3) both X and i are zero. Since —- = ——, you thus

seethat at such a point the velocity and acceleration of the dynamical system described by (1) are both zero.
Thus the critical points of (3) are equilibrium points of the dynamical system described by (1).

The following are basic concept dealing with critical points and paths.
Definition 3.2 A critical point (X, Yo) of the system (4) is called isolated if there exists a circle
(X —X0)? + (y — Yyo)* = r?

about the point (Xo, Yo) such that (Xo, Yo) is the only critical point of (4) within this circle.
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In what follows, assume that every critical poiggis isolated.
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3.2 Critical Points and Paths of Linear Systems

Definition 3.3 Let C be a path of the system (4), and let x = f (t), y = g(t) be a solution of (4) which
represents C parametrically. Let (Xo, Yo) be a critical point of (4). You shall say that the path C approaches
the critical point (Xo, Yo) ast — +oo if

t”rllof(t) = Xo, tIirpoog(t) = Yo, (12)

Definition 3.4 Let C be a path of the system (4) which approaches the critical point (Xq, Yo) ast — +oo,
and let x = f(t), y = g(t) be a solution of (4) which represents C parametrically. You will say that C
enters the critical point (Xo, o) ast — +oo if

lim a(t) — Yo

t=reo F(1) — Xo (13)

exists or if the quotient in (13) becomes either positively or negatively infinite ast — +oo.

3.1.2 Types of Critical Points

1. Center: Thisis a critical point thatis surrounded by infinite family of closed paths which is not
approached by any of the paths ast — +oco ort — —oo.

2. Saddle point

3. Acritical point is called spiral point if such a point is approached in a spiral-like manner by an infinite
family of paths ast — +oo (Orast — —oo).

4. A critical point is called a node if such a point is not only approached but also entered by an infinite
family of paths ast — +oo (Oorast — —oo).

3.1.3 Stability

Definition 3.5 Let (Xq.Yo) be a critical point of the system (4); let C be a path of (4); and let x = T (t),
y = g(t) be a solution of (4) represent C parametrically. Let

D@® = [f(t) = xo]* + [9(t) = yol? (14)

denote the distance between (X, Yo) and the point R : [f (t), g(t)] on C. The critical point (Xq, Yo) is called
stable if for every E > 0, there exists a number & > 0 such that the following is true: Every path C for
which

D(tp) < & for some value t (15)

is defined for all t = tg and is such that

D()<E for tg< t < co. (16)

3.2 Critical Points and Paths of Linear Systems
3.2.1 Basic Theorems

Although the major interest in this unit is to classify the critical point of nonlinear systems. But you shall
see that under appropriate circumstance you can replace a given nonlinear system by a related linear system
and then employ this linear system to determine the nature of the critical point of the given system. Thus in
this section, you shall firstinvestigate the criticalypgints of a linear autonomous system.



3.2 Critical Points and Paths of Linear Systems

Consider the linear system
X = ax + by
17)
y = cx + dy.
where a,b,c and d (in the right member of the second equation) are real constants. The origin (0, 0) is
clearly acritical point of (15). Assume that

ab
j=0, (18)
c d

and hence (0, 0) is the only critical point of (15). Note that the solutions of (15) are sought and found of the
form

X = AeM
(19)
y = BeM
and if (17) would be a solution of (15), then A must satisfy the quadratic equation
N —(a+dA+(@d—nhc) =0 (20)

called the characteristic equation of (15). Note that by condition (16), zero cannot be a root of the equation
(18) in the problem under discussion. Let A; and A, be the roots of the characteristic equation (18). You

need to prove that the nature of critical point (0, O) of the system (15) depends upon the nature of the roots
A1 and A,. We shall consider five cases according as

1. A, and A, are real, unequal, and of the same sign

2. A1, and A, are real, unequal, and of opposite signs

3. A1, and A, are real and equal

4. A, and A, are conjugate, complex and pure imaginary.

5. A1, and A, are pure imaginary.
Theorem 3.1 If the roots A; and A, of the characteristic equation are

1. real, unequal and of the same sign, then the critical point (O, O) of the linear system is a node.

2. are real, unequal and of opposite sign then the critical point (0, 0) of the linear system is a saddle
point

3. realand equal then the critical point (0, O) of the linear system (15) is anode

4. conjugate complex with real part not zero (that is not pure imaginary) then the critical point (0, 0) of
the linear system (15) is a spiral point.

5. pure imaginary, then the critical point (0, 0) of the linear system (15) is a center
Theorem 3.2 The critical point (0, 0) of the linear system
X = ax + by ab
: where j=0,

y =cx+dy cd

is stable if and only if both roots of the characterigigc equation have negative or zero real parts.



3.3 Critical Points and Paths of Nonlinear Systems

3.2.2 Examples and Applications

Example 3.2 Determine the nature of the critical point (0, O) of the system

X=2Xx—7y
(21)
y = 3x—8y

and determine whether or not the point is stable.

Solution.

The system (19) is of the form (15)where a = 2, b = —7, ¢ = 3 and d = —8. The characteristic
equation is

N +6A+5=0.
Hence the roots of the characteristic equation are A, = —5and A, = —1. Since the roots are negative,
the critical point (0, 0) of (19) is a node. Since the roots are negative, the point is stable.

Example 3.3 Determine the nature of the critical point (0, 0) of the system

X = 2x+ 4y
(22)
y = —2x + 6y

and determine whether or not the point is stable.

Solution. Here a=2,b = 4,¢c = —2 and d = 6. The characteristic equation is
N —8\+20=0

and its roots are 4 = 2i. Since these roots are conjugate complex but not pure imaginary, conclude that
the critical point (0, O) of (20) is a spiral point. Since the real part of the roots is positive, the point is
stable.

3.3 Critical Points and Paths of Nonlinear Systems
3.3.1 Basic Theorems on Nonlinear Systems

Consider the nonlinear real autonomous system

X=P(x,y)
(23)
y =Q(X,Y)

Assume that the system (21) has an isolated critical point which you shall choose to be the origin (0, 0).
Assume further that the function P and Q in the right members of (21) are such that P (x, y) and Q(X, y)

can be written in the form
P(X,y) = ax+by + Py(x,y)

(24)
Q(x,y) = cx+dy + Qa(X, )

where (i) a, b, ¢ and d are real constants, 141



3.3 Critical Points and Paths of Nonlinear Systems

ab
and =0,
c d
and (ii) P, and Q, have continuous first partial derivatives for all (x, y), and are such that

im Py Q)

T2 (25)
xy)-(00) X*+Yy (x,y) - (0,0) x7+_y2
Thus the linear system under consideration may be written in the form
X =ax+hy +Py(X,y)
(26)

y = cx+dy+Qu(x,y)
where a, b, ¢, d, P1 and Q; satisfy the requirements above.

If P(x,y) and Q(x, y) in (21) can be expanded in power series about (0, 0), the system (21) takes the
form

X = 9P X+ 9P y + a1X® + agpXy + ay i+ -
0X (0,0) % (00
(27)
= 99 X+ 29 Y + bioX? + byoXy + bpry? + - -
X (00 % (0
This system is of the form (24), where P(x,y) and Q1(x, y) are the terms of higher degree in the right
. : : : . o(P,
members of the equations. The requirments above will be met, provided the Jacobian (‘g(x Qy)) =
’ (0,0)

Observe that the constant terms are missing in the expansion in the right members of (25), since P (0, 0) =
Q(0,0)=0.

Example 3.4 The system
X =X+2y+x2

y = —3x — 4y +2y?
is of the form (24) and satisfies the requirments (i) and (ii) above. Herea=1,b=2,c = -3 and d = —4,
and

ab

c d

Further P1(X,y) = X2, Q1(X, y) = 2y?, and hence
2

9 -00 XTH+yZ (xy-00) XTF+y?

and )

By the requirement of (ii) the nonlinear terms P(X, y) and Q1 (X, y) in (24) tend to zero more rapidly
than the linear terms ax + by and cx + dy. Hence one would suspect that the behaviour of the paths of the
system (24) near (0, 0) would be similar to that of the paths of the related linear system

X =ax + by
(28)
Y42 cx + dy
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obtained from (24) by neglecting the nonlinear terms. In other words, it would seem that the nature of the
critical point (0, 0) of the nonlinear system (24) should be similar to that of the linear system (15). In general
this is actually the case. It is now time to state without proof the main theorem regarding this relation.

Theorem 3.3 Consider the nonlinear system

X =ax+hy+Py(x,y)

(29)
y =CX+ dy+ Ql(xi y)
where a, b, ¢, d, P; and Q, satisfy the requirements (i) and (ii) above. Consider the linear system
X = ax + by
(30)
y =cx+dy

obtained from (27) by neglecting the nonlinear terms P,(X, y) and Q4(X, y). Both systems have an isolated
critical point at (0, 0). Let A; and A, be the roots of the characteristic equation

M —(@a+dA+(@d—hc)=0 (31)
ofthe linear system (28).
Then
(a) The critical point (0, 0) of the nonlinear system (28) in the following cases

(i) If A, and A, are real, unequal and of the same sign, then notonlyis (0, 0) a node of (28) but also
(0,0) is anode of (27).

(ii) If A; and A, are real, unequal, and of opposite sign, then not only is (0, 0) a saddle point of (28), but
also (0, 0) is a saddle point of (27).

(i) If A, and A, are real and equal and the system (28) is not suchthat a = d j= 0,b = ¢ = 0. Then not
only is (0, 0) a node of (28), but also (0, 0) is a node of (27).

(iv) If A, and A, are conjugate complex with real part not zero, then notonly is (0, 0) a spiral point of
(28), but also (0, 0) is a spiral point of (27).

(b) The critical point (0, 0) of the nonlinear system (27) is not necessarily of the type as that of the linear
system (28) in the following cases:

(v) If Ay and A, are real and equal and the system (28) is suchthat a =d j= 0, b = ¢ = 0, then although
(0,0) is anode of (28), the point (0, 0) may be either a node, a spiral point of (28).

(vi) If Ay and A, are pure imaginary, then although (0, 0) is a center of (28), the point may be either a
center or a spiral point of (27).

Theorem 3.3 deals with the type of the critical point (0, 0) of the nonlinear system (27). Concerning the
stability of this point, you have without proof the following theorem of Lyapunov. More on this is discussed
in unit 8.

Theorem 3.4 With Hypothesis as exactly asin theorem 3.3,
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(a) If the roots A; and A, of the characteristic equation (29) of the linear system (28) both have negative
real parts, then not only is (0, 0) a stable critical point of (28) but also (0O, 0) is a stable critical point
of (27).

(b) If at least one of the roots A; and A, of (29) has a positive real part, then not only is (0, 0) an unstable
critical point of (28), but also an unstable critical point of (27).

Example 3.5 Consider the nonlinear system

X =X+ 4y — %
(32)
y = 6X—Yy + 2xy

. This is of the form (27), where P, (x, y) = —x? and Q(X, y) = 2xy. You see at once that the hypotheses
of Theorems 13.7 and 13.8 are satisfied. Hence to investigate the critical point (0,0) of (30), consider the
linear system

X =X+4y
(33)
y =6x—y
of the form (28). The characteristic equation (29) of this systemis
N —25=0.
Hence the roots are A; = 5, A, = —5. Since the roots, are real, unequal, and of opposite sign, you see from

conclusion (ii) of theorem 3.3, that the critical point (0, 0) of the nonlinear system (31) is a saddle point.
From the conclusion (b) of theorem 3.4, you further conclude that the point is unstable.

Eliminating dt from the equation (30), you obtain the differential equation

dy _ 6x—y+2xy (34)
dx Xx+4y—x?

which gives the slope of the paths in the xy-phase plane defined by the solutions of (30). The first order
equation (32) is exact. Its general solutionis readily found to be

X2y +3x>—xy —2y?’+¢=0 (35)

where cis an arbitrary constant. Equation (33) is the equation of the family of paths in the xy-phase plane.

Example 3.6 Consider the nonlinear system

dx — o _
G = sinx —4y

(36)
d _ .
& =sin2x—5y
Using the expansion
: 3 x°
SNX=X—— +— —
31 5l
You write this system in the form
. 3 5
X=X—dy—f i+
(37)

j — _554_4_9 e _
y—2x 3+15



6 Tutor Marked Assignments(TMAS)

The hypothesis of theorems 3.3 and 3.4 are satisfied. Thus to investigate the critical point (0,0) of (27) or
(28), you consider the system

X=X—4y
(38)
y = 2x — b5y
The characteristic equation of this systemis
N +4N+3=0.
Thus the roots are A; = —3, A, = —1. Since the roots are real, unequal, and of the same sign, you see

from conclusion (i) of theorem 3.3 that the critical point (0, O) of the nonlinear system (34) is a node. From
conclusion (a) of theorem 3.4, you can conclude that this node is stable.

Example 3.7 Consider the two nonlinear systems

X=-y—x
(39)
y =X
and
X=-y-x3
(40)
y =X

The point (0, 0) is a critical point for each of these systems. The hypotheses of Theorem 3.3 are satisfied in
each case, and in each case the corresponding linear system to be investigated is

X ==y
(41)
y =X
The characteristic equation of the system (39) is
M+1=0

with the pure imaginary roots xi. Thus the critical point (0, 0) of the linear system (39) is a center. How-
ever, Theorem 3.3 does not give us definite information, concerning the nature of this point for either of
the nonlinear systems (37) and (38). Conclusion (vi) of theorem 3.3 tells you that in each case (0, 0) is
either a center or a spiral point; but this is all that this theorem tells us concerning the two systems under
consideration.

4 Conclusion

In this unit, you studied nonlinear systems. In which you learnt how to determine the critical points of a
system of differential equations and discuss the nature and stability of a critical point especially (0,0) You
also learnt how to linearize a non linear system.

5 Summary

Having gone through this unit, you are now able;145



4 Conclusion

(i) define phase plane, paths and critical points.
(ii) describe types of critical points
(iii) define and describe stability of a critical point.
(iv) determine the critical points of linear system.
(v) describe the nature of the critical point (0, 0)
(vi) describe the stability of the critical point (0, 0)

(vii) linearize a nonlinear differential equation and describe the nature and stability of the critical point
(0,0)

6 Tutor Marked Assignments(TMAS)
Exercise 6.1

Determine the nature of the critical point (0, 0) of each of the linear autonomous systems in the
following Also determine whether or not the critical point is stable.

X=x+3y
1.

y=3x-+y

X = 3x+ 4y
2.

y =3x+2y

X =2x —4y
3.

y =2X—2y

X=X -y
4.

y =Xx+5y

Determine the type and stability of the critical point (0, 0) of each of the nonlinear autonomous
systems

X =X+ X% —3xy

5.
y = —2x+y+3y’
X =X+Yy —x%
6.
y =3x—y+2xy?
X = (y +1)®> —cosx
7.

y =sin(x +y)
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8. Consider the autonomous system
X =yeX

y=e*—1

(a) What type of critical pointis (0, 0)?
(b) Obtain the differential equation of the paths and find its general solution.
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3 Stability

3 Stability

The term stability is an expression that almost tells its own story. Suppose a device of some
sort operates under general conditions, and these conditions are slightly changed or modified.
The question now is, “Does this change or modification have little or considerable effect on the
device? In your thought, if the firstinstance is stable, then the second is unstable.

How does this apply to physical systems in particular? The system will depend upon certain
number of physical parameters x4, X», ..., X, Which define position and also velocity. These will
be represented in some space R" by a vector point x. The state of the system at time t will
be x = x(t). As will be produce a trajectory g, in R" space. The question again is, how do
trajectories g which start near g behave with respect to g? Do they as time goes on remain near
g which is stability or do they shift away from g which is instability.

Suppose at time t, the state of a physical system is described by
Xi = X;(t) i=1,2,..,n
and suppose the conditions of motion of the system require variable to satisfy
Xi = Xi(X1, X2, X3, «vry X)) (1)

Suppose X; = n;(t) is some particular state of the systemi.e., X; = n;(t) is a solution of (1).
To study the properties of solutions of (1) in the neighbourhood of n;(t), you make

Yi=Xi— i

where y; = 0 or x; = n; is the unperturbed motion or trajectory and x;(t) describes another
solution or state of the system. The new variable y;(t), now satisfies an equation of the form

dyi =

=
N
©




3.1 Stability in the sense of Lyapunov

0 = d(to, E) such that y(tg) < dimplies that y(t) < Eor y(tg) — X(tg) < & implies that
y() = x(t) <Efort>t,.

If & can be chosen independent of tg, then the x(t) is said to be uniformly stable.

Definition 3.2 The solution x(t) is said to be assymptotically stable if it is stable and for any
given & > Oand a solution y(t) of (4),

Jimx(t) - y(@) =0 for x(to) — y(to) <o

Note that the definition of stability given are local in nature in the sence that you are con-
cerned with solutions where the initial values are sufficiently close.

Example 3.1 Show that the differential equation
X+x=0
is stable in the sense of Lyapunov but not assymptotically stable.

Solution.

The scalar equation

X+x=0
is equivalent to the system
X =Yy 0 1
orx =
y = =X -10
with solution as
X =Acost+Bsintandy = — Asint+ B cost
X X1
Define the anorm on X = = by
y X2
X = x| + |

X(0) =I|Al+B]

X({t) = |Acost+Bsint]+|— Asint+ B cost|
= 2(Al+|B|) <E

Choose & =&,
Then from the definition, the trivial solutions

X 0

y 0
is stable in the sense of Lyapunov. However, the trivial solution is NOT assymptotically
stable, why?
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3.1 Stability in the sense of Lyapunov

Example 3.2 Show that the differential equation
X+3%x+2x=0

is both stable and assymptotically stable in the sense of Lyapunov.

Solution.

The scalar equation
X+3x+2x=0

iS equivalent to the system

X1 = X 0 1 X1
orX = X with X =

).(2 = - 3X2 — -2 - Xo

2% 3

The auxiliary equationis
M +3\+2=0ie,Ap =-1,and\, = -2
The general solution is given by

X =cet+ce2and X = — i7" — 2ce™"

X(0) = [x(0)] + [x(0)] = 2¢; + 3¢

X)) = 2lcilet+ 3|cyle
= (2lca| + 3lcz)e™

. — _ E . L
Sincee "< 1.Choose 8 =___~ ____ and conclude that the trivial solution is stable.
2[cq| + 3¢y

tIim X)) = tIim {2|c,| + 3|cy|}e ™t - Oast - O
Therefore, tIim X (t) = 0.Thus, the trivial solution of the system

_ 0 1
X = X
-2 -3

is assymptotically stable in the sense of Lyapunov.

Example 3.3 Consider the homogeneous system
X = AX

where A is aconstant n < n matrix all of whose eigenvalues have negative real parts. Then you

1541
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3.1 Stability in the sense of Lyapunov

can conclude both stability and assymptotic stability.
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3.1 Stability in the sense of Lyapunov

Proof. Suppose all the roots of a are distinct, recall that Ty;, i = 1,2,

linearly independent solution, where

0
0
yi=  eNt
0
0
e)\lt
0 _ ,
Ty = . Any solution x(t) of the system is of the form
0

X(t) = (Tyl! TyZ! ey TYn)Xn
X(t) < Ae™™ x,

where [ is the smallest of

o <OA =0 +jBioy <0, <---<a; <0

you can conclude both stability and assymptotic stability.

..., hare the n

Suppose the roots are not necessarily distinct. Then the general solution is given by

x(t) = ti_le)‘l'tcij m+m,+---+m,=n

j=1i=1

Fix J =1, Then the expression (5) becomes

Xx(t) = ClleMt + (;21'[e>\1t + C31tze)‘lt ot lltml—le)\lt

i—1aAjt gy €Y o
1— j 1— j
tieNte, < myltTY — o e o +u<0,u>0
i—1 e—(cxj+u)t
< mijlt' |7eut
<

Mmije_”t - 0ast - o
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3.2 Quasilinear System

3.2 Quasilinear System

Theorem 3.1 Given the differential equation
X = Ax + f(t, x)

where A is a constant n < n matrix all

H

an

X(0) =X

(8)




3.3 Lyapunov Second Method

e~ (@ kBt < 1 for all t
Therefore
X(t) =B xo <E provided x, <8 = é

The solutions
X(t) < B xo e (@ PRkt

are assymptotically stable since

tlim X(t) stllm B Xo e~ (@Bt — ¢

3.3 Lyapunov Second Method

The examples you have considered so far pressume a knowledge of solutios before you can
conclude stability. There are only very few equations whose solutions can be determined in
closed form (i.e., in terms of elementary functions).

An alternative method initiated by a Russian Mathematician A.M. Lyapunov is a generaliza-
tion based on the well known observatioin that near the equilibrium point of a physical system,
the total energy of a given system is either constant or decreasing. Therefore idea here is intro-
duction of some functions now known as Lyapunov functions, which generalize the total energy
in a system.

Consider the differential equation
x = f(x, t), f(0)=0 (11)

where f : R" - R" is continuous and the solutions are unique and very continuously with the

initial data.

A%

LetV : R" - R be defined and continuous together with the first partial derivatives G

(i=12,..,n)onsomeopenletQ R"
Q={x:x R", x <h}

The following are some definitions that would be of help you asyou proceed in the understand-
ing of this topic.

Definitions
1. A function V : Q - Rissaid to be positive definite (negative definite) if V (0) = 0 and
V assume positive (negative) values on Q.

2. AfunctionV : Q -~ RQ Rissaid to be positive(negative) semi-definite if V (0) =0

and V(x) = 0(V (x) = 0)on Q. If the functions assume arbitrary values then it is said to
be indefinite.
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3.3 Lyapunov Second Method

Example 3.4

(@) V = x? + y?is positive definite.
(b) (x +y)? + z2is positive semi-definite.
(c) V = x% +y? — z?isindefinite.
3. The derivatives (Euler's) of V along solution paths of (11) is given by
. d v . oV
V= Etv x(®)= aixixi = Tnf(x')

Note: On investigation of stability or instability Lyapunov pioneered the work which appeared
in France 1907. The definitions (1), (2) and (3) are very essential in this study. These will be
tied up ultimately in the context of systems.

Stability or Instability can be assumed directly using the following theorems accondingly.

Theorem 3.2 Given the differential equation (4) that is
x = f(t, x), f(t,0)=0

Suppose there exists a C ! function V : R" — R which is positive definite and is such that the
time derivative of V along the solution paths of (4), thatis, F - gradV is negative semi-definite.
Then the trivial solution x = 0is stablen in the sense of Lyapunov.

Theorem 3.3 Lyapunov Given the system (4). Suppose that there exists a C! function V :
R? - R, withthe following properties;

(i) V ispositive definite.

(i) The time derivative U(xy, Xp) of V (X1, X) along the solution paths of (4) is negative
definite.

(i) Then the trivial solution x = 0 of (4) is assymptotically stable.
Theorem 3.4 Given the sytem (4). Suppose that there exists a C ! function V : R? - R, with
the following properties
(i) V is positive definite.

(i) The time derivatives U (Xq, X) of V (X, X») along the solution paths of (4) is positive
definite.

Then the trivial solution of (4) is unstable in the sense of Lyapunov.

Theorem 3.5 (Cétaev) On Instability Consider the system (11) i.e.,

x = F(x); f(0) =0
which f is sufficiently smooth in the domain G (in R") containing the origin. LetD G be a
domain in R" with the boundary of D which lies inside G passing through the origin.

Suppose there exists a C* function V : R" — R such that
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3.3 Lyapunov Second Method

(i) V(x) = 0onthat partofthe boundary D lyinginside G and V (x) > O elsewhere.

(i) The time derivative elsewhere of V along the solution paths of (11) thatis f - gradvV > 0
in D.

Then the trivial solution x = 0 of (11) is unstable

The following are some applications of these theorems to some specific cases.

Example 3.5 Consider the section equation
X+x=0
or rather the equivalent 2-system
X1 = Xa, Xp = — X1 (12)

with the function V defined by
1
V (X1, X2) = Q(Xf + X5)

Show that the system (12) is stable in the sense of Lyapunov

Solution.

Clearly V given by
1
V(Xl! XZ) = Z(X% + X%)
is positive definite. Along the solution paths of (12)

v (X1, X2) = XgX1 + XoXp = X1Xo — X1X2 =0

Thus V (x4, X») is negative semi-definite. Hence V is a suitable function to which theorem
1.2 can be applied to give that the trivial solution x = 0 is stable in the sense of Lyapunov.

Example 3.6 Consider the system
Xl = - X:i - 2X1X22
(13)
Xo = XXy — %3
with the function V (X, X,) defined by
4

— 2 2,2
V (X1, X2) = X7 + X7X5 + X,

prove that the system (13) is assymptotically stable

Solution.
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Note that V (X1, X») is positive definite since
V (X1, X2) = X3 +X3x5 + x5 = x5(1+x3) +x5=0
Along the solution paths of (13)
V (X1, X2) = 2X1X1 + 2X1X3X12XaX2X, + 4X3X7
= =208 + 2x08) — 2x0%5°(5> + 2%1%)
+2xPXo(XiX2 = %) + AP (XIx2 — %°)
= —2q - A% - 20 - 4
V(xa,Xo) = —220¢+2% +x) — 4x°

This is negative definite. Thus by theorem 1.3, the system (13) is assymptotically stable
in the sense of Lyapunov.

Example 3.7 Consider the 2-system

X1 = Xo, Xo = — axs — le (14)

a, b are constants, with the function V (1, x2) defined by V (x1, X2) = ax2+ bx%. Discuss the
conditions for

(i) assymptotic stability

(i) instability on the system (14)
Solution.

Our V (X4, X») defined by
V (X1, X2) = ax5+ bx?

is positive semidefinite if a= 0,b = 0. Along the solution paths of (14)
Vi, X)) = %2 +%2
= Xp(2bXy) + (— axz — bx1)2x2+ 2bxix2 — 2ax? — 2bxiXz
= —2ax?

Note: Our V is positive definite if a > 0,b > 0, also that V , considered as a function X1
and x, satisfies the following

(i) V is negative definite if a > 0
(i) V is positive definite if a < 0

and conclusions follows accordingly That is

159
O




4 Conclusion

(i) Assymptotically stableif V is negative definite.
(i) Instability if V is positive definite

Example 3.8 Given the scalar equation
X+ax+h(x) =0 (15)

where a > 0 is a constant and the function h : R? - R is such that solutions exist and are

unique and very continuously with initial data. By considering with initial data. By considering
an appropriate equivalent system and considering the function

2V (x,y) = (y +ax)* + y* + 4H(x)

X
where H(X) = h(s)ds. Determine the conditions on h which ensure (i) stability (ii) as-

0
symptotic stability of the trivial solution of scalar equation (15)

Solution.

1. The scalar equation (15) is equivalent to the system
X =Yy
(16)
y = —ay- h)
Along the solution paths of (16)
Vo= (y+ax)y +afy + ax)x +yy + 2h(x)X
— (y +ax)(ay + h(x)) +ay*+a’xy — ay® - yh(x) +2h(x)y
= —ay?- yh(x) — a?xy — ah(X)x + ay?+ ax?y — ay? — yh(x) + 2h(x)y
= —(ay?+ah(x)x) = —a(y?+ h(x)x)

If xh(x) < Ofor all x 1= 0 when you conclude stability bif xh(x) > Oforallx 1I=0

then
you conclude assymptotic stability.

4 Conclusion

Lyapunov and other theroems listed earlier depend heavily on the construction of suitable Lya-
punov functions. There is no fixed standard technique for constructing such Lyapunov functions
for a given ordinary differentiatial equation. This remains the main problems in the application
of the theorems.

If a suitable function V can be found then stability or instability follows and if not, you
cannot proceed.

160




5 Summary

5 Summary

Having gone through this unit, you are now able to;

(i) determine the stability of the trivial solution and a critical point of a system of ODE.

(i) use the Lyapunov’s theorem to determine the stability of a solution of a linear system.

6 Tutor Marked Assignments(TMAS)

Exercise 6.1
1. Given the function V defined by

V(x,Y) = 2y2+ Gk

X
where G(x) = g(s)ds Determine the conditions on g which ensure stability of the

trivial solution of °
X+g(x) =0, 9(0)=0
Note: Any relevant theorems used must be stated.
2. By considering the function
1
V= E(XZ +y?)
Prove that the trivial solution of the system
X = —x-—x3—xsiny

. 3
y = —-¥Y—3;
is assymptotically stable in the sense of Lyapunov.
3. The scalar equation
K+ F(X)Xax +bx=10
a > 0,b > 0 are constants, T is a continuous function such that solutions exist and are
uniquely determined by the initial conditions. Furthermore the function
f(y) = C =P
(v) -

where C is a constant by considering the function V defined by

y
V = ]2'(3_22) + ;(bzxz +aly?) +byz +abxy +b  uf (U)du
0

Prove that the scalar equation
X+ Ff(X)X+ax +bx=0
is stable and assymptotically stable in the sense of Lyapunov.
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6 Tutor Marked Assignments (TMAS)

4. Consider the scalar equation
X—x3=0

and V (Xq, X») defined by
V (X1, X2) = X1Xo

Show that the scalar equation is unstable in the sense of Lyapunov. Any relevant theorem
used must be clearly stated

5. Consider the 2-system
X1 = Xz + X5Xa, X, = X; + 10%5
and by using V (X1, X») defined by
V (X1, X2) = X1Xz
Show that the trivial solution x = O is unstable.

6. (a) State and prove a theorem due Lyapunov used in establishing stability of a trivial
solution x = 0 of the scalar equation

x = F(x), f(0)=0
(b) Hence or otherwise show that the system
Xl = Xo, XZ ==Xy = X1 — 2])-(3

and the function V3(Xy, X») is positive definite.
(c) Show that the zero solution x = 0 is assymptotically stable in the sense of Lyapunov.

7. By considering the system
X1 = Xo + 2Xo, Xy = 3X1 + X5
and the function V,(X1,X5) = X;1X»
(a) Show that the zero solution x = 0is unstable in the sense of Lyapunov

(b) Any theorem used in the above must be stated (No Proof).

8. By considering the function V : R?> - R defined by
V (X1, X2) = X5 + 93
Show that the zero solution x = 0 of the trivial solution of the system
X1 = X, X, = —9x;

is stable in the sense of Lyapunov

9. Given that the function V : R? — R defined by V (x1, X2) = X1X». Prove that the trivial
solution, x = 0 of the system

X1 = Xo, Xy = X?_
is unstable
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