

CIT 905 Advanced Database Management System

Page | i

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE CODE: CIT 905

COURSE TITLE:

ADVANCED DATABASE MANAGEMENT SYSTEM

CIT 905 Advanced Database Management System

Page | ii

COURSE

GIUDE

ADVANCED DATABASE MANAGEMENT SYSTEM

Course Team

Course Code CIT 905

Course Title Advanced Database Management System

Course Developer/Writer Dr. Udoinyang G. Inyang

Department of Computer Science

University of Uyo

Nigeria

Content Editor Prof. Okonkwo Obikwelu Raphael

Nnamdi Azikiwe University, Awka

Course Material Coordination Dr. Vivian Nwaocha,

 Dr. Greg Onwodi &

 Dr. Francis B.Osang

Computer Science Department

National Open University of Nigeria

CIT 905 Advanced Database Management System

Page | iii

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 905 : ADVANCED DATABASE MANAGEMENT SYSTEM

National Open University of Nigeria

Headquarters

Headquarters

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi – Abuja,

Nigeria

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island

Lagos

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

http://www.nou.edu.ng/

CIT 905 Advanced Database Management System

Page | iv

Published by

National Open University of Nigeria

Printed 2020

ISBN: XXX-XXX

CIT 905 Advanced Database Management System

Page | v

CONTENTS PAGE

Introduction………………………………………………………………….…….. v

What you will Learn in this Course ……………………………….……………… v

Course Aims…………………………………………………….………………… v

Course Objectives………………………………………….……………………… vi

Working through this Course …………………………..…………………………. vi

Course Materials………………………………………….……………………….. vi

Online Materials……………………………………….………………………….. vi

Study Units………………………………………….…………………………….. vii

Equipment……………………………………….………………………………. vii

Assessment…………………………………………………………………… viii

CIT 905 Advanced Database Management System

Page | vi

Introduction

The course, Advanced Database Management System, is a 2 credit hour core course for

students studying towards acquiring the Doctor of Philosophy (PhD) in in Information

Technology. In this course we will study about the Database Management System as a

key role in Information Management. Various principles of database management

system (DBMS) as well as its advanced features are discussed in this course. This

course also considers distributed databases and emerging trends in database system.

The overall aim of this course is to introduce you to various ways of designing and

implementing database systems, features and distributed databases. In structuring this

course, we commence with the basic design and implementation of relational databases.

There are four modules in this course, each module consists of units of topics that you

are expected to complete in 2 hours. The four modules and their units are listed below.

What You Will Learn in this Course

The overall aims and objectives of this course provide guidance on what you should be

achieving in the course of your studies. Each unit also has its own unit objectives which

state specifically what you should be achieving in the corresponding unit. To evaluate

your progress continuously, you are expected to refer to the overall course aims and

objectives as well as the corresponding unit objectives upon the completion of each.

Course Aims

The overall aims and objectives of this course will help you to:

1. Develop your knowledge and understanding of the underlying principles of

Relational Database Management System

2. Build up your capacity to learn Database Management System advanced features

3. Develop your competence in enhancing database models using distributed

databases

4. Build up your capacity to implement and maintain an efficient database system

using emerging technologies and tools.

CIT 905 Advanced Database Management System

Page | vii

Course Objectives

Upon completion of the course, you should be able to:

1. Describe the basic concepts of Relational Database Design

2. Explain Database implementation and tools

3. Describe SQL and Database System catalog.

4. Describe the process of DB Query processing and evaluation.

5. Discuss the concepts of transaction management.

6. Explain the Database Security and Authorization.

7. Describe the design of Distributed Databases.

8. Know how to design a Database and XML.

9. Describe the basic concept of Data warehousing and Data mining

10. Discuss the emerging Database Models, Technologies and Applications

Working through this Course

We designed this course in a systematic way, so you need to work through it from

Module one, Unit One (1) through to Module four, Unit five (5). This will enable you

appreciate the course better.

Course Materials
Basically, we made use of textbooks and online materials. You are expected to I, search

for more literature and web references for further understanding. Each unit has

references and web references that were used to develop them.

Online Materials

Feel free to refer to the web sites provided for all the online reference materials required

in this course. The website is designed to integrate with the print-based course

materials. The structure follows the structure of the units and all the reading and activity

numbers are the same in both media.

Study Units

CIT 905 Advanced Database Management System

Page | viii

Course Guide

Module 1: Database Design and Implemental

Unit 1: Concepts of Relational Database

Unit 2: Database Design and Implementation

Unit 3: Advance SQL

Unit 4: Database System Catalog

Module 2: DBMS Advance Features

Unit 1: Query Processing & Evaluation

Unit 2: Transaction Management and Recovery

Unit 3: Database Security & Authorization

Module 3: Distributed Databases

Unit 1: Distributed database System

Unit 2: Enhanced Database Models

Unit 3: Object Oriented Database

Unit 4: Database and XML

Unit 5: Introduction to Data Warehousing

Unit 6: Introduction to Data Mining

Module 4: Emerging Trends and Example of DBMS Architecture

Unit 1: Relational and Non-Relational databases

Unit 2: Conventional Database Management Systems

Unit 3: Emerging Database Systems

Unit 4. Database Services and Service Providers

Unit 5: Modern Database Applications

Module one describes Database Design and Implementation.

Module Two explains the DBMS advanced features.

Module Three discusses the Distributed Database.

Module Four discusses emerging trends in DBMS including technologies and

applications.

CIT 905 Advanced Database Management System

Page | ix

Equipment
In order to get the most from this course, it is essential that you make use of a computer

system which has internet access.

Recommended System Specifications:

Processor

2.5 GHZ Intel compatible processor

4GB RAM

500 GB hard drive with 5 GB free disk

CD-RW drive.

TCP/IP (installed)

Operating System

Microsoft Windows 10

Microsoft office 2007

Antivirus

Monitor*

21-inch

1024 X 768 Resolution

16-bit high color

*Non Standard resolutions (for example, some laptops) are not supported.

DBMS Tools

ORACLE

PostgreSQL

Hardware

Open Serial Port (for scanner)

120W Speakers

Hardware is constantly changing and improving, causing older technology to become

obsolete. An investment in advanced and more efficient technology will more than pay

for itself in improved performance results.

If your system does not meet the recommended specifications, you may experience

considerably slower processing when working in the application. Systems that exceed

the recommended specifications will provide better handling of database files and faster

processing time, thereby significantly increasing your productivity

CIT 905 Advanced Database Management System

Page | x

Assessment
The course, Advanced Database Management Systems entails attending a two-hour

final examination which contributes 50% to your final grading. The final examination

covers materials from all parts of the course with a style similar to the Tutor- marked

assignments.

The examination aims at testing your ability to apply the knowledge you have learned

throughout the course, rather than your ability to memorize the materials. In preparing

for the examination, it is essential that you receive the activities and Tutor-marked

assignments you have completed in each unit. The other 50% will account for all the

TMA‘s at the end of each unit.

Tutor-Marked Assignment
About 20 hours of tutorials will be provided in support of this course. You will be

notified of the dates, time and location for these tutorials, together with the name and

phone number of your tutor as soon as you are allotted a tutorial group.

Your tutor will mark and comment on your assignments, keep a close watch on your

progress and on any difficulties you might encounter and provide assistance to you

during the course. You must mail your TMAs to your tutor well before the due date (at

least two working days are required). They will be marked by your tutor and returned to

you as soon as possible.

Do not hesitate to contact your tutor by phone, e-mail if you need help. The following

might be circumstances in which you would find help necessary. You can also contact

your tutor if:

1. you do not understand any part of the study units or the assigned readings

2. you have difficulty with the TMAs

3. you have a question or problem with your tutor‘s comments on an assignment or

4. with the grading of an assignment

CIT 905 Advanced Database Management System

Page | xi

You should try your best to attend tutorials, since it is the only opportunity to have an

interaction with your tutor and to ask questions which are answered instantly. You can

raise any problem encountered in the course of your study. To gain maximum benefit

from the course tutorials, you are advised to prepare a list of questions before attending

the tutorial. You will learn a lot from participating in discussions actively.

Course Overview
This section proposes the number of weeks that you are expected to spend on the four

modules comprising of 30 units and the assignments that follow each of the unit. We

recommend that each unit with its associated TMA is completed in one week, bringing

your study period to a maximum of 30 weeks.

How to Get the Most from this Course
In order for you to learn various concepts in this course, it is essential to practice.

Independent activities and case activities which are based on a particular scenario are

presented in the units. The activities include open questions to promote discussion on

the relevant topics, questions with standard answers and program demonstrations on the

concepts. You may try to delve into each unit adopting the following steps:

i. Read the study unit

ii. Read the textbook, printed or online references

iii. Perform the activities

iv. Participate in group discussions

v. Complete the tutor-marked assignments

vi. Participate in online discussions

This course makes intensive use of materials on the world-wide web Specific web

address will be given for your reference. There are also optional readings in the units.

You may wish to read these to extend your knowledge beyond the required materials.

They will not be assessed.

Summary:

CIT 905 Advanced Database Management System

Page | xii

The course, Advanced Database Management Systems is intended to develop your

understanding of the basic concepts of database systems, thus enabling you acquire

skills in designing and implementing Database Management Systems. This course also

provides you with practical knowledge and hands-on experience in implementing and

maintaining a system. We hope that you will find the course enlightening and that you

will find it both interesting and useful. In the longer term, we hope you will get

acquainted with the National Open University of Nigeria and we wish you every

success in your future

CIT 905 Advanced Database Management System

Page | xiii

 MAIN

COURSE

ADVANCED DATABASE MANAGEMENT SYSTEM

Course Developer: Dr. Udoinyang G. Inyang

Department of Computer Science

University of Uyo

Uyo, Nigeria

Course Writer : Dr. Udoinyang G. Inyang

Department of Computer Science

University of Uyo

Uyo, Nigeria

Programme Leader :

National Open University of Nigeria

Course Coordinator :

National Open University of Nigeria

CIT 905 Advanced Database Management System

Page | xiv

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 905 : ADVANCED DATABASE MANAGEMENT SYSTEM

National Open University of Nigeria

Headquarters

No. 5 Dares Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Lagos Office:

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Published by

National Open University of Nigeria

Printed 2020

ISBN: XXX-XXX

http://www.nou.edu.ng/

CIT 905 Advanced Database Management System

Page | xv

CONTENTS PAGE

MODULE 1: Database Design and Implemental

Unit 1: Relational Database Design and Implementation

1. Introduction 1

1.1 Objectives 1

1.2 What is a data model? 1

1. What Is Relational Database?

 1

1.4 Database Schema 4

1.5 Database Schema Integration 5

1.6 Database Design 11

1.5 The Entity Relationship Diagram (ERD) 15

1.6 Conclusion 27

1.7 Tutor-Marked Assignment 27

1.8 References and Further Readings 27

Unit 2: Advance SQL

2.1 Introduction 29 29

2.1. Objectives 29 29

2.2 Basics Concepts of SQL 29 29

2.3. History of SQL 31

2.4 The Form of a basic SQL Query 32

2.5. SQL Statements 33

2.5.1 Data Manipulation Language (DML) 33

2.6 Viewing the Structure of a Table 35

2.7 SQL SELECT Statements 36

2.7.1 Using SQL for Web Site 37

2.8 SQL SYNTAX 37

2.8.1 The SQL SELECT Statement 40

2.9 INSERT statement 48

CIT 905 Advanced Database Management System

Page | xvi

2.10 UPDATE statement 49

2.11 Joining tables 50

2.12 Arithmetic Operations 51

2.13 Operator Precedence 52

2.15 Conclusion 58

2.16 Tutor marked Assignment 58

2.17 References and Further Reading 59

Unit 3: Database System Catalog

3.0 Introduction 60

4.1 Objectives: 60

3.2 What is a database system catalog? 60

3.3 Functions of Data Dictionary 63

3.3.2 Views with the Prefix ALL 65

3.6. Conclusion 67

3.7 Summary 67

3.8. Tutor‐Marked Assignment (TMA) 67

3.9 References and Further Readings 68

Module 2: DBMS Advance Features

Unit 1: Query Processing & Evaluation

2.1.0 Introduction 69

2.1.2 Objectives 69

2.1.3 Query Processing 69

2.1.4 Catalog Information for Cost Estimation 72

2.1.5 Measures of Query Cost 73

2.1.5 Selection Operation 75

2.1.5 Index scan 77

2.1.5 Join Operation 78

CIT 905 Advanced Database Management System

Page | xvii

2.1.5 Query Optimization 89

2.1.5 Dynamic Programming 90

2.1.5 Structure of Query Optimizer 94

2.1.5 Conclusion 95

2.1.5 Tutor Marked Assignment 95

2.1.7. References and Further Readings 96

Unit 2: Transaction Management and Recovery

2.2.0. Introduction 97

2.2.1. What is a Transaction? 97

2.2.1. Properties of Transaction 97

2.2.2 Transaction States 102

2.2.3 Transactions and Schedules 105

2.2.4 Concurrent Execution of Transactions 105

2.2.5 Concurrency control for database management 112

2.2.6 Locking Techniques for Concurrency Control Based

 on Time Stamp Ordering 199

2.2.7 Database Recovery Management 124

2.2.8 Introduction to ARIES 126

2.2.9 Media Recovery 137

2.2.10 Self-Assessment Exercises 141

2.2.11 Tutor Marked Assignment 141

2.2.12 References/Suggested Readings 141

Unit 3: Database Security & Authorization

2.3.0 Introduction 142

2.3.1 Objectives

2.3.2 Database Security and Authorization: Basic Concepts 142

2.3.4 Types of Security Breaches in a Database System 143

1. Security threats to Database 144

CIT 905 Advanced Database Management System

Page | xviii

2.3.6 Counter Measures 146

2.3.7 Conclusion 154

2.3.8 Tutor Marked Assignment 154

2.3.8 References and Further Reading 154

Module 3: Distributed Databases

Unit 1: Distributed database System

3.1 Introduction 156

3.1.1 Objectives 156

3.1.2 What is Distributed Database System 156

3.1.3 Types of Distributed Database Systems 158

3.1.4 Advantages and Disadvantages of Distributed Databases 159

1. Components of Distributed Database Systems 161

3.1.7 Current Trends in Distributed Databases 161

3.1.5 Conclusion 163

3.1.6. Summary 163

2. Tutor Marked Assignment 164

3. Further Reading and other Resources 164

Unit 2: Enhanced Database Models

3.2.1 Introduction 165

3.2.1 Concepts of Network Data Modeling 165

3.2.1 Records, Record Types, and Data Items 166

3.2.2 Stored Representations of Set Instances 170

3.2.2 Using Sets to Represent M:N Relationships 172

3.2.3 Constraints in the Network Model 175

3.2.4 Basic Concepts for Network Database Manipulation 179

3.2.5 Hierarchical Model 180

3.2.6 Conclusion 184

3.2.7 Tutor Marked Assignment 185

3.2.8 References/Suggested Readings 185

CIT 905 Advanced Database Management System

Page | xix

Unit 3: Object Oriented Database

3.3.0 Introduction 186

3.3.1 Objectives 187

1. Basic concepts of OO Programming 188

3.3.3 Why Object Oriented Databases? 191

3.3.5 Object Oriented Databases Models 208

3.3.6 Conclusion 214

3.3.7 Tutor marked Assignment 214

3.3.8 References/ Further Readings 214

Unit 4: Database and XML

3.4.1 Introduction 216

3.4.2 Objectives 216

3.4.3 What is XML? 216

1. XML elements 228

2. Self-Assessment Questions 230

3. Summary 230

3.4.7. Conclusion 230

3.4.8 Tutor Marked Assignment 230

3.4.9 References and Further Reading 230

Unit 5: Introduction to Data Warehousing

3.5.0 Introduction 232

3.5.1 Objectives 232

3.5.1.1 What is Data Warehouse? 233

3.5.2 Components of a Data Warehouse 235

3.5.3 Warehouse Schemas 237

3.5.4 Conclusion 238

3.5.5 Tutor Marked Assignment 239

3.5.6 References and Further Readings 239

CIT 905 Advanced Database Management System

Page | xx

Unit 6: Introduction to Data Mining

3.6.1 Introduction 240

3.6.2 Objectives 241

3.6.3 What is datamining? 241

3.6.3.1 Sources of data for KDDD and DM 241

3.6.4 KDD Stages 244

3.6.5 Mining Systems 245

3.6.6 Types of mined data 246

3.6.7. DM Tasks and Techniques 248

3.6.8 Conclusion 250

 3.6.9 Tutor Marked Assignment 250

3.6.10 References and Further Reading 250

Module 4: Emerging Trends and Example of DBMS Architecture

Unit 1: Relational and Non-Relational databases

1. Introduction 251

1. Objectives: 251

2. SQL-based Database Management Systems 252

2.1 Advantages of RDBMS: 253

2.2 Disadvantages of RDBMS: 253

3.0 Non-Relational Database Systems (NoSQL-based) 253

3.1 Advantages of Non-relational database systems 254

3.2 Disadvantages of Non-Relational database systems: 254

3.3 Types of NoSQL Database engines 255

4.0 Conclusion: 257

5.0 References and Further Reading 257

Unit 2: Conventional Database Management Systems

1. Introduction 258

1.1 Objectives 258

CIT 905 Advanced Database Management System

Page | xxi

2.0 Oracle Database Management System 258

2.1 Programming Language Support by Oracle: 258

2.2 Multi – Model Persistence: 260

1. GraalVM and the Oracle Database: 261

5.1 MySQL 264

5.2 Features of MySQL Database: 264

5.3 MySQL User interfaces 267

5.3.2 Advantages of using MySQL 270

5.3.3 Disadvantages of using MySQL 271

6.0 Microsoft SQL 271

6.1 Microsoft SQL Services 271

6.2 MongoDB 278

6.3 Conclusion 283

6.4 TMA 284

6.5 Further Reading and References: 284

UNIT 3: Emerging Database Systems

4.3.0 Introduction 286

4.3.2 Emerging Database Technologies 286

4.3.2.1 Internet Databases 286

4.3.3 Digital Libraries 288

4.3.4 Multimedia databases 294

4.3.5 Mobile Databases 296

4.3.6 Spatial Databases 299

4.3.7 Emerging databases in support of scientific data 305

4.3.7.1 Vertical Database 305

1. MonetDB 306

4.3.9 SciDB 308

4.4 Conclusion 310

4.6 Tutor Marked Assignment 310

CIT 905 Advanced Database Management System

Page | xxii

4.7 Further Readings/Reference 311

Unit 4. Database Services and Service Providers

4.4.1 Introduction 313

4.4.2 Objectives 313

4.4.1 Database as a Service (DBaas) 313

4.4.3 Developer agility 316

4.4.3.2 IT productivity 318

1. Big Data Processing and Distribution

Software

323

2. Oracle Stream Analytics 327

4.4.2.4 Data Platform 329

4.4.2.4 Gold Data Using ORACLE 12c 329

4.4.3.1 Oracle NoSQL Database 330

4.4.5 Non-native Database Management Systems 333

4.4.4 Conclusion 336

4.4.5 Tutor Marked Assignment 337

4.4.6 References and Further Readings 337

Unit 5: Modern Database Applications

4.5.1 Introduction 338

4.5.1.2 Objectives 339

4.5.3 Classical SQL and its limitations 339

4.5.2. Queries based on Fuzzy Logic 341

1. On-line Analytical Processing Databases (OLAP) 343

4.5.6 Overview of OLAP Systems 343

2. Conclusion 350

2. Tutor Marked Assignment 351

3. Further Readings/References 351

CIT 905 Advanced Database Management System

Page | xxiii

Blank Page

CIT 905 Advanced Database Management System

Page | 1

MODULE 1: DATABASE DESIGN AND IMPLEMENTATION

UNIT 1: RELATIONAL DATABASE DESIGN AND IMPLEMENTATION

1. INTRODUCTION

This unit discusses the relational data model. Which uses the concept of mathematical

relation, which looks somewhat like a table of values, as its basic building blocks, and

has its theoretical basics in set theory and first order predicate logic. In this unit, we

will discuss the basic characteristics for the relational model and its normalization

processes. The model has been implemented in a large number of commercial systems

over the last years.

1.1 OBJECTIVES.
 The objectives of this unit include to:

1. Describe the data model and its concepts.

2. discuss the relational database model.

3. Help the students understand the concepts of normalization in database

design

1.2 What is a data model?

 A data model is a collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints. In this part, we focus on the

relational model. It is a notation for describing data or information. The description

generally consists of three parts: Structure of the data, Operations on the data and

Constraints on the data. In unit we describe the relational database model

1.3 What Is Relational Database?

A relational database is based on the relational model and uses a collection of

tables to represent both data and the relationships among those data. It also includes a

Data Manipulation Language (DML) and Data Definition Language (DDL). The

relational model is today the primary data model for commercial data processing

applications - especially for storing financial records, manufacturing and logistical

CIT 905 Advanced Database Management System

Page | 2

information, personnel data and much more. It attained its primary position because of its

simplicity, which eases the job of the programmer, compared to earlier data models such

as the network model or the hierarchical model.

1.2.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a

unique name. For example, consider the Facilitator table (Table 2.1), which stores

information about facilitators. The table has four columns: ID, name, department and

rank. Each row of this table records information about a facilitator, consisting of the

facilitator‘s ID, name, department, and rank. Similarly, the course table (Table 2.2)

stores information about courses, consisting of a course code, title, department, and

Credit Hour(CH), for each course. Note that each instructor is identified by the value of

the column ID, while each course is identified by the value of the column course code.

Table 2.1: Facilitator table

ID Name Department Rank

001010 Patience Computer Science Reader

001023 Inyang Chemistry Professor

001058 Godwin Physics Lecturer 1

002010 Daniel History Professor

003010 Suleman Geography Reader

Table 2.2: Facilitator table

Course

Code

Title Department CH

CIT 751 Patience Computer Science 3

CHM 222 Inyang Chemistry 4

PHY 234 Godwin Physics 3

HIS 442 Daniel History 2

GPY 130 Suleman Geography 4

CIT 905 Advanced Database Management System

Page | 3

In general, a row in a table represents a relationship among a set of values. Since a table

is a collection of such relationships, there is a close correspondence between the concept

of table and the mathematical concept of relation, from which the relational data model

takes its name. In mathematical terminology, a tuple is simply a sequence (or list) of

values. A relationship between n values is represented mathematically by an n-tuple of

values, i.e., a tuple with n values, which corresponds to a row in a table.

Thus, in the relational model the term relation is used to refer to a table, while

term tuple is used to refer to a row. Similarly, the term attribute refers to a column

header of a table while the data type describing the types of values that can appear in

each column is called a domain. Examining Table 2.1, we can see that the relation

instructor has four attributes: ID, name, department, and rank. We use the term relation

instance to refer to a specific instance of a relation that is, containing a specific set of

rows. The instance of a facilitator shown in Table 2.1 has 5 tuples, corresponding to

five facilitators.

Each attribute of a relation, has a set of permitted values, called the domain of

that attribute. Thus, the domain of the rank attribute of relation is the set of all possible

ranks values, while the domain of the name attribute is the set of all possible

facilitators’ names. A domain is atomic if elements of the domain are considered to be

indivisible units. For example, suppose the table facilitator had an attribute phone

number, which can store a set of phone numbers associated to the facilitator. Then the

domain of phone number would not be atomic, since an element of the domain is a set

of phone numbers (may be more than one phone numbers), and it has subparts, namely

each individual phone numbers in the set.

The important issue is not what the domain itself is, but rather how we use

domain elements in our database. Suppose now that the phone number attribute stores a

single phone number. Even then, if we split the value from the phone number attribute

(for example +234-873-424-1626), into a country code, network provider, an area code

and a local number, then it is considered as a non-atomic value. If view each phone

number as a single indivisible unit, then the attribute phone number would then have an

atomic domain.

CIT 905 Advanced Database Management System

Page | 4

1.2.2 Database Schema

A database schema, is the logical design of the database, and the database

instance, is a snapshot of the data in the database at a given instant in time. A database

schema represents the logical configuration of all or part of a relational database. It can

exist both as a visual representation and as a set of formulas (known as integrity

constraints), that govern a database. These formulas are expressed in a DDL, such as

SQL. As part of a data dictionary, a database schema indicates how the entities that

make up the database relate to one another, including tables, views, stored procedures,

and more. At the most basic level, a database schema indicates which tables or relations

make up the database, as well as the attributes included on each table. Thus, the

terms schema diagram and entity-relationship diagram are often interchangeable. The

concept of a relation corresponds to the programming-language notion of a variable,

while the concept of a relation schema corresponds to the programming-language

notion of type definition.

 A database designer creates a database schema mainly to help programmers whose

software will interact with the database. The process of creating a database schema is

called data modeling. There are two main kinds of database schema:

1. A logical database schema conveys the logical constraints that apply to the stored

data. It may define integrity constraints, views, and tables.

2. A physical database schema lays out how data is stored physically on a storage

system in terms of files and indices.

1.2.3 What is Database instance or database schema?

These terms, though related, do not mean the same thing. A database schema is a sketch

of a planned database. It does not actually have any data in it. A database instance, on

the other hand, is a snapshot of a database as it existed at a particular time. Thus,

database instances can change over time, whereas a database schema is usually static,

since it is arduous task to change the structure of a database once it is operational.

Database schemas and database instances can affect one another through a database

https://www.lucidchart.com/pages/database-diagram/database-models

CIT 905 Advanced Database Management System

Page | 5

management system (DBMS). The DBMS makes sure that every database instance

complies with the constraints imposed by the database designers in the database

schema.

1.2.3 Database Schema Integration

Schema integration describes the task of building a global data schema from a set of

local schemas (usually with overlapping semantics) to provide the user with a unified

view of the entire dataset. Schema integration is defined as the process of merging

several conceptual schemas into a global conceptual schema that represents all the

requirements of the application. Schema integration is used to merge two or more

database schemas into a single schema that can store data from both the original

databases.

The goal is to give the user of the global schema an illusion of a single dataset specified

by a single schema.

1. Schema integration is used when two or more existing databases must be

combined, for example, when a new management information system is being

developed.

2. Schema integration may be used when the process of database design is too large to

be carried out by one individual. Two or more designers will build models of

different parts of the database and use schema integration to merge the resulting

models.

There are two major types of schema integration:

1. View Integration: View integration takes place during the design of a new

database when user requirements may be different for each user group. View

integration is used to merge different viewpoints into a single data model.

2. Database Integration: Database integration is used when two or more databases

must be combined to produce a single schema, called a global schema.

Reasons for Schema Integration

CIT 905 Advanced Database Management System

Page | 6

1. The structure of the database for large applications is too complex to be modeled by

a single designer in a single view.

2. User groups typically operate independently in organization and have their own

requirements and expectations of data, which may conflict with other user groups

3. When two database schemas are designed by different designers using different user

requirements, the resulting schemas will often present contrasting views of the same

data.

 Figure 2.1: Two schemas designed differently

For example above, the relationship between employee and project in one database is

represented as a relationship between employee, department and project in another

database.

 Figure 2.2: entity relationship in two databases

This situation might occur in an organization that allows different departments to have

different rules as to how employees are allocated to projects. For example, in one

department employees may be assigned to projects while in another department

employees may not be considered to be directly related to a project.

CIT 905 Advanced Database Management System

Page | 7

Different databases may treat the same concepts in different ways.

In the above example, the publisher concept is an entity in database 1 but an attribute in

database 2. There are two situations that must be dealt with during schema integration:

1. When different concepts are modelled in the same way. For example, in a

university database staff and students may be represented by the entity person even

though they are different concepts.

2. When the same concepts are modelled in different way. For instance, the above

example models the concept of a publisher as an entity and as an attribute.

Incompatible designs:

1. Two database designs may be incompatible because mistakes were made in the

initial design or there are different constraints placed on the data. For instance, in the

above example, the relationship between employee and project is represented as a

one-to-many relationship in database 1 and as a many-to-many relationship in

database 2.

2. This problem may be caused by mistakes made during the initial database analysis

task or because users of the system have different working practices. For example,

one department in an organization, which works on small projects, may allocate one

employee to a project but a different department, which works on large projects, may

allocate many employees to a project.

During schema integration these different viewpoints must be reconciled

Figure 2.3: schemas reconciliation

Steps and goals of the integration process

CIT 905 Advanced Database Management System

Page | 8

i) Pre-integration.

1. Choose integration processing strategies

2. This governs the choice of schemas to be integrated

ii) Comparison of the schemas.

Schemas are analyzed and compared to determine the correspondences among

concepts and detect possible conflicts.

iii) Conforming the schemas.

Once conflicts are detected, an effort is made to resolve them so that the merging

of various schemas is possible.

Automatic conflict resolution is generally not feasible; interaction with designers

is required.

iv) Merging and Restructuring.

1. The schemas are ready to be superimposed, giving rise to some intermediate

integrated schema(s).

2. The second strategy for schema integration is to integrate some of the schemas

(e.g. two) and then to integrate the resulting schemas.

3. This approach would be more appropriate when the schemas are complex or

when there are a large number of schemas

Figure 2.4: schema integration process

The schema integration process starts with two or more schemas and involves three

main stages:

1. Conflict Analysis: during conflict analysis differences in the schemas are

identified, for example, similar concepts that are represented in different ways.

Check all conflicts in the representation of the same objects in different schemas.

CIT 905 Advanced Database Management System

Page | 9

2. Conflict Resolution: resolution the conflicts identified during conflict analysis are

resolved. For example, a common method of representing equivalent concepts will

be decided upon. This process may involve discussing the problems with the users

or correcting errors in the schemas.

3. Schema merging: During schema merging the schemas are merged into a single

schema using the decisions made during the conflict resolution.

Types of Conflicts

1. Naming Conflicts: It occurs when different names are used for the same attribute or

the same object are given different names in their respective databases. Different

naming conventions are used by databases for objects.

1. Structural conflicts. This type of conflict occurs when the actual method of

representing the same concept in different databases is different or incompatible.

Types of Name conflicts :

1. Synonyms: Objects that are the same but have different names. For example, two

public transport databases may have entities called passenger and customer, SNO

and S#, EMP and EMPLOYEE, TAKE and ENROL. These entities may be the

same entity.

2. Homonyms: Concepts or objects that are different but have the same names.. For

example, two publishing databases may have entities called publication but in

one database a publication may be a book while in the other database a

publication may be a journal.

3. Name conflicts cause a problem because information may be duplicated in the

integrated database. It is important to identify those data items in each schema

that actually represents the same concept or that should be represented using

different structures in the integrated schema.

4. Synonyms may be removed from the database by renaming the concepts so that

they have the same name.

5. Homonyms may be removed from the database by renaming the concepts so that

they have different names.

CIT 905 Advanced Database Management System

Page | 10

6. It may be possible to use a superclass/subclass relationship to avoid synonyms or

homonyms.

Types of Structural Conflicts: There are three cases

1. Identical Concepts: When the same concept in different databases is represented in

the same way they may be merged. For example, when an entity publication has the

same structure and means the same in two databases the entities may be merged.

2. Compatible Concepts: When the same concept in different databases is

represented in compatible ways they may be merged. For example, when an entity

publication is represented by an attribute in one database and an entity in another

database they may be merged by converting the attribute into an entity.

3. Incompatible Concepts: When the same concept in different databases is

represented using different structures then it may be difficult to merge them

directly. For example: Relationships may have different cardinalities (that is, one-

to-many and many-to-many). This is also referred to as cardinality conflicts of

attributes (that is different cardinalities for the same attributes of an entity types in

more than one views).

4. Primary keys may be different, that is, Different keys are assigned as identifiers of

the same entity type in different schemas.

5. Set relationships may be reversed (e.g. projects contain programmes and

programmes contain projects).

6. Incompatible designs must be resolved by re-analyzing the data and adapting one or

more of the schemas or by constructing a new, common representation.

Data type conflicts

The same attribute with different data types. For example, integer & real ⇒ integer e.g.

char (20) and char (30) ⇒ char (20) e.g. different range values positive integer &

[1,100] ⇒ [1,100]

CIT 905 Advanced Database Management System

Page | 11

1.1.4 Database Design

In this section, the design issues regarding relational databases are described. In general,

the goal of a relational database design is to generate a set of relation schemas that allow

us to store information without unnecessary redundancy, yet allowing us to retrieve

information easily. A well-structured and efficient database has the following

advantages:

1. Saves disk space by eliminating redundant data.

2. Maintains data accuracy and integrity.

3. Provides access to the data in useful ways.

Designing an efficient, useful database is a matter of following the proper process,

including these phases:

1. Strategy and planning

2. Requirements analysis

3. Design

4. Development

5. Deployment/implementation

6. Operations and maintenance.

1. Strategy and planning – typically the cycle starts with the strategy and planning

phase to identify the need and scope of a new system.

2. Specification Requirements analysis phase – a more detailed requirements

analysis will be carried out which will include identifying what the users require

of the system; this will involve conceptual analysis.

3. Design phase – this will involve producing a conceptual, logical and physical

design. To undertake these processes it is important to be able to understand and

apply the data modelling techniques which are covered in this book. When a

suitable logical design has been obtained the development phase can begin.

4. Development phase – this involves creating the database structure using an

appropriate Database

CIT 905 Advanced Database Management System

Page | 12

5. Management System (DBMS) and usually includes the development of

applications that provide a user interface consisting of forms and reports which

will allow controlled access to the data held in the database.

6. Deployment/implementation – when the system has been developed it will be

tested, it will then be deployed ready for use.

7. Operations and maintenance – following the system release for use it will be

maintained until it reaches the end of its useful life, at this stage the development

lifecycle may restart.

1.1.5 Specification Requirements Gathering

The most critical aspect of specification is the gathering and compilation of

system and user requirements. This process is normally done in conjunction with

managers and users. The initial phase of database design is to characterize fully the data needs of the

prospective database users. The database designer needs to interact extensively with

domain experts and users to carry out this task. The outcome of this phase is a

specification of user requirements. While there are techniques for diagrammatically

representing user requirements, in this unit we restrict ourselves to textual descriptions of

user requirements

The major goals in requirements gathering is to:

- collect the data used by the organization,

- identify relationships in the data,

- identify future data needs, and

- determine how the data is used and generated.

The starting place for data collection is gathering existing forms and reviewing policies

and systems. Then, ask users what the data means, and determine their daily processes.

These things are especially critical:

- Identification of unique fields (keys)

 - Data dependencies, relationships, and constraints (high-level)

- The data sizes and their growth rates

CIT 905 Advanced Database Management System

Page | 13

Fact-finding is using interviews and questionnaires to collect facts about systems,

requirements, and preferences. Five fact-finding techniques:

1. examining documentation (example invoices, invoices, timesheets, surveys etc.),

Comb through any existing data systems (including physical and digital files)

2. interviewing

3. observing the enterprise in operation

4. research

5. questionnaires

6. Start by gathering any existing data that will be included in the database. Then list

the types of data you want to store and the entities, or people, things, locations, and

events, that those data describe, for example:

1. Customers

2. Name

3. Address

4. City, State, Zip

5. Email address

6. Products

7. Name

8. Price

9. Quantity in stock

10. Quantity on order

11. Orders

12. Order ID

13. Sales representative

14. Date

15. Product(s)

16. Quantity

17. Price

18. Total

This information will later become part of the data dictionary, which outlines the tables

and fields within the database. Be sure to break down the information into the smallest

useful pieces. For instance, consider separating the street address from the country so

that you can later filter individuals by their country of residence. Also, avoid placing the

same data point in more than one table, which adds unnecessary complexity.

CIT 905 Advanced Database Management System

Page | 14

The result of this step is concisely written as a set of users‘ requirements. These

requirements should be specified as detailed and complete a form as possible. In parallel

with specifying the data requirements, it is useful to specify the known functional

requirements of the application. These consist of the user–defined operations (or

transactions) that will be applied to the database and they include both retrievals and

updates. In software design, it is common to use data flow diagrams, sequence

diagrams, scenarios, and other techniques for specifying functional requirements

1.1.6. Database Design Phase

The requirements gathering and specification provides you with a high-level

understanding of the organization, its data, and the processes that you must model in the

database. Database design involves constructing a suitable model of this information.

Since the design process is complicated, especially for large databases, database design

is divided into three phases:

• Conceptual database design

• Logical database design

• Physical database design

1. Conceptual Schema Modelling

Once all the requirements have been collected and analyzed, the next steps is to create a

conceptual schema for the database, using a high‐level conceptual data model. That is to

develop layout or a visual representation of the proposed database.

Why do you need to a Conceptual model?

In many environments modelling is used to ensure that a product will satisfy the user‘s

requirements before it is produced. For example, an architect may use a scale model of a

building so the client can see what it will look like before it is built. This allows for any

changes to be made to the design following feedback and before any expensive building

CIT 905 Advanced Database Management System

Page | 15

work takes place. Similarly, a modelling approach is needed when designing a database

system so that interested parties can check that the design will satisfy the requirements.

How can a database system be modelled?

In order to design an effective database system you need to be able to understand an

organization‘s information needs and, in particular, identify the data needed to satisfy

these needs. Entity Relationship is an important top-down analysis technique which is

used to show the structure of the data used by a system. Initially, a conceptual model is

produced which is independent of any hardware or DBMS system; this is achieved by

using an Entity Relationship Diagram (ERD) or alternatively a UML Class Diagram

(CD). This modelling technique will be used to determine how this business data is

structured and show the relationships between the different data entities. The model

forms the basis for the design of the database system that will be built.

1.1.7 The Entity-Relationship Model

The entity-relationship (E-R) data model was developed to facilitate database design by

allowing specification of an enterprise schema that represents the overall logical

structure of a database. The E-R model is very useful in mapping the meanings and

interactions of real-world enterprises onto a conceptual schema. Because of this

usefulness, many database-design tools draw on concepts from the E-R model.

1.1.7.1 The Entity Relationship Diagram (ERD)

The Entity Relationship Diagram (ERD) shows ―entities‖ and the ―relationships‖ that

link them. The entities represent the data items needed by the system and the

relationships show how the entities are related to one another. An ―entity‖ is formally

called an ―entity type‖ and can be defined as: ―A group of objects with the same

properties which are identified by the enterprise as having an independent existence‘

1.1.7.2 Entity types

In order to produce an ERD you need to identify all the entity types that are relevant to

the system being modelled. Do not confuse an entity type with the occurrence of an

CIT 905 Advanced Database Management System

Page | 16

entity. Often many entities can be identified, although they are not always relevant to

the needs of the system being considered, so care needs to be taken to ensure that only

those that are needed are added to the ERD. The following are examples of typical

entity types:

For a business system: CUSTOMER, ORDER, INVOICE.

For a university system: STUDENT, LECTURER, COURSE

Entities often fall into one of the following categories:

1. Physical – CAR, BUILDING

2. Human – CUSTOMER, EMPLOYEE

3. Place – FACTORY, SCHOOL

4. Group – DEPARTMENT, TEAM

5. Document – INVOICE, PAYSLIP

When you have identified the entity types, these need to be added to the Entity

Relationship Diagram (ERD). Although ERDs can be drawn by hand, it is good

practice to use a Computer Aided Software Engineering (CASE) tool to ensure your

models can be amended easily and presented in a professional form to others. There

are many CASE tools available to support modelling.

The E-R data model employs three basic concepts: entity sets, relationship sets, and

attributes.

1.1.7.3 Entity Sets

An entity is a ―thing‖ or ―object‖ in the real world that is distinguishable from all other

objects. For example, each person in a university is an entity. An entity has a set of

properties, and the values for some set of properties may uniquely identify an entity. For

instance, a person may have a person id property whose value uniquely identifies that person.

Thus, the value 677-89-9011 for person ID would uniquely identify one particular

person in the university. Similarly, courses can be thought of as entities, and course ID

uniquely identifies a course entity in the university. An entity may be concrete, such as

CIT 905 Advanced Database Management System

Page | 17

a person or a book, or it may be abstract, such as a course, a course offering, or a flight

reservation.

1. An entity set is a set of entities of the same type that share the same properties,

or attributes. The set of all people who are instructors at a given university, for

example, can be defined as the entity set instructor. Similarly, the entity set

student might represent the set of all students in the university.

2. In the process of modeling, we often use the term entity set in the abstract,

without referring to a particular set of individual entities. We use the term

extension of the entity set to refer to the actual collection of entities belonging

to the entity set. Thus, the set of actual instructors in the university forms the

extension of the entity set instructor.

3. An entity is represented by a set of attributes. Attributes are descriptive

properties possessed by each member of an entity set. The designation of an

attribute for an entity set expresses that the database stores similar information

concerning each entity in the entity set; however, each entity may have its own

value for each attribute. Possible attributes of the instructor entity set are ID,

name, dept name, and salary. In real life, there would be further attributes, such

as street number, apartment number, state, postal code, and country, but we omit

them to keep our examples simple. Possible attributes of the course entity set are

course ID, title, dept name, and credits.

4. Each entity has a value for each of its attributes. For instance, a particular

instructor entity may have the value 12121 for ID, the value for name, the value

Finance for dept name, and the value 90000 for salary.

5. The ID attribute is used to identify instructors uniquely, since there may be more

than one instructor with the same name. In the United States, many enterprises

find it convenient to use the social-security number of a person2 as an attribute

whose value uniquely identifies the person. In general the enterprise would have

to create and assign a unique identifier for each instructor.

6. A database for a university may include a number of other entity sets. For

example, in addition to keeping track of instructors and students, the university

CIT 905 Advanced Database Management System

Page | 18

also has information about courses, which are represented by the entity set

course.

1.1.7.4 Entity selection and validation

In order to produce the ERD you need to ensure you have identified the entities that are

suitable for inclusion. The entities initially selected are usually referred to as

“candidate entities” as not all may be suitable for inclusion. Entity names are normally

nouns not verbs. The candidate entities are usually identified by referring to a written

system description, a set of requirements, or perhaps the notes from a discussion with a

person who has knowledge of the system under consideration.

These nouns will form the candidate entity list.

To ensure that a candidate entity is valid for inclusion on the ERD it should satisfy the

following three checks:

1. It should not be the name of the system being modelled

 It is a common mistake to include an entity which has the name of the system or

organization that is being modelled. For example, if you were producing a model of

―NOUN University‖ it would not be appropriate to include an entity type called

NOUN UNIVERSITY or even UNIVERSITY as there is only one occurrence of

this university. The whole model would, in reality, represent the university.

However, if you were modelling a system that needed to hold data for more than

one university, then you would need to include an entity type called UNIVERSITY.

2. The object should be of importance to the system being studied.

There are likely to be many objects in the system being studied but you have to

decide whether the object is relevant. This usually means determining if the system

users are likely to need to retrieve information about the object. For example, if you

were designing a university student information system is a ―litter bin‖ likely to

satisfy the check? The answer would be no, but are there any circumstances in

which it might? If the purpose of the system was to record all university assets, then

CIT 905 Advanced Database Management System

Page | 19

you might need to record information about the litter bins. In that case you would

need an entity type to represent this information, though the entity type would be

called ASSET and bin would be an entity occurrence.

3. There should be data attributes that can be associated with the entity

There must be at least two attributes for an entity type. If you cannot identify any or

only one attribute for the entity then you may need to consider whether, in fact, it is

actually an attribute of another entity type.

1.1.7.5 Validating the model

The model should be checked with the client or system users to ensure that all relevant

entities have been identified, along with the required attributes. This process may need to

be repeated a number of times until everyone is satisfied that all requirements have been

met.

1.1.7.6 Entity Relationships

In order to see what is meant by a relationship, consider the following example which

uses the music system entity Types COMPANY, CD, TRACK and CATEGORY.

There are a number of relationships between these entity types as follows:

-- A COMPANY produces CDs

-- A CD contains music TRACKs

-- A TRACK belongs to a music CATEGORY

To help you understand the nature of a relationship you may initially find it helpful to

see the entity occurrences in a graphical format. If you consider the relationship

―COMPANY produces a CD‖ the diagram below shows how one occurrence of

COMPANY relates to two occurrences of CD when looked at from the viewpoint of the

COMPANY, which is at the one end of the relationship. From this direction the

relationship can be read as ―A COMPANY produces CDs.‖

If there is a relationship between an occurrence of one entity type and an occurrence of another entity

type, then it is shown on the entity relationship diagram as a line linking the two entity symbols. The

relationship between the two entities should be labelled by using a suitable verb. For example the

relationship ―STUDENT Studies a COURSE‖ would be represented as follows

CIT 905 Advanced Database Management System

Page | 20

As it is important to consider a relationship from both directions you should also label

the relationship from COURSE to STUDENT as follows:

The relationship labels should be positioned as above, near to the relevant entities to aid readability.

Relationship cardinality

Once you have established a relationship between two entity types it is important to

consider how many occurrences of one entity could be related to the other entity. This is

referred to as ―cardinality‖.

There are three types of relationship cardinality:

1. One to One (abbreviated as 1:1)

2. One to many (abbreviated as 1:M)

3. Many to Many (abbreviated as M:M or M:N)

Using the earlier example of the relationship between STUDENT and COURSE,

consider the relationship from the STUDENT‘s viewpoint. A student can study a course

and if you then consider the relationship from the COURSE viewpoint, you can say that

a COURSE can be studied by many STUDENTs. This would be a “one to many”

(1:M) relationship and would be drawn on the ERD as follows:

The ―crow‘s foot‖ symbol is used to represent many and is placed at the ―many‖

end of the relationship. The relationship would be read formally as ―a student

studies one and only one course and a course is studied by one or many students‖. If

you now reconsider the relationship between STUDENT and COURSE but want to

be able to show that a student may study more than one course, you now need to

CIT 905 Advanced Database Management System

Page | 21

alter the relationship to show as a ―many to many‖ (M:M or M:N). A M:N

relationship is sometimes written as M:M though M:N is preferred so as to indicate

that the number of occurrences at one end of the relationship can be different from

number at the other end of the relationship. This is drawn on the ERD as follows:

The final cardinality type that needs to be examined is for the ―one to one‖

relationship. If a STUDENT is assigned a LECTURER as a supervisor and the

LECTURER only supervises one student, you can show this as follows on the ERD:

In this case the relationship would be read as ―a student is supervised by one and only one lecturer

and a lecturer supervises one and only one student

1.1.7.5 Relationship optionality

When describing an entity relationship you need to record the fact on the ERD that in

some cases an occurrence of an entity type may not always be present, in which case the

relationship is said to be optional. Using the previous cardinality example, the model

states that a lecturer supervises a student. However, what if some lecturers do not act as

supervisors to students? In this situation an occurrence of LECTURER will not always

be related to an occurrence of STUDENT so it will be an optional relationship.

However, if you consider the relationship from the STUDENT perspective it is still

present as all students must have a supervising LECTURER.

To denote that a relationship can be optional a small circle is included on the

relationship line at the end that is optional. The following shows the optional 1:1

relationship between STUDENT and LECTURER

There are various types of relationships

CIT 905 Advanced Database Management System

Page | 22

1. Complex Relationship

2. Recursive relationships

So far the concentration is on identifying and modelling relationships between pairs of

entity types. Most of these relationships will be one-to-many, a few might be many-to-

many and some might be one-to-one. In addition, how to resolve many-to-many

relationships that contain data which is of interest in the situation being modelled has

also been discovered.

 Some entities are related to themselves. To be more specific, occurrences of the

entity type are related to other occurrences of the same entity type. This is called a

recursive relationship.

Consider the entity type EMPLOYEE in a university where there are approximately 500

employees, resulting in 500 occurrences of the entity. The Vice-chancellor manages the

Deans of Faculty and each Dean manages several Heads of Department. The Heads of

Department manage the lecturers. This gives rise to a hierarchical relationship within

this single EMPLOYEE entity type. This can be represented graphically using a

hierarchy diagram, as follows:

Figure 2.5: Illustration of hierarchical relationship of entity ‗EMPLOYEE‘

This hierarchy diagram clearly shows that an occurrence of the entity EMPLOYEE,

say Dean, manages one or more other occurrences of EMPLOYEE. Another

occurrence of the entity, a Head of department, also manages one or more other

CIT 905 Advanced Database Management System

Page | 23

occurrences of the same entity, Lecturer. To show this 1:M recursive relationship on

an ERD you draw a relationship line starting and finishing at the entity, as follows:

Exclusive relationships

Sometimes two or more relationships are mutually exclusive, e.g. a VEHICLE may be

undergoing a SERVICE or an INSPECTION but not both at the same time. This is

shown by an arc symbol pointing towards the mutually exclusive options.

1.1.8 Logical Design Phase

In the logical-design phase, the designer maps the high-level conceptual schema

onto the implementation data model of the database system that will be used. The

implementation data model is typically the relational data model, and this step typically

consists of mapping the conceptual schema defined using the entity-relationship model

into a relation schema.

It includes the following activities:

Identification of keys

Keys play a vital role in database design and have to be identified and used correctly.

The following terminology is used in association with relational database keys:

-- a key uniquely identifies an entity occurrence: it is the entity identifier

-- a primary key is the key ‗chosen‘ for a given relation / table

-- a candidate key is a ‗possible‘ primary key (several candidate keys may exist for

a relation)

-- a compound key is a key consisting of two or more attributes

1. Identification of relations

CIT 905 Advanced Database Management System

Page | 24

 From your conceptual data model you need eventually to generate a set of relations

(tables) that will form the basis of the database. You will need to link these tables in

order to be able to reflect the relationships that were modelled on the ERD at the

conceptual stage. In order to get to the stage of producing the tables, you first need

to produce a complete set of relations in which all of the keys have been identified

1. Normalize the database (Resolve relationships issues)

2. -- Un-normalised (UNF),

3. -- 1st Normal Form (1NF),

4. -- 2nd Normal Form (2NF),

5. -- 3rd Normal Form (3NF).

1.3.8 Modelling problems

Care needs to be taken when modelling systems to ensure that you avoid producing a

design which, if implemented, will not allow the system to extract all of the required

information needed to answer user queries. With this is mind you should check your

model for the following problems:

Fan trap

A fan trap is caused when it is not possible to link from one entity to another entity via a

linking entity because the two 1:M relationships point away (fan out) from the linking

entity. For example, suppose you want to know if a student is studying the module

Database. The model below will not allow you to answer this query. Although the

module is related to a course by the foreign key CourseID, there is no suitable link from

course to student as there is no foreign key StudentID in course for student.

To resolve this problem a new relationship could be added, linking module directly with

student, though a neater solution would be to rearrange the model as follows:-

CIT 905 Advanced Database Management System

Page | 25

Chasm trap

A chasm trap is created when relationships between entity types indicate a route linking

them, but due to optionality it is not possible to make the required connection for all

occurrences. For example, suppose you want to identify which course a student is

taking. The following model will not work if the student has not been assigned to a

module. Although there is a link between course and module due to the Course_ID

foreign key in the module relation, there would be no link between student and module

if the student was not taking a module – there would be no foreign key Module_ID in

student to provide a link to the module relation.

This problem can be resolved by adding a 1:M relationship linking course to student

directly.

Finally, the designer uses the resulting system-specific database schema in the

subsequent physical-design phase, in which the physical features of the database are

specified. The physical schema of a database can be changed relatively easily after an

application has been built. However, changes to the logical schema are usually harder to

carry out, since they may affect a number of queries and updates scattered across

application code. It is therefore important to carry out the database design phase with

care, before building the rest of the database application.

CIT 905 Advanced Database Management System

Page | 26

The implementation phase is where you install the DBMS on the required

hardware, optimize the database to run best on that hardware and software platform, and

create the database and load the data. The initial data could be either new data captured

directly or existing data imported from a MariaDB database or another DBMS. You also

establish database security in this phase and give the various users that you've identified

access applicable to their requirements. Finally, you also initiate backup plans in this

phase.

The following are steps in the implementation phase:

1. Install the DBMS.

2. Tune the setup variables according to the hardware, software and usage

conditions.

3. Create the database and tables.

4. Load the data.

1. Set up the users and security.

2. Implement the backup regime.

1.1.8 Conclusion

 A database management system provides us with mechanisms for storing and

organizing data to facilitate easy access to and manipulation of the data. Today‘s most

popular database systems are relational databases, although enhanced models exist.

1.1.9 Tutor-Marked assignment

1. Produce a logical design for the ERD

CIT 905 Advanced Database Management System

Page | 27

3. State reasons why normalization is needed in a database

4. Describe with suitable illustration, the various forms of normalization

5. Describe the various stages of database design

1.1.10. References and Further Readings

Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Database systems: concepts,

languages & architectures (Vol. 1). London: McGraw-Hill.

Batini., C., Ceri, S., and Navathe, S. (1992) Database Design: An Entity – Relationship

Approach,

Bernstein, P. (1976), Synthesizing Third Normal Form Relations from Functional

Dependencies‖,TODS, 1:4, December 1976.

Codd, E (1970) ―A Relational Model for Large Shared Data BANks‖ CACM, 136, June

1970.

David M. Kroenke, David J. Auer (2008). Database Concepts. New Jersey. Prentice

Hall

Elmasri Navathe (2003). Fundamentals of Database Systems. England. Addison

Wesley.

Fred R. McFadden, Jeffrey A. Hoffer (1994). Modern Database management. England.

Addison Wesley Longman

Graeme C. Simsion, Graham C. Witt (2004). Data Modeling Essentials. San Francisco.

Morgan Kaufmann

Maier, D. (1983). The Theory of Relational Databases

Pratt Adamski, Philip J. Pratt (2007). Concepts of Database Management. United States.

Course Technology.

Singh, S. K. (2011). Database systems: Concepts, design and applications. Pearson

Education India.

CIT 905 Advanced Database Management System

Page | 28

MODULE 1: DATABASE DESIGN AND IMPLEMENTATION

UNIT 2: ADVANCED SQL

2.1 Introduction:

Structured Query Language (SQL) is the most widely used commercial relational

database language. It was designed for managing data in Relational Database

Management System (RDBMS). It was originally developed at IBM in the SEQUEL

XRM and System-R projects (1974-1977). Almost immediately, other vendors

introduced DBMS products based on SQL. SQL continues to evolve in response to

changing needs in the database area. This unit explains how to use SQL to access and

manipulate data from database systems like MySQL, SQL Server, MS Access, Oracle,

Sybase, DB2, and others

2.1. OBJECTIVES

 At the end of this unit, students should be able to:

- understand the SQL statements

- be able to query a database using SQL queries

2.2 Basics Concepts of SQL

SQL ‐ Structured Query Language is a standard language for accessing and

manipulating databases. SQL lets you access and manipulate databases. It is used for

defining tables and integrity constraints and for accessing and manipulating data. SQL.

This unit explains how to use SQL to access and manipulate data from database systems

like MySQL, SQL Server, MS Access, Oracle, Sybase, DB2, and others. Application

programs may allow users to access a database without directly using SQL, but these

applications themselves must use SQL to access the database.

Although SQL is an ANSI (American National Standards Institute) standard,

there are many different versions of the SQL language. However, to be compliant with

the ANSI standard, they all support at least the major commands (such as SELECT,

CIT 905 Advanced Database Management System

Page | 29

UPDATE, DELETE, INSERT, WHERE) in a similar manner. Most of the SQL

database programs also have their own proprietary extensions in addition to the SQL

standard.

The SQL language has several aspects to it.

The Data Manipulation Language (DML): This subset of SQL allows users to pose

queries and to insert, delete, and modify rows. Queries are the main focus of this unit.

We covered DML commands to insert, delete, and modify rows

The Data Definition Language (DDL): This subset of SQL supports the creation,

deletion, and modification of definitions for tables and views. Integrity constraints can

be defined on tables, either when the table is created or later. Although the standard

does not discuss indexes, commercial implementations also provide commands for

creating and deleting indexes.

Triggers and Advanced Integrity Constraints: The new SQL:1999 standard includes

support for triggers, which are actions executed by the DBMS whenever changes to the

database meet conditions specified in the trigger.

Embedded and Dynamic SQL: Embedded SQL features allow SQL code to be called

from a host language such as C or COBOL. Dynamic SQL features allow a query to be

constructed (and executed) at run-time.

Client-Server Execution and Remote Database Access: These commands control

how a client application program can connect to an SQL database server, or access data

from a database over a network.

Transaction Management: Various commands allow a user to explicitly control

aspects of how a transaction is to be executed.

Security: SQL provides mechanisms to control users' access to data objects such as

tables and views.

CIT 905 Advanced Database Management System

Page | 30

Advanced features: The SQL:1999 standard includes object-oriented features,

recursive queries, decision support queries, and also addresses emerging areas such as

data mining, spatial data, and text and XML data management.

2.3. HISTORY OF SQL

SQL was developed by IBM Research in the mid 70‘s and standardized by the

ANSI and later by the ISO. Most database management systems implement a majority

of one of these standards and add their proprietary extensions. SQL allows the retrieval,

insertion, updating, and deletion of data. A database management system also includes

management and administrative functions. Most – if not all –implementations also

include a command-line interface (SQL/CLI) that allows for the entry and execution of

the language commands, as opposed to only providing an application programming

interface (API) intended for access from a graphical user interface (GUI).

The first version of SQL was developed at IBM by Andrew Richardson, Donald

C. Messerly and Raymond F. Boyce in the early 1970s. This version, initially called

SEQUEL, was designed to manipulate and retrieve data stored in IBM's original

relational database product; System R. IBM patented their version of SQL in 1985,

while the SQL language was not formally standardized until 1986 by the American

National Standards Institute (ANSI) as SQL-86. Subsequent versions of the SQL

standard have been released by ANSI and as International Organization for

Standardization (ISO) standards.

Originally designed as a declarative query and data manipulation language,

variations of SQL have been created by SQL database management system (DBMS)

vendors that add procedural constructs, flow-of-control statements, user-defined data

types, and various other language extensions. With the release of the SQL: 1999

standard, many such extensions were formally adopted as part of the SQL language via

the SQL Persistent Stored Modules (SQL/PSM) portion of the standard. SQL was

adopted as a standard by ANSI in 1986 and ISO in 1987.

In a nutshell, SQL can perform the following

1. SQL can execute queries against a database

CIT 905 Advanced Database Management System

Page | 31

2. SQL can retrieve data from a database

3. SQL can insert records in a database

4. SQL can update records in a database

5. SQL can delete records from a database

6. SQL can create new databases

7. SQL can create new tables in a database

8. SQL can create stored procedures in a database

9. SQL can create views in a database

10. SQL can set permissions on tables, procedures, and views

2.4 The Form of a Basic SQL Query

The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list

FROM from-list

WHERE qualification

Every query must have a SELECT clause, which specifies columns to be retained in the

result, and a FROM clause, which specifies a cross-product of tables. The optional

WHERE clause specifies selection conditions on the tables mentioned in the FROM

clause.

2.4.1 The Syntax of a Basic SQL Query

1. The from-list in the FROM clause is a list of table names. A table name can be

followed by a range variable; a range variable is particularly useful when the same

table name appears more than once in the from-list.

2. The select-list is a list of (expressions involving) column names of tables named in

the from-list. Column names can be prefixed by a range variable.

3. The qualification in the WHERE clause is a Boolean combination (i.e., an

expression using the logical connectives AND, OR, and NOT) of conditions of the

form expression op expression, where op is one of the comparison operators {<, <=,

CIT 905 Advanced Database Management System

Page | 32

=, <>, >=, >}. An expression is a column name, a constant, or an (arithmetic or

string) expression.

4. The DISTINCT keyword is optional. It indicates that the table computed as an

answer to this query should not contain duplicates, that is, two copies of the same

row. The default is that duplicates are not eliminated.

2.5. SQL STATEMENTS

Most of the actions you need to perform on a database are done with SQL statements.

Some database systems require a semicolon at the end of each SQL statement.

Semicolon is the standard way to separate each SQL statement in database systems that

allow more than one SQL statement to be executed in the same call to the server. We

are using MS Access and SQL Server 2000 and we do not have to put a semicolon after

each SQL statement, but some database programs force you to use it. SQL statements

can be divided into two parts:

SQL statements are basically divided into four; viz;

1. Data Manipulation Language (DML)

2. Data Definition Language (DDL)

3. Data Control Language (DCL)

4. Transaction Control

2.5.1 DATA MANIPULATION LANGUAGE (DML)

 DML retrieves data from the database, enters new rows, changes existing rows,

and removes unwanted rows from tables in the database, respectively. The basic DML

includes the following;

1. Select statement

2. Insert statement

3. Update statement

4. Delete statement

5. Merge statement

CIT 905 Advanced Database Management System

Page | 33

DATA DEFINITION LANGUAGE sets up, changes and removes data structures

from tables. The basic Data Definition Language includes the following;

1. Create statement

2. Alter statement

3. Drop statement

4. Rename statement

5. Truncate statement

6. Comment statement

DATA CONTROL LANGUAGE (DCL) gives or removes access rights to both a

database and the structures within it. The basic DCLs are;

1. Grant Statement

2. Revoke Statement

TRANSACTION CONTROL manages the changes made by the DML statements.

Changes to the data can be grouped together into logical transactions. The basic

Transaction control languages are;

1. Commit

2. Rollback

3. Save point

Using the following simple rules and guidelines, you can construct valid statements

that are both easy to read and easy to edit

1. SQL statements are not case sensitive, unless indicated

2. SQL statements can be entered on one or many lines

3. Keywords cannot be split across lines or abbreviated

4. Clauses are usually placed on separate lines for readability

5. Indents should be used to make code readable

6. Keywords typically are entered in uppercase; all other words, such

 as table names and columns are entered in lowercase

CIT 905 Advanced Database Management System

Page | 34

2.6 Viewing the Structure of a Table

The structure of any database table can be view by using the describe clause of

the SQL statement. The general syntax of the describe statement is given below;

DESCRIBE table;

For the purpose of this course two tables called Departments and Employees in the

Oracle database will be used. Thus, we need to see the structure of this tables so that we

will be able to familiarize ourselves with the column used in the table. To do this, we

write the query;

DESCRIBE departments;

NAME NULL? TYPE

DEPARTMENT_ID NOT NULL NUMBER(4)

DEPARTMENT_NAME NOT NULL CARCHAR(30)

MANAGER_ID NUMBER(6)

LOCATION_ID NUMBER(4)

From the table above, we can infer that departments table has 4 columns and that 2 of

these columns are not allowed to be null.

DESCRIBE employees;

Name Null? Type

EMPLOYEE_ID NOT NULL NUMBER(6)

FIRST_NAME VARCHAR2(20)

LAST_NAME NOT NULL VARCHAR2(25)

EMAIL NOT NULL VARCHAR2(25)

PHONE_NUMBER VARCHAR2(20)

HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHAR2(10)

SALARY NUMBER(8,2)

COMMISSION_PCT NUMBER(2,2)

MANAGER_ID NUMBER(6)

DEPARTMENT_ID NUMBER(4)

From the table above, we can infer that employees table has 11 columns and that 5 of

these columns are not allowed to be null.

CIT 905 Advanced Database Management System

Page | 35

2.7 SQL SELECT STATEMENTS

To extract data from the database, you need to use the SQL SELECT statement.

You may need to restrict the columns that are displayed. Using a SELECT

statement, you can do the following;

1. Projection: You can use the projection capability to choose the columns in a

table that you want to return by your query. You can choose as few or as

many columns of the table as you require.

2. Selection: You can use the selection capability in SQL to choose the rows in

a table that you want to return by a query. You can use various criteria to

restrict the rows that you use.

3. Joining: You can use the join capability to bring together data that is

stored in different tables by creating a link between them.

SUMMARY OF THE FUNCTIONS OF SQL

1. SQL can execute queries against a database

2. SQL can retrieve data from a database

3. SQL can insert records in a database

4. SQL can update records in a database

5. SQL can delete records from a database

6. SQL can create new databases

7. SQL can create new tables in a database

8. SQL can create stored procedures in a database

9. SQL can create views in a database

10. SQL can set permissions on tables, procedures, and views

11. SQL can allow the construction codes manipulating database

2.7.1 Using SQL for Web Site

To build a web site that shows some data from a database, you will need the following:

1. An RDBMS database program (i.e. MS Access, SQL Server, MySQL)

CIT 905 Advanced Database Management System

Page | 36

2. A server-side scripting language, like PHP or ASP

3. SQL

1. HTML / CSS

Relational Database Management System (RDBMS)

RDBMS is the basis for SQL, and for all modern database systems like MS SQL Server,

IBM DB2, Oracle, MySQL, and Microsoft Access. The data in RDBMS is stored in

database objects called tables. A table is a collection of related data entries and it

consists of columns and rows.

2.8 SQL SYNTAX

Database Tables

A database most often contains one or more tables. Each table is identified by a name

(e.g. "Customers" or "Orders"). Tables contain records (rows) with data.

Below is an example of a table called "Persons":

P_Id

LastName FirstName Address City

1 Akinbode Ola 10, Odeku Str. Lagos

2 Okafor Chris 23, Princewill Drive Port Harcourt

3 Amodu Ali 20, Dauda lane Kaduna

The table above contains three records (one for each person) and five columns

(P_Id, LastName, FirstName, Address, and City).

Format of SQL Statements

Most of the actions you need to perform on a database are done with SQL statements.

The following SQL statement will select all the records in the "Persons" table:

SELECT * FROM Persons

CIT 905 Advanced Database Management System

Page | 37

Some database systems require a semicolon at the end of each SQL statement.

Semicolon is the standard way to separate each SQL statement in database systems

that allow more than one SQL statement to be executed in the same call to the

server.

SQL, DML and DDL

SQL can be divided into two parts: The Data Manipulation Language (DML) and the

Data Definition Language (DDL).

The query and update commands form the DML part of SQL:

SELECT - extracts data from

a database UPDATE -

updates data in a database

DELETE - deletes data from

a database.

INSERT INTO - inserts new

data into a database

The DDL part of SQL permits database tables to be created or deleted. It also define

indexes (keys), specify links between tables, and impose constraints between tables.

The most important DDL statements in SQL are:

CREATE DATABASE - creates a new database

ALTER DATABASE – modifies a database

CREATE TABLE - creates a new table

ALTER TABLE - modifies a table

DROP TABLE - deletes a table

CREATE INDEX - creates an index (search key)

DROP INDEX - deletes an index

CIT 905 Advanced Database Management System

Page | 38

The CREATE TABLE Statement

The CREATE TABLE statement is used to create a table in a database.

SQL CREATE TABLE Syntax

CREATE TABLE table_name

(

column_name1 data_type,

column_name2 data_type,

column_name3 data_type,

....

)

The data type specifies what type of data the column can hold. For a complete reference

of all the data types available in MS Access, MySQL, and SQL Server visit

www.datatyperef.com

CREATE TABLE Example

Now we want to create a table called "Persons" that contains five columns:

P_Id, LastName, FirstName, Address, and City. We use the following

CREATE TABLE statement:

CREATE TABLE Persons

(

P_Id int,

LastName varchar(255),

FirstName varchar(255),

Address varchar(255),

City varchar(255)

)

The P_Id column is of type int and will hold a number. The LastName, FirstName,

Address, and City columns are of type varchar with a maximum length of 255

characters.

CIT 905 Advanced Database Management System

Page | 39

The empty "Persons" table will now look like this:

P LastName FirstName Address City

Id

The empty table can be filled with data with the INSERT INTO statement.

2.8 The SQL SELECT Statement

The SELECT statement is used to select data from a database.

The result is stored in a result table, called the result-set.

SQL SELECT Syntax

SELECT column_name(s)

FROM table_name

and

 SELECT * FROM table_name

Note: SQL is not case sensitive. SELECT is the same as select.

An SQL SELECT Example

The "Persons" table:

P_Id

LastName FirstName Address City

1 Akinbode Ola 10, Odeku Str. Lagos

2 Okafor Chris 23, Princewill Drive Port Harcourt

3 Amodu Ali 20, Dauda lane Kaduna

CIT 905 Advanced Database Management System

Page | 40

Now we want to select the content of the columns named "LastName" and "FirstName"

from the ―Persons‖ table above. We use the following SELECT statement:

SELECT LastName, FirstName FROM Persons

The result-set will look like this:

LastName FirstName

Akinbode Ola

Okafor Chris

Amodu Ali

SELECT * Example

Now we want to select all the columns from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

Tip: The asterisk (*) is a quick way of selecting all columns!

The result-set will look like this:

P_Id LastName FirstName Address City

1 Akinbode Ola 10, Odeku Str. Lagos

2 Okafor Chris 23, Princewill Drive Port Harcourt

3 Amodu Ali 20, Dauda lane kaduna

Navigation in a Result-set

Most database software systems allow navigation in the result-set with programming

functions, like:

Move-To-First-Record, Get-Record-Content, Move-To-Next-Record, etc.

CIT 905 Advanced Database Management System

Page | 41

The SQL SELECT DISTINCT Statement

In a table, some of the columns may contain duplicate values. This is not a problem;

however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

SQL SELECT DISTINCT Syntax

SELECT DISTINCT column_name(s)

 FROM table_name

SELECT DISTINCT Example

The "PersonsOne" table:

P_Id LastName FirstName Address City

1 Akinbode Ola 10, Odeku Str. Lagos

2 Okafor Chris 23, Princewill Drive Port Harcourt

3 Amodu Ali 20, Dauda lane kaduna

Now we want to select only the distinct values from the column named "City" from the

table above.

We use the following SELECT statement:

 SELECT DISTINCT City FROM Persons

The result-set will look like this:

City

Lagos

Kaduna

CIT 905 Advanced Database Management System

Page | 42

SQL WHERE Clause

The WHERE clause is used to filter records. The WHERE clause is used to extract only

those records that fulfill a specified criterion.

SQL WHERE Syntax

SELECT column_name(s)

FROM table_name

 WHERE column_name operator value

 WHERE Clause Example

 The "Persons" table:

 P_Id LastName FirstName Address City

 1 Akinbode Ola 10, Odeku Str. Lagos

 2 Okafor Chris 23, Princewill Drive Porthacourt

 3 Amodu Ali 20, Dauda lane Kaduna

Now we want to select only the persons living in the city "Sandnes" from the table

above.

We use the following SELECT statement:

SELECT * FROM Persons

WHERE City='Kaduna'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Amodu Ali 20, Dauda lane Kaduna

CIT 905 Advanced Database Management System

Page | 43

Quotes Around Text Fields

SQL uses single quotes around text values (most database systems will also accept

double quotes). Although, numeric values should not be enclosed in quotes.

For text values:

SELECT * FROM Persons WHERE

FirstName='Chris'

This is wrong:

SELECT * FROM Persons WHERE FirstName=Chris

For numeric values:

This is correct:

SELECT * FROM Persons WHERE Year=1965

This is wrong:

SELECT * FROM Persons WHERE Year='1965'

Operators Allowed in the WHERE Clause

With the WHERE clause, the following operators can be used:

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

CIT 905 Advanced Database Management System

Page | 44

LIKE Search for a pattern

IN If you know the exact value you

want to return for at least one of

the columns

Note: In some versions of SQL the <> operator may be written as !=

SQL AND & OR Operators

The AND & OR operators are used to filter records based on more than one condition.

The AND operator displays a record if both the first condition and the second

condition is true while the OR operator displays a record if either the first condition

or the second condition is true.

AND Operator Example

The "Persons" table:

OR

Operator Example

Now we want to select only the persons with the first name equal to "Tove" OR the first

name equal to "Ola":

We use the following SELECT statement:

SELECT * FROM Persons

WHERE FirstName='Chris'

OR FirstName='Ali'

 P_Id LastName FirstName Address City

 1 Akinbode Ola 10, Odeku Str. Lagos

 2 Okafor Chris 23, Princewill Drive Porthacourt

 3 Amodu Ali 20, Dauda lane Kaduna

CIT 905 Advanced Database Management System

Page | 45

The result-set will look like this:

Combining AND & OR

You can also combine AND and OR (use parenthesis to form complex expressions).

Now we want to select only the persons with the last name equal to "Svendson" AND

the first name equal to "Tove" OR to "Ola":

We use the following SELECT statement:

SELECT * FROM Persons WHERE

LastName='Akinbode' OR

LastName=‘Okafor‘

The result-set will look like this:

P_Id LastName FirstName Address City

1 Akinbode Ola 10, Odeku Str. Lagos

2 Okafor Chris 23, Princewill Drive Porthacourt

THE ORDER BY Keyword

ORDER BY Syntax

The ORDER BY keyword is used to sort the result-set. The ORDER BY keyword is

used to sort the result-set by a specified column. The ORDER BY keyword sorts the

records in ascending order by default. If you want to sort the records in a descending

P_Id

LastName FirstName Address City

2 Okafor Chris 23, Princewill Drive Porthacourt

3 Amodu Ali 20, Dauda lane Kaduna

CIT 905 Advanced Database Management System

Page | 46

order, you can use the DESC keyword. The order by clause comes last in a select

statement.

Syntax of the order by clause given below;

SELECT expr

FROM table

[WHERE condition(s)]

[ORDER BY{column, expr} [ASC|DESC]

ORDER BY EXAMPLE

Sorting in Descending order

SELECT last_name, job_id, department_id, hire_date

FROM employees

ORDER BY last

LAST_NAME JOB_ID DEPARTMENT_ID HIRE_DATE

Akinbode SA_REP 80 21-APR-19

Amodu SA_REP 20 21-APR-19

Buba SA_REP 80 24-MAR-19

Ngozi ST_CLERK 50 08-MAR-19

Okafor SA_REP 80 23-FEB-19

Sowale ST-CLERK 50 06-FEB-19

We also sort using multiple columns.

For example,

SELECT last_name, department_id, salary FROM

employees ORDER BY department_id, salary

DESC;

CIT 905 Advanced Database Management System

Page | 47

2.9 INSERT STATEMENT

INSERT INTO Syntax

The INSERT INTO statement is used to insert new records statement is used to insert

a new row in a table.

The syntax of the insert statement is;

INSERT IBTO table [{column, [,column…..])]

VALUES (value [, value….]);

In the syntax,

 table is the name of the table

 column is the name of the column

 value is the corresponding value for the column

INSERT STATEMENT EXAMPLE

INSERTING NEW ROWS

Example:

INSERT INTO departments (department_id, department_name,

manager_id, location_id) VALUES (170, ‗Public Relations‘,100,1700);

INSERTING ROWS WITH NULL VALUES

Implicit method example

INSERT INTO departments (department_id, department_name)

Values (30,‘Purchasing‘);

Explicit Method example

INSERT INTO departments

Values (100, ‗Finance‘, NULL, NULL);

INSERTING SPECIAL VALUES

Example:

INSERT INTO employees (employee_id, first_name, last_name, email, phone_number,

hire_date, job_id,salary, commission_pct, manager_id, department_id)

Values (7, ‗Adeola‘, ‗Chalse‘, ‗ade_char‘, ‗2348039990985‘, SYSDATE,

‗AC_ACCOUNT‘, 6900, NULL, 205, 100);

CIT 905 Advanced Database Management System

Page | 48

2.10 UPDATE STATEMENT

UPDATE STATEMENT Syntax

The UPDATE statement is used to update existing records in a table.

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies

which record or records that should be updated. If you omit the WHERE clause,

all records will be updated!

SQL UPDATE EXAMPLES

updating rows in a table

UPDATE employees

SET department_ID=70

WHERE employee_ID = 113;

SQL DELETE Statement

SQL DELETE SYNTAX

The DELETE statement is used to delete records and rows in a table

DELETE FROM table_name

WHERE some_column=some_value

SQL DELETE EXAMPLES

DELETE *

FROM employees;

DELETE FROM employees

Where department_id =60;

DELETE ALL ROWS

CIT 905 Advanced Database Management System

Page | 49

It is possible to delete all rows in a table without deleting the table. This means that the

table structure, attributes, and indexes will be intact:

DELETE FROM table_name

or

DELETE * FROM table_name

Note: Once records are deleted, they are gone. Undoing this statement is not possible!

2.11 Joining Tables

The Select statement can be used to join two tables together. It can be used to extract

part of Table A and part of Table B to form Table C. For example, assuming student

and studentclass are two different tables. Let us examine this instruction:-

Select student.SID, student.name,

studentclass.classname From student,

studentclass

Where student.SID = studentclass.SID

This statement shows that SID, name are columns or fields from student table and

classname and SID are also columns from studentclass table.

The fields in the new table to form by this instruction are:-

 SID name classname

2.12 ARITHMETIC OPERATIONS

Create expressions with number and date data by using arithmetic operators. You

may need to modify the way in which data is displayed, perform calculations, or

look at what-if scenarios. These are all possible using arithmetic expressions. An

arithmetic expression can contain column names, constant numeric values and

arithmetic operators.

CIT 905 Advanced Database Management System

Page | 50

Operator Description

+ Add

- Subtract

* Multiply

/ Divide

USING ARITHMETIC OPERATORS

Let us first extend Table persons to Table employees by adding salary column to it and

adding three more records. For subsequent illustrations in this unit, the table is also

assumed to have more than 5 columns.

The example below describes a scenario in which arithmetic operators can be used.

SELECT last_name, salary, salary+300

FROM employees;

This gives

LastName Salary Salary+300

Akinbode 4800 5100

Okafor 17000 17300

Amodu 12000 12300

Buba 9000 9300

Ngozi 7700 8000

Sowale 24000 24300

2.13 OPERATOR PRECEDENCE

If an arithmetic expression contains more than one operator, multiplication and division

are evaluated first. If operators within an expression are of the same priority, then

evaluation is done from left to right. Parenthesis can be used to force the expression

within parentheses to be evaluated first. Multiplication and division take priority over

addition and subtraction. Example of a query that shows how operator precedence

works is shown below;

CIT 905 Advanced Database Management System

Page | 51

SELECT last_name, salary, 12*salary+100

FROM employees

A query that uses brackets to override the operator precedence is shown below;

SELECT last_name, salary, 12*(salary+100)

FROM employees

DEFINING A NULL VALUE

A null is a value that is unavailable, unassigned, unknown, or inapplicable. If a row

lacks the data value for a particular column, that value is said to be null, or to contain a

null. Columns of any data type can contain nulls. However, some constraints, NOT

NULL and PRIMARY KEY, prevent nulls from being used in the column.

A query that shows the null values is shown below;

SELECT last_name, job_id, salary, commission_pct

LastName Salary 12*Salary+100

Akinbode 4800 57700

Okafor 17000 2014100

Amodu 12000 144100

Buba 9000 108100

Ngozi 7700 92500

Sowale 24000 288100

LastName Salary 12*(Salary+100)

Akinbode 4800 58800

Okafor 17000 205200

Amodu 12000 145200

Buba 9000 109200

Ngozi 7700 93600

Sowale 24000 289200

CIT 905 Advanced Database Management System

Page | 52

FROM employees;

 LAST_NAME JOB_ID SALARY COMMISSION_PCT

 Akinbode ST_MAN 4800

 Okafor ST_CLERK 17000

 Amodu ST_CLERK 12000

 Buba ST_CLERK 9000

 Ngozi ST_CLERK 7700

 Sowale ST_CLERK 24000

In the COMMISSION_PCT column in the EMPLOYEES table, notice that only a sales

manager (form the job_id column) can earn a commission.

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

Example:

SELECT last_name, 12*salary*commission_pct

FROM employees;

LAST_NAME 12*SALARY*COMMISSION_PCT

Akinbode

Okafor

Amodu

Buba

Ngozi

sowale

Processing Multiple Tables

1. Join–a relational operation that causes two or more tables with a common

domain to be combined into a single table or view.

CIT 905 Advanced Database Management System

Page | 53

2. Equi-join–a join in which the joining condition is based on equality between

values in the common columns; common columns appear redundantly in the

result table.

3. Natural join–an equi-join in which one of the duplicate columns is eliminated in

the result table.

4. Outer join–a join in which rows that do not have matching values in common

columns are nonetheless included in the result table (as opposed to inner join, in

which rows must have matching values in order to appear in the result table)

5. Union join–includes all columns from each table in the join, and an instance for

each row of each table

6. Self join–Matching rows of a table with other rows from the same table

 TIPS FOR DEVELOPING QUERIES

1. Be familiar with the data model (entities and relationships)

2. Understand the desired results

3. Know the attributes desired in result

4. Identify the entities that contain desired attributes

5. Review ERD

6. Construct a WHERE equality for each link

7. Fine tune with GROUP BY and HAVING clauses if needed

8. Consider the effect on unusual data

Query Efficiency Considerations

1. Instead of SELECT *, identify the specific attributes in the SELECT clause; this

helps reduce network traffic of result set

2. Limit the number of subqueries; try to make everything done in a single query if

possible

3. If data is to be used many times, make a separate query and store it as a view

Guidelines for Better Query Design

CIT 905 Advanced Database Management System

Page | 54

1. Understand how indexes are used in query processing

2. Keep optimizer statistics up-to-date

3. Use compatible data types for fields and literals

4. Write simple queries

5. Break complex queries into multiple simple parts

6. Don‘t nest one query inside another query

7. Don‘t combine a query with itself (if possible avoid self-joins)

8. Create temporary tables for groups of queries

9. Combine update operations

10. Retrieve only the data you need

11. Don‘t have the DBMS sort without an index

12. Learn!

13. Consider the total query processing time for ad hoc queries

DATA DICTIONARY FACILITIES

1. System tables that store metadata

2. Users usually can view some of these tables

3. Users are restricted from updating them

4. Some examples in Oracle 11g

CIT 905 Advanced Database Management System

Page | 55

TRIGGERS AND ROUTINES

1. Triggers–routines that execute in response to a database event (INSERT,

UPDATE, or DELETE)

2. Routines

1. Program modules that execute on demand

3. Functions–routines that return values and take input parameters

4. Procedures–routines that do not return values and can take input or output

parameters

Triggers contrasted with stored procedures

Trigger syntax in SQL

2.14 Some of the most important SQL Commands

1. SELECT - extracts data from a database

2. UPDATE - updates data in a database

CIT 905 Advanced Database Management System

Page | 56

3. DELETE - deletes data from a database

4. INSERT INTO - inserts new data into a database

5. CREATE DATABASE - creates a new database

6. ALTER DATABASE - modifies a database

7. CREATE TABLE - creates a new table

8. ALTER TABLE - modifies a table

9. DROP TABLE - deletes a table

10. CREATE INDEX - creates an index (search key)

11. DROP INDEX - deletes an index

EMBEDDED AND DYNAMIC SQL

1. Embedded SQL

1. Including hard-coded SQL statements in a program written in another

language such as C or Java

2. Dynamic SQL

1. Ability for an application program to generate SQL code on the fly, as the

application is running

REASONS TO EMBED SQL IN 3GL

1. Can create a more flexible, accessible interface for the user

2. Possible performance improvement

3. Database security improvement; grant access only to the application instead of

users

2.15 Conclusion

When we wish to extract information from a database, we communicate with the

Database Management System (DBMS) using a query language called SQL. SQL is the

most frequently used programming language in the world, in the sense that every day,

more SQL programs are written, compiled and executed than programs in any other

computer programming language. SQL is used with relational database systems. In a

CIT 905 Advanced Database Management System

Page | 57

relational database, all of the data is stored in tables. SQL has many built-in functions

for performing calculations on data.

2.16 Tutor Marked Assignment

 1. Describe the six clauses in the syntax of an SQL query, and show what type

of constructs can be specified in each of the six clauses. Which of the six

clauses are required and which are optional

 2. What is a view in SQL, and how is it defined?

2.17 References and Further Reading:
David M. Kroenke, David J. Auer (2008). Database Concepts. New Jersey . Prentice Hall

Elmasri Navathe (2003). Fundamentals of Database Systems. England. Addison Wesley.

Fred R. McFadden, Jeffrey A. Hoffer (1994). Modern Database management. England.

Addison Wesley Longman

Graeme C. Simsion, Graham C. Witt (2004). Data Modeling Essentials. San Francisco. Morgan

Kaufmann

Pratt Adamski, Philip J. Pratt (2007). Concepts of Database Management. United States.

Course Technology.

CIT 905 Advanced Database Management System

Page | 58

MODULE 1: DATABASE DESIGN AND IMPLEMENTATION

UNIT 3: DATABASE SYSTEM CATALOG

3.0 INTRODUCTION:

A relational database system needs to maintain data about the relations, such as the

schema of the relations. In general, such ―data about data‖ is referred to as metadata.

Relational schemas and other metadata about relations are stored in a structure called

the data dictionary or system catalog. The system catalogue is a collection of tables and

views that contain important information about a database. It is the place where a

relational database management system stores schema metadata, such as information

about tables and columns, and internal bookkeeping information.

4.1 Objectives:

After going through this unit, you should be able to:

1. define the system catalogue and its content;

2. describe the use of catalogue in a commercial DBMS;

3. define the data dictionary system and its advantages and disadvantages, and

4. define the role of catalogue in system administration

3.2 What is a database system catalog?

As explained earlier, one of the responsibilities of DBMS is to provide a system

catalog or data dictionary function regarding the various objects that are of interest to

the system itself. The database system catalog is a collection of tables and views that

contain important information about a database. It is the place where a relational

database management system stores schema metadata, such as information about tables

and columns, and internal bookkeeping information. A system catalogue is available for

each database. Information in the system catalog defines the structure of the database.

For example, the DDL for all tables in the database is stored in the system catalog. Most

system catalogues are copied from the template database during database creation, and

CIT 905 Advanced Database Management System

Page | 59

are thereafter database-specific. A few catalogues are physically shared across all

databases in an installation; these are marked in the descriptions of the individual

catalogues.

Among the types of information that the system must store are the following:

1. Names of the relations.

2. Names of the attributes of each relation.

3. Domains and lengths of attributes.

4. Names of views defined on the database, and definitions of those views.

5. Integrity constraints (for example, key constraints).

In addition, many systems keep the following data on users of the system:

1. Names of authorized users.

2. Authorization and accounting information about users.

3. Passwords or other information used to authenticate users.

Moreso, the database may store statistical and descriptive data about the relations, such

as:

• Number of tuples in each relation.

• Method of storage for each relation (for example, clustered or non-clustered).

The data dictionary may also note the storage organization (sequential, hash, or heap) of

relations, and the location where each relation is stored:

1. If relations are stored in operating system files, the dictionary would note the names

of the file (or files) containing each relation.

2. If the database stores all relations in a single file, the dictionary may note the blocks

containing records of each relation in a data structure such as a linked list.

3. Name of the index.

4. Name of the relation being indexed.

5. Attributes on which the index is defined.

6. Type of index formed

CIT 905 Advanced Database Management System

Page | 60

The exact choice of how to represent system metadata by relations must be made by the

system designers. One possible representation, with primary keys underlined, is shown

in In this representation, the attribute index attributes of the relation Index metadata is

assumed to contain a list of one or more attributes, which can be represented by a

character string such as ―dept name, building‖. The Index metadata relation is thus not

in first normal form; it can be normalized, but the above representation is likely to be

more efficient to access. The data dictionary is often stored in a non-normalized form to

achieve fast access.

Whenever the database system needs to retrieve records from a relation, it must

first consult the Relation metadata relation to find the location and storage organization

of the relation, and then fetch records using this information. However, the storage

organization and location of the Relation metadata relation itself

Figure 3.2: Relational schema representing system metadata

Data dictionaries also include data on the secondary keys, indexes and views. The above

could also be extended to the secondary key, index as well as view information by

defining the secondary key, indexes and views. Data dictionaries do not contain any

actual data from the database, it contains only book-keeping information for managing

it. Without a data dictionary, however, a database management system cannot access

data from the database.

CIT 905 Advanced Database Management System

Page | 61

The Database Library is built on a Data Dictionary, which provides a complete

description of record layouts and indexes of the database, for validation and efficient

data access. The data dictionary can be used for automated database creation, including

building tables, indexes, and referential constraints, and granting access rights to

individual users and groups. The database dictionary supports the concept of Attached

Objects, which allow database records to include compressed BLOBs (Binary Large

Objects) containing images, texts, sounds, video, documents, spreadsheets, or

programmer-defined data types.

3.3 Functions of Data Dictionary:

The data dictionary stores useful metadata, such as field descriptions, in a format that is

independent of the underlying database system.

1. Ensuring efficient data access, especially with regard to the utilization of indexes,

2. Partitioning the database into both logical and physical regions,

3. Specifying validation criteria and referential constraints to be automatically

enforced,

4. Supplying pre-defined record types for Rich Client features, such as security and

administration facilities, attached objects, and distributed processing (i.e., grid and

cluster supercomputing).

3.3.1 Features of system Catalog

A comprehensive data dictionary product will include possess the following features:

5. support for standard entity types (elements, records, files, reports, programs,

systems, screens, users, terminals, etc.), and their various characteristics (e.g., for

elements, the dictionary might maintain Business name, Business definition, name,

Data type, Size, Format, Range(s), Validation criteria, etc.)

6. support for user-designed entity types (this is often called the ―extensibility‖

feature); this facility is often exploited in support of data modelling, to record and

cross-reference entities, relationships, data flows, data stores, processes, etc.

7. the ability to distinguish between versions of entities (e.g., test and production)

CIT 905 Advanced Database Management System

Page | 62

8. enforcement of in-house standards and conventions.

9. comprehensive reporting facilities, some of the reports include:

1. detail reports of entities

2. summary reports of entities

3. component reports (e.g., record-element structures)

4. cross-reference reports (e.g., element keyword indexes)

5. where-used reports (e.g., element-record-program cross-references).

10. a query facility, both for administrators and casual users, which includes the

ability to perform generic searches on business definitions, user descriptions,

synonyms, etc.

11. language interfaces, to allow, for example, standard record layouts to be

12. automatically incorporated into programs during the compile process.

13. automated input facilities (e.g., to load record descriptions from a copy library).

14. security features

15. adequate performance tuning abilities

16. support for DBMS administration, such as automatic generation of DDL

Limitations of System Catalog

1. A system catalog is a useful management tool, but it also pose several

challenges. It needs careful planning. We would need to define the exact

requirements designing its contents, testing, implementation and evaluation.

2. The cost of a system catalog includes not only the initial price of its installation

and any hardware requirements, but also the cost of collecting the information

entering it into the DDS, keeping it up-to date and enforcing standards.

3. The use of a system catalog requires management commitment, which is not easy

to achieve, particularly where the benefits are intangible and long term.

System Catalog in ORACLE

CIT 905 Advanced Database Management System

Page | 63

Meta data - data dictionary: Information about schema objects: tables, indexes, views,

triggers,

Meta data are divided into three levels:

- information for objects owned by a user

- information for objects owned by a user as well as the objects that the user has

been granted access to

- information about all database objects

Meta data are divided into three levels - three kinds of views:

- view name prefixed with USER

- view name prefixed with ALL

- view name prefixed with DBA

3.3.1 Views with the Prefix USER

The views most likely to be of interest to typical database users are those with the prefix

USER. These views are as follows:

• refer to the user‘s own private environment in the database, including information

about schema objects created by the user, grants made by the user, and so on,

• display only rows pertinent to the user,

• have columns identical to the other views, except that the column OWNER is

implied,

• return a subset of the information in the ALL views,

• can have abbreviated PUBLIC synonyms for the sake of convenience.

For example, the following query returns all the objects contained in a schema:

SELECT object_name, object_type FROM USER_OBJECTS;

3.3.2 Views with the Prefix ALL

Views with the prefix ALL refer to the user‘s overall perspective of the database. These

views return information about schema objects to which the user has access through

public or explicit grants of privileges and roles, in addition to schema objects that the user

CIT 905 Advanced Database Management System

Page | 64

owns. For example, the following query returns information on all the objects to which the

user has access:

SELECT owner, object_name, object_type FROM ALL_OBJECTS;

Views with the Prefix DBA

Views with the prefix DBA show a global view of the entire database. Synonyms are not

created for these views, because DBA views should be queried only by administrators.

Therefore, to query DBA views, administrators must prefix the view name with its

owner, SYS, as in the following:

SELECT owner, object_name, object_type

3.3.2.3 Role of System Catalog in Database Administration

Database administration is a specialized database activity that is performed by a

database administrator. The system catalogue has an important role to play in the

database administration. Some of the key areas where the system catalogue helps the

database administrator are defined below:

1. Enforcement of Database Integrity: System catalogue is used to store information

on keys, constraints, referential integrity, business rules, triggering events etc. on

various tables and related objects. Thus, integrity enforcement would necessarily

require the use of a data dictionary.

2. Enforcement of Security: The data dictionary also stores information on various

users of the database systems and their access rights. Thus, enforcement of any

security policy has to be processed through the data dictionary.

3. Support for Database System Performance: The data dictionary contains

information on the indexes, statistics etc. Such information is very useful for query

optimization. Also such information can be used by the database administrator to

suggest changes in the internal schema.

4. Data dictionary can also support the process of database application development

and testing as they contain the basic documentation while the systems are in the

process of being developed.

CIT 905 Advanced Database Management System

Page | 65

3.4. Conclusion

The catalogue should normally be self‐describing i.e. it should include entries

describing the catalogue relvars themselves. System catalog plays a significant role in

database activities and in database administration by enforcing integrity, enhancing

security and supports database system performance.

3.5 Summary:

This unit provides a detailed view of a data dictionary in a DBMS. The data

dictionary is one of the most important implementation tools in a database system. The

system catalogue provides all the information on various entities, attributes, database

statistics etc. It is a very useful tool if implemented actively in a database system.

However, active implementation of a data dictionary is costly.

In this unit we have discussed concepts related to data dictionary and its use in

oracle by the different types of users. We have also presented information on the data

dictionary system and its advantages and disadvantages. We have provided a brief

introduction to system catalogue in distributed systems and how data dictionary is

useful in system administration.

3.6. Tutor‐Marked Assignment (TMA)

1. What is a database catalogue system?

2. Describe the contents of a system Catlog

 3. Mention the various benefits of system catalog in the administration of database

 4. Discuss in detail, the features of the system catalog

 5. List the disadvantages of a data dictionary

3.7 References and Further Readings

CIT 905 Advanced Database Management System

Page | 66

Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Database systems: concepts,

languages & architectures (Vol. 1). London: McGraw-Hill.

Lorents, A. C., & Morgan, J. N. (1997). Database Systems: Concepts, Management and

Applications. Harcourt Brace College Publishers.

Cho, H. (1997, August). Catalog management in heterogeneous distributed database

systems. In 1997 IEEE Pacific Rim Conference on Communications, Computers

and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-

1997 (Vol. 2, pp. 659-662). IEEE.

Kim, D., Lee, S. G., Chun, J., Park, S., Oh, J., Shillimdong, K., & San, Y. N. (2003).

Catalog management in e-Commerce systems. Proceeding of Comp. Sci. &

Technology.

CIT 905 Advanced Database Management System

Page | 67

MODULE 2: DBMS ADVANCE FEATURES

UNIT 1: QUERY PROCESSING & EVALUATION

2.1.0 Introduction:

The main purpose of storing data in a database is to be able to query it. A query q

is just a mapping which takes a database instance D and maps it to a relation q(D) of

fixed arity. Query processing refers to the range of activities involved in extracting data

from a database. The activities include translation of queries in high-level database

languages into expressions that can be used at the physical level of the file system, a

variety of query-optimizing transformations, and actual evaluation of queries.

2.1.2 Objectives

At the end of this unit, students should be able to:

1. understand the basic concepts underlying the steps in query processing and

optimization

2. estimate costs involved in query processing

3. apply query optimization techniques;

2.1.3 Query Processing

There are large numbers of possible strategies for processing a query, especially

if the query is complex. However, it is usually worthwhile for the system to spend a

substantial amount of time on the selection of a strategy. Typically, strategy selection

can be done using information available in main memory, with little or no disk accesses.

The actual execution of the query will involve many accesses to disk. Since the transfer

of data from disk is slow relative to the speed of main memory and the central processor

of the computer system, it is advantageous to spend a considerable amount of

processing to save disk accesses.

CIT 905 Advanced Database Management System

Page | 68

2.1.3.1 Basic steps in Query Processing

Query Processing is the step by step process of breaking the high level language into

low level language which machine can understand and perform the requested action for

user. Query processor in the DBMS performs this task of query processing. The steps

involved in processing are as follows:

1. Parsing and translation.

2. Optimization.

3. Evaluation

4. Execution

Before query processing can begin, the system must translate the query into a usable

form. A language such as SQL is suitable for human use, but is ill suited to be the

system‘s internal representation of a query. A more useful internal representation is one

based on the extended relational algebra. Thus, the first action the system must take in

query processing is to translate a given query into its internal form. This translation

process is similar to the work performed by the parser of a compiler. In generating the

internal form of the query, the parser checks the syntax of the user‘s query, verifies that

the relation names appearing in the query are names of the relations in the database, and

so on. The system constructs a parse-tree representation of the query, which it then

translates into a relational-algebra expression. If the query was expressed in terms of a

view, the translation phase also replaces all uses of the view by the relational-algebra

expression that defines the view. The basic steps is described in figure 2.1.1

Given a query, there are generally a variety of methods for computing the answer. For

example, we have seen that, in SQL, a query could be expressed in several different

ways. Each SQL query can itself be translated into a relational algebra expression in one

of several ways. More so, the relational-algebra representation of a query specifies only

partially how to evaluate a query; there are usually several ways to evaluate relational-

algebra expressions.

CIT 905 Advanced Database Management System

Page | 69

A relation algebra operation annotated with instructions on how to evaluate it is called

an evaluation primitive. A sequence of primitive operations that can be used to

evaluate a query is a query-execution plan or query-evaluation plan. The query-

execution engine takes a query-evaluation plan, executes that plan, and returns the

answers to the query.

Figure 2.1.1: Stages of query processing

The different evaluation plans for a given query can have different costs. We do not

expect users to write their queries in a way that suggests the most efficient evaluation

plan. Rather, it is the responsibility of the system to construct a query evaluation plan

that minimizes the cost of query evaluation; this task is called query optimization. Once

the query plan is chosen, the query is evaluated with that plan, and the result of the

query is output. The summary of the main steps are as follows:

1. Parsing and Translating
Any query issued to the database is first picked by query processor. It scans and

parses the query into individual tokens and examines for the correctness of query. It

checks for the validity of tables / views used and the syntax of the query. Once it is

passed, then it converts each tokens into relational expressions, trees and graphs.

These are easily processed by the other parsers in the DBMS.

CIT 905 Advanced Database Management System

Page | 70

2. Evaluation – The query execution engine takes a physical query plan (aka

execution plan), executes the plan, and returns the result.

Query evaluation is performed in the order as follows:

1. The tables in the from clause are combined using Cartesian products.

2. The where predicate is then applied.

3. The resulting tuples are grouped according to the group by clause.

4. The having predicate is applied to each group, possibly eliminating some

groups.

5. The aggregates are applied to each remaining group. The select clause is

performed last.

6. Optimization: Find the ―cheapest‖ execution plan for a query

2.1.4.0 Catalog Information for Cost Estimation

Information about relations and attributes:

1. NR: number of tuples in the relation R.

2. BR: number of blocks that contain tuples of the relation R.

3. SR: size of a tuple of R.

4. FR: blocking factor; number of tuples from R that fit into one block (FR =

[NR/BR])

5. V(A, R): number of distinct values for attribute A in R.

6. SC(A, R): selectivity of attribute A

≡ average number of tuples of R that satisfy an equality condition on A.

SC(A, R) = NR/V(A,R).

Information about indexes:

1. HTI: number of levels in index I (B
+
-tree).

2. LBI: number of blocks occupied by leaf nodes in index I (first-level blocks).

3. ValI: number of distinct values for the search key

CIT 905 Advanced Database Management System

Page | 71

2.1.5.0 Measures of Query Cost

There are multiple possible evaluation plans for a query, and it is important to be able to

compare the alternatives in terms of their estimated cost, and choose the best plan. To

do so, we must estimate the cost of individual operations, and combine them to get the

cost of a query evaluation plan. Disk accesses time, CPU time, or even communication

overhead in a distributed or parallel system are some commonly used measures.

Typically disk access is the predominant cost, and is also relatively easy to estimate.

Therefore number of block transfers from disk is used as a measure of the actual cost of

evaluation. It is assumed that all transfers of blocks have the same cost.

In large database systems, the cost to access data from disk is usually the most important

cost, since disk accesses are slow compared to in-memory operations. Moreover, CPU

speeds have been improving much faster than have disk speeds. Thus, it is likely that the

time spent in disk activity will continue to dominate the total time to execute a query.

The CPU time taken for a task is harder to estimate since it depends on low-level details

of the execution code. Although real-life query optimizers do take CPU costs into

account, for simplicity in this book we ignore CPU costs and use only disk-access costs

to measure the cost of a query-evaluation plan.

We use the number of block transfers from disk and the number of disk seeks to estimate

the cost of a query-evaluation plan. If the disk subsystem takes an average of tT seconds

to transfer a block of data, and has an average block-access time (disk seek time plus

rotational latency) of tS seconds, then an operation that transfers b blocks and performs

S seeks would take b ∗ tT + S ∗ tS seconds. The values of tT and tS must be calibrated for

the disk system used, but typical values for high-end disks today would be tS = 4

milliseconds and tT = 0.1 milliseconds, assuming a 4-kilobyte block size and a transfer

rate of 40 megabytes per second.

We can refine our cost estimates further by distinguishing block reads from block

writes, since block writes are typically about twice as expensive as reads (this is because

disk systems read sectors back after they are written to verify that the write was

CIT 905 Advanced Database Management System

Page | 72

successful). For simplicity, we ignore this detail, and leave it to you to work out more

precise cost estimates for various operations. The cost estimates we give do not include

the cost of writing the final result of an operation back to disk. These are taken into

account separately where required.

The costs of all the algorithms that we consider depend on the size of the buffer in main

memory. In the best case, all data can be read into the buffers, and the disk does not

need to be accessed again. In the worst case, we assume that the buffer can hold only a

few blocks of data—approximately one block per relation. When presenting cost

estimates, we generally assume the worst case. In addition, although we assume that

data must be read from disk initially, it is possible that a block that is accessed is already

present in the in-memory buffer. Again, for simplicity, we ignore this effect; as a result,

the actual disk-access cost during the execution of a plan may be less than the estimated

cost. The response time for a query-evaluation plan (that is, the wall-clock time required

to execute the plan), assuming no other activity is going on in the computer, would

account for all these costs, and could be used as a measure of the cost of the plan.

Unfortunately, the response time of a plan is very hard to estimate without actually

executing the plan, for the following reasons:

1. The response time depends on the contents of the buffer when the query begins

execution; this information is not available when the query is optimized, and is

hard to account for even if it were available.

2. In a system with multiple disks, the response time depends on how accesses are

distributed among disks, which is hard to estimate without detailed knowledge of

data layout on disk.

Interestingly, a plan may get a better response time at the cost of extra resource

consumption. For example, if a system has multiple disks, a plan A that requires extra

disk reads, but performs the reads in parallel across multiple disks may finish faster than

another plan B that has fewer disk reads, but from only one disk. However, if many

instances of a query using plan A run concurrently, the overall response time may

CIT 905 Advanced Database Management System

Page | 73

actually be more than if the same instances are executed using plan B, since plan A

generates more load on the disks. As a result, instead of trying to minimize the response

time, optimizers generally try to minimize the total resource consumption of a query

plan.

2.1.5.1 Selection Operation

In query processing, the file scan is the lowest-level operator to access data. File

scans are search algorithms that locate and retrieve records that fulfill a selection

condition. In relational systems, a file scan allows an entire relation to be read in those

cases where the relation is stored in a single, dedicated file.

Linear search

Scan each file block and test all records to see whether they satisfy the selection

condition.

– Cost estimate (number of disk blocks scanned) EA1 = br

– If selection is on a key attribute, EA1 = (br/ 2) (stop on finding record)

 – Linear search can be applied regardless of

∗ selection condition, or

∗ ordering of records in the file, or

∗ availability of indices

– Expensive, but always applicable.

A2 (binary search). The file ordered based on attribute A (primary index). Applicable

if selection is an equality comparison on the attribute on which file is ordered.

– Assume that the blocks of a relation are stored contiguously

– Cost estimate (number of disk blocks to be scanned):

 EA2 = [log2(br)] + [SC(A,r)/fr] − 1

* [log2(br)] — cost of locating the first tuple by a binary search on the blocks

* SC(A, r) — number of records that will satisfy the selection

∗ [SC(A, r)/fr] — number of blocks that these records will occupy

— Equality condition on a key attribute: SC(A,r) = 1; estimate reduces to EA2 =

[log2(br)]

 - Binary search - Applicable only when the file is appropriately ordered.

CIT 905 Advanced Database Management System

Page | 74

1. Hash index search

2. Single record retrieval; does not work for range queries. „ Retrieval of multiple

records.

3. Clustering index search - multiple records for each index item.

4. Implemented with single pointer to block with first associated record.

5. Secondary index search - Implemented with dense pointers, each to a single record

6. Index structures are referred to as access paths, since they provide a path through

which data can be located and accessed.

7. A primary index is an index that allows the records of a file to be read in an order

that corresponds to the physical order in the file.

8. An index that is not a primary index is called a secondary index.

9. Search algorithms that use an index are referred to as index scans.

Example (for Employee DB)

 – FEmployee = 10;

 V(Deptno, Employee) = 50 (different departments)

 – NEmployee = 10, 000 (Relation Employee has 10,000 tuples)

 – Assume selection σDeptno=20(Employee) and Employee is sorted on search key

Deptno :

 =⇒ 10,000/50 = 200 tuples in Employee belong to Deptno 20; (assuming an equal

distribution)

 200/10 = 20 blocks for these tuples

=⇒ A binary search finding the first block would require log2(1, 000)] = 10 block

accesses

 Total cost of binary search is 10+20 block accesses (versus 1,000 for linear search

and Employee not sorted by Deptno)

2.1.5.2 Index scan – search algorithms that use an index (here, a B
+
-tree);

selection condition is on search key of index

• S3 – Primary index I for A, A primary key, equality A = a

 cost(S3) = HTI + 1 (only 1 tuple satisfies condition)

CIT 905 Advanced Database Management System

Page | 75

• S4 – Primary index I on non-key A equality A = a

 cost(S4) = HTI + [SC(A, R)/ FR]

 S5 – Non-primary (non-clustered) index on non-key A, equality A = a

 Cost (S5) = HTI + SC(A, R)

 Worst case: each matching record resides in a different block.

• Example (Cont.):

– Assume primary (B
+
-tree) index for attribute Deptno

– 200/10=20 blocks accesses are required to read Employee tuples

– If B
+
-tree index stores 20 pointers per (inner) node, then the B

+
-tree index must

have between 3 and 5 leaf nodes and the entire tree has a depth of 2

=⇒ a total of 22 blocks must be read.

Selections Involving Comparisons
• Selections of the form σA≤v(R) or σA≥v(R) are implemented using a file scan or

binary search, or by using either a

 – S6 – A primary index on A, or

 – S7 – A secondary index on A (in this case, typically a linear file scan may be

cheaper; but this depends on the selectivity of A)

Complex Selections

• General pattern:

– Conjunction – σΘ1∧...∧Θn (R)

– Disjunction – σΘ1∨...∨Θn (R)

– Negation – σ¬Θ(R)

• The selectivity of a condition Θi is the probability that a tuple in the relation R satisfies

Θi . If si is the number of tuples in R that satisfy Θi , then Θi‘s selectivity is

estimated as si/NR.

CIT 905 Advanced Database Management System

Page | 76

2.1.5.4 Join Operation
 The database join operation is used to combine tuples from two different relations

based on some common information. For example, a course-offering relation could

contain information concerning all classes offered at a university and a student-

registration relation could contain information for which courses a student has

registered. A join would typically be used to produce a student schedule, which includes

data about required textbooks, time, and location of courses, as well as general student

identification information. It is used to combine tuples from two or more relations.

Tuples are combined when they satisfy a specified join condition.

1. Choice of a particular algorithm is based on cost estimate

2. For this, join size estimates are required and in particular cost estimates for outer-

level operations in a relational algebra expression.

• Example: Assume the query CUSTOMERS ⨝ORDERS (with join attribute only

being CName)

– NCUSTOMERS = 5,000 tuples

– FCUSTOMERS = 20, that is., BCUSTOMERS = 5,000/20 = 250 blocks

– NORDERS = 10,000 tuples

 – FORDERS = 25, i.e., BORDERS = 400 blocks

– V(CName, ORDERS) = 2,500, meaning that in this relation, on average, each

customer has four orders

– Also assume that CName in ORDERS is a foreign key on CUSTOMERS

Join Algorithms

1. Nested loop join

2. Index-based join

3. Sort-merge join

4. Hash join

5. Nested-Loop Join: (nested-loop-join)

6. This algorithm is called the nested-loop join algorithm, since it basically

consists of a pair of nested for loops. Relation r is called the outer relation and

relation s the inner relation of the join, since the loop for r encloses the loop for

s. The algorithm uses the notation tr·ts, where tr and ts are tuples; tr·ts denotes

the tuple constructed by concatenating the attribute values of tuples tr and ts .

CIT 905 Advanced Database Management System

Page | 77

 For each r in R do

 For each s in S do

 if r.C = s.C then output r,s pair

 end

 end

• The simplest algorithm. It works, but may not be efficient.

1. Exhaustive comparison (i.e., brute force approach)

2. The ordering (outer/inner) of files and allocation of buffer space is important.

3.

4. Index Join:
 For each r in R do

 X <- index-lookup (S.C, r.C)

 For each s in X do

 output (r,s)

 Look up index to find matching tuples from S.

5. If an index is available on the inner loop‘s join attribute and join is an equi-join or

natural join, more efficient index lookups can replace file scans.

6. It is even possible (reasonable) to construct index just to compute a join.

7. For each tuple tR in the outer relation R, use the index to lookup tuples in S that

satisfy join condition with tR

8. Worst case: db buffer has space for only one page of R and one page of the index

associated with S:

 BR disk accesses to read R, and for each tuple in R, perform index lookup on S.

– Cost of the join: BR + NR ∗ c, where c is the cost of a single selection on S using

the join condition.

9. If indexes are available on both R and S, use the one with the fewer tuples as the

outer relation.

Example:

– Compute CUSTOMERS ⨝ ORDERS, with CUSTOMERS as the outer relation.

– Let ORDERS have a primary B
+
-tree index on the join attribute CName, which

contains 20 entries per index node

CIT 905 Advanced Database Management System

Page | 78

– Since ORDERS has 10,000 tuples, the height of the tree is 4, and one more access

is needed to find the actual data records (based on tuple identifier).

– Since NCUSTOMERS is 5,000, the total cost is 250 + 5000 ∗ 5 = 25,250 disk accesses.

– This cost is lower than the 100,250 accesses needed for a block nested-loop join.

10. Sort-Merge Join: If tables have been sorted by the join attribute, we need to scan

each table only once.

– Maintain one cursor per table and move the cursor forward. • Sort tables and join

them.

11. first sort both relations on join attribute (if not already sorted this way)

12. Join steps are similar to the merge stage in the external sort-merge algorithm

13. Every pair with same value on join attribute must be matched

Figure 2.1.2: Query join Operation

1. If no repeated join attribute values, each tuple needs to be read only once. As a

result, each block is read only once. Thus, the number of block accesses is BR+

BS (plus the cost of sorting, if relations are unsorted).

2. Worst case: all join attribute values are the same. Then the number of block

accesses is BR + BR ∗ BS.

3. If one relation is sorted and the other has a secondary B
+
-tree index on the join

attribute, a hybrid merge-join is possible. The sorted relation is merged with the

leaf node entries of the B+-tree. The result is sorted on the addresses (rids) of the

CIT 905 Advanced Database Management System

Page | 79

unsorted relation‘s tuples, and then the addresses can be replaced by the actual

tuples efficiently

Hash Join:
– only applicable in case of equi-join or natural join

– a hash function is used to partition tuples of both relations into sets that have the

same hash value on the join attribute

Partitioning Phase: 2 ∗ (BR + BS) block accesses Matching Phase: BR + BS block

accesses (under the assumption that one partition of each relation fits into the database

buffer)

Cost Estimates for other Operations

 Sorting:

1. If whole relation fits into db buffer ➔ quick-sort

2. Or, build index on the relation, and use index to read relation in sorted order.

3. Relation that does not fit into db buffer ➔ external sort-merge

1. Phase: Create runs by sorting portions of the relation in db buffer

2. Phase: Read runs from disk and merge runs in sort order

Duplicate Elimination:

• Sorting: remove all but one copy of tuples having identical value(s) on projection

attribute(s)

• Hashing: partition relation using hash function on projection attribute(s); then read

partitions into buffer and create in-memory hash index; tuple is only

inserted into index if not already present Set Operations:

• Sorting or hashing

• Hashing: Partition both relations using the same hash function; use in-memory index

for partitions Ri

R ∪ S: if tuple in Ri or in Si, add tuple to result ∩: if tuple in Ri and in Si, . . .

−: if tuple in Ri and not in Si, . . .

CIT 905 Advanced Database Management System

Page | 80

Grouping and aggregation:

• Compute groups via sorting or hashing.

• Hashing: while groups (partitions) are built, compute partial aggregate values (for

group attribute A, V(A,R) tuples to store values)

Evaluation of Expressions

Now let us try to understand how DBMS evaluates the query written in SQL. i.e.; how it

breaks them into pieces to get the records quickly.

• Strategy 1: materialization. Evaluate one operation at a time, starting at the lowest

level. Use intermediate results materialized in temporary relations to evaluate

next level operation(s).

Figure 2.1.3: Illustration of materialization

1. First compute and store σPrice>5000(OFFERS); then compute and store join of

CUSTOMERS and ORDERS; finally, join the two materialized relations and

project on to CName

2. Strategy 2: Pipelining.

In this method, DBMS do not store the records into temporary tables. Instead, it

queries each query and result of which will be passed to next query to process

and so on. It will process the query one after the other and each will use the result

of previous query for its processing. That is, DBMS evaluate several operations

simultaneously, and pass the result (tuple- or block-wise) on to the next

operation.

CIT 905 Advanced Database Management System

Page | 81

In the example above, once a tuple from OFFERS satisfying selection condition

has been found, pass it on to the join. Similarly, do not store result of (final) join,

but pass tuples directly to projection. • Much cheaper than materialization,

because temporary relations are not generated and stored on disk.

1. Pipelining is not always possible, e.g., for all operations that include sorting

(blocking operation).

2. Pipelining can be executed in two ways, demand driven and producer driven

fashion

3. demand driven (lazy evaluation)

In this method, the result of lower level queries are not passed to the higher

level automatically. It will be passed to higher level only when it is requested by

the higher level. In this method, it retains the result value and state with it and it

will be transferred to the next level only when it is requested.

1. Producer driven fashion.

In this method, the lower level queries eagerly pass the results to higher level

queries. It does not wait for the higher level queries to request for the results. In

this method, lower level query creates a buffer to store the results and the higher

level queries pulls the results for its use. If the buffer is full, then the lower level

query waits for the higher level query to empty it. Hence it is also called as

PULL and PUSH pipelining.

There are still more methods of pipelining like Linear and non-linear methods of

pipelining, left deep tree, right deep tree etc.

Transformation of Relational Expressions

Generating a query-evaluation plan for an expression of the relational algebra involves

two steps:

1. Generate logically equivalent expressions

2. Annotate these evaluation plans by specific algorithms and access structures to get

alternative query plans

CIT 905 Advanced Database Management System

Page | 82

1. Use equivalence rules to transform a relational algebra expression into an

equivalent one.

2. Based on estimated cost, the most cost-effective annotated plan is selected for

evaluation. The process is called cost-based query optimizatio

Transformation of Relational Expressions

When a SQL query is submitted to DB, it can be evaluated in number of ways. For

example, consider the below case:

SELECT EMP_ID, DEPT_NAME

FROM EMP, DEPT

WHERE EMP.DEPT_ID = DEPT.DEPT_ID

AND EMP.DEPT_ID = 10;

Above query selects the EMP_ID and DEPT_NAME from EMP and DEPT table for

DEPT_ID = 10. But when it is given to the DBMS, it divides the query into tokens and

sees how it can be put together so that performance will be better. This is the duty of

query optimizer. But altering the order of tokens in the query should not change the

result. In either way it should give same result. Order of records can change and are

least important. This is called equivalent query. There is set of rules to put tokens in the

query. This is called equivalence rule

1. Select the records of EMP with DEPT_ID = 10 first then join them with DEPT table

to get all matching records of EMP and DEPT. Then select only the columns

EMP_ID and DEPT_NAME to display the result.

2. Select all matching records from EMP and DEPT, from which filter on DEPT_ID =

10 and select only EMP_ID and DEPT_NAME to display.

Both the steps above are same irrespective of how it is performed. Hence both are called

equivalent query. These are not written in SQL, but using relational algebra, graph or

tree.

∏ EMP_ID, DEPT_NAME (σ DEPT_ID = 10 (EMP ∞DEPT))

or

σ DEPT_ID = 10 (∏ EMP_ID, DEPT_NAME, DEPT_ID (EMP ∞DEPT))

CIT 905 Advanced Database Management System

Page | 83

Figure 2.1.4: Example of relational Algebra tree

Above relational algebra and tree shows how DBMS depicts the query inside it. But the

cost of both of them may vary. This is because the number of records in each step

changes depending on the join and filters we use, and the algorithms used to evaluate

them. For example we may have huge number of records in second case tree above to

filter. But in the first case we are filtering the record first; hence number of records to

join would have been reduced. This makes lots of difference and query optimizer

calculates this difference and selects the optimal tree for query evaluation.

Equivalence Rules (for expressions E, E1, E2, conditions Fi)

Applying distribution and commutativity of relational algebra operations

CIT 905 Advanced Database Management System

Page | 84

Examples:

• Selection:

– Find the name of all customers who have ordered a product for more than $5,000 from

a supplier located in Davis.

πCName(σSAddress like 0%Davis%‘∧ Price>5000 (CUSTOMERS ⨝ (ORDERS ⨝ (OFFERS

⨝ SUPPLIERS)))) Perform selection as early as possible (but take existing indexes on

relations into account)

πCName(CUSTOMERS ⨝ (ORDERS ⨝ (σPrice>5000(OFFERS) ⨝ (σSAddress like

0%Davis%‘(SUPPLIERS)))))

Projection:

– πCName,account(CUSTOMERS ⨝ σProdname=‘CD−ROM‘(ORDERS))

Reduce the size of argument relation in join

πCName,account(CUSTOMERS ⨝ πCName(σProdname=‘CD−ROM‘(ORDERS)))

CIT 905 Advanced Database Management System

Page | 85

Projection should not be shifted before selections, because minimizing the number of

tuples in general leads to more efficient plans than reducing the size of tuples

Join Ordering

• For relations R1, R2, R3, (R1 ⨝R2) ⨝ R3 ≡ R1 ⨝ (R2 ⨝ R3)

• If (R2 ⨝ R3) is quite large and (R1 ⨝ R2) is small, we choose (R1 ⨝ R2) ⨝ R3 so

that a smaller temporary relation is computed and materialized

• Example: List the name of all customers who have ordered a product from a

supplier located in Davis.

 πCName(σSAddress like 0%Davis%‘(SUPPLIERS ⨝ ORDERS ⨝ CUSTOMERS))

ORDERS ⨝CUSTOMERS is likely to be a large relation. Because it is likely that only

a small fraction of suppliers are from Davis, we compute the join

σSAddress like0%Davis%0(SUPPLIERS ⨝ ORDERS) first.

Summary of Algebraic Optimization Rules

1. Perform selection as early as possible

2. Replace Cartesian product by join whenever possible

3. Project out useless attributes early.

4. If there are several joins, perform most restrictive join first

Evaluation Plan : An evaluation plan for a query exactly defines what algorithm is

used for each operation, which access structures are used (tables, indexes, clusters), and

how the execution of the operations is coordinated. Example of Annotated Evaluation

Plan

• Query: List the name of all customers who have ordered a product that costs more than

$5,000.

Assume that for both CUSTOMERS and ORDERS an index on CName exists: I1(CName,

CUSTOMERS), I2(CName, ORDERS).

CIT 905 Advanced Database Management System

Page | 86

Choice of an Evaluation Plan

• Must consider interaction of evaluation techniques when choosing evaluation plan:

choosing the algorithm with the least cost for each operation independently may

not yield the best overall algorithm.

• Practical query optimizers incorporate elements of the following two optimization

approaches:

– Cost-based: enumerate all the plans and choose the best plan in a cost-based

fashion.

 – Rule-based: Use rules (heuristics) to choose plan.

• Remarks on cost-based optimization:

– Finding a join order for R1 ⨝ R2 ⨝ . . . ⨝ Rn: n! different left-deep join orders

∗ For example, for n = 9, the number is 362880. ⨝ use of dynamic programming

techniques

• Heuristic (or rule-based) optimization transforms a given query tree by using a set of

rules that typically (but not in all cases) improve execution performance:

– Perform selection early (reduces number of tuples)

– Perform projection early (reduces number of attributes)

– Perform most restrictive selection and join operations before other similar

operations.

CIT 905 Advanced Database Management System

Page | 87

2.1.5.5 Query Optimization

We have seen so far how a query can be processed based on indexes and joins, and how

they can be transformed into relational expressions. The query optimizer uses these two

techniques to determine which process or expression to consider for evaluating the

query.

A cost-based optimizer explores the space of all query-evaluation plans that are

equivalent to the given query, and chooses the one with the least estimated cost. We

have seen how equivalence rules can be used to generate equivalent plans. However,

cost-based optimization with arbitrary equivalence rules is fairly complicated. We first

cover a simpler version of cost-based optimization, which involves only join-order and

join algorithm selection,

Suppose, we have series of table joined in a query.

T1 ∞ T2 ∞ T3 ∞ T4∞ T5 ∞ T6

For above query we can have any order of evaluation. We can start taking any two

tables in any order and start evaluating the query. Ideally, we can have join

combinations in (2(n-1))! / (n-1)! ways. For example, suppose we have 5 tables

involved in join, then we can have 8! / 4! = 1680 combinations. But when query

optimizer runs, it does not evaluate in all these ways always. It uses dynamic

programming where it generates the costs for join orders of any combination of tables.

It is calculated and generated only once. This least cost for all the table combination is

then stored in the database and is used for future use. That is.; say we have a set of

tables, T ={ T1 , T2 , T3 .. Tn}, then it generates least cost combination for all the tables

and stores it.

2.1.5.6 Dynamic Programming
As we learnt above, the least cost for the joins of any combination of table is generated

here. These values are stored in the database and when those tables are used in the

query, this combination is selected for evaluating the query. Suppose we have set of

CIT 905 Advanced Database Management System

Page | 88

tables, T = {T1 , T2 , T3 .. Tn}, in a DB. It picks the first table, and Computes cost for

joining with rest of the tables in set T. It calculates cost for each of the tables and then

chooses the best cost. It continues doing the same with rest of the tables in set T. It will

generate 2n – 1 cases and it selects the lowest cost and stores it. When a query uses

those tables, it checks for the costs here and that combination is used to evaluate the

query. This is called dynamic programming.

1. Left Deep Trees

This is another method of determining the cost of the joins. Here, the tables and

joins are represented in the form of trees. The joins always form the root of the tree and

table is kept at the right side of the root. LHS of the root always point to the next join.

Hence it gets deeper and deeper on LHS. Hence it is called as left deep tree. In this

method, time required to find optimized query is in the order of 3n, where n is the

number of tables. Suppose we have 5 tables, then time required in 35 = 243, which is

lesser than finding all the combination of tables and then deciding the best combination

(1680). Also, the space required for computing and storing the cost is also less and is in

the order of 2n. In above example, it is 25 = 32.

Here instead of calculating the best join cost for set of tables, best join cost for joining

with each table is calculated. In this method, time required to find optimized query is in

the order of n2n, where n is the number of tables. Suppose we have 5 tables, then time

required in 5*25 =160, which is lesser than dynamic programming. Also, the space

CIT 905 Advanced Database Management System

Page | 89

required for computing storing the cost is also less and is in the order of 2n. In above

example, it is 25 = 32, same as dynamic programming.

1. Interesting Sort Orders

This method is an enhancement to dynamic programming. Here, while calculating the

best join order costs, it also considers the sorted tables. It assumes, calculating the join

orders on sorted tables would be efficient. i.e.; suppose we have unsorted tables T1 , T2 ,

T3 .. Tn and we have join on these tables.(

(T1 ∞T2)∞ T3 ∞… ∞ Tn

This method uses hash join or merge join method to calculate the cost. Hash Join will

simply join the tables. We get sorted output in merge join method, but it is costlier than

hash join. Even though merge join is costlier at this stage, when it moves to join with

third table, the join will have less effort to sort the tables. This is because first table is

the sorted result of first two tables. Hence it will reduce the total cost of the query.

But the number of tables involved in the join would be relatively less and this cost/space

difference will be hardly noticeable. All these cost based optimizations are expensive

and are suitable for large number of data. There is another method of optimization

called heuristic optimization, which is better compared to cost based optimization.

2. Heuristic Optimization (Logical)

This method is also known as rule based optimization. This is based on the equivalence

rule on relational expressions; hence the number of combination of queries get reduces

here. Hence the cost of the query too reduces. This method creates relational tree for the

given query based on the equivalence rules. These equivalence rules by providing an

alternative way of writing and evaluating the query, gives the better path to evaluate the

query. This rule need not be true in all cases. It needs to be examined after applying

those rules. The most important set of rules followed in this method is listed below:

1. Perform all the selection operation as early as possible in the query. This should be

first and foremost set of actions on the tables in the query. By performing the

selection operation, we can reduce the number of records involved in the query,

rather than using the whole tables throughout the query.

CIT 905 Advanced Database Management System

Page | 90

2. Suppose we have a query to retrieve the students with age 18 and studying in class

DESIGN_01. We can get all the student details from STUDENT table, and class

details from CLASS table. We can write this query in two different ways.

Here both the queries will return same result. But when we observe them closely we can

see that first query will join the two tables first and then applies the filters. That means,

it traverses whole table to join, hence the number of records involved is more. But he

second query, applies the filters on each table first. This reduces the number of records

on each table (in class table, the number of record reduces to one in this case!). Then it

joins these intermediary tables. Hence the cost in this case is comparatively less.

Instead of writing query the optimizer creates relational algebra and tree for above case.

1. Perform all the projection as early as possible in the query. This is similar to

selection but will reduce the number of columns in the query.

Suppose for example, we have to select only student name, address and class name of

students with age 18 from STUDENT and CLASS tables.

CIT 905 Advanced Database Management System

Page | 91

Here again, both the queries look alike, results alike. But when we compare the number

of records and attributes involved at each stage, second query uses less records and

hence more efficient.

1. Next step is to perform most restrictive joins and selection operations. When we say

most restrictive joins and selection means, select those set of tables and views

which will result in comparatively less number of records. Any query will have

better performance when tables with few records are joined. Hence throughout

heuristic method of optimization, the rules are formed to get less number of records

at each stage, so that query performance is better. So is the case here too.

Suppose we have STUDENT, CLASS and TEACHER tables. Any student can attend

only one class in an academic year and only one teacher takes a class. But a class can

have more than 50 students. Now we have to retrieve STUDENT_NAME, ADDRESS,

AGE, CLASS_NAME and TEACHER_NAME of each student in a school.

∏STD_NAME, ADDRESS, AGE, CLASS_NAME, TEACHER_NAME ((STUDENT

∞ CLASS_ID CLASS)∞ TECH_IDTEACHER)

Not So efficient

∏STD_NAME, ADDRESS, AGE, CLASS_NAME, TEACHER_NAME (STUDENT ∞

CLASS_ID (CLASS∞ TECH_IDTEACHER))

Efficient

CIT 905 Advanced Database Management System

Page | 92

In the first query, it tries to select the records of students from each class. This will

result in a very huge intermediary table. This table is then joined with another small

table. Hence the traversing of number of records is also more. But in the second query,

CLASS and TEACHER are joined first, which has one to one relation here. Hence the

number of resulting record is STUDENT table give the final result. Hence this second

method is more efficient.

1. Sometimes we can combine above heuristic steps with cost based optimization

technique to get better results.

All these methods need not be always true. It also depends on the table size, column

size, type of selection, projection, join sort, constraints, indexes, statistics etc. Above

optimization describes the best way of optimizing the queries.

2.1.5.7. Structure of Query Optimizer
We have seen only some of the many query processing strategies used in database

systems. Most systems implement only a few strategies and, as a result, the number of

strategies to be considered by the query optimizer is limited. Other systems consider a

large number of strategies. For each strategy a cost estimate is computed.

In order to simplify the strategy selection task, a query may be split into several sub‐

queries. This not only simplifies strategy selection but also allows the query optimizer

to recognize cases where a particular sub‐query appear several times in the same query.

By performing such subqueries only once, time is saved both in the query optimizing

phase and in the execution of the query itself. Recognition of common sub‐queries is

analogous to the recognition of common sub‐expressions in many optimizing compilers

for programming languages. Clearly, examination of the query for common subs queries

and the estimation of the cost of a large number of strategies impose a substantial

overhead on query processing. However, the added cost of query optimization is usually

more than offset by the savings at query execution time. Therefore, most commercial

systems include relatively sophisticated optimizers.

CIT 905 Advanced Database Management System

Page | 93

2.1.5.8. Conclusion

There are a large number of possible strategies for processing a query, especially if the

query is complex. Strategy selection can be done using information available in main

memory, with little or no disk accesses. There are a large number of possible strategies

for processing a query, especially if the query is complex. Strategy selection can be

done using information available in main memory, with little or no disk accesses. The

actual execution of the query will involve many accesses to disk. Since the transfer of

data from disk is slow relative to the speed of main memory and the central processor of

the computer system, it is advantageous to spend a considerable amount of processing to

save disk accesses. Given a query, there are generally varieties of methods for

computing the answer. It is the responsibility of the system to transform the query as

entered by the user into an equivalent query, which can be computed more efficiently.

The first action the system must take on a query is to translate the query into its internal

form, which (for relational database systems) is usually based on the relational algebra.

In the process of generating the internal form of the query, the parser checks the syntax

of the user‘s query, verifies that the relations names appearing in the query are names of

relation in the database, etc. If the query was expressed in terms of a view, the parser

replaces all references to the view name with the relational algebra expression to

compute the view.

2.1.5.9 Tutor Marked Assignment

1. At what point during query processing does optimization occur?

2. Why is it not desirable to force users to make an explicit choice of a query

processing strategy? Are there cases in which it is desirable for users to be aware

of the costs of competing? Query‐processing strategies?

3. What is Query Optimization? Describe the stages of query optimization

4. Explain the various stages of query processing

CIT 905 Advanced Database Management System

Page | 94

2.1.7. References and Further Readings

Fegaras, L., Levine, D., Bose, S., & Chaluvadi, V. (2002, November). Query processing

of streamed XML data. In Proceedings of the eleventh international conference

on Information and knowledge management (pp. 126-133). ACM.

Kavanagh, T. S., Beall, C. W., Heiny, W. C., Motycka, J. D., Pendleton, S. S.,

Smallwood, T. D., ... & Traut, K. A. (1998). U.S. Patent No. 5,838,965.

Washington, DC: U.S. Patent and Trademark Office.

Kim, W., Reiner, D. S., & Batory, D. (Eds.). (2012). Query processing in database

systems. Springer Science & Business Media.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997). Lore: A

database management system for semistructured data. SIGMOD record, 26(3),

54-66.

Navathe, S. B., Tanaka, A. K., & Chakravarthy, S. (1992). Active Database Modeling

and Design Tools: Issues, Approache, and Architecture. IEEE Data Eng.

Bull., 15(1-4), 6-9.

Teorey, T. J. (1999). Database modeling and design. Morgan Kaufmann.

Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V. (2011). Database

modeling and design: logical design. Elsevier.

CIT 905 Advanced Database Management System

Page | 95

 MODULE 2: ADVANCED DATABASE FEATURES

 UNIT 2: TRANSACTION MANAGEMENT AND RECOVERY

2.2.0. Introduction

Transaction processing systems are systems with large databases and hundreds of

concurrent users. It provides and ―all‐or‐noting‖ proposition stating that each work –unit

performed in database must either complete in its entirety or have no effect whatsoever.

Users of database systems are usually consider consistency and integrity of data as

highly important. A simple transaction is usually issued to the database system in a

language like SQL wrapped in a transaction. The concepts of Transaction management,

types, properties and recovery strategies are described in this unit.

2.2.1. What is a Transaction?

A transaction is a sequence of read and write operations on data items that logically

functions as one unit of work.

1. It should either be done entirely or not at all

2. If it succeeds, the effects of write operations persist (commit); if it fails, no

effects of write operations persist (abort)

3. These guarantees are made despite concurrent activity in the system, and despite

failures that may occur

2.2.1. 1 Properties of Transaction

There are four key properties of transactions that a DBMS must ensure to maintain data

in the face of concurrent access and system failures:

1. Users should be able to regard the execution of each transaction as atomic: either

all actions are carried out or none are. Users should not have to worry about the

effect of incomplete transactions (say, when a system crash occurs).

2. Each transaction, run by itself with no concurrent execution of other transactions,

must preserve the consistency of the database. This property is called consistency,

CIT 905 Advanced Database Management System

Page | 96

and the DBMS assumes that it holds for each transaction. Ensuring this property

of a transaction is the responsibility of the user.

Figure 2.2.1: Database Transaction States

3. Users should be able to understand a transaction without considering the effect of

other concurrently executing transactions, even if the DBMS interleaves the actions

of several transactions for performance reasons. This property is sometimes referred

to as isolation: Transactions are isolated, or protected, from the effects of

concurrently scheduling other transactions.

4. Once the DBMS informs the user that a transaction has been successfully completed,

its effects should persist even if the system crashes before all its changes are

reflected on disk. This property is called durability.

The acronym ACID is sometimes used to refer to the four properties of transactions that

we have presented here: atomicity, consistency, isolation and durability. We now

consider how each of these properties is ensured in a DBMS.

1. Consistency and Isolation: Users are responsible for ensuring transaction

consistency. That is, the user who submits a transaction must ensure that when run to

completion by itself against a ‗consistent‘ database instance, the transaction will

leave the database in a ‗consistent‘ state. For example, the user may have the

consistency criterion that fund transfers between bank accounts should not change the

total amount of money in the accounts. To transfer money from one account to

another, a transaction must debit one account, temporarily leaving the database

inconsistent in a global sense, even though the new account balance may satisfy any

integrity constraints with respect to the range of acceptable account balances. The

CIT 905 Advanced Database Management System

Page | 97

user‘s notion of a consistent database is preserved when the second account is

credited with the transferred amount. If a faulty transfer program always credits the

second account with one naira less than the amount debited from the first account, the

DBMS cannot be expected to detect inconsistencies due to such errors in the user

program‘s logic.

1. The isolation property is ensured by guaranteeing that even though actions of

several transactions might be interleaved, the net effect is identical to executing

all transactions one after the other in some serial order. For example, if two

transactions T1 and T2 are executed concurrently, the net effect is guaranteed to

be equivalent to executing (all of) T1 followed by executing T2 or executing T2

followed by executing T1. (The DBMS provides no guarantees about which of

these orders is effectively chosen.) If each transaction maps a consistent

database instance to another consistent database instance, executing several

transactions one after the other (on a consistent initial database instance) will

also result in a consistent final database instance.

2. Database consistency is the property that every transaction sees a consistent

database instance. Database consistency follows from transaction atomicity,

isolation, and transaction consistency. Next, we discuss how atomicity and

durability are guaranteed in a DBMS.

2. Atomicity and Durability: Transactions can be incomplete for three kinds of

reasons. First, a transaction can be aborted, or terminated unsuccessfully, by the

DBMS because some anomaly arises during execution. If a transaction is aborted

by the DBMS for some internal reason, it is automatically restarted and executed

anew. Second, the system may crash (e.g., because the power supply is

interrupted) while one or more transactions are in progress. Third, a transaction

may encounter an unexpected situation (for example, read an unexpected data

value or be unable to access some disk) and decide to abort (i.e., terminate itself).

Of course, since users think of transactions as being atomic, a transaction that is

interrupted in the middle may leave the database in an inconsistent state. Thus a

DBMS must find a way to remove the effects of partial transactions from the

database, that is, it must ensure transaction atomicity: either all of a transaction‘s

actions are carried out, or none are. A DBMS ensures transaction atomicity by

undoing the actions of incomplete transactions. This means that users can ignore

CIT 905 Advanced Database Management System

Page | 98

incomplete transactions in thinking about how the database is modified by

transactions over time. To be able to do this, the DBMS maintains a record,

called the log, of all writes to the database. The log is also used to ensure

durability: If the system crashes before the changes made by a completed

transaction are written to disk, the log is used to remember and restore these

changes when the system restarts. The DBMS component that ensures atomicity

and durability is called the recovery manager.

2.2.1.2 Implementing Atomicity

Let‘s assume that before the transaction took place the balances in the account CA2090

is N50,000 and that in the account SB2359 is N35000. Now suppose that during the

execution of the transaction, a failure (for example, a power failure) occurred that

prevented the successful completion of the transaction. The failure occurred after the

Write(CA2090); operation was executed, but before the execution of Write(SB2359); in

this case the value of the accounts CA2090 and SB2359 are reflected in the database are

N48,000 and N35000 respectively. The N2,000 that we have taken from the account is

lost. Thus the failure has created a problem. The state of the database no longer reflects

a real state of the world that the database is supposed to capture. Such a state is called an

inconsistent state. The database system should ensure that such inconsistencies are not

visible in a database system. It should be noted that even during the successful execution

of a transaction there exists points at which the system is in an inconsistent state. But the

difference in the case of a successful transaction is that the period for which the database

is in an inconsistent state is very short and once the transaction is over the system will be

brought back to a consistent state. So if a transaction never started or is completed

successfully, the inconsistent states would not be visible except during the execution of

the transaction. This is the reason for the atomicity requirement. If the atomicity

property provided all actions of the transaction are reflected in the database of none are.

The mechanism of maintaining atomicity is as follows The DBMS keeps tracks of the

old values of any data on which a transaction performs a Write and if the transaction

does not complete its execution, old values are restored o make it appear as though the

CIT 905 Advanced Database Management System

Page | 99

transaction never took place. The transaction management component of the DBMS

ensures the atomicity of each transaction

2.2.1.23 Implementing Consistencies:

The consistency requirement in the above e. g is that the sum of CA2090 and

SB2359 be unchanged by the execution of the transaction. Before the execution of

the transaction the amounts in the accounts in CA2090 and SB2359 are N50,000 and

N35,000 respectively. After the execution the amounts become N48,000 and

N37,000. In both cases the sum of the amounts is 85,000 thus maintaining

consistency. Ensuring the consistency for an individual transaction is the

responsibility of the application programmer who codes the transaction.

2.2.1.24 Implementing the Isolation

Even if the atomicity and consistency properties are ensured for each transaction there

can be problems if several transactions are executed concurrently. The different

transactions interfere with one another and cause undesirable results. Suppose we are

executing the above transaction Ti. We saw that the database is temporarily inconsistent

while the transaction is being executed. Suppose that the transaction has performed the

Write(CA2090) operation, during this time another transaction is reading the balances of

different accounts. It checks the account CA2090 and finds the account balance at

N48,000. Suppose that it reads the account balance of the other account (account

SB2359, before the first transaction has got a chance to update the account. So the

account balance in the account SB2359 is N35,000. After the second transaction has

read the account balances, the first transaction reads the account balance of the account

SB2359 and updates it to N37,000. But here we are left with a problem. The first

transaction has executed successfully and the database is back to a consistent state. But

while it was in an inconsistent state, another transaction performed some operations

(May be updated the total account balances). This has left the database in an

inconsistent state even after both the transactions have been executed successfully. On

solution to the situation (concurrent execution of transactions) is to execute the

transactions serially- one after the other. This can create many problems. Suppose long

CIT 905 Advanced Database Management System

Page | 100

transactions are being executed first. Then all other transactions will have to wait in the

queue. There might be many transactions that are independent (or that do not interfere

with one another). There is no need for such transactions to wait in the queue. Also

concurrent executions of transactions have significant performance advantages. So the

DBMS have found solutions to allow multiple transactions to execute concurrency

without any problem. The isolation property of a transaction ensures that the concurrent

execution of transactions result in a system state that is equivalent to a state that could

have been obtained if the transactions were executed one after another. Ensuring

isolation property is the responsibility of the concurrency-control component of the

DBMS.

2.2.1.5 Implementing Durability

The durability property guarantees that, once a transaction completes successfully, all

updates that it carried out on the database persist, even if there is a system failure after

the transaction completes execution. We can guarantee durability by ensuring that either

the updates carried out by the transaction have been written to the disk before the

transaction completes or information about the updates that are carried out by the

transaction and written to the disk are sufficient for the data base to reconstruct the

updates when the data base is restarted after the failure. Ensuring durability is the

responsibility of the recovery management component of the DBMS Picture

Transaction management and concurrency control components of a DBMS.

2.2.2 Transaction States

Once a transaction is committed, we cannot undo the changes made by the transactions

by rolling back the transaction. Only way to undo the effects of a committed transaction

is to execute a compensating transaction. The creating of a compensating transaction can

be quite complex and so the task is left to the user and it is not handled by the DBMS.

The transaction must be in one of the following states:-

1. Active:- This is a initial state, the transaction stays in this state while it is

executing

CIT 905 Advanced Database Management System

Page | 101

2. Partially committed: The transaction is in this state when it has executed the

final statement

3. Failed: A transaction is in this state once the normal execution of the

transaction cannot proceed.

4. Aborted: A transaction is said to be aborted when the transaction has rolled back

and the database is being restored to the consistent state prior to the start of the

transaction.

5. Committed: a transaction is in this committed state once it has been

successfully executed and the database is transformed in to a new consistent

state. Different transactions states are given in following figure 2.2.2.

Figure 2.2.2: State Transition Diagram for a Transaction

CIT 905 Advanced Database Management System

Page | 102

2.2.3 Transactions and Schedules

A transaction is seen by the DBMS as a series, or list, of actions. The actions that

can be executed by a transaction include reads and writes of database objects. A

transaction can also be defined as a set of actions that are partially ordered. That is, the

relative order of some of the actions may not be important. In order to concentrate on

the main issues, we will treat transactions (and later, schedules) as a list of actions.

Further, to keep our notation simple, we will assume that an object O is always read into

a program variable that is also named O. We can therefore denote the action of a

transaction T reading an object O as RT (O); similarly, we can denote writing as WT (O).

When the transaction T is clear from the context, we will omit the subscript. In addition

to reading and writing, each transaction must specify as its final action either commit

(i.e., complete successfully) or abort (i.e., terminate and undo all the actions carried out

thus far). Abort T denotes the action of T aborting, and Commit T denotes T

committing.

A schedule is a list of actions (reading, writing, aborting, or committing) from a

set of transactions, and the order in which two actions of a transaction T appear in a

schedule must be the same as the order in which they appear in T. Intuitively, a schedule

represents an actual or potential execution sequence. For example, the schedule in Table

2.2.1.0shows an execution order for actions of two transactions T1 and T2. We move

forward in time as we go down from one row to the next. We emphasize that a schedule

describes the actions of transactions as seen by the DBMS. In addition to these actions,

a transaction may carry out other actions, such as reading or writing from operating

system files, evaluating arithmetic expressions, and so on.

Table 2.2.1.0: Execution Order for Actions of two transactions

T1 T2

R(A)

W(A)

 R(B)

 W(B)

R(C)

W(C)

CIT 905 Advanced Database Management System

Page | 103

Notice that the schedule in Table 2.2.1.0 does not contain an abort or commit action for

either transaction. A schedule that contains either an abort or a commit for each

transaction whose actions are listed in it is called a complete schedule. A complete

schedule must contain all the actions of every transaction that appears in it. If the

actions of different transactions are not interleaved—that is, transactions are executed

from start to finish, one by one—we call the schedule a serial schedule.

2.2.4 Concurrent Execution of Transactions

Now that we have introduced the concept of a schedule, we have a convenient way to

describe interleaved executions of transactions. The DBMS interleaves the actions of

different transactions to improve performance, in terms of increased throughput or

improved response times for short transactions, but not all interleaving should be

allowed.

2.2.4.1 Motivation for Concurrent Execution

The schedule shown in Table 2.2.1, represents an interleaved execution of the two

transactions. Ensuring transaction isolation while permitting such concurrent execution

is difficult, but is necessary for performance reasons. First, while one transaction is

waiting for a page to be read in from disk, the CPU can process another transaction.

This is because I/O activity can be done in parallel with CPU activity in a computer.

Overlapping I/O and CPU activity reduces the amount of time disks and processors are

idle, and increases system throughput (the average number of transactions completed

in a given time). Second, interleaved execution of a short transaction with a long

transaction usually allows the short transaction to complete quickly. In serial execution,

a short transaction could get stuck behind a long transaction leading to unpredictable

delays in response time, or average time taken to complete a transaction.

CIT 905 Advanced Database Management System

Page | 104

Serializability

To begin with, we assume that the database designer has defined some notion of a

consistent database state. For example, we can define a consistency criterion for a

university database to be that the sum of employee salaries in each department should

be less than 80 percent of the budget for that department. We require that each

transaction must preserve database consistency; it follows that any serial schedule that

is complete will also preserve database consistency. That is, when a complete serial

schedule is executed against a consistent database, the result is also a consistent

database.

A serializable schedule over a set S of committed transactions is a schedule whose

effect on any consistent database instance is guaranteed to be identical to that of some

complete serial schedule over S. That is, the database instance that results from

executing the given schedule is identical to the database instance that results from

executing the transactions in some serial order.

1. There are some important points to note in this definition: Executing the

transactions serially in different orders may produce different results, but all are

presumed to be acceptable; the DBMS makes no guarantees about which of them

will be the outcome of an interleaved execution.

2. The above definition of a serializable schedule does not cover the case of schedules

containing aborted transactions.

3. If a transaction computes a value and prints it to the screen, this is an ‗effect‘ that is

not directly captured in the state of the database. We will assume that all such

values are also written into the database, for simplicity.

2.2.4.1 Anomalies Associated with Interleaved Execution

We now illustrate three main ways in which a schedule involving two consistency

preserving, committed transactions could run against a consistent database and leave it

in an inconsistent state. Two actions on the same data object conflict if at least one of

them is a write. The three anomalous situations can be described in terms of when the

actions of two transactions T1 and T2 conflict with each other: in a write - read (WR)

CIT 905 Advanced Database Management System

Page | 105

conflict T2 reads a data object previously written by T1; we define read-write (RW) and

write-write (WW) conflicts similarly.

Reading Uncommitted Data (WR Conflicts)

The first source of anomalies is that a transaction T2 could read a database object A that

has been modified by another transaction T1, which has not yet committed. Such a read

is called a dirty read. A simple example illustrates how such a schedule could lead to an

inconsistent database state. Consider two transactions T1 and T2, each of which, run

alone, preserves database consistency: T1 transfers N100 from A to B, and T2

increments both A and B by 6 percent (e.g., annual interest is deposited into these two

accounts). Suppose that their actions are interleaved so that (1) the account transfer

program T1 deducts N100 from account A, then (2) the interest deposit program T2

reads the current values of accounts A and B and adds 6 percent interest to each, and

then (3) the account transfer program credits N100 to account B. The corresponding

schedule, which is the view the DBMS has of this series of events, is illustrated in table

2. The result of this schedule is different from any result that

 Table 2.2.2: Reading Uncommitted Data

we would get by running one of the two transactions first and then the other. The

problem can be traced to the fact that the value of A written by T1 is read by T2 before

T1 has completed all its changes. The general problem illustrated here is that T1 may

write some value into A that makes the database inconsistent. As long as T1 overwrites

this value with a ‗correct‘ value of A before committing, no harm is done if T1 and T2

run in some serial order, because T2 would then not see the (temporary) inconsistency.

T1 T2

R(A)

W(A)

 R(B)

W(B)

Commit

R(A)

 W(A)

R(B)

 W(B)

 Commit

CIT 905 Advanced Database Management System

Page | 106

On the other hand, interleaved execution can expose this inconsistency and lead to an

inconsistent final database state.

 Note that although a transaction must leave a database in a consistent state after it

completes, it is not required to keep the database consistent while it is still in progress.

Such a requirement would be too restrictive: To transfer money from one account to

another, a transaction must debit one account, temporarily leaving the database

inconsistent, and then credit the second account, restoring consistency again.

1. Unrepeatable Reads (RW Conflicts)

The second way in which anomalous behavior could result is that a transaction T2

could change the value of an object A that has been read by a transaction T1, while

T1 is still in progress. This situation causes two problems. First, if T1 tries to read

the value of A again, it will get a different result, even though it has not modified A

in the meantime. This situation could not arise in a serial execution of two

transactions; it is called an unrepeatable read. Second, suppose that both T1 and T2

read the same value of A, say, 5, and then T1, which wants to increment A by 1,

changes it to 6, and T2, which wants to decrement A by 1, decrements the value that

it read (that is, 5) and changes A to 4. Running these transactions in any serial order

should leave A with a final value of 5; thus, the interleaved execution leads to an

inconsistent state. The underlying problem here is that although T2’s change is not

directly read by T1, it invalidates T1’s assumption about the value of A, which is the

basis for some of T1’s subsequent actions.

2. Overwriting Uncommitted Data (WW Conflicts)

The third source of anomalous behavior is that a transaction T2 could overwrite

the value of an object A, which has already been modified by a transaction T1,

while T1 is still in progress. Even if T2 does not read the value of A written by

T1, a potential problem exists as the following example illustrates. Suppose that

Harry and Larry are two employees, and their salaries must be kept equal.

Transaction T1 sets their salaries to N1, 000 and transaction T2 sets their salaries

CIT 905 Advanced Database Management System

Page | 107

to N2,000. If we execute these in the serial order T1 followed by T2, both receive

the salary N2,000; the serial order T2 followed by T1 gives each the salary

N1,000. Either of these is acceptable from a consistency standpoint (although

Harry and Larry may prefer a higher salary!). Notice that neither transaction

reads a salary value before writing it—such a write is called a blind write, for

obvious reasons Now, consider the following interleaving of the actions of T1

and T2: T1 sets Harry‘s salary to N1,000, T2 sets Larry‘s salary to N2,000, T1

sets Larry‘s salary to N1,000, and finally T2 sets Harry‘s salary to N2,000. The

result is not identical to the result of either of the two possible serial executions,

and the interleaved schedule is therefore not serializable. It violates the desired

consistency criterion that the two salaries must be equal.

2.2.4.2 Schedules Involving Aborted Transactions

 We now extend our definition of serializability to include aborted transactions.

Intuitively, all actions of aborted transactions are to be undone, and we can therefore

imagine that they were never carried out to begin with. Using this intuition, we extend

the definition of a serializable schedule as follows: A serializable schedule over a set S

of transactions is a schedule whose effect on any consistent database instance is

guaranteed to be identical to that of some complete serial schedule over the set of

committed transactions in S.

 This definition of serializability relies on the actions of aborted transactions being

undone completely, which may be impossible in some situations. For example, suppose

that (1) an account transfer program T1 deducts N100 from account A, then (2) an

interest deposit program T2 reads the current values of accounts A and B and adds 6

percent interest to each, then commits, and then (3) T1 is aborted. The corresponding

schedule is shown in table 3. Now, T2 has read a value for A that should never have

been there (Recall that aborted transactions‘ effects are not supposed to be visible to

other transactions.) If T2 had not yet committed, we could deal with the situation by

cascading the abort of T1 and also aborting T2; this process would recursively abort any

transaction that read data written by T2, and so on. But T2 has already committed, and

CIT 905 Advanced Database Management System

Page | 108

so we cannot undo its actions. We say that such a schedule is unrecoverable. A

recoverable schedule is one in which transactions commit only after (and if!) all

transactions whose changes they read commit. If transactions read only the changes of

committed transactions, not only is the schedule recoverable, but also aborting a

transaction can be accomplished without cascading the abort to other transactions. Such

a schedule is said to avoid cascading aborts. There is another potential problem in

undoing the actions of a transaction. Suppose that a transaction T2 overwrites the value

of an object A that has been modified by a transaction T1, while T1 is still in progress,

and T1 subsequently aborts. All of T1’s changes to database objects are undone by

restoring the value of any object that it modified to the value of the object before T1’s

changes. When T1 is aborted, and its changes are undone in this manner, T2’s changes

are lost as well, even if T2 decides to commit.

 Table 2.2.3: An Unrecoverable Schedule

So, for example, if A originally had the value 5, then was changed by T1 to 6, and by

T2 to 7, if T1 now aborts, the value of A becomes 5 again. Even if T2 commits, its

change to A is inadvertently lost.

2.2.4.3 LOCK-BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable schedules are

allowed, and that no actions of committed transactions are lost while undoing aborted

transactions. A DBMS typically uses a locking protocol to achieve this. A locking

protocol is a set of rules to be followed by each transaction (and enforced by the

T1 T2

R(A)

W(A)

Abort

 R(A)

 W(A)

 R(B)

 W(B)

 Commit

CIT 905 Advanced Database Management System

Page | 109

DBMS), in order to ensure that even though actions of several transactions might be

interleaved, the net effect is identical to executing all transactions in some serial order.

Strict Two-Phase Locking (Strict 2PL)

The most widely used locking protocol, called Strict Two-Phase Locking, or Strict 2PL,

has two rules. The first rule is:

1. If a transaction T wants to read (respectively, modify) an object, it first requests a

shared (respectively, exclusive) lock on the object.

2. All locks held by a transaction are released when the transaction is completed.

Requests to acquire and release locks can be automatically inserted into

transactions by the DBMS; users need not worry about these details.

In effect the locking protocol allows only ‗safe‘ interleaving of transactions. If two

transactions access completely independent parts of the database, they will be able to

concurrently obtain the locks that they need and proceed merrily on their ways. On the

other hand, if two transactions access the same object, and one of them wants to modify

it, their actions are effectively ordered serially—all actions of one of these transactions

(the one that gets the lock on the common object first) are completed before (this lock is

released and) the other transaction can proceed. We denote the action of a transaction T

requesting a shared (respectively, exclusive) lock on object O as ST (O) (respectively,

XT (O)), and omit the subscript denoting the transaction when it is clear from the

context. As an example, consider the schedule shown in table1. This interleaving could

result in a state that cannot result from any serial execution of the three transactions. For

instance, T1 could change A from 10 to 20, then T2 (which reads the value 20 for A)

could change B from 100 to 200, and then T1 would read the value 200 for B. If run

serially, either T1 or T2 would execute first, and read the values 10 for A and 100 for B:

Clearly, the interleaved execution is not equivalent to either serial execution. If the

Strict 2PL protocol is used, the above interleaving is disallowed. Let us see why.

Assuming that the transactions proceed at the same relative speed as before, T1 would

obtain an exclusive lock on A first and then read and write A (table 4). Then, T2 would

request a lock on A. However, this request cannot be granted until

CIT 905 Advanced Database Management System

Page | 110

 Table 2.2.5: Schedule Illustrating Strict 2PL

T1 T2

X(A)

R(A)

W(A)

T1 releases its exclusive lock on A, and the DBMS therefore suspends T2. T1 now

proceeds to obtain an exclusive lock on B, reads and writes B, then finally commits, at

which time its locks are released. T2's lock request is now granted, and it proceeds. In

this example the locking protocol results in a serial execution of the two transactions,

shown in table 5. In general, however, the actions of different transactions could be

interleaved. As an example, consider the interleaving of two transactions shown in table

4, which are permitted by the Strict 2PL protocol.

2.2.5 Concurrency control for database management

Concurrency control in database management systems permits many users (assumed to

be interactive) to access a database in a multi programmed environment while preserving

the illusion that each user has sole access to the system. Control is needed to coordinate

concurrent accesses to a DBMS so that the overall correctness of the database is

maintained. For example, users A and B both may wish to read and update the same

record in the database at about the same time. The relative timing of the two transactions

may have an impact on the state of the database at the end of the transactions. The end

result may be an inconsistent database.

Functions of Concurrent Control

Several problems can occur when concurrent transactions execute in an uncontrolled

manner.

– The lost update problem: This occurs when two transactions that access the same

database items have their operations interleaved in a way that makes the value of

same database item incorrect.

– The temporary update (or dirty read) problem: This occurs when one transaction

updates a database item and then the transaction fails for some reason. The

CIT 905 Advanced Database Management System

Page | 111

updated item is accessed by another transaction before it is changed back to its

original value.

– The incorrect summary problem: If one transaction is calculating an aggregate

function on a number of records while other transaction is updating some of these

records, the aggregate function may calculate some values before they are updated

and others after they are updated.

1. Whenever a transaction is submitted to a DBMS for execution, the system must

make sure that :

– All the operations in the transaction are completed successfully and their

effect is recorded permanently in the database; or

– the transaction has no effect whatever on the database or on the other

transactions in the case of that a transaction fails after executing some of

operations but before executing all of them.

Following are the problems created due to the concurrent execution of the

transactions:

-Multiple update problems

In this problem, the data written by one transaction (an update operation) is being

overwritten by another update transaction. This can be illustrated using our banking

example. Consider our account CA2090 that has N50,000 balance in it. Suppose a

transaction T1 is withdrawing N10,000 from the account while another transaction T2

is depositing N20,000 to the account. If these transactions were executed serially (one

after another), the final balance would be N60,000, irrespective of the order in which

the transactions are performed. In other words, if the transactions were performed

serially, then the result would be the same if T1 is performed first or T2 is performed

first-order is not important. But the transactions are performed concurrently, then

depending on how the transactions are executed the results will vary. Consider the

execution of the transactions given in Table 2.2.6

CIT 905 Advanced Database Management System

Page | 112

Table 2.2.6: Execution Transaction

Both transactions start nearly at the same time and both read the account balance of

N50000. Both transactions perform the operations that they are supposed to perform-

T1 will reduce the amount by N10000and will write the result to the data base; T2

will increase the amount by N20000 and will write the amount to the database

overwriting the previous update. Thus the account balance will gain additional

N10000 producing a wrong result. If T2 were to start execution first, the result would

have been N40000 and the result would have been wrong again. This situation could

be avoided by preventing T2 from reading the value of the account balance until the

update by T1 has been completed.

Incorrect Analysis Problem

Problems could arise even when a transaction is not updating the database.

Transactions that read the database can also produce wrong result, if they are allowed

to read the database when the database is in an inconsistent state. This problem is

often referred to as dirty read or unrepeatable data. The problem of dirty read occurs

when a transaction reads several values from the data base while another transactions

are updating the values. Consider the case of the transaction that reads the account

balances from all accounts to find the total amount in various account. Suppose that

there are other transactions, which are updating the account balances-either reducing

the amount (withdrawals) or increasing the amount (deposits). So when the first

transaction reads the account balances and finds the totals, it will be wrong, as it

might have read the account balances before the update in the case of some accounts

CIT 905 Advanced Database Management System

Page | 113

and after the updates in other accounts. This problem is solved by preventing the first

transaction (the one that reads the balances) from reading the account balances until

all the transactions that update the accounts are completed.

Inconsistent Retrievals

Consider two users A and B accessing a department database simultaneously. The user A

is updating the database to give all employees a 5% salary raise while user B wants to

know the total salary bill of a department. The two transactions interfere since the total

salary bill would be changing as the first user updates the employee records. The total

salary retrieved by the second user may be a sum of some salaries before the raise and

others after the raise. Such a sum could not be considered an acceptable value of the total

salary (the value before the raise or after the raise would be).

The problem illustrated in the last example is called the inconsistent retrieval

anomaly. During the execution of a transaction therefore, changes made by another

transaction that has not yet committed should not be visible since that data may not be

consistent.

Uncommitted Dependency

Consider the following situation

CIT 905 Advanced Database Management System

Page | 114

Transaction A reads the value of Q that was updated by transaction B but was never

committed. The result of Transaction A writing Q therefore will lead to an inconsistent

state of the database. Also if the transaction A doesn't write Q but only reads it, it would

be using a value of Q which never really existed! Yet another situation would occur if the

roll back happens after Q is written by transaction A. The roll back would restore the old

value of Q and therefore lead to the loss of updated Q by transaction A. This is called the

uncommitted dependency anomaly.

Serializability is a given set of interleaved transactions is said to be serial sable if and

only if it produces the same results as the serial execution of the same transactions. It is

an important concept associated with locking. It guarantees that the work of concurrently

executing transactions will leave the database state as it would have been if these

transactions had executed serially. This requirement is the ultimate criterion for database

consistency and is the motivation for the two-phase locking protocol, which dictates that

no new locks can be acquired on behalf of a transaction after the DBMS releases a lock

held by that transaction. In practice, this protocol generally means that locks are held

until commit time.

Serializability is the classical concurrency scheme. It ensures that a schedule for

executing concurrent transactions is equivalent to one that executes the transactions

serially in some order. It assumes that all accesses to the database are done using read

CIT 905 Advanced Database Management System

Page | 115

and write operations. A schedule is called ``correct'' if we can find a serial schedule that

is ``equivalent'' to it. Given a set of transactions T1...Tn, two schedules S1 and S2 of these

transactions are equivalent if the following conditions are satisfied:

1. Read-Write Synchronization: If a transaction reads a value written by another

transaction in one schedule, then it also does so in the other schedule.

2. Write-Write Synchronization: If a transaction overwrites the value of another

transaction in one schedule, it also does so in the other schedule.

3. These two properties ensure that there can be no difference in the effects of the

two schedules

2.2.5.1 Serializable schedule

A schedule is serial if, for every transaction T participating the schedule, all the

operations of T are executed consecutively in the schedule. Otherwise it is called non-

serial schedule.

1. Every serial schedule is considered correct; some non-serial schedules give

erroneous results.

2. A schedule S of n transactions is serializable if it is equivalent to some serial

schedule of the same n transactions; a non-serial schedule which is not equivalent

to any serial schedule is not serializable.

3. The definition of two schedules considered ―equivalent‖:– result equivalent:

producing same final state of the database (is not used)

1. conflict equivalent: If the order of any two conflicting operations is the

same in both schedules.

2. view equivalent: If each read operation of a transaction reads the result of

the same write operation in both schedules and the write operations of each

transaction must produce the same results.

3. Conflict serializable: if a schedule S is conflict equivalent to some serial

schedule. we can reorder the non-conflicting operations S until we form the

equivalent serial schedule, and S is a serializable schedule.

CIT 905 Advanced Database Management System

Page | 116

4. View Serializability: Two schedules are said to be view equivalent if the

following three conditions hold. The same set of transactions participate in S and

S'; and S and S' include the same operations of those transactions. A schedule S is

said to be view serializable if it is view equivalent to a serial schedule.

2.2.5.3 LOCKING

In order to execute transactions in an interleaved manner it is necessary to have some

form of concurrency control.

• This enables a more efficient use of computer resources.

• One method of avoiding problems is with the use of locks.

• When a transaction requires a database object it must obtain a lock.

Locking is necessary in a concurrent environment to assure that one process

does not retrieve or update a record that is being updated by another process.

Failure to use some controls (locking), would result in inconsistent and corrupt

data.

Locks enable a multi-user DBMS to maintain the integrity of transactions by isolating a

transaction from others executing concurrently. Locks are particularly critical in write

intensive and mixed workload (read/write) environments, because they can prevent the

inadvertent loss of data or Consistency problems with reads. In addition to record locking,

DBMS implements several other locking mechanisms to ensure the integrity of other data

structures that provide shared I/O, communication among different processes in a cluster

and automatic recovery in the event of a process or cluster failure. Aside from their

integrity implications, locks can have a significant impact on performance. While it may

benefit a given application to lock a large amount of data (perhaps one or more tables) and

hold these locks for a long period of time, doing so inhibits concurrency and increases the

likelihood that other applications will have to wait for locked resources.

LOCKING RULES

There are various locking rules that are applicable when a user reads or writes a data to a

database. The various locking rules are -

CIT 905 Advanced Database Management System

Page | 117

• Any number of transactions can hold S-locks on an item

• If any transaction holds an X-lock on an item, no other transaction may hold any lock

on the item

• A transaction holding an X-lock may issue a write or a read request on the data item

• A transaction holding an S-lock may only issue a read request on the data item

2.2.5.4 DEADLOCK

There lies a threat while writing or reading data onto a database with the help of available

resources, it is nothing but the deadlock condition. In operating systems or databases, a

situation in which two or more processes are prevented from continuing while each waits

for resources to be freed by the continuation of the other. Any of a number of situations

where two or more processes cannot proceed because they are both waiting for the other to

release some resource.

A situation in which processes of a concurrent processor are waiting on an event which

will never occur. A simple version of deadlock for a loosely synchronous environment

arises when blocking reads and writes are not correctly matched. For example, if two nodes

both execute blocking writes to each other at the same time, deadlock will occur since

neither write can complete until a complementary read is executed in the other node.

2.2.6 Locking Techniques for Concurrency Control Based on Time Stamp Ordering

The timestamp method for concurrency control does not need any locks and therefore

there are no deadlocks. Locking methods generally prevent conflicts by making transaction

to walk. Timestamp methods do not make the transactions wait. Transactions involved in a

conflict are simply rolled back and restarted. A timestamp is a unique identifier created by

the DBMS that indicates the relative starting time of a transaction. Timestamps are

generated either using the system clock (generating a timestamp when the transaction starts

to execute) or by incrementing a logical counter every time a new transaction starts. Time

stamping is the concurrency control protocol in which the fundamentals goal is to order

transactions globally in such a way that older transactions get priority in the event of a

conflict. In the Time stamping method, if a transaction attempts to read or write a data

CIT 905 Advanced Database Management System

Page | 118

item, then a read or write operation is allowed only if the last update on that data item was

carried out by an older transaction. Otherwise the transaction requesting the read or write is

restarted and given a new timestamp to prevent it from continually aborting and restarting.

If the restarted transaction is not allowed a new timestamp and is allowed a new timestamp

and is allowed to retain the old timestamp, it will never be allowed to perform the read or

write, because by that some other transaction which has a newer timestamp than the

restarted transaction might not be to commit due to younger transactions having already

committed.

In addition to the timestamp for the transactions, data items are also assigned timestamps.

Each data item contains a read-timestamp and write-timestamp. The read-timestamp

contains the timestamp of the last transaction that read the item and the write-timestamp

contains the timestamp of the last transaction that updated the item. For a transaction T

the timestamp ordering protocol works as follows:

1. Transactions T requests to read the data item ‗X‘ that has already been updated by a

younger (later or one with a greater timestamp) transaction. This means that an earlier

transactions is trying to read a data item that has been updated by a later transaction T

is too late to read the previous outdated value and any other values it has acquired are

likely to be inconsistent with the updated value of the data item. In this situation, the

transaction T is aborted and restarted with a new timestamp.

2. In all other cases, the transaction is allowed to proceed with the read operation. The

read-timestamp of the data item is updated with the timestamp of transaction T.

3. Transaction t requests to write (update) the data item ‗X‘ that has already been read

by a younger (later or one with the greater timestamp) transaction. This means that

the younger transaction is already using the current value of the data item and it

would be an error to update it now. This situation occurs when a transaction is late

in performing the write and a younger transaction has already read the old value or

written a new one. In this case the transaction T is aborted and is restarted with a

new timestamp.

CIT 905 Advanced Database Management System

Page | 119

4. Transaction T asks to write the data item ‗X‘ that has already been written by a

younger transaction. This means that the transaction T is attempting to write an old

or obsolete value of the data item. In this case also the transaction T is aborted and

is restarted with a new timestamp.

5. In all other cases the transaction T is allowed to proceed and the write-timestamp

of the data item is updated with the timestamp of transaction T.

The above scheme is called basic timestamp ordering. This scheme guarantees that the

transactions are conflict serializable and the results are equivalent to a serial schedule

in which the transactions are executed in chronological order by the timestamps. In

other words, the results of a basic timestamps ordering scheme will be as same as

when all the transactions were executed one after another without any interleaving.

One of the problems with basic timestamp ordering is that it does not guarantee

recoverable schedules. A modification to the basic timestamp ordering protocol that

relaxes the conflict Serializability can be used to provide greater concurrency by

rejecting obsolete write operations. This extension is known as Thomas‘s write rule.

Thomas‘s write rule modifies the checks for a write operation by transaction T as

follows.

• When the transaction T requests to write the data item ‗X‘ whose values has

already been read by a younger transaction. This means that the order transaction

(transaction T) is writing an obsolete value to the data item. In this case the write

operation is ignored and the transaction (transaction T) is allowed to continue as

if the write were performed. This principle is called the ‗ignore obsolete write

rule‘. This rule allows for greater concurrency.

• In all other cases the transactions T is allowed to proceed and the write

timestamp of transaction T.

2.2.6.1 Multiversion Concurrency Control Techniques (Mvcc)

The aim of Multi-Version Concurrency is to avoid the problem of Writers blocking

Readers and vice-versa, by making use of multiple versions of data. The problem of

CIT 905 Advanced Database Management System

Page | 120

Writers blocking Readers can be avoided if Readers can obtain access to a previous

version of the data that is locked by Writers for modification. The problem of Readers

blocking Writers can be avoided by ensuring that Readers do not obtain locks on data.

Multi-Version Concurrency allows Readers to operate without acquiring any locks, by

taking advantage of the fact that if a Writer has updated a particular record, its prior

version can be used by the Reader without waiting for the Writer to Commit or Abort. In a

Multi-version Concurrency solution, Readers do not block Writers, and vice versa. While

Multi-version concurrency improves database concurrency, its impact on data consistency

is more complex.

2.2.6.3 Requirements of Multi-Version Concurrency Systems

As its name implies, multi-version concurrency relies upon multiple versions of data

to achieve higher levels of concurrency. Typically, a DBMS offering multi-version

concurrency (MVDB), needs to provide the following features:

1. The DBMS must be able to retrieve older versions of a row.

2. The DBMS must have a mechanism to determine which version of a row is valid

in the context of a transaction. Usually, the DBMS will only consider a version that was

committed prior to the start of the transaction that is running the query. In order to

determine this, the DBMS must know which transaction created a particular version of a

row, and whether this transaction committed prior to the starting of the current

transaction.

2.2.6.4 Approaches to Multi-Version Concurrency

There are essentially two approaches to multi-version concurrency. The first approach

is to store multiple versions of records in the database, and garbage collect records when

they are no longer required. This is the approach adopted by PostgreSQL and

Firebird/Interbase. The second approach is to keep only the latest version of data in the

database, as in SVDB implementations, but reconstruct older versions of data dynamically

as required by exploiting information within the Write Ahead Log. This is the approach

taken by Oracle and MySQL/InnoDb.

CIT 905 Advanced Database Management System

Page | 121

2.2.6.4 Concept of Database Recovery Management

The recovery manager of a DBMS is responsible for ensuring transaction atomicity and

durability. It ensures atomicity by undoing the actions of transactions that do not commit

and durability by making sure that all actions of committed transactions survive system

crashes, (e.g., a core dump caused by a bus error) and media failures (e.g., a disk is

corrupted). When a DBMS is restarted after crashes, the recovery manager is given

control and must bring the database to a consistent state. The recovery manager is also

responsible for undoing the actions of an aborted transaction. To see what it takes to

implement a recovery manager, it is necessary to understand what happens during normal

execution.

Table 2.2.5. Schedule Illustrating Strict 2PL with Serial Execution

T1 T2

 X(A)

 R(A)

 W(A)

 X(B)

 R(B)

 W(B)

Commit

 X(A)

 R(A)

 W(A)

 X(B)

 R(B)

 W(B)

 Commit

CIT 905 Advanced Database Management System

Page | 122

Table 2.2.6: Schedule Following Strict 2PL with Interleaved Actions

T1 T2

S(A)

 R(A)

X(C)

R(C)

W(C)

Commit

 S(A)

 R(A)

 X(B)

 R(B)

 W(B)

Commit

2.2.7 Database Recovery Management

The transaction manager of a DBMS controls the execution of transactions. Before

reading and writing objects during normal execution, locks must be acquired (and

released at some later time) according to a chosen locking protocol. For simplicity of

exposition, we make the following assumption.

Atomic Writes: Writing a page to disk is an atomic action. This implies that the

system does not crash while a write is in progress and is unrealistic. In practice, disk

writes do not have this property, and steps must be taken during restart after a crash to

verify that the most recent write to a given page was completed successfully and to deal

with the consequences if not.

2.2.7.1 Stealing frames and forcing Pages

With respect to writing objects, two additional questions arise:

1. Can the changes made to an object O in the buffer pool by a transaction T be

written to disk before T commits? Such writes are executed when another

transaction wants to bring in a page and the buffer manager chooses to replace

the page containing O; of course, this page must have been unpinned by T. If

CIT 905 Advanced Database Management System

Page | 123

such writes are allowed, we say that a steal approach is used. (Informally, the

second transaction `steals' a frame from T.).

2. When a transaction commits, must we ensure that all the changes it has made to

objects in the buffer pool are immediately forced to disk? If so, we say that a

force approach is used.

From the standpoint of implementing a recovery manager, it is simplest to use a buffer

manager with a no-steal, force approach. If no-steal is used, we don't have to undo the

changes of an aborted transaction (because these changes have not been written to disk),

and if force is used, we don't have to redo the changes of a committed transaction. if there

is a subsequent crash (because all these changes are guaranteed to have been written to

disk at commit time). However, these policies have important drawbacks. The no-steal

approach assumes that all pages modified by ongoing transactions can be accommodated in

the buffer pool, and in the presence of large transactions (typically run in batch mode, e.g.,

payroll processing), this assumption is unrealistic. The force approach results in excessive

page I/O costs. If a highly used page is updated in succession by 20 transactions, it would

be written to disk 20 times. With a no-force approach, on the other hand, the in memory

copy of the page would be successively modified and written to disk just once, reflecting

the effects of all 20 updates, when the page is eventually replaced in the buffer pool (in

accordance with the buffer manager's page replacement policy).

For these reasons, most systems use a steal, no-force approach. Thus, if a frame is

dirty and chosen for replacement, the page it contains is written to disk even if the

modifying transaction is still active (steal); in addition, pages in the buffer pool that are

modified by a transaction are not forced to disk when the transaction commits (no-force).

2.2.7.1 Recovery-Related steps during normal execution

The recovery manager of a DBMS maintains some information during normal

execution of transactions in order to enable it to perform its task in the event of a failure.

In particular, a log of all modifications to the database is saved on stable storage, which

is guaranteed (with very high probability) to survive crashes and media failures. Stable

CIT 905 Advanced Database Management System

Page | 124

storage is implemented by maintaining multiple copies of information (perhaps in

different locations) on nonvolatile storage devices such as disks or tapes. It is important to

ensure that the log entries describing a change to the database are written to stable storage

before the change is made; otherwise, the system might crash just after the change,

leaving us without a record of the change.

The log enables the recovery manager to undo the actions of aborted and incomplete

transactions and to redo the actions of committed transactions. For example, a transaction

that committed before the crash may have made updates to a copy (of a database object) in

the buffer pool, and this change may not have been written to disk before the crash,

because of a no-force approach. Such changes must be identified using the log, and must

be written to disk. Further, changes of transactions that did not commit prior to the crash

might have been written to disk because of a steal approach. Such changes must be

identified using the log and then undone.

The recovery manager of a DBMS is responsible for ensuring two important

properties of transactions: atomicity and durability. It ensures atomicity by undoing the

actions of transactions that do not commit and durability by making sure that all actions of

committed transactions survive system crashes, (e.g., a core dump caused by a bus error)

and media failures (e.g., a disk is corrupted). The recovery manager is one of the hardest

components of a DBMS to design and implement. It must deal with a wide variety of

database states because it is called on during system failures. In this unit, we present the

ARIES recovery algorithm, which is conceptually simple, works well with a wide range of

concurrency control mechanisms, and is being used, in an increasing number of database

systems. We begin with an introduction to ARIES.

2.2.8 Introduction to ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force approach.

When the recovery manager is invoked after a crash, restart proceeds in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have not been

written to disk) and active transactions at the time of the crash.

CIT 905 Advanced Database Management System

Page | 125

2. Redo: Repeats all actions, starting from an appropriate point in the log, and

restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that the

database reflects only the actions of committed transactions.

There are three main principles behind the ARIES recovery algorithm:

1. Write-ahead logging: Any change to a database object is first recorded in the log;

the record in the log must be written to stable storage before the change to the

database object is written to disk.

2. Repeating history during Redo: Upon restart following a crash, ARIES retraces all

actions of the DBMS before the crash and brings the system back to the exact state that

it was in at the time of the crash. Then, it undoes the actions of transactions that were

still active at the time of the crash (effectively aborting them).

3. Logging changes during Undo: Changes made to the database while undoing a

transaction are logged in order to ensure that such an action is not repeated in the event

of repeated (failures causing) restarts.

The second point distinguishes ARIES from other recovery algorithms and is the basis for

much of its simplicity and flexibility. In particular, ARIES can support concurrency

control protocols that involve locks of finer granularity than a page (e.g., record-level

locks). The second and third points are also important in dealing with operations such that

redoing and undoing the operation are not exact inverses of each other.

The Log

The log, sometimes called the trail or journal, is a history of actions executed by the

DBMS. Physically, the log is a _le of records stored in stable storage, which is assumed

to survive crashes; this durability can be achieved by maintaining two or more copies of

the log on different disks (perhaps in different locations), so that the chance of all copies

of the log being simultaneously lost is negligibly small. The most recent portion of the

log, called the log tail, is kept in main memory and is periodically forced to stable

CIT 905 Advanced Database Management System

Page | 126

storage. This way, log records and data records are written to disk at the same

granularity (pages or sets of pages).

1. Every log record is given a unique id called the log sequence number (LSN). As

with any record id, we can fetch a log record with one disk access given the LSN.

Further, LSNs should be assigned in monotonically increasing order; this property is

required for the ARIES recovery algorithm. If the log is a sequential file, in principle

growing indefinitely, the LSN can simply be the address of the first byte of the log

record. For recovery purposes, every page in the database contains the LSN of the

most recent log record that describes a change to this page. This LSN is called the

pageLSN. A log record is written for each of the following actions:

1. Updating a page: After modifying the page, an update type record is appended to

the log tail. The pageLSN of the page is then set to the LSN of the update log record.

(The page must be pinned in the buffer pool while these actions are carried out.)

2. Commit: When a transaction decides to commit, it force-writes a commit type log

record containing the transaction id. That is, the log record is appended to the log, and

the log tail is written to stable storage, up to and including the commit record. The

transaction is considered to have committed at the instant that its commit log record is

written to stable storage.

3. Abort: When a transaction is aborted, an abort type log record containing the

transaction id is appended to the log, and Undo is initiated for this transaction

1. End: As noted above, when a transaction is aborted or committed, some additional

actions must be taken beyond writing the abort or commit log record. After all these

additional steps are completed, an end type log record containing the transaction id

is appended to the log.

2. Undoing an update: When a transaction is rolled back (because the transaction

is aborted, or during recovery from a crash), its updates are undone. When the

action described by an update log record is undone, a compensation log record,

or CLR, is written.

CIT 905 Advanced Database Management System

Page | 127

3. Every log record has certain fields: prevLSN, transID, and type. The set of all

log records for a given transaction is maintained as a linked list going back in

time, using the prevLSN field; this list must be updated whenever a log record is

added. The transID field is the id of the transaction generating the log record, and

the type field obviously indicates the type of the log record. Additional fields

depend on the type of the log record. We have already mentioned the additional

contents of the various log record types, with the exception of the update and

compensation log record types, which we describe next.

2.2.8.1 Update Log Records

The fields in an update log record are illustrated in table 2.2.7. The pageID field

Table 2.2.7: Contents of an Update Log Record

prevLSN transID type pageID length offset before-

offset

after-

offset

is the page id of the modified page; the length in bytes and the offset of the change are

also included. The before-image is the value of the changed bytes before the change;

the after-image is the value after the change. An update log record that contains both

before- and after-images can be used to redo the change and to undo it. In certain

contexts, which we will not discuss further, we can recognize that the change will never

be undone (or, perhaps, redone). A redo-only update log record will contain just the

after-image; similarly an undo-only update record will contain just the before-image.

Compensation Log Records

A compensation log record (CLR) is written just before the change recorded in an

update log record U is undone. (Such an undo can happen during normal system

execution when a transaction is aborted or during recovery from a crash.) A

compensation log record C describes the action taken to undo the actions recorded in the

Fields common to all log

records
Additional fields for update log records

CIT 905 Advanced Database Management System

Page | 128

corresponding update log record and is appended to the log tail just like any other log

record. The compensation log record C also contains a field called undoNextLSN,

which is the LSN of the next log record that is to be undone for the transaction that

wrote update record U; this field in C is set to the value of prevLSN in U.As an

example, consider the fourth update log record shown in Figure 20.3. If this update is

undone, a CLR would be written, and the information in it would include the transID,

pageID, length, offset, and before-image fields from the update record. Notice that the

CLR records the (undo) action of changing the affected bytes back to the before-image

value; thus, this value and the location of the affected bytes constitute the redo

information for the action described by the CLR.

Unlike an update log record, a CLR describes an action that will never be undone, that

is, we never undo an undo action. The reason is simple: an update log record describes a

change made by a transaction during normal execution and the transaction may

subsequently be aborted, whereas a CLR describes an action taken to rollback a

transaction for which the decision to abort has already been made. Thus, the transaction

must be rolled back, and the undo action described by the CLR is definitely required.

This observation is very useful because it bounds the amount of space needed for the

log during restart from a crash: The number of CLRs that can be written during Undo is

no more than the number of update log records for active transactions at the time of the

crash. It may well happen that a CLR is written to stable storage (following WAL, of

course) but that the undo action that it describes is not yet written to disk when the

system crashes again. In this case the undo action described in the CLR is reapplied

during the Redo phase, just like the action described in update log records. For these

reasons, a CLR contains the information needed to reapply, or redo, the change

described but not to reverse it.

2.2.8.3 Other Recovery-Related Data Structures

In addition to the log, the following two tables contain important recovery-related

information:

CIT 905 Advanced Database Management System

Page | 129

1. Transaction table: This table contains one entry for each active transaction. The

entry contains (among other things) the transaction id, the status, and a field called

lastLSN, which is the LSN of the most recent log record for this transaction. The

status of a transaction can be that it is in progress, is committed, or is aborted. (In

the latter two cases, the transaction will be removed from the table once certain

`clean up' steps are completed.)

Dirty page table: This table contains one entry for each dirty page in the buffer

pool, that is, each page with changes that are not yet reflected on disk. The entry

contains a field recLSN, which is the LSN of the first log record that caused the

page to become dirty. Note that this LSN identifies the earliest log record that might

have to be redone for this page during restart from a crash. During normal

operation, these are maintained by the transaction manager and the buffer manager,

respectively, and during restart after a crash, these tables are reconstructed in the

Analysis phase of restart.

The Write-Ahead Log Protocol

Before writing a page to disk, every update log record that describes a change to

this page must be forced to stable storage. This is accomplished by forcing all log

records up to and including the one with LSN equal to the pageLSN to stable

storage before writing the page to disk.

The importance of the WAL protocol cannot be over emphasized WAL is the

fundamental rule that ensures that a record of every change to the database is available

while attempting to recover from a crash. If a transaction made a change and committed,

the no-force approach means that some of these changes may not have been written to

disk at the time of a subsequent crash. Without a record of these changes, there would

be no way to ensure that the changes of a committed transaction survive crashes. Note

that the definition of a committed transaction is effectively \a transaction whose log

records, including a commit record, have all been written to stable storage"! When a

transaction is committed, the log tail is forced to stable storage, even if a no force

approach is being used. It is worth contrasting this operation with the actions taken

CIT 905 Advanced Database Management System

Page | 130

under a force approach: If a force approach is used, all the pages modified by the

transaction, rather than a portion of the log that includes all its records, must be forced

to disk when the transaction commits.

The set of all changed pages is typically much larger than the log tail because the

size of an update log record is close to (twice) the size of the changed bytes, which is

likely to be much smaller than the page size. Further, the log is maintained as a

sequential file, and thus all writes to the log are sequential writes. Consequently, the

cost of forcing the log tail is much smaller than the cost of writing all changed pages to

disk.

Checkpointing

A checkpoint is like a snapshot of the DBMS state, and by taking checkpoints

periodically, as we will see, the DBMS can reduce the amount of work to be done

during restart in the event of a subsequent crash. Checkpointing in ARIES has three

steps. First, a begin checkpoint record is written to indicate when the checkpoint starts.

Second, an end checkpoint record is constructed, including in it the current contents of

the transaction table and the dirty page table, and appended to the log. The third step is

carried out after the end checkpoint record is written to stable storage: A special

master record containing the LSN of the begin checkpoint log record is written to a

known place on stable storage. While the end checkpoint record is being constructed,

the DBMS continues executing transactions and writing other log records; the only

guarantee we have is that the transaction table and dirty page table are accurate as of the

time of the begin checkpoint record.

This kind of checkpoint is called a fuzzy checkpoint and is inexpensive because it does

not require quiescing the system or writing out pages in the buffer pool (unlike some

other forms of checkpointing). On the other hand, the effectiveness of this

checkpointing technique is limited by the earliest recLSN of pages in the dirty pages

table, because during restart we must redo changes starting from the log record whose

LSN is equal to this recLSN. Having a background process that periodically writes dirty

CIT 905 Advanced Database Management System

Page | 131

pages to disk helps to limit this problem. When the system comes back up after a crash,

the restart process begins by locating the most recent checkpoint record. For uniformity,

the system always begins normal execution by taking a checkpoint, in which the

transaction table and dirty page table are both empty.

2.2.8.4 Recovering from a System Crash

When the system is restarted after a crash, the recovery manager proceeds in three

Phases. The Analysis phase begins by examining the most recent begin checkpoint

record, whose LSN is denoted as C and proceeds forward in the log until the last log

record. The Redo phase follows Analysis and redoes all changes to any page that might

have been dirty at the time of the crash; this set of pages and the starting point for Redo

(the smallest recLSN of any dirty page) are determined during Analysis. The Undo

phase follows Redo and undoes the changes of all transactions that were active at the

time of the crash; again, this set of transactions is identified during the Analysis phase.

Notice that Redo reapplies changes in the order in which they were originally carried

out; Undo reverses changes in the opposite order, reversing the most recent change first.

Analysis Phase

The Analysis phase performs three tasks:

2. It determines the point in the log at which to start the Redo pass.

3. It determines (a conservative superset of the) pages in the buffer pool that were

dirty at the time of the crash.

4. It identifies transactions that were active at the time of the crash and must be

undone.

Analysis begins by examining the most recent begin checkpoint log record and

initializing the dirty page table and transaction table to the copies of those structures in

the next end checkpoint record. Thus, these tables are initialized to the set of dirty pages

and active transactions at the time of the checkpoint. (If there are additional log records

between the begin checkpoint and end checkpoint records, the tables must be adjusted to

CIT 905 Advanced Database Management System

Page | 132

reflect the information in these records, but we omit the details of this Analysis then

scans the log in the forward direction until it reaches the end of the log:

1. If an end log record for a transaction T is encountered, T is removed from the

transaction table because it is no longer active.

2. If a log record other than an end record for a transaction T is encountered, an

entry for T is added to the transaction table if it is not already there. Further, the

entry for T is modified:

1. The lastLSN field is set to the LSN of this log record.

2. If the log record is a commit record, the status is set to C, otherwise

it is set to U (indicating that it is to be undone).

1. If a redo able log record affecting page P is encountered, and P is not in the dirty

page table, an entry is inserted into this table with page id P and recLSN equal to

the LSN of this re doable log record. This LSN identifies the oldest change

affecting page P that may not have been written to disk.

At the end of the Analysis phase, the transaction table contains an accurate list of all

transactions that were active at the time of the crash | this is the set of transactions with

status U. The dirty page table includes all pages that were dirty at the time of the crash,

but may also contain some pages that were written to disk. If an end write log record

were written at the completion of each write operation, the dirty page table constructed

during Analysis could be made more accurate, but in ARIES, the additional cost of

writing end write log records is not considered to be worth the gain.

2.2.8.4 Redo Phase

1. During the Redo phase, ARIES reapplies the updates of all transactions,

committed or otherwise. Further, if a transaction was aborted before the crash

and its updates were undone, as indicated by CLRs, the actions described in the

CLRs are also reapplied.

CIT 905 Advanced Database Management System

Page | 133

2. This repeating history paradigm distinguishes ARIES from other proposed

WALbased recovery algorithms and causes the database to be brought to the

same state that it was in at the time of the crash.

3. The Redo phase begins with the log record that has the smallest recLSN of all

pages in the dirty page table constructed by the Analysis pass because this log

record identifies the oldest update that may not have been written to disk prior to

the crash. Starting from this log record, Redo scans forward until the end of the

log. For each redo able log record (update or CLR) encountered, Redo checks

whether the logged action must be redone. The action must be redone unless one

of the following conditions holds:

1. The affected page is not in the dirty page table, or

2. The affected page is in the dirty page table, but the recLSN for the entry is

greater than the LSN of the log record being checked, or

3. The pageLSN (stored on the page, which must be retrieved to check this

condition) is greater than or equal to the LSN of the log record being checked.

1. The first condition obviously means that all changes to this page have been

written to disk. Because the recLSN is the first update to this page that may not

have been written to disk, the second condition means that the update being

checked was indeed propagated to disk. The third condition, which is checked

last because it requires us to retrieve the page, also ensures that the update being

checked was written to disk because either this update or a later update to the

page was written. (Recall our assumption that a write to a page is atomic; this

assumption is important here!) If the logged action must be redone:

2. The logged action is reapplied.

3. The pageLSN on the page is set to the LSN of the redone log record. No

additional log record is written at this time.

2.2.8.5 Undo Phase

CIT 905 Advanced Database Management System

Page | 134

The Undo phase, unlike the other two phases, scans backward from the end of the log.

The goal of this phase is to undo the actions of all transactions that were active at the

time of the crash, that is, to effectively abort them. This set of transactions is identified

in the transaction table constructed by the Analysis phase.

The Undo Algorithm

Undo begins with the transaction table constructed by the Analysis phase, which

identifies all transactions that were active at the time of the crash, and includes the LSN

of the most recent log record (the lastLSN field) for each such transaction. Such

transactions are called loser transactions. All actions of losers must be undone, and

further, these actions must be undone in the reverse of the order in which they appear in

the log.

Consider the set of lastLSN values for all loser transactions. Let us call this set

ToUndo. Undo repeatedly chooses the largest (i.e., most recent) LSN value in this set

and processes it, until ToUndo is empty. To process a log record:

1. If it is a CLR, and the undoNextLSN value is not null, the undoNextLSN value is

added to the set ToUndo; if the undoNextLSN is null, an end record is written for

the transaction because it is completely undone, and the CLR is discarded.

2. If it is an update record, a CLR is written and the corresponding action is undone

and the prevLSN value in the update log record is added to the set ToUndo. When

the set ToUndo is empty, the Undo phase is complete. Restart is now

complete,and the system can proceed with normal operations.

Aborting a Transaction

Aborting a transaction is just a special case of the Undo phase of Restart in which a

single transaction, rather than a set of transactions is undone.

2.2.9 Media Recovery

CIT 905 Advanced Database Management System

Page | 135

Media recovery is based on periodically making a copy of the database. Because

copying a large database object such as a file can take a long time, and the DBMS must

be allowed to continue with its operations in the meantime, creating a copy is handled in

a manner similar to taking a fuzzy checkpoint.

When a database object such as a file or a page is corrupted, the copy of that

object is brought up-to-date by using the log to identify and reapply the changes of

committed transactions and undo the changes of uncommitted transactions (as of the

time of the media recovery operation). The begin checkpoint LSN of the most recent

complete checkpoint is recorded along with the copy of the database object in order to

minimize the work in reapplying changes of committed transactions. Let us compare the

smallest recLSN of a dirty page in the corresponding end checkpoint record with the

LSN of the begin checkpoint record and call the smaller of these two LSNs I.

We observe that the actions recorded in all log records with LSNs less than I must be

reflected in the copy. Thus, only log records with LSNs greater than I need to be

reapplied to the copy. Finally, the updates of transactions that are incomplete at the time

of media recovery or that were aborted after the fuzzy copy was completed need to be

undone to ensure that the page reflects only the actions of committed transactions. The

set of such transactions can be identified as in the Analysis pass.

2.2.9.1 Shadow Paging

This recovery scheme does not require the use of a log in a single-user environment. In

a multiuser environment, a log may be needed for the concurrency control method.

Shadow paging considers the database to be made up of a number of fixed-size disk

pages (or disk blocks)-say, n-for recovery purposes. A directory with n entries' is

constructed, where the i
th

 entry points to the i
th

 database page on disk. The directory is

kept in main memory if it is not too large, and all references-reads or writes-to database

pages on disk go through it. When a transaction begins executing, the current directory-

whose entries point to the most recent or current database pages on disk-is copied into a

shadow directory. The shadow directory is then saved on disk while the current

directory is used by the transaction. During transaction execution, the shadow directory

CIT 905 Advanced Database Management System

Page | 136

is never modified. When a write_ item operation is performed, a new copy of the

modified database page is created, but the old copy of that page is not overwritten.

Instead, the new page is written elsewhere-on some previously unused disk block. The

current directory entry is modified to point to the new disk block, whereas the shadow

directory is not modified and continues to point to the old unmodified disk block

Committing a transaction corresponds to discarding the previous shadow directory.

Since recovery involves neither undoing nor redoing data items, this technique can be

categorized as a NO-UNDO/NO-REDO technique for recovery. In a multiuser

environment with concurrent transactions, logs and checkpoints must be incorporated

into the shadow paging technique. One disadvantage of shadow paging is that the

updated database pages change location on disk. This makes it difficult to keep related

database pages close together on disk without complex storage management strategies.

Furthermore, if the directory is large, the overhead of writing shadow directories to disk

as transactions commit is significant. A further complication is how to handle garbage

collection when a transaction commits. The old pages referenced by the shadow

directory that have been updated must be released and added to a list of free pages for

future use. These pages are no longer needed after the transaction commits. Another

issue is that the operation to migrate between current and shadow directories must be

implemented as an atomic operation.

2.2.9.2 Other algorithms and interaction with Concurrency Control

Like ARIES, the most popular alternative recovery algorithms also maintain a

log of database actions according to the WAL protocol. A major distinction between

ARIES and these variants is that the Redo phase in ARIES repeats history, that is,

redoes the actions of all transactions, not just the non-losers. Other algorithms redo only

the non-losers, and the Redo phase follows the Undo phase, in which the actions of

losers are rolled back.

Repeating history paradigm and the use of CLRs, ARIES is able to support fine-

granularity locks (record-level locks) and logging of logical operations, rather than just

byte-level modifications. For example, consider a transaction T that inserts a data entry

15* into a B+ tree index. Between the times this insert is done and the time that T is

CIT 905 Advanced Database Management System

Page | 137

eventually aborted, other transactions may also insert and delete entries from the tree. If

record-level locks are set, rather than page-level locks, it is possible that the entry 15* is

on a different physical page when T aborts from the one that T inserted it into. In this

case the undo operation for the insert of 15* must be recorded in logical terms because

the physical (byte-level) actions involved in undoing this operation are not the inverse

of the physical actions involved in inserting the entry.

Logging logical operations yields considerably higher concurrency, although the

use of fine-granularity locks can lead to increased locking activity (because more locks

must be set). Thus, there is a trade-off between different WAL-based recovery schemes.

We have chosen to cover ARIES because it has several attractive properties, in

particular, its simplicity and its ability to support fine-granularity locks and logging of

logical operations.

One of the earliest recovery algorithms, used in the System R prototype at IBM, takes a

very different approach. There is no logging and, of course, no WAL protocol. Instead,

the database is treated as a collection of pages and accessed through a page table, which

maps page ids to disk addresses. When a transaction makes changes to a data page, it

actually makes a copy of the page, called the shadow of the page, and changes the

shadow page. The transaction copies the appropriate part of the page table and changes

the entry for the changed page to point to the shadow, so that it can see the changes;

however, other transactions continue to see the original page table, and therefore the

original page, until this transaction commits. Aborting a transaction is simple: just

discard its shadow versions of the page table and the data pages. Committing a

transaction involves making its version of the page table public and discarding the

original data pages that are superseded by shadow pages.

This scheme suffers from a number of problems. First, data becomes highly

fragmented due to the replacement of pages by shadow versions, which may be located

far from the original page. This phenomenon reduces data clustering and makes good

garbage collection imperative. Second, the scheme does not yield a sufficiently high

degree of concurrency. Third, there is a substantial storage overhead due to the use of

CIT 905 Advanced Database Management System

Page | 138

shadow pages. Fourth, the process aborting a transaction can itself run into deadlocks,

and this situation must be specially handled because the semantics of aborting an abort

transaction gets murky. For these reasons, even in System R, shadow paging was

eventually superseded by WAL-based recovery techniques.

2.2.9.3 Database Backup and Recovery from Catastrophic Failures

So far, all the techniques we have discussed apply to non-catastrophic failures. A key

assumption has been that the system log is maintained on the disk and is not lost as a

result of the failure. Similarly, the shadow directory must be stored on disk to allow

recovery when shadow paging is used. The recovery techniques we have discussed use

the entries in the system log or the shadow directory to recover from failure by bringing

the database back to a consistent state.

The recovery manager of a DBMS must also be equipped to handle more

catastrophic failures such as disk crashes. The main technique used to handle such

crashes is that of database backup. The whole database and the log are periodically

copied onto a cheap storage medium such as magnetic tapes. In case of a catastrophic

system failure, the latest backup copy can be reloaded from the tape to the disk, and the

system can be restarted. To avoid losing all the effects of transactions that have been

executed since the last backup, it is customary to back up the system log at more

frequent intervals than full database backup by periodically copying it to magnetic tape.

The system log is usually substantially smaller than the database itself and hence can be

backed up more frequently. Thus users do not lose all transactions they have performed

since the last database backup. All committed transactions recorded in the portion of the

system log that has been backed up to tape can have their effect on the database redone.

A new log is started after each database backup. Hence, to recover from disk failure, the

database is first recreated on disk from its latest backup copy on tape.

1. Self-Assessment Exercises

CIT 905 Advanced Database Management System

Page | 139

1. How does the recovery manager ensure atomicity of transactions?

2. How does it ensure durability?

3. What is the difference between stable storage and disk?

4. What is the difference between a system crash and a media failure?

5. Explain the WAL protocol.

6. Describe the steal and no-force policies

 2.2.11 Tutor Marked Assignment

1. What are the properties required of LSNs?

2. What are the fields in an update log record? Explain the use of each

field.

3. What are redo able log records?

4. What are the differences between update log records and CLRs?

2.2.12 References/Suggested Readings
1 Date, C.J., Introduction to Database Systems (7th Edition) Addison Wesley, 2000

2 Leon, Alexis and Leon, Mathews, Database Management Systems, LeonTECHWorld

3 Elamasri R . and Navathe, S., Fundamentals of Database Systems (3 Edition), Pearsson

Education, 2000.

CIT 905 Advanced Database Management System

Page | 140

Module 2: Advanced Database Features

Unit 3: Database Security & Authorization

2.3.0 INTRODUCTION

A common problem of security for all computer systems is to prevent

unauthorized persons from gaining access to the system, either for information, making

malicious changes to all or a portion or entire database. In this unit, we examine the

ways in which data may become inconsistent or be misused. We then present

mechanisms to guard against their occurrence.

2.3.1 OBJECTIVES

At the end of this unit, students should be able to:

1. understand the various security and authorization concepts and forms

2. understand the various constraints in ensuring database consistency

1. understand and apply appropriate security measures

2.3.2 DATABASE SECURITY AND AUTHORIZATION: Basic Concepts

The Databases not protected are the dream of cyber-criminal. Those databases

contain valuable data of the organization could be easy target of an attack and are

conveniently organized. It is not surprising that the databases are the main target of

sophisticated cyber-attacks crackers2 and, increasingly, users working in the

organization and have privileges. However, there are many steps you take to protect

databases in your organization and at the same time, its reputation.

The major goal of an attacker is to obtain vital information about an individual,

government, organization or any establishment of their interest without the

authorization of the owner. Information gotten will be used for fraudulent activities.

Security mechanism such as access control, encryption should be enforced to protect the

system from unauthorized access. Security mechanisms can be oriented access control

policies based on user identity, known as discretionary safety or policies that restrict

CIT 905 Advanced Database Management System

Page | 141

access to information classified as confidential to authorized personnel, called

Mandatory Safety.

2.3.3.1 What is Database Security?

Database security is the collective measures used to protect and secure database or

database management software from illegitimate use, malicious threats and attacks.

2.3.3.2 What is Database Authorization?

It is the granting and denying of permission to an authorized user to carry out particular

transactions, and hence to change the state of the database (write item transactions)

and/or receive data from the database (read-item transactions).

2.3.3.3 What Is Database Security And Authorization?

Database security and authorization is the act of protecting the database from

unauthorized access using security measures as well as granting and denying privileges

to authorized users. The relationship is that both Database Security and Database

Authorization are used for protecting the database from unauthorized access. The

difference is that database Security is mostly used to protect database externally while

authorization is used to protect the database internally.

2.3.4 Types of Security Breaches in A Database System

Database security is a very broad area that addresses many issues, including the

following:

1. Legal and ethical issues regarding the right to access certain information. Some

information may be deemed to be private and cannot be accessed legally by

unauthorized persons.

2. Policy issues at the governmental, institutional, or corporate level as to what

kinds of information should not be made publicly available-for example, credit

ratings and personal medical records.

1. System-related issues such as the system levels at which various security

functions should be enforced-for example, whether a security function should be

CIT 905 Advanced Database Management System

Page | 142

handled at the physical hardware level, the operating system level, or the DBMS

level.

1. The need in some organizations to identify multiple security levels and to

categorize the data and users based on these classifications-for example, top

secret, secret, confidential, and unclassified. The security policy of the

organization with respect to permitting access to various classifications of data

must be enforced.

2.3.5 Security threats to Database

Threats to databases result in the loss or degradation of some or all of the following

security goals. It can be generic or specific.

2.3.5.1 Generic Threats

1. Loss of integrity: Database integrity refers to the requirement that information

be protected from improper modification. Modification of data includes creation,

insertion, modification, changing the status of data, and deletion. Integrity is lost

if unauthorized changes are made to the data by either intentional or accidental

acts. If the loss of system or data integrity is not corrected, continued use of the

contaminated system or corrupted data could result in inaccuracy, fraud, or

erroneous decisions.

1. Loss of availability (denial of service): Database availability refers to making

objects available to a human user or a program to which they have a legitimate

right. When the database is not available it incurs a loss (otherwise life is better

without the system!). So any threat that gives rise to time offline, even to check

whether something has occurred, is to be avoided.

2. Loss of confidentiality: Database confidentiality refers to the protection of data

from unauthorized disclosure. The impact of unauthorized disclosure of

confidential information can range from violation of the Data Privacy Act to

endanger of national security. Unauthorized, unanticipated, or unintentional

CIT 905 Advanced Database Management System

Page | 143

disclosure could result in loss of public confidence, embarrassment, or legal

action against the organization.

2.3.5.2 SPECIFIC THREATS

1. Commercial sensitivity: Most financial losses through fraud arise from

employees. Access controls provide both protection against criminal acts and

evidence of attempts (successful or otherwise) to carry out acts detrimental to the

organization, whether fraud, extraction of sensitive data or loss of availability.

2. Personal privacy and data protection: Internationally, personal data is normally

subject to legislative controls. Personal data is data about an identifiable

individual. Often the individual has to be alive but the method of identification is

not prescribed. So a postal code for a home may in some cases identify an

individual, if only one person is living at an address with the postal code. Such

data needs careful handling and control. The issues are too extensive to be

discussed here but the implications should be noted. Personal data needs to be

identified as such. Controls must exist on the use of that data (which may restrict

ad-hoc queries). Audit trails of all access and disclosure of the information need

to be retained as evidence.

3. Computer misuse: There is also generally legislation on the misuse of

computers. Misuse includes the violation of access controls and attempts to cause

damage by changing the database state or introducing worms and viruses to

interfere with proper operation. These offences are often extraditable. So an

unauthorized access in Hong Kong using computers in France to access

databases in Germany which refer to databases in America could lead to

extradition to France or Germany or the USA.

4. Audit requirements: These are operational constraints built around the need to

know who did what, who tried to do what, and where and when everything

happened. They involve the detection of events (including CONNECT and

GRANT transactions), providing evidence for detection, assurance as well as

either defense or prosecution.

CIT 905 Advanced Database Management System

Page | 144

1. Counter Measures

The most resource that is commonly affected when there is a security breach is the

information of the organization. The information can be financial document,

security document, transaction document and so on. The following measures are

adopted to mitigate threats.

1. Access Control: The security mechanism of a DBMS must include provisions for

restricting access to the database as a whole; this function is called access control

and is handled by creating user accounts and passwords to control login process

by the DBMS.

2. Inference Control: The inference control security problem associated with

databases is that of controlling the access to statistical information or summaries

of values based on various criteria that can reveal the individual data. The

countermeasures to statistical database security problem is called inference

control measures.

3. Flow Control: Another security is that of flow control, which prevents

information from flowing in such a way that it reaches unauthorized users.

Channels that are pathways for information to flow implicitly in ways that violate

the security policy of an organization are called covert channels.

4. Encryption: A final security issue is data encryption, which is used to protect

sensitive data (such as credit card numbers) that is being transmitted via some

type of communication network. The data is encoded using some coding

algorithm. An unauthorized user who accesses encoded data will have difficulty

deciphering it, but authorized users are given decoding or decrypting algorithms

(or keys) to decipher data.

Database security breaches can be mitigated through security mechanisms. There are

two main security mechanisms and they are:

5. Discretionary access control

6. Mandatory access control

CIT 905 Advanced Database Management System

Page | 145

1. Discretionary Access Control Based On Granting and Revoking Privileges
Discretionary Access is a way to restrict access to information based on

privileges. Privileges to use a database resource are assigned and removed

individually.

The typical method of enforcing discretionary access control in a database

system is based on the granting and revoking of privileges. Many current

relational DBMSs use some variation of this technique. The main idea is to

include statements in the query language that allow the DBA and selected users

to grant and revoke privileges. The granting and revoking of privileges generally

follow an authorization model for discretionary privileges known as the access

matrix model, where the rows of a matrix M represent subjects (users, accounts,

programs) and the columns represent objects (relations, records, columns, views,

operations). Each position M (i, j) in the matrix represents the types of privileges

(read, write, update) that subject i holds on object j.

These privileges to users include the capability to access specific data files,

records, or fields in a specified mode (such as read, insert, delete, or update).

2. Mandatory Access Control Based on Granting and Revoking Privileges

The discretionary access control technique of granting and revoking privileges on

relations has traditionally been the main security mechanism for relational

database systems. A user either has or does not have a certain privilege. In many

applications, an additional security policy is needed that classifies data and users

based on security classes. This approach, known as mandatory access control,

would typically be combined with the discretionary access control mechanisms.

It is important to note that most commercial DBMSs currently provide

mechanisms only for discretionary access control. However, the need for

multilevel security exists in government, military, and intelligence applications,

as well as in many industrial and corporate applications. The mandatory security

mechanisms impose multilevel security and classifying data users in several

CIT 905 Advanced Database Management System

Page | 146

adhoc levels and then implementing appropriate security policy of the

organization.

Typical security classes are top secret (TS), secret (S), confidential (C), and unclassified

(U), where TS is the highest level and U the lowest. Other more complex security

classification schemes exist, in which the security classes are organized in a lattice.

1. A subject S is not allowed read access to an object 0 unless class(S) ≥ class (O).

 This is known as the simple security property.

2. A subject S is not allowed to write an object 0 unless class(S) ≤ class (O). This is

known as the star property (or *-property).

The first restriction is intuitive and enforces the obvious rule that no subject can read an

object whose security classification is higher than the subject's security clearance. The

second restriction is less intuitive. It prohibits a subject from writing an object at a lower

security classification than the subject's security clearance. Violation of this rule would

allow information to flow from higher to lower classifications, which violates a basic

tenet of multilevel security. For example, a user (subject) with TS clearance may make a

copy of an object with classification TS and then write it back as a new object with

classification U, thus making it visible throughout the system. To incorporate

multilevel security notions into the relational database model, it is common to consider

attribute values and tuples as data objects. Hence, each attribute A is associated with a

classification attribute C in the schema, and each attribute value in a tuple is associated

with a corresponding security classification. In addition, in some models, a tuple

classification attribute TC is added to the relation attributes to provide a classification

for each tuple as a whole.

The apparent key of a multilevel relation is the set of attributes that would have formed

the primary key in a regular (single-level) relation. A multilevel relation will appear to

contain different data to subjects (users) with different clearance levels. In some cases,

it is possible to store a single tuple in the relation at a higher classification level and

produce the corresponding tuples at a lower-level classification through a process

CIT 905 Advanced Database Management System

Page | 147

known as filtering. In other cases, it is necessary to store two or more tuples at different

classification levels with the same value for the apparent key. This leads to the concept

of polyinstantiation where several tuples can have the same apparent key value but

have different attribute values for users at different classification levels.

Comparing discretionary access control and mandatory Access Control

Discretionary Access Control (DAC) policies are characterized by a high degree of

flexibility, which makes them suitable for a large variety of application domains. The

main drawback of DAC models is their vulnerability to malicious attacks, such as

Trojan horses embedded in application programs. The reason is that discretionary

authorization models do not impose any control on how information is propagated and

used once it has been accessed by users authorized to do so. By contrast, mandatory

policies ensure a high degree of protection-in a way, they prevent any illegal flow of

information. They are therefore suitable for military types of applications, which require

a high degree of protection. However, mandatory policies have the drawback of being

too rigid in that they require a strict classification of subjects and objects into security

levels, and therefore they are applicable to very few environments. In many practical

situations, discretionary policies are preferred because they offer a better trade-off

between security and applicability.

2.3.6.2 Security Features to Control Users Access To Data.

1. User Identification/Authentication:

Users accessing a database must first connect to the DBMS and then establish a

session with the database server. Some systems, for example Oracle, Sybase, and

SQLBase, provide a complete identification iend authentication mechanism

requiring every user connecting to the database to first identify himself to the

database server with some assigned user identifier and then provide his password

for authentication. Other DBMSs, such as Ingres and Informix, leave the

authentication task to the operating system.

CIT 905 Advanced Database Management System

Page | 148

1. System Privileges:

System privileges allow the execution of database operations. Examples of system

privileges are: create, alter, and drop objects (tables, views, and procedures);

create, alter, and drop subjects (users and groups); and start up and shut down the

database server. Generally, DBMSs reserve the privileges to start up and shut

down the database server and to create, alter, and drop subjects to a special user

called a Database Administrator (DBA). The DBA can grant other users‘

privileges to create, modify, and drop tables.

1. Access Privileges:

Most DBMSs allow specification of authorizations stating the types of accesses

each subject is allowed to exercise on the tables. Types of accesses for which

authorizations can be specified include select, insert, update, and delete. Some

systems, such as Oracle, Sybase, and Informix, allow access authorizations to be

specified for single columns in the tables. Others, such as Ingres and SQLbase,

allow column-level authorizations only for the update access mode. Some

systems (e.g., Oracle and Informix) also permit authorizations for the reference

access mode, which allow users to refer to a table as a parent of a referential

integrity constraint. Moreover, some systems permit authorizations for the

execute access mode on procedures, which allows users to execute canned

programs.

2. Authorization Administration:

Authorization administration regulates who can give authorizations to subjects.

Almost all DBMSs support the role of DBA. The DBA is a privileged user who

can execute system privileged operations. The DBA can also grant subjects

(users and groups) system and access privileges. Although the DBA is the only

user who can grant system privileges, some systems also allow users to grant

access privileges to other subjects based on the ownership and the grant option .

Not all systems support the grant option. For example, in Ingres and SQLBase,

CIT 905 Advanced Database Management System

Page | 149

only the owner of a table or the DBA can grant privileges on the table to other

users.

1. Authorization Subjects: Subjects of authorizations are generally users. Most

systems, however, allow the DBA to define groups of users, in which case

authorizations can be granted to groups. Authorizations given to a group are

applicable to all users of the group. Almost all DBMSs have at least one group,

called p & lic, that includes all users of the systems as members. In some

systems, such as Ingres and Oracle, authorizations can also be specified for roles.

The DBA can create roles, grant authorizations to roles, and grant roles to users.

Each user is assigned a default role, which is activated when the user logs in. To

use a role, a user must provide the appropriate password. Privileges needed for

the execution of an application are generally granted to roles. This implies that

the user must use a certain role to execute a specific application. As an example,

in Ingres, the application developer associates a role with each application; in

order to start the application, users must provide the role‘s password.

1. Privileges : The concept of an authorization identifier is used to refer to a user

account (or group of user accounts).Informally, there are two levels for assigning

privileges to use the database system:

1. ACCOUNT LEVEL: At this level, the administrator specifies the special

privileges that each user, independent of the database tables (CREATE TABLE,

CREATE VIEW, ALTER, MODIFY, SELECT). If a certain account does not

have the CREATE TABLE privilege, no relations can be created from that

account.

2. The privileges at the account level includes:

1. The CREATE SCHEMA or CREATE TABLE privilege - to create a schema or

base relation.

2. The CREATE VIEW privilege.

3. The ALTER privilege - to apply schema changes such as adding or removing

attributes from relations.

CIT 905 Advanced Database Management System

Page | 150

4. The DROP privilege - to delete relations or views.

5. The MODIFY privilege - to insert, delete, or update tuples.

6. The SELECT privilege - to retrieve information from the database by using a

SELECT query.

Level of Relationship (Table Level):

At this level privileges to access every relationship or single view are controlled. Each

database table is assigned an account owner, who has all privileges on that table and is

responsible for granting them to other accounts. Privileges at the relation level specify

for each user the individual relations on which each type of command can be applied.

Some privileges also refer to individual columns (attributes) of relations.

Properties of a secured database

1. Secrecy: Users should not be able to see things they are not supposed to see.

E.g., A student can‘t see other students‘ grades.

1. Integrity: Users should not be able to modify things they are not supposed to

modify. Example, only instructors can assign grades.

1. Availability: Users should be able to see and modify things they are allowed to.

Challenges of Database Security

Considering the vast growth in volume and speed of threats to databases and

information assets, research efforts need to be devoted to the following issues: data

quality, intellectual property rights, and database survivability. These are only some of

the main challenges that researchers in database security are trying to address.

Data Quality

The database community needs techniques and organizational solutions to assess and

attest the quality of data. These techniques may include simple mechanisms such as

quality stamps that are posted on Web sites. We also need techniques that provide more

effective integrity semantics verification and tools for the assessment of data quality,

based on techniques such as record linkage. Application-level recovery techniques are

also needed for automatically repairing incorrect data. The ETL (extract, transform,

CIT 905 Advanced Database Management System

Page | 151

load) tools widely used to load data in data warehouses are presently grappling with

these issues.

Intellectual Property Rights

With the widespread use of the Internet and intranets, legal and informational aspects of

data are becoming major concerns of organizations. To address these concerns,

watermarking techniques for relational data have been proposed. The main purpose of

digital watermarking is to protect content from unauthorized duplication and

distribution by enabling provable ownership of the content. It has traditionally relied

upon the availability of a large noise domain within which the object can be altered

while retaining its essential properties. However, research is needed to assess the

robustness of such techniques and to investigate different approaches aimed at

preventing intellectual property rights violations.

Database Survivability

Database systems need to operate and continue their functions, even with reduced

capabilities, despite disruptive events such as information warfare attacks. A DBMS, in

addition to making every effort to prevent an attack and detecting one in the event of

occurrence, should be able to do the following:

1. Confinement. Take immediate action to eliminate the attacker‘s access to the

system and to isolate or contain the problem to prevent further spread.

2. Damage assessment. Determine the extent of the problem, including failed

functions and corrupted data.

3. Reconfiguration. Reconfigure to allow operation to continue in a degraded

mode while recovery proceeds.

4. Repair. Recover corrupted or lost data and repair or reinstall failed system

functions to reestablish a normal level of operation.

5. Fault treatment. To the extent possible, identify the weaknesses exploited in the

attack and take steps to prevent a recurrence.

CIT 905 Advanced Database Management System

Page | 152

2.3.7 Conclusion

The various provisions a database system may make for authorization may not

sufficient protection for highly sensitive data. In such cases, data may be encrypted. It is

not possible for encrypted data to be read unless the reader knows how to decipher

(decrypt) the encrypted data. It is difficult to ensure the privacy of individuals while

allowing use of data for statistical purposes. A simple way to deal with potential

security breaches is for the system to reject any query that involves fewer than some

predetermined number of individuals. Another approach to security is data pollution.

This involves the random falsification of data provided in response to a query. A similar

technique involves random modification of the query itself. For both of these

techniques, the goals involve a trade‐off between accuracy and security. Regardless of

the approach taken to security of statistical data, it is possible for a malicious user to

determine individual data values. However, good techniques can make the expense in

terms of cost and time sufficiently high to be a deterrent

2.3.8 Tutor Marked Assignment

1. Describe the aspects of database Survivability

2. Explain the security features of database to control users access to data

3. What is a security Threat? Explain the counter measures of security threats

4. Describe the various categories of database security threats

2.3.8 References and Further Reading

Burtescu, E. (2009). Database security–attacks and control methods. Journal of applied

quantitative methods, 4(4), 449-454.

Demurjian, P. S. A. (1999). Security, authorization and authentication for entreprise

computing. CSE Technical Report TR-03-99, Dept. of Computer Science and

Engineering, University of Connecticut.

Stonebraker, M., & Kemnitz, G. (1991). The POSTGRES next generation database

management system. Communications of the ACM, 34(10), 78-92.

Beach, B., & Platt, D. C. (2004). U.S. Patent No. 6,728,713. Washington, DC: U.S.

Patent and Trademark Office.

Özsu, M. T., & Valduriez, P. (2011). Principles of distributed database systems.

Springer Science & Business Media.

Ceri, S. (2017). Distributed databases. Tata McGraw-Hill Education.

CIT 905 Advanced Database Management System

Page | 153

Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V. (2011). Database

modeling and design: logical design. Elsevier.

Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Database systems: concepts,

languages & architectures (Vol. 1). London: McGraw-Hill.

Singh, S. K. (2011). Database systems: Concepts, design and applications. Pearson

Education India.

Marakas, G. M., & O'Brien, J. A. (2013). Introduction to information systems. New

York: McGraw-Hill/Irwin.

CIT 905 Advanced Database Management System

Page | 154

MODULE 3: DISTRIBUTED DATABASES

UNIT 1: DISTRIBUTED DATABASE SYSTEM (DDB)

3.1 Introduction:

Database is primarily used for storing and manipulating the data for the

organization or any particular requirement. It contains data and its related architectures.

In ideal setting, any database will have its server and more than one user. Hence when

database is designed, its server is kept at one place (or computer) and users are made to

access this system. A distributed database is a type of database in which storage devices

are not all attached to a common central processing unit. The data may be stored in

multiple computers located in the same physical location, or may be dispersed over a

network of interconnected computers. This unit gives an overview of distributed

databases and their various forms

3.1.1 Objectives

 By the end of this unit, you should be able to:

1. define Distributed database

2. know the features of distributed Databases

3. state the advantages and disadvantages of distributed databases

3.1.2 What is Distributed Database System?

 A distributed database is a type of database in which storage devices are not all

attached to a common central processing unit. The data may be stored in multiple

computers located in the same physical location, or may be dispersed over a network of

interconnected computers. Collections of data can be distributed across multiple

physical locations. A distributed database can reside on network servers on the internet,

corporate intranets or other company networks. The replication and distribution of

databases improves database performance at end-user places.

Initially when database is created, it will be like a skeleton. As and when user starts

accessing the database, its size grows or shrinks. Usually the size of the database grows

CIT 905 Advanced Database Management System

Page | 155

drastically than shrinking. Similarly number of users may also increase. These users

may not be from one single location.

Figure 3.1: Structure of Distributed Database System

They will be from around the world. Hence the transaction with the database also

increases. But this will create heavy network load as the users are at different location

and server is at some other remote location. All these increasing factors affect the

performance of database – it reduces its performance. But imagine systems like trading,

bank accounts, etc which gives such a slow performance will lead to issues like

concurrency, redundancy, security etc. Moreover users have to wait for longer time for

their transaction to get executed. User cannot sit in front of their monitor to see the

balance in their account for longer time.

In order to overcome these issues, a new way of allocating users and DB server is

introduced. This new method is known as Distributed Database System. In this method,

database server is kept at different remote locations. That means different database

server is created and are placed at different locations rather than at single location. This

in turn kept in sync with each other to maintain the consistency. The users accessing the

DB will access any of these DB servers over the network as if they are accessing the DB

from single location. They will be able to access the server without knowing its

location. This in turn reduced the accessing time for the user. i.e.; when a user issues a

CIT 905 Advanced Database Management System

Page | 156

query, the system will fetch the server near to that user and access will be provided to

nearest server. Hence it reduces the accessing time and network load too.

In ensuring that the distributive databases are up to date and current, there are two

processes which are replication and duplication. Replication is using the specialized

software that looks for changes in the distributive database. Once the changes have been

identified, the replication process makes the entire database look the same. The

replication process can be complex and also requires a lot of time with computer

resources. This will depend on the size and number of the distributive database.

Duplication on the other hand identifies one database as a master and then duplicates

that database. A distributed database does not share main memory.

A database user accesses the distributed database through;

1. Local application which does not require data from other sites

2. Global applications which do require data from other sites.

3.1.3 Types of Distributed Database Systems

 There are two types of DDB systems; Homogeneous and Heterogeneous

1. Homogeneous DDB

This type of distributed database system will have identical database systems

distributed over the network. When we say identical database systems it includes

software, hardware, operating systems etc – in short all the components that are

essential for having a DB. For example a database system with Oracle alone

distributed over the network, or with DB2 alone distributed over the network etc.

this type of DDBMS system does not give the feel that they are located at

different locations. Users access them as if they are accessing the same system.

Heterogeneous DDB

This is contrast to above concept. Here we will have different DBs distributed

over the network. For example DB at one location can be oracle; at another

location can be Sybase, DB2 or SQL server. In other words, in this type of DDB,

CIT 905 Advanced Database Management System

Page | 157

at least one of the DB is different from other DBs. In addition to this, the

operating systems that they are using can also be different – one DB may be in

Windows system while other would be in LINUX. Irrespective of the type of

DDBMS used, user will be accessing these DBs as if they are accessing it

locally.

3.1.4 Advantages and Disadvanatges of Distributed Databases

Although DBs helps in performance, security and recovery, there are many other

advantages of this type of DBs.

1. Transparency Levels: In this systems, physical location of the different DBs, the

data like files, tables and any other data objects are not known to the users. They

will have the illusion that they are accessing the single database at one location.

Thus this method gives the distribution transparency about the databases. In

addition, the records of the tables can also be distributed over the databases either

wholly or partially by fragmenting them. This type of system provides location

transparency by allowing the user to query any database or tables from any location,

network transparency by allowing to access any DB over the network, naming

transparency by accessing any names of objects like tables, views etc, replication

transparency by allowing to keep the copies of the records at different DBs,

fragmentation transparency by allowing to divide the records in a table horizontally

or vertically.

1. Availability and Reliability: Distribution of data among different DBs allows the

user to access the data without knowing failure of any one of the system. If any

system fails or crashes, data will be provided from other system. For example, if

DB-IN fails, the user will be given data from DB-ALL or vice versa. User will not

be given message that the data is from DB-IN or DB-ALL, i.e.; all the DBs will be

in sync with each other to survive the failure. Hence data will be available to the

user all the time. This will in turn guarantee the reliability of the system.

CIT 905 Advanced Database Management System

Page | 158

2. Performance : Since the users access the data that are present in the DBs which are

near to them, it reduces the network load and network time. This also reduces the

data management time. Hence this type of systems gives high performance.

3. Modularity : Suppose any new DB has to be added to this system. This will not

require any complex changes to the existing system. Any new DBs can be easily

added to the system, without having much change to the existing system (because

the entire configuration to have multiple DB already exists in the system).

Similarly, if any DB has to be modified or removed, it can also be done without

much effort.

3.1.5 Disadvantages

This system also has disadvantages.

1. Increased Complexity: This is the main drawback of this system. Since it has

many DBs, it has to maintain all of them to work together. This needs extra design

and work to keep them in sync, coordinate and make them work efficiently. These

extra changes to the architecture makes DDBMS complex than a DB with single

server.

2. Very Expensive: Since the complexity is increased, cost of maintaining these

complexity also increases. Cost for multiple DBs and manage them are extra

compared to single DB.

3. Difficult to maintain Integrity: Extra effort is needed to maintain the integrity

among the DBs in the network. It may need extra network resources to make it

possible.

4. Security: Since data is distributed over the DBs and network, extra caution is to be

taken to have security of data. The access levels as well unauthorized access over

the network needs some extra effort.

5. DDBMS requires very good experience in DBMS to deal with.

6. Fragmentation of data and their distribution gives extra challenges to the

developer as well as database design. This in turn increases the complexity of

database design to meet the transparency, reliability, integrity and redundancy.

CIT 905 Advanced Database Management System

Page | 159

1. Components of Distributed Database Systems

7. Distributed Database System consists of the various components:

8. Database manager is one of major component of Distributed Database systems.

He/she is responsible for handling a segment of the distributed database.

9. User Request Interface is another important component of distributed database

systems. It is usually a client program which acts as an interface to the

Distributed Transaction Manager.

10. Distributed Transaction Manager is a program that helps in translating the user

requests and converting into format required by the database manager, which are

typically distributed. A distributed database system is made of both the

distributed transaction manager and the database manager.

3.1.7 Current Trends in Distributed Databases

Current trends in distributed data management are centered on the Internet, in

which petabytes of data can be managed in a scalable, dynamic, and reliable

fashion. Two important areas in this direction are cloud computing and peer-to-

peer databases.

Cloud Computing

Cloud computing is the paradigm of offering computer infrastructure, platforms,

and software as services over the Internet. It offers significant economic

advantages by limiting both up-front capital investments toward computer

infrastructure as well as total cost of ownership. It has introduced a new challenge

of managing petabytes of data in a scalable fashion. Traditional database systems

for managing enterprise data proved to be inadequate in handling this challenge,

which has resulted in a major architectural revision.

Peer-to-Peer Database Systems

A peer-to-peer database system (PDBS) aims to integrate advantages of P2P

(peerto-peer) computing, such as scalability, attack resilience, and self-

CIT 905 Advanced Database Management System

Page | 160

organization, with the features of decentralized data management. Nodes are

autonomous and are linked only to a small number of peers individually. It is

permissible for a node to behave purely as a collection of files without offering a

complete set of traditional DBMS functionality. While FDBS and MDBS mandate

the existence of mappings between local and global federated schemas, PDBSs

attempt to avoid a global schema by providing mappings between pairs of

information sources. In PDBS, each peer potentially models semantically related

data in a manner different from other peers, and hence the task of constructing a

central mediated schema can be very challenging. PDBSs aim to decentralize data

sharing.

Problems in Distributed Database

One of the major problems in distributed systems is deadlock. A deadlock is a state

where a set of processes request resources that are held by other processes in the

set and none of the process can be completed. One process can request and acquire

resources in any order without knowing the locks acquired by other processes. If

the sequence of the allocations of resources to the processes is not controlled,

deadlocks can occur. Hence we focus on deadlock detection and removal.

Deadlock Detection:

In order to detect deadlocks, in distributed systems, deadlock detection algorithm must

be used. Each site maintains a local wait for graph. If there is any cycle in the graph,

there is a deadlock in the system. Even though there is no cycle in the local wait for

graph, there can be a deadlock. This is due to the global acquisition of resources.

In order to find the global deadlocks, global wait for graph is maintained. This is known

as centralized approach for deadlock detection. The centralized approach to deadlock

detection, while straightforward to implement, has two main drawbacks.

1. First, the global coordinator becomes a performance bottleneck, as well as a

single point of failure.

CIT 905 Advanced Database Management System

Page | 161

2. Second, it is prone to detecting non-existing deadlocks, referred to as

phantom deadlocks.

1. Deadlock Recovery

A deadlock always involves a cycle of alternating process and resource nodes in

the resource graph. The general approach for deadlock recovery is process

termination. In this method, nodes and edges of the resource graph are

eliminated. In Process Termination, the simplest algorithm is to terminate all

processes involved in the deadlock. This approach is unnecessarily wasteful,

since, in most cases, eliminating a single process is sufficient to break the

deadlock. Thus, it is better to terminate processes one at a time, release their

resources, and check at each step if the deadlock still persists. Before termination

of process following parameters need to be checked:

 a) The priority of the process:

 b) The cost of restarting the process

 c) The current state of the process

3.1.8 Conclusion
A distributed database is a type of database in which storage devices are not all attached

to a common central processing unit. The data may be stored in multiple computers

located in the same physical location, or may be dispersed over a network of

interconnected computers.

3.1.9.0 Summary
In this unit we have learnt that:

i. a distributed database is a type of database in which storage devices are not all

attached to a common central processing unit. The data may be stored in multiple

computers located in the same physical location, or may be dispersed over a

network of interconnected computers.

ii) The two types of DDB are Homogeneous and heterogeneous systems

iii) Advantages and disadvantages of DDBMS

CIT 905 Advanced Database Management System

Page | 162

3.1.10 Tutor Marked Assignment
1. Define DDBs and state is advantages and disadvantages

2. Give suitable structure of a distributed database System

3. Enumerate the challenges of distributed database systems

1. Further Reading and other Resources
1. David M. Kroenke, David J. Auer (2008). Database Concepts. New Jersey .

Prentice Hall

2. Elmasri Navathe (2003). Fundamentals of Database Systems. England. Addison

Wesley.

3. Fred R. McFadden, Jeffrey A. Hoffer (1994). Modern Database management.

England., Addison Wesley Longman

CIT 905 Advanced Database Management System

Page | 163

MODULE 3: DISTRIBUTED DATABASES

UNIT 2: ENHANCED DATABASE MODELS

3.2.1 Introduction:

This unit provides an overview of the network data model and hierarchical data

model. The original network model and language were presented in the CODASYL

Data Base Task Group‘s 1971 report; hence it is sometimes called the DBTG model.

Revised reports in 1978 and 1981 incorporated more recent concepts. In this unit, rather

than concentrating on the details of a particular CODASYL report, we present the

general concepts behind network-type databases and use the term network model rather

than CODASYL model or DBTG model. The original CODASYL/DBTG report used

COBOL as the host language. Regardless of the host programming language, the basic

database manipulation commands of the network model remain the same. Although the

network model and the object-oriented data model are both navigational in nature, the

data structuring capability of the network model is much more elaborate and allows for

explicit insertion/deletion/modification semantic specification. However, it lacks some

of the desirable features of the object models.

There are no original documents that describe the hierarchical model, as there are

for the relational and network models. The principles behind the hierarchical model are

derived from Information Management System (IMS), which is the dominant

hierarchical system in use today by a large number of banks, insurance companies, and

hospitals as well as several government agencies.

3.2.1 Concepts of Network Data Modeling

There are two basic data structures in the network model: records and sets.

 3.2.1.1 Records, Record Types, and Data Items

CIT 905 Advanced Database Management System

Page | 164

Data is stored in records; each record consists of a group of related data values. Records

are classified into record types, where each record type describes the structure of a

group of records that store the same type of information. Each record type is given a

name, and format (data type) for each data item (or attribute) in the record type. Figure

3.2.1 shows a record type STUDENT with data items NAME, SSN, ADDRESS,

MAJORDEPT, and BIRTHDATE.

Figure 3.2.1 Illustration of record type STUDENT with data items

We can declare a virtual data item (or derived attribute) AGE for the record type

shown in Figure above and write a procedure to calculate the value of AGE from the

value of the actual data item BIRTHDATE in each record. A typical database

application has numerous record types—from a few to a few hundred. To represent

relationships between records, the network model provides the modeling construct

called set type, which we discuss next.

 Set Types and Their Basic Properties

A set type is a description of a 1:N relationship between two record types. Figure

3.2.2 shows how we represent a set type diagrammatically as an arrow. This type of

diagrammatic representation is called a Bachman diagram. Each set type definition

consists of three basic elements:

1. A name for the set type.

CIT 905 Advanced Database Management System

Page | 165

2. An owner record type.

3. A member record type.

Figure 3.2.2. Representation of a set type

The set type in Figure 3.2.2 is called MAJOR_DEPT; DEPARTMENT is the owner

record type, and STUDENT is the member record type. This represents the 1:N

relationship between academic departments and students majoring in those departments.

In the database itself, there will be many set occurrences (or set instances)

corresponding to a set type. Each instance relates one record from the owner record

type—a DEPARTMENT record in our example—to the set of records from the member

record type related to it—the set of STUDENT records for students who major in that

department. Hence, each set occurrence is composed of:

1. One owner record from the owner record type.

2. A number of related member records (zero or more) from the member record

type.

A record from the member record type cannot exist in more than one set occurrence of a

particular set type. This maintains the constraint that a set type represents a 1:N

relationship. In our example a STUDENT record can be related to at most one major

DEPARTMENT and hence is a member of at most one set occurrence of the

MAJOR_DEPT set type.

A set occurrence can be identified either by the owner record or by any of the member

records. Figure 3.2.3, shows four set occurrences (instances) of the MAJOR_DEPT set

CIT 905 Advanced Database Management System

Page | 166

type. Notice that each set instance must have one owner record but can have any number

of member records (zero or more). Hence, we usually refer to a set instance by its owner

record. The four set instances in Figure 3.2.3 can be referred to as the ‗Computer

Science‘, ‗Mathematics‘, ‗Physics‘, and ‗Geology‘ sets. It is customary to use a different

representation of a set instance where the records of the set instance are shown linked

together by pointers, which corresponds to a commonly used technique for

implementing sets.

In the network model, a set instance is not identical to the concept of a set in

mathematics. There are two principal differences:

1. The set instance has one distinguished element—the owner record—whereas in a

mathematical set there is no such distinction among the elements of a set.

1. In the network model, the member records of a set instance are ordered, whereas

order of elements is immaterial in a mathematical set. Hence, we can refer to the

first, second, i
th

, and last member records in a set instance. Figure 3.2.4 shows an

alternate "linked" representation of an instance of the set MAJOR_DEPT.

Figure 3.2.3 Four set instances of the set type MAJOR_DEPT.

CIT 905 Advanced Database Management System

Page | 167

In Figure 3.2.4, the record of ‗Manuel Rivera‘ is the first STUDENT (member) record in

the ‗Computer Science‘ set, and that of ‗Kareem Rashad‘ is the last member record. The

set of the network model is sometimes referred to as an owner-coupled set or co-set, to

distinguish it from a mathematical set.

Figure 3.2.4: Alternate representation of a set instance as a linked list.

1. Special Types of Sets

System-owned (Singular) Sets. One special type of set in the CODASYL

network model is worth mentioning: SYSTEM-owned sets.

Figure 3.2.5: A singular (SYSTEM-owned) set ALL_DEPTS.

A system-owned set is a set with no owner record type; instead, the system is the

owner. We can think of the system as a special "virtual" owner record type with only

CIT 905 Advanced Database Management System

Page | 168

a single record occurrence. System-owned sets serve two main purposes in the

network model:

1. They provide entry points into the database via the records of the specified

member record type. Processing can commence by accessing members of that

record type, and then retrieving related records via other sets.

2. They can be used to order the records of a given record type by using the set

ordering specifications. By specifying several system-owned sets on the same

record type, a user can access its records in different orders.

A system-owned set allows the processing of records of a record type by using the

regular set operations. This type of set is called a singular set because there is only one

set occurrence of it. The diagrammatic representation of the system-owned set

ALL_DEPTS is shown in Figure 3.2.5, which allows DEPARTMENT records to be

accessed in order of some field—say, NAME—with an appropriate set-ordering

specification. Other special set types include recursive set types, with the same record

serving as an owner and a member, which are mostly disallowed; multimember sets

containing multiple record types as members in the same set type are allowed in some

systems.

3.2.2 Stored Representations of Set Instances

A set instance is commonly represented as a ring (circular linked list) linking the

owner record and all member records of the set, as shown in Figure 10.4. This is also

sometimes called a circular chain. The ring representation is symmetric with respect to

all records; hence, to distinguish between the owner record and the member records, the

DBMS includes a special field, called the type field that has a distinct value (assigned

by the DBMS) for each record type. By examining the type field, the system can tell

whether the record is the owner of the set instance or is one of the member records. This

type field is hidden from the user and is used only by the DBMS.

CIT 905 Advanced Database Management System

Page | 169

In addition to the type field, a record type is automatically assigned a pointer field by the

DBMS for each set type in which it participates as owner or member. This pointer can be

considered to be labeled with the set type name to which it corresponds; hence, the

system internally maintains the correspondence between these pointer fields and their set

types. A pointer is usually called the NEXT pointer in a member record and the FIRST

pointer in an owner record because these point to the next and first member records,

respectively. In our example of Figure 3.2.3, each student record has a NEXT pointer to

the next student record within the set occurrence. The NEXT pointer of the last member

record in a set occurrence points back to the owner record. If a record of the member

record type does not participate in any set instance, its NEXT pointer has a special nil

pointer. If a set occurrence has an owner but no member records, the FIRST pointer

points right back to the owner record itself or it can be nil.

The preceding representation of sets is one method for implementing set instances. In

general, a DBMS can implement sets in various ways. However, the chosen

representation must allow the DBMS to do all the following operations:

1. Given an owner record, find all member records of the set occurrence.

2. Given an owner record, find the first, i
th

, or last member record of the set

occurrence. If no such record exists, return an exception code.

3. Given a member record, find the next (or previous) member record of the set

occurrence. If no such record exists, return an exception code.

4. Given a member record, find the owner record of the set occurrence.

The circular linked list representation allows the system to do all of the preceding

operations with varying degrees of efficiency. In general, a network database schema has

many record types and set types, which means that a record type may participate as

owner and member in numerous set types. For example, in the network schema that

appears later as Figure 3.2.7, the EMPLOYEE record type participates as owner in four

set TYPES—MANAGES, IS_A_SUPERVISOR, E_WORKSON, and

CIT 905 Advanced Database Management System

Page | 170

DEPENDENTS_OF—and participates as member in two set types—WORKS_FOR

and SUPERVISEES. In the circular linked list representation, six additional pointer

fields are added to the EMPLOYEE record type. However, no confusion arises,

because each pointer is labeled by the system and plays the role of FIRST or NEXT

pointer for a specific set type.

3.2.2.1 Using Sets to Represent M:N Relationships

A set type represents a 1:N relationship between two record types. This means that a

record of the member record type can appear in only one set occurrence. This

constraint is automatically enforced by the DBMS in the network model. To represent

a 1:1 relationship, the extra 1:1 constraint must be imposed by the application

program.

An M:N relationship between two record types cannot be represented by a single set

type. For example, consider the WORKS_ON relationship between EMPLOYEEs

and

PROJECTs. Assume that an employee can be working on several projects

simultaneously and that a project typically has several employees working on it. If we

try to represent this by a set type, neither the set type in Figure 3.2.6a nor that in

Figure 3.2.6 (b) will represent the relationship correctly. Figure 3.2.6 (a) enforces the

incorrect constraint that a PROJECT record is related to only one EMPLOYEE

record, whereas Figure 3.2.6 (b) enforces the incorrect constraint that an EMPLOYEE

record is related to only one PROJECT record. Using both set types E_P and P_E

simultaneously, as in Figure 3.2.6 (c), leads to the problem of enforcing the constraint

that P_E and E_P are mutually consistent inverses, plus the problem of dealing with

relationship attributes.

The correct method for representing an M:N relationship in the network model is to

use two set types and an additional record type, as shown in Figure 3.2.6(d). This

additional record type—WORKS_ON, in our example—is called a linking (or

CIT 905 Advanced Database Management System

Page | 171

dummy) record type. Each record of the WORKS_ON record type must be owned

by one EMPLOYEE record through the E_W set and by one PROJECT record

through the P_W set and serves to relate these two owner records.

Figure 3.2.6: Representing M:N relationships. (a)–(c) Incorrect representations.

(d) Correct representation using a linking record type.

Figure 3.2.6 shows an example of individual record and set occurrences in the linked

list representation corresponding to the schema in Figure 3.2.6(d). Each record of the

WORKS_ON record type has two NEXT pointers: the one marked NEXT(E_W)

points to the next record in an instance of the E_W set, and the one marked

NEXT(P_W) points to the next record in an instance of the P_W set. Each

WORKS_ON record relates its two owner records. Each WORKS_ON record also

contains the number of hours per week that an employee works on a project. The

same occurrences in Figure 3.2.6 (f) are shown in Figure 3.2.6 (e) by displaying the

W records individually, without showing the pointers.

To find all projects that a particular employee works on, we start at the EMPLOYEE

record and then trace through all WORKS_ON records owned by that EMPLOYEE,

using the FIRST(E_W) and NEXT(E_W) pointers. At each WORKS_ON record in

the set occurrence, we find its owner PROJECT record by following the

NEXT(P_W) pointers until we find a record of type PROJECT. For example, for the

CIT 905 Advanced Database Management System

Page | 172

E2 EMPLOYEE record, we follow the FIRST (E_W) pointer in E2 leading to W1,

the NEXT(E_W) pointer in W1 leading to W2, and the NEXT(E_W) pointer in W2

leading back to E2. Hence, W1 and W2 are identified as the member records in the

set occurrence of E_W owned by E2. By following the NEXT(P_W) pointer in W1,

we reach P1 as its owner; and by following the NEXT(P_W) pointer in W2 (and

through W3 and W4), we reach P2 as its owner. Notice that the existence of direct

OWNER pointers for the P_W set in the WORKS_ON records would have

simplified the process of identifying the owner PROJECT record of each

WORKS_ON record.

 Figure 3.2.6. (Continued) (e) Some instances. (f) Using linked representation.

In a similar fashion, we can find all EMPLOYEE records related to a particular

PROJECT. In this case the existence of owner pointers for the E_W set would

simplify processing. All this pointer tracing is done automatically by the DBMS; the

programmer has DML commands for directly finding the owner or the next member.

CIT 905 Advanced Database Management System

Page | 173

Notice that we could represent the M:N relationship as in Figure 3.2.6(a) or Figure

3.2.6(b) if duplicate PROJECTs (or EMPLOYEEs) records are allowed. In Figure

3.2.6a PROJECT record would be duplicated as many times as there were employees

working on the project. However, duplicating records creates problems in

maintaining consistency among the duplicates whenever the database is updated, and

it is not recommended in general.

3.2.3 Constraints in the Network Model

In explaining the network model so far, we have already discussed "structural"

constraints that govern how record types and set types are structured. In the present

unit we will discuss "behavioral" constraints that apply to (the behavior of) the

members of sets when insertion, deletion, and update operations are performed on

sets. Several constraints may be specified on set membership. These are usually

divided into two main categories, called insertion options and retention options in

CODASYL terminology. These constraints are determined during database design by

knowing how a set is required to behave when member records are inserted or when

owner or member records are deleted. The constraints are specified to the DBMS

when we declare the database structure, using the data definition language. Not all

combinations of the constraints are possible. We first discuss each type of constraint

and then give the allowable combinations.

1. Insertion Options (Constraints) on Sets

The insertion constraints—or options, in CODASYL terminology—on set membership

specify what is to happen when we insert a new record in the database that is of a

member record type. A record is inserted by using the STORE command. There are two

options:

1. Automatic: The new member record is automatically connected to an

appropriate set occurrence when the record is inserted.

2. Manual: The new record is not connected to any set occurrence. If desired, the

programmer can explicitly (manually) connect the record to a set occurrence

subsequently by using the CONNECT command.

CIT 905 Advanced Database Management System

Page | 174

For example, consider the MAJOR_DEPT set type of Figure 2.3.7. In this situation

we can have a STUDENT record that is not related to any department through the

MAJOR_DEPT set (if the corresponding student has not declared a major). We

should therefore declare the MANUAL insertion option, meaning that when a

member STUDENT record is inserted in the database it is not automatically related to

a DEPARTMENT record through the MAJOR_DEPT set. The database user may

later insert the record "manually" into a set instance when the corresponding student

declares a major department. This manual insertion is accomplished by using an

update operation called CONNECT, submitted to the database system.

The AUTOMATIC option for set insertion is used in situations where we want to

insert a member record into a set instance automatically upon storage of that record in

the database. We must specify a criterion for designating the set instance of which

each new record becomes a member. As an example, consider the set type shown in

Figure 3.2.7(a), which relates each employee to the set of dependents of that

employee. We can declare the EMP_DEPENDENTS set type to be AUTOMATIC,

with the condition that a new DEPENDENT record with a particular EMPSSN value

is inserted into the set instance owned by the EMPLOYEE record with the same SSN

value.

Figure 3.2.7: different set options. (a) An AUTOMATIC FIXED set.

(b) An AUTOMATIC MANDATORY set.

CIT 905 Advanced Database Management System

Page | 175

3.2.3.2 Retention Options (Constraints) on Sets

The retention constraints—or options, in CODASYL terminology—specify whether a

record of a member record type can exist in the database on its own or whether it must

always be related to an owner as a member of some set instance. There are three retention

options:

1. OPTIONAL: A member record can exist on its own without being a member in any

occurrence of the set. It can be connected and disconnected to set occurrences at

will by means of the CONNECT and DISCONNECT commands of the network

DML.

2. MANDATORY: A member record cannot exist on its own; it must always be a

member in some set occurrence of the set type. It can be reconnected in a single

operation from one set occurrence to another by means of the RECONNECT

command of the network DML.

3. FIXED: As in MANDATORY, a member record cannotexist on its own. Moreover,

once it is inserted in a set occurrence, it is fixed; it cannot be reconnected to another

set occurrence.

We now illustrate the differences among these options by examples showing when

each option should be used. First, consider the MAJOR_DEPT set type of Figure

3.2.7. To provide for the situation where we may have a STUDENT record that is

not related to any department through the MAJOR_DEPT set, we declare the set to

be OPTIONAL. In Figure 11(a) EMP_DEPENDENTS is an example of a FIXED set

type, because we do not expect a dependent to be moved from one employee to

another. In addition, every DEPENDENT record must be related to some

EMPLOYEE record at all times. In Figure 3.2.7(b) a MANDATORY set

EMP_DEPT relates an employee to the department the employee works for. Here,

every employee must be assigned to exactly one department at all times; however, an

employee can be reassigned from one department to another.

CIT 905 Advanced Database Management System

Page | 176

By using an appropriate insertion/retention option, the DBA is able to specify the

behavior of a set type as a constraint, which is then automatically held good by the

system.

Figure 3.2.7: A network schema diagram for the COMPANY database

3.2.3.3 Data Manipulation in a Network Database

In this section we discuss how to write programs that manipulate a network database—

including such tasks as searching for and retrieving records from the database; inserting,

deleting, and modifying records; and connecting and disconnecting records from set

occurrences. A data manipulation language (DML) is used for these purposes. The

DML associated with the network model consists of record-at-a-time commands that are

embedded in a general-purpose programming language called the host language.

Embedded commands of the DML are also called the data sublanguage. In practice, the

most commonly used host languages are COBOL and PL/I. In our examples, however,

we show program segments in PASCAL notation augmented with network DML

commands.

CIT 905 Advanced Database Management System

Page | 177

3.2.4 Basic Concepts for Network Database Manipulation

To write programs for manipulating a network database, we first need to discuss some

basic concepts related to how data manipulation programs are written. The database

system and the host programming language are two separate software systems that are

linked together by a common interface and communicate only through this interface.

Because DML commands are record-at-a-time, it is necessary to identify specific records

of the database as current records. The DBMS itself keeps track of a number of current

records and set occurrences by means of a mechanism known as currency indicators. In

addition, the host programming language needs local program variables to hold the

records of different record types so that their contents can be manipulated by the host

program. The set of these local variables in the program is usually referred to as the user

work area (UWA). The UWA is a set of program variables, declared in the host

program, to communicate the contents of individual records between the DBMS and the

host program. For each record type in the database schema, a corresponding program

variable with the same format must be declared in the program.

Currency Indicators

In the network DML, retrievals and updates are handled by moving or navigating

through the database records; hence, keeping a trace of the search is critical. Currency

indicators are a means of keeping track of the most recently accessed records and set

occurrences by the DBMS. They play the role of position holders so that we may

process new records starting from the ones most recently accessed until we retrieve all

the records that contain the information we need. Each currency indicator can be thought

of as a record pointer (or record address) that points to a single database record. In a

network DBMS, several currency indicators are used:

1. Current of record type: For each record type, the DBMS keeps track of the most

recently accessed record of that record type. If no record has been accessed yet

from that record type, the current record is undefined.

CIT 905 Advanced Database Management System

Page | 178

2. Current of set type: For each set type in the schema, the DBMS keeps track of the

most recently accessed set occurrence from the set type. The set occurrence is

specified by a single record from that set, which is either the owner or one of

the member records. Hence, the current of set (or current set) points to a record,

even though it is used to keep track of a set occurrence. If the program has not

accessed any record from that set type, the current of set is undefined.

3. Current of run unit (CRU): A run unit is a database access program that is

executing (running) on the computer system. For each run unit, the CRU keeps

track of the record most recently accessed by the program; this record can be

from any record type in the database.

Each time a program executes a DML command, the currency indicators for the

record types and set types affected by that command are updated by the DBMS.

Status Indicators

Several status indicators return an indication of success or failure after each DML

command is executed. The program can check the values of these status indicators and

take appropriate action—either to continue execution or to transfer to an error-handling

routine. We call the main status variable DB_STATUS and assume that it is implicitly

declared in the host program. After each DML command, the value of DB_STATUS

indicates whether the command was successful or whether an error or an exception

occurred. The most common exception that occurs is the END_OF_SET (EOS)

exception.

3.2.5 Hierarchical Model

3.2.5.1 Parent-Child Relationships and Hierarchical Schemas

The hierarchical model employs two main data structuring concepts: records and parent-

child relationships. A record is a collection of field values that provide information on

an entity or a relationship instance. Records of the same type are grouped into record

types. A record type is given a name, and its structure is defined by a collection of

CIT 905 Advanced Database Management System

Page | 179

named fields or data items. Each field has a certain data type, such as integer, real, or

string.

A parent-child relationship type (PCR type) is a 1:N relationship between two record

types. The record type on the 1-side is called the parent record type, and the one on the

N-side is called the child record type of the PCR type. An occurrence (or instance) of

the PCR type consists of one record of the parent record type and a number of records

(zero or more) of the child record type.

A hierarchical database schema consists of a number of hierarchical schemas. Each

hierarchical schema (or hierarchy) consists of a number of record types and PCR

types. A hierarchical schema is displayed as a hierarchical diagram, in which record

type names are displayed in rectangular boxes and PCR types are displayed as lines

connecting the parent record type to the child record type. Figure 10.9 shows a simple

hierarchical diagram for a hierarchical schema with three record types and two PCR

types. The record types are DEPARTMENT, EMPLOYEE, and PROJECT. Field names

can be displayed under each record type name as shown in Figure 3.2.8. In some

diagrams, for brevity, we display only the record type names.

Figure 3.2.8: A hierarchical schema.

We refer to a PCR type in a hierarchical schema by listing the pair (parent record type,

child record type) between parentheses. The two PCR types in Figure 3.2.8 are

(DEPARTMENT, EMPLOYEE) and (DEPARTMENT, PROJECT). Notice that PCR

types do not have a name in the hierarchical model. In Figure 3.2.8 each occurrence of

CIT 905 Advanced Database Management System

Page | 180

the (DEPARTMENT, EMPLOYEE) PCR type relates one department record to the

records of the many (zero or more) employees who work in that department. An

occurrence of the (DEPARTMENT, PROJECT) PCR type relates a department record

to the records of projects controlled by that department. Figure 3.2.9 shows two PCR

occurrences (or instances) for each of these two PCR types.

Properties of a Hierarchical Schema

A hierarchical schema of record types and PCR types must have the following properties:

1. One record type, called the root of the hierarchical schema, does not participate as a

child record type in any PCR type.

2. Every record type except the root participates as a child record type in exactly one

PCR type.

3. A record type can participate as parent record type in any number (zero or more) of

PCR types.

4. A record type that does not participate as parent record type in any PCR type is called

a leaf of the hierarchical schema.

5. If a record type participates as parent in more than one PCR type, then its child record

types are ordered. The order is displayed, by convention, from left to right in a

hierarchical diagram.

The definition of a hierarchical schema defines a tree data structure. In the terminology

of tree data structures, a record type corresponds to a node of the tree, and a PCR type

corresponds to an edge (or arc) of the tree. We use the terms node and record type, and

edge and PCR type, interchangeably. The usual convention of displaying a tree is slightly

different from that used in hierarchical diagrams, in that each tree edge is shown

separately from the other edge. The preceding properties of a hierarchical schema mean

that every node except the root has exactly one parent node. However, a node can have

several child nodes, and in this case they are ordered from left to right. In Figure 3.2.9,

EMPLOYEE is the first child of DEPARTMENT, and PROJECT is the second child.

The previously identified properties also limit the types of relationships that can be

CIT 905 Advanced Database Management System

Page | 181

represented in a hierarchical schema. In particular, M:N relationships between record

types cannot be directly represented, because parent-child relationships are 1:N

relationships, and a record type cannot participate as child in two or more distinct

parent-child relationships. An M:N relationship may be handled in the hierarchical model

by allowing duplication of child record instances. For example, consider an M:N

relationship between EMPLOYEE and PROJECT, where a project can have several

employees working on it, and an employee can work on several projects. We can

represent the relationship as a (PROJECT, EMPLOYEE) PCR type. In this case a record

describing the same employee can be duplicated by appearing once under each project

that the employee works for. Alternatively, we can represent the relationship as an

(EMPLOYEE, PROJECT) PCR type, in which case project records may be duplicated

Figure 3.2.9: A tree representation of the hierarchical schema

Project Employees Working on the Project

1. E1, E3, E5

2. E2, E4, E6

3. E1, E4

4. E2, E3, E4, E5

If these instances are stored using the hierarchical schema (PROJECT, EMPLOYEE)

(with PROJECT as the parent), there will be four occurrences of the (PROJECT,

EMPLOYEE) PCR type—one for each project. The employee records for E1, E2, E3,

and E5 will appear twice each as child records, however, because each of these

employees works on two projects. The employee record for E4 will appear three times—

once under each of projects B, C, and D and may have number of hours that E4 works

CIT 905 Advanced Database Management System

Page | 182

on each project in the corresponding instance. To avoid such duplication, a technique is

used whereby several hierarchical schemas can be specified in the same hierarchical

database schema. Relationships like the preceding PCR type can now be defined across

different hierarchical schemas. This technique, called virtual relationships, causes a

departure from the "strict" hierarchical model.

3.2.5.1 Hierarchical Model Integrity Constraints in the Hierarchical Model

A number of built-in inherent constraints exist in the hierarchical model whenever we

specify a hierarchical schema. These include the following constraints:

1. No record occurrences except root records can exist without being related to a

parent record occurrence. This has the following implications:

a. A child record cannot be inserted unless it is linked to a parent record.

b. A child record may be deleted independently of its parent; however,

deletion of a parent record automatically results in deletion of all its child

and descendent records.

c. The above rules do not apply to virtual child records and virtual parent

records.

2. If a child record has two or more parent records from the same record type, the

child record must be duplicated once under each parent record.

1. A child record having two or more parent records of different record types can

do so only by having at most one real parent, with all the others represented as

virtual parents. IMS limits the number of virtual parents to one.

2. In IMS, a record type can be the virtual parent in only one VPCR type. That is,

the number of virtual children can be only one per record type in IMS.

3.2.6 Conclusion

The original network model and language were presented in the CODASYL Data

Base Task Group‘s 1971 report; hence it is sometimes called the DBTG model. Revised

reports in 1978 and 1981 incorporated more recent concepts. In this unit, rather than

CIT 905 Advanced Database Management System

Page | 183

concentrating on the details of a particular CODASYL report, we present the general

concepts behind network-type databases and use the term network model rather than

CODASYL model or DBTG model. There are no original documents that describe the

hierarchical model, as there are for the relational and network models. The principles

behind the hierarchical model are derived from Information Management System

(IMS), which is the dominant hierarchical system in use today by a large number of

banks, insurance companies, and hospitals as well as several government agencies.

3.2.7 Tutor Marked Assignment

1. Differentiate between status and currency indicators?

2. Mention and discuss the integrity constraints of hierarchical and network

database models

3. Explain the Network model and state the constraints associated with

Network model.

3.2.8 References/Suggested Readings

1. Date, C.J., Introduction to Database Systems (7 Edition) Addison Wesley, 2000

2. Leon, Alexis and Leon, Mathews, Database Management Systems,

LeonTECHWorld rd

3. Elamasri R. and Navathe, S., Fundamentals of Database Systems (3 Edition),

Pearsson Education, 2000.

CIT 905 Advanced Database Management System

Page | 184

CIT 905 Advanced Database Management System

Page | 185

MODULE 3: DISTRIBUTED DATABASES

 UNIT 3: OBJECT ORIENTED DATABASE

3.3.0 INTRODUCTION

History of data processing goes through many different changes with different

technologies along with the time. In decade there is huge increase in the volume of data

that need to be processed due to which sometimes old technology do not work and need

to come with new technology to process the data. History of database technology has

used Unit Records and Punch Card, Punch Card Proliferation, Paper Data Reels, and

Data Drums, File Systems, Database Systems, NoSQL and NewSQL databases. From

last five decades, the mostly used technology is database management systems.

After some limitations of file systems, researchers come up with new technology

known as Database Management Systems which is the collection of software or

programs to maintain the data records. Initially, two models are proposed are

hierarchical and network models, but these models don‘t get much popularity due to

their complex nature. Then a researcher E.F. Codd comes up with a new data model

known as relational model in which data items are stored in a table. Many DBMS‘s are

developed on the basis of this model. This is the most popular model till now because it

has conceptually foundation from relational mathematics.

In mid-1980‘s, no doubt RDBMS are very much popular but due to some limitation of

relation model and RDBMS do not support for some advanced Applications. Object

Oriented Database (OODB) comes in the picture. At that time Object Oriented

Programming paradigm is very much popular. Due to this researcher think to combine

the capabilities of database and object based paradigm for programming. In Object

databases data is stored in the forms of objects. These database management systems

are not very much popular because due to the lack of standards.

CIT 905 Advanced Database Management System

Page | 186

The term ―object-oriented database system‖ was first introduced in 1985. Object-

oriented databases are designed and built according to the object-oriented paradigm in

which everything is modeled as objects including the data. This type of data model

helps in tackling complex data structures, for instance multimedia content, in a more

natural way and provides a seamless transition from design to conception. . Hence the

data in OODBMS is represented as collection of interacting objects instead of

collection of inter-related tables. Usage of object-oriented concepts like polymorphism

and inheritance make the interaction between the objects a trivial task. Whereas data is

stored as tables in the relational database and we need to relate of ―join‖ tables to

perform a query, it is stored as a collection of objects in object-oriented database, and

query can be easily performed by following the pointer from parent object to its

children.

3.3.1 Objectives

At the end of this unit, students should be able to:

3. Understand Object Oriented Database.

4. Understand the various models of OO database and be able to implement them.

5. Understand and state the advantages and disadvantages of OO database.

3.2. What is Object Oriented Database?

Object Oriented Database is a database in which information is represented in

the form of objects as used in object-oriented programming. OODs are different from

relational databases which are table-oriented. The requirements for a database to be

Object Oriented include:

1. It should be a Database Management System (DBMS): This means that the

OODBMS should provide the basic features for any database system –

persistence, concurrency, data recovery, secondary storage management and ad

hoc query facility.

2. It should support Polymorphism and Inheritance: This means that the database

system should support all the requisite features of an object-oriented system like

encapsulation, complex objects, inheritance, polymorphism, extensibility.

CIT 905 Advanced Database Management System

Page | 187

1. Basic Concepts of OO Programming

1. Object and Class: A conceptual entity is anything that exists and can be

distinctly identified. Examples, a person, an employee, a car, a part. In an OO

system, all conceptual entities are modeled as objects. An object has structural

properties defined by a finite set of attributes and behavioural properties. The

only between entity and object is that entity has only state has no

behaviour, but object contains both state and behaviour.

Each object is associated with a logical non-reusable and unique object identifier

(OID). The OID of an object is independent of the values of its attributes. All

objects with the same set of attributes and methods are grouped into a class, and

form instances of that class. OID has following characteristics:

1. It is generated by system.

2. It is unique to that object in the entire system.

3. It is used only by the system, not by the user.

4. It is independent the state of the object.

Classes are classified as lexical classes and non-lexical classes.

1. A lexical class contains objects that can be directly represented by their values.

2. A non-lexical class contains objects, each of which is represented by a set of

attributes and methods. Instances of a non-lexical class are referred to by their

OIDs. Example PERSON, EMPLOYEE, PART are non-lexical classes.

1. ATTRIBUTES

The domain of an attribute of a non-lexical class A can be one of the following:

2. a lexical class such as integer, string. An attribute with this domain is called a

data-valued attribute.

3. a non-lexical class b). An attribute with this domain is called an entity-valued

attribute. Types of attributes include simple and complex attribute

CIT 905 Advanced Database Management System

Page | 188

4. Method: A method of an object is invoked by sending a message (which is

normally the method name) to the object. Such a message-passing mechanism

represents a binary interaction between the sender of the message and the

recipient. A method‘s specification is represented by a method signature, which

provides the method name and information on the types of the method‘s input

parameters and its results. The implementation of the method is separated from the

specification. This provides some degrees of data independence.

Methods play an important role in defining object semantics. Example, when an

employee is fired, we need to delete the employee information from the employee file,

delete the employee from the employee-project file, and insert the employee information

into a history file. One method called ―Fire-employee‖ can be defined that incorporates

this sequence of actions.

5. Abstraction: It is process of finding important aspects of an entity and

ignoring unimportant aspects such as implementation details. The properties

comprise two things: State and behaviour. A state is models through the

attributes of object and behaviour is models through operations executed on

data by object.

6. Encapsulation: An object contains both current state (Attributes) and set of

methods used to manipulate it. It is called encapsulation.

7. Information Hiding: It is process of separates external properties of an

object from its internal properties, which are hidden from external

environment. These two concepts also related with abstraction.

8. Importance: These two concepts support the facility that internal properties

of an object to be changed without affecting applications that use it,

provided external properties remain same. It also provides data

independence.

9. Inheritance: It is the special type of relationship between classes: The

inheriting class inherits the some or all properties of the base class depend

CIT 905 Advanced Database Management System

Page | 189

which mode of inheritance is used. Special classes or inheriting classes are

called subclasses and general classes are called super classes.

10. Generalization: It is method to create a superclass is called generalization.

11. Specialization: It is process of forming a sub class is called specialization.

12. Polymorphism: It means ―many forms‖. It is dynamic feature which

executes at run time of program. It involves the concept of overriding and

overloading.

13. Complex Objects: An object is called complex object if it contains many

sub objects and it is viewed as single object.

14. Relationships: It is basically an association between two things. These are

represented through reference attributes, typically implemented through

OID‘s. Types of binary relationships are:

• One to One relationship

• One to Many relationship

• Many to One relationship

• Many to Many relationship

OO Data Model Vs Hierarchical Data Model

1. The nested structure of objects and the nested structure of records in hierarchical

databases are similar. The essential difference is that the OO data model uses

logical and non-reusable OIDs to link related objects while the hierarchical

model uses physical reusable pointers to physically link related records.

Hierarchical model has no object and OID concepts.

2. OO data model allows cyclic definition within object structures. Example,

a course can refer to other courses as its pre-requisite courses. To support

cyclic definition in the hierarchical data model, dummy record types (e.g.

prerequisite record) are needed.

1. OO DATA MODEL VS NESTED RELATIONS: In the nested relation

approach, an attribute of a relation can itself be a relation. The nested relation

CIT 905 Advanced Database Management System

Page | 190

is stored physically within the base relation. This approach does not allow the

nested relation to be shared among relations. There may be a redundant

storage of data which can lead to updating anomalies. In the OO approach,

nested relations are simulated by using the OIDs of tuples of a relation that

are to be nested within a base relation. Because OIDs are used, sharing of

tuples of nested relation is possible. There is less redundancy.

3.3.3 Why Object Oriented Databases?

There are three reasons for need of OODBMS:

1. Limitation of RDBMS

2. Need for Advanced Applications

3. Popularity of Object Oriented Paradigm

1. Limitation of RDBMS

These limitations are in relational model. Due to this, these limitations are

reflected to all RDBMS. These limitations are:

1. Poor representation of real world entities: The Relational model cannot

represent real world in proper way because it has only one semantic that

is table which can represent the real world entity in proper way.

2. Normalization is necessary, but sometimes not useful: Normalization in

RDBMS to maintain the consistency of the database, but some broken

relations is not related to real world.

3. Overloading of semantic structure: Relational Data Model has only one

semantic structure for representing data and relationship that is table.

Due to this, sometimes it becomes very difficult to find out that which

is going to model data or relationship?

4. Poor support for integrity and enterprise constraints: Constraints are

very much needed for your database have to be desired data. RDM

supports only limited number of constraints. The enterprise constraints

are those which are defined by industry standards.

CIT 905 Advanced Database Management System

Page | 191

5. Homogeneous data structure: RDM requires homogeneous data

structures like:

• RDM assumes both horizontal and vertical homogeneity.

• Relational mathematics algebra has only fixed number of

operations due to which Relational Model operations cannot be

extended.

6. Tables can store only atomic/single value: No doubt, this is property

of RDM. But sometimes in many situations this property becomes its

limitation.

7. Normalization is strongly recommended: Most of the situations, you have

must normalize the relation make the data consistency inside your

database.

8. Difficulty in handling recursive queries: There is very poor support to

handle recursive queries in RDBMS. For this you must know:

• Depth of recursive query must be known.

• You can use the transitive closure operations to handle

recursive queries in RDBMS.

9. Impedance mismatch: SQL Data Manipulation Language (DML) is lack

computational completeness. To overcome this situation, you must embed

the SQL with any high programming language like C++, Java, and C #.

Due to there will be impedance mismatch between two language SQL and

higher programming language.

10. Poor support for long duration transactions: In RDBMS, generally

transactions are short lived and concurrency control techniques or

mechanisms are not good for .long duration transactions.

11. Poor Schema Evolution support: Schema Evolution means making

changes to schema of database at runtime without interrupt the execution

of the application.

CIT 905 Advanced Database Management System

Page | 192

12. Poor Navigational Access: There is very poor support for the navigational

access in RDBMS. There are some advanced applications need the

database with deeper structural and functional foundation of capabilities

that are not provided by conventional database.

B. Need for Advanced Applications

a) Computer Aided Design (CAD):

• In these types of applications, relevant data about buildings,

airplanes and integrated circuit chips is stored and managed. In this

type of applications, database design may be very large. Design in

these types of applications is not static. This design is evolves

through the times. Updates need to be propagated.

• These applications require version control and configuration

management.

1. These applications require complex objects for their development.

For example, a car‘s component may be related to other

components.

• Need long duration transactions because sometimes updates are for

reaching.

• Support for cooperative engineering because most of the times many

people work on same design.

b) Computer Aided manufacturing (CAM):

• These application data is very much similar to CAD, but needs

discrete production.

• These applications must respond to real time events.

• Generally algorithms and custom rules are used to respond to a

particular situation.

c) Computer Aided Software Engineering (CASE):

CIT 905 Advanced Database Management System

Page | 193

• These applications manage data about the phases of software

development life cycle.

• Design may be extremely large.

• Involves cooperative work.

• Need to maintain dependencies among components.

• Versioning and configuration management.

d) Network Management Systems:

• Coordinates communication services across the network.

• These systems are used for such tasks as network path management,

problem management and network planning.

e) Other Applications: The Object Oriented Database also used in Office

Information Systems, Multimedia systems, Digital Publishing and

Geographic information Systems.

c. Popularity of Object Oriented Paradigm

Another domain that enforces the development of OODBMS is popularity of

object oriented programming paradigm because a real life situation can be

modelled in best way by using object oriented programming.

3.3.4 Approaches for OODBMS

a. Relational Extension Based DBMS

b. Object/Relational DBMS

c. Pure OODBMS

A. Relational Extension Based DBMS

This is the first approach that is adopted by industry and academia towards the

implementations of OODBMS is to extend the relational model to provide the

OO features. The advantages of this approach are:

• Stick to relational model

CIT 905 Advanced Database Management System

Page | 194

• Have to OO features like complex object and UDT (User Defined Types).

Design techniques for relational extensions: In mid-80‘s a researcher named

Stonebraker in OODBMS field represent the design techniques in this field with

different proposals for Extended Type System for an OODBMS should follow:

• Definition of new data types

• Definition of new operations of so defined data types.

• Implementation of access methods.

• Optimized query processing for the queries on new data types.

Other Extensions in RDBMS: The different techniques are adopted by different

DBMS to support to support OO features:

• Support for variable length “undefined” data values. Using this support,

generalized user defined data types can be represented. Like Oracle

supported RAW, LONG and LONGRAW (65535 bytes). Sybase support

TEXT and IMAGE up to 2GB and also others. These features were partial

support for storing complex data. Such facilities were mainly used to capture

non-text data like voice, medical charts and fingerprints.

• User defined procedure are associated with used defined data types.

• Example: POSTGRES

Postgres: It is developed at UC Berkeley in mid-80 by Prof. Stonebroker and his

group. It is commercialized as ILLUSTRA. In this INGRES which is basically a

relational database management system to support OO features. Basic idea in

POSTGRES was to introduce minimum changes in the Codd‘s original relational

model to achieve the objective. Advantage is the continuity with the previous

product (INGRES) and provision of OO features in the new product.

Design objectives of POSTGRES declared by Stone braker were:

• To provide fully implemented functionality of complex objects.

CIT 905 Advanced Database Management System

Page | 195

• Support for User/Abstract Defined Types, operators and functions for

accessing.

• To provide functionality of Active Databases and Inferencing.

• QUEL is the manipulation language in INGRES.

• POSTQUEL in POSTGRES.

B. Object/Relational DBMS

These systems have relational and object based both features by the definition.

They provide similar objectives as provided by the Relational Extension

approach of RDBMS. In this approach, build an object layer on the top of

relational system like Open ODB and ODAPTER. They are built on different

architectures like Query Server or Client/Server.

Open ODB/ODAPTER: Open ODB is an ORDBMS from HP during mid‘s 90

and aims to support for broad base applications. It has following features:

1. Based on Iris DBMS

2. Based on Client/Server architectures

3. Both data and applications can be shared by the user applications.

4. Clients use Application Program Interface (API) to access information.

5. OSQL is data manipulation language for Open ODB/ODAPTER.

6. Open ODB uses relational techniques to support to OO features.

7. Object Model is implemented by Object Manager. Mapping to OO schema

and queries to relational ones.

8. The underlying relational storage manager is ALLBASE/SQL.

C. Pure OODBMS

These type OODB‘s systems are not much popular because lack of standards.

There is no single definition for a single concept. For Example: An Object has

CIT 905 Advanced Database Management System

Page | 196

many definitions, but in RDB there is a fixed standard for or single definition for

each concept like table .Here defining some definitions which are mostly

accepted but not standardize.

OODB Model: It is data model that capture semantics of objects suited in object

based programming paradigm. ZDONIK and MAIER give a threshold model that

an Object database must have following features:

1. Database functionality like transaction management, concurrency control.

2. Facility of Object Identity (OID).

3. Facility of encapsulation.

4. Facility of complex objects.

5. Inheritance not must but may useful.

OODB: It is permanently stored and sharable collection of objects suited with an

Object Data Model.

OODBMS: It is system which contains application programs which are used to

manage all object oriented database activities like manipulation of

objects.

The OODBMS paradigm manifesto set the minimum fundamental directional

basis for an OODBMS model .These characteristics can be classified as

mandatory and optional features:

OODBMS Mandatory features

1. Support for complex objects: A OODBMS must support for complex objects.

Complex objects can be obtained by applying constructor on basic

objects.

2. Object Identity: It is the unique identifier associated with every object in the

system. It has following characteristics:

6. It is generated by system.

7. It is unique to that object in the entire system.

CIT 905 Advanced Database Management System

Page | 197

8. It is used only by the system, not by the user.

9. It is independent the state of the object.

3. Encapsulation: An OODBMS should enforce encapsulation through access

objects only.

4. Types or Classes: A OODBMS must support for one of them types or classes.

5. Inheritance and Hierarchies: A OODBMS must support for concept of super

classes and subclasses. The types of heritance can be: substitution,

inclusion, constraint, specialization

6. Dynamic Binding: An OODBMS must support concept of dynamic binding in

programming language such as overloading, overriding and late binding

7. Computationally Complete DML: To provide a support for data processing

database have use computationally completely language like SQL-3.

8. Extensible set of data types: A OODBMS must support for used defined data

types.

9. Data Persistence: This is basic requirement for any DBMS.A OODBMS must

provide persistent by storing object in proper way.

10. Managing very large databases: A OODBMS must support for large

databases. Concurrent Users: This is basic requirement for any DBMS.

It must support for concurrency control.

12. Transaction Management: This is also basic requirement of any DBMS.

13. Query Language: This is also a basic requirement of any DBMS. This query

language must be computationally complete.

OODBMS Optional Features

1. Multiple Inheritance: Multiple inheritance is not directly support by

multiple objects oriented programming languages. An OODBMS can also

support for multiple inheritance.

CIT 905 Advanced Database Management System

Page | 198

2. Type checking and inferencing: Type Checking and Inferencing features

can be added to Object Databases.

3. Long duration and Nested Transactions: Relational database transactions

are short-lived. An OODBMS can support for .long duration transactions

and also for nested transactions.

4. Distributed databases: An object database may have support for

distributed database which is a collection of multiple databases logically

related and distributed over the network.

5. Versions: An OODBMS can support for version control and configuration

management.

3.3.4 Achievements and Weaknesses of OODBMS

a) Achievements

1. Support for User Defined data types: OODBs provides the facilities of

defining new user defined data types and to maintain them.

2. OODB’s allow creating new type of relationships: OODBs allow creating a

new type of relationship between objects is called inverse relationship (a

binary relationship).

3. No need of keys for identification: Unlike, relational model, object data model

uses object identity (OID) to identify object in the system.

4. Development of Equality predicates: In OODBs, four types equality

predicates are:

1. Identity equality

2. Value equality of objects

3. Value equality of properties

4. Identity equality of properties

5. No need of joins for OODBMS’s: OODBs has ability to reduce the need

of joins.

CIT 905 Advanced Database Management System

Page | 199

6. Performance gains over RDBMS: Performance gains changes application

to application. Applications that make the use of object identity concept

having performance gains over RDBMS‘s.

7. Provide Facility for versioning management: The control mechanisms are

missing in most of the RDBMS‘s, but it is supported by the OODBMS‘s.

8. Support for nested and long Duration transactions: Most of the

RDBMS‘s do not support for long and nested transactions, but OODBMS‘s

support for nested and long duration transactions.

9. Development of object algebra: Relational algebra is based on relational

mathematics and fully implemented, but object algebra has not been

defined in proper way. Five fundamental object preserving operators are

union, difference, select, generate and map.

Weaknesses

1. Coherency between Relational and Object Model: Relational databases are

founded in every organization. To overcome relational databases, object

databases have to be providing coherent services to users to migrate from

relational database to object database. Architecture of Relational model

and Object model must be provide some coherency between them.

2. Optimization of Query Expression: Query expression optimization is done

to increase the performance of the system. Optimization of queries is very

important for performance gains. But due to following reasons it is

difficult to optimize queries in object databases:

1. User defined data types

2. Changing variety of types

3. Complex objects, methods and encapsulation

4. Object Query language has nested structure

5. Object Identity

CIT 905 Advanced Database Management System

Page | 200

3. No fixed query algebra for OODBMS’s: Due to lack of the standards in

OODBMS, there is no standard query algebra for OODB. Lack of standard

query algebra becomes one of the reasons for problem of query

optimization. There are different query languages for different object

databases.

4. No full-fledged query system: Query system also not fully implemented.

Some query facilities lacks in Object databases like nested sub-queries, set

queries and aggregation function.

5. No facility for Views: In relational databases, views are temporary tables.

Object databases having no facility for views. An object oriented view

capability is difficult to implement due to the features of Object Model such

as object identity. Object oriented programming concepts like inheritance

and encapsulation makes the difficult to implement views in object

databases.

6. Security problems in Object databases: Security is related to authentication,

authorization and accounting. Discretionary Access Control (DAC),

mandatory access control (MAC) security policies are implemented in object

databases to secure data. In some systems provide security on the basis of

object oriented concepts like encapsulation. Object database having to

facilities for authorization.

7. No support for schema evolution with OODBs: Most object databases do

not allow schema evolution. Schema Evolution is facility which allows

changing the schema at run time such as adding a new attributes or methods

to the class, adding new superclass to the class.

8. Consistency constraints mechanisms are not fully implemented: Only

limited numbers of features are provided by OODBMS‘s for uniqueness of

constraints, integrity constraints and other enterprise constraints.

CIT 905 Advanced Database Management System

Page | 201

9. No full-fledged facilities to implement complex objects: No doubt, object

oriented databases provide some facilities to implement the concept of

complex objects. But there is no full –fledged implementation of complex

objects.

10. Interoperability between OODB and Object Oriented Systems: In Object

Oriented Programming objects are transient in nature. To provide persistent

to data, OODB and OO systems need to be interoperable. Many problems

may arise during interoperable between OODB and OO systems.

11. Limited performance gains over RDBs Decrease in performance:

Performance gains changes application to application. Applications that

make the use of object identity concept having performance gains over

RDBMS‘s. But application that requires bulk database loading and does not

make use of OID then performance of OODBMS is not good.

12. Some basic features are not present: Some basic features like triggers,

meta-data management and constraints such as UNIQUE and NULL not

present in object databases.

Table 3.3.1: Paramters of OODBMS and RDBMS Models

CIT 905 Advanced Database Management System

Page | 202

Advantages of OODBMS

1. Enriched modeling capabilities

 The object-oriented data model allows the 'real world' to be modeled more

closely. The object, which encapsulates both state and behavior, is a more

natural and realistic representation of real world objects. An object can

store all the relationships it has with other objects, including many-to-

many relationships, and objects can be formed into complex objects that

the traditional data models cannot cope with easily.

2. Extensibility

 OODBMSs allow new data types to be built from existing types. The

ability to factor out common properties of several classes and form them

into a superclass that can be shared with subclasses can greatly reduce

CIT 905 Advanced Database Management System

Page | 203

redundancy within system and, as we stated· at the start of this unit, is

regarded as one of the main advantages of object orientation. Further, the

reusability of classes promotes faster development and easier maintenance

of the database and its applications.

3. Capable of handling a large variety of data types

Unlike traditional databases (such as hierarchical, network or relational),

the object oriented database are capable of storing different types of data,

for example, pictures, voice video, including text, numbers and so on.

4. Removal of impedance mismatch

 A single language interface between the Data Manipulation Language

(DML) and the programming language overcomes the impedance

mismatch. This eliminates many of the efficiencies that occur in mapping

a declarative language such as SQL to an imperative 'language such as 'C'.

Most OODBMSs provide a DML that is computationally complete

compared with SQL, the 'standard language of RDBMSs.

5. More expressive query language

 Navigational access from the object is the most common form of data

access in an OODBMS. This is in contrast to the associative access of

SQL (that is, declarative statements with selection based on one or more

predicates). Navigational access is more suitable for handling parts

explosion, recursive queries, and so on.

6. Support for schema evolution

 The tight coupling between data and applications in an OODBMS makes

schema evolution more feasible.

7. Support for long-duration, transactions

 Current relational DBMSs enforce serializability on concurrent

transactions to maintain database consistency. OODBMSs use a different

CIT 905 Advanced Database Management System

Page | 204

protocol to handle the types of long-duration transaction that are common

in many advanced database application.

8. Applicability to advanced database applications

 There are many areas where traditional DBMSs have not been particularly

successful, such as, Computer-Aided Design (CAD), Computer-Aided

Software Engineering (CASE), and Multimedia Systems. The enriched

modeling capabilities of OODBMSs have made them suitable for these

applications.

9. Improved performance

 There have been a number of benchmarks that have suggested OODBMSs

provide significant performance improvements over relational DBMSs. The

results showed an average 30-fold performance improvement for the

OODBMS over the RDBMS.

Disadvantages of OODBMSS

The following are disadvantages of OODBMSs:

1. Lack of universal data model: There is no universally agreed data model

for an OODBMS, and most models lack a theoretical foundation. This

disadvantage is seen as a significant drawback, and is comparable to pre-

relational systems.

2. Lack of experience: In comparison to RDBMSs the use of OODBMS is

still relatively limited. This means that we do not yet have the level of

experience that we have with traditional systems. OODBMSs are still very

much geared towards the programmer, rather than the naïve end-user. Also

there is a resistance to the acceptance of the technology. While the

OODBMS is limited to a small niche market, this problem will continue to

exist

CIT 905 Advanced Database Management System

Page | 205

3. Lack of standards: There is a general lack of standards of OODBMSs.

We have already mentioned that there is not universally agreed data model.

Similarly, there is no standard object-oriented query language.

4. Competition: Perhaps one of the most significant issues that face

OODBMS vendors is the competition posed by the RDBMS and the

emerging ORDBMS products. These products have an established user

base with significant experience available. SQL is an approved standard

and the relational data model has a solid theoretical formation and

relational products have many supporting tools to help .both end-users and

developers.

5. Query optimization compromises encapsulations: Query optimization

requires. An understanding of the underlying implementation to access the

database efficiently. However, this compromises the concept of

incrassation.

6. Locking at object level may impact performance: Many OODBMSs use

locking as the basis for concurrency control protocol. However, if locking

is applied at the object level, locking of an inheritance hierarchy may be

problematic, as well as impacting performance.

7. Complexity: The increased functionality provided by the OODBMS (such

as the illusion of a single level storage model, pointer sizzling, long-

duration transactions, version management, and schema evolution--makes

the system more complex than that of traditional DBMSs. In complexity

leads to products that are more expensive and more difficult to use.

8. Lack of support for views: Currently, most OODBMSs do not provide a

view mechanism, which, as we have seen previously, provides many

advantages such as data independence, security, reduced complexity, and

customization.

CIT 905 Advanced Database Management System

Page | 206

9. Lack of support for security: Currently, OODBMSs do not provide

adequate security mechanisms. The user cannot grant access rights on

individual objects or classes. If OODBMSs are to expand fully into the

business field, these deficiencies must be rectified.

3.3.5 Object Oriented Databases Models

3.3.5.1 Unified Modelling Language

It provides a mechanism in the form of diagrammatic notation and associated language

syntax to cover the entire life cycle. Presently, UML can be used by software

developers, data modelers, and database designers, and so on to define the detailed

specification of an application. They also use it to specify the environment consisting of

users, software, communications, and hardware to implement and deploy the

application. UML combines commonly accepted concepts from many object-oriented

(O-O) methods and methodologies. It is generic, and is language-independent and

platform-independent. Software architects can model any type of application, running

on any operating system, programming language, or network, in UML.

UML defines nine types of diagrams divided into these two categories:

1. Structural Diagrams:

2. These describe the structural or static relationships among schema objects, data

objects, and software components. They include class diagrams, object

diagrams, component diagrams, and deployment diagrams.

3. Behavioral Diagrams: Their purpose is to describe the behavioral or dynamic

relationships among components. They include use case diagrams, sequence

diagrams, collaboration diagrams, state chart diagrams, and activity diagrams.

Structural Diagrams

Class Diagrams: Class diagrams capture the static structure of the system and

act as foundation for other models. They show classes, interfaces, collaborations,

dependencies, generalizations, associations, and other relationships. Class

diagrams are a very useful way to model the conceptual database schema.

CIT 905 Advanced Database Management System

Page | 207

1. Rules For Forming Class Diagram

1. Class name in the top box

2. Attributes in the middle box. (it usually have the prefix ―-―)

3. Methods in the bottom box. (it usually have the prefix ―+‖)

4. Object Diagrams: Object diagrams show a set of individual objects and their

relationships, and are sometimes referred to as instance diagrams. They give a

static view of a system at a particular time and are normally used to test class

diagrams for accuracy.

Component Diagrams: Component diagrams illustrate the organizations and

dependencies among software components. A component diagram typically consists of

components, interfaces, and dependency relationships. A component may be a source

code component, a runtime component, or an executable component. It is a physical

building block in the system and is represented as a rectangle with two small rectangles

or tabs overlaid on its left side. An interface is a group of operations used or created by

a component and is usually represented by a small circle. Dependency relationship is

used to model the relationship between two components and is represented by a dotted

arrow pointing from a component to the component it depends on. For databases,

component diagrams stand for stored data such as table spaces or partitions. Interfaces

refer to applications that use the stored data.

Deployment Diagrams: Deployment diagrams represent the distribution of

components (executables, libraries, tables, files) across the hardware topology. They

Rectangle

-Width: int
-Height: int

+Rectangle(width: int, height: int)
+ distance(r:Rectangle): double

Student

-name: String

-id:int
-totalStudents:int

+getID():int
+getName():String
+getEmailAddress():String
+getTotalStudents():Int

CIT 905 Advanced Database Management System

Page | 208

depict the physical resources in a system, including nodes, components, and

connections, and are basically used to show the configuration of runtime processing

elements (the nodes) and the software processes that reside on them (the threads).

Behavioral Diagrams

Use Case Diagrams: Use case diagrams are used to model the functional interactions

between users and the system. A scenario is a sequence of steps describing an

interaction between a user and a system. A use case is a set of scenarios that have a

common goal. The use case diagram was introduced by Jacobson7 to visualize use

cases. A use case diagram shows actors interacting with use cases and can be

understood easily without the knowledge of any notation. An individual use case is

shown as an oval and stands for a specific task performed by the system. An actor,

shown with a stick person symbol, represents an external user, which may be a human

user, a representative group of users, a certain role of a person in the organization, or

anything external to the system.

Use Case Diagram Symbols and Notations

Relationships

Illustrate relationships between an actor and a

use case. A ―uses‖ relationship indicates that

one use case is needed by another in order to

perform a task. An ―extends‖ relationship

indicates alternative options under a certain use

case.

Actors Actors are the users of

a system. When one

system is the actor of

another system, label

the actor system with

the actor stereotype

System boundaries are

drawn using rectangle that

contains use cases. Actors

are placed outside the

system‘s boundaries.

System

System
name

Use case

Ovals are use to draw use

case. The oval is label with

verbs that represent the

system‘s functions.

CIT 905 Advanced Database Management System

Page | 209

Figure 3.3.1: Symbols and notations of Use Case Diagrams

CIT 905 Advanced Database Management System

Page | 210

Figure 3.3.2: Use case for a Website Administrator

Sequence Diagrams: Sequence diagrams describe the interactions between various

objects over time. They basically give a dynamic view of the system by showing the

flow of messages between objects. Within the sequence diagram, an object or an actor

is shown as a box at the top of a dashed vertical line, which is called the object‘s

lifeline.

Collaboration Diagrams: Collaboration diagrams represent interactions among objects

as a series of sequenced messages. In collaboration diagrams the emphasis is on the

structural organization of the objects that send and receive messages, whereas in

sequence diagrams the emphasis is on the time-ordering of the messages. Collaboration

diagrams show objects as icons and number the messages; numbered messages

represent an ordering. The spatial layout of collaboration diagrams allows linkages

among objects that show their structural relationships. Use of collaboration and

sequence diagrams to represent interactions is a matter of choice as they can be used for

somewhat similar purposes; we will hereafter use only sequence diagrams.

Help Desk

Website

Administrato
r

Manage
Logs

(Abstract)

Manage User
(Abstract)

Manage User
Groups(Abstract)

Manage
User session

(Abstract)

Web Application

Admin Website

CIT 905 Advanced Database Management System

Page | 211

Statechart Diagrams: State chart diagrams describe how an object‘s state changes in

response to external events. To describe the behavior of an object, it is common in most

object-oriented techniques to draw a state chart diagram to show all the possible states

an object can get into in its lifetime. The UML state charts are based on David Harel‘s

state charts. They show a state machine consisting of states, transitions, events, and

actions and are very useful in the conceptual design of the application that works

against a database of stored objects. State chart diagrams are useful in specifying how

an object‘s reaction to a message depends on its state. An event is something done to an

object such as receiving a message; an action is something that an object does such as

sending a message.

Figure 3.3.3: UML activity diagram: Cash Withdrawal from ATM.

3.3.6 Conclusion

Object-oriented databases are designed and built according to the object-oriented

paradigm in which everything is modeled as objects including the data. This type of

not

(am
o

u
n

t n
o

t

availab
le)

(amount

(correct)

(incorrec

(resolved

Verify access

code

Ask for amount

Handle incorrect

access code

Dispense

cash

Prepare to print
receipt

Finish transaction and print

receipt

CIT 905 Advanced Database Management System

Page | 212

data model helps in tackling complex data structures, for instance multimedia content,

in a more natural way and provides a seamless transition from design to conception.

Hence the data in OODBMS is represented as collection of interacting objects instead

of collection of inter-related tables. Usage of object-oriented concepts like

polymorphism and inheritance make the interaction between the objects a trivial task.

Whereas data is stored as tables in the relational database and we need to relate of

―join‖ tables to perform a query, it is stored as a collection of objects in object-oriented

database, and query can be easily performed by following the pointer from parent

object to its children.

3.3.7 Tutor marked Assignment

1. How would you define object orientation? What are some of its benefits?

2. What is the difference between an object and a class in the object‐oriented data

model (OODM)?

3. What are the advantages and disadvantages of OODBMS?

3.3.8 References/ Further Readings

Atkinson M., Bancilhon F. ,Dewitt D. ,Dittrich K., Maier D. and Zdonik S.

(1989): The Object Oriented Database Manifesto.

Atkinson, M., et. al., (1989): The object-oriented database system manifesto,‖ in

Proc. Int. Conf. On Deductive and Object-Oriented Databases.

Bancilhon, F., (1988): Object Oriented database systems, in Proc. 7th ACM

SIGART/SIGMOD Conf.

Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L., (1992): Object-Oriented

Query Languages: The Notion and the Issues, IEEE Transactions on

Knowledge and Data Engineering, Vol. 4, No. 3.

Hardeep Singh Damesha (2015): Object Oriented Database Management

Systems-Concepts, Advantages, Limitations and Comparative Study with

Relational Database Management Systems

Kim, W., (1988): A foundation for object-oriented databases‖, MCC Tech. Rep.,

N.ACA-ST-248-88.

CIT 905 Advanced Database Management System

Page | 213

CIT 905 Advanced Database Management System

Page | 214

MODULE 3: DISTRIBUTED DATABASES

UNIT 4: DATABASE AND XML

3.4.1 Introduction

The use of eXtensible Markup Language (XML) is increasing in every field and it is

imperative to have a secured place to store the XML documents. XML documents are

stored in XML database. XML database is used to store huge amount of information in

the XML format. The database can be queried using XQuery. XML is a markup

language, which is mainly used to represent structured data. Structured data is the one

which contains the data along with the tag / label to indicate what the data is. It is like a

data with tag as a column name in RDBMS. Hence the same is used to document the

data in DDB. One may think why we need to XML rather than simply documenting the

data with simple tags as shown in the contact detail example. XML provides lots of

features to handle the structured data within the document

3.4.2 Objectives

At the end of this unit, students should be able to:

4. Understand the various types of XML databases.

5. Understand and be able to state the differences between data-centric and

document-centric XML.

6. To understand the principles of Web site management with XML

3.4.3 What is XML?

XML is an open and popular standard for marking up text in a way that is both machine

and human readable. By ―marking up text‖ we mean that the data in the text files is

formatted to include meaningful symbols that communicate to a reader what that data is

for. The syntax of XML is similar in style to HTML, the markup language of the World

Wide Web (WWW).The data in an XML file can be organized into hierarchies so that

the relationships between data elements are visually obvious.

CIT 905 Advanced Database Management System

Page | 215

1. XML is the markup language which serves the structured data over the internet,

which can be viewed by the user easily as well as quickly.

2. It supports lots of different types of applications.

3. It is easy to write programs which process XMLs.

4. This XML does not have any optional feature so that its complexity can increase.

Hence XML is a simple language which any user can use with minimal

knowledge.

5. XML documents are created very quickly. It does not need any thorough

analysis, design and development phases like in RDBMS. In addition, one

should be able to create and view XML in notepad too.

6. All these features of XML make it unique and ideal to represent DDB.

A typical XML document begins with <?xml..?>. This is the declaration of

xml which is optional, but is important to indicate that it is a xml document.

Usually at this beginning line version of the xml is indicated.

1. TYPES OF XML DATABASES

Native XML Database (NXD):

Native XML is a database that:

a. Defines a logical model for an XML document and stores and retrieves

documents according to that model.

b. Has an XML document as its fundamental unit of (logical) storage, just as a

relational database has a row in a table as its fundamental unit of (logical)

storage.

c. The storage model itself is not constrained. For example, it can be built on a

relational, hierarchical, or object-oriented database, or use a proprietary storage

format such as indexed, compressed files.

2. XML Enabled Database (XEDB):

A database that has an added XML mapping layer provided either by the

database vendor or a third party. This mapping layer manages the storage and

CIT 905 Advanced Database Management System

Page | 216

retrieval of XML data. Data that is mapped into the database is mapped into

application specific formats and the original XML meta-data and structure may

be lost. Data retrieved as XML is NOT guaranteed to have originated in XML

form. Data manipulation may occur via either XML specific technologies (e.g.

XPath, XSLT and DOM) or other database technologies (e.g. SQL). The

fundamental unit of storage in an XML Enabled Database is implementation

dependent.

7. Hybrid XML Databases (HXD):

A database is that can be treated as either a Native XML Database or as an XML

Enabled Database depending on the requirements of the application.

Data-Centric Vs. Document-Centric Xml

Deciding whether to use an XML-enabled, native or hybrid XML database is in many

cases difficult, and usually depends both on the specific application and the format of

the XML documents.

Data-Centric Documents: Data-centric are documents produced as an import or export

format, that is, data-centric XML documents are used for machine consumption. These

documents are used for communicating data between companies or applications and the

fact that XML is used as a common format is simply a matter of convenience, for

reasons of interoperability Examples of data-centric documents are sales orders,

scientific data, and stock quotes. Since data-centric documents are primarily processed

by machines, they have fairly regular structure, fine-grained data and no mixed content.

CIT 905 Advanced Database Management System

Page | 217

Document-Centric Documents:

Document-centric are documents usually designed for human consumption, with

examples ranging from books to hand-written XHTML documents. They are usually

composed directly in XML, or some other format and then converted to XML.

Document-centric documents do not need to have regular structure, have coarse-grained

data (that is the smallest independent data unit may as well be a document itself) and

have mixed content. The examples given above make it clear that the ordering of

elements in such documents is always significant.

Storing XML in an XED

XML-enabled databases are primarily used in settings where XML is the format for

exchanging data between the underlying database and an application or another

database, for example when a Web service is providing data stored in a relational

database as an XML document. The main characteristic of the XML-enabled database

storage methodology is that it uses a data model other than XML, most commonly the

relational data model. Individual instances of this data model are mapped to one or

more instances of the XML data model, for example a relational schema can be mapped

to different XML schemas depending on the structure of the XML document required

by the application that will consume it. As shown in Fig.3.4.1, the XML documents are

used as a data exchange format without the XML document to have any particular

identity within the database. For example, suppose XML is used to transfer temperature

data from a weather station to a database. After the data from a particular document is

stored in the database, the document is discarded. To the opposite direction, when an

XML document is requested as a result of a query, it is constructed from the results that

are retrieved after querying the underlying database, and once it is consumed by the

client that has requested it, it is again discarded. There is no way to ask explicitly for a

document by its name, nor does any guarantee exist that the original document that was

stored in the database can be reconstructed. Because of this, it is not a good idea to

shred a document into an XML-enabled database as a way of storing it. The basic use

CIT 905 Advanced Database Management System

Page | 218

of XML-enabled systems is for publishing existing relational data (regardless of its

source) as XML.

Figure 3.4.1: structure of the XML document

Regardless of whether we are shredding or publishing XML documents, there are two

important things to note here. First, an XML-enabled database does not contain XML,

i.e. the XML document is completely external to the database. Any XML

document/fragment is constructed from data already in the database or is used as a

source of new data to store in the database. Second, the database schema matches the

XML schema, that is, a different XML schema is needed for each database schema.

XML-enabled databases generally include software for performing both publishing and

shredding between relational data and XML documents. This extra piece of software

can either be integrated into the database or be provided by a third-party vendor outside

the database. This software, used by XML-enabled databases, cannot, generally, handle

all possible XML documents. Instead, it can handle the subclass of documents that are

needed to model the data found in the database.

CIT 905 Advanced Database Management System

Page | 219

XML Data Models:

A data model is an abstraction which incorporates only those properties thought to be

relevant to the application at hand. As there are different ways in which one can use

XML data, there are more than one XML data models. As shown Fig 3.4.2, all XML

data models include elements, attributes, text, and document order, but some also

include other node types, such as entity references and CDATA sections, while others

do not.

Therefore, DTD defines its own XML data model, while XML Schema uses the XML

InfoSet data model; XPath and XQuery define their own common data model for

querying XML data. This excess of data models makes it difficult for applications to

combine different features, such as schema validation together with querying. The W3C

is therefore in the process of merging these data models under the XML InfoSet, which

is to be replaced by the Post-Schema-Validation Infoset (PSVI).

Fig. 3.4.2: Architecture of the XML-Enabled Database

Since many NXDs were created prior to the XML InfoSet and the XPath 2.0 and

XQuery data model, they were free to define their own data model. Since the data

model of an XML query language defines the minimum amount of information that a

native XML database must store, these NXDs need to be upgraded to support XQuery.

CIT 905 Advanced Database Management System

Page | 220

Fortunately, the vast majority of NXDs currently supports at least XPath 1.0, and it is

envisaged that all of them will support XQuery in the near future.

Relational-to-XML Schema Mapping

When using an XML-enabled database, it is necessary to map the database schema to

the XML schema (or vice versa). Such mappings are many-to-many. For example, a

database schema for sales order information can be mapped to an XML schema for

sales order documents, or it can be mapped to an XML schema for reports showing the

total sales by region. There are two important kinds of mappings:

a) Table-based mapping

b) Object-relational mapping

Both table-based mapping and object-relational mappings define bi-directional

mappings, that is, the same mapping can be used to transfer data both to and from the

database.

Table-Based Mapping:

When using a table-based mapping, the XML document must have the same structure

as a relational database. That is, the data is grouped into rows and rows are grouped into

\tables". In the following example, the SalesOrders and the Items elements represent the

corresponding relational tables containing a list of SalesOrder and Item elements,

respectively that in turn represent the rows of each table.

<Database>

<SalesOrders>

<SalesOrder>

<Number>123</Number>

<OrderDate>2003-07-28</OrderDate>

<CustomerNumber>456</CustomerNumber>

</SalesOrder>

</SalesOrders>

<Items>

<Item>

<Number>1</Number>

<PartNumber>XY-47</PartNumber>

<Quantity>14</Quantity>

<Price>16.80</Price>

CIT 905 Advanced Database Management System

Page | 221

<OrderNo>123</OrderNo>

</Item> <Item>

<Number>2</Number>

<PartNumber>B-987</PartNumber>

<Quantity>6</Quantity>

 <Price>2.34</Price>

<OrderNo>123</OrderNo>

</Item>

</Items>

 </Database>

Object-Relational Mapping:

When using an object-relational mapping, an XML document is viewed as a set of

serialized objects and is mapped to the database with an object relational mapping. That

is, objects are mapped to tables, properties are mapped to columns and inter-object

relationships are mapped to primary key / foreign key relationships. Below is the same

document containing sales orders, as above, but encoded using the object-relational

mapping. <Database>

<SalesOrder>

<Number>123</Number>

<OrderDate>2003-07-28</OrderDate>

<CustomerNumber>456</CustomerNumber>

<Item>

<Number>1</Number>

<PartNumber>XY-47</PartNumber>

<Quantity>14</Quantity>

<Price>16.80</Price>

</Item>

<Item>

<Number>2</Number>

<PartNumber>B-987</PartNumber>

<Quantity>6</Quantity>

<Price>2.34</Price>

</Item>

</SalesOrder>

 </Database>

CIT 905 Advanced Database Management System

Page | 222

Retrieving and Modifying Query Languages

Query languages in XML-enabled databases are used to extract data from the

underlying database and transform it. The most widely used query languages for this

purpose, SQL/XML and XQuery. For XML-enabled relational databases, the most

widely used query language is SQL/XML, which provides a set of extensions to SQL

for creating XML documents and fragments from relational data and is part of the ISO

SQL specification of 2003. The main features of SQL/XML are the provision of an

XML data type, a set of scalar functions, XMLELEMENT, XMLATTRIBUTES,

XMLFOREST, and XMLCONCAT, and an aggregate function, XMLAGG. For

example, the following call to the XMLELEMENT function:

XMLELEMENT (NAME Customer,

XMLELEMENT (NAME Name, customers.name),

XMLELEMENT (NAME ID, customers.id))

constructs the following Customer element for each row in the customers table:

<Customer>

<Name>customer name

</Name>

<ID>customer id</ID>

</Customer>

Updating Xml-Enabled Databases

The solutions related to updating XML data in XML-enabled databases vary from

implementation to implementation, due to the idiosyncrasies of the storage model. The

most common practice is either to use a custom extension of the SQL/XML prototype

to support updates or use a, custom again, product specific API to perform the

modification operations over the stored XML data. In either case, though, the update

action does not happen in-place, i.e. directly on the tables where the XML data is

stored, but rather the document to be updated is extracted from the database, loaded in

memory, updated, then returned to the XML-enabling software layer where it is

shredded again and stored back to the database.

CIT 905 Advanced Database Management System

Page | 223

Fundamental Unit of Storage

A fundamental unit of storage is the smallest grouping of data that logically file

together in storage. From a relational database perspective, the fundamental unit of

storage is a tuple. From a native XML database perspective, the fundamental unit of

storage is a document. Since any document fragment headed by a single element is

potentially an XML document, the choice of what constitutes an XML document is

purely a design decision.

Text-Based Native Xml Databases

Text-based native XML databases store XML as text. This may be a file within the

database itself, a file in the file system outside the database, or a proprietary text format.

Note here that the first case implies that relational databases storing XML documents

within CLOB (Character Large Object) fields are considered native. All text-based

NXDs make use of indices, giving them a big performance advantage when retrieving

entire documents or document fragments, as all it takes is a single index-lookup and a

single read operation to retrieve the document. This is contrary to XML-enabled

databases and some model-based NXDs which require a large number of joins in order

to recreate an XML document that has been shredded and inserted in the database. This

makes the comparison between text-based NXDs and relational databases analogous to

the comparison between hierarchical and relational databases, in that text-based NXDs

will outperform relational databases when returning the document or document

fragments in the form in which the document is stored; returning data in any other form,

such as inverting the document hierarchy, will lead to performance problems.

Model-Based Native Xml Databases

Model-based NXDs have an internal object model and use this to store their XML

documents. The way this model is stored varies: one way is to use a relational or object-

oriented database; other databases use proprietary storage formats, optimized for their

chosen data model. Model-based NXDs built on other databases will have performance

similar to those databases, since they rely on these systems to retrieve data; the data

CIT 905 Advanced Database Management System

Page | 224

model used, however, can make a notable difference in performance. Model-based

NXDs using a proprietary storage format usually have physical pointers between nodes

and therefore are expected to have similar performance to text-based NXDs. Clearly,

the output format is significant here, as text-based NXDs will probably be faster in

outputting in text format, whereas a model-based NXD using the DOM model will be

faster in returning a document in DOM format.

Attributes are used to give more meaning to the data represented within the elements.

Here attribute indicates what type of contact details are listed like address, phone, email

etc.

<Contact category=”ADDRESS”>
<Name> Rose Mathew </Name>
<ApartmentNum>APT 201 </ ApartmentNum>
<AppName> Lakeside terrace 1232 </AppName>
<Street>Lakeside Village Drive </Street>
<Town> Clinton Township </Town>
<State> MI </State>
<Country> US </Country>
</Contact>

These elements, attributes are all known as nodes in the document. In short, nodes are

the tags / labels in the document. There are seven types of nodes in the XML

documents.

1. Root : This is the beginning of all the nodes in the document. In our example above

contact is the root node.

<Contact >

2. Element : This is the any node in the document that begins with <name> and ends

with </name>.

<ApartmentNum>APT 201 </ ApartmentNum>

<AppName> Lakeside terrace 1232 </AppName>

CIT 905 Advanced Database Management System

Page | 225

3. Text : This is the value of the element node. In below example, ‗Rose Mathew‘ is

a text node.

<Name> Rose Mathew </Name>

4. Attribute : This is the node within the beginning element of the document which

specifies more details about the element. It contains name and its value pair

always.

<Contact category=”ADDRESS”>

5. Comment : This node contains the comment or the description about the data,

element or attribute or anything. But it has nothing to do with the actual data.

Its only for understanding the document. It is starts with <!-- and ends with --

>.

<!-- This is the comment node -->

6. Processing Instruction : This is the node which gives the instruction to the

document like sort, display, or anything to do with document. It is always a

child node beginning with <? and ending with ?>.

<?sort alpha-ascending?>

 <?StudentNames <Fred>, <Bert>, <Harry> ?>

7. Namespace : Namespace indicates to which bucket the elements belong to. For

example, there would same element names used in the document which

will have different meaning in their contest – state in address and state for

STD code. In order to differentiate this we use namespace.

 <Address: State>

 <Phone: State>

CIT 905 Advanced Database Management System

Page | 226

8. Now it is clear what each state is for. This is similar to appending table name or its

alias name before the column names in SQL.

9. These are the very basic things that we need to know while creating an xml

document. Let us see how it can be applied in DB.

1. XML elements

10. XML elements can be defined as building blocks of an XML. Elements can behave

as containers to hold text, elements, attributes, media objects or all of these. Each

XML document contains one or more elements, the scope of which are either

delimited by start and end tags, or for empty elements, by an empty-element tag.

Syntax

The following is the syntax to write an XML element –

<element-name attribute1 attribute2>

....content

</element-name>

where,

1. element-name is the name of the element. The name its case in the start and end

tags must match.

2. attribute1, attribute2 are attributes of the element separated by white spaces. An

attribute defines a property of the element. It associates a name with a value, which

is a string of characters. An attribute is written as −

 name = "value"

name is followed by an = sign and a string value inside double(" ") or single(' ')

quotes.

Empty Element

An empty element (element with no content) has following syntax −

<name attribute1 attribute2.../>

Following is an example of an XML document using various XML element −

<?xml version = "1.0"?>

<contact-info>

 <address category = "residence">

CIT 905 Advanced Database Management System

Page | 227

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

 </address>

</contact-info>

XML Elements Rules

Following rules are required to be followed for XML elements −

1. An element name can contain any alphanumeric characters. The only

punctuation mark allowed in names are the hyphen (-), under-score (_) and

period (.).

2. Names are case sensitive. For example, Address, address, and ADDRESS are

different names.

3. Start and end tags of an element must be identical.

4. An element, which is a container, can contain text or elements as seen in the

above example.

3.4.6 Self-Assessment Question

 Is XML a programming language? State reasons to justify your answer.

1. Summary

XML is actually a language used to create other markup languages to describe

data in a structured manner. It is a widely supported open technology, (that is a

non‐proprietary technology) for data exchange and storage.

3.4.7. Conclusion

Processing an XML document requires a software program called an XML Parser or

XML. Processor. Most XML parsers are available at no charge and for a variety of

programming languages (e.g., Java, Perl, C++).

3.4.8 Tutor Marked Assignment:

2. Describe the various types of XML databases

3. Describe the rules for writing XML elements

4. Describe in detail, the purpose of XML

CIT 905 Advanced Database Management System

Page | 228

3.4.9 References and Further Reading

Alzarani, H. (2016). Evolution of Object Oriented Database. Global Journal of

Computer Science and Technology: C .

Ayyasamy, S. B. (May 2017). Performace Evaluation of Native XML database and

XML enabled Database. International Journal of Advanced Research in

Computer Science and Software Engineering .

Balamurugan et al. (2017). Performance Evaluation of Native XML Database and XML

Enabled Database. International Journal of Advanced Research in Computer

Science and Software Engg. 7(5), , 182-191.

Bertino, E. J. (1995). Database security: research and practice. Information systems,.

Gehrke, R. a. (2014). Database Management Systems, 3ed, .

George Papamarkos, L. Z. (2010). XML Database.

Goebel, V. (2011). Distributed Database Systems .

Jorge., D. C. (July 2015). Basic Principles of Database Security Article .

Lapis, G. (2005.). XML and Relational Storage-Are they mutually exclusive . . IBM

Corporation.

Megha, P. T. (2014). An overview of distributed database. International Journal of

Information and Computation Technology. , 207-214.

Morris, C. C. (2016). Database System- Implementation and Managemet.

Morris, C. C. (2017). DATABASE SYSTEMS.

N. Derrett, W. K. (1985). Some aspect of oprations in an object oriented database

"Database Engineerimg". IEEE COMPUTER SOCIETY .

Navathe, R. E. (2010). FUNDAMENTALS OF Database System: Sixth Edition.

Addison-Wesley.

Özsu, M. T. (June 2014). Distributed Database Systems.

T. Atwood. (1985). "An Object-Oriented DBMS for Design Support Application.

CIT 905 Advanced Database Management System

Page | 229

MODULE 3: DISTRIBUTED DATABASES

UNIT 5: DATA WAREHOUSING

3.5.0 Introduction

Large companies have presences in many places, each of which may generate a

large volume of data. For instance, large retail chains have hundreds or thousands of

stores, whereas insurance companies may have data from thousands of local branches.

Further, large organizations have a complex internal organization structure, and

therefore different data may be present in different locations, or on different operational

systems, or under different schemas. For instance, manufacturing-problem data and

customer-complaint data may be stored on different database systems. Organizations

often purchase data from external sources, such as mailing lists that are used for

product promotions, or credit scores of customers that are provided by credit bureaus,

to decide on credit-worthiness of customers. Corporate decision makers require access

to information from multiple such sources. Setting up queries on individual sources is

both cumbersome and inefficient. Moreover, the sources of data may store only current

data, whereas decision makers may need access to past data as well; for instance,

information about how purchase patterns have changed in the past year could be of

great importance. Data warehouses provide a solution to these problems.

3.5.1 Objectives

 At the end of this unit, students should be able to:

1. To understand data warehousing as an active decision support framework

2. To understand the architecture and components of data ware houses

3. To understand data ware housing schema

3.5.1.1 What is Data Warehouse?

A data warehouse is a repository (or archive) of information gathered from multiple

sources, stored under a unified schema, at a single site. A data warehouse is simply a

CIT 905 Advanced Database Management System

Page | 230

single, complete, and consistent store of data obtained from a variety of sources and

made available to end users in a way they can understand and use it in a business

context. Once gathered, the data are stored for a long time, permitting access to

historical data. Thus, data warehouses provide the user a single consolidated interface

to data, making decision-support queries easier to write. Moreover, by accessing

information for decision support from a data warehouse, the decision maker ensures

that online transaction-processing systems are not affected by the decision-support

workload. A data warehouse is a subject-oriented, integrated, time variant, and

nonvolatile collection of data in support of management’s decision-making process.

Subject Oriented:

1. Organized around major subjects, such as customer, product, sales.

2. Focusing on the modeling and analysis of data for decision makers, not on daily

operations or transaction processing.

3. Provide a simple and concise view around particular subject issues by excluding

data that are not useful in the decision support process.

Integrated

1. Data on a given subject is defined and stored once

2. Constructed by integrating multiple, heterogeneous data sources – relational

databases, flat files, on-line transaction records

3. One set of consistent, accurate, quality information

4. Standardization

– Naming conventions

– Coding structures

– Data attributes

– Measures

1. Data cleaning and data integration techniques are applied.

– Ensure consistency in naming conventions, encoding structures, attribute

measures, etc. among different data sources

– When data is moved to the warehouse, it is converted

Time Variant

CIT 905 Advanced Database Management System

Page | 231

Data is stored as a series of snapshots, each representing a period of time

The time horizon for the data warehouse is significantly longer than that of operational

systems.

– Operational database: current value data

– Data warehouse data: provide information from a historical perspective

(example, past 5-10 years)

• Every key structure in the data warehouse

– Contains an element of time, explicitly or implicitly

– But the key of operational data may or may not contain ―time element‖

Non-Volatile

1. Typically data in the data warehouse is not deleted

2. A physically separate store of data transformed from the operational

environment

3. Operational update of data does not occur in the data warehouse environment

4. Does not require transaction processing, recovery, and concurrency control

mechanisms

5. Requires only two operations in data accessibility

3.5.2 Components of a Data Warehouse

Figure 3.5.1 shows the architecture of a typical data warehouse, and illustrates the

gathering of data, the storage of data, and the querying and data analysis support.

Among the issues to be addressed in building a warehouse are the following:

CIT 905 Advanced Database Management System

Page | 232

Figure 3.5.1: Architecture of a Data Warehouse

1. When and how to gather data. In a source-driven architecture for gathering

data, the data sources transmit new information, either continually (as

transaction processing takes place), or periodically (nightly, for example). In a

destination-driven architecture, the data warehouse periodically sends requests

for new data to the sources. Unless updates at the sources are replicated at the

warehouse via two phase commit, the warehouse will never be quite up-to-date

with the sources. Two-phase commit is usually far too expensive to be an option,

so data warehouses typically have slightly out-of-date data. That, however, is

usually not a problem for decision-support systems.

2. What schema to use. Data sources that have been constructed independently are

likely to have different schemas. In fact, they may even use different data

models. Part of the task of a warehouse is to perform schema integration, and to

convert data to the integrated schema before they are stored. As a result, the data

stored in the warehouse are not just a copy of the data at the sources. Instead,

they can be thought of as a materialized view of the data at the sources.

3. Data transformation and cleansing. The task of correcting and preprocessing

data is called data cleansing. Data sources often deliver data with numerous minor

inconsistencies, which can be corrected. For example, names are often misspelled,

and addresses may have street, area, or city names misspelled, or postal codes

entered incorrectly. These can be corrected to a reasonable extent by consulting a

database of street names and postal codes in each city. The approximate matching

of data required for this task is referred to as fuzzy lookup.

4. Address lists collected from multiple sources may have duplicates that need to be

eliminated in a merge–purge operation (this operation is also referred to as

CIT 905 Advanced Database Management System

Page | 233

deduplication). Records for multiple individuals in a house may be grouped

together so only one mailing is sent to each house; this operation is called

householding.

5. Data may be transformed in ways other than cleansing, such as changing the units

of measure, or converting the data to a different schema by joining data from

multiple source relations. Data warehouses typically have graphical tools to support

data transformation. Such tools allow transformation to be specified as boxes, and

edges can be created between boxes to indicate the flow of data. Conditional boxes

can route data to an appropriate next step in transformation.

6. How to propagate updates. Updates on relations at the data sources must be

propagated to the data warehouse. If the relations at the data warehouse are exactly

the same as those at the data source, the propagation is straightforward.

7. What data to summarize. The raw data generated by a transaction-processing

system may be too large to store online. However, we can answer many queries by

maintaining just summary data obtained by aggregation on a relation, rather than

maintaining the entire relation. For example, instead of storing data about every

sale of clothing, we can store total sales of clothing by item name and category.

8. The different steps involved in getting data into a data warehouse are called

extract, transform, and load or ETL tasks; extraction refers to getting data from

the sources, while load refers to loading the data into the data warehouse.

3.5.3 Warehouse Schemas

Data warehouses typically have schemas that are designed for data analysis, using tools

such as OLAP tools. Thus, the data are usually multidimensional data, with dimension

attributes and measure attributes. Tables containing multidimensional data are called

fact tables and are usually very large. A table recording sales information for a retail

store, with one tuple for each item that is sold, is a typical example of a fact table. The

dimensions of the sales table would include what the item is (usually an item identifier

such as that used in bar codes), the date when the item is sold, which location (store)

CIT 905 Advanced Database Management System

Page | 234

the item was sold from, which customer bought the item, and so on. The measure

attributes may include the number of items sold and the price of the items.

To minimize storage requirements, dimension attributes are usually short identifiers

that are foreign keys into other tables called dimension tables. For instance, a fact table

sales would have attributes item id, store id, customer id, and date, and measure

attributes number and price. The attribute store id is a foreign key into a dimension

table store, which has other attributes such as store location (city, state, country). The

item id attribute of the sales table would be a foreign key into a dimension table item

info, which would contain information such as the name of the item, the category to

which the item belongs, and other item details such as color and size. The customer id

attribute would be a foreign key into a customer table containing attributes such as

name and address of the customer. We can also view the date attribute as a foreign key

into a date info table giving the month, quarter, and year of each date.

Figure 3.5.2: Star schema fora Data Warehouse

The resultant schema appears in Figure 3.5.2. Such a schema, with a fact table, multiple

dimension tables, and foreign keys from the fact table to the dimension tables, is called

a star schema. More complex data-warehouse designs may have multiple levels of

dimension tables; for instance, the item info table may have an attribute manufacturer id

CIT 905 Advanced Database Management System

Page | 235

that is a foreign key into another table giving details of the manufacturer. Such schemas

are called snowflake schemas. Complex data warehouse designs may also have more

than one fact table.

3.5.4 Conclusion:

Decision-support systems analyze online data collected by transaction-processing

systems, to help people make business decisions. Since most organizations are

extensively computerized today, a very large body of information is available for

decision support. Decision-support systems come in various forms, including OLAP

systems and data-mining systems. Data warehouses help gather and archive important

operational data. Warehouses are used for decision support and analysis on historical

data, for instance, to predict trends. Data cleansing from input data sources is often a

major task in data warehousing. Warehouse schemas tend to be multidimensional,

involving one or a few very large fact tables and several much smaller dimension tables

3.5.5 Tutor Marked Assignment

 1. What is data Warehouse?

 2. Describe the main characteristics of a star schema

 3. With suitable illustration describe the components of a data warehouse

3.5.6 References and Further Readings

Devlin, B., & Cote, L. D. (1996). Data warehouse: from architecture to

implementation. Addison-Wesley Longman Publishing Co., Inc..

Watson, H. J., & Gray, P. (1997). Decision support in the data warehouse. Prentice

Hall Professional Technical Reference.

Inmon, W. H. (1996). The data warehouse and data mining. Communications of the

ACM, 39(11), 49-51.

Poe, V., Brobst, S., & Klauer, P. (1997). Building a data warehouse for decision

support. Prentice-Hall, Inc..

Kimball, R., & Merz, R. (2000). The data webhouse toolkit: Building the Web‐enabled

data warehouse. Industrial Management & Data Systems.

CIT 905 Advanced Database Management System

Page | 236

CIT 905 Advanced Database Management System

Page | 237

MODULE 3: DISTRIBUTED DATABASES

UNIT 6: INTRODUCTION TO DATA MINING

3.6.1 INTRODUCTION

In our day-to-day activities, we generate a lot of data that were previously

difficult to store but with the advent of computers, the problem of storage is eliminated.

These data are stored on disparate structures and keep increasing by the day. This issue

led to the creation of structured databases and database management systems.

Managing of these data efficiently and effectively need an effective management

system. Database management systems are used in managing large corpus of data in

terms of storage and fast retrieval.

 Today, data from business transactions, science, medical, personal, surveillance

video, satellite sensing, games, digital media, virtual worlds, software engineering, the

World Wide Web repositories, text reports and memos are all proliferated. There is

need for automatic summarization of data, extraction of the ―essence‖ of information

stored and the discovery of patterns in raw data. Unfortunately, these massive

collections of data stored on disparate structures very rapidly became overwhelming.

This initial chaos has led to the creation of structured databases and DBMS. The

efficient database management systems have been very important assets for

management of a large corpus of data and especially for effective and efficient retrieval

of particular information from a large collection whenever needed. The proliferation of

database management systems has also contributed to recent massive gathering of all

sorts of information. Today, we have far more information than we can handle: from

business transactions and scientific data, to satellite pictures, text reports and military

intelligence. Information retrieval is simply not enough anymore for decision-making.

Confronted with huge collections of data, we have now created new needs to help us

make better managerial choices. These needs are automatic summarization of data,

extraction of the essence of information stored, and the discovery of patterns in raw

data. These considerations are discussed in this unit.

CIT 905 Advanced Database Management System

Page | 238

3.6.2 Objectives:

At the end of this unit, students should be able to:

1. understand data mining as a tool for data analysis

2. explore the applications and techniques of data mining

3. understand the concepts knowledge discovery and data mining

3.6.3 What is datamining?

Data mining is the nontrivial extraction of embedded, previously unknown and

potentially useful information from data in databases. Data mining (DM) and

knowledge discovery in databases (KDD) are interwoven, but data mining is part of

knowledge discovery process.

3.6.3.1 Sources of data for KDDD and DM

We have been collecting a myriad of data, from simple numerical measurements and

text documents, to more complex information such as spatial data, multimedia

channels, and hypertext documents. Here is a non-exclusive list of a variety of

information collected in digital form in databases and in flat files.

1. Business transactions: Every transaction in the business industry is (often)

―memorized‖ for perpetuity. Such transactions are usually time related and can be

inter-business deals such as purchases, exchanges, banking, stock, etc., or intra-

business operations such as management of in-house wares and assets. Large

department stores, for example, thanks to the widespread use of bar codes, store

millions of transactions daily representing often terabytes of data. Storage space is

not the major problem, as the price of hard disks is continuously dropping, but the

effective use of the data in a reasonable time frame for competitive decision making

is definitely the most important problem to solve for businesses that struggle to

survive in a highly competitive world.

2. Medical and personal data: From government census to personnel and

customer files, very large collections of information are continuously gathered

about individuals and groups. Governments, companies and organizations such

CIT 905 Advanced Database Management System

Page | 239

as hospitals, are stockpiling very important quantities of personal data to help

them manage human resources, better understand a market, or simply assist

clientele. Regardless of the privacy issues this type of data often reveals, this

information is collected, used and even shared. When correlated with other data

this information can shed light on customer behaviour and the like.

3. Surveillance video and pictures: With the amazing collapse of video camera

prices, video cameras are becoming ubiquitous. Video tapes from surveillance

cameras are usually recycled and thus the content is lost. However, there is a

tendency today to store the tapes and even digitize them for future use and

analysis.

4. Satellite sensing: There is a countless number of satellites around the globe:

some are geo-stationary above a region, and some are orbiting around the Earth,

but all are sending a non-stop stream of data to the surface. NASA, which

controls a large number of satellites, receives more data every second than what

all NASA researchers and engineers can cope with. Many satellite pictures and

data are made public as soon as they are received in the hopes that other

researchers can analyze them.

5. Games: Our society is collecting a tremendous amount of data and statistics

about games, players and athletes. From hockey scores, basketball passes and

car-racing lapses, to swimming times, boxer‘s pushes and chess positions, and

all the data are stored. Commentators and journalists are using this information

for reporting, but trainers and athletes would want to exploit this data to improve

performance and better understand opponents.

6. Digital media: The proliferation of cheap scanners, desktop video cameras and

digital cameras is one of the causes of the explosion in digital media repositories.

In addition, many radio stations, television channels and film studios are

digitizing their audio and video collections to improve the management of their

multimedia assets.

CIT 905 Advanced Database Management System

Page | 240

7. CAD and Software engineering data: There are a multitude of Computer

Assisted Design (CAD) systems for architects to design buildings or engineers to

conceive system components or circuits. These systems are generating a

tremendous amount of data. Moreover, software engineering is a source of

considerable similar data with code, function libraries, objects, etc., which need

powerful tools for management and maintenance.

8. Virtual Worlds: There are many applications making use of three-dimensional

virtual spaces. These spaces and the objects they contain are described with

special languages such as VRML. Ideally, these virtual spaces are described in

such a way that they can share objects and places. There is a remarkable amount

of virtual reality object and space repositories available. Management of these

repositories as well as content-based search and retrieval from these repositories

are still research issues, while the size of the collections continues to grow.

9. Text reports and memos (e-mail messages): Most of the communications

within and between companies or research organizations or even private people,

are based on reports and memos in textual forms often exchanged by e-mail.

These messages are regularly stored in digital form for future use and reference

creating formidable digital libraries.

10. The WWW repositories: Since the inception of the WWW in 1993, documents

of all sorts of formats, content and description have been collected and inter-

connected with hyperlinks making it the largest repository of data ever built.

Despite its dynamic and unstructured nature, its heterogeneous characteristic,

and it‘s very often redundancy and inconsistency, the World Wide Web is the

most important data collection regularly used for reference because of the broad

variety of topics covered and the infinite contributions of resources and

publishers. Many believe that the World Wide Web will become the compilation

of human knowledge.

3.6.4 KDD Stages

CIT 905 Advanced Database Management System

Page | 241

The Knowledge Discovery in Databases process comprises of a steps from raw data

collections to some form of new knowledge. It is an iterative process consisting of the

following steps:

1. Data cleaning: also known as data cleansing, it is a phase in which noise data

and irrelevant data are removed from the collection.

2. Data integration: at this stage, multiple data sources, often heterogeneous, may

be combined in a common source.

3. Data selection: at this step, the data relevant to the analysis is decided on and

retrieved from the data collection.

4. Data transformation: also known as data consolidation, it is a phase in which

the selected data is transformed into forms appropriate for the mining procedure.

5. Data mining: it is the crucial step in which clever techniques are applied to

extract patterns potentially useful.

6. Pattern evaluation: in this step, strictly interesting patterns representing

knowledge are identified based on given measures.

7. Knowledge representation: is the final phase in which the discovered

knowledge is visually represented to the user. This essential step uses

visualization techniques to help users understand and interpret the data mining

results.

It is common to combine some of these steps together. For instance, data cleaning and

data integration can be performed together as a pre-processing phase to generate a data

warehouse. Data selection and data transformation can also be combined where the

consolidation of the data is the result of the selection, or, as for the case of data

warehouses, the selection is done on transformed data.

3.6.5 Mining Systems

There are many data mining systems available or being developed. Some are

specialized systems dedicated to a given data source or are confined to limited data

mining functionalities, other are more versatile and comprehensive. Data mining

CIT 905 Advanced Database Management System

Page | 242

systems can be categorized according to various criteria among other classification are

the following:

1. Classification according to the type of data source mined: this classification

categorizes data mining systems according to the type of data handled such as

spatial data, multimedia data, time-series data, text data, World Wide Web, etc.

2. Classification according to the data model drawn on: this classification

categorizes data mining systems based on the data model involved such as

relational database, object-oriented database, data warehouse, transactional, etc.

3. Classification according to the kind of knowledge discovered: this classification

categorizes data mining systems based on the kind of knowledge discovered or data

mining functionalities, such as characterization, discrimination, association,

classification, clustering, etc. Some systems tend to be comprehensive systems

offering several data mining functionalities together.

4. Classification according to mining techniques used: Data mining systems

employ and provide different techniques. This classification categorizes data

mining systems according to the data analysis approach used such as machine

learning, neural networks, genetic algorithms, statistics, visualization, database

oriented or data warehouse-oriented, etc. The classification can also take into

account the degree of user interaction involved in the data mining process such as

query-driven systems, interactive exploratory systems, or autonomous systems.

3.6.6 Types of mined data

In principle, data mining is not specific to one type of media or data. Data mining

should be applicable to any kind of information repository. However, algorithms and

approaches may differ when applied to different types of data. Indeed, the challenges

presented by different types of data vary significantly. Data mining is being put into use

and studied for databases, including relational databases, object-relational databases

and object oriented databases, data warehouses, transactional databases, unstructured

and semi-structured repositories such as the WWW, advanced databases such as spatial

CIT 905 Advanced Database Management System

Page | 243

databases, multimedia databases, time-series databases and textual databases, and even

flat files. Here are some examples in more detail:

1. Flat files: Flat files are actually the most common data source for data mining

algorithms, especially at the research level. Flat files are simple data files in text or

binary format with a structure known by the data mining algorithm to be applied.

The data in these files can be transactions, time-series data, scientific

measurements, etc.

2. Relational Databases: Briefly, a relational database consists of a set of tables

containing either values of entity attributes, or values of attributes from entity

relationships. Tables have columns and rows, where columns represent attributes

and rows represent tuples. A tuple in a relational table corresponds to either an

object or a relationship between objects and is identified by a set of attribute

values representing a unique key.

3. Data Warehouses: A data warehouse as a storehouse, is a repository of data

collected from multiple data sources (often heterogeneous) and is intended to be

used as a whole under the same unified schema. A data warehouse gives the

option to analyze data from different sources under the same roof.

4. Transaction Databases: A transaction database is a set of records representing

transactions, each with a time stamp, an identifier and a set of items. Associated

ith the transaction files could also be descriptive data for the items.

5. Multimedia Databases: Multimedia databases include video, images, audio and

text media. They can be stored on extended object-relational or object-oriented

databases, or simply on a file system. Multimedia is characterized by its high

dimensionality, which makes data mining even more challenging. Data mining

from multimedia repositories may require computer vision, computer graphics,

image interpretation, and natural language processing methodologies.

6. Spatial Databases: Spatial databases are databases that, in addition to usual data,

store geographical information like maps, and global or regional positioning. Such

spatial databases present new challenges to data mining algorithms.

CIT 905 Advanced Database Management System

Page | 244

7. Time-Series Databases: Time-series databases contain time related data such

stock market data or logged activities. These databases usually have a continuous

flow of new data coming in, which sometimes causes the need for a challenging

real time analysis. Data mining in such databases commonly includes the study of

trends and correlations between evolutions of different variables, as well as the

prediction of trends and movements of the variables in time.

8. World Wide Web: The WWW is the most heterogeneous and dynamic repository

available. A very large number of authors and publishers are continuously

contributing to its growth and metamorphosis, and a massive number of users are

accessing its resources daily. Data in the WWW is organized in inter-connected

documents. These documents can be text, audio, video, raw data, and even

applications. Conceptually, the WWW is comprised of three major components:

The content of the Web, which encompasses documents available; the structure of

the Web, which covers the hyperlinks and the relationships between documents;

and the usage of the web, describing how and when the resources are accessed. A

fourth dimension can be added relating the dynamic nature or evolution of the

documents. Data mining in the WWW, or web mining, tries to address all these

issues and is often divided into web content mining, web structure mining and web

usage mining.

3.6.7. DM Tasks and Techniques

The kinds of patterns that can be discovered depend upon the data mining tasks

employed. By and large, there are two types of data mining tasks: descriptive data

mining tasks that describe the general properties of the existing data, and predictive

data mining tasks that attempt to do predictions based on inference on available data.

The data mining functionalities and the variety of knowledge they discover are briefly

presented in the following list:

1. Characterization: Data characterization is a summarization of general features of

objects in a target class, and produces what is called characteristic rules. The data

relevant to a user-specified class are normally retrieved by a database query and

CIT 905 Advanced Database Management System

Page | 245

run through a summarization module to extract the essence of the data at different

levels of abstractions.

2. Discrimination: Data discrimination produces what are called discriminant rules

and is basically the comparison of the general features of objects between two

classes referred to as the target class and the contrasting class. The techniques

used for data discrimination are very similar to the techniques used for data

characterization with the exception that data discrimination results include

comparative measures.

3. Association analysis: Association analysis is the discovery of what are commonly

called association rules. It studies the frequency of items occurring together in

transactional databases, and based on a threshold called support, identifies the

frequent item sets. Another threshold, confidence, which is the conditional

probability than an item appears in a transaction when another item appears, is used

to pinpoint association rules. Association analysis is commonly used for market

basket analysis.

4. Classification: Classification analysis is the organization of data in given classes.

Also known as supervised classification, the classification uses given class labels

to order the objects in the data collection. Classification approaches normally use a

training set where all objects are already associated with known class labels. The

classification algorithm learns from the training set and builds a model. The model

is used to classify new objects.

5. Prediction: Prediction has attracted considerable attention given the potential

implications of successful forecasting in a business context. There are two major

types of predictions: one can either try to predict some unavailable data values or

pending trends, or predict a class label for some data. The latter is tied to

classification. Once a classification model is built based on a training set, the class

label of an object can be foreseen based on the attribute values of the object and the

attribute values of the classes.

6. Clustering: Similar to classification, clustering is the organization of data in

classes. However, unlike classification, in clustering, class labels are unknown and

CIT 905 Advanced Database Management System

Page | 246

it is up to the clustering algorithm to discover acceptable classes. Clustering is also

called unsupervised classification, because the classification is not dictated by

given class labels. There are many clustering approaches all based on the principle

of maximizing the similarity between objects in a same class (intra-class

similarity) and minimizing the similarity between objects of different classes

(inter-class similarity).

7. Outlier analysis: Outliers are data elements that cannot be grouped in a given class

or cluster. Also known as exceptions or surprises, they are often very important to

identify. While outliers can be considered noise and discarded in some

applications, they can reveal important knowledge in other domains, and thus can

be very significant and their analysis valuable.

8. Evolution and deviation analysis: Evolution and deviation analysis pertain to the

study of time related data that changes in time. Evolution analysis models

evolutionary trends in data, which consent to characterizing, comparing, classifying

or clustering of time related data. Deviation analysis, on the other hand, considers

differences between measured values and expected values, and attempts to find the

cause of the deviations from the anticipated values.

3.6.8 Conclusion

 Data mining algorithms embody techniques that have sometimes existed for many

years, but have only lately been applied as reliable and scalable tools that time and

again outperform older classical statistical methods. DM is the source for automatic

summarization of data, extraction of the essence of information stored, and the

discovery of patterns in raw data and has affected many domains.

3.6.9 Tutor Marked Assignment

 1. Differentiate between data mining and Knowledge Discovery

 2. Describe the steps of knowledge discovery

 3. Enumerate the type of data that can be mined

3.6.10 References and Further Reading

CIT 905 Advanced Database Management System

Page | 247

Frawley, W. J., Piatetsky-Shapiro, G. and Matheus, C. J. (1991). Knowledge Discovery

in Databases: An Overview. In G. Piatetsky-Shapiro et al. (eds.), Knowledge

Discovery in Databases. AAAI/MIT Press.

J. Han and M. Kamber. (2000). Data Mining: Concepts and Techniques. Morgan

Kaufmann.

M. S. Chen, J. Han, and P. S. Yu. (1996.) Data mining: An overview from a database

perspective. IEEE Trans. Knowledge and Data Engineering, 8:866-883,

Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. MIT press.

Piatetsky-Shapiro, G. (1996). Advances in knowledge discovery and data mining (Vol.

21). U. M. Fayyad, P. Smyth, & R. Uthurusamy (Eds.). Menlo Park: AAAI press.

T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Communications of ACM, 39:58-64, 1996. G. Piatetsky-Shapiro, U. M. Fayyad,

and P. Smyth. From data mining to knowledge discovery: An overview. In U.M.

Fayyad, et al. (eds.), Advances in Knowledge Discovery and Data Mining, 1-35.

AAAI/MIT Press, 1996.

Zaïane, O. R. (1999). Principles of knowledge discovery in databases. Department of

Computing Science, University of Alberta, 20.

MODULE 4 – EMERGING DATABASE MODELS, TECHNOLOGIES AND

APPLICATIONS

UNIT 1: RELATIONAL AND NON-RELATIONAL DATABASES

1. Introduction

For most of the last 40 years, businesses relied on relational database

management systems (RDBMSs)—that used Structured Query Language (SQL) as the

programming language. ScaleGrid reports that 60.5% of the commonly used databases

are SQL-based RDBMS. Applications in domains such as Multimedia, Geographical

Information Systems, and digital libraries demand a completely different set of

requirements in terms of the underlying database models. The conventional relational

database model is no longer appropriate for these types of data. Furthermore the volume

of data is typically significantly larger than in classical database systems. In addition,

indexing, retrieving and analyzing data types require specialized functionality not

CIT 905 Advanced Database Management System

Page | 248

available in conventional database systems. The unit will cover the some discussions

and the requirements and description of emerging databases.

1. Objectives:

At the end of this unit, you should be able to:

1. understand the differences between relational and non-relational databases

2. understand the various database models and their limitations

3. describe the various emerging databases

3.2 SQL-based Database Management Systems:

Relational database management systems (RDBMSs) use SQL, a database

management language that offers a highly organized and structured approach to

information management. Similar to the way a phone book has different categories of

information (name, number, address, etc.) for each line of data, relational databases

apply strict, categorical parameters that allow database users to easily organize, access,

and maintain information within those parameters. The primary reasons why SQL-

based RDBMSs continue to dominate are because they are highly stable and reliable,

adhere to a standard that integrates seamlessly with popular software stacks and have

been used for more than 40 years. Popular examples of SQL database engines include:

1. Oracle Database

2. MySQL

3. Microsoft SQL Server

3.3 Advantages of RDBMS:

1. ACID compliance: If a database system is "ACID compliant," it satisfies a set of

priorities that measure the atomicity, consistency, isolation, and durability of

database systems. The more ACID-compliant a database is, the more it serves to

guarantee the validity of database transactions, reduce anomalies, safeguard data

integrity, and create stable database systems. Generally, SQL-based RDBMSs

achieve a high level of ACID compliance, but NoSQL databases give up this

distinction to gain speed and flexibility when dealing with unstructured data.

CIT 905 Advanced Database Management System

Page | 249

2. Ideal for consistent data systems: With an SQL-based RDBMS, information will

remain in its original structure. They offer great speed and stability especially if

it does not involve massive amounts of data.

3. Better support options: Because RDBMS databases have been around for over

40 years, it's easier to get support, add-on products, and integrate data from other

systems.

1. Disadvantages of RDBMS:

1. Scalability challenges and difficulties with sharing: RDBMSs have a more

difficult time scaling up in response to massive growth compared to NoSQL

databases. These databases also present challenges when it comes to sharing. On

the other hand, a non-relational database system (NoSQL-based) handle scaling

and growth better than relational databases.

2. Less efficient with NoSQL formats: Most RDBMSs are now compatible with

NoSQL data formats, but they don't work with them as efficiently as non-

relational databases.

3. Another characteristic of conventional databases is that there are hardy

international standards available or used for the content of the databases, being

the data that is entered by its users. This typically means that local conventions

are applied to limit the diversity of data that may be entered in those databases.

As local conventions usually differ from other local conventions this has as

disadvantage that data that are entered in one database cannot be compared or

integrated with data in other databases, even if those database structures are the

same and even if the application domain of the databases is the same.

3.5 Non-Relational Database Systems (NoSQL-based)

When tasked with managing large amounts of unstructured data—like text from

emails and customer surveys, data collected by a network of mobile apps, or random

social media information. The information is disorganized. There is no clearly-defined

schema like you would find an RDBMS. You cannot store it in an RDBMS. But you

can with a non relational (or NoSQL) database system. Another reason why non-

CIT 905 Advanced Database Management System

Page | 250

relational databases are important is that they work with NoSQL formats like JSON,

which has become essential for web-based applications that let websites update "live"

without needing to refresh the page.

3.5.1 Advantages of Non-relational database systems:

1. Excellent for handling "big data" analytics: The main reason why NoSQL

databases are becoming more popular is that they remove the bottleneck of

needing to categorize and apply strict structures to massive amounts of

information. NoSQL databases like HBase, Cassandra, and CouchDB support

the speed and efficiency of server operations while offering the capacity to work

with large amounts of data.

2. No limits on types of data you can store: NoSQL databases give you unlimited

freedom to store diverse types of data in the same place. This offers the

flexibility to add new and different types of data to your database at any time.

3. Easier to scale: NoSQL databases are easier to scale. They are designed to be

fragmented across multiple data centers without much difficulty.

4. No data preparation required: When there isn't time to design a complex

model, and you need to get a database running fast, non-relational databases save

a lot of time.

3.5.2 Disadvantages of Non-Relational database systems:

1. More difficult to find support: Because the NoSQL community doesn't have

40 years of history and development behind it, it could be more difficult to find

experienced users when you in need support.

2. Lack of tools: Another disadvantage relating to newness is that—compared to

SQL-based RDBMS solutions—there aren't as many tools to assist with

performance testing and analysis.

3. Compatibility and standardization challenges: Newer NoSQL database

systems also lack the high degree of compatibility and standardization offered by

SQL-based alternatives. Therefore, you may find that the data in your non-

CIT 905 Advanced Database Management System

Page | 251

relational database management system doesn't readily integrate with other

products and services.

1. Types of NoSQL Database engines:

1. Key-value stores, such as Redis and Amazon DynamoDB, are extremely simple

database management systems that store only key-value pairs and provide basic

functionality for retrieving the value associated with a known key. The

simplicity of key-value stores makes these database management systems

particularly well-suited to embedded databases, where the stored data is not

particularly complex and speed is of paramount importance.

2. Wide column stores, such as Cassandra, Scylla, and HBase, are schema-agnostic

systems that enable users to store data in column families or tables, a single row

of which can be thought of as a record — a multi-dimensional key-value store.

These solutions are designed with the goal of scaling well enough to manage

petabytes of data across as many as thousands of commodity servers in a

massive, distributed system. Although technically schema-free, wide column

stores like Scylla and Cassandra use an SQL variant called CQL for data

definition and manipulation, making them straightforward to those already

familiar with RDBMS.

3. Document stores, including MongoDB, PostgreDB Couchbase, are schema-free

systems that store data in the form of JSON documents. Document stores are

similar to key-value or wide column stores, but the document name is the key

and the contents of the document, whatever they are, are the value. In a

document store, individual records do not require a uniform structure, can

contain many different value types, and can be nested. This flexibility makes

them particularly well-suited to manage semi-structured data across distributed

systems.

4. Graph databases, such as Neo4J and Datastax Enterprise Graph, represent data

as a network of related nodes or objects in order to facilitate data visualizations

and graph analytics. A node or object in a graph database contains free-form data

CIT 905 Advanced Database Management System

Page | 252

that is connected by relationships and grouped according to labels. Graph-

oriented database management systems (DBMS) software is designed with an

emphasis on illustrating connections between data points. As a result, graph

databases are typically used when analysis of the relationships between

heterogeneous data points is the end goal of the system, such as in fraud

prevention, advanced enterprise operations, or Facebook's original friend's

graph.

5. Search engines, such as elastic search, Splunk, and Solr, store data using

schema-free JSON documents. They are similar to document stores, but with a

greater emphasis on making your unstructured or semi-structured data easily

accessible via text-based searches with strings of varying complexity.

1. Differences between SQL and NoSQL Databases

Having described SQL and NoSQL databases along with their advantages and

disadvantages, the table below shows the differences between the two database

systems.

Table 4.1: Differences between SQL and NoSQL databases

S/N SQL NoSQL

1. Primary called relational databases Referred to as non-relational databases

2. Table based databases Document based, key-value pairs, graph

databases, wide-column stores etc.

3. Predefined schema for structured

data

Dynamic schema for unstructured data

4. SQL databases are vertically

scalable by increasing horse-power

of the hardware.

NoSQL databases are horizontally

scalable by increasing the database

servers in the pool of resources to reduce

load.

5. Structured Query Language (SQL)

used for defining and manipulating

data.

Unstructured query language is used

which varies from database to database.

6. Emphasizes on ACID properties

(Atomicity, Consistency, Isolation

and Durability)

Follows the Brewers CAP theorem

(Consistency, Availability and Partition

Tolerance).

CIT 905 Advanced Database Management System

Page | 253

3.8 Conclusion:

Relational databases emerged in the 70s to store data according to a schema that

allows data to be displayed as tables with rows and columns. Relational database is a

collection of tables, each with a schema that represents the fixed attributes and data

types that the items in the table will have. Relational Database Management Systems

(RDBMS) provide functionality for reading, creating, updating, and deleting data,

typically by means of Structured Query Language (SQL) statements. NoSQL (non-

relational) databases emerged as a popular alternative to relational databases as web

applications became increasingly complex. NoSQL/non-relational databases can take a

variety of forms. However, the critical difference between NoSQL and relational

databases is that RDBMS schemas rigidly define how all data inserted into the database

must be typed and composed, whereas NoSQL databases can be schema-agnostic,

allowing unstructured and semi-structured data to be stored and manipulated.

3.9 References and Further reading

Agrawal, S., & Patel, A. (2016). A Study ON GRAPH STORAGE DATABASE OF

NOSQL. International Journal on Soft Computing, Artificial Intelligence and

Applications (IJSCAI), 5(1), 33-39.

https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-databases-single-vs-

multiple-database-use/

https://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

https://www.xplenty.com/blog/overview-of-modern-database-systems-which-database-

is-right-for-your-use-case/

Karthic, S., & Kandasamy, S. A Java Based XML-Driver for Retrieving Data from the

XML Document Using SQL-Query.

Naheman, W., & Wei, J. (2013, December). Review of NoSQL databases and

performance testing on HBase. In Proceedings 2013 International Conference on

Mechatronic Sciences, Electric Engineering and Computer (MEC) (pp. 2304-

2309). IEEE.

https://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/
https://www.xplenty.com/blog/overview-of-modern-database-systems-which-database-is-right-for-your-use-case/
https://www.xplenty.com/blog/overview-of-modern-database-systems-which-database-is-right-for-your-use-case/

CIT 905 Advanced Database Management System

Page | 254

MODULE 4 – EMERGING DATABASE MODELS, TECHNOLOGIES

AND APPLICATIONS

Unit 2: Conventional Database Management Systems

1. Introduction:

Oracle has provided high-quality database solutions since the 1970s. The most recent

version of Oracle Database was designed to integrate with cloud-based systems, and it

allows you to manage massive databases with billions of records. Moreover, Oracle lets

you organize data via a ―grid framework‖ and it uses dynamic data masking for an

additional layer of security. Traditionally, Oracle has offered RDMBS solutions, but

now you can find SQL and NoSQL database solutions too.

1. Objectives:

1. To better understand the features and capabilities that make a conventional

databases

2. To understand latest programming language and multiple data structures support

being offered by these conventional database management systems.

4.2.2 ORACLE DATABSE MANAGEMENT SYSTEM

Oracle has provided high-quality database solutions since the 1970s. The most recent

version of Oracle Database was designed to integrate with cloud-based systems, and it

allows you to manage massive databases with billions of records. Moreover, Oracle lets

you organize data via a ―grid framework‖ and it uses dynamic data masking for an

additional layer of security. Oracle has offered RDMBS SQL and NoSQL solutions.

4.2.3 Programming Language Support by Oracle:

Many programming languages have Object-Relational Mapping (ORM)

frameworks that translate between the object-oriented data structures in programs and

the relational model of databases. Such frameworks usually represent themselves as

libraries to the developer that are used to abstract data interaction from the application

logic. While abstracting the data access layer in this way can boost developer

CIT 905 Advanced Database Management System

Page | 255

productivity, the task of managing the abstraction is still the developer‘s responsibility.

Oracle supports a large and varied development community (both internally and

externally), so the company recognizes the advantages of broad language support.

Today, more than 30 programming languages, including the popular languages shown

in Figure 4.1, can access the various database technologies that Oracle provides. In

addition, Oracle actively participates in industry-wide efforts to refine standards for

database interfaces, including JDBC, Python PEP 249, and PHP, among others.

Figure 4.1: Programming languages supported by Oracle

Source: Gerald Venzl, 2017).

Oracle anticipated the popularity of REST (Representational State Transfer), a

technology for creating web services, and the emerging trend of data access

abstraction via REST. Oracle introduced a database component that allows

RESTful access to data stored in a relational database, document store, or key-

value format, making Oracle a pioneer in providing standardized REST

interfaces for the data access layer. The component is known as Oracle REST

Data Services (ORDS).

CIT 905 Advanced Database Management System

Page | 256

Figure 4.2: Oracle REST Data Services

Source: (Gerald Venzl, 2017).

4.2.4 Multi – Model Persistence:

Modern-day databases are often multi-model—that is, they give developers the choice

of the desired data model without having to worry about which database to use and how

to connect to it (databases that support only a single data model are known as single-

model databases). Multi-model databases provide developers with a single connection

method and a common API for storing and retrieving data, regardless of the data

format. Data storage and retrieval is usually performed via standard SQL operations

that provide the desired transparency. By using standard SQL operations, a developer

can immediately leverage a multi-model database without having to refactor code or

interact with a different set of APIs.

Oracle provides both single-model and multi-model database technologies. Single-

model databases from Oracle include (although not exclusively) Berkeley DB, Berkeley

N o Q L

CIT 905 Advanced Database Management System

Page | 257

DB XML Data Store, Oracle NoSQL Database, and Oracle Essbase. Other databases

from Oracle can manage multiple data models, as shown in Figure 2.3. Oracle Database

12c, for example, supports multi-model database capabilities, enabling scalable, high

performance data management and analysis.

Figure 4.3: Data models supported by Oracle

Source: Gerald Venzl (2017)

4.2.5 GraalVM and the Oracle Database:

GraalVM is a universal virtual machine that runs applications written in a variety of

programming languages (JavaScript, Python 3, Ruby, R, Java Virtual Machine (JVM) -

based languages, and LLVM-based languages) with high performance on the same

platform. Supporting multiple programming languages allows GraalVM to share basic

infrastructure such as just-in-time (JIT) compilation, memory management,

configuration and tooling among all supported languages. The sharing of configuration

and tooling leads to a uniform developer experience in modern projects that make use

of multiple programming languages.

Support for many languages is not the only benefit of GraalVM. Although it primarily

runs as part of a JVM, GraalVM offers a solution for building native images written in

the Java programming language. This native image feature allows to compile an entire

Java application, possibly embedding multiple guest languages supported by GraalVM

and including the needed virtual machine infrastructure, into a native executable or a

CIT 905 Advanced Database Management System

Page | 258

shared library. The main advantages of a GraalVM native image are improved startup

times and reduced memory footprint. This enables existing applications and platforms

not written in Java to embed GraalVM as a shared library and benefit from its universal

virtual machine technology.

GraalVM provides high performance for individual languages and

interoperability with zero performance overhead for creating polyglot applications.

Instead of converting data structures at language boundaries, GraalVM allows objects

and arrays to be used directly by foreign languages.

Example scenarios include accessing functionality of a Java library from Node.js

code, calling a Python statistical routine from Java, or using R to create a complex SVG

plot from data managed by another language. With GraalVM, programmers are free to

use whatever language they think is most productive to solve the current task.

GraalVM 1.0 allows you to run:

1. JVM-based languages like Java, Scala, Groovy, or Kotlin

2. JavaScript (including Node.js)

3. LLVM bitcode (created from programs written in e.g. C, C++, or Rust)

4. Experimental versions of Ruby, R, and Python

GraalVM can either run standalone, embedded as part of platforms like OpenJDK

or Node.js, or even embedded inside databases such as MySQL or the Oracle RDBMS.

Applications can be deployed flexibly across the stack via the standardized GraalVM

execution environments. In the case of data processing engines, GraalVM directly

exposes the data stored in custom formats to the running program without any

conversion overhead.

For JVM-based languages, GraalVM offers a mechanism to create precompiled

native images with instant start up and low memory footprint. The image generation

process runs a static analysis to find any code reachable from the main Java method and

then performs a full ahead-of-time (AOT) compilation. The resulting native binary

contains the whole program in machine code form for immediate execution. It can be

CIT 905 Advanced Database Management System

Page | 259

linked with other native programs and can optionally include the GraalVM compiler for

complementary JIT compilation support to run any GraalVM-based language with high

performance.

Figure 4.4: GraalVM allows multiple technologies to work with the Oracle Database

Source: https://blogs.oracle.com/developers/announcing-graalvm

A major advantage of the GraalVM ecosystem is language-agnostic tooling that is

applicable in all GraalVM deployments. The core GraalVM installation provides a

language-agnostic debugger, profiler, and heap viewer. We invite third-party tool

developers and language developers to enrich the GraalVM ecosystem using the

instrumentation API or the language-implementation API. We envision GraalVM as a

language-level virtualization layer that allows leveraging tools and embeddings across

all languages.

5.1 MySQL

MySQL is a free, open-source RDBMS solution that Oracle owns and manages. Even

though it‘s freeware, MySQL benefits from frequent security and features updates.

Commercial and enterprise can upgrade to paid versions of MySQL to benefit from

additional features and user support. Although MySQL didn't support NoSQL in the

https://blogs.oracle.com/developers/announcing-graalvm
http://graalvm.org/docs/reference-manual/tools/

CIT 905 Advanced Database Management System

Page | 260

past, since Version 8, it provides NoSQL support to compete with other solutions like

PostgreSQL.

1. Features of MySQL Database:

The following are the most important properties of MySQL.

1. Relational Database System: Like almost all other database systems on the

market, MySQL is a relational database system.

2. Client/Server Architecture: MySQL is a client/server system. There is a

database server (MySQL) and arbitrarily many clients (application programs),

which communicate with the server; that is, they query data, save changes, etc.

The clients can run on the same computer as the server or on another computer

(communication via a local network or the Internet).

3. SQL compatibility: MySQL supports as its database language -- as its name

suggests – SQL (Structured Query Language). SQL is a standardized language for

querying and updating data and for the administration of a database. There are

several SQL dialects (about as many as there are database systems). MySQL

adheres to the current SQL standard although with significant restrictions and a

large number of extensions.

4. SubSELECTs: Since version 4.1, MySQL is capable of processing a query in

the form SELECT * FROM table1 WHERE x IN (SELECT y FROM table2)

(There are also numerous syntax variants for subSELECTs.)

5. Views: Put simply, views relate to an SQL query that is viewed as a distinct

database object and makes possible a particular view of the database. MySQL has

supported views since version 5.0.

6. Stored procedures (SPs for short) are generally used to simplify certain steps, such

as inserting or deleting a data record. For client programmers this has the advantage

that they do not have to process the tables directly, but can rely on SPs. Like views,

SPs help in the administration of large database projects. SPs can also increase

efficiency. MySQL has supported SPs since version 5.0.

CIT 905 Advanced Database Management System

Page | 261

7. Triggers: Triggers are SQL commands that are automatically executed by the

server in certain database operations (INSERT, UPDATE, and DELETE). MySQL

has supported triggers in a limited form from version 5.0, and additional

functionality is promised for version 5.1.

8. Unicode: MySQL has supported all conceivable character sets since version 4.1,

including Latin-1, Latin-2, and Unicode (either in the variant UTF8 or UCS2).

9. Full-text search: Full-text search simplifies and accelerates the search for words

that are located within a text field. If you employ MySQL for storing text (such as in

an Internet discussion group), you can use full-text search to implement simply an

efficient search function.

10. Replication: Replication allows the contents of a database to be copied (replicated)

onto a number of computers. In practice, this is done for two reasons: to increase

protection against system failure (so that if one computer goes down, another can be

put into service) and to improve the speed of database queries.

11. Transactions: In the context of a database system, a transaction means the

execution of several database operations as a block. The database system ensures

that either all of the operations are correctly executed or none of them. This holds

even if in the middle of a transaction there is a power failure, the computer crashes,

or some other disaster occurs. Thus, for example, it cannot occur that a sum of

money is withdrawn from account A but fails to be deposited in account B due to

some type of system error.

12. Transactions also give programmers the possibility of interrupting a series of

already executed commands (a sort of revocation). In many situations this leads to a

considerable simplification of the programming process.

13. GIS functions: Since version 4.1, MySQL has supported the storing and processing

of two-dimensional geographical data. Thus MySQL is well suited for GIS

(geographic information systems) applications.

14. Programming languages: There are quite a number of APIs (application

programming interfaces) and libraries for the development of MySQL applications.

CIT 905 Advanced Database Management System

Page | 262

For client programming you can use, among others, the languages C, C++, Java,

Perl, PHP, and Python

15. ODBC: MySQL supports the ODBC interface Connector/ODBC. This allows

MySQL to be addressed by all the usual programming languages that run under

Microsoft Windows (Delphi, Visual Basic, etc.). The ODBC interface can also be

implemented under Unix, though that is seldom necessary.

16. Windows programmers who have migrated to Microsoft's new .NET platform can,

if they wish, use the ODBC provider or the .NET interface Connector/NET.

17. Platform independence: It is not only client applications that run under a variety of

operating systems; MySQL itself (that is, the server) can be executed under a

number of operating systems. The most important are Apple Macintosh OS X,

Linux, Microsoft Windows, and the countless Unix variants, such as AIX, BSDI,

FreeBSD, HP-UX, OpenBSD, Net BSD, SGI Iris, and Sun Solaris.

18. Speed: MySQL is considered a very fast database program. This speed has been

backed up by a large number of benchmark tests (though such tests -- regardless of

the source -- should be considered with a good dose of skepticism).

5.3 MySQL User interfaces

A graphical user interface (GUI) is a type of interface that allows users to interact with

electronic devices or programs through graphical icons and visual indicators such as

secondary notation, as opposed to text-based interfaces, typed command labels or text

navigation. GUIs are easier to learn than command-line interfaces (CLIs), which

require commands to be typed on the keyboard. Third-party proprietary and free

graphical administration applications (or "front ends") are available that integrate with

MySQL and enable users to work with database structure and data visually. Some well-

known front ends are:

1. MySQL Workbench: The official integrated environment for MySQL. It was

developed by MySQL AB, and enables users to graphically administer MySQL

databases and visually design database structures. MySQL Workbench replaces the

previous package of software, MySQL GUI Tools. Similar to other third-party

CIT 905 Advanced Database Management System

Page | 263

packages, but still considered the authoritative MySQL front end, MySQL

Workbench lets users manage database design & modeling, SQL development

(replacing MySQL Query Browser) and Database administration (replacing

MySQL Administrator).

2. MySQL Workbench is available in two editions, the regular free and open source

Community Edition which may be downloaded from the MySQL website, and the

proprietary Standard Edition which extends and improves the feature set of the

Community Edition.

Figure 4.5: MySQL Workbench

Source: Philip Olson - Home computer, MySQL Workbench 5.2.44, GPL,

https://commons.wikimedia.org/w/index.php?curid=52195090

Adminer: A free MySQL front end for managing content in MySQL databases (since

version 2, it also works on PostgreSQL, Microsoft SQL Server, SQLite and Oracle

databases). Adminer is distributed under the Apache License (or GPL v2) in the form

of a single PHP file (around 300 KiB in size), and is capable of managing multiple

databases, with many CSS skins available. Its author is Jakub Vrána who started to

develop this tool as a light-weight alternative to phpMyAdmin.

3. DBeaver: An SQL client and a database administration tool. DBeaver includes

extended support of following databases: MySQL and MariaDB, PostgreSQL,

https://commons.wikimedia.org/w/index.php?curid=52195090

CIT 905 Advanced Database Management System

Page | 264

Oracle, DB2 (LUW), Exasol, SQL Server, Sybase, Firebird, Teradata, Vertica,

Apache Phoenix, Netezza, Informix, Apache Derby, H2, SQLite and any other

database which has a JDBC or ODBC driver. DBeaver is free and open source

software that is distributed under the Apache License 2.0. The source code is

hosted on GitHub.

4. DBEdit: A database editor, which can connect to an Oracle, DB2, MySQL and

any database that provides a JDBC driver. It runs on Windows, Linux and

Solaris. DBEdit is free and open source software and distributed under the GNU

General Public License. The source code is hosted on SourceForge.

5. Navicat: A series of graphical database management and development software

produced by PremiumSoft CyberTech Ltd. for MySQL, MariaDB, Oracle,

SQLite, PostgreSQL and Microsoft SQL Server. It has an Explorer-like

graphical user interface and supports multiple database connections for local and

remote databases. Its design is made to meet the needs of a variety of audiences,

from database administrators and programmers to various businesses/companies

that serve clients and share information with partners. Navicat is a cross-

platform tool and works on Microsoft Windows, OS X and Linux platforms.

Upon purchase, users are able to select a language for the software from eight

available languages: English, French, German, Spanish, Japanese, Polish,

Simplified Chinese and Traditional Chinese.

6. phpMyAdmin: A free and open source tool written in PHP intended to handle

the administration of MySQL with the use of a web browser. It can perform

various tasks such as creating, modifying or deleting databases, tables, fields or

rows; executing SQL statements; or managing users and permissions. The

software, which is available in 78 languages, is maintained by The

phpMyAdmin Project.

7. Toad for MySQL: A software application from Dell Software that database

developers, database administrators and data analysts use to manage both

relational and non-relational databases using SQL. Toad supports many databases

and environments. It runs on all 32-bit/64-bit Windows platforms, including

CIT 905 Advanced Database Management System

Page | 265

Microsoft Windows Server, Windows XP, Windows Vista, Windows 7 and 8

(32-Bit or 64-Bit). Dell Software has also released a Toad Mac Edition. Dell

provides Toad in commercial and trial/freeware versions. The freeware version is

available from the ToadWorld.com community.

5.3.1 Command-line interfaces

A command-line interface is a means of interacting with a computer program where

the user issues commands to the program by typing in successive lines of text

(command lines). MySQL ships with many command line tools, from which the main

interface is the mysql client. Some of the command-line utilities available for MySQL

are listed below:

1. MySQL Utilities is a set of utilities designed to perform common maintenance and

administrative tasks. Originally included as part of the MySQL Workbench, the

utilities are a stand-alone download available from Oracle.

2. Percona Toolkit is a cross-platform toolkit for MySQL, developed in Perl. Percona

Toolkit can be used to prove replication is working correctly, fix corrupted data,

automate repetitive tasks, and speed up servers. Percona Toolkit is included with

several Linux distributions such as CentOS and Debian, and packages are available

for Fedora and Ubuntu as well. Percona Toolkit was originally developed as

Maatkit, but as of late 2011, Maatkit is no longer developed.

3. MySQL shell is a tool for interactive use and administration of the MySQL

database. It supports JavaScript, Python or SQL modes and it can be used for

administration and access purposes.

5.3.2 Advantages of using MySQL:

1. It’s free: As an open-source RDBMS solution, MySQL is free to use in any way

you want.

2. Excellent for any size organization: MySQL is an excellent solution for

enterprise-level businesses and small startup companies alike.

3. Different user interfaces available

CIT 905 Advanced Database Management System

Page | 266

4. Highly compatible with other systems: MySQL has a reputation for being

compatible with many other database systems.

5.3.3 Disadvantages of using MySQL:

5. Missing features common in other RDBMSs: Because MySQL prioritizes

speed and agility over features, you might find that it‘s missing some of the

standard features found in other solutions, like the ability to create

incremental backups, for example.

6. Challenges getting quality support: Being a free solution, there is no

dedicated support team to provide solutions for problems and challenges

unless it is upgraded to the paid MySQL package from Oracle. However,

MySQL does have an active volunteer community, useful forums, and lot of

documentation provides answers to questions.

6.0 Microsoft SQL

Microsoft SQL Server is a relational database management system (RDBMS) that

supports a wide variety of transaction processing, business intelligence and analytics

applications in corporate IT environments. Like other RDBMS software, Microsoft

SQL Server is built on top of SQL, a standardized programming language that database

administrators (DBAs) and other IT professionals use to manage databases and query

the data they contain. SQL Server is tied to Transact-SQL (T-SQL), an implementation

of SQL from Microsoft that adds a set of proprietary programming extensions to the

standard language. The core component of Microsoft SQL Server is the SQL Server

Database Engine, which controls data storage, processing and security. It includes a

relational engine that processes commands and queries and a storage engine that

manages database files, tables, pages, indexes, data buffers and transactions. Stored

procedures, triggers, views and other database objects are also created and executed by

the Database Engine.

CIT 905 Advanced Database Management System

Page | 267

6.1 Microsoft SQL Services

SQL Server also includes an assortment of add-on services. While these are not

essential for the operation of the database system, they provide value added services on

top of the core database management system. These services either run as a part of

some SQL Server component or out-of-process as Windows Service and presents their

own API to control and interact with them.

6.1.1 Machine Learning Services:

The SQL Server Machine Learning services operates within the SQL server instance,

allowing people to do machine learning and data analytics without having to send data

across the network or be limited by the memory of their own computers. The services

come with Microsoft's R and Python distributions that contain commonly used

packages for data science, along with some proprietary packages (e.g. revoscalepy,

RevoScaleR, microsoftml) that can be used to create machine models at scale. Analysts

can either configure their client machine to connect to a remote SQL server and push

the script executions to it, or they can run a R or Python scripts as an external script

inside a T-SQL query. The trained machine learning model can be stored inside a

database and used for scoring.

6.1.2 Service Broker: Used inside an instance, programming environment. For cross-

instance applications, Service Broker communicates over TCP/IP and allows the

different components to be synchronized, via exchange of messages. The Service

Broker, which runs as a part of the database engine, provides a reliable messaging and

message queuing platform for SQL Server applications. Service broker services

consists of the following parts:

1. message types

2. contracts

3. queues

4. service programs

CIT 905 Advanced Database Management System

Page | 268

5. routes

The message type defines the data format used for the message. This can be an XML

object, plain text or binary data, as well as a null message body for notifications. The

contract defines which messages are used in a conversation between services and who

can put messages in the queue. The queue acts as storage provider for the messages.

They are internally implemented as tables by SQL Server, but don't support insert,

update, or delete functionality. The service program receives and processes service

broker messages. Usually the service program is implemented as stored procedure or

CLR application. Routes are network addresses where the service broker is located on

the network. Also, service broker supports security features like network authentication

(using NTLM, Kerberos, or authorization certificates), integrity checking, and message

encryption.

6.1.3 Reporting Services:

SQL Server Reporting Services is a report generation environment for data

gathered from SQL Server databases. It is administered via a web interface. Reporting

services features a web services interface to support the development of custom

reporting applications. Reports are created as RDL files. Reports can be designed using

recent versions of Microsoft Visual Studio (Visual Studio.NET 2003, 2005, and 2008)

with Business Intelligence Development Studio, installed or with the included Report

Builder. Once created, RDL files can be rendered in a variety of formats, including

Excel, PDF, CSV, XML, BMP, EMF, GIF, JPEG, PNG, and TIFF and HTML Web

Archive.

6.3.4 Full Text Search Service:

SQL Server Full Text Search service is a specialized indexing and querying service for

unstructured text stored in SQL Server databases. The full text search index can be

created on any column with character-based text data. It allows for words to be

searched for in the text columns. While it can be performed with the SQL LIKE

operator, using SQL Server Full Text Search service can be more efficient. It allows for

CIT 905 Advanced Database Management System

Page | 269

inexact matching of the source string, indicated by a Rank value which can range from

0 to 1000—a higher rank means a more accurate match. It also allows linguistic

matching ("inflectional search"), i.e., linguistic variants of a word (such as a verb in a

different tense) will also be a match for a given word (but with a lower rank than an

exact match). Proximity searches are also supported, i.e., if the words searched for do

not occur in the sequence they are specified in the query but are near each other, they

are also considered a match. T-SQL exposes special operators that can be used to

access the FTS capabilities.

Figure 4.6: SQL Server Full Text Search Architecture

The Full Text Search engine is divided into two processes: The Filter Daemon process

(msftefd.exe) and the Search process (msftesql.exe). These processes interact with the

SQL Server. The Search process includes the indexer (that creates the full text indexes)

and the full text query processor. The indexer scans through text columns in the

database. It can also index through binary columns, and use iFilters to extract

meaningful text from the binary blob (for example, when a Microsoft Word document

is stored as an unstructured binary file in a database). The iFilters are hosted by the

Filter Daemon process. Once the text is extracted, the Filter Daemon process breaks it

up into a sequence of words and hands it over to the indexer. The indexer filters out

CIT 905 Advanced Database Management System

Page | 270

noise words, i.e., words like A, And etc., which occur frequently and are not useful for

search. With the remaining words, an inverted index is created, associating each word

with the columns they were found in. SQL Server itself includes a Gatherer component

that monitors changes to tables and invokes the indexer in case of updates. When a full

text query is received by the SQL Server query processor, it is handed over to the FTS

query processor in the Search process. The FTS query processor breaks up the query

into the constituent words, filters out the noise words, and uses an inbuilt thesaurus to

find out the linguistic variants for each word. The words are then queried against the

inverted index and a rank of their accurateness is computed. The results are returned to

the client via the SQL Server process.

6.1.5 Notification Services:

Originally introduced as a post-release add-on for SQL Server 2000, Notification

Services was bundled as part of the Microsoft SQL Server platform for the first and

only time with SQL Server 2005. SQL Server Notification Services is a mechanism for

generating data-driven notifications, which are sent to Notification Services

subscribers. A subscriber registers for a specific event or transaction (which is

registered on the database server as a trigger); when the event occurs, Notification

Services can use one of three methods to send a message to the subscriber informing

about the occurrence of the event.

6.4 Important SQL Server Tools:

6.4.1 SQLCMD:

A command line application that comes with Microsoft SQL Server, and exposes the

management features of SQL Server. It allows SQL queries to be written and executed

from the command prompt. It can also act as a scripting language to create and run a set

of SQL statements as a script. Such scripts are stored as a SQL file, and are used either

for management of databases or to create the database schema during the deployment of

a database. SQLCMD was introduced with SQL Server 2005 and has continued

through SQL Server versions 2008, 2008 R2, 2012, 2014, 2016 and 2019. Its

CIT 905 Advanced Database Management System

Page | 271

predecessor for earlier versions was OSQL and ISQL, which were functionally

equivalent as it pertains to TSQL execution, and many of the command line parameters

are identical, although SQLCMD adds extra versatility.

6.4.2 Visual Studio:

A programming tool that includes native support for data programming with Microsoft

SQL Server. It can be used to write and debug code to be executed by SQL CLR. It also

includes a data designer that can be used to graphically create, view or edit database

schemas. Queries can be created either visually or using code. SSMS 2008 onwards,

provides intelligence for SQL queries as well.

6.4.3 SQL Server Management Studio:

A Graphic User Interface (GUI) tool included with SQL Server 2005 and later for

configuring, managing, and administering all components within Microsoft SQL

Server. The tool includes both script editors and graphical tools that work with objects

and features of the server. SQL Server Management Studio replaces Enterprise

Manager as the primary management interface for Microsoft SQL Server since SQL

Server 2005. A version of SQL Server Management Studio is also available for SQL

Server Express Edition, for which it is known as SQL Server Management Studio

Express (SSMSE).

A central feature of SQL Server Management Studio is the Object Explorer,

which allows the user to browse, select, and act upon any of the objects within the

server. It can be used to visually observe and analyze query plans and optimize the

database performance, among others. SQL Server Management Studio can also be used

to create a new database, alter any existing database schema by adding or modifying

tables and indexes, or analyze performance. It includes the query windows which

provide a GUI based interface to write and execute queries.

CIT 905 Advanced Database Management System

Page | 272

6.4.4 SQL Server Operations Studio:

A cross platform query editor available as an optional download. The tool allows users

to write queries; export query results; commit SQL scripts to GIT repositories and

perform basic server diagnostics. SQL Server Operations Studio supports Windows,

Mac and Linux systems. It was released to General Availability in September 2018, at

which point it was also renamed to Azure Data Studio. The functionality remains the

same as before.

6.4.5 Business Intelligence Development Studio (BIDS): The Integrated

Development Environment (IDE) from Microsoft used for developing data analysis and

Business Intelligence solutions utilizing the Microsoft SQL Server Analysis Services,

Reporting Services and Integration Services. It is based on the Microsoft Visual Studio

development environment but is customized with the SQL Server services-specific

extensions and project types, including tools, controls and projects for reports (using

Reporting Services), Cubes and data mining structures (using Analysis Services. For

SQL Server 2012 and later, this IDE has been renamed SQL Server Data Tools (SSDT).

6.5 Advantages of using Microsoft SQL Server include:

1. Mobilility: This database engine allows you to access dashboard graphics and

visuals via mobile devices.

2. Integrates with Microsoft products: Companies that rely heavily on Microsoft

products will enjoy the way SQL Server integrates easily with these applications.

3. Speed: Microsoft SQL Server has built a reputation around being fast and stable.

6.6 Disadvantages of using Microsoft SQL Server:

1. Expensive: Considering that there are plenty of free database engines available,

the cost of Microsoft SQL Server is steep. It's over N14,000 for one enterprise-

level license per core. There are scaled down licensing options for approximately

N3,700 and N900, and a free version you can use to test the platform.

CIT 905 Advanced Database Management System

Page | 273

2. Requires a lot of resources: This resource-heavy RDBMS may require you to

purchase better hardware.

7.1 MongoDB

MongoDB is a free, open-source database engine built especially for applications that

use unstructured data. Because most DBMSs were built for structured data—even if

add-ons allow them to handle non-relational data now—MongoDB often excels where

other DBMSs fail. MongoDB works with structured data too, but since this database

engine wasn't designed for relational data, performance slowdowns are likely.

7.2 MongoDB Features:

1. Each database contains collections which in turn contains documents. Each

document can be different with a varying number of fields. The size and

content of each document can be different from each other.

2. The document structure is more in line with how developers construct their

classes and objects in their respective programming languages. Developers will

often say that their classes are not rows and columns but have a clear structure

with key-value pairs.

3. As seen in the introduction with NoSQL databases, the rows (or documents as

called in MongoDB) doesn't need to have a schema defined beforehand.

Instead, the fields can be created on the fly.

4. The data model available within MongoDB allows you to represent

hierarchical relationships, to store arrays, and other more complex structures

more easily.

5. Scalability – The MongoDB environments are very scalable. Companies

across the world have defined clusters with some of them running 100+ nodes

with around millions of documents within the database.

7.3 MongoDB Example:

The below example shows how a document can be modeled in MongoDB.

CIT 905 Advanced Database Management System

Page | 274

1. The _id field is added by MongoDB to uniquely identify the document in the

collection.

2. What you can note is that the Order Data (OrderID, Product, and Quantity)

which in RDBMS will normally be stored in a separate table, while in MongoDB

it is actually stored as an embedded document in the collection itself. This is one

of the key differences in how data is modelled in MongoDB.

Figure 4.7: MongoDB example

Source: https://www.guru99.com/what-is-mongodb.html

7.4 Key Components of MongoDB Architecture:

The components of MongoDB

1. _id – This is a field required in every MongoDB document. The _id field

represents a unique value in the MongoDB document. The _id field is like the

document's primary key. If you create a new document without an _id field,

MongoDB will automatically create the field. So for example, if we see the

example of the above customer table, Mongo DB will add a 24 digit unique

identifier to each document in the collection.

https://www.guru99.com/what-is-mongodb.html
https://www.guru99.com/images/MongoDB/112015_1051_Introductio1.png

CIT 905 Advanced Database Management System

Page | 275

Table 5.1: Key features of MongoDB architecture

_Id CustomerID CustomerName OrderID

563479cc8a8a4246bd27d784 11 Guru99 111

563479cc7a8a4246bd47d784 22 Trevor Smith 222

563479cc9a8a4246bd57d784 33 Nicole 333

1. Collection – This is a grouping of MongoDB documents. A collection is the

equivalent of a table which is created in any other RDMS such as Oracle or MS

SQL. A collection exists within a single database. As seen from the introduction

collections don't enforce any sort of structure.

2. Cursor – This is a pointer to the result set of a query. Clients can iterate through

a cursor to retrieve results.

3. Database – This is a container for collections like in RDMS wherein it is a

container for tables. Each database gets its own set of files on the file system. A

MongoDB server can store multiple databases.

4. Document - A record in a MongoDB collection is basically called a document.

The document, in turn, will consist of field name and values.

5. Field - A name-value pair in a document. A document has zero or more fields.

Fields are analogous to columns in relational databases.

CIT 905 Advanced Database Management System

Page | 276

The following diagram shows an example of Fields with Key value pairs. So in the

example below CustomerID and 11 is one of the key value pair's defined in the

document.

Figure 4.7: Example of fields with key-value pairs

Source: https://www.guru99.com/what-is-mongodb.html

1. JSON – This is known as JavaScript Object Notation. This is a human-readable,

plain text format for expressing structured data. JSON is currently supported in

many programming languages. Just a quick note on the key difference between

the _id field and a normal collection field. The _id field is used to uniquely

identify the documents in a collection and is automatically added by MongoDB

when the collection is created.

7.5 Why Use MongoDB?:

The reasons as to why one should start using MongoDB

1. Document-oriented – Since MongoDB is a NoSQL type database, instead of

having data in a relational type format, it stores the data in documents. This

makes MongoDB very flexible and adaptable to real business world situation

and requirements.

https://www.guru99.com/interactive-javascript-tutorials.html
https://www.guru99.com/images/MongoDB/112015_1051_Introductio2.png

CIT 905 Advanced Database Management System

Page | 277

2. Ad hoc queries - MongoDB supports searching by field, range queries, and

regular expression searches. Queries can be made to return specific fields within

documents.

3. Indexing - Indexes can be created to improve the performance of searches

within MongoDB. Any field in a MongoDB document can be indexed.

4. Replication - MongoDB can provide high availability with replica sets. A

replica set consists of two or more mongo DB instances. Each replica set

member may act in the role of the primary or secondary replica at any time. The

primary replica is the main server which interacts with the client and performs

all the read/write operations. The Secondary replicas maintain a copy of the data

of the primary using built-in replication. When a primary replica fails, the replica

set automatically switches over to the secondary and then it becomes the primary

server.

5. Load balancing - MongoDB uses the concept of sharding to scale horizontally

by splitting data across multiple MongoDB instances. MongoDB can run over

multiple servers, balancing the load and/or duplicating data to keep the system

up and running in case of hardware failure.

7.6 Data Modelling in MongoDB:

As we have seen from the section 7.1, the data in MongoDB has a flexible schema.

Unlike in SQL databases, where you must have a table's schema declared before

inserting data, MongoDB's collections do not enforce document structure. This sort of

flexibility is what makes MongoDB so powerful.

When modeling data in Mongo, keep the following things in mind

1. What are the needs of the application – Look at the business needs of the application

and see what data and the type of data needed for the application. Based on this,

ensure that the structure of the document is decided accordingly.

2. What are data retrieval patterns – If you foresee a heavy query usage then consider

the use of indexes in your data model to improve the efficiency of queries.

CIT 905 Advanced Database Management System

Page | 278

3. Are frequent inserts, updates and removals happening in the database –

Reconsider the use of indexes or incorporate sharding if required in your data

modeling design to improve the efficiency of your overall MongoDB

environment.

7.8 Difference between MongoDB & RDBMS

Below are some of the key term differences between MongoDB and RDBMS

Table 5.2: Differences between MongoDB and RDBMS

RDBMS MongoDB Difference

Table Collection In RDBMS, the table contains the columns and rows which

are used to store the data whereas, in MongoDB, this same

structure is known as a collection. The collection contains

documents which in turn contains Fields, which in turn are

key-value pairs.

Row Document In RDBMS, the row represents a single, implicitly structured

data item in a table. In MongoDB, the data is stored in

documents.

Column Field In RDBMS, the column denotes a set of data values. These in

MongoDB are known as Fields.

Joins Embedded

documents

In RDBMS, data is sometimes spread across various tables

and in order to show a complete view of all data, a join is

sometimes formed across tables to get the data. In MongoDB,

the data is normally stored in a single collection, but separated

by using Embedded documents. So there is no concept of

joins in MongoDB.

Apart from the terms differences, a few other differences are shown below

1. Relational databases are known for enforcing data integrity. This is not an

explicit requirement in MongoDB.

2. RDBMS requires that data be normalized first so that it can prevent orphan

records and duplicates Normalizing data then has the requirement of more tables,

which will then result in more table joins, thus requiring more keys and indexes.

CIT 905 Advanced Database Management System

Page | 279

7.9 Conclusion:

MongoDB connects non-relational databases with applications by using a wide

variety of drivers (based on the programming language of the application). The most

recent versions of MongoDB include pluggable storage engines. Upgraded text search

features are also available, along with partial indexing features which can help with

performance.

7.10 Tutor Marked Assignment

1. What are the key components of MongoDB?

2. Describe the services provided by Microsoft SQL

3. State the advantages of using Microsoft SQL Server

7.11 Further Reading and References:

Larry Ellison Introduces 'A Big Deal': The Oracle Autonomous Database". Forbes. 2

October 2019. Archived from the original on 22 December 2017. Retrieved 18

December 2019

MSDN: Introducing SQL Server Management Studio". Msdn.microsoft.com. Retrieved

2011-09-04.

Banker, Kyle (March 28, 2011), MongoDB in Action (1st ed.), Manning, p. 375, ISBN

978-1-935182-87-0

Ben-Gan, Itzik, et al. (2006). Inside Microsoft SQL Server 2005: T-SQL Programming.

Microsoft Press. ISBN 0-7356-2197-7.

Chodorow, Kristina; Dirolf, Michael (September 23, 2010), MongoDB: The Definitive

Guide (1st ed.), O'Reilly Media, p. 216, ISBN 978-1-4493-8156-1

Delaney, Kalen, et al. (2007). Inside SQL Server 2005: Query Tuning and

Optimization. Microsoft Press. ISBN 0-7356-2196-9.

Gerald Venzl (2017). Database Requirements for Modern Developers

Giles, Dominic (13 February 2019). "Oracle Database 19c : Now available on Oracle

Exadata". Archived from the original on 10 May 2019. Retrieved 10 May 2019.

Hawkins, Tim; Plugge, Eelco; Membrey, Peter (September 26, 2010), The Definitive

Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing

(1st ed.), Apress, p. 350, ISBN 978-1-4302-3051-9

Klaus Aschenbrenner (2011). "Introducing Service Broker". Pro SQL Server 2008

Service Broker. Vienna: Apress. p. 17-31. ISBN 978-1-4302-0865-5. Retrieved

Lance Delano, Rajesh George et al. (2005). Wrox's SQL Server 2005 Express Edition

Starter Kit (Programmer to Programmer). Microsoft Press. ISBN 0-7645-8923-7.

CIT 905 Advanced Database Management System

Page | 280

MariaDB versus MySQL - Compatibility". MariaDB KnowledgeBase. Retrieved 16

September 2016.

MongoDB World". www.mongodb.com. Archived from the original on April 26, 2019.

Retrieved April 10, 2019.

MySQL Federated Tables: The Missing Manual". O‘Reilly Media. 8 October 2006.

Retrieved 1 February 2012.

Pirtle, Mitch (March 3, 2011), MongoDB for Web Development (1st ed.), Addison-Wesley

Professional, p. 360, ISBN 978-0-321-7053

Translations". phpMyAdmin. Retrieved 23 December 2019

CIT 905 Advanced Database Management System

Page | 281

MODULE 4: EMERGING DATABASE MODELS, TECHNOLOGIES

AND APPLICATIONS

UNIT 3: EMERGING DATABASE SYSTEMS

4.3.0 Introduction

The history of databases has types of data stored in the databases were relatively

simple. In the past few years, however, there has been an increasing need for handling new

data types in databases, such as temporal data, spatial data, multimedia data, and

geographic data and so on. Another major trend in the last decade has created its own

issues, for example, the growth of mobile computers, starting with laptop computers,

palmtop computers and pocket organizers. In more recent years, mobile phones have also

come with built-in computers. These trends have resulted into the development of new

database technologies to handle new data types and applications. In this unit, some of the

emerging database technologies have been briefly introduced.

1. Objectives

At the end of this unit, students should be able to:

1. To understand the basic concept of some emerging databases

2. To understand the design rules and user needs

3. To understand the applications and advantages of each of the databases

4.3.2 EMERGING DATABASE TECHNOLOGIES

 This section describes the emerging database technologies:

4.3.2.1 Internet Databases

The Internet revolution of the late 90s have resulted into explosive growth of

WWW technology and sharply increased direct user access to databases. Organizations

converted many of their phone interfaces to databases into Web interfaces and made a

variety of services and information available on-line. The transaction requirements of

CIT 905 Advanced Database Management System

Page | 282

organizations have grown with increasing use of computers and the phenomenal growth in

the Web technology. These developments have created many sites with millions of viewers

and the increasing amount of data collected from these viewers has produced extremely

large databases at many companies. Today, millions of people use the Internet to shop for

goods and services, listen to music, view network, conduct research, get stock quotes, keep

up-to-date with current events and send electronic mail to other Internet users. More and

more people are using the Internet at work and at home to view and download multimedia

computer files containing graphics, sound, video and text.

Web is used as front end to databases, which can run on any computer system. There is no

need to download any special-purpose software to access information. One of the most

popular uses of the Web is the viewing, searching and filtering of data. Whether you are

using a search engine to find a specific Web site, or browsing Amazon.com‘s product

listings, you are accessing collections of Web-enabled data. Database information can be

published on the Web in two different formats: static web publishing and dynamic web

publishing.

1. Static Web publishing involves creating a list or report, based on the information

stored in a database and publishing it online. Static Web publishing is a good way

to publish information that does not change often and does not need to be filtered or

searched.

2. Dynamic Web publishing involves creating pages ―on the fly‖ based on

information stored in the database. The most commonly used Web database tools

for creating Web databases are common gateway interface (CGI) tool and XML.

Advantages of Web Databases

1. Simple to use HTML both for developers and end-users.

2. Platform-independent.

3. Good graphical user interface (GUI).

CIT 905 Advanced Database Management System

Page | 283

4. Standardization of HTML.

5. Cross-platform support.

6. Transparent network access.

7. Scalable deployment.

8. Web enables organizations to provide new and innovative services and reach new

customers through globally accessible applications

Disadvantages of Web Databases

1. The internet not yet very reliable.

2. Slow communication medium.

3. Security concern.

4. High cost for meeting increasing demands and expectations of customers.

5. Scalability problem due to enormous peak loads.

6. Limited functionality of HTML.

4.3.3 Digital Libraries

The Internet and the WWW are two of the principal building blocks that are used in the

development of digital libraries. The Web and its associated technology have been crucial

to the rapid growth of digital libraries. This is a fascinating period in the history of libraries

and publishing. For the first time, it is possible to build large-scale services where

collections of information are stored in digital formats and retrieved over networks. The

materials are stored on computers. A network connects the computers to personal

computers on the users‘ desks. In a completely digital library, nothing need ever reach

paper. Digital libraries bring together facets of many disciplines and experts with different

backgrounds and different approaches.

Digital library can be defined as a managed collection of information, with associated

services, where the information is stored in digital formats and accessible over a network.

A key part of this definition is that the information is managed. A stream of data sent to

CIT 905 Advanced Database Management System

Page | 284

earth from a satellite is not a library. The same data, when organized systematically,

becomes a digital library collection. Most people would not consider a database containing

financial records of one company to be a digital library, but would accept a collection of

such information from many companies as part of a library. Digital libraries contain

diverse collections of information for use by many different users. Digital libraries range in

size from tiny to huge. They can use any type of computing equipment and any suitable

software. The unifying theme is that information is organized on computers and available

over a network, with procedures to select the material in the collections, to organize it, to

make it available to users and to archive it.

4.3.3.1 Components of Digital Libraries

Digital libraries have the following components:

1. People

Two important communities are the source of much of this innovation. One group is

the information professionals. They include librarians, publishers and a wide range of

information providers, such as indexing and abstracting services. The other

community contains the computer science researchers and their offspring, the Internet

developers. Until recently, these two communities had disappointingly little

interaction; even now it is commonplace to find a computer scientist who knows

nothing of the basic tools of librarianship, or a librarian whose concepts of information

retrieval are years out of date. Over the past few years, however, there has been much

more collaboration and understanding.

A variety of words are used to describe the people who are associated with digital

libraries. One group of people are the creators of information in the library. Creators

include authors, composers, photographers, map makers, designers and anybody else

who creates intellectual works. Some are professionals; some are amateurs. Some

work individually, others in teams. They have many different reasons for creating

CIT 905 Advanced Database Management System

Page | 285

information. Another group is the users of the digital library. Depending on the

context, users may be described by different terms. In libraries, they are often called

―readers‖ or ―patrons‖; at other times they may be called the audience or the

customers. A characteristic of digital libraries is that creators and users are sometimes

the same people. In academia, scholars and researchers use libraries as resources for

their research and publish their findings in forms that become part of digital library

collections. The final group of people is a broad one that includes everybody whose

role is to support the creators and the users. They can be called information managers.

The group includes computer specialists, librarians, publishers, editors and many

others. The WWW has created a new profession of Webmaster. Frequently a publisher

will represent a creator, or a library will act on behalf of users, but publishers should

not be confused with creators or librarians with users. A single individual may be a

creator, user and information manager.

2. Economic

Technology influences the economic and social aspects of information and vice versa.

The technology of digital libraries is developing fast and so are the financial,

organizational and social frameworks. The various groups that are developing digital

libraries bring different social conventions and different attitudes to money. Publishers

and libraries have a long tradition of managing physical objects, notably books, but

also maps, photographs, sound recordings and other artifacts. They evolved economic

and legal frameworks that are based on buying and selling these objects. Their natural

instinct is to transfer to digital libraries the concepts that have served them well for

physical artifacts. Computer scientists and scientific users, such as physicists, have a

different tradition. Their interest in digital information began in the days when

computers were very expensive. Only a few well-funded researchers had computers on

the first networks. They exchanged information informally and openly with

CIT 905 Advanced Database Management System

Page | 286

colleagues, without payment. The networks have grown, but the tradition of open

information remains.

3. Computers and networks

Digital libraries consist of many computers connected by a communications network.

The dominant network is the Internet. The emergence of the Internet as a flexible, low-

cost, world-wide network has been one of the key factors that have led to the growth

of digital libraries.

4.3.3.2 Need for Digital Libraries

The fundamental reason for building digital libraries is a belief that they will provide better

delivery of information than was possible in the past. Traditional libraries are a

fundamental part of society, but they are not perfect. Computers and networks have

already changed the ways in which people communicate with each other. In some

disciplines, they argue, a professional or scholar is better served by sitting at a personal

computer connected to a communications network than by making a visit to a library.

Information that was previously available only to the professional is now directly available

to all. From a personal computer, the user is able to consult materials that are stored on

computers around the world. Conversely, all but the most diehard enthusiasts recognize

that printed documents are so much part of civilization that their dominant role cannot

change except gradually. While some important uses of printing may be replaced by

electronic information, not everybody considers a large-scale movement to electronic

information desirable, even if it is technically, economically and legally feasible.

4.3.3.3 Database for Digital Libraries

4. Digital libraries hold any information that can be encoded as sequences of bits.

Sometimes these are digitized versions of conventional media, such as text, images,

music, sound recordings, specifications and designs and many, many more. As

digital libraries expand, the contents are less often the digital equivalents of

CIT 905 Advanced Database Management System

Page | 287

physical items and more often items that have no equivalent, such as data from

scientific instruments, computer programs, video games and databases

The information stored in a digital library can be divided into data and metadata.

Metadata is data about other data. Common categories of metadata include

descriptive metadata, such as bibliographic information, structural metadata about

formats and structures and administrative metadata, which includes rights,

permissions and other information that is used to manage access. One item of

metadata is the identifier, which identifies an item to the outside world. The

distinction between data and metadata often depends upon the context. Catalogue

records or abstracts are usually considered to be metadata, because they describe

other data, but in an online catalogue or a database of abstracts they are the data.

4.3.3.4 Benefits of Digital Libraries

The digital library brings the library to the user:

1. Using library requires access. Traditional methods require that the user goes to the

library. In a university, the walk to a library takes a few minutes, but not many

people are member of universities or have a nearby library. Many engineers or

physicians carry out their work with depressingly poor access to the latest

information.

2. A digital library brings the information to the user’s desk, either at work or at

home, making it easier to use and hence increasing its usage. With a digital library

on the desktop, a user need never visit a library building. The library is wherever

there is a personal computer and a network connection.

3. Computer power is used for searching and browsing: Computing power can be

used to find information. Paper documents are convenient to read, but finding

information that is stored on paper can be difficult. Despite the myriad of secondary

tools and the skill of reference librarians, using a large library can be a tough

CIT 905 Advanced Database Management System

Page | 288

challenge. A claim that used to be made for traditional libraries is that they

stimulate serendipity, because readers stumble across unexpected items of value.

The truth is that libraries are full of useful materials that readers discover only by

accident.

1. Information can be shared: Libraries and archives contain much information that

is unique. Placing digital information on a network makes it available to everybody.

Many digital libraries or electronic publications are maintained at a single central

site, perhaps with a few duplicate copies strategically placed around the world. This

is a vast improvement over expensive physical duplication of little used material, or

the inconvenience of unique material that is inaccessible without traveling to the

location where it is stored.

1. Information is easier to keep current: Much important information needs to be

brought up to date continually. Printed material is awkward to update, since the

entire document must be reprinted; all copies of the old version must be tracked

down and replaced. Keeping information current is much less of a problem when

the definitive version is in digital format and stored on a central computer.

1. The information is always available: The doors of the digital library never close;

a recent study at a British university found that about half the usage of a library‘s

digital collections was at hours when the library buildings were closed. Material is

never checked out to other readers, miss-shelved or stolen; they are never in an off-

campus warehouse. The scope of the collections expands beyond the walls of the

library. Private papers in an office or the collections of a library on the other side of

the world are as easy to use as materials in the local library.

Each of the benefits described above can be seen in existing digital libraries. There is

another group of potential benefits, which have not yet been demonstrated, but hold

tantalizing prospects. The hope is that digital libraries will develop from static repositories

CIT 905 Advanced Database Management System

Page | 289

of immutable objects to provide a wide range of services that allow collaboration and

exchange of ideas. The technology of digital libraries is closely related to the technology

used in fields such as electronic mail and teleconferencing, which have historically had

little relationship to libraries. The potential for convergence between these fields is

exciting.

4.3.4 Multimedia databases

Multimedia databases use wide variety of multimedia sources, such as: Images, Video

clips, Audio clips, Text or documents. The fundamental characteristics of multimedia

systems are that they incorporate continuous media, such as voice (audio), video and

animated graphics.

Images include photographs, drawings and so on. Images are usually stored in raw form as

a set of pixel or cell values, or in a compressed form to save storage space. The image

shape descriptor describes the geometric shape of the raw image, which is typically a

rectangle of cells of a certain width and height. Each cell contains a pixel value that

describes the cell content. In black/white images, pixels can be one bit. In gray scale or

colour images, pixel is multiple bits. Images require very large storages space. Hence, they

are often stored in a compressed form, such as GIF, JPEG. These compressed forms use

various mathematical transformations to reduce the number of cells stored, without

disturbing the main image characteristics. The mathematical transforms used to compress

images include Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and

Wavelet Transforms. In order to identify the particular objects in an image, the image is

divided into two homogeneous segments using a homogeneity predicate. The homogeneity

predicate defines the conditions for how to automatically group those cells. For example,

in a colour image, cells that are adjacent to one another and whose pixel values are close

are grouped into a segment. Segmentation and compression can hence identify the main

characteristics of an image. Inexpensive image-capture and storage technologies have

CIT 905 Advanced Database Management System

Page | 290

allowed massive collections of digital images to be created. However, as a database grows,

the difficulty of finding relevant images increases. Two general approach namely manual

identification and automatic analysis, to this problem have been developed. Both the

approaches use metadata for image retrieval.

2. Video Clips: Video clippings include movies, newsreels, and home videos and so on.

A video source is typically represented as a sequence of frames, where each frame is a

still image. However, rather than identifying the objects and activities in every

individual frame, the video is divided into video segments. Each video segment is

made up of a sequence of contiguous frames that includes the same objects or

activities. Its starting and ending frames identify each segment. The objects and

activities identified in each video segment can be used to index the segments. An

indexing technique called frame segment trees are used for video indexing. The index

includes both objects (such as persons, houses, cars and others) and activities (such as

a person delivering a speech, two persons talking and so on). Videos are also often

compressed using standards such as MPEG.

3. Audio Clips: Audio clips include phone messages, songs, speeches, class

presentations, surveillance recording of phone messages and conversations by law

enforcement and others. Here, discrete transforms are used to identify the main

characteristics of a certain person‘s voice in order to have similarity based indexing

and retrieval Audio characteristic features include loudness, intensity, pitch and

clarity.

1. Text or Documents: Text or document sources include articles, books, journals and

so on. A text or document is basically the full text of some article, book, magazine

or journal. These sources are typically indexed by identifying the keywords that

appear in the text and their relative frequencies. However, filler words are

CIT 905 Advanced Database Management System

Page | 291

eliminated from that process. Because a technique called singular value

decompositions (SVD) based on matrix transformation is used to reduce the number

of keywords in collection of document. An indexing technique called telescoping

vector trees or TV-trees, can then be used to group similar documents together.

4.3.4.1 Multimedia Database Applications

Multimedia data may be stored, delivered and utilized in many different ways.

Some of the important applications are as follows:

1. Repository applications.

2. Presentation applications.

3. Collaborative work using multimedia information.

4. Documents and records management.

5. Knowledge dissemination.

6. Education and training.

7. Marketing, advertising, retailing, entertainment and travel.

8. Real-time control and monitoring.

4.3.5 Mobile Databases

The rapid technological development of mobile phones (cell phones), wireless and satellite

communications and increased mobility of individual users have resulted into increasing

demand for mobile computing. Portable computing devices such as laptop computers,

palmtop computers and so on coupled with wireless communications allow clients to

access data from virtually anywhere and at any time in the globe. The mobile databases

interfaced with these developments, offer the users such as CEOs, marketing professionals,

finance managers and others to access any data, anywhere, at any time to take business

decisions in real-time. Mobile databases are especially useful to geographically dispersed

organizations.

The flourishing of the mobile devices is driving businesses to deliver data to employees

and customers wherever they may be. The potential of mobile gear with mobile data is

CIT 905 Advanced Database Management System

Page | 292

enormous. A salesperson equipped with a PDA running corporate databases can check

order status, sales history and inventory instantly from the client‘s site. And drivers can use

handheld computers to log deliveries and report order changes for a more efficient supply

chain.

4.3.5.1. Components of Mobile Databases

Mobile database architecture is a distributed architecture where several computers,

generally referred to as corporate database servers are interconnected through a high-speed

communication network. Mobile database consists of the following components:

1. Corporate database server and DBMS to manage and store the corporate data and

provide corporate applications.

2. Mobile (remote) database and DBMS at several locations to manage and store the

mobile data and provide mobile applications.

3. End user mobile database platform consisting of laptop computer, PDA and other

Internet access devices to manage and store client (end user) data and provide client

applications.

Communication links between the corporate and mobile DBMS for data access. The

communication between the corporate and mobile databases is intermittent and is

established for short period of time at irregular intervals.

4.3.5.2 Mobile DBMS

The mobile DBMSs are capable of communicating with a range of major relational

DBMSs and are providing services that require limited computing resources to match those

currently provided by mobile devices. The mobile DBMSs should have the following

capabilities:

1. Communicating with centralized or corporate database server through wireless or

Internet access.

CIT 905 Advanced Database Management System

Page | 293

1. Replicating data on the centralized database server and mobile device.

2. Synchronizing data on the centralized database server and mobile database.

3. Capturing data from various sources such as the Internet.

4. Managing data on the mobile devices such as laptop computer, palmtop computer and

so on.

5. Analyzing data on a mobile device.

6. Creating customized mobile applications.

4.3.5.3 Commercial Mobile Databases

Sybase‘s SQL Anywhere currently dominates the mobile database market. The company

has deployed SQL Anywhere, more than 6 million users at over 10,000 sites and serves 68

per cent of the mobile database market, according to a recent Gartner Dataquest study.

Other mobile databases include IBM‘s DB2 Everyplace 7, Microsoft SQL Server 2000

Windows CE Edition and Oracle9i Lite. Smaller player Gupta Technologies‘ SQLBase

also targets handheld devices.

Mobile databases are often stripped-down versions of their server-based counterparts.

They contain only basic SQL operations because of limited resources on the devices. In

addition to storage requirements for data tables, the database engines require from 125K to

1MB, depending on how well the vendor was able to streamline its code. Platform support

is a key issue in choosing a mobile database. No organization wants to devote development

and training resources to a platform that may become obsolete. Microsoft‘s mobile

database supports Win32 and Windows CE. The IBM, Oracle and Sybase products support

Linux, Palm OS, QNX Neutrino, Symbian EPOC, Windows CE and Win32.

4.3.6 Spatial Databases

Spatial databases keep track of objects in a multidimensional space. Spatial data support in

databases is important for efficiently storing, indexing and querying of data based on

CIT 905 Advanced Database Management System

Page | 294

spatial locations. A common example of spatial data includes geographic data, such as

road maps and associated information. A road map is a two-dimensional object that

contains points, lines and polygons that can represent cities, roads and political boundaries

such as states or countries. A road map is visualization of graphic information. The

location of cities, roads and political boundaries that exist on the surface of the Earth are

projected onto two-dimensional display or piece of paper, preserving the relative positions

and relative distances of the rendered objects. The data that indicates the Earth location

(latitude and longitude, or height and depth) of these rendered objects is the spatial data.

When the map is rendered, this spatial data is used to project the locations of the objects on

a two-dimensional piece of paper. A geographic information system (GIS) is often used to

store, retrieve and render Earth-relative spatial data. Another type of spatial data are the

data from computer-aided design (CAD) such as integrated-circuit (IC) designs or building

designs and computer-aided manufacturing (CAM) are other types of spatial data.

CAD/CAM types of spatial data work on a smaller scale such as for an automobile engine

or printed circuit board (PCB) as compared to GIS data, which works at much bigger scale,

for example indicating Earth location.

4.3.6.1 Characteristics of Spatial Database

1. A spatial database stores objects that have spatial characteristics that describe them.

The spatial relationships among the objects are important and they are often needed

when querying the database. A spatial database can refer to an n-dimensional space

for any value of ‗n‘.

2. Special databases consist of extensions, such as models that can interpret spatial

characteristics. In addition, special indexing and storage structures are often needed

to improve the performance.

3. The basic extensions needed are to include two-dimensional geometric concepts,

such as points, lines and line segments, circles, polygons and arcs, in order to

specify the spatial characteristics of the objects.

CIT 905 Advanced Database Management System

Page | 295

4. Spatial operations are needed to operate on the objects‘ spatial characteristics. For

example, we need spatial operations to compute the distance between two objects

and other such operations. We also need spatial Boolean conditions to check

whether two objects spatially overlap and perform other similar operations. For

example, a GIS will contain the description of the spatial positions of many types of

objects. Some objects such as highways, buildings and other landmarks have static

spatial characteristics. Other objects like vehicles, temporary buildings and others

have dynamic spatial characteristics that change over time.

5. The spatial databases are designed to make the storage, retrieval and manipulation

of spatial data easier and more natural to users such as GIS. Once the data is stored

in a spatial database, it can be easily and meaningfully manipulated and retrieved as

it relates to all other data stored in the database.

6. Spatial databases provide concepts for databases that keep track of objects in a

multi-dimensional space. For example, geographic databases and GIS databases that

store maps include two-dimensional spatial descriptions of their objects. These

databases are used in many applications, such as environmental, logistics

management and war strategies.

4.3.6.2 Spatial Database Queries

Spatial query is the process of selecting features based on their geographic or spatial

relationship to other features. There are many types of spatial queries that can be issued to

spatial databases. The following categories three typical types of spatial queries.

1. Range query: Range query finds the objects of a particular type that are within a given

spatial area or within a particular distance from a given location.

2. Nearest neighbour query or adjacency: This query finds an object of a particular

type that is closest to a given location. For example, finding the police post that is

closest to your house, finding all restaurants that lie within five kilometre of

CIT 905 Advanced Database Management System

Page | 296

distance of your residence or finding the hospital nearest to the adjacent site and so

on.

3. Spatial joins or overlays: This query typically joins the objects of two types based

on some spatial condition, such as the objects intersecting or overlapping spatially

or being within a certain distance

4.3.6.3 Features of spatial databases:

Database systems use indexes to quickly look up values; however, this way of indexing

data is not optimal for spatial queries. Instead, spatial databases use a spatial index to

speed up database operations. In addition to typical SQL queries such as SELECT

statements, spatial databases can perform a wide variety of spatial operations. The

following operations and many more are specified by the Open Geospatial Consortium

standard:

1. Spatial Measurements: Computes line length, polygon area, the distance between

geometries, etc.

2. Spatial Functions: Modify existing features to create new ones, for example by

providing a buffer around them, intersecting features, etc.

3. Spatial Predicates: Allows true/false queries about spatial relationships between

geometries. Examples include "do two polygons overlap" or 'is there a residence

located within a mile of the area we are planning to build the landfill?'

4. Geometry Constructors: Creates new geometries, usually by specifying the

vertices (points or nodes) which define the shape.

5. Observer Functions: Queries which return specific information about a feature

such as the location of the center of a circle. Some databases support only

simplified or modified sets of these operations, especially in cases of NoSQL

systems like MongoDB and CouchDB. In general, spatial data can be of two types:

1. Vector data: This data is represented as discrete points, lines and polygons.

2. Rastor data: This data is represented as a matrix of square cells

CIT 905 Advanced Database Management System

Page | 297

Figure 4.3.1: Spatial Databases

4.3.6.1 Spatial index:

Spatial indices are used by spatial databases (databases which store information related to

objects in space) to optimize spatial queries. Conventional index types do not efficiently

handle spatial queries such as how far two points differ, or whether points fall within a

spatial area of interest. Common spatial index methods include:

1. Geohash

2. HHCode

3. Grid (spatial index)

4. Z-order (curve)

5. Quadtree

6. Octree

7. UB-tree

8. R-tree: Typically the preferred method for indexing spatial data. Objects (shapes,

lines and points) are grouped using the minimum bounding rectangle (MBR).

Objects are added to an MBR within the index that will lead to the smallest increase

in its size.

CIT 905 Advanced Database Management System

Page | 298

1. R+ tree

2. R* tree

3. Hilbert R-tree

4. X-tree

5. kd-tree

9. m-tree – an m-tree index can be used for the efficient resolution of similarity

queries on complex objects as compared using an arbitrary metric.

10. Binary space partitioning (BSP-Tree): Subdividing space by hyperplanes

4.3.6.2 Spatial database systems

1. AllegroGraph – a graph database which provides a mechanism for efficient storage

and retrieval of two-dimensional geospatial coordinates for Resource Description

Framework data. It includes an extension syntax for SPARQL queries.

2. Caliper extends the Raima Data Manager with spatial datatypes, functions, and

utilities.

3. CouchDB a document-based database system that can be spatially enabled by a

plugin called Geocouch

4. Esri has a number of both single-user and multiuser geodatabases.

5. GeoMesa is a cloud-based spatio-temporal database built on top of Apache

Accumulo and Apache Hadoop (also supports Apache HBase, Google Bigtable,

Apache Cassandra, and Apache Kafka). GeoMesa supports full OGC Simple

Features and a GeoServer plugin.

6. H2 supports geometry types and spatial indices as of version 1.3.173 (2013-07-28).

An extension called H2GIS available on Maven Central gives full OGC Simple

Features support.

7. IBM DB2 Spatial Extender can spatially-enable any edition of DB2, including the

free DB2 Express-C, with support for spatial types

CIT 905 Advanced Database Management System

Page | 299

8. IBM Informix Geodetic and Spatial datablade extensions auto-install on use and

expand Informix's datatypes to include multiple standard coordinate systems and

support for RTree indexes. Geodetic and Spatial data can also be incorporated with

Informix's Timeseries data support for tracking objects in motion over time.

9. Linter SQL Server supports spatial types and spatial functions according to the

OpenGIS specifications.

10. Microsoft SQL Server has support for spatial types since version 2008

11. MonetDB/GIS extension for MonetDB adds OGS Simple Features to the relational

column-store database.

12. MySQL DBMS implements the datatype geometry, plus some spatial functions

implemented according to the OpenGIS specifications. However, in MySQL

version 5.5 and earlier, functions that test spatial relationships are limited to

working with minimum bounding rectangles rather than the actual geometries.

MySQL versions earlier than 5.0.16 only supported spatial data in MyISAM tables.

As of MySQL 5.0.16, InnoDB, NDB, BDB, and ARCHIVE also support spatial

features.

13. Neo4j – a graph database that can build 1D and 2D indexes as B-tree, Quadtree and

Hilbert curve directly in the graph

14. OpenLink Virtuoso has supported SQL/MM since version 6.01.3126, with

significant enhancements including GeoSPARQL in Open Source Edition 7.2.6, and

in Enterprise Edition 8.2.0

15. Oracle Spatial

16. PostgreSQL DBMS (database management system) uses the spatial extension

PostGIS to implement the standardized datatype geometry and corresponding

functions.

17. Redis with the Geo API.

18. RethinkDB supports geospatial indexes in 2D.

CIT 905 Advanced Database Management System

Page | 300

19. SAP HANA supports geospatial with SPS08.

20. Smallworld VMDS, the native GE Smallworld GIS database

21. Spatial Query Server from Boeing spatially enables Sybase ASE.

22. SpatiaLite extends Sqlite with spatial datatypes, functions, and utilities.

23. Tarantool supports geospatial queries with RTREE index.

24. Teradata Geospatial includes 2D spatial functionality (OGC-compliant) in its data

warehouse system.

25. Vertica Place, the geo-spatial extension for HP Vertica, adds OGC-compliant

spatial features to the relational column-store database.

4.3.7 Emerging databases in support of scientific data

4.3.7.1 Vertical Database

A vertical database is one in which the physical layout of the data is column-by-column

rather than row-by-row. Rather than being arranged in horizontal record structures and

processed vertically, data in a vertical database is arranged in vertical structures, known as

predicate trees, or P-trees, and processed horizontally. The applications and advantages of

vertical databases are as follows:

CIT 905 Advanced Database Management System

Page | 301

1. Data Mining: Horizontal databases are suitable for applications where the requested

result is a set of horizontal records, but less so for applications such as data mining,

where researchers are typically interested in results that can be expressed succinctly. P-

trees, on the other hand, are well suited to data mining. P-trees are usually created by

decomposing each attribute, or column, of a table of horizontal records into separate bit

vectors, or array data structures. P-trees can be one-dimensional, two-dimensional or

multi-dimensional; if the data to be stored in the database has natural dimensions for

instance, geospatial data or geographic information -- the dimensions of the P-tree are

matched to those of the data.

2. Performance: Data in a vertical database is processed through fast logical operators,

such as AND, OR, exclusive OR and complement. Furthermore, by arranging data

column-wise rather than row-wise, it is possible to execute queries, or searches, on the

data without accessing pages on a hard disk that aren‘t affected by the query and so

increase the speed of data retrieval. This is an important consideration when data

mining in very large data repositories.

3. Page Size: Another advantage of vertical databases is that they allow data to be stored

in large pages. A large page size means that a large number of relevant data items can

be retrieved in a single read operation. By contrast, a single read operation on a

horizontal database retrieves not only relevant data items, but also attributes, or

columns, that aren‘t relevant to the query in question and favors small page sizes.

4.3.8 MonetDB

MonetDB is an open-source column-oriented database management system developed

at the Centrum Wiskunde & Informatica (CWI) in the Netherlands. It was designed to

provide high performance on complex queries against large databases, such as combining

tables with hundreds of columns and millions of rows. MonetDB has been applied in high-

CIT 905 Advanced Database Management System

Page | 302

performance applications for online analytical processing, data mining, geographic

information system (GIS), Resource Description Framework (RDF), scientific

applications, text retrieval and sequence alignment processing.

4.3.8.1 Components of MonetDB:

A number of extensions exist for MonetDB that extend the functionality of the database

engine. Due to the three-layer architecture, top-level query interfaces can benefit from

optimizations done in the backend and kernel layers.

1. SQL: MonetDB/SQL is a top-level extension, which provides complete support for

transactions in compliance with the SQL:2003 standard.

2. GIS: MonetDB/GIS is an extension to MonetDB/SQL with support for the Simple

Features Access standard of Open Geospatial Consortium (OGC).

3. SciQL: SciQL an SQL-based query language for science applications with arrays as

first class citizens. SciQL allows MonetDB to effectively function as an array

database. SciQL is used in the European Union PlanetData and TELEIOS project,

together with the Data Vault technology, providing transparent access to large

scientific data repositories. Data Vaults map the data from the distributed repositories

to SciQL arrays, allowing for improved handling of spatio-temporal data in MonetDB.

SciQL will be further extended for the Human Brain Project.

4. Data Vaults: Data Vault is a database-attached external file repository for

MonetDB, similar to the SQL/MED standard. The Data Vault technology allows for

transparent integration with distributed/remote file repositories. It is designed for

scientific data data exploration and mining, specifically for remote sensing data.

5. R integration: MonetDB/R module allows for user defined functions (UDFs)

written in R to be executed in the SQL layer of the system. This is done using the

native R support for running embedded in another application, inside the RDBMS

in this case. Previously the MonetDB.R connector allowed the using MonetDB data

CIT 905 Advanced Database Management System

Page | 303

sources and process them in an R session. The newer R integration feature of

MonetDB does not require data to be transferred between the RDBMS and the R

session, reducing overhead and improving performance. The feature is intended to

give users access to functions of the R statistical software for in-line analysis of data

stored in the RDBMS. It complements the existing support for C UDFs and is

intended to be used for in-database processing.

6. Python integration: Similarly to the embedded R UDFs in MonetDB, the database

now has support for UDFs written in Python/NumPy. The implementation uses

Numpy arrays (themselves Python wrappers for C arrays), as a result there is

limited overhead - providing a functional Python integration with speed matching

native SQL functions. The Embedded Python functions also support mapped

operations, allowing user to execute Python functions in parallel within SQL

queries.

7. MonetDBLite: Following the release of remote driver for R (MonetDB.R) and R

UDFs in MonetDB (MonetDB/R), the authors created an embedded version of

MonetDB in R called MonetDBLite. It is distributed as an R package, removing the

need to manage a database server, required for the previous R integrations. The

DBMS runs within the R process itself, eliminating socket communication and

serialisation overhead - greatly improving efficiency. The idea behind it is to deliver

an SQLite-like package for R, with the performance of an in-memory optimized

columnar store.

4.3.9 SciDB

SciDB is a column-oriented database management system (DBMS) designed for

multidimensional data management and analytics common to scientific, geospatial,

financial, and industrial applications. It is developed by Paradigm4 and co-created by

Turing Award winner Michael Stonebraker.

CIT 905 Advanced Database Management System

Page | 304

4.3.9.1 Requirements and Features of SciDB

A summary of the requirements of SciDB are as follows:

1. A data model based on multidimensional arrays, not sets of tuples

2. A storage model based on versions and not update in place

3. Built-in support for provenance (lineage), workflows, and uncertainty

4. Scalability to 100s of petabytes and 1,000s of nodes with high degrees of tolerance

to failures

5. Support for "external" data objects so that data sets can be queried and manipulated

without ever having to be loaded into the database

6. Open source in order to foster a community of contributors and to ensure that data

is never locked up — a critical requirement for scientists.

The SciDB team identifies as key features of their eventual product its array-oriented data

model, its support for versions, provenance, and time table, its architecture to allow

massively parallel computations, scalable on commodity hardware, grids, and clouds, its

first-class support for userdefined functions (UDFs), and its native support for uncertainty.

The SciDB data model supports nested multi-dimensional arrays—often a natural

representation for spatially or temporally ordered data. Array cells can be tuples, or other

arrays, and the type system is extensible. Sparse array representation and operations are

supported, with user-definable handling of null or missing data. SciDB allows arrays to

be ―chunked‖ (in multiple dimensions) in storage, with chunks partitioned across a

collection of nodes. Each node has processing and storage capabilities. Overlaps‖ are

definable so that certain neighborhood operations are possible without communication

among nodes. The underlying architectural conception is of a shared-nothing cluster of

tens to thousands of nodes on commodity hardware, with a single runtime supervisor

CIT 905 Advanced Database Management System

Page | 305

dispatching queries and coordinating execution among the nodes‘ local executors and

storage managers.

An array query language is defined, and refers to arrays as though they were not

distributed. A query planner optimizes queries for efficient data access and processing,

with a query plan running on a node‘s local executor/storage manager, and a runtime

supervisor coordinating execution. The Array Query Language (AQL) is a declarative

SQL-like language with array extensions. There are a number of array-specific operators,

and linear algebraic and matrix operations are provided. The language is extensible with

Postgres-style user-defined functions, and interfaces to other packages (Matlab, R, etc.)

will be provided.

1. Conclusion

In history of databases, the type of data stored in the databases were relatively simple. In

the past few years, however, there has been an increasing need for handling new data types

in databases, such as temporal data, spatial data, multimedia data, and geographic data and

so on. Another major trend in the last decade has created its own issues, for example, the

growth of mobile computers, starting with laptop computers, palmtop computers and

pocket organizers. In more recent years, mobile phones have also come with built-in

computers. These trends have resulted into the development of new database technologies

to handle new data types and applications. In this unit, some of the emerging database

technologies have been briefly introduced. We have discussed how databases are used and

accessed from Internet, using web technologies, use of mobile databases to allow users

widespread and flexible access to data while being mobile and multimedia databases

providing support for storage and processing of multimedia information. We have also

presented how to deal with geographic information data or spatial data and their

applications.

CIT 905 Advanced Database Management System

Page | 306

4.6 Tutor Marked Assignment

1. What is a mobile database? Explain the architecture of mobile database

2. What is spatial data model? Enumerate the features of spatial database

3. Differentiate between range queries, neighbour queries and spatial joins

4. Enumerate the requirements and Features of SciDB

4.7 Further Readings/Reference

A. Anjomshoaa and A. Tjoa, "How the cloud computing paradigm could shape the future

of enterprise information processing", Proceedings of the 13th International

Conference on Information Integration and Web-based Applications and

Services - iiWAS'11, pp. 7-10, 2011.

Abadi, D.J., Madden, S., Ferreira, M.C.: Integrating compression and execution in column-

oriented database systems. In Proc. 2006 SIGMOD Conf., June 27-29, Chicago.

IL, USA. ACM, New York (2006).

Ailamaki, A., DeWitt, D., Hill, M., Skounakis, M.: Weaving Relations for High

Performance. In Proc. of the 27th Int. Conf. on Very Large Databases, Rome, Italy

(2001).

Ailamaki, A., DeWitt, D., Hill, M., Wood, D.A.: DBMSs on a Modern Processor: Where

Does Time Go? In Proc. 25th Int. Conf. on Very Large Databases, Edinburgh,

Scotland (1999).

Bach Pedersen, Torben; S. Jensen, Christian (December 2001). "Multidimensional

Database Technology". Distributed Systems Online: 40–46. ISSN 0018-9162

Borne K, Becla J, Davidson I, Szalay A, and Tyson J, 2008, "The LSST Data Mining

Research Agenda,‖ AIP Conf. Proc. 1082, pp 347-351.

Cranshaw J, Cuhadar-Donszelmann T, Gallas E, Hrivnac J, Kenyon M, McGlone H,

Malon D, Mambelli M, Nowak M, Viegas F, Vinek E, and Zhang Q, 2010, "Event

selection services in ATLAS,‖ J. Phys. Conf. Ser. 219 042007.

Cranshaw J, Goosens L, Malon D, McGlone H, and Viegas F, 2008, "Building a scalable

event-level metadata service for ATLAS,‖ J. Phys. Conf. Ser. 119 072012.

Cranshaw J, Malon D. Vaniachine A, Fine V, Lauret J, and Hamill P, 2010, "Petaminer:

Daniel Lemire (December 2007). "Data Warehousing and OLAP-A Research-Oriented

Bibliography".

E. Gamma, R. Helm, R. Johnson, and J. Vlissidis. Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

Erik Thomsen. (1997). OLAP Solutions: Building Multidimensional Information Systems,

2nd Edition. John Wiley & Sons. ISBN 978-0-471-14931-6.

https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

CIT 905 Advanced Database Management System

Page | 307

Hudec, M.: Fuzzy SQL for statistical databases. In MSIS, Meeting on the Management of

Statistical Information Systems. Luxembourg. (2008) [Online]. Available:

http://www.unece.org/stats/documents/ece/ces/ge.50/2008/wp.12.e.pdf (January

2009)

Idreos, Stratos; Kersten, Martin L; Manegold, Stefan (2007). Database cracking.

Proceedings of CIDR.

International Business Machines, Corp. DB2 Spatial Extender – User‘s Guide and

Reference, Version 8.1, 2002.

International Business Machines, Corp. Informix Spatial DataBlade, Version 8.11, 2001.

ISO/DIS 19107:2002. Geographic Information - Spatial Schema, 2002.

ISO/DIS 19111:2002. Geographic Information - Spatial Referencing by Coordinates, 2002.

ISO/IEC 9075-2:1999. Information Technology – Database Languages – SQL – Part 2:

Foundation (SQL/Foundation), 1999.

ISO/IEC 9075-2:2001 WD. Information Technology – Database Languages – SQL – Part

7: Temporal (SQL/Foundation), 2001.

ISO/IEC 9075-9:2000. Information Technology – Database Languages – SQL – Part 9:

SQL/MED, 2000.

Ling Liu and Tamer M. Özsu (Eds.) (2009). "Encyclopedia of Database Systems, 4100 p.

60 illus. ISBN 978-0-387-49616-0.

Malon D, Cranshaw J, and Karr K, 2006, "A flexible, distributed event-level metadata

system for ATLAS,‖ Computing in High Energy and Nuclear Physics, Mumbai,

India.

Malon D, Van Gemmeren P, Nowak M, and Schaffer A, 2006, "Schema evolution and the

ATLAS event store,‖ Computing in High Energy and Nuclear Physics, Mumbai,

India.

Mark Tatum, Dan Brennan, Darryl McGowan (2017). Oracle White Paper: Big Data, Fast

Data, All Data

Modi, A (2017). "Live migration of virtual machines with their local persistent storage in a

data intensive cloud". International Journal of High Performance Computing and

Networking.

Moghaddam, B., & Pentland, A. (1999). Bayesian image retrieval in biometric databases.

In Proceedings of the IEEE International Conference on Multimedia Computing

and Systems (Vol. 2, p. 610).

Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications (PDF). Ph.D.

Thesis. Universiteit van Amsterdam. May 2002.

Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications (PDF). Ph.D.

Thesis. Universiteit van Amsterdam. May 2002.

MonetDB July 2015 Released". https://www.monetdb.org/blog/monetdb-jul2015-released.

31 August 2015.

https://www.monetdb.org/blog/monetdb-jul2015-released

CIT 905 Advanced Database Management System

Page | 308

MonetDB Oct2014 Release Notes". https://www.monetdb.org/OldReleaseNotes/Oct2014.

12 December 2014.

Oracle (2004). Oracle Corporation. www.oracle.com OWL (2004). Web Ontology

Language. www.w3.org/ 2001/sw/WebOnt/

https://www.monetdb.org/OldReleaseNotes/Oct2014

CIT 905 Advanced Database Management System

Page | 309

MODULE 4: EMERGING DATABASE MODELS, TECHNOLOGIES AND

APPLICATIONS

Unit 4. DATABASE SERVICES AND SERVICE PROVIDERS

4.4.1 Introduction

Database as a service (DBaaS) is the process of application owners paying an

outside provider that launches and maintains a cloud database for storage, as opposed to

having the application owners control the database themselves. Payments are per-usage

and application owners can access their application data as they please. These databases

provide the same functionality as a standard relational or non-relational database. DBaaS is

beneficial for companies that are trying to avoid the work of configuring, maintaining, and

upgrading their own databases. DBaaS lives in the overall realm of software as a service

(SaaS), similar to platform as a service (PaaS) and infrastructure as a service (IaaS), where

all products are hosted as a service. Other types of databases include relational database

tools, NoSQL database tools, graph database tools and more. Developers on a budget also

have options with free database software.

4.4.1.2 Objectives:

- To understand the concept of Database as a Service

- To understand the set up and operation of DBaaS

- To understand the benefits of DBaaS

4.4.1.3 Database as a Service (DBaas)

 (DBaaS) refers to software that enables users to setup, operate and scale databases using a

common set of abstractions (primitives), without having to either know or care about the

exact implementations of those abstractions for the specific database. The process is as

follows:

CIT 905 Advanced Database Management System

Page | 310

1. Setup : Setting up a database involves provisioning a VM on which to run it, installing

the database, and configuring it according to a set of parameters. Information

Technology (IT) administrators managing the platform can choose to setup databases

for their consumers, or enable a self-service model in which developers and DevOps

create databases either through an enterprise portal, an SDK, or even using automation

tools like Terraform. The self-service model has the advantage of zero IT intervention,

freeing up IT admins for more important tasks. Using DBaaS, the time required to

setup a database can be reduced from weeks to minutes.

2. Operate: Once a database has been setup, the platform is responsible for all the back-

end operations to maintain it in good health. These include configuration management,

automating backups (and enabling easy restore when needed), patches and upgrades,

DR, service monitoring (both for the database and the underlying infrastructure) and

more. All of these capabilities are provided to the IT administrator as easy single-click

operations rather than the complex procedures they would have been without a DBaaS

platform.

3. Scale: To accommodate increased usage of an application as it evolves and matures,

the platform should automatically scale up database instances as needed according to a

set of policies. For example, as usage grows beyond a certain threshold, data from a

master instance can be automatically distributed to one or more read replica instances.

Once data has been distributed over multiple instances, one of the read replicas can

also be used for failover.

4. DBaaS on IaaS: DBaaS is often delivered as a component of a more

CIT 905 Advanced Database Management System

Page | 311

comprehensive platform, which may provide additional services such as

Infrastructure-as-a-Service (IaaS). The DBaaS solution would request resources

from the underlying IaaS, which would automatically manage the provisioning

compute, storage and networking as needed essentially removing the need for IT to

be involved.

Figure 4.4.1: DBaaS on IaaS

Source: https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

4.4.1.4 Who Users DBaaS:

It is important to understand that like other cloud technologies, DBaaS has two primary

consumers:

1. The IT organization which manages and maintains the cloud

2. The end user who consumes the cloud resources, typically, developers and DevOps.

The IT organization deploys the DBaaS solution enabling end users (developers and

DevOps) to provision a database of their choice, on-demand, from a catalog of supported

databases, which could include both relational and non-relational databases. The IT

organization can configure the DBaaS to support specific releases of these software titles,

and can further restrict the configurations that specific users can provision. For example,

developers may only be allowed to provision databases with a small memory footprint

using traditional disks while DevOps could provision higher capacity servers with SSD‘s.

Finally, the IT organization can setup policies for standard database operations like

backups, DR and security policies to ensure that the data is properly saved from time to

time to allow for recovery when required.

Typically, an end user would access the DBaaS system through a portal that offers a

selection of different database titles, and in a variety of different configuration options.

With a few clicks, the user specifies the required database and its corresponding

https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

CIT 905 Advanced Database Management System

Page | 312

configuration for provisioning. The DBaaS system quickly provisions the database and

returns a query-able endpoint such as: mysql://192.168.15.243:3306/ . The user can then

use this directly in an application. The DBaaS system provides simple mechanisms to add

users, create schemas and grant permissions to different users as required by the

application.

4.4.2 Benefits of DBaaS

A DBaaS solution provides an organization a number of benefits, the main ones being:

1. Developer agility

2. IT productivity

3. Application reliability and performance

4. Application security

4.4.3 Developer agility

Deploying a database is a multi-step process including the provisioning of compute,

storage and networking components, configuring them properly and installing the database

software. In most enterprises, this process must go through the organization‘s IT

department and is typically, something like the following:

1. Developer opens a request in the IT ticketing system

2. Ticket sits in the queue until it gets to the top of the list according to IT priorities

3. IT evaluates ticket, and if the request is approved goes about allocating the required

compute, storage and networking resources needed for the developer‘s database (in

some cases, each of these is also handled by a separate sub-department which has

its own ticketing system and set of priorities)

1. IT configures the allocated resource

2. IT installs and configures the database to utilize the underlying infrastructure

according to its internal policies

CIT 905 Advanced Database Management System

Page | 313

3. IT provides the developer with an entry point to the database and the developer

takes it from there.

Not only is this process prone to errors and omissions, it is also extremely time-consuming.

The above series of actions that might be completed in hours or days, can be stretched to

days, weeks and even months. This is unacceptable for developers who are trying to

shorten development cycles and release faster. A DBaaS solution radically improves

provisioning time by automating the process described above. The IT organization

establishes the standards by which databases will be provisioned and configures the DBaaS

accordingly. Once database provisioning is standardized, and the DBaaS is configured,

deploying a database is a task that can be handed back to developers who can now

provision databases for themselves without requiring any intervention by IT through a

simple API call or a few clicks on a UI portal. This not only gives developers the agility

they need by enabling them to provision databases in a ―single-click self-service‖ model,

but also, databases will always be provisioned in a consistent manner that is aligned with

the best practices for that particular database.

4.4.3 IT productivity

IT is responsible for the day-two operations of the enterprise‘s databases including

things like tuning, configuration, monitoring, patching, upgrading, resizing periodic

backups, and so on; all the things that must be done to keep databases in proper working

order. As enterprises grow, and with them, the number and types of databases that must be

managed and maintained, IT resources get stretched very thin (explaining the long lead

time that developers have to wait before IT provisions them with a database).

DBaaS solutions enable IT to manage a much larger number of databases by treating them

as ―cattle‖ rather than ―pets‖. By providing abstractions for and automating tasks involved

with day-two operations, a DBaaS solution vastly simplifies IT‘s job, allowing operations

CIT 905 Advanced Database Management System

Page | 314

like upgrades and configuration changes to be done on a fleet of databases with a single

action. Once relieved from micro-managing all of an enterprise‘s databases, IT can focus

more on activities like establishing the standards of operation for the enterprise and

providing quicker service for the developers who they serve.

4.4.3.1 Application reliability and performance

Modern DBaaS solutions make it easy to keep your databases highly available and running

at peak performance. Through support for read replicas, in the event of a failure, the

system automatically reroutes traffic to a replica ensuring system availability at all times.

The system also monitors your databases to identify increased demand on resources. Using

scaling policies based on resource usage thresholds, you can configure the system to

automatically scale out by provisioning additional resources as demand increases, and then

scale back in once demand is reduced releasing resources for other applications.

4.4.3.2 Application security

Many database engines natively provide security features such as data encryption both at

rest and in transit, each using its own data structures and APIs. A DBaaS solution provides

consistent management of security for all the different types of databases you might use in

your organization, while adding some security features of its own. In addition to native

data encryption, you might look for things like end-to-end network security with micro-

segmentation, virtual private networks and security groups. A DBaaS solution might also

integrate with common enterprise user stores such as LDAP and Active Directory for user

authentication, and then apply fine-grained access control via different permission policies.

CIT 905 Advanced Database Management System

Page | 315

4.4.3.3 Some DBaaS Providers:

1. Amazon Aurora: MySQL and PostgreSQL-compatible relational database engine

that combines the speed and availability of high-end commercial databases with the

simplicity and cost-effectiveness of open source databases.

2. IBM Db2: Makes it easy to deploy data wherever it's needed, fluidly adapting to

changing needs and integrating with multiple platforms, languages and workloads.

Supported across Linux, Unix, and Windows operating systems.

3. Amazon Relational Database Service (RDS): A web service that makes it easy to

set up, operate, and scale a relational database in the cloud. It provides cost-efficient

and resizable capacity while managing time-consuming database administration

tasks. Amazon RDS gives access to the capabilities of a familiar MySQL, Oracle or

Microsoft SQL Server database engine. This means that the code, applications, and

tools already used today with existing databases can be used with Amazon RDS.

Amazon RDS automatically patches the database software and undertakes regular

back ups, storing the backups for a user-defined retention period and enabling

point-in-time recovery. You benefit from the flexibility of being able to scale the

compute resources or storage capacity associated with your relational database

instance via a single API call. In addition, Amazon RDS makes it easy to use

replication to enhance availability and reliability for production databases. Amazon

RDS for MySQL also enables you to scale out beyond the capacity of a single

database deployment for read-heavy database workloads. As with all Amazon Web

Services, there are no up-front investments required, and you pay only for the

resources you use.

4. MongoDB Atlas: Cloud-hosted MongoDB service engineered and run by the same

team that builds the database. It incorporates operational best practices we‘ve

learned from optimizing thousands of deployments across startups and the Fortune

100. Build on MongoDB Atlas with confidence, knowing you no longer need to

CIT 905 Advanced Database Management System

Page | 316

worry about database management, setup and configuration, software patching,

monitoring, backups, or operating a reliable, distributed database cluster.

5. Ninox Database: Lets you integrate everything you need - applications from

different departments to streamline your operations - e.g. CRM, Sales, ERP,

Projects, HR & Administration.

6. Azure SQL Database: A relational database-as-a service using the Microsoft SQL

Server Engine. SQL Database is a high-performance, reliable, and secure database

you can use to build data-driven applications and websites in the programming

language of your choice, without needing to manage infrastructure.

7. Aiven: Provides managed cloud service hosting for software infrastructure services.

Acting as a central hub for all database needs, relational and non-relational database

services along with a visualization suite and high-throughput message broker are

offered. Service offerings includes Kafka, PostgreSQL, MySQL, Elasticsearch,

Cassandra, Redis, InfluxDBand Grafana. All Aiven services are billed by the hour

based on actual usage with no hidden fees.

8. Kintone: A no-code business application platform that allows non-technical users

to create powerful apps, workflows, and databases for their teams and

organizations. Using clicks instead of code, kintone users can build apps that

automate business processes, collaborate on projects/tasks, and quickly report on

complex data. For business users that need to get started right away, kintone also

provides dozens of pre-built applications for a variety of use cases such as CRM,

project management, inventory management, and much more.

9. Google Cloud BigTable: Google's NoSQL Big Data database service. It's the same

database that powers many core Google services, including Search, Analytics,

Maps, and Gmail. Bigtable is designed to handle massive workloads at consistent

low latency and high throughput, so it's a great choice for both operational and

analytical applications, including IoT, user analytics, and financial data analysis.

CIT 905 Advanced Database Management System

Page | 317

10. IBM Cloudant: Fully Managed — IBM Cloud service provides a fully managed,

distributed JSON document database. Instantly deploy an instance, create databases,

and independently scale throughput capacity and data storage to meet your

application requirements. IBM expertise takes away the pain of hardware and

software provisioning, patching and upgrades, while offering a 99.95 percent SLA.

Secure — Cloudant is ISO27001, SOC 2 Type 2 compliant and HIPAA ready. All

data is encrypted over the wire and at rest with optional user-defined key

management through IBM Key Protect.

11. Symas LMDB: A memory-mapped DB with read performance of an in-memory

database and persistence of standard disk-based databases.

12. Vertabelo: Vertabelo enables users to create database model, share it with team,

and finally generate SQL scripts instead of writing them manually.

13. Webair Database-as-a-Service (DBaaS): Webair provides Database-as-a-Service

(DBaaS), a reliable and secure database management solution that gives your

business simple, efficient and always available access to its mission-critical data.

14. mLab: A fully managed cloud database service featuring automated provisioning

and scaling of MongoDB databases.

15. Alibaba Cloud ApsaraDB: Alibaba Cloud develops highly scalable cloud

computing and data management services.

1. Big Data Processing and Distribution Software

Big Data processing and distribution systems offer a way to collect, distribute, store, and

manage massive, unstructured data sets in real time. These solutions provide a simple way

to process and distribute data amongst parallel computing clusters in an organized fashion.

Built for scale, these products are created to run on hundreds or thousands of machines

simultaneously, each providing local computation and storage capabilities. Big data

processing and distribution systems provide a level of simplicity to the common business

CIT 905 Advanced Database Management System

Page | 318

problem of data collection at a massive scale and are most often used by companies that

need to organize an exorbitant amount of data. Many of these products offer a distribution

that runs on top of the open-source big data clustering tool Hadoop.

4.4.4.1 Big Data Processing Requirements:

We can classify Big Data requirements based on its five main characteristics:

1. Volume:

1. Size of data to be processed is large—it needs to be broken into manageable

chunks.

2. Data needs to be processed in parallel across multiple systems.

3. Data needs to be processed across several program modules simultaneously.

4. Data needs to be processed once and processed to completion due to volumes.

5. Data needs to be processed from any point of failure, since it is extremely large to

restart the process from the beginning.

6. Velocity:

1. Data needs to be processed at streaming speeds during data collection.

2. Data needs to be processed for multiple acquisition points.

3. Variety:

1. Data of different formats needs to be processed.

2. Data of different types needs to be processed.

3. Data of different structures needs to be processed.

4. Data from different regions needs to be processed.

1. Ambiguity:

1. Big Data is ambiguous by nature due to the lack of relevant metadata and

context in many cases. An example is the use of M and F in a sentence—it

can mean, respectively, Monday and Friday, male and female, or mother and

father.

CIT 905 Advanced Database Management System

Page | 319

2. Big Data that is within the corporation also exhibits this ambiguity to a

lesser degree. For example, employment agreements have standard and

custom sections and the latter is ambiguous without the right context.

1. Complexity:

1. Big Data complexity needs to use many algorithms to process data quickly and

efficiently.

2. Several types of data need multipass processing and scalability is extremely

important.

3. Processing large-scale data requires an extremely high-performance computing

environment that can be managed with the greatest ease and can performance tune

with linear scalability.

4.4.4.2 Big Data Processing and Distribution Software:

To qualify for inclusion in the Big Data Processing and Distribution category, a product

must:

1. Collect and process big data sets in real-time

2. Distribute data across parallel computing clusters

3. Organize the data in such a manner that it can be managed by system administrators

and pulled for analysis

4. Allow businesses to scale machines to the number necessary to store its data

Some available software include:

1. Google BigQuery: Google's fully managed, petabyte scale, low cost enterprise data

warehouse for analytics. BigQuery is serverless. There is no infrastructure to

manage and you don't need a database administrator, so you can focus on analyzing

data to find meaningful insights using familiar SQL. BigQuery is a powerful Big

Data analytics platform used by all types of organizations, from startups to Fortune

500 companies.

CIT 905 Advanced Database Management System

Page | 320

2. Snowflake: Cloud data platform shatters the barriers that have prevented

organizations of all sizes from unleashing the true value from their data. Thousands

of customers deploy Snowflake to advance their organizations beyond what was

possible by deriving all the insights from all their data by all their business users.

Snowflake equips organizations with a single, integrated platform that offers the

only data warehouse built for the cloud; instant, secure, and governed access to their

entire network of data; and a core architecture to enable many types of data

workloads, including a single platform for developing modern data applications.

3. Amazon EMR: A web-based service that simplifies big data processing, providing

a managed Hadoop framework that makes it easy, fast, and cost-effective to

distribute and process vast amounts of data across dynamically scalable Amazon

EC2 instances.

4. Qubole: Qubole is revolutionizing the way companies activate their data--the

process of putting data into active use across their organizations. With Qubole's

cloud-native Data Platform for analytics and machine learning, companies

exponentially activate petabytes of data faster, for everyone and any use case, while

continuously lowering costs. Qubole overcomes the challenges of expanding users,

use cases, and variety and volume of data while constrained by limited budgets and

a global shortage of big data skills. Qubole's intelligent automation and self-service

supercharge productivity, while workload-aware auto-scaling and real-time spot

buying drive down compute costs dramatically. Qubole offers the only platform that

delivers freedom of choice, eliminating legacy lock in--use any engine, any tool,

and any cloud to match your company's needs.

5. Azure HDInsight: HDInsight is a fully-managed cloud Hadoop offering that

provides optimized open source analytic clusters for Spark, Hive, MapReduce,

HBase, Storm, Kafka, and R Server.

CIT 905 Advanced Database Management System

Page | 321

6. Google Cloud Dataflow: Fully-managed service for transforming and enriching

data in stream (real time) and batch (historical) modes with equal reliability and

expressiveness. And with its serverless approach to resource provisioning and

management, you have access to virtually limitless capacity to solve your biggest

data processing challenges, while paying only for what you use.

7. Snowplow Analytics: Best-in-class data collection platform built for Data Teams.

With Snowplow you can collect rich, high-quality event data from all your

platforms and products. Your data is available in real-time and is delivered to your

data warehouse of choice where it can easily be joined with other data sets and used

to power BI tools, custom reports or machine learning models. The Snowplow

pipeline runs in your cloud account (AWS and/or GCP), giving you complete

ownership and control of your data. Snowplow frees you to ask and answer any

questions relevant to your business and use case, using your preferred tools and

technologies.

8. Oracle Big Data Cloud Service: offers an integrated portfolio of products to help

organize and analyze diverse data sources alongside existing data.

9. Cloudera: Delivers an enterprise data cloud for any data, anywhere, from the Edge

to AI. Enables people to transform vast amounts of complex data into clear and

actionable insights to enhance their businesses and exceed their expectations.

Cloudera is leading hospitals to better cancer cures, securing financial institutions

against fraud and cyber-crime, and helping humans arrive on Mars — and beyond.

Powered by the relentless innovation of the open-source community, Cloudera

advances digital transformation for the world‘s largest enterprises.

10. Alibaba MaxCompute: A general purpose, fully managed, multi-tenancy data

processing platform for large-scale data warehousing. MaxCompute supports

various data importing solutions and distributed computing models, enabling users

CIT 905 Advanced Database Management System

Page | 322

to effectively query massive datasets, reduce production costs, and ensure data

security.

Companies commonly have a dedicated administrator for managing big data

clusters. The role requires in-depth knowledge of database administration, data

extraction, and writing host system scripting languages. Administrator

responsibilities often include implementation of data storage, performance upkeep,

maintenance, security, and pulling the data sets. Businesses often use big data

analytics tools to then prepare, manipulate, and model the data collected by these

systems.

4.4.5 Big Data Analytics with Oracle

Oracle‘s technology provides a solution that is a fully complete analytic environment that

supports full-spectrum data ingest, wrangling, data exploration & discovery through

advanced and predictive analytics. It represents the combination of software, cloud

computing and/or supporting hardware that has been professionally engineered, optimized,

developed and deployed to support the analytic challenges faced today. A key

differentiated objective is to empower analysts to explore, test, and evaluate in a self-

service fashion thus reducing the need for costly programmers and data scientists.

Oracle has created a holistic, standards-based and unified approach to provide integrated

analysis for all data types, analytic methods and user classes.

FAST DATA

1. With exploding intelligence data from increased number of connected devices, cyber

sensors, collection platforms and social networks, there is an increase in the volumes

and speed of dynamically changing data. High-velocity data brings high value,

especially to national security decision-making processes. However, some of this

data loses its operational value in a short time frame. Big Data allows the luxury of

CIT 905 Advanced Database Management System

Page | 323

time in processing for actionable insight. Fast Data, on the other hand, requires

extracting the maximum value from highly dynamic and strategic intelligence. It

requires processing much faster and facilitates taking timely action as close to the

generated data as possible. Fast Data can also be a means of getting early answers or

tip-offs of what‘s in your big data holdings. Industry and government needs have

led to huge internal research investments at Oracle. Oracle has responded with a

robust platform for Fast Data and Stream Analytics.

4.4.4.1 Oracle Stream Analytics

The Oracle Stream Analytics platform provides a compelling combination of: an easy-to-

use visual façade to rapidly create and modify Event Stream Processing applications, an

advanced streaming analytical capabilities, and a comprehensive, flexible and diverse

runtime platform that uses Apache Spark, Kafka and SOA streaming technology. Oracle

Stream Analytics provides a pre-developed library of algorithms and detection features to

leverage spatial, statistical, machine learning and well-known patterns. The abstraction

and definition of streams and targets allow immediate joining of streaming data to gold

copy look-up databases, and explorations that provide a stunning visual representation of

real time event data.

 The user has the ability to rapidly create stream exploration and analysis without writing

custom code in Apache Storm. In addition to real-time event sourcing, the Oracle Stream

Analytics design environment and runtime execution supports standards-based,

continuous query execution across both event streams and persistent data stores. This

enables the platform to act as the heart of intelligence for systems needing answers in

microseconds to discern patterns and trends that would otherwise go unnoticed. Event

processing use cases require the speed of in-memory processing with the mathematical

accuracy and reliability of standard database SQL. This platform listens to incoming event

CIT 905 Advanced Database Management System

Page | 324

streams and executes registered queries continuously, in-memory on each event, utilizing

advanced, automated algorithms for query optimization. Examples of this type of

detection:

1. Correlated events: If event A happens, event B almost always follows within 2

seconds of it.

2. Missing or Out-of-Sequence events: Events A, B, C should occur in order. C is seen

immediately after A, without B would be an alert.

3. Spatial/Temporal events: Target of a particular type has passed through a geo-

boundary at a particular time while an attribute about the target registers positive in

a watch list database.

The Oracle Stream Analytics platform also allows for both SQL and Java code to be

combined to deliver robust event processing applications, leveraging standard industry

terminology to describe event sources, processes, and event output or syncs. The platform

provides a meta-data driven approach to defining and manipulating events within an

application. Developers and analysts use a visual, directed-graph canvas and palette for

application design to quickly outline the flow of events and processing across both streams

and data sources. Developing the flow through drag and drop modelling and configuration

wizards, the analyst can then enter the appropriate metadata definitions to connect design

to implementation.

4.4.6 DATA PLATFORM

The data platform is the layer of the data management and analytic architecture where data

is staged, transformed, secured and managed. The platform must provide the scalability,

security and high availability that enterprises require. Oracle has focused significant R&D

and innovation in this area because we realize that it is critical to all other aspects of

analytics, cyber protection and mission outcomes. Oracle believes that the data platform is

a unified environment, which may include an HDFS data lake, SQL and NoSQL databases,

CIT 905 Advanced Database Management System

Page | 325

with data transformation, data cleansing, query, and movement functions that we call the

factory. All of these capabilities work in unison to bring a modern data platform to the

enterprise. Where data resides, where it‘s staged, where it is stored, where it is managed

within the platform is really dependent on numerous factors including: type, security,

analysis, governance, compliance, cost and processing method. Choosing one data

method, like SQL or NoSQL, for every use case is not wise. Likewise, using

Hadoop/HDFS for everything is not wise. All three serve specific purposes. Oracle has

invested significantly making this data platform unified. Below outlines the technologies

that make up the data platform eco-system.

4.4.6.1 Gold Data Using ORACLE 12c

The gold data concept is often referred to as ―gold‖ because of the value. Gold data is

actionable. It is data that has been cleansed and is as accurate as possible. The gold data

environment must have several critical features: encryption, security, high availability,

survivability and transactional integrity and high performance. The platform must also be

able to handle all data types such as: spatial, graph, xml, json/key value, video, imagery

and relational.

All too often enterprises put in place separate databases for every data type. This causes

analytical, management and security turmoil because there are separate databases for

graph, spatial, relational, xml, JSON etc. Oracle 12c is a multi-model database. It is

capable of providing gold data services for all of these data types in the same database.

This improves analytics by creating cohesive result sets, improves security by securing all

of the data together and significantly reduces the cost of all the software, infrastructure and

labor compared to a multiple database gold environment.

CIT 905 Advanced Database Management System

Page | 326

4.4.6.2 Oracle NoSQL Database

The Oracle NoSQL Database provides network-accessible multi-terabyte distributed

key/value pair storage with predictable latency. Data is stored in a very flexible key-value

format, where the key consists of the combination of a major and minor key (represented

as a string) and an associated value (represented as a JSON data format or opaque set of

bytes). It offers full Create, Read, Update and Delete (CRUD) operations, with adjustable

durability and consistency guarantees. It also provides a powerful and flexible

transactional model (with ACID) that eases application development.

1. The Oracle NoSQL Database is designed to be a highly available and extreme

scalable system, with predictable levels of throughput and latency, while requiring

minimal administrative interaction.

2. It is also network topology and latency aware. The database driver working in

conjunction with highly scalable, fault tolerant, high throughput storage engine

enables a more granular distribution of resources and processing, which reduces the

incidence of hot spots and provides greater performance on commodity-based

hardware.

4.4.6.3 Big Data SQL

Big data‘s great potential has been touted for years. For many organizations, however, the

challenge to making their big data vision a reality is that their ability to collect data has

gotten far ahead of their ability to use it.

One of the hurdles is that an enterprise‘s data is typically scattered across departments,

systems, and regions, and much of what is collected is of low or unknown value. Vast

quantities of this data are now stored in Apache Hadoop, which makes it possible to store

and process huge amounts of data at low cost. Other data is housed in relational and

NoSQL databases.

CIT 905 Advanced Database Management System

Page | 327

The holy grail of a big data strategy is to be able to easily leverage the information in all of

these data stores to get a deeper, richer, and far more valuable view of customers, business

processes, and opportunities. But Hadoop programmers are in short supply, so many

organizations don‘t have the skills they need to leverage Hadoop data. And it‘s not feasible

to move all of that data to a single data store; the cost and the security issues are

prohibitive.

Oracle Big Data SQL enables organizations to get the utmost value from data by providing

queries to big data systems integrated with existing enterprise information architectures.

You can then quickly leverage big data into reports or applications using existing

interfaces.

In addition to simplified access and integration, Oracle Big Data SQL uses some of the

proven high performance technology of Oracle Exadata and the industry-leading security

features of Oracle Database to provide super-fast speed and enterprise-class security across

all of your data stores.

Leveraging Oracle Exadata Smart Scan technology, Oracle‘s Smart Scan on Hadoop

processes SQL queries at the Hadoop storage level where data is located, scans the data,

and brings back only the relevant data to the end user. Less data moved means faster

results—and speed is critical when leveraging big data for real-time innovations in national

security processes.

On the security front, Oracle Big Data SQL extends the advanced security capabilities of

the Oracle database to Hadoop and NoSQL data. With Oracle Big Data SQL, you can take

advantage of proven Oracle Database security solutions for data redaction and privilege

analysis, with strong controls that limit privileged user access to data.

CIT 905 Advanced Database Management System

Page | 328

4.4.6.4 Oracle Advanced Analytics and Machine Learning

Oracle provides several enabling technologies for data analytics, statistical analysis, time-

series analysis, modelling, and machine learning requirements. These technologies can

actually be used in both the product data platform and the data lab. Traditional advanced

analytics are inherently weak at information technology management such as:

1. data extracts and data movement

2. data duplication resulting in no single-source of truth

3. data security exposures

4. multiple analytical tools (commercial and open source) and languages (SAS, R,

SQL, Python, SPSS, etc.)

Problems become particularly egregious during a deployment phase when the worlds of

data analysis and information management collide.

1. In-Database Processing with Oracle Advanced Analytics

Oracle Advanced Analytics extends the database into a comprehensive advanced analytics

platform for big data analytics. With Oracle, powerful analytics are performed directly on

data in the database. Results, insights, and realtime predictive models are available and

managed by the database.

A data mining model is a schema object in the database, built via a PL/SQL API that

prepares the data, learns the hidden patterns to build an OAA model which can then be

scored via built-in OAA data mining SQL functions. When building models, Oracle

Advanced Analytics leverages existing scalable technology (e.g., parallel execution,

bitmap indexes, aggregation techniques) and additional developed new Oracle Advanced

Analytics and Oracle Database technologies (e.g., recursion within the parallel

infrastructure, IEEE float, automatic data preparation for binning, handling missing values,

support for unstructured data i.e. text, etc.). The true power of embedding data mining

functions within the database as SQL functions is most evident when scoring data mining

CIT 905 Advanced Database Management System

Page | 329

models. Once the models have been built by learning the hidden patterns in the historical

data, applying the models to new data inside the database is blazingly fast. Scoring is then

just a row-wise function. Hence, Oracle Advanced Analytics can ―score‖ many millions

of records in seconds and is designed to support online transactional processing (OLTP)

environments.

Using Exadata‘s smart scan technology it gets better. With Oracle Advanced Analytics

running in an Exadata environment, SQL predicates and OAA predictive models get

pushed down to the hardware layer for execution.

1. For Oracle Exadata environments, pushed to Exadata storage level for execution

2. For Oracle Big Data Appliance (Hadoop) environments, pushed to BDA storage

level for execution.

The Oracle approach to data analytics is to create a platform that is open, feature rich,

integrated, standards-based, and performant. It makes big data simple by

integratingHadoop, NoSQL and SQL across the Fast Data, Data Factory, Data Lake and

the Data Lab environments. The ultimate goal is to provide a cost efficient, easy to use

platform that transforms all data across the enterprise into actionable information that leads

to better decisions. We are proud that 3rd party analysts agree with our innovations, as

Gartner has chosen Oracle as the leader in Gartner‘s Magic Quadrant for data platforms for

data analytics.

4.4.7 Non-native Database Management Systems

Non-native database management systems allow users of outside applications to interact

with a database by retrieving data with specific query languages. Non-native database

management systems provide a platform for building queries to access and administrate

necessary data.

CIT 905 Advanced Database Management System

Page | 330

4.4.7.1 Features of Non-native Database Management Systems

To qualify for inclusion in the Non-Native Database Management System category, a

product must:

1. Provide access to information stored in a database using query language

2. Offer a platform for building and executing queries

Some features include:

1. Connection Manager - Allow users to connect natively to the vendor‘s database

whether on-premise or DBaaS.

2. Browser - Allow users to browse all the different database/schema objects and their

properties effective management.

3. Editor - A way to create and maintain scripts and database code with debugging and

integration with source control.

4. Unit Testing (Oracle) - Ensures code is functionally tested before it is released into

production.

5. Static code review (Oracle) - Ensures code meets required quality level using a

rules-based system.

6. SQL Optimization - Provides developers with a way to tune and optimize SQL

statements and database code without relying on a DBA. Advanced optimization

enables DBAs to tune SQL effectively in production.

7. Scalability testing and database workload replay - Ensures that database code and

SQL will scale properly before it gets released into production.

4.4.8 Some Non-native Database Management Systems

1. Toad For Oracle: Toad solutions are desktop tools that give DBAs, developers and

analysts a proactive, automated approach to developing and managing databases, so

organizations can spend more time on strategic initiatives and less time on

mundane, repetitive tasks. Quest offers several Toad editions, which support

CIT 905 Advanced Database Management System

Page | 331

databases such as Oracle, SQL Server, DB2, MySQL, SAP Solutions, and more, as

well as offerings built specifically for database developers, DBAs and business

analysts. Used by millions, Toad for Oracle is the flagship brand in the Toad

portfolio, and the leading database development and optimization toolset on the

market. Toad Data Point is an analyst toolset, which connects to nearly any data

source and is purpose-built for an organization's data provisioning and reporting

requirements. Toad solutions help organizations maximize their investments in data

and database technologies by empowering database professionals to automate

processes, minimize risks and cut project timelines in half.

2. phpMyAdmin: A free software tool written in PHP, intended to handle the

administration of MySQL over the World Wide Web.

3. Amazon Athena: an interactive query service designed to make it easy to analyze

data in Amazon S3 using standard SQL.

4. SQLyog: Helps developers and database administrators (DBAs) to create and

manage MySQL databases with ease. SQLyog is the most complete & easy MySQL

GUI tool that helps save time & increase productivity through numerous powerful

features such as autocomplete, query building, query profiler, Visual Schema

designer and much more.

5. Navicat Premium: A database administration tool that allows you to

simultaneously connect to MySQL, MariaDB, SQL Server, Oracle, PostgreSQL,

and SQLite databases from a single application. Navicat Premium combines

functions of other Navicat products and supports most of the features used in

modern database management systems, such as Stored Procedures, Events,

Triggers, Functions, Views, etc.

6. DBeaver: A database management tool that suppor various databases including

MySQL and PostgreSQL.

CIT 905 Advanced Database Management System

Page | 332

7. DbVisualizer: The universal database tool for developers, DBAs and analysts. It is

the perfect solution since the same tool can be used on all major operating systems

accessing a wide range of databases.

8. TablePlus: A native tool with elegant UI that allows you to simultaneously manage

multiple databases such as MySQL, Postgres, SQL Server, SQLite, Microsoft SQL

Server and more.

9. Ingres: Provides easy migration from MySQL and proprietary databases such as

Oracle, SQL Server and Sybase.

10. DBHawk: A web-based database management and data security tool. DBHawk is

compatible with various databases, including on-premises as well as databases

hosted in the cloud. DBHawk provides central data security with 2FA, LDAP

integration, Okta integration, data logging and auditing, and object access control.

DBHawk is supported with Oracle, DB2, SQL Server, MySQL, PostgreSQL,

Amazon RDS, Amazon Aurora, Azure SQL, Amazon Redshift, Greenplum,

Netezza, Teradata, SAP-Hana, MariaDB, MongoDB, Hadoop, Amazon Athena

(S3), and Cassandra.

These systems can be utilized by database administrators, programmers, and other

employees searching for information stored in the database. Query languages often cater to

specific types of databases, including DBaaS, NoSQL database tools, relational database

tools and more.

4.4.9 Conclusion

Most enterprises today operate applications that require several different database

technologies, a departure from recent years where the ‗corporate standard‘ mandated a

single database solution for all application needs. Database-as-a-Service provides a

framework within which enterprises can operate all these different databases. It provides

CIT 905 Advanced Database Management System

Page | 333

end users with improved agility through simplified provisioning and operation, and the

flexibility to choose from a number of pre-configured options established by the IT

organization. DBaaS also improves the operation of fleets of diverse databases through

automation and standardization allowing IT organizations to cost-effectively offer their

users a number of database choices while also ensuring that these databases are operated in

a safe and secure way and in compliance with established best practices.

4.4.10 Tutor Marked Assignment

1. What is big data analytics? State the requirements for big data processing

2. What are the features of Non-native Database Management Systems?

3. What a mobile database? Describe the characteristics of Mobile Database

4. List the categories three typical types of spatial queries and enumerate the features

of spatial databases

4.4.11 References and Further Readings

Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Database systems: concepts,

languages & architectures (Vol. 1). London: McGraw-Hill.

Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual database design: an Entity-

relationship approach (Vol. 116). Redwood City, CA: Benjamin/Cummings.

Connolly, T. M., & Begg, C. E. (2005). Database systems: a practical approach to

design, implementation, and management. Pearson Education.

Elmasri, R., & Navathe, S. B. (2011). Database systems (Vol. 9). Boston, MA: Pearson

Education.

Singh, S. K. (2011). Database systems: Concepts, design and applications. Pearson

Education India.

CIT 905 Advanced Database Management System

Page | 334

MODULE 4 – EMERGING DATABASE MODELS, TECHNOLOGIES AND

APPLICATIONS

Unit 5: MODERN DATABASE APPLICATIONS

4.5.1 Introduction:

Most of our traditional tools for formal modelling, reasoning and computing are crisp,

deterministic and precise in nature. Precision assumes that the parameters of a model

represent exactly either our perception of the phenomenon modelled or the features of the

real system that has been modelled. Certainty eventually indicates that we assume the

structures and parameters of the model to be definitely known. However, if the model or

theory asserts factuality, then the modelling language has to be suited to model the

characteristics of the situation under study appropriately. However we have a problem. For

factual models or modelling languages, two major complications arise:

1. Real situations are very often not crisp and deterministic and cannot be described

precisely i.e. real situations are very often uncertain or vague in a number of ways.

2. Complete description of a real system would require far more detailed data than a

human being could ever recognize and process simultaneously.

Hence, among the various paradigmatic changes in science and mathematics in last

century, one such has been the concern of the concept of uncertainty. In science this

change is manifested by a gradual transition, from a view, which stated that uncertainty is

undesirable to an alternative view that accepts uncertainty as an integral part of the whole

system that is essential to model the real world.

4.5.1.2 Objectives:

- To understand the limitations of conventional SQL

CIT 905 Advanced Database Management System

Page | 335

- To understand queries based on fuzzy logic

- To understand and describe some of the modern databases

4.5.1.3 Classical SQL and its limitations:

Users search databases in order to obtain data needed for analysis, decision making or to

satisfy their curiosity. The SQL is a standard query language for relational databases. The

simply SQL query is as follows:

select attribute_1,…,attribute_n

from T

where attribute_p > P and attribute_r < R

The result of the query is shown in graphical mode in figure 4.11. Values P and R

delimitthe space of interesting data. Small squares in the graph show database records. In

the graph it is obviously shown that three records are very close to meet the query

criterion. These records could be potential customers and direct marketing could attract

them or municipalities which almost meet the criterion for some financial support for

example.

Figure 4.11: The result of the classical query

Source: Miroslav Hudec (2009).

CIT 905 Advanced Database Management System

Page | 336

The SQL uses the crisp logic in querying process that causes crisp selection. It means that

the record would have not been selected even if it is extremely close to the intent of the

query criterion. As the criterion becomes more and more complex, the set of records

selected by the WHERE statement becomes more and more crisp.

If the classical SQL is used for solving this problem, the SQL relaxation would have to be

used in the following way:

select attribute_1,…,attribute_n

from T

where ateribute_p > P-p and attribute_r < R+r

where p and r are used to expand the initial query criteria to select records that almost meet

the query criteria. This approach has two disadvantages. First, the meaning of the initial

query is diluted in order to capture adjacent records. The meaning of a query: ―where

attribute_p is more than P‖ is changed and adjacent records satisfy a query in the same way

as initial ones. More precisely, the difference between original and adjacent data (caught

records along the ―edge‖ of interesting space) does not exist. Secondly problem rises from

the question: what about records that are very close to satisfy the new expanded query and

it is useful to make another expanding of a query. In this way more data from the database

is selected, but the user has lost the accuracy of his query.

Many applications have created uncountable accesses to wide variety of data. The data and

the classical access to data are simply not enough in many cases. In cases when the user

cannot unambiguously separate interesting data from not interesting by sharp boundaries

or when the user wants to obtain data that is very close to meet the query criterion and to

know the index of distance to full query satisfaction, it is necessary to adapt the SQL to

these requirements.

CIT 905 Advanced Database Management System

Page | 337

4.5.2. Queries based on Fuzzy Logic

A Query Compatibility Index (QCI) is used to indicate how the selected record satisfies a

query criterion. The QCI has values from the [0, 1] interval with the following meaning: 0

- record does not satisfy a query, 1 - record fully satisfies the query, interval (0, 1) - record

partially satisfies a query with the distance to the full query satisfaction.

Conditions in queries contain these comparison operators: >, <, =, ≠ and between when

numerical attributes are used. These crisp logical comparison operators are adapted for

fuzzy queries in the following way: operator > (greater than) was improved with fuzzy set

―Big value‖ (figure 4.12a), operator <(less than) was improved with fuzzy set ―Small

value‖ (figure 4.12b) and operator = (equal) was improved with fuzzy set ―About value‖

(figure 4.12c). Operator ≠ is the negation of the operator = so this operator is not further

analzsed. Analogous statement is valid for the operator between because it is similar to the

operator = from the fuzzy point of view. Other types of fuzzy sets could be added in the

future to catch other linguistic expressions.

Figure 4.12: Fuzzy Sets

Source: Miroslav Hudec (2009).

CIT 905 Advanced Database Management System

Page | 338

To implement this a fuzzy query interpreter, which transforms fuzzy queries to the

classical SQL structure, was developed. In this way, queries based on linguistic

expressions on client side are supported and are accessing relational databases in the same

way as with the classical SQL. Figure 3 shows this model. The first step of querying

process (to select records that have QCI>0) is situated in parts 1, 2 and 3. Lower and/or

upper limits of linguistic expressions are calculated and converted into SQL query in the

part 1. Thus created SQL query selects data from database (part 2) and saves it into the

temporary table (part 3). The second step uses data from part 3 for further calculations.

Firstly, the chosen analytical form of the fuzzy set (from part 1) is used to determine the

membership degree of each selected record to appropriate fuzzy set. Secondly, t-norm

and/or t-conorm function also defined in the part 1 are used to calculate the QCI value.

Figure 1.3: Structure of the fuzzy SQL

Source: Miroslav Hudec (2009).

CIT 905 Advanced Database Management System

Page | 339

4.5.3 On-line Analytical Processing Databases (OLAP)

OLAP databases are geared toward analyzing data rather than updating data. They are used

to drive business processes based on statistical analysis of data and what-if analysis. The

main feature of OLAP databases is speed of querying and multi-dimensionality. OLAP

tools enable users to analyze multidimensional data interactively from multiple

perspectives. OLAP consists of three basic analytical operations: consolidation (roll-up),

drill-down, and slicing and dicing. Consolidation involves the aggregation of data that can

be accumulated and computed in one or more dimensions. For example, all sales offices

are rolled up to the sales department or sales division to anticipate sales trends. By

contrast, the drill-down is a technique that allows users to navigate through the details. For

instance, users can view the sales by individual products that make up a region's sales.

Slicing and dicing is a feature whereby users can take out (slicing) a specific set of data of

the OLAP cube and view (dicing) the slices from different viewpoints. These viewpoints

are sometimes called dimensions (such as looking at the same sales by salesperson, or by

date, or by customer, or by product, or by region, etc.)

4.5.4 Overview of OLAP Systems

At the core of any OLAP system is an OLAP cube (also called a 'multidimensional cube'

or a hypercube). It consists of numeric facts called measures that are categorized by

dimensions. The measures are placed at the intersections of the hypercube, which is

spanned by the dimensions as a vector space. The usual interface to manipulate an OLAP

cube is a matrix interface, like Pivot tables in a spreadsheet program, which performs

projection operations along the dimensions, such as aggregation or averaging. The cube

metadata is typically created from a star schema or snowflake schema or fact constellation

of tables in a relational database. Measures are derived from the records in the fact table

and dimensions are derived from the dimension tables. Each measure can be thought of as

CIT 905 Advanced Database Management System

Page | 340

having a set of labels, or meta-data associated with it. A dimension is what describes these

labels; it provides information about the measure. A simple example would be a cube that

contains a store's sales as a measure, and Date/Time as a dimension. Each Sale has a

Date/Time label that describes more about that sale.

For example:

Sales Fact Table

+-------------+----------+

| sale_amount | time_id |

+-------------+----------+ Time Dimension

| 2008.10| 1234 |----+ +---------+-------------------+

+-------------+----------+ | | time_id | timestamp |

 | +---------+-------------------+

 +---->| 1234 | 20080902 12:35:43 |

 +---------+-------------------+

Figure 4.15: OLAP Cube

1. Multidimensional Databases:

2. Multidimensional structure is defined as a variation of the relational model that

uses multidimensional structures to organize data and express the relationships

between data. The structure is broken into cubes and the cubes are able to store and

access data within the confines of each cube. Each cell within a multidimensional

structure contains aggregated data related to elements along each of its dimensions.

Even when data is manipulated it remains easy to access and continues to constitute

a compact database format. The data still remains interrelated. Multidimensional

structure is quite popular for analytical databases that use online analytical

processing (OLAP) applications. Analytical databases use these databases because

of their ability to deliver answers to complex business queries swiftly. Data can be

viewed from different angles, which gives a broader perspective of a problem

unlike other models.

CIT 905 Advanced Database Management System

Page | 341

3. Multidimensional OLAP (MOLAP)

4. MOLAP (multi-dimensional online analytical processing) is the classic form of

OLAP and is sometimes referred to as just OLAP. MOLAP stores this data in an

optimized multi-dimensional array storage, rather than in a relational database.

5. Some MOLAP tools require the pre-computation and storage of derived data, such

as consolidations – the operation known as processing. Such MOLAP tools

generally utilize a pre-calculated data set referred to as a data cube. The data cube

contains all the possible answers to a given range of questions. As a result, they

have a very fast response to queries. On the other hand, updating can take a long

time depending on the degree of pre-computation. Pre-computation can also lead to

what is known as data explosion.

6. Other MOLAP tools, particularly those that implement the functional database

model do not pre-compute derived data but make all calculations on demand other

than those that were previously requested and stored in a cache.

Advantages of MOLAP

7. Fast query performance due to optimized storage, multidimensional indexing and

caching.

8. Smaller on-disk size of data compared to data stored in relational database due to

compression techniques.

9. Automated computation of higher level aggregates of the data.

10. It is very compact for low dimension data sets.

11. Array models provide natural indexing.

12. Effective data extraction achieved through the pre-structuring of aggregated data.

Disadvantages of MOLAP

1. Within some MOLAP systems the processing step (data load) can be quite lengthy,

especially on large data volumes. This is usually remedied by doing only

CIT 905 Advanced Database Management System

Page | 342

incremental processing, i.e., processing only the data which have changed (usually

new data) instead of reprocessing the entire data set.

2. Some MOLAP methodologies introduce data redundancy.

4.5.5 Relational OLAP (ROLAP)

ROLAP works directly with relational databases and does not require pre-computation.

The base data and the dimension tables are stored as relational tables and new tables are

created to hold the aggregated information. It depends on a specialized schema design.

This methodology relies on manipulating the data stored in the relational database to give

the appearance of traditional OLAP's slicing and dicing functionality. In essence, each

action of slicing and dicing is equivalent to adding a "WHERE" clause in the SQL

statement. ROLAP tools do not use pre-calculated data cubes but instead pose the query to

the standard relational database and its tables in order to bring back the data required to

answer the question. ROLAP tools feature the ability to ask any question because the

methodology is not limited to the contents of a cube. ROLAP also has the ability to drill

down to the lowest level of detail in the database.

While ROLAP uses a relational database source, generally the database must be carefully

designed for ROLAP use. A database which was designed for OLTP will not function well

as a ROLAP database. Therefore, ROLAP still involves creating an additional copy of the

data. However, since it is a database, a variety of technologies can be used to populate the

database.

Advantages of ROLAP

1. ROLAP is considered to be more scalable in handling large data volumes,

especially models with dimensions with very high cardinality (i.e., millions of

members).

CIT 905 Advanced Database Management System

Page | 343

2. With a variety of data loading tools available, and the ability to fine-tune the

extract, transform, load (ETL) code to the particular data model, load times are

generally much shorter than with the automated MOLAP loads.

3. The data are stored in a standard relational database and can be accessed by any

SQL reporting tool (the tool does not have to be an OLAP tool).

4. ROLAP tools are better at handling non-aggregatable facts (e.g., textual

descriptions). MOLAP tools tend to suffer from slow performance when querying

these elements.

5. By decoupling the data storage from the multi-dimensional model, it is possible to

successfully model data that would not otherwise fit into a strict dimensional model.

6. The ROLAP approach can leverage database authorization controls such as row-

level security, whereby the query results are filtered depending on preset criteria

applied, for example, to a given user or group of users (SQL WHERE clause).

Disadvantages of ROLAP

1. There is a consensus in the industry that ROLAP tools have slower performance

than MOLAP tools. However, see the discussion below about ROLAP performance.

2. The loading of aggregate tables must be managed by custom ETL code. The

ROLAP tools do not help with this task. This means additional development time

and more code to support.

3. When the step of creating aggregate tables is skipped, the query performance then

suffers because the larger detailed tables must be queried. This can be partially

remedied by adding additional aggregate tables, however it is still not practical to

create aggregate tables for all combinations of dimensions/attributes.

4. ROLAP relies on the general purpose database for querying and caching, and

therefore several special techniques employed by MOLAP tools are not available

(such as special hierarchical indexing). However, modern ROLAP tools take

advantage of latest improvements in SQL language such as CUBE and ROLLUP

CIT 905 Advanced Database Management System

Page | 344

operators, DB2 Cube Views, as well as other SQL OLAP extensions. These SQL

improvements can mitigate the benefits of the MOLAP tools.

5. Since ROLAP tools rely on SQL for all of the computations, they are not suitable

when the model is heavy on calculations which don't translate well into SQL.

Examples of such models include budgeting, allocations, financial reporting and

other scenarios.

4.5.6 Hybrid OLAP (HOLAP)

The undesirable trade-off between additional ETL (Extract, Transform and Load) cost and

slow query performance has ensured that most commercial OLAP tools now use a Hybrid

OLAP (HOLAP) approach, which allows the model designer to decide which portion of

the data will be stored in MOLAP and which portion in ROLAP. There is no clear

agreement across the industry as to what constitutes "Hybrid OLAP", except that a

database will divide data between relational and specialized storage. For example, for

some vendors, a HOLAP database will use relational tables to hold the larger quantities of

detailed data, and use specialized storage for at least some aspects of the smaller quantities

of more-aggregate or less-detailed data. HOLAP addresses the shortcomings of MOLAP

and ROLAP by combining the capabilities of both approaches. HOLAP tools can utilize

both pre-calculated cubes and relational data sources.

Comparing the different types of OLAP

1. Each type has certain benefits, although there is disagreement about the specifics of

the benefits between providers.

2. Some MOLAP implementations are prone to database explosion, a phenomenon

causing vast amounts of storage space to be used by MOLAP databases when

certain common conditions are met: high number of dimensions, pre-calculated

results and sparse multidimensional data.

CIT 905 Advanced Database Management System

Page | 345

3. MOLAP generally delivers better performance due to specialized indexing and

storage optimizations. MOLAP also needs less storage space compared to ROLAP

because the specialized storage typically includes compression techniques.

4. ROLAP is generally more scalable. However, large volume pre-processing is

difficult to implement efficiently so it is frequently skipped. ROLAP query

performance can therefore suffer tremendously.

5. Since ROLAP relies more on the database to perform calculations, it has more

limitations in the specialized functions it can use.

6. HOLAP attempts to mix the best of ROLAP and MOLAP. It can generally pre-

process swiftly, scale well, and offer good function support.

4.5.7 Other types of OLAP

The following acronyms are also sometimes used, although they are not as widespread as

the earlier mentioned ones:

1. WOLAP – Web-based OLAP

2. DOLAP – Desktop OLAP

3. RTOLAP – Real-Time OLAP

4. GOLAP – Graph OLAP

5. CaseOLAP – Context-aware Semantic OLAP, developed for biomedical

applications. The CaseOLAP platform includes data preprocessing (e.g.,

downloading, extraction, and parsing text documents), indexing and searching with

Elasticsearch, creating a functional document structure called Text-Cube, and

quantifying user-defined phrase-category relationships using the core CaseOLAP

algorithm.

1. Conclusion:

CIT 905 Advanced Database Management System

Page | 346

The types of data stored in the databases were relatively simple. In the past few

years, however, there has been an increasing need for handling new data types in

databases, such as temporal data, spatial data, multimedia data, and geographic data and so

on. Another major trend in the last decade has created its own issues, for example, the

growth of mobile computers, starting with laptop computers, palmtop computers and

pocket organizers. In more recent years, mobile phones have also come with built-in

computers. These trends have resulted into the development of new database technologies

to handle new data types and applications. In this unit, some of the emerging database

technologies have been briefly introduced. We have discussed how databases are used and

accessed from Internet, using web technologies, use of mobile databases to allow users

widespread and flexible access to data while being mobile and multimedia databases

providing support for storage and processing of multimedia information. We have also

introduced how to deal with geographic information data or spatial data and their

applications. Databases configured for OLAP use a multidimensional data model, allowing

for complex analytical and ad hoc queries with a rapid execution time. They borrow

aspects of navigational databases, hierarchical databases and relational databases. Most

real OLAP databases allow you to slice data into an infinite number of dimensions - e.g. by

time, product line, and sales groups. These databases are fed most often by relational

databases. Many OLAP databases have their own dialect of SQL specifically designed to

deal with the multidimensionality of OLAP data.

2. Tutor Marked Assignment

2. Describe the advantages and disadvantages of ROLAP

3. Describe the features of Fuzzy Databases

4. State the limitations of Classical SQL

5. Enumerate the variants of OLAP

4.5.10 Further Readings/References

CIT 905 Advanced Database Management System

Page | 347

Ailamaki, A., DeWitt, D., Hill, M., Wood, D.A.: DBMSs on a Modern Processor: Where

Does Time Go? In Proc. 25th Int. Conf. on Very Large Databases, Edinburgh,

Scotland (1999).

Bach Pedersen, Torben; S. Jensen, Christian (December 2001). "Multidimensional

Database Technology". Distributed Systems Online: 40–46. ISSN 0018-9162

Borne K, Becla J, Davidson I, Szalay A, and Tyson J, 2008, "The LSST Data Mining

Research Agenda,‖ AIP Conf. Proc. 1082, pp 347-351.

Cranshaw J, Cuhadar-Donszelmann T, Gallas E, Hrivnac J, Kenyon M, McGlone H,

Malon D, Mambelli M, Nowak M, Viegas F, Vinek E, and Zhang Q, 2010, "Event

selection services in ATLAS,‖ J. Phys. Conf. Ser. 219 042007.

Cranshaw J, Goosens L, Malon D, McGlone H, and Viegas F, 2008, "Building a scalable

event-level metadata service for ATLAS,‖ J. Phys. Conf. Ser. 119 072012.

Cranshaw J, Malon D. Vaniachine A, Fine V, Lauret J, and Hamill P, 2010, "Petaminer:

Daniel Lemire (December 2007). "Data Warehousing and OLAP-A Research-Oriented

Bibliography".

E. Gamma, R. Helm, R. Johnson, and J. Vlissidis. Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

Erik Thomsen. (1997). OLAP Solutions: Building Multidimensional Information Systems,

2nd Edition. John Wiley & Sons. ISBN 978-0-471-14931-6.

https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

Hudec, M.: Fuzzy SQL for statistical databases. In MSIS, Meeting on the Management of

Statistical Information Systems. Luxembourg. (2008) [Online]. Available:

http://www.unece.org/stats/documents/ece/ces/ge.50/2008/wp.12.e.pdf (January

2009)

Idreos, Stratos; Kersten, Martin L; Manegold, Stefan (2007). Database cracking.

Proceedings of CIDR.

International Business Machines, Corp. DB2 Spatial Extender – User‘s Guide and

Reference, Version 8.1, 2002.

International Business Machines, Corp. Informix Spatial DataBlade, Version 8.11, 2001.

ISO/DIS 19107:2002. Geographic Information - Spatial Schema, 2002.

ISO/DIS 19111:2002. Geographic Information - Spatial Referencing by Coordinates, 2002.

ISO/IEC 9075-2:1999. Information Technology – Database Languages – SQL – Part 2:

Foundation (SQL/Foundation), 1999.

ISO/IEC 9075-2:2001 WD. Information Technology – Database Languages – SQL – Part

7: Temporal (SQL/Foundation), 2001.

ISO/IEC 9075-9:2000. Information Technology – Database Languages – SQL – Part 9:

SQL/MED, 2000.

https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

CIT 905 Advanced Database Management System

Page | 348

Ling Liu and Tamer M. Özsu (Eds.) (2009). "Encyclopedia of Database Systems, 4100 p.

60 illus. ISBN 978-0-387-49616-0.

Malon D, Cranshaw J, and Karr K, 2006, "A flexible, distributed event-level metadata

system for ATLAS,‖ Computing in High Energy and Nuclear Physics, Mumbai,

India.

Malon D, Van Gemmeren P, Nowak M, and Schaffer A, 2006, "Schema evolution and the

ATLAS event store,‖ Computing in High Energy and Nuclear Physics, Mumbai,

India.

Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications (PDF). Ph.D.

Thesis. Universiteit van Amsterdam. May 2002.

Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications (PDF). Ph.D.

Thesis. Universiteit van Amsterdam. May 2002.

Oracle (2004). Oracle Corporation. www.oracle.com OWL (2004). Web Ontology

Language. www.w3.org/ 2001/sw/WebOnt/

P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, J. Teubner.

MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine. In

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Chicago, IL, USA, June 2006.

P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, J. Teubner.

MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine. In

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Chicago, IL, USA, June 2006.

Per Svensson, Peter Boncz, Milena Ivanova, Martin Kersten, Niels Nes, Doron Rotem

(2010). Scientific Data Management: Challenges, Technology and Deployment.

Scalzo, Bert; Hotka, Dan (February 2003). Toad Handbook. Developer's Library. Jim

McDaniel. Sams Publishing. p. xiv. ISBN 978-0-672-32486-4.

Siler, W., Buckley, J.: Fuzzy expert systems and fuzzy reasoning. John Wiley & Sons,

Inc., New Jersey, USA. (2005)

Urrutia, A., Pavesi, L.: Extending the capabilities of database queries using fuzzy logic. In

Proceedings of the Collecter-LatAm, Santiago, Chile (2004). [Online]. Available:

http://www.collecter.org/archives/2004_October/06.pdf (current January 2009)

Using ROOT for efficient data storage in MYSQL database,‖ J. Phys. Conf. Ser. 219

042036.

Van Gemmeren P and Malon D, 2009, "The event data store and I/O framework for the

ATLAS experiment at the Large Hadron Collider,‖ IEEE Int. Conf. on Cluster

Computing and Workshops, p. 1.

Van Gemmeren P and Malon D, 2010, "Event metadata records as a testbed for scalable

data mining", J. Phys. Conf. Ser. 219 042057.

CIT 905 Advanced Database Management System

Page | 349

Wang, C., Lo, A., Alhajj, R., & Barker, K. (2004). Converting legacy relational database

into XML database through reserve engineering. Proceedings of the International

Conference on Enterprise Information Systems, Portugal

Williams, C., Garza, V.R., Tucker, S, Marcus, A.M. (1994, January 24). Multidimensional

models boost viewing options. InfoWorld, 16(4)

www.scidb.org/about/history.php

Zadeh, L.: Fuzzy Sets. Information and Control, No. 8, 338-353. (1965)

Zhang, Y.; Scheers, L. H. A.; Kersten, M. L.; Ivanova, M.; Nes, N. J. (2011).

"Astronomical Data Processing Using SciQL, an SQL Based Query Language for

Array Data". Astronomical Data Analysis Software and Systems.

Zhang, Y.; Scheers, L. H. A.; Kersten, M. L.; Ivanova, M.; Nes, N. J. (2011).

"Astronomical Data Processing Using SciQL, an SQL Based Query Language for

Array Data". Astronomical Data Analysis Software and Systems.

