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INTRODUCTION

An integral equation is an equation in which an
unknown function appears under an integral sigtegral equation bear
a very close kinship with differential equations damuite often,
problems may be formulated either in differentiaini or in integral
form.

Very often, integral equations cannot be solvedlydically and a
numerical approach has to be adopted; particularyequations over
arbitrarily profiles. It is the desire of the authibat through this course,
you will be encouraged to develop an enquiringuaté towards integral
equation and relate the lessons learnt in thisseoto the world around
you. Furthermore; you are encouraged to build uperiessons learnt in
the prerequisite course to strengthen your undaisig of the
underlying principles at work in the applicationiofegral equation.

This course MTH 423: Integral Equations, comprises a total of four
modules and ten units as follows:

Module 1 is composed of 3 Units
Module 2 is composed of 2 Units
Module 3 is composed of 3 Units
Module 4 is composed of 2 Units

In module 1, you will learn the preliminary concepf linear integral
equation; convert ordinary differential equationsoiintegral equation
and transformation of Sturm-Lowville problems tdeigral equation.
You shall also learn how to classify linear intdgeguation and find
approximate solutions to integral equation in Uit

In module 2, you shall learn that the Volterra grsd equation is
integral equation with an integration limit contaigp one of the
variables of integration. You will learn to use tResolvent Kernel to
solve this class of integral equation. Also youllsd&cover that for
many integral equations, you must carry out a Lapl@ransformation
to arrive at a solution; and that the consequeridhis is the inverse
transforms which implies Convolution.

Module 3 will discuss the Fredholm Equations witageénerate Kernels
and the general method of finding solutions whichl wake you
conversant with Eigen-functions, as well as Eigenoters and
Symmetric Kernels. You will also learn how to ewsiepresent a
function by a series of orthogonal functions anghaerd Kin Eigen-
functions. Of the several definitions and theoremisch you will be
introduced to, shall be those related to positiem&ls and convergence
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— a necessary condition for determining a solutmnintegral equation
in deriving a numerical solution.

Module 4 will take you through the processing &f Eigen-value
Integral Transforms via Laplace Transforms, Controlu Theorem and
Inverse Laplace Transform. The application of thensform and
Fourier integral equations will be the concludiraytpof your study of
MTH 423.

COURSE AIM

The aim of this course is to hone your understanpdif integral
equation, whilst acquainting you with the graphiaad mathematical
significance of integral equation and its relatiwps with partial
differential equations. throughout the course, gball be learn that for
every analytical approach to integral equation isgly there is a
numerical method, and indeed, that some intricatelggular multi-
variable profiles can only be resolved numericallythese are expected
to motivate you towards further enquiry into thisry interesting and
highly specialised mathematical habitat.

COURSE OBJECTIVES

You are expected to conscientiously and diligemtlyrk through this
course. Upon completion you should be able to:

o explain the basic concepts underlying linear irdegguation
investigate the equations which describe the digphent of a
loaded elastic sting

treat the shop stocking problem

convert ordinary differential equations into intelgequations
transform Sturm Lowville problems to integral eqoat

work through a series of examples of transformatiand
conversions, and their solutions

classify linear integral equation

find approximate solutions for integral equation

recognise Volterra integral equation

identify the three types of Volterra integral eqoiat

arrive at the Resolvent kernel of a Volterra ecurati

solve convolution type kernels of the Volterra gr using
Laplace transform

comfortably solve Fredholm equations

identify a Neumann series

solve Fredholm equations with degenerate kernels

derive the general method of solution of Fredhotuations
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o work with Eigen functions and eigenvectors

. prove that symmetric and continuous kernels tha aot
identically zero possess at least one Eigen value

o write the Hilbert — Schmidt theorem

o state the convergence theorem

o prove that functions can be represented by sefiestibogonal
functions

o expandK in a series of Eigen functions

o define positive kernels

o apply the convolution theorem

o calculate the first Eigen value of an integral eupume

o use the variational formula

o recognise integral Laplace transforms as transforms

o derive the solution of integral equation using meee Laplace
transform

o apply Laplace transform through worked examples

o understand and solve integral equation by the ndettid-ourier

integral transforms.
WORKING THROUGH THE COURSE

This course requires you to spend quality time dadr The course
content is presented in clear mathematical langtaaeyou can easily
relate to and the presentation style is adequateasy to assimilate.
You should take full advantage of the tutorial s#ss because this is a
veritable forum for you to “rub minds” with your @es — which provides
you valuable feedback as you have the opportunftycamparing
knowledge and “rubbing minds” with your course nsate

COURSE MATERIALS

You will be provided course materials prior to coamoement of this
course, which will comprise your Course Guide adl &g your study
units. You will receive a list of recommended teddks which shall be
an invaluable asset for your course material. Thesgébooks are
however not compulsory.

STUDY UNITS
You will find listed below the study units whicheacontained in this
course and you will observe that there are four utexd The first

module comprises three units, the second has tits, the third has
three units and the last module has two units.

vi
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Module 1

Unit 1 Linear Integral Equation: Preliminary Copt®e

Unit 2 Conversion of Ordinary Differential Equat®ninto
Integral Equation

Unit 3 Classification of Linear Integral Equation

Module 2

Unit 1 S2 Volterra Integral Equation

Unit 2 Convolution Type Kernels

Module 3

Unit 1 Fredholm Equations with Degenerate Kernels

Unit 2 Eigenfunctions and Eigenvectors

Unit 3 Representation of a Function by a SerieDahogonal
Functions

Module 4

Unit 1 Calculation of ¥ Eigenvalue

Unit 2 The Application of the Transform

TEXTBOOKS

Kendall, E. A. (1997)The Numerical Solution of Integral Equations of
the Second Kind. Cambridge Monographs on Applied and
Computational Mathematics.

Arfken, G. & Hans, W. (2000)Mathematical Methods for Physicists.
Port Harcourt: Academic Press.

Andrei, D. P. & Alexander, V. M. (1998Handbook of Integral
Equation. Boca Raton: CRC Press.

Whittaker, E. T. & Watson, G. N. (nd)A Course of Modern Analysis.
Cambridge Mathematical Library.

Krasnov, M., Kiselev, A. & Makarenko, G. (1971 Problems and
Exercisesin Integral Equation. Moscow: Mir Publishers.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. &Rhery, B.P. (2007).
"Chapter 19. Integral Equation and Inverse Thedwyimerical
Recipes. The Art of Scientific Computing (3rd ed.). New York:
Cambridge University Press.
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ASSESSMENT

Assessment of your performance is partly throughoifimarked
Assessments which you can refer to as TMAs, andypidarough the
final examinations.

TUTOR-MARKED ASSIGNMENT

This is basically a continuous assessment whiclowads for 30% of
your total score. During this course, you will beenp four tutor-marked
assignments (TMAs) and you must answer three @ tlteequalify to sit
for the final examinations. Tutor-Marked Assignneeate provided by
your course facilitator and you must return thewssred TMAS back to
your course facilitator within the stipulated petio

FINAL EXAMINATION AND GRADING

You must sit for the final examination which acctaufor 70% of your
score upon completion of this course. You will l¢ifred in advance of
the date, time and the venue for the examinatidnsiwmay, or may not
coincide with National Open University of Nigeriaemsester
examination.

SUMMARY

Each of the four modules of this course has besigded to stimulate
your interest in integral equation through assomatconceptual
building blocks in the study and application ofeigtal equation to
practical problem solving.

By the time you complete this course, you shouldehacquired the
skills and confidence to solve many integral equesti Make sure that
you have enough referential and study materiall@vi@ and at your
disposal at all times, and — devote sufficient dydaime to your study.

| wish you the best in your academic pursuits.
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MODULE 1

Unit 1 Linear Integral Equations: Preliminary Cepts

Unit 2 Conversion of Ordinary Differential Equatsmto Integral
Equations

Unit 3 Classification of Linear Integral Equation pgroximate
Solutions

UNIT 1 LINEAR INTEGRAL EQUATION: PRELIMINARY
CONCEPTS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Linear Integral Equation: Preliminary Concepts

3.1.1 Loaded Elastic String
3.1.2 Shop Stocking Problem

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In integral equations, an unknown function whiclthe subject seeking a
solution always appears under an integral signsé@leguations bear a close
kinship with differential equations suggesting tlaadifferential equation
can be formulated as an integral equation and wecsa.

The analytical method remains the standard metHodolving integral
equations, however, where the analytical methdd;ftie equation can be
solved numerically.

Let us commence with two common problems to illstrthe basic
concepts of linear integral equations; loaded elasitring and the shop
stocking problem.
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20 OBJECTIVES

At the end of this unit, you should be able to:

o explain the basic concepts underlying linear irdeégguations

o investigate the equations which describe the digptent of a
loaded elastic sting

o treat the shop stocking problem.

3.0 MAINCONTENT

3.1 Linear Integral Equation: Preliminary Concepts

Let us take a look at some problems, the typeshiéwwe encounter every
day and which give rise to integral equation.

3.1.1 A Loaded Elastic String

g Q a-¢

A

I
|
|
ITI
|
[

w

Consider a weightless elastic string as shown enathove figure, stretched
between two horizontal points O and A and suppbs¢ & weight W is
hung from the elastic string and that in equilibmidhe position of the
weight is at a distancéfrom O and at a depth Y below OA. If W is small
compared to the initial tension T in the stringc@in be assumed that the
tension of the string remains T during the furteeetching. The vertical
resolution of forces gives the equilibrium equation

T (/&) + T(m/(a-£)-W=0

Where AO = a (1.1)

The drop Y due to a weight W situated a distancadong the string from O
Is given by
Y = W@-¢)¢/Ta (1.2
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The drop Y in the string at a distangdrom O is given by
Y =xy/é, 0<x<¢ (1.3)

y = (@a-xn/(a-¢),é<x<a (1.4)

Eliminating y, these two results can be writterthia form
y = WG(x, &)/T (1.5)

where
G(x &) = x(@a-&)/a, 0<x<¢&
= f(a-x)/a, £<x<a (1.6)

Suppose now that the string is loaded continuouslth a weight
distribution W(x) per unit length, the elementary displacement etptint

distancex from O, due to the weight distribution ovék x < &+0¢ is

oy = W(&os Gx, &)/T
0<xéc<a (1.7)

On integrating, displacement due to the completeghtedistribution is
given by

y(x) = T :G(x, EW(E)E,  O0<x<a  (1.8)

Thus, the displacement of the string is given irmte of the weight
distribution. However, if we are given the displaant of the string, what
is the weight distribution?

In this case, we can sew site to equation. (18fdhm

W) =8| X[} - &)W+ @- X[ s WDz | (2.9)

Different this twice, we obtain
y*(x) =(Ta)" W(x)
i.e. W(x) = Tay"(x) (1.10)

3.1.2 The Shop Stocking Problem

A shop starts selling some goods. It is found ¢hatoportionK (t) remains
unsold at time t after the shop has purchaseddbdgy It is required to find
the stock at which the shop should purchase thegeo that the stock of
the goods in the shop remains constant (all presease deemed to be
continuous).
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Suppose that the shop commences business in tlus gpgopurchasing an
amount A of the goods at zero time, and buys at@Q(t) subsequently.

Over the time interval
K(t-7)Q(r)dr (1.11)

Thus, the amount of goods remaining unsold at timand which was

bought up to that time, is given bK (t) + EK(t—r)Q(r)dr (1.12)

This is the total stock of the shop and is to renm@instant at its initial
value and so

AK (t) + I;K(t—r)Q(T) dr (1.13)

And the required stocking rat@(t)is the solution of this integral eqn.

SELF-ASSESSMENT EXERCISE

i. What are linear integral equations?
ii. What is meant by Shop Stocking Problem?

40 CONCLUSION

You have learnt the processes involved in the tlustrative problems. It
is easy to formulate similar solutions for a vasaw of problems.

5.0 SUMMARY

The two problems presented demonstrate how to flatewand derive an
integral equation for a suitably structured prohlénalso demonstrates the
process of solving the integral equation developed.

6.0 TUTOR-MARKEDASSIGNMENT

1. Apart from the Loaded Elastic String and the Shdpcl8ng
Problem, can you make a list of 5 different typéproblems which
can be solved using integral equation?

2. A transport company distributed workshops withimetropolis
which receives and repairs its broken down vehidiée workshop
manager discovers that he must always rerottétfo of his
workshop allocation of vehicles to alternative loma every day as
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he cannot accommodate them in his workshop ovet;ragid he
calls you in to tell him the optimum number of regts for repairs
he should entertain every day such that the work&h@00%
utilised when all related processes are assumbd tontinuous.
Formulate an integral equation to help the worksmapager.

7.0 REFERENCESFURTHER READING

Arfken, G. & Weber, H. (2000)Mathematical Methods for Physicists
Port Harcourt: Academic Press.

Andrei, D. P. & Alexander, V. (1998Manzhirov Handbook of Integral
Equations.Boca Raton: CRC Press.

Kendall, E. A. (1997)The Numerical Solution of integral Equations of the
Second Kind. Cambridge Monographs on Applied and
Computational Mathematics

Krasnov, M., Kiselev, A. & Makarenko, G. (197Pxoblems and Exercises
in Integral EquationsMoscow: Mir Publishers.

Press, W.H., Teukolsky, S.A., Vetterling, W.T & ~HRiery, B.P.
(2007). "Chapter  19: Integral Equations and Inverse
Theory. Numerical Recipes: The Art of Scientific Compgt{3rd
ed.). New York: Cambridge University Press.

Whittaker, E. T.&Watson,G. N. A Course of Modern
Analysis Cambridge Mathematical Library.
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UNIT 2 CONVERSIONS OF ORDINARY DIFFERENTIAL
EQUATIONSINTO INTEGRAL EQUATIONS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Conversion of Ordinary Differential Equations inftategral
Equations
3.2 Transformation of Sturm Lowville Problems to Intalr
Equation
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

There are many ordinary differential equations \Wwhian be converted into
corresponding integral equations and we shall gdde study how these
transformations can be carried out; particularlyha classical case of the
Sturm Lowville problems and a host of others iltasve of this
transformation process.

20 OBJECTIVES

At the end of this unit, you should be able to:

o convert ordinary differential equations into intalgequations
o transform Sturm Lowville problems to integral etjoas
. work through a series of examples of transformatioand

conversions, and their solutions.



MTH 423 MODULE 1

3.0 MAINCONTENT

3.1 Conversion of Ordinary Differential Equationsinto I ntegral
Equations

y(x)+a,(x) y'(x)+ a, (x) y(x) = f(x) (1.14)
with the initial condition,
y0) = ¥o, y'0) =y, (1.15)

Let w(x) = y*(x) (1.16)
Then, y*(x) = onw(u)du +y,  (1.17)

y() = [[(x-u) plu)du + yx + y, (1.18)

Substituting the relations 1.16 to 1.18 into théfedential equation, it
follows that

w(x) + [au(0)+a,(x) (x-u)]w(u) du
= f (X) - Y1a1(x) —¥iX az(x) - yoaz(x) (1-19)

Equation (1.19) can be written in the form
p(x) + [KOcuy(u)du = g(x)  (1.20)
Which is an integral equation for(x)

Example 1.1

Form the integral equation corresponding to
yt+2xy' +y=0, y(0)=1 y*0)=0

Solution
Lety" =p(x), y*=[ w(u)du
y :jox (x—u)w(u)du +1
Thus,w(x) +2x J'OX w(u)du+ on (x—ul(u)du+1=0

i.e. w(x) +IOX (Bx-u)w(u) +1 =0
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3.2 Transformation of Sturm - Linville Problems to Integral
Equation

A problem which is associated with an expressiothefform
d d
Ly = ™ (P(X)E{) —q(x)y, x<x<x, (1.21)

and boundary condition of the form
a,y(q) + by'(x) =0 (1.22)
azy(xz) +b, yl(xz) =0
is said to be of Sturm-Lowuville type.

There are two problems which are of interest hemejely:
Ly = f(x) x <x<x,(1.23)
and
Ly +Ar(x)y =0  x <x<x, (1.24)
are continuous in the intervak <x<x,, and in additio®(x)has a
continuous derivative and does not vanish.

The differential equation (1.23) corresponds taspldcementy caused by
some forcing functionf, and the differential equation (1.24) forms
together with the boundary condition, an Eigenvateblem.

Suppose tha®,, Q,are solutions of the equatidry =0
with  2,Q,(x,)+b Q/(x)=0
a,Q, (Xz) + szzl(Xz) =0 (1-25)

then,
0 = Qz LQl_Ql LQZ
d de; ) d(,dd,
- de—x(Pa] Qldx(P de
_d aQ 4 99
B dx(P(Q2 dx Q dx D
Thus,

dQ dd,
PlQ,— —-Q, —=| = constant (1.26
(Qz = ~Q dxj (1.26)

Using the method of variation of parameters, lomke solution of the form
y() =z(x)Qx)+2,(x)Q,(x)  (1.27)

where z andz, are to be determined.

Thus,

yl = 'le Ql + Z; Qz +'Z1Q11 + 'ZzQ; (1-28)
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Let z'Q, +2Q, =0, so that
Ly = 2P E(KQ 0+ 2]
- 49 @20 Q) + () Q.(x)

- PZQ+2Q) (129
SinceLQ, =LQ,=0

Thus, z, and z, are given by the solutions of equations
"21l Q +'Z; Q =20 (1.30)
PZQ+2 Q)= f(x) (1.31)

1 Q 1 ~ fQ
Whence z" = 2 ) = L 1.32
TR T oo ei-eQ)  ? T Ploai-QQl) (1.82)

The denominator in these two expressions is contar{1.26) and by a
suitable scaling op, and ¢, may be taken as1.

Thus,

'211=_ fQ,, 'Z; = fQ, (1.33)
It follows that

z(x) = -[Qu)f(wdu  (1.34)

z,(¢) = [Q)f(u)du(1.35)

where the unspecified limits of integration are tbquivalent of the
arbitrary constants of integration and are deteechiny the necessity of

satisfying the boundary condition.
Now,

ay+by =a(zQ +2Q,)+b (2Q'+2Q}) (1.36)
Sincez Q+z,'Q, = 0
Also a,Q,(x) +b, Q(x)=0 (1.37)
Hence,

0 = aly(xl) + blyl(x1)= %, (X1) (a1Q2(X1)+ b1Q21(X1)) (1-38)
First let us assume that neith@ynorQ, satisfies both boundary condition,

hence, it follows that, (x,) =0 and so
2,(0 =[[ Q) flwdu (1.39)

Similarly,
ay+ bz yl = ('Z1Q1 'ZzQz)"' bz ('211Q1 +'2le + 'Z;Qz + 'ZzQzl)
= & (‘Z1Q1 + 'ZzQz) + bz (‘Z1Q11 + 'ZZQ;)
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= 4 (azQz + szé)"" % (ale + szll)
Sincea, Q,(x,)+ b,Q*(x,)= 0,we have

0 = azy(xz)+ bzyl(xz):%(xz)(ale(xz)"' szll(Xz))
Thus, it follows thatz,(x,) =0 and so

z(x) = - LXZQZ(U)f(U)du
= ["Q(u) f(u)du (1.39)

Hence
y(x) = 2,(x) Q(x) +2,(x) Q;(x)
Q(x) [ Q.(u) f (wdu + Q,(X)f Q,(u)f (u)du
y(x) =["G(xu) f(u)du (1.40)
where

G(xu) = QUQMK x<usx  (1.41)

The quantityG(x, u) is termed the Green’s fin associated with the aeel
and the boundary condition specified.

We would see that the Eigenvalue problem (1.24inddfand the boundary
condition (1.25) can be reformulated as the integgaation

y(x) + 4 I:ZG(X, u)r(u) y(u)du = 0 (1.42)
by just replacingf (x) by Ar (x) y(x).

Let us now consider the case where one of theisokip, and Q,of Ly =0

do satisfy both boundary condition while the othaelt not satisfy either
boundary condition. Then, following the providedament, if follows that

¥() = QX) [w()+Wdu +y(x)[ Qu)(udu  (1.43)

where x and g are arbitrary and heng(x)does not satisfy either boundary
conditions.

Since bothy and Q satisfy the boundary condition, if follows that
0 = ay(x) +by'(x)- (alwl( )+ by (x) jﬂQ Wiy (1.44)

0 = a,y(x)+ b,y ()= (aw.00)) QU)f(udu  (1.45)

w(x) does not satlsfy either boundary condition and $allows that from
(1.44)p = x, and from (1.45) we have

10
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I:ZQ(u)f(u)du =0 (1.46)
and the solution is only possible when this relatxists betweerf and
Q. Thus, the integral equation formulation becomes

y = AQ(X) + IXXZG(X, u) f(u)du (1.47)
Wher  +eA = LXllﬂ(U) f (u)du is an arbitrary constant and

G(xu) = QUy(x)  x<usx
= Q(X)w(u) x<u<x, (1.48)

Example 1.2

Find an integral equation formulation for the pehldefined by

d2
d)<2/+4y=f(x) OSXS%, y=0atx=0 andy=0 atx=%

Solution

d’y
dx?
x=0and x = % are Sin2x and Co22xrespectively.

The solutions of +4y=0 which satisfy the boundary condition at

Neither satisfies both boundary conditions.
Let, y = wsin2x+ zcos2x

y' = W'sin2x + Z' cos2x + 2wcos2x 22 Sin2x
= 2wcosx — 2zsin2x if w'sinx + z'cos2x =0
y'' = 2w'cos2x — 22" sin2x — 4wsin2x — 4z2c0s2x

Thus,
yh 44y = f
becomes
2W! cos2x — 2zsin2x = f
whence,
L1, . 1
ZzH=—=1f sin2x, wh =§f COS2X
Thus,
2(x) = —%Ixf(u)sinZUdu andw(x) = %Ixf(u)COSZUdu
SiN2X ¢x COS2X px
y == Iﬂ f (u)cos2udu — > [ f(u)s2udu

11
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Now y=0 at x=0,s0 that
10 .
0 =O—§Lf(u)sm2udu
a =0
Also, y=0 at x=7/,, so that

1
0 _E-[ﬂ f(u) cos2udu -0
. B=7/. Thus,
1. a 1 X .
y =—§sm2xj'X f(u)cos2udu—§c052x_|'O f (u)sin2udu
= K‘G(x,u)f(u)du
where G(x, u) :_710052xsin2u O<u<x

-1 .
— T
= 3 sin2xcos2u XSUSA.

Example 1.3

Transform the problem defined by

y
+4dy =0
dx? y

wheny = 0 at x=0 and y' =0 at x=1 into integral equation form.

Solution

The solution to this problem is

2
y = Sin@' l:[M} n:l 2,3’

2
2
The two solution%—f:O which satisfy the boundary conditions are
X

respectivelyy = xand y =1. (neither satisfies both b.c)

Following through the usual process, if followstttiee solution of
d2
dx
y = XLX f(u)du+LOuf(u)du
and so the integral formulation is

(9 = ALK (o) oy

y .. L
2 = f(x) under the boundary condition specified is

12
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where

Example 1.4
2

Transform the problem b%—z +y = f(x)
X

and the boundary condition=0 at x=0 and x =z into integral equation
form and indicate what condition must be satisbgdf (x).

Solution

2
Now sinx satisfies the equatio%—z + y =0 and both boundary condition
X

2
The second solution of the differential equati%%+ y=0 is cosx, and
X

this satisfies neither boundary conditions
Let y =zsinx+ wcosx
Following the same process, it follows that

y = sinxrcosu f(u)du+cosxfsinuf(u)du

Now yis to vanish atx=0, and so the limit of integration on the second
integral is zeroy must also vanisk =z and it follows therefore, that

y(7) cosr Iosinu f(uydu =0
Thus, for a solution to be possible
j:sinu f(u)du =0

and y(x) = Asinx+ I:G(x, u) f(u)du

where A is arbitrary and
G(x,u) =—-sinucosx 0<u<u
= —sinxcosu X<Uu<m.

SELF-ASSESSMENT EXERCISE

1.Transform the problem defined by

When at y=0 at x=0 and y’'=0 at x=1 into integraliatjon form.

13
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2. Transform the problem defined by
S =f@)

When at y=0 at x=0 x=1 into integral equation form.

3. Transform the problem defined by’ + 2y’' + f(x) = x

When at y=0 at x=0 x=1 into integral equation form.

4. Find the integral equation formulation for theolgem defined by
y'+4y = f(x)

Where0 < x <m/2,y =0atx =0,andy =0 atx < m/2

40 CONCLUSION

A Sturm-Lowville differential equation with boundaconditions may be
solved by a variety of numerical methods on mostasmns; however,
there are situations where it becomes necessacgrty out intermediate
calculations.

5.0 SUMMARY
Ordinary differential equations can be transfornmtd integral equations.
6.0 TUTOR-MARKED ASSIGNMENT

1. Transform the problem defined gy — Ky = 0 when y=0 at x=2 and
y'=0 at x=4 into integral equation?

2. A Sturm-Lowville type problem can be associated hwian
expression of the form

Ly = %((P(x)%g—q(x)y, x <x<x, (1.21)

14
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Write down the form of the second boundary conditichen the first is of
this form.

a1Y(X1) + blyl(xl) =07
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UNIT3  CLASSIFICATION OF LINEAR INTEGRAL
EQUATION
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1.0 INTRODUCTION

Integral equations are classified according to ksmof integration,
placement of unknown function and nature of knowmction. These result
in Fredholm and Volterra equations on the one hardtlintegral equations
on the other hand. Finally, the homogeneous andhoeomogeneous fall
into the last class, making a total of eight disticlasses of integral
equations.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o classify linear integral equations
o find approximate solutions for integral equations.

3.0 MAINCONTENT
3.1 Clasdification of Linear Integral Equation

Let K(x, y) be a function of two variablesand y defined and letf (x)
and Q(x) be two functions of the variable continuous in the interval
a< x<h, which are connected by the functional equation

f(x) = Q(x)-4 [K(x y)Q(y)dy(1.49)

16
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The functional equation (1.49) is called a linggegral equation of the'?
kind with the kernelk (x,y). In this equation, every continuous fi{x)is

transformed into another continuous firn(jx); the transformation is linear,
since to ¢, Q, +¢,Q,, there corresponds to the analogous combination
cf,+c, f,.

If the find f(x) vanishes identically, we are dealing with a honmogses

integral equation. If a homogenous equation possessolution other than
the trivial solutionQ =0, the solution may be multiplied by an arbitrary

constant factor and may therefore, be assumed tiseda
If Q.,Q,,:--,Q, are solutions of the homogenous equation, théhneaar

combinatiorC, Q, +---+C, Q, are solutions.

It can also be proved that linearly independenutsmis of the same
homogenous internal equation are orthornormal. ldevd  for which the

homogenous equation possesses non-vanishing saui® called an
Eigenfunction of the kernel for the EigenvalueTheir number is finite for
each Eigenvalue.

The integral equatioﬁ K(x, y)Q(y)dy = f(x) (1.50)
1% kind. The integral equation
Q(x)=4 j: K(x, y)Q(y)dy+ f(x), a<x<b (1.51)

is termed a Fredholm equation of tHé &nd.
If K(x,y)=0 y>X, (1.52)
the kernel is said to be of Volterra type.

The integral equation

[Kxy)QWdy = f(x) as<x (1.5)
is termed a Volterra integral equation of tifeKind.
If K(x,y) = K(y-x), the kernel is said to be of convolution form.

The integral equation

QX = 2 K y)Q(y)dy+ f(x) a<x  (1.54)

is termed a Volterra integral equation of tf&knd.
Indgeneral, it is a Volterra integral equation bé tintegral equation of the
2" kind.

17
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If we differentiate equation (1.53) w.ixt it follows that
x OK (X,
K(xx) Q) + [P A qy)ay - 1209 (1.55)

a  OX
If K(x, x) is non-zero, it is possible to divide through byaind it is clear
that it is an associated Volterra integral equatibthe 2 kind.
The kernel is said to be symmetric.

if K(x,y) = —K(y, x)

The kernel is said to be anti-symmetric
if K(x,y) = K(y, x)

The kernel is said to be Hermitian
if K(xy) = K(y,x)

3.2 Approximate Solutions

We split the interval into n equal sub-intervaldasuppose that we may
write approximately
K(X, y) = Krs(r__lgxgi,s__lg ysfj
n n

where Krs are constants.
Similarly, when we write

r-1 r

f = f ——<X—

00 =1, [Srext)

the equation (1.54) becomes
QW) = f +4Y K, [ Q(y)dy (1.56)

s=1

r-1 r
——< x<—

n m

This shows thap also will be a step find taking the valu@s, say.
Equation (1.56) becomes

Qr _%iKrs Qs = fr (157)
s=1

Let K be thenx nmatrix with elementsKi and letQbe n vectors, then,
n

we have W4
(1-2K)Q = f (1.58)

18
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The system has thus been reduced approximatelget @ linear algebraic
equations. For these, the theory is well-known @iedmputational solution
is straight forward.

In a sense, the solution of (1.54) may be regaesgethe limit of (1.57) as
n— o0,

Exercises
Solve the equations:

) QK -2[xyQ(y)dy = x*

i QM+ [eQW)dt=x  QO)=0
approximately at the partg.=0,%,1 and y=0, 4,1
Compare your results with the exact solution ireq@s.

SELF-ASSESSMENT EXERCISE

1. Solve the equations

i Q) -2 [ xy Q()dy = x?
i. Q) + [ et Q(t)dt = x
iii. Qo)+ [ e*Q)dt=c

2. List three types of non-homogeneous equations.

40 CONCLUSION

Linear integral equations can be classified intees# groups and sub-
groups such as: Fredholm, Hermitian, Volterra iraegquation and those
integral equations which are either symmetric dgi-symmetric.

5.0 SUMMARY

Linear integral equations can be classified acogrdio their common
characteristics.

6.0 TUTOR-MARKED ASSIGNMENT

1. In how many ways can integral equations be claski
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2. What type of integral equation has a fixed (congtdmmit of
integration?

3. Distinguish a Volterra type of integral equatiomrfr a Fredholm
integral equation.

4, A homogeneous equation is identically non-zeroeTouFalse?
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MODULE 2
Unit 1 S2 Volterra Integral Equations
Unit 2 Convolution Type Kernels

UNIT 1 S2VOLTERRA INTEGRAL EQUATIONS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Volterralntegral Equations
3.2 Resolvent Kernel of Volterra Equation
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION
Volterra integral equations have integration limit which include the
variable as opposed to the Fredholm integral in which the integration

limits are constants.

20 OBJECTIVES

At the end of this unit, you should be able to:

o recognise Volterra integral equations

o comprehend that there are the three types of Volterra integra
equations

o arrive a the Resolvent kernel of aVolterra equation.

3.0 MAIN CONTENT

Volterraintegrals are characterised by the limit of integration being one
variable and of which there are three types. A common solution to
Volterraintegralsis to employ the formalism known as the Resolvent.

3.1 Volterralntegral Equations

A kernel K(x, y)is said to be of Volterra type if K(x,y)=0, y>x
2.1)
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There are three types of Volterraintegral equations.

These are:
(1) The equation of the first type.

f(x) =[ Kixy)Qydy (22
(i)  Theequation of the second type.

QKX = A[K(xy) Qy)dy +f(x) (23
(ili)  The homogenous equation of the second type.

QY =2 [KxyQydy (24
The following properties arise:

(1) It is necessary for consistency in the equation of the first kind i.e.
f(0)=0

(i)  Any solution to the equation of the second kind cannot be correct
unless Q(0) = f(0)

(i) If K isnon-singular, there are no Eigenvalue and Eigenfunctions
associated with the homogenous equation (2.4)

(iv)  The equation of the first type can be differentiated to give the
equivalent equation

K Q) + [ 2K o)y @8

0 OX
Example 2.1

Solve the integral equation

Q(x) =3 JOX cos(x—y) Q(y)du + &"
Solution

Here Q(0) = f(0) = 1
Differentiating w.r.t x, it follows that
Q'(x) = 3Q(x) -3[ sin(x-y)Q(y)dy+e"
Thus, Q'(0) = 3Q(0)+1 4
Differentiating w.r.t x again, we have
Q*(x) = 3 Q'(X) - 3] cos(x-y)Q(y)dy+e’

= 3Q'(x) - Q(x) + 2¢*
This equation can simply be solved thus:
Q" -3 Q'(x) + Q(x) = 2¢*
Consider the homogenous equation
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Q" -3 Q'+Q=0

LetQ = e™=>m°-3m+1=0, m==+

N o

N w

Example 2.2

Solve the integral equation
QX) = x+1+ ['@+2(x-y)d(y)dy

Solution

Differentiating once, it follows that (Q(0)= f (0)=1)
Q'(x) =+Q(x)+2[ Qly)dy
Q'(0) = 1+ Q(0) =2
Differentiating again, we have
Q"() = Q'(x) +2Q(x)
e QY-0Q'-2Q =0
Lt Q=e™,m*-m-2 =0 (m+1)(m+2)=0
=> m =- or2
Q = Ae*+Be”

3.2 Resolvent Kernel of Volterra Equation

Let us consider the equation:
QX) -2 K (% y)Q(y)dy = f(x) (2:6)

We can set about the solution by guessing that at least for small x the
integral term will be small. First approximation is then

Q) = fx) @27
Sothat ["K(x, y)Q(y)+ [ K (x, y)Q (y)dy
= [Kxy)fldy (28
The second approximation Q,(x), isthen
QM) = 109 + 4Kk y) lv)dy

= £ + 4 [[K(xy)f(y)dy (29)
Repeating the argument, we obtain a sequence of approximations.

Q) = f() +2[K(xy) Quy)dy  (210)
Write equation (2.10) in the form
Q = f+[KQ, (211
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Sothat Q,, = f + A[KQ,, (212

Therefore, Q, -Q,, = 4[K(Q,,-Q.,) (213
Nowsetl/lo = f = QO and inl//n =Qn _Qn—l (214)
then,

Py, = 2Ky,

ve = [Ky,, n=1 (219

m() = [KOy) fy)dy
va() = [KO0Y) pa(y)dy=[ K(x 2}y, (2)dz
= [[K(x2)dz[K(zy)t(y)dy
[y [[K(x 2K (z y)dz
= [T(YK, (xy) (216)
where K, = _[yx(x,z)K(z, y) dz

By repetition of the argument, we have

vo) = [ K (xy) fy)dy (217)
Where K, (x,y) = K(x,y) and

Ko, (xy) = ij (x, 2)K, (z y)dz (2.18)
Also, fromequation 2"y, = Q,-Q,,, Sothat
S Ay, = (Q-Qu) (6 Qua) o+ (Q - Q)+ Q,
T

Q Yy, (220
By cons de?i%g equation (2.20), (2.17), we have

Q= 169 +[[ (S K, ()]s oy
#,-Q) (@2
Thus, it is plausible to suppose that

Q(x) = limQ,(x)

= f(x) + jox [2K,(x, u)}+ f(y)dy (2.22)

= f(x) —/IIOXR(X, y, A) f(y)dy (2.23)
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where R(r,y) =- iﬂ’KHl (xy). (2.24)
r=0

The function R iscalled the Resolvent kernel.
Let us now determine the conditions under which the power series on
the right hand side of equation is convergent.

Supposethat over 0<x, y<I,|K(x y)|<K
Then,

K, (%, y) :‘ LXK(X, 2)K (z, y)dz‘

< K3(x-y) = (x-y)K? x=2y (225
Also K,(xy) =0, y > X
Similarly,

Koy = |[K.(x2K(zy)dd
sKSJ‘yX(x—z)d,z:%Kg(x—y)2 x>y (2.26)

and K, (x, y)=0, X<y

Proceeding in thisway, it follows that:

| K, (% y)] < (nil)l K"(x-y)™ x>y (227)

=0 X<y
Thus, the series A" K, (x, y) is dominated by the series with the n™ term

(n%) KM (x—y)"™ (2.28)
now [x-y < 2|, and so the later seriesis dominated by the series with n™
term

A"K 1

"1 (2K) (2.29)
Thisisthe typical term of an exponentia series and so it follows that the
series 2.23 for R(x, y, 1) always converge.

The uniqueness of the solution follows easily because, if Q,(x), Qg (x)
are both solution, then,

Q) -Qu() = [K(x ) Qi) Qs (v)ly) (2.30)

Since the resolvent kernel series converges for all values of Ais the
original kernel n bounded.

This is equivalent to saying that there is no Eigenvalue. Thus,
Q.(x) = Qq(x)
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Example 2.3
Solve the integral equation

Qxy) = f(xy) + [ ['ep(x-u+y+v)Q(uyv) dyd,
K, (% y;u,v) = exp(x—u+y-v)
K, (x, y;u,v) = IUXIVUK (x, y. x4 y) K (xl, vhu, v)dxldy1
= exp(x-u+y-v) I: dxljvydy1 =(x-u)(y-v)exp (x-u+y-v)
Similarly,
K,y (% y;u,v) = J‘:J'Vy exp(x—u+y-v)[(x—x!)(y— y*)] axiy*

- exp(x—u+y—v)_|‘vy (xxl—x—f) | (y-y*)dy*

X2 u2 y2 V2
—exp(X—u+y-v)| | X ———xu+— ||y - —wW+—
p( y )K 5 ZJ(Y W ZH

1 2 2
= y(x—U) (y-v)* exp(x-u+y-v)

Hence,
X, ViU, v) = (x=u)"™(y—v)"" X—U+Yy—V
K, (x, ¥ u,v) T exp(x—u+y-v)
and so
R(x, y;u,v,) = —i K, (x y;u,v)

u-1

= —exp(x-u+ y—v)i (X_u(): !()Z_V)X

u=0

The solution is therefore, given as
Qxy) = f(x Y)—joxjoy R(X, y;u,v) f(u,v)dudv

SELF-ASSESSMENT EXERCISE
1. Solve the following equation

.QG) =2 [ cos(x —y) Q(y)du
i.Q(x)=x+1+ fox(l +2(x —y))d(y)dy

2. What are Volterraintegrals?
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4.0 CONCLUSION

Certain properties arise as a consequence of the three types of Volterra
integrals.

50 SUMMARY

There are three types of Volterra integral equations, and can be solved
using the Resolvent kernel.

6.0 TUTOR-MARKED ASSIGNMENT

1. How many different type of Volterra Integrals are there. 1, 2, 3 or
472

2. Which of these three is a Volterra integral equation of the first
type?

f(x) = [ K(x y)Q(y)dy
QX =4 [K(xy)Q(y)dy
QK = 4 [K(xy) Qy)dy +f(x)

3. And which isaVolterraintegral of the third type?
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1.0 INTRODUCTION

Laplace transformation serves as a powerful tool in the solving of
integral equations. Convolution, the inverse of Laplace transformation,
is necessary to transform the solution back to the originating domain.

20 OBJECTIVES

At the end of this unit, you should be able to:

o describe how convolution type kernels of the Volterra integral
can be solved using Laplace transform

o solve Fredholm equations

o identify a Neumann series.

3.0 MAIN CONTENT
3.1 Convolution TypeKernels

If the kernel of the Volterraintegral is of the form K(x- y), the equation

is said to be of convolution type and may be solved by using the Laplace
transform. The method of solution depends upon the well known result
in Laplace transform that:

[[ ™ [ Flx-y)G(ydydx
=], e Flax [ e akgax (236)

Theterm _Lx F(x-y)G(y)du = J: F(y)G(x-y)dy (2.37)
is the convolution, (faltung) of the two functions F(x) and G(x).
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Let us denote J: e ™ G(x) dx, the Laplace transform of G(x) by G .
Consider the integral equation of the first kind.

i) = [ Kx-y)dlydy (239
On taking the Laplace transform, it follows that,
F=K Q (239
Thus, Q =f/k, (2.40)

provided the transforms exist.

The solution is found by finding the inverse transform of Q. It is also
possible to solve the inhomogeneous Volterra equation of the 2™ kind
with the convolution kernelsin exactly the same way.

The equation
Qx) = f(x) + LX k(x-y)Q(y) dytransforms into
Q = F+KQ

where Q = (1-K)" f  (241)
and Q(x) may be found.

Example 2.5
Solve the integral equation
IOXSnx(x—y)d(y)dy = 1-cos/X
Note that the equation in self-consi stent
Taking the Laplace transform, we have
«a .1 _p _ Pipop
p’+a’ p p’+p’ plp® + 4°)
o + 2_ 2
Thus, Q = (p a) % ('B a] 2p2

ap(p +° )

Therefore, Q = a+(ﬁ —
o

Example 2.6
Solve the integral equation

.LX Q(x-y)[Q(y)-2sinay]dy = xcos ax

Solution
Taking the transform if follows that
=]= 2a o opP-al
Q{Q p2+a2} - (p2+a2)2
o d"
(N8 ) b 1) = (3" e (1)
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Thus, Q = sinax + cosaxarethetwo possible solutions

Example 2.7

Solve the integral equation
QA = X + [ e Q(y)dy

Solution
It follows that
— 3! 1 =
= _— —+ _—
Q 1 0 3 Q
-1
— 1 3!
- |- ==
Q { -3 p4
_ | |
Hence, Q — p_3 i — i L
-4 p4 p4 p-4
3! 3!
= — +
p4  pi(p-4)

Example 2.8

Solve the integer-differential equation
Qll(x) i J‘OX ez(x—y) Ql(y)dy=1
where Qo) = o, Q'(0) = o

Solution

Taking the Laplace transforms, it follows that

— PQ 1 — p-2
p?2 —< = =+ =
Q P-2 P (Q pz(p—l)zj
— 1 1 2 1 2
and Q = = - + = + =
p*(p-1)° (p-1 p-1 p> p
Hence,
Q(x) = xe*-2¢" + x + 2
Cossection

=1 2 p 1
Q{p+p—2} p
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i.e. G[p(p—_l)z} .

p-2 Y
_ p—2 3 2 3 1
= Q = s E—— = —_ -
p*(p-1° p p° p-1 (p-1f
LoQ(X) =-3-2x+3e" - x €&

[Reuse partial fraction]

p-2

NB: _p-c _ A
p*(p-1)* p

. B . C
p’ p-1  (p-2y

= p-2 = Ap’-2p°A+Ap+Bp®-2Bp+B+cp’—cp®+ Dp?
3.2 Fredholm Equations

The Volterra equations considered are a special case of the equation.
Qx) - 2 [Kxy)Qy)dy = f(x) (0<x<)(31)

Evidently, the special caseiswhere k(x, y)=ofor y > x
We shall take the interval (0,1) as standard and for simplicity write the
integrals without the limit.

Put Qx) = f(x) + Ay, (X)+ Pw,(x)+  (3.2)
where y,(x) = [k(x y) f(y)dy
wo() = [ k(x Y)w(y)dy
- Jk(x, y) dy Jk(y, z) f(z) dz
= [k, (xy) f(y)dy
and  K,(xy) = IK (x,2) K(z y)dz
w0 = [K,(xy) fy)dy
where
K,(xy) = IKW (x, 2) k(z y)dz
The series (3.2) is called the Neumann series just as we consider the

series for the Resolvent kernel.
~R(x,y;4) = K(x y)+ 2 k, (x,y) + (3.3

This series may be proved convergent for a certain sample of values of
A under a variety of conditions. We consider one set of these
conditions.
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3.3 Lemma3.l

Suppose K(x, y) is continuous and
sup

Then, the series (3.3) is uniformly convergent for |1 < M™. It is

continuous and the series may be integrated term by term. Also,
R(x, y; 4) isfor each (x, y) an analytic function of the complex variable

A inside 4] < M.

Pr oof
We have

K, (xy) = ‘ Jf K(x, x)K(z, y) dz‘

sup| K(x, 2)K(z, y)
sup|K(x, z) sup|K(z, y)

IA

IA

M2

By repesating this, we get
K, (xy) < M" (34

Then, the series (3.3) is dominated by ZA”M ".The result follows as
before by Welerstrass M. test in region |AM|<L1The analyticity is
obvious since we are considering each (x, y) the given series > a 4,
where a, =K, (x, y). The radius of convergence is not less than M ™.
Note that in this case we have only proved convergence for |2 < M ™,
whereas the Volterra equations are true for all A finite.

Example 3.1

Consider the integral equation:
Q¥ - 2 [ Qydy = f(x)
In this case, K(x y)=1land K, (x, y)=1
1
A-1
1

Also, sup|K(x, y| = 1. Since 1 has a pole at 1, the result may not in

genera be extended to smaller M

Thus, R(x, y; 2 Z/l’ =
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If A= j: Q(x) dx, and integrate over (0,1), the equation
Qx) - 2Q(y)dy = f(x)
1 1 1
Al-1) = IO f(x)dx = A= - IO f (x) dx
Suppose first that 4 =1.Then,

Q(x) = f(x) + A = f(x)+ﬁjol f (x)dx

The equation had thus a unique solution.

Suppose on the other hand that 1 =1.

Then, from the equation A(l- 1) = J'j f(x) dx the original equation will
only have asolution if j: f(x)dx = 0.

If f does not satisfy this condition and 2 =1, the equation has an infinite
number of solutions Q(x) = f(x)+c where cis a constant and 1 =1 if
an Eigenvalue with corresponding Eigenfunction Q = constant.

Theorem 3.1

. . . S:0<x<l1
Suppose K is continuous in the square o<y<l and set sup [K|= M.

The Resolvent kernel R is given by
“R(xyi2) = 2 Klxy) (35
r=0

Where the seriesis uniformly convergent for |2 < m™

Ris continuous and the series may be integrated term by term. In the
domain {§ where {} isanalytic. The following relation holds

K(x y) + R y; 1) = 4 [K(x 2)R(z y; 4) dz

= /‘LI R(x, z, 1) K(z y)dz
Suppose that f is integrable, then, the unique solution for A < ﬁ of
(3.1)is

QX = f(x) = 2 [ Rix v 4) f(y)dy

SELF-ASSESSMENT EXERCISE
1. Solvetheintegral equations

fox Q(x —y)[Q(y) — 2cosay]dy = xsinax
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2. Solvetheintegral equation
2@ Q()dy = Q(x)

3. What type of equationis

Q) = 2 [, k(x,y)Q()dy = f(x) (0 <x < 1)
4. Solve

Q) — A [, QUdy = f(x)

4.0 CONCLUSION

Convolution type integrals may be solved by the use of Laplace
transform provided the transform exists.

50 SUMMARY

It is possible to determine if a Volterra integral is of the convolution
type and then solve it using the method of Laplace where the fina
solution is found by finding the inverse transform. This applies also to
the inhomogeneous Volterra equation of the 2™ kind which convolution
kernels can be solved in exactly the same way.

6.0 TUTOR-MARKED ASSIGNMENT

1. State the name of the integral equation in which the integration
limits are constants and do not include the variable?
2. What is the relationship between F(x), G(x) and this term?

LX F(x-y)G(y)du = LX F(y)G(x-y)dy
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MODULE 3

Unit 1 Fredholm Equations with Degenerate Kernels
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Unit 3 Representation of a Function by a SerieDahogonal
Functions

UNIT 1 FREDHOLM EQUATIONS WITH
DEGENERATE KERNELS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Fredholm Equations with Degenerate Kernels
3.2 The General Method of Solution

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Fredholm integral equations are integral equatiamswhich the

integration limits are constants which do not icleuhe variable; and
whose solution gives rise to Fredholm theory, thely of Fredholm

kernels and Fredholm operators.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o Solve Fredholm equations with degenerate kernels
. Derive the general method of solution of Fredhotiuagions.

3.0 MAIN CONTENT
3.1 Fredholm Equations with Degenerate Kernels

Consider the Kernel of the form:

n

Kxy) = 3 a,(x)b,(y) (3.6)

p=1
where x is finite, and thea, andb, form linearly independent sets. A
kernel of this character is termed a degeneratecker
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Also, consider the integral equation of the firstok
f() = [K(x y)Q(y)dy

a,(x) [b,(y) Q) dy (3.7)

p=1
1.  We note that no solution exist unlegfx) can be written in the

formzn: foa,(x) (3.8)

This is essential for the equation to be self-i=iast.
2. The solution is indefinite by any functiop(y) which is
orthogonal to all the)p(y) over the range of integration.

Example 3.2

The integral equation
exp(2x) = J’” sin(x+y)g(y)Jdy o<x<z is not self-consistent and so

does not have a solution.
This is because

[“sin(x+y) gy)dy = sinx [ cosy g(y)ly
+ COSX j: siny ¢(y)dy

which is a of formAsinx + Bcosx

3.2 The General Method of Solution

Look for a solution of the form
¢(y) = z ¢q bq(Y) (3-9)
g=1

If it exists, it will be a solution and if it is gsible to add y(y) to it.
The solution proceeds as follows in the integralagipn.

f) = 2[K(x y)g(y)dy (3.10)
Sha) - 23 a0bTabWy @1

8,03 A s (312)

n
p=1 q=1

Where 8, = 4[b,(y)b,(y)dy (3.13)
and so thej, are defined by

fo = > Bud, 1<ps<n (3.14)
g=1
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Since theb, are linearly independent, the determinaff,| does not
vanish and the, can be found uniquely. Alsagy(y) in such that

[r(y)K(x y)dy = 0 (3.15)

Example 3.3

Consider the solution of the integral equation
3sinx+2cosx = J‘_ﬂ sin(x+y)g(y)dy —z<x<rx

Now sin(x+Yy) = sinx cosy + siny cosx
and so there is consistency

P oif mz1
Note also thaf cosycosmydy =
{[ cosy Y {ﬂif m=1
7 . oif m#1
_[ cosysinmydy = .
- {ﬂ'lf m:].
T Oif m=#1 . . i oif m=#1
_[smycosmydy = _ _[ sinysinmydy=< |
7 7 if m=1 -7 rif m=1

Hence, the integral equation in indefinite by argita of the form
w(y) = C, + i [C, cosny + dn sinny]
n=2
Since J: w(y) sin(x+y)dy= o
Now, look for a solution of the form
#y) = Acosy + Bsiny
f sin(x+y) #(y)dy =sinx f cosy (Acosy + Bsiny)dy

+ COX J:siny (Acosy + Bsiny)dy

= [ A sinx+ 7z B cosx
3sin X + 2cosx

Thus,A = 3/ andB = 3/
V3 v
d(y) = (3cosy + 2siny) /x
Note that the process is similar to the idea oflihg the particular

integral and complementary function in differengguation theory.
The solution

#(y) =(3cosy + 2siny)/=
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May be termed a particular solution while g{g) a complementary
function.

SELF-ASSESSMENT EXERCISE

1. Consider the solutioBsinx + 2 cosx = f_ﬂn sin(x +y)0(y)dy —nm<x<m

2. What is the solution of e?* = ["sin(x + y)0(¥)dy —n <x<m
3. What are Fredholm Equations?

4.0 CONCLUSION

Fredholm equations can be solved by applying thinogeof degenerate
kernel.

5.0 SUMMARY

Fredholm integral equations have limits which awastants and not the
variable as in the Volterra integral equations.

6.0 TUTOR-MARKED ASSIGNMENT
1. What kind of kernel is of the fornK(x,y) = zn: a,(x)b,(y)

p=1
where X is finite, anda, andh form linearly independent sets?

2. Why doesexp(2x) = [ sin(x+y)¢(y)dy —o<x<z not have a
solution
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UNIT 2 EIGENFUNCTIONS AND EIGENVECTORS
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Eigenfunctions and Eigenvectors
3.2 Symmetric Kernels

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Many homogeneous linear integral equations may mved as
the continuum limit of Eigenvalue equation.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o work with Eigenfunctions and Eigenvectors
o prove that symmetric and continuous Kernels tha apt
identically zero possess at least one Eigenvalue.

3.0 MAIN CONTENT
3.1 Eigenfunctions and Eigenvectors

Eigenfunction and Eigenvectors associated withetingation:
$(x) = 2> a,(x)b,(y)d(y)dy (3.16)
p=1

can be found as follows
Rewrite (3.16) in the form

waly) = [ 2,000,()sly)dy (3.17)

This equation satisfied by any functigfy) such that

[o,(y)s(y)dy = o (3.18)
and ux=o0, but in general, we shall ignore such functionsy an
Eigenfunction must be of the form

o(x) = i_;ﬁp a(x)  (3.19)
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Thuspi_1 4, a,(x) = zpzl a,() [b,(y z ¢, a,(y)dy (3.20)
Whence $, = zn: ¢, Ky (3.21)

Ko = zjbp(;laq(y)dy (3.22)
Example 3.4

Find the Eigenvalue and Eigenfunction of the systiefimed by:
p) = A[ @+xt)pl)dt  osx<1

Solution
Let ®(x) = ¢, +#x =4 Ij (1+xt) (4, +yt)dt

= /1(¢O+ﬁj +/1(ﬁ + ﬁj X
2 2 3

Whence (equating coefficients)
(1-1) ¢, +/1¢L21 =0

i -

3
Thus, (1-1) (é
A

_]_) - /1%
= 8452
and 4,4, = —(7++52): (4+13)

Consider now the solution of the integral equation
409 = 2[K(xy) g(y)dy + f()  (3.23)

Where in this cas& in degenerate, any solution will be of the form:
#(x) = Z X) 4, + (x)
(Substituting, we have)

= A 2, (0, () ey + 1)

Il
NSy
-
QD
o
—_
X
=
(o
o
—
<
~
1
Y
2]
=
fe)
o]
fe)
—~~
<
~
+
.
—_
=
| I
Q.
<
+
—
—_
=
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+ ilap ()] by (y) f(y)dy+ f(x)

Set k, =/1J'b(y (y)dy
and jb ) £(y)dy

Thus, ¢(x) = ﬂZa(x¢ + f(x)

= izn: ap(x){/iz Ko & + fp}+ f(x)
b, = A Ko+ 1,  (3.24)
g=1

ie.g, — 2 YK,d, = f, (3.25)

g=1
The above equations is a finite system of linegelalaic equations with
matrix A = (k. )-

The solution depends on whether or not(@etiA)is zero.
Set (1) = det(l-1A)

Then, p(1) is a polynomial of degre® If A is not a roof ofp(4), then,
(3.23) has a unique solution.
If you write d ,, for the cofactors you will have:

. %pzl d.f,  (3.26)
The solution of equation (3.23) is then,
#(x) = 1) + 2lp@)]" Za(X)dm(ﬂ)IZb ) £(y)dy
= (9 - 2p@)]” [plx y; 2) f(y)dy (3.27)
Where
p(x y; 1) = —pil qzl d,, a,(x) by(y) (3.28)

andR(x, y; 1) = L olx v ) (3.29)

#(2)

is the Resolvent kernel
i.e.g(x) = f(x)- /1_[R(x, y; 4) f(y)dy (3.30)
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Examples 3.5

Solve the integral equation:
#(x) = ﬂj:(l+ xt) g(t) dt + (x)
Let g(x) = 4, +ax+ F(x)
= ).Jj @+ xt)[g, + gt + £(t)]dt+ £(x)

_ 4 b
= /1(¢0+2 + f°j + ﬁx(2+3+flj+f(x)

Where f, = ﬂtrf(t) t

Equating powers ok and solving forg, and ¢, if follows that:
4,72 -164+12) = |-42(1-3)f, +62° 1]
42 -161+12) = [64° f,—124(2-1) 1]

The Eigenvalue, are given by the roots of the egnat
A2 -164+12 = 0

If Ais one of the Eigenvalue, s&-+/52, a solution is possible only if
o = _Ll f(x) 8+;/_52 —(7+\/5—2)X dx

and the solution is indefinite by an arbitrary npé of

4+\/f3—(7+\/5_2)x

3.2 Symmetric Kernels
K(x,y) = k(y,x) and K is continuous

Theorem 3.2
Let K(x y) be symmetric and continuous (and not identicatyok

Then, K has at least one Eigenvalue.

Proof
We note that the iterated kerneits(x, y) are also symmetric and not

identically zero.

Suppose result is not true.

Let us assume tha(x, y; 1), the Resolvent kernel is an integral function
and the series is also convergent for all, may be integrated term by
term.
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Now setU, = .[Kn (x, x) dx
Then, U,2* + U2 +...... is absolutely convergent.

Now, we have U, = ”Kn (%, 2) K, (z x)dxdx
and U, = ”K,f (x, z) dxdz
(3.40)

Now, ”[a K., (x2)-B8K, (% z)]2 dxdz> o
l.e.
a’VU,,.., —2aBU, +pU, ,>0 (3.41)
for all real o, g
U22n < U,.,U,o (3.4.2)

Form equation (3.40) none bf,, is zero ax, is not identically zero.

U 2n+2 > U 2n

U2n U2n—2
Now, consider seried_ 2*"U,, assumed convergent.

The ratio of term is
U 2n+2/12n+2 B U

2n+2 12
2
U ZnK U 2n

This ration is> % A% from (3.43)

2

Thus, for% A* >1,the forms in the (3.44) series are non-increasng,
2

as it is a series of positive terms, the seriesliv@rgent. This is a
contradiction.
Thus, we have seen that poles R(, y; 1) correspond to Eigenvalue

and so K has at least one Eigenvalue.

From the equation (3.445—4 A% >1, the smallest Eigenvalug is such
2

U
A < =2 (3.45
N )

that
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Theorem 3.3

If k(x, y) is symmetric and continuous, the:

o number of Eigenfunctions corresponding to each risigkie is
finite

J Eigenfunction corresponding to different Eigenvalusre
orthogonal

. Eigenvalue is real.

SELF-ASSESSMENT EXERCISE
1. Find the eigen value and eigen function of theesystiefined by:
B() = A [, (xt)p(t)dt 0 <x <1

2. Find the eigen value and eigen function of theesystlefined by:
P() =2[ (1 +x+x)p(t)dt 0<x <1
3. What are symmetric Kernels?

4.0 CONCLUSION

Eigenvalues and Eigenfunctions can be found fargrel equations of
the formg(x) = 4[> a,(x)b,(y)d(y)dy.

p=1

5.0 SUMMARY

Many homogeneous equations can be solved by detatiom of their
Eigenvalue.

6.0 TUTOR-MARKED ASSIGNMENT
1. Under what Sturm-Lowville problem assumptions are

Eigenfunction corresponding to different Eigenvatu#hogonal?
2. Solve?

H(x) = Afl(l +x)p(O)dt +mf(); 0<x<1
0
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1.0 INTRODUCTION
In this unit, we shall take a look at orthogonalitysystems and show
that Fourier coefficients exist for continuous ogbnal systems and

that orthogonal system can be represented by assefi orthogonal
functions.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o state the Hilbert-Schmidt theorem

. state the Convergence theorem

o prove that functions can be represented by sefiestibogonal
functions

o expandK in a series of Eigenfunctions

o define positive kernels.
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3.0 MAIN CONTENT

3.1 Representation of a Function by a Series of Arbgonal
Functions

3.1.1 Lemma 3.4

Let {4,} be an orthogonal system, and fetbe continuous.
Seta, = L f(x) @, (x)dx (3.46)
Then,» a? < sz(x) dx (3.4.7)

and «° are known as the Fourier’s coefficient.

Proof:
Take anyN. consider

J {f(x)—i a, ¢n(X)T dx>0  (3.48)
i.e. I[f -2 Za jf(x)gﬁn + Z::af} dx > o

e f2(x)dx > ;ag (3.49)
On noting that N is arbitrary
= S a4, (%) (3.50)
We now consider that (lzoefficient@n, give the best fir in the sense that
[[f(x) - YC, (] ax (3.51)

IS a minimum.
The answer is that, = «,, the Fourier coefficients.

To see this, set
L = [[f0-XcC 4] & (352
L = [[f®) - Yea, 6] dx (353
Then, we show thal, > I,.For we have,
= [f2(x)dx - 2>°C, [T g, dx + >C?
jf Jdx - 2Y @, C, + D.C’
= J.fz(x)dx 2> a + Y al
LT Slic: -az) - 22, (€, -a)
= Y(C,-a,)) = o (3.54)

As asserted.
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Definitions 3.5

The set of orthogonal systef, } is said to be complete if

lim L[f(x)—Zan ¢n]2 dx = o  (3.55)
for every continuous functiorf (x).In this case, the Bessel's inequality
becomes an equality

ie. [ = Yar

If {4} is complete, we can then roughly represent angtioim as a sum

= Do ¢

the convergence being in the sense of  (3.55)
3.2 Expansion ofk in Eigenfunctions

We examine the possibility of expandingk as a series of
Eigenfunctions.
Consider

K(xy) = Y a,d(y)

where [K(x, y)¢,(y)dy = «

ie. a, = A'4,(x)
Then, we will have

_ KA (356

This is valid mdependent of completenesgdf}

n

3.2.1 Definitions 3.6 (Positive Kernels)

A kernel is said to be positive if

T(4.4) = [[K(xy) 4(x)g(y)dxdy > o (3.57)
for all ¢ such thatf ¢*(x)dx=o0 (3.58)
It is easily to see that Elgenvalue are strictlgipee.

3.2.2 Theorem 3.7: Convergence

If K(x,y) is positive, then

2 4.(x)g,(y)
) 2 :

the series being absolutely and uniformly convergen
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3.2.3 Theorem 3.8: Hilbert — Schmidt Theorem

Supposef (x) can be written in the form
f(x) = [K(xy)ey)dy (3.59)
whereK is symmetric and continuous,
Then f = Zan ¢, Where the series is absolutely and uniformly

convergent and
b
a, = Lf(x)qﬁp(x)dx (3.60)

A convergence of the above theorem is another flanfar the
ResolventR.

Consider the equation:
p(x) - A[K(xy) gly)dy = f(x)  (3.61)
Then,
p-f = A[k(x y)g(y)dy
Thus, ¢ - f satisfies the condition of theorem 3.8 and wewate
$09 = 19 = Da, 4,
wherea, = [[p(x) - f(x)]4,(x)dx
= B = [

Multiply 3.61 by ¢,(x) and integrate and change order of integration.
This given

[#(x) g, () dx — 2 [p(x)ax [k(x, y) 4, (y) dy

= _[f(x)¢n(x) dx (3.62)

Thus!ﬂn - ﬁlﬁn = 7n

n

o Hence,a, =
ﬂ,—ﬂ, 7n1 1™n - ﬂ, }/n

n n

S - 10 = 2 YT

e, g(x) =f(x)+4>

Le. B, =

Ay
T 4 (363)

This gives the solution of 3.61 in terms of the dfifunctions ofg, (x).
From 3.63, we have
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9 = 100 - 2 XL [ () )y

- f(x)-2 I{Z ¢.(x) ¢n(y)} f(y) dy

A-7,
(-4 [R(x y; 7) f(y)dy
WhereR(x, y; 1) = Z%ﬁ”(y) (3.64)

SELF-ASSESSMENT EXERCISE

1. Define orthogonal functions.
2. When is a set of orthogonal system said to be cetepl
3. Prove that Eigenvalue are strictly positive.

4.0 CONCLUSION

Fourier’s coefficients exist for orthogonal systewtsch are continuous.

5.0 SUMMARY

The Hilbert-Schmidt theorem states that when a éleis positive, a
series can be derived which is absolutely and umifp convergent, and
kernel can be represented by a series of Eigenfunsct

6.0 TUTOR-MARKED ASSIGNMENT

1. Derive an expression for the Fourier coefficientra continuous
orthogonal systerp, }?

2. Show that the orthogonal systej } is complete if
im [[t(x)- Y a, ¢,] dx = 0?

That is, Bessel's inequality becomes an equality.
3. IfT(gg) = [[K(xy) #(x)4(y)dxdy > o, can we deduce if the

associated kernel is positive or negative? Préve it
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MODULE 4
Unit 1 Calculation of ¥ Eigenvalue
Unit 2 The Application of the Transform

UNIT 1 CALCULATION OF 1°" EIGENVALUE
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Calculation of ¥ Eigenvalue
3.2 Integral Transforms; Laplace Transforms
3.3 Convolution Theorem
3.4 Inverse Laplace Transform

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Transforms are used to solve equations for whighstiorms exist while
the inverse transform is a convolution. Suitabladittons exist for the
transform of a convolutionto become the point-wiggoduct of
transforms which means that convolution in one danm the point-

wise multiplication in another domain.
20 OBJECTIVES
At the end of this unit, you should be able to:

apply the convolution theorem

calculate the first Eigenvalue of an integral etpmat

use the Variational Formula

recognise Integral Laplace Transforms as Transforms

Transform.
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3.0 MAIN CONTENT
3.1 Calculation of 1% Eigenvalue

The modes of vibration in systems are often of fgiegortance. A
powerful and simple method for finding them is pd®d by variational
formula.

Let ¢,, 4,,... be Eigenfunctions and,| <|4,|<...) be the corresponding

Eigenvalue.
Set

I(4.8) = [[K(x y)d(x)4(y)dxdy

Suppose now that is arbitrary. Then, by the linear formula

K(xy) = w

n

We have:

Wpg) = ([ Z¢" 1) 400 ) ey
= z& < z &

A
Then, J (4, 9) Zlﬂl |/11|Z/3n2

m J'¢ (x)dx (Bessel equation)

(3.65)

where 4, is the smallest Eigenvalue amgdis arbitrary. Similar results

may be obtained for the higher Eigenvalues. Howetlee first is
usually, the most importang. is chosen to makéd (4, ¢) a maximum
and a normal function.

This given an estimate of a bound fdf which usually is fairly
accurate.

Example 3.7

Consider the kernel T in the square
0<x<1l o<y<1where
1-x)y o<y<x<l
T(xy) = -
@-y)x os<x<y<1
By differentiating the equation
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(%) - 2] T(x y)g(y)dy = 0
If is easy to see that if reduces to
$"+ 24(x) = 0, 4(0) = g1 = 0
The Eigenfunction are+/2 sinnzx(normalized and Eigenvalue are
A = (7}’
The linear formula given

(% y) = 22 smnﬂxsmnﬂy

We shall now conS|der the appllcation of 3.65 ® determination of°*L
Eigenvalue
(4, =72 = 9.869)

Firstguessp = 1

06.9) = [[@-0[ yay+x [ @-y)oy]ax
1
12

We get A = /J/l = 12
12

Second guesR t,)

Choose ¢ to be a step functiory = 0except for o< x<1l-«a where
¢ = B
Chooseg normalised. Theng = (1-2x)~ one find that
16 9) = = (r2a-8a)
12
1

This has a maximum at = g when
J(¢, ¢) = %2
Then, 4, < 132 1067

Yo 3

The estimate is considerably improved, and the ceh@mf a nose
complicatedg will lead to a nose accurate estimate.

3.2 Integral Transforms: Laplace Transforms

If f(t) is throughout piecewise, continuous, bounded tiariaand of
exponential order, i.ed M, S0, >

ft) <
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and if we defineF(s) = [ e™ f(t)dt (4.1)

Smay be complex, thenk(s) is known as the Laplace transform of
f and is defined when the integral is absolutely esgent for some so,
then, it is also forS such that Res > Redo

The largest half-plane in which the integral is@btely convergent is
called the half-plane of convergence. The followmgd in this half-
plane:

. £laf +bg} = af£{f} + bElg} (4.2

i ElfPM)) = S"F(9-S"fl7) . .. -F™ (07)
(4.3)
i.  £ff(t)) = F(s-a) (4.4)

v. £ ) = (—1)“;]'“ Fs)  (4.5)

qI‘I

F(o') denotes limit from right

3.3 Convolution Theorem

We define a new functioh(t) by

ht) = [ o) ft-uwdu = fxg (4.6)
h(t) is called the convolution product dfand g and is writtenf * g so
that we have

J:O eh(t)dt = J:O e (f*g)dt (4.7)

= [ e fa [ evgludu = F()Cy(s)

3.4 InverseLaplace Transform

) = £'{F(9) - i " F(s)ds (4.8)

= Y lresiduenf F(x)e* atpolesof F(s)}

Where C is some real number which is greater tharreéal part of all
the poles ofF(s). We can however use any other alternative method to

obtain f (t).
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SELF-ASSESSMENT EXERCISE

1. Obtain the value of eigen value of
_((14+x) o0=x<1
T{x’})_{ (1+y) 0<x<1

2. Write an expression for the kernel T in the squiened below
and find its first Eigenvalue?

—1=x=<1 ,0=y=<3

3. What's is a convolution

4.0 CONCLUSION

Kernel can be solved by applying Laplace transfdirihe transform
exists.

50 SUMMARY

Laplace transform is defined only when an integial absolutely
convergent and the largest half-plane in whichitibegral is absolutely
convergent is called the half-plane of convergence.

6.0 TUTOR- MARKED ASSIGNMENT

1. Write an expression for the kernel T in the squietned below
and find its first Eigenvalue?
—1<x<2 0=y<3

2. Do you recognise the transform below? Which tramsfis it?
F(s) = J:o e f(t)dt

3. What is the relationship between an inverse Laplaaesform
and a convolution?
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UNIT 2 THE APPLICATION OF THE TRANSFORM
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 The Application of the Transform
3.2 Fourier Integral Equations

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION
Laplace and Fourier integral transforms are usedsdlve integral

equations for which the transform exists and thidamonstrated in this
unit via worked examples.

20 OBJECTIVES

At the end of this unit, you should be able to:

o apply Laplace transform through worked examples
o solve integral equations by the method of Fourietegral
transforms.

3.0 MAINCONTENT

3.1 TheApplication of the Transform
Example 4.1

Solve the equation:

¢ +5 ¢ +6p = €' t=o0

#0) = 2 4'0) =1
Now, let£(¢) = ¢(s) so that

P} = s - s¢(0)-4'(0)=5%(9)-25-1
andgfet} =

s+1

2§ -25-1+ 5sf-2) + 6§ = -

s+1

ie. (s +55+6)§ = 25+ 11 +

s+1
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2s* +13s+12
s+1)(s+2)(s+3)

i.e.g(s) = (

Hence, the poles are netl, - 2, -3

The residue as=—-1is Res,_, =¢91__
2-113+12
1x 2
Thatis—-2 is6e™

—t

1
= Ze
2
and - 3is 9 e
2
Thus, ¢(t) = %{e‘t +12e — 9|

Example 4.2

Consider the Volterra equation:

1)~ [ k(x-y) f(y)dy = g(x)
We want to use Laplace transform to get a solution.
The equation can be written in the form of

f-ksf =g
Take the Laplace transform of both sides to give
f —kf=g
— __ _ = — _ g 3
ie. f-Kk)=g f=9/
Thus,
f=£l{i_} -1 9 e gs
1-k 2 T1-k
Takek(t) = 7€ for example, then
= A
k(s) = 1
But = = 1+_K_
- 1-k
o= £1{i_} - gHg+—3
1-k 1-k
= g+ £? 49 } = g+£1{ﬁg}
s-1-1
Where h = —%  andh = et
s-1-1
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Hence,
f(x) = g(x)+2 _[: e ) g(y) du.
Example 4.3

Solve the partial differential equation

27225 - 5_2? = 0o (o<x<L, t>0)
#(x,0) = o 0< X</

%(x,o) = 0 o<x<I

¢(0,t) = o t>0

%(I,t) = a t>0

Here we want a solution for>o and for a finite range of re. Take
Laplace transform w.r.e (since thet —interval is semi-infinite)

Write ¢(x, )= j: e “g(x, t)dt

Take the Laplace transform to give
[es a—2¢(x tydt— [ e a—z‘ﬁ(x t)dt =0
o~ ax2V I -

But _roe‘s‘ﬁ(x thdt = a—zjwe‘s‘qﬁ(x t)dt
o ax® S ooxth ’

%9
a9
o s 0°f 5 o¢
and _[O e y(x,t)dt = s*4(xs)- S¢(x,0)+E(x,O)
= S%(x,9)
from the boundary condition

Hence, we get
R
OX?

(x,s) — S?¢(x,8)=0

This is now an ordinary differential equation fgrand to solve it, we
need two boundary conditions, we have

$(0.s) =0
5(3 _ [ —s%
and g(é,s) - [ e > (¢, t)ct

= I: ae ¥dt =

on |
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We this, solve the following system
o
o9 (x,8)-S*¢(x,s) =0

o
_ B dg(,s) a
$(0,)=0 and VR

The solution is
¢ = As)sinhsx + B(s)coshsx

From the first boundary conditionB(s)=0and from the second
condition, we have

A(s) Scoshd = %

a
Als) = s?cost d
Here, ¢(x,s) = asinhsc
A s? coshd
and g(xt) = > SIS o g

27 * s* coshsl

wherer lies to the sight of the poles. The integral halep ats=0 and
at the zeros otoshs . Consider firsts=0

7(x.s)e* :?12{3“%“1 {1_%} feste]

- Lol

Simple pole as=0with residex.

Now, consider points whossshls =0

g fi @2n+ )7
2
The poles are simple once. We may use the formula:
f(a)
Res =—/—%
s=a g (a)
Thus,
Snh {(Zn +1)) nx} o
2
Sz@ = 2 ) 2 (2 1) .
2 4( n+||ﬂ} S’nh{ n+ m}
2 2
. i(2n+1)7zt
n th|:(2n-i-1)7nx:| e 2
_ 4y 2
7’ (2n+12)%i
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Evidently, poles are complex conjugates, so weiregwice the seal
part. Hence,

~ gal & (-2)° (2n+)zx
#(x,t) = ax 27 Lo 1 Sn{ ) }

The Laplace transform is suitable for problems wathsemi-infinite
domain for the independent variable. It is alsoessary that the
(differential) equation should have constant coedfits.

3.2 Fourier Integral Equations

If f(x)is a continuous function, then,

f(x) "F(w)dw (4.10)

@l
where F(w) = \/_j e

Equation 4.11 gives the solution of the integrdl04for F and vice
versa. If f(x) is seal, using the odd property, of sinwreand the even

property ofcoswre, we have, if

2V?
f(x) = (;) L coswre g(w)dw, 0<x (4.12)

- £ (u)du (4.11)

Then,
2V (-
p(w) = [—j IO coswx f(x)dx, O<w  (4.13)
T
#(w) and f(x) are thecosinetransforms of one another. If
%
f(x) = (E) _[:sinvw( g(w)dw, 0<x (4.14)
T
Then,
2V?
$(w) = (—j jo sinwx f(x)dx, 0<w (4.15)
V4

¢(w) andf(x) are the sine transforms of one another.

Example 4.1
Solve the integral equation
a 0
7 T jo coswx g(w)dw, a>0
2) (= aCOSWX 1 (-~ 2iae™
#w) (ﬂ'j IO a’+x? 27 Lﬁ a’+x*

becausesinwre is odd inx
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Evaluation of the integral by the methods of themptex integral
calculus given
gw) = e™, w>0

Example 4.2
Solve the integral equation

#(x) = 2 j:coswx #(w)dw
#(x)is an even function of

Because the inverse of acosinetransform is another
cosine transformation, we look for a solution of the form

(3 = U(X)£V(x)

%
where V(x) (Ej J'; coswx U (w)dw
T

Thus,

sx) = UX)+ @y [/ coswx U (w)chw

= 4| coswx {U (w) = (;)% j: coswt U (t)dt} dw

/‘LJ': coswx U (w)dw + (%)yzﬂ U (x)

% %
This is true if 1=+ (Ej Thus, to 1 =(Ej , there corresponds a

T V4
%
solution U(x)+V(x) andto/iz—(%j , there corresponds a solution
U(x)-V(x).

This solution will be valid, provided all the inteds exist; Uis

%
arbitrary. In this case, the two Eigenvalu@si(gj , there exist an
T

infinite of Eigenfunctions.
Example 4.3

Solve the integral equation

09 = 100+ 2] [ comy sty

If 2=+1 there will not in generally be any solution.

This follows example 4.2
Take the transform of the equation to give
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(%J% [, cosxy ¢(y)dy = (;j% [ cosxy f(y)y + 2 4(x)

It follows that

#(x) = f(x) + i(fj% _[:cosxy f(y)dy + A°¢(x)

(- 22)p(x) = f(x)+ 4 [%j%.[: cosxy f(y)dy

and this solution is valid provided that the intdgtonverge. Now, if
1- 22 =0 and f(x)is a function such that

f(x)+ A (%)yz J:O cosxy f(y)dy=0

It follows that ¢(x) can be any function for which the integral coneerg

SELF-ASSESSMENT EXERCISE

(1) Solve the integral equation.
X

x*+a’
(2) Find the Eigenvalues and Eigenfunctions ofitibegral equation.
$(x) = 4] sinxy g(y)dy
(3) Find the solution of the integral equation.

#(x) = e+ /lj':sinxy #(y)dy, a>0

= J':sinwx;zﬁ(w)dw a>0

T’ # 2
(4) Find the integral equation:
P _ o —pt
S " [ e™ ft)dt a>0

(5) Solve the integral equation:
$() = 109+ 4 [ K(x-y)g(y)dy
(6) Solve the integral equation:

1 I@M

1
(x+a))  mo= x-y

4.0 CONCLUSION

Transforms are a useful mathematical tool for sgvntegral equations
for which the applicable transforms exist.
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5.0 SUMMARY

A Laplace transformation is applicable for problemith a semi-infinite
domain for the independent variable.

6.0 TUTOR-MARKED ASSIGNMENT

gl .-
1.  Solve — [, sinwx@(w)dx, 0 <b <7

vy wrf oAl FlAF
LR AN R
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