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Course Guide 

 

Introduction 

 
Welcome to PHL 431: Further Logic. PHL 431 is a three-credit unit course with a 

minimum duration of one semester. The course is expected to deepen the learner’s skills in formal 

proof of validity and sharpen their understanding of mathematical logic. It begins with preliminary 

introduction to the logic of quantification; this involves analyzing the internal structures of simple 

propositions into their subject and predicate terms, exposition of the device for quantification, that is, 

the device for symbolizing propositions that contain words like ”All” and “Some”. It then discusses 

proof of validity using the rules of quantification, inference and replacement. The course will also 

expose the students to Conditional Proof, Indirect Proof, Proofs of Invalidity. It will also deal with truth 

tree analysis; this involves rule of inference in truth trees, the trees test, problems of adequacy of the tree 

test and deduction trees, and the application of truth tree; to first order logic 

 
Course Objectives 

By the end of the course you will be able to: 

 analyze the internal structures of simple propositions into their subject and predicate 

terms 

 symbolize propositions that contains quantification 

 state the rules of quantification 

 acquire in-depth knowledge of predicate calculus 

 construct formal proof of validity using quantification rules 

 construct Conditional Proofs of Validity 

 construct Indirect Proofs 

 construct Proofs of Invalidity 

 do truth tree analysis of propositions and arguments 



Working Through the Course 

To complete this course of study successfully, you are expected to read the study units, do 

all the assignments, open the links and read, participate in discussion forums, read the recommended 

books and other materials provided, prepare your portfolios, and participate in the online facilitation. 

Each study unit has introduction, intended learning outcomes, the main content, conclusion, 

summary and references/further readings. The introduction will tell you the expectations in the study 

unit. Read and note the intended learning outcomes (ILOs). The intended learning outcomes tell you 

what you should be able to do at the completion of each study unit. So, you can evaluate your 

learning at the end of each unit to ensure you have achieved the intended learning outcomes. To 

meet the intended learning outcomes, knowledge is presented in texts and links arranged into 

modules and units. Click on the links as may be directed, but where you are reading the text offline, 

you will have to copy and paste the link address into a browser. You can print or download the text 

and save in your computer or external drive. The conclusion gives you the theme of the knowledge 

you are taking away from the unit. Unit summaries are presented in downloadable audios and 

videos. 

There are two main forms of assessment—the formative and the summative. The formative 

assessment will help you monitor your learning. This is presented as in-text questions, discussion 

forums and self-Assessment Exercises. The summative assessments would be used by the university 

to evaluate your academic performance. This will be given as Pen-on-Paper (POP) which serves as 



continuous assessment and final examinations. A minimum of two or a maximum of three computer- 

based tests will be given with only one final examination at the end of the semester. You are required 

to take all the computer-based tests and the final examination. 

 
Study Units 

 
There are 10 study units in this course divided into Three modules. The modules and units are 

presented as follows:- 

 

 

 
Module 1 

Unit 1 Quantificational Logic 

Unit 2 Symbolization in Quantificational Logic 

Unit 3 Symbolizing Relational Propositions 

Unit 4 Properties of Relations 

 
Module 2 

Unit 1 Formal Proof of Validity in Quantificational Logic 

Unit 2 Conditional Proof 

Unit 3 Indirect Proof 

 
Module 3 

Unit 1 Truth Tree Tests of Propositions 

Unit 2 Truth Tree Test of Validity in Propositional Logic 

Unit 3 Proving Invalidity in Predicate Logic 
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MODULE 1 

 

Unit 1 Quantificational Logic 

Contents 

1.1 Introduction 

1.2 Intended Learning Outcomes (ILO’s) 

1.3 Quantificational Logic 

1.3.1 Analysis of Propositions into Terms 

1.3.2 Quantification 

1.4 Conclusion 

1.5 Summary 

1.6 Glossary 

1.7 Check your Progress 

1.8 References/Further Reading 

 
1.1 Introduction 

This study unit introduces the learner to the methods for analyzing the internal structures of 

propositions into smaller parts, not simple propositions but “terms” of which they are 

composed. It equips us with the technique to separate the subject and the predicate of a 

proposition and symbolize them separately. It also develops the practice of replacing specific  

subject terms i.e. individual names (constants) with that of individual variables. 

1.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. analyze simple propositions by showing their subject and predicate terms 

2. obtain a proposition from a propositional function by substituting a constant 

for a variable 

3. express the key ideas of universality and particularity 

4. solve the problem of cross-reference between propositions which cannot be 

handled in propositional logic. 

5. symbolize universal propositions accurately 

6. symbolize particular propositions accurately 

1.3. Quantificational Logic. 

Our techniques as they stand in PHL. 301 are only effective with respect to arguments 

whose validity depend on how simple propositions are connected to one another to form 

compounds or propositions that are more complex. Yet Inferences, which are made in terms 

of propositional logic, which we dealt with in PHL. 301 do not exhaust all possible 

inferences. There are, indeed, many simple and logically valid inferences, which the 

techniques we developed in PHL. 301 are inadequate to take care of. The inadequacy of 

symbolic logic as thus far developed in PHL.301 stems from the fact that propositions may 

also be built up, not out of other propositions but out of elements that are not themselves 



propositions; “there are operators which form propositions, not out of other propositions, 

but out of names” (Prior 1963:72). 

The point of emphasis is that the techniques of propositional logic is only adequate 

in dealing with compound propositions and not just inadequate, but cannot indeed deal with 

the internal structure of the individual propositions which make up the compound 

proposition. This point is illustrated by the arguments below: 

1. If it is raining then it is wet outside 

It is raining 

Therefore, it is wet outside 

2. All students are hardworking 

Some beautiful girls are students 

Therefore, some beautiful girls are hardworking 

Argument 1 can be symbolized as: 

R  W 

R / W 

and this correctly and aptly captures the argument form of argument 1; this is because the 

correct symbolization of the argument depends upon the logical (connectives) operators. It 

is also clear that the validity of the argument depends upon the logical operators, hence the 

argument’s validity can be established by the Rule of Modus Ponens. 

On the other hand, argument 2 cannot be correctly symbolized given the technique 

we used in argument 1. This is because to correctly symbolize argument 2 we need to take 

into cognizance the inner or internal logical structures of the non-compound propositions it 

contains. If this is not done, we would ordinarily symbolize it as 

 
S 

B / H 

which symbolization is not only incorrect but also renders the argument invalid when in fact 

the argument is indeed valid. This problem arises because our techniques as thus far 

developed deals with the structures of compound propositions relative only to their 

component propositions, propositions remain the smallest unit of analysis, that is, 

unanalyzable unit. Yet argument 2 requires a technique that will make it possible for us to 

correctly display its inner or internal structure and consequently determine its validity or 

otherwise invalidity. 

In effect, to overcome the inadequacy of our technique we need to give an exposition 

of or introduce the methods for analyzing the internal structures of propositions into smaller 

parts, not simple propositions but “terms” of which they are composed. “Logically valid 

inferences depend for their validity on the structures of the propositions concerned but the 

relevant structures may either be the broad outward structures as in propositional logic or 

the finer substructures” which shall be our concern in this chapter. While argument 1 falls 

into propositional logic, argument 2 does not. Those inferences whose validity depends on 

the finer substructures as argument 2 is called Predicate Logic or Quantificational Logic. 



1.3.1 Analysis of Propositions into Terms 

The simplest statements of quantificational logic are, nevertheless, propositions, but 

instead of regarding propositions as unanalyzed units and letting a single letter stand for it, 

quantification logic enables us to separate the subject and the predicate of a proposition and 

symbolize them separately. Little wonder Quantificational logic is also called Predicate logic 

(Purtill (1976) argues that it would be much more apt to call it Subject – Predicate Logic). 

The point here is that whereas in propositional Logic, a single capital letter standing 

alone is a well-formed formula (WFF); in predicate Logic, it is not. A single capital letter 

standing alone is not a WFF nor does it represent a proposition, in fact, the main preliminary 

impetus in predicate logic is to devise methods for describing and symbolizing simple (non- 

compound) statements by reference to their inner logical structures. 

In this connection, symbolization in Quantificational Logic would usually begin with 

introducing two kinds of constants: constants, which stand for subject (or individual) terms 

(this will be the names or designations of whatever we choose to regard as individuals. This 

will include such things as persons, (say Socrates, Nnamdi, Tamuno, Minimah, Akpan, 

Folunsho etc) objects, (say Tables, Cars, Televisions, Houses etc), places (say shop, 

University, hotel, office, etc), times, propositions and actions); and constants which stand 

for predicate terms. 

The first type of constants, that is, constants which stand for subject terms are the 

small letters of the Roman alphabets from “a” to “w”. In this respect, the small letters of the 

alphabets “a” through “w” are stand-ins for specific subject terms and, the convention is to 

use the first letter of the initial key word of the subject term to denote the subject term, or as 

logicians prefer to call it “individuals”. 

Thus in the following propositions: 

Amarachi is beautiful 

Nkem is hardworking 

Policemen are sadists 

The streets are flooded 

the small letters “a”, “n”, “p” and “s” respectively denote Amarachi, Nkem, Policemen and 

Streets, the subject terms of the propositions, and are called individual constants. 

The second type of constants, that is, constants which stand for predicate terms, are 

capital letters of the Roman alphabet A through Z. The point here is that we use the capital 

letters of the alphabets “A to Z” as stand-ins for specific predicate terms. Thus in statements 

1-4, “B”, “H”, “S” and “F” would stand for the predicates. “Beautiful”, Hardworking”, 

“Sadists”, and “Flooded” respectively. 

Applying this procedure of using the small letters of the alphabets “a” through “w” 

as stand-ins for specific subject terms and the capital letters “A” through “Z” as stand-ins 

for specific predicate terms to symbolize any simple statement (proposition), we adopt the 

rather confusing but deeply entrenched convention of writing the predicate term symbol or 

stand-in to the left of the symbol for its subject term. Thus, the simple proposition 

“Amarachi is beautiful” is symbolized as Ba. Nothing in this procedure permits us to write 

the subject term stand-in to the left of the predicate term stand-in notwithstanding that the 

subject term normally comes before the predicate term. As such aB is not a wff. 

Following this procedure therefore “Nkem is hardworking” becomes 



Hn 

“Policemen are Sadists” would be symbolized as 

Sp 

“The street are flooded” as 

Fs 

“Students are demonstrating” as 

Ds 

“University Education is over subscribed” as 

Su 

“Ukaegbu is well-behaved” as 

Wu 

Ba, Hn, Sp, Fs, Ds, Su, Wu etc are propositions, they assert something that could be 

definitely true or definitely false about individual names that are specified. It is possible and 

indeed logicians have developed the practice of replacing specific subject terms i.e. 

individual names (constants) with that of individual variables. This convention allows us to 

instead of attaching a small letter that refers to a specific subject term to the predicate letter 

standing in for the predicate term, attach a small letter that is an individual variable, that is, 

a place maker for any subject term or individual whatsoever. As individual variables, the 

small letters x, y, z, are usually used and in this respect we usually begin with x. Thus 

instead of “Hs” for “students are hardworking”, we could have any of Hx, Hy or Hz. Any 

of these Hx, Hy or Hz could stand for “students are hardworking”, “Nwankwo is 

hardworking” etc. the specific subject term symbolization like 

Ha   for Agu is hardworking 

Hn for Nwagu is hardworking 

Hi for Ijoma is hardworking 

Hu for Ukaegbu is hardworking 

are respectively and separately either true or false; but Hx is neither true nor false, nor any 

of either Hy or Hz true or false. x, y, z being variables are not propositions and as such no 

truth values can be attached to them. In this sense, expressions of the form Hx, that is, 

expressions where an individual variable is attached to the Predicate letter standing-in for a 

predicate term, are called Propositional functions. When the individual variable in a 

propositional function is replaced by an individual constant, the propositional function 

becomes a proposition. Succinctly put, therefore, propositional functions are expressions 

that contain individual variables and becomes propositions when their individual variables 

are replaced by individual constants. Accordingly the following expressions: 

Hx 

Hy 

Hz 

Bx 

Fx 

Dx 

Sx 

Wx 

are propositional functions, and could become propositions as in 



Ha 

Hn 

Hi 

Ba 

Fs 

Ds 

Su 

Wu 

The point is that Hx, Hy, Hz, Bx, Fx, Dx, Sx, Wx say nothing until some x is 

specified, become a definite (specific) proposition with a definite truth-value. When a 

proposition is thus specified, we say it is a substitution instance of the propositional function 

from which it results by the substitution of an individual constant for the individual variable 

in the propositional function. Accordingly Ha, Hn, Hi, Ba, Fs, Ds, Su and Wu are 

substitution instances of Hx, Hy, Hz, Bx, Fx, Dx, Sx and Wx. The technical name for this 

process of obtaining a proposition from a propositional function by substituting a constant 

for a variable is instantiation. 

Having taken note of how to analyze a simple proposition in predicate logic using 

stand-ins for the subject and predicate terms we now add the operators on propositions 

already discussed in propositional logic symbolization procedure; these are: , v, , , and 

( ), [ ], { }. Thus to symbolize 

1. Students are not hardworking 

we have 

~Hs 

This expression is a denial and it is notable that the denial symbol ~ is placed to the left of 

the predicate letter; ~Hs, in this respect is a wff. H ~ s is ill-formed just as Hs~ is also ill- 

formed. 

2. Agu is hardworking and Ezinne is beautiful 

Ha Be 

3. If it is raining outside then the streets are flooded 

Or  Fs 

4. Either Ijoma qualifies for the National Art Exhibition or he will secure a scholarship 

for further studie 

Ai v Si 

5. Moralists are humanists if and only if Sadists are moralists 

Hm  ~Ms 

6. If Agu is hardworking and Ezinne is beautiful then either Agu wins the National Merit 

award or Ezinne qualifies to represent Abia State in the beauty pageant 

(Ha  Be)  (Na v Pe) 

7. If moralists are kind-hearted and teachers are sympathetic then either politicians are 

corrupt or the Naval team is not honest 

(Km  St)  (Cp v ~ Hn) 

8. Ugo is not qualified to contest the elections unless she is cleared of bankruptcy and 

either the masses revolt against the injustice or the party primaries will be marred by 

mass disqualification. 



~Eu v [Bu  (Im v Dp)] 

9. Kama is not hardworking if Nkechi is ahead of him and either Chima is already a 

graduate or Peter has been awarded a scholarship 

[An  (Gc v Sp)  ~ Hk 

10. Uchechi is indeed a prodigy if it is confirmed that Ijoma walked at 11 months and 

Ngozi either was assisted to crawl at 4 months or the testimony given by her mother 

is misleading. 

[Wi  (Cn v Mt)]  Pu 

1.3.2 Quantification 

In addition to analyzing the internal structures of simple propositions such that the 

subject and predicate terms are displayed, the idea of quantification is one other feature of 

quantificational logic, which both underscores the distinction between quantification logic 

and propositional logic, and shows the more powerful and encompassing character of, 

quantification logic. Indeed, the real advantage of quantificational logic over propositional 

logic lies in the point that the former has a device for symbolizing propositions that contain 

words like ”All” and “Some”, that is propositions that have quantity or contain quantifiers; 

this device is called quantification. 

To handle this idea of quantification, Quantificational Logic introduces two operators 

called quantifiers, which stands in front of propositional functions, somewhat as the denial 

symbol: “~” stands in front of a simple proposition or a compound proposition. The two 

quantifiers are (1) a subject variable within parentheses, for example (x), (y) or (z). The 

subject variables within parentheses may also be used with an upside A in front of it, giving 

something like (x), (y), (z), and it is this latter one that we shall use in this book; (2) a 

subject variable within parentheses with a backward E in front of it, for example (x), (y), 

(z). When a quantifier stands in front of a left parenthesis its scope extends to the 

corresponding right parenthesis just as in the case of ~. 

These operators: (x) and (x), or (y) and (y), or (z) and (y) have two important 

characteristics. First, they can be used to express the key ideas of universality and 

particularity; and second; they can be used to solve the problem of cross-reference 

between propositions which cannot be handled in propositional logic. In this connection, 

the quantifier (x), called the Universal quantifier is used to quantify universal 

propositions. Thus, we can symbolize universal propositions (that is, propositions 

quantified by the terms “All”, “Every”, “Anyone”) with the following predicates: Beautiful, 

hardworking, Sadist, Moralists and Democrats as follows: 

(x) Bx 

(x) Hx 

(x) Sx 

(x) Mx 

(x) Dx 

In terms of particularity, propositions that contain “some”, that is, refer to an 

indefinite part of a class, are called particular propositions, and the quantifier (x) called 

Existential Quantifier is used to quantify such particular propositions. Thus, we can 

symbolize particular propositions with the same predicates used above, as follows: 

(x) Bx 



(x) Hx 

(x) Sx 

(x) Mx 

(x) Dx 

In reading the expressions quantified by the Universal quantifiers, we use the 

phrase “Given any individual that individual is – “. Thus the following: 

(x) Bx would read “given any individual, that individual is beautiful” 

(x) Hx = “given any individual that individual is hardworking” 

(x) Sx = “given any individual that individual is a Sadist” 

(x) Mx = “given any individual that individual is a Moralist” 

(x) Dx = “given any individual that individual is a democrat” 

On the other hand, in reading expressions quantified by the Existential quantifier, 

we say “There is an individual such that, that individual is – “. In this regard 

(x) Bx would read “there is an individual such that, that individual is a beautiful” 

(x) Hx “there is an individual such that, that individual is hardworking” 

(x) Sx “there is an individual such that, that individual is a sadist” 

(x) Mx “there is an individual such that, that individual is a moralist” 

(x) Dx “there is an individual such that, that individual is a democrat” 

It is obvious that all our quantified expressions above are affirmative propositions, and 

there is no gain saying that not all propositions are affirmative. To say the least, the denial 

(or negation) of an affirmative proposition is a negative proposition. This thus invites the 

necessity to consider negative propositions and here the denial of a universal affirmative 

proposition would yield a universal negative (x) ~ which would read “given any individual, 

that individual is not –“. Thus while (x) Bx symbolize “All x are beautiful”, (x) ~ Bx 

symbolizes “Nothing is beautiful”. 

Similarly, the denial of an Existential affirmative proposition would yield an 

Existential negative (x) ~ which would read “there is an individual such that, that individual 

is not –“. In this sense while (x) Bx symbolizes “Some x is beautiful”, (x) ~Bx symbolizes 

“Some x is not beautiful”. 

Following the traditional classification of (categorical) propositions into Universal 

Affirmative, Universal Negative, Particular Affirmative and Particular Negative the following 

symbolizations will hold 

1. Universal Affirmative 

All humans are mortal (x) [Hx  Mx) 

which reads as “Given any individual if that individual is human then that individual is 

mortal”? 

2. Universal Negative 

No humans are mortal (x) [Hx  ~ Mx] 

which reads as “Given any individual if that individual is human then that individual is not 

mortal” 



3. Particular Affirmative 

Some humans are mortal (x) [Hx  Mx] 

which reads as “There is at least one individual such that, that individual is human and 

he/she is mortal. 

4. Particular Negative 

Some humans are not mortal (x) [Hx  ~Mx] 

which reads as “There is at least one individual such that, that individual is not human and 

he/she is not mortal 

1.3.3 Relationship between Universal & Existential Quantification 

Our rendering of quantificational logic in the schema of traditional logic’s 

classification of standard form categorical propositions into four above does not discuss 

the relationship of equivalence between Universal and Existential quantifiers. Thus, when 

we addressed the question of negative propositions and purported the denial of a Universal 

Affirmative proposition to be a Universal Negative, our treatment of negation was purely in 

terms of the quality and not quantity. There is, therefore, in this connection a need to look 

at the relations between Universal and existential quantification within the context and 

presentation of traditional logic. 

Traditional logic emphasizes four types of propositions with the familiar example of: 
 

1. All humans are mortal 

2. No humans are mortal 

3. Some humans are mortal 

4. Some humans are not mortal 

These four propositions are usually classified as: 

1. Universal Affirmative 

2. Universal Negative 

3. Particular Affirmative, and 

4. Particular Negative 

 
and are abbreviated as A, E, I and O propositions respectively. The abbreviations A, E ,I and O 

are said to be derived from the Latin words Affirmo and nEgO meaning respectively, “I affirm” and 

“I deny”. The first vowels in each of Affirmo and nEgO symbolizes Universal propositions while the 

second vowel refers to Particular propositions. 

In analyzing the relationship, which holds between A, E, I, and O propositions, a theory 

called the square of opposition was introduced (first by Aristotle). Usually presented such that 

the A, E, O propositions, and I are arranged in a square as follows: 
 

The square is constructed to exemplify in a systematic way the relations that hold between any two 

of the standard four categorical propositions. 

In symbolizing Universal and Existential quantifiers we had 



(x) [Hx  Mx] 

symbolizing Universal Affirmative propositions 

(x) [Hx  ~ Mx] 

symbolizing Universal Negative propositions 

(x) [Hx  Mx] 

symbolizing Particular Affirmative propositions 

and 

(x) [Hx  ~Mx] 

symbolizing particular Negative propositions. 

If we use the letter “M” to stand for any predicate whatsoever, the relations between 

Universal and Existential quantification comes out clearly as follows: 

1. [(x) Mx]  [~(x) ~ Mx] 

2. [(x) Mx]    [~(x) ~ Mx] 

3. [(x) ~Mx]  [~(x) Mx] 

4. [(x) ~ Mx]  [~(x) Mx] 

In No.1, “Everything is m(ortal)” means the same thing as, that is, is equivalent to “it is false 

that there is something which is not m(ortal)”. 

No. 2 “Something is “M” means the same thing as, that is, is equivalent to “it is false that 

everything is not M” 

No. 3 “Nothing is “M” means the same thing as, that is, is equivalent to “it is false that there 

is something which is M”. 

No. 4 “Something is not M” is equivalent to “it is false that everything is M”. 

This relationship between Universal and Existential quantification could be superimposed 

on the traditional square of opposition to produce the picture below; if we use H and M for any 

predicate whatsoever 

 

 
1.4 Conclusion 

Quantificational Logic analyzes the internal structures of propositions into subject and 

predicate terms and symbolize them separately. It has a device for symbolizing propositions 

that contain words like ”All” and “Some”, that is propositions that have quantity or contain 

quantifiers; this device is called quantification. 

 
1.5 Summary 

This unit has introduced you to the technique used to separate the subject and the 

predicate of a proposition and symbolize them separately. It also developed the practice of 

replacing specific subject terms i.e. individual names (constants) with that of individual 

variables. To handle this idea of quantification, the unit introduces two operators called 

quantifiers. These operators: (x) and (x), or (y) and (y), or (z) and (z) are used to 

express the key ideas of universality and particularity; the quantifier (x), called the 



Universal quantifier is used to quantify universal propositions and the quantifier (x) called 

Existential Quantifier is used to quantify particular propositions. It also discusses 

relationship of equivalence between Universal and Existential quantifiers. 

 
1.6 Glossary 

Constants The Logical device, which operates on propositions to yield other propositions and are 

such that they have a fixed specific meaning. 

Existential Generalization (E.G.) A rule of inference in the theory of quantification which permits 

the valid substitution of a propositional function with the existential quantification of that 

propositional function, that is from v, we can validly infer (x) x. 

Existential Instantiation (E.I.) A rule of inference admissible in quantification theory which permits 

one to validly infer from the existential quantification of a propositional function the truth of its 

substitution instance with respect to any individual constant that does not occur earlier in that 

context; that is, from (x) x, we can infer v. 

Existential quantifier A symbol () in modern quantificational theory which indicates that any 

propositional function (x,y,z) immediately following it has some true substitution instance;“(x) Fx, 

(y) Fy, (z) Fz” mean respectively that (1) “There exists an x that has F”, (2) “there exists a y that 

has F”, and (3) “there exists a z that has F”. 

Formal Proof of Validity – The deduction of the conclusion of an argument from its premisses by 

a sequence of statement forms each of which is either a premiss of the given argument, or follows 

from the preceding statement form of the sequence by one of the rules of inference. 

Generalization In quantification theory, the process or forming a propositional function by placing 

a universal quantifier (e.g x) or an existential quantifier (e.g x) before it. 

Individual Constant – A symbol (conventionally a lower case letter a through w) used in logical 

notation to denote an individual. 

 
Individual Variable A symbol (conventionally the lower case letters “x”, “y” and “z”) which serves 

as a place maker for an individual constant or any subject term whatsoever. 

Instantiation A process in quantification theory of substituting an individual constant for an 

individual variables, thereby converting a propositional function into a proposition. 

Particular Proposition A proposition that refers to some but not to all the members of a class. 

Two variants of this proposition are distinguished namely Particular Affirmative and Particular 

Negative. Particular Affirmative Propositions (called I – propositions) say that some S is P while 

Particular Negative propositions (called O – propositions) say that some S is not – P. Both in 

traditional and Modern logic, particular propositions are understood to have existential import; in 

the theory of quantification, they are symbolized using the Existential Quantifier, (x). 

Propositional Function A term used in quantification theory to refer to an expression from which 

a proposition may result either by instantiation or by generalization. A propositional function is 

instantiated when the individual variables within it are replaced by individual constants (e.g Hx is 

instantiated as Ha). A propositional function is generalized when either the universal or the 

Existential quantifier is introduced to precede it (e.g Hx is generalized as either (x) Hx or as 

(x)Hx. 

Quantification – Literally specification as to quantity. A method for describing and symbolizing 

non compound statements by reference to their inner logical structure in such 

a manner that those saying something about everything (all), and those saying something about at 

least one thing (some) are distinguished. 



Quantifier – A concern with the notion of quantity. See Existential, Quantifier and Universal 

Quantifier. 

Universal Instantiation (U.I.) A rule of inference in quantificationallogic that permits the valid 

inference of any substitution instance of a propositional function from the universal quantification 

of that propositional function. 

Universal Generalization (U.G.) A rule inference in quantificational logic that permits the valid 

inference of a generalized, or universally quantified expression from an expression that is given as 

true of any arbitrarily selected individual. 

Universal proposition A proposition that refers to all the members of a class. Two types of this 

proposition are usually distinguished namely; Universal Affirmative propositions (traditionally called 

A-proposition) which says that All S is P; and Universal Negative propositions (traditionally called 

E-proposition) which say No S is P. 

Universal Quantifier Any of the symbols (x), (y) and (z), in quantificational logic, used before 

a propositional function which asserts that the predicate following it is true of everything. 

 

1.7 Check your Progress 

Exercises 1. 7. 1 

Symbolize the following simple propositions showing their subject and predicate terms 

1. Nigeria is a rich country 

2. Abia is God’s own state 

3. Nigeria is endowed with plenty of oil deposits 

4. Nguzu is the headquarters of Afikpo South L.G.A. 

5. The military leader is a dictator 

6. The traffic is heavy 

7. Urediya is a good mother 

8. Adaku is exceptionally brilliant 

9. God is love 

10. Shehu is not happy 

Exercise 1.7.2 

Symbolize the following expressions 

1. If Briggs is elected president and he is sworn-in by the vice chancellor then Briggs is not 

known to be a clown. 

2. If Ngeribara is born in River State then he is of the Niger-Delta stock. 

3. Chibuikem is both a moralist and a democrat or if he is neither of the two then Amarachi is 

influential. 

4. Nkechi will win the beauty pageant if Blessing withdraws and Ezinne elects to step down 

for Ijeoma and Adanna. 

5. If it is raining outside and the roads are wet then students will not come to school unless 

the streets are not flooded and the traffic wardens are mobilized. 

6. Nigeria will qualify for the next world cup finals and play against Brazil if and only if, if 

Argentina wins the preliminaries both Paraguay and Spain will not petition to FIFA. 

7. Either if Akpan is born in Calabar then Savage is French or if Akpan is not born in Calabar 

then Savage is a Cross River State citizen. 

8. If Agu is happy but Ijay is not then either Agu is not really ambitious or both Agu and Ijay 

are yet to know of the scholarship award. 

9. Either Ukaegbu is more than 1.8 metres tall or if Amarachi wins the beauty pageant then 

neither Nneka nor Chibuike will participate in the selection process. 

10. If moralists are humanists if and only if Sadists are atheists then either moralists do not read 

Marxist Literature or the progressives simply are good natured. 

Exercise 1.7.3 



Symbolize the following expressions: 

1. There are no atheists 

2. Nothing Exists 

3. Something is not in question 

4. Anyone can contest 

5. Everybody resigned 

6. Some things are white 

7. It is not true that everybody is mortal 

8. It is not true that some police officers are not corrupt 

9. Only taxpayers can context elections 

10. No teachers are well paid 

11. Every democrat is progressive 

12. Some politicians are greedy 

13. Some democrats are corrupt 

14. Some corrupt priests are not trustworthy 

15. All teachers are not well paid. 

Exercise 1.7.4 

Symbolize each of the following expressions and identify those that are negations of the others and 

state the logical equivalence of each of them. 

1. Everything is good 

2. Everybody is a moralist 

3. Some things are not good 

4. It is not true that everything is good 

5. Some things are commendable 

6. Everything is not commendable 

7. There are no moralists 

8. Moralists exists 

9. Nothing exists 

10. It is not true that moralists exist 
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2.1 Introduction 

This study unit introduces the learner to the techniques for symbolization in 

quantificational logic. It emphasizes that quantifiers have scope and that unless we 

determine the scope of a quantifier, we might indeed be unable to determine whether an 

expression is a proposition or a propositional function. It also brings to sharp focus the idea 

of free and bound occurrences of variables in symbolization in quantificational logic; 

2.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. conduct symbolization in Quantificational logic. 

2. translate expressions into the logical notation of propositional functions and 

quantifiers 

3. identify quantifiers that have the entire formulae as their scope and those 

quantifiers that do not have the entire formulae as their scope 

4. identify propositions that contain free or bound occurrences of variables and 

thereby correctly symbolize expressions in quantificational logic. 

5. symbolize normal form Universal propositions as always having as their 

major connective the horse shoe symbol, that is, they express a relation of 

implication 

6. symbolize Existential propositions as expressing conjunction relationships, 

hence have the dot “ “ symbol as its major operator. 

7. identify formulae that are propositional function rather than proposition 

2. 3 Symbolization in Quantificational Logic 

With the machinery we developed in Unit 1, we can conduct symbolization in 

Quantificational logic. However, before we proceed, certain important points need to be 

emphasized. 

The point is remarkable that quantifiers, like the tilde “~”, have scope; in this 

connection unless we determine the scope of a quantifier, we might be unable to really 

determine whether an expression is a proposition or a propositional function 

If we take the following quantified expressions: 

(1)     (x) [Hx  Mx] 

and 

(2) (x) Hx  Mx 

in symbolization I, the scope of the quantifier x is Hx  Mx, that is, the quantifier has the 

entire formula as its scope, the brackets in grouping Hx Mx together defines the scope of 



the quantifier. But this is not the case with symbolization 2. The scope of the quantifier x 

in symbolization 2 is Hx; Mx is outside its scope. The point on relief here is that if there is 

a bracket following a quantifier, the scope of the quantifier covers all variables within the 

bracket that is represented by the quantifier. As such if no bracket follows a quantifier, 

then the scope of the quantifier is restricted to the formula immediately following the 

quantifier. The point is also notable that if the variable accompanying a predicate differs 

from the quantifier variable then it is outside the scope of the quantifier. Thus in 

expressions 3, 4, 5 and 6 below 

(3) (x) (Hx  Mx) 

(4) (x) [(Hx v Rx)  (Mx  Bx] 

(5) (x) [(Hx  Rx)  (My v By) 

(6) (x) [(Hx  My)  Rx] 

whereas in expressions 3 and 4 the quantifiers have the entire formulae as their scope in 

5 and 6 the quantifiers do not have the entire formulae as their scope. 

As a matter of procedure, any occurrence of a variable that is within the scope of 

the quantifier is said to be a bound occurrence of that variable; and any variable outside 

the scope of a quantifier is said to be a free occurrence of that variable. Thus in the 

expression: 

(7)     (x) [(Hx  My) 

as in 5 and 6 every x is considered a bound occurrence while y is a free occurrence in the 

expression. 

It needs be emphasized here that the idea of free and bound occurrences of 

variables is so crucial in doing symbolization in quantificational logic; whether or not a 

proposition is correctly symbolized depends on whether it contains free or bound 

occurrences of variables. For, any well-formed formula (wff) to represent a proposition in 

predicate logic it must not contain free occurrence of any variable. The point is that once 

there is a free occurrence of any variable in any wff, that wff cannot represent a proposition. 

If a wff, therefore, contains one free occurrence of a variable, then that formula is taken as 

a propositional function rather than a proposition. In other words, any proposition that 

contains any free occurrence of a variable has no truth since propositional functions do not 

have truth values. 

The meaning of this is that if a symbolization is to represent a proposition, all the 

variables that occur in the quantified symbolization must be bound variables. For example 

in the following symbolizations 

 
(1) (x) [(Hx  Mx)  Rx] 

(2) (x) (Hx  Mx)  Rx 

(3) (x) [(Hx  Mx)  Ry] 

(4) (x) Hx  Mx 

(5) (y) [(Hy  My)  Ry] 

(6) x [(Hx v Ry)  Mx] 

symbolization (1) has no free occurrence of any variable. The Universal quantifier (x) 

ranges over the entire x within the formula. All occurrences of x are bound occurrence. 

Accordingly, the expression is a proposition. 

Symbolization (2) has a free occurrence of a variable. The scope of the quantifier 

is restricted to the antecedent, that is, the quantifier ranges over only the variables grouped 

together by the brackets. The variable x, which occurs in the consequent, is a free 



occurrence of x. The result is that symbolization (2) is not a proposition but a propositional 

function. 

Symbolization (3) has a free occurrence of a variable. The quantifier x is restricted 

to the occurrence of x and not any other variable; “y” is in the formula which means that “y” 

is not bound by the quantifier. The meaning of this is that symbolization (3) is a 

propositional function and not a proposition. 

Symbolization (4) has a free occurrence of a variable. As already explained, Mx is 

outside the scope of the quantifier (x) because if no bracket follows a quantifier, the scope 

of the quantifier is restricted to the wff immediately following the quantifier. So, as with 2 

and 3, symbolization (4) is a propositional function, not a proposition. 

Symbolization (5) has no free occurrence of any variable. The scope of the 

quantifier (y) ranges over the entire formula; every occurrence of y is a bound occurrence 

of y.  Therefore, symbolization (5) is a proposition. 

Finally, symbolization (6) has a free occurrence of a variable. The quantifier (x) 

ranges over the entire formula but x is restricted to the occurrence of x and not any other 

variable; “y” is in the formula, which means that “y” is not bound by the quantifier. The 

implication is that symbolization (6) is not a proposition, but a propositional function. 

Another very significant remark is that in the normal form Universal propositions 

always have as their major connective the horse shoe symbol, that is, they express a 

relation of implication, while Existential propositions express conjunction relationships, 

hence have the dot “ “ symbol as its major operator. 

Let us now symbolize some quantified expressions: 

1. “All students are either hardworking or cheats” 

is symbolized as 

(x) [Sx  (Hx v Cx)] 

and it reads “given any individual if that individual is a student then either he is hardworking 

or a cheat” 

2. “Only tax-payers and unemployed adults will vote in the election” is symbolized as 

(x) [Ex  (Tx v Ux)] 

and it reads “given any individual, if that individual will vote in the election then either he is 

a tax-payer or an unemployed adult. The temptation is to symbolize the expression as 

(x) [(Tx  Ux)  Ex] 

which would read “given any individual, if that individual is a tax-payer and an unemployed 

adult then he will vote in the election. This it is obvious is not what the expression says. 

The expression “Only tax-payers and unemployed adults will vote” translates into “All who 

will vote in the election are tax payers and unemployed adults”. And it would also be wrong 

to symbolize the expression as 

(x) [Ex  (Tx  Ux)] 

which would read “given any individual if that individual will vote in the election then he is 

both a tax-payer and an unemployed adult. To say that only tax-payers and unemployed 

adults will vote in the election is to say that anybody who will vote in the election will be 

either a tax-payer or an unemployed adult, not that any one who will vote has to 

simultaneously be a tax-payer and an unemployed adult. 

3. “No student can escape the examination” is symbolized as 

(x) [Sx  ~Ex] 

which reads “given any individual if that individual is a student then he/she cannot escape 

the examination” 



4. “All that glitters is not gold” is symbolized as 

(x) [Gx  ~ Ox] 

which reads “there is at least one individual such that it glitters and it is not gold”. Here 

although “all” appears as the quantifier the tempting symbolization 

(x) [Gx  ~Ox] 

is palpably incorrect because it would read “given any individual if it glitters then it is not 

gold”; and this is not what the expression: “all that glitters are not gold” means. It rather 

means “some things that glitter are not gold” which means that there is at least one thing 

which is not gold and it glitters. Were one to symbolize it as 

(x) [Ox  ~ Gx] 

which would read “there is at least one individual such that it is a gold and it does not glitter” 

it would it be wrong for the expression would mean that “there is one thing which is a gold 

and it does not glitter”, and this is not equivalent to there is at least one thing which is not 

gold and it glitters”. 

(5)     (x) [Lx  (~Px v Hx)] 

which reads “given any individual if that individual is a leader then either he is not popular 

or he is humane” which means the same thing as given any leader he is not popular unless 

he is human” 

(6) “Some students are successful if and only if they are hardworking” is symbolized as 

(x) [Sx  (Ux  Hx)] 

which reads “there is at least one individual such that, the individual is a student and that 

he is successful if and only if he is hardworking”. 

(7) “Some moralists are humanitarians or agnostics” is symbolized as 

(x) [Mx  (Hx v Ax)] 

which reads “there is at least one individual such that, that individual is a student and 

he/she is either a humanitarian or an agnostic. 

 
2.4 Conclusion 

The scope of a quantifier determines whether an expression is a proposition or a 

propositional function. The scope of the quantifier covers all variables within the bracket 

that is represented by the quantifier and if no bracket follows a quantifier, then the scope 

of the quantifier is restricted to the formula immediately following the quantifier. For, any 

well-formed formula (wff) to represent a proposition in predicate logic it must not contain 

free occurrence of any variable. If a wff, therefore, contains one free occurrence of a 

variable, then that formula is taken as a propositional function rather than a proposition. 

 
2.5 Summary 

This unit has introduced you to the technique used to determine whether an 

expression is a proposition or a propositional function. It also demonstrates how to 

represent a proposition in predicate logic for it to be a well-formed formula. The unit also 

demonstrates that in the normal form Universal propositions always have as their major 

connective the horse shoe “” symbol, that is, they express a relation of implication, while 

Existential propositions express conjunction relationships, hence have the dot “ “ symbol 

as its major operator. 



2.6 Glossary 

Bound variable Any variable that occurs within the scope of a quantifier containing the same 

variable. Thus in the expression: (x) [Hx  Mx] every occurrence of “x” is a bound variable. 

Free Variable Any variable that occurs outside the scope of a quantifier. Thus in the expressions 

(x) [Hx  My] and (x) [(HxMy) Rx], every occurrence of y is a free occurrence of the variable 

“y”. 

Wff Well-formed formula, i.e string of symbols of a formal language correctly constructed with 

respect to its formation rules. 

2.7 Check your Progress 

Exercises 

Translate each of the following expressions into the logical notation of propositional 

functions and quantifiers, in each case use letters of a key word. 

1. Students are not always hardworking. 

2. No student who is a mediocre will win a scholarship if unbiased assessors are 

engaged. 

3. It is not true that Nigeria will win the next edition of the Nation’s cup if and only if 

Cameroon is disqualified and South Africa withdraws at the early stages. 

4. Any philosopher is sound if he is hardworking and reads a lot. 

5. Only academics and students are both marginalized and ignored by government. 

6. No student is a genius unless he is naturally endowed. 

7. Any girl that is humble has been well trained 

8. Every successful politician is either corrupt, selfish or ambitious. 

9. Not any groom attended the marriage seminar. 

10. Not every lecturer is sound who is hardworking. 

11. Some girls are religious only if faced with crisis. 

12. Only arrogant and beautiful girls will contest the beauty pageant. 

13. Politicians and police officers are either acclaimed corrupt or they are just 

mischievous. 

14. Not all students who score good grades are both hardworking and naturally 

endowed. 

15. To excel in life, one must work hard if one is a student or undergo real tutelage if 

one ventures into a trade. 
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3.1 Introduction 

This study unit introduces the learner to the techniques for symbolizing relational 

propositions. The analyses of the internal structure of relational propositions is important 

in predicate (quantificational) logic. This is because without displaying the relationship that 

hold between individuals in a proposition we are sure to muddle up both the symbolization 

of such propositions and logical inferences involving such relational propositions. 

3.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. analyze the internal structure of certain propositions of quantification logic called 

relational propositions 

2. understand the types of relationship that hold between propositions and name 

of the predicate that holds such relations. 

3. form propositional functions with relational predicates. 

4. identify which predicate letter followed by any finite series of variables are well- 

formed formula. 

5. identify which predicate letter followed by a mixture of names and variables are 

well-formed formula 

6. symbolize relational propositions 

7. use quantifiers in symbolizing relational propositions. 

3.3 Symbolizing Relational Propositions 

In addition to traditional predicate propositions, quantificational logic also deal with 

propositions that contain two or more proper names which obviously are truth-functional 

compounds of singular propositions that have different subject terms. For example, the 

proposition “Agu and Ijoma are brothers” is not a conjunction or a truth function of “Agu is 

a brother” and “Ijoma is a brother”; the proposition does not purport to assert that Agu and 

Ijoma both have certain attribute(s), it rather asserts that they stand in a certain relation. 

The point, therefore, is that certain propositions of quantification logic deal with relations 

hence called relational propositions. 

The analyses of the internal structure of such relational propositions is indeed 

pursued in predicate (quantificational) logic, because without displaying the relationship 

that hold between individuals in a proposition we are sure to muddle up both the 

symbolization of such propositions and logical inferences involving such relational 

propositions. 



A relational proposition, in this context, is simply a proposition, which is such that 

given any predicate, for example “L” some or all individuals share the attribute of that 

predicate with some other individual(s). If the proposition is such that the relationship is 

between two individuals, it is called a binary or dyadic relation; the predicate that holds 

such relation is called dyadic predicate. If we consider the following propositions: 

1. Ijoma is older than Ukaegbu 

2. Nkem likes Chijioke 

3. Adaku is the sister of Esther 

4. Nnanna is married to Comfort 

we discover that example 1 talks of a relationship of age between ijoma and Ukaegbu and 

the predicate there is “Older”, examples 2-4 talks of other forms of relationship between 

two individuals; 2 of “likeness”, 3 “of sister” and 4 “of marriage”. 

Relations in which three individuals relate are called triadic or ternary relations, and 

the predicate that holds such relationship called triadic or ternary predicate. Propositions 

such as 

1. Briggs introduced Maduba to Chima. 

2. Kalu transferred his property to his children. 

3. Okafor likes Ugonma more than Nneka 

4. Nguzu is between Ohafia and Abiriba 

are examples of triadic relations. 

Relations in which four individuals relate are called tetradic or quaternary relations. 

Examples of propositions in which such relationship hold are 

1. Uche, Ikechi, Chima and Akpan studied together. 

2. Nnanna sent Agu to Chima from Umuahia 

3. Kalu transferred his property to his children in a will. 

4. Peter bought the car from Amadi in Lagos. 

There is no doubt that these types of relations enter into arguments in various ways, 

there is therefore need for us to first tackle the problem of symbolizing relational 

propositions. 

Beginning with our examples of dyadic relations, using “i” for Ijoma and “u” for 

Ukaegbu and “O” (the predicate) for older, “Ijoma is older than Ukaegbu” symbolizes as 

Oiu 

Using “L” for the predicate and “n” and “c” for Nkem and Chijioke respectively ‘Nkem 

likes Chijioke” is symbolized as 

Lnc 

Using “S” for sister and “a” and “e” for Adaku and Esther, “Adaku is the sister of 

Esther” is symbolized as 

Sae 

In “Nnanna is married to Comfort”, if we use “n” and “c” for the names and “M” for 

the predicate, we get 

Mnc 

Our examples of triadic relations would be symbolized as follows: 

Briggs introduced Maduba to Chima 

Ibmn 

“Introduced” is the triadic predicate in this three person relation and is translated 

into capital “I” and names into “b”, “m” and “c” 

Kalu transferred his property to his children 

Tkpc 



The triadic predicate ‘transferred” is translated into capital “T” and the names “Kalu”, 

“property” and “children” in “k”, “p” and “c” respectively. 

Okafor likes Ugonma more than Nneka 

The triadic predicate “likes” is translated into capital “L” and the names “Okafor”, 

“Ugonma” and “Nneka” into “o” “u” and “n” respectively. 

Nguzu is between Ohafia and Abiriba 

Bnoa 

The triadic predicate “between” is translated into capital “B’ and the names “Nguzu”, 

“Ohafia” and “Abiriba” into “n” “o” and “a” respectively. 

The examples given in defining tetradic relations would be symbolized as in below: 

Uche, Ikechi, Chioma and Akpan studied together 

Suica 

The tetradic predicate “studied” is translated into capital “S” and the names “Uche” 

“Ikechi” “Chioma” and “Akpan” into “u”, “i”, “c” and “a” respectively. 

Nnanna sent Agu to Chima from Umuahia 

Snacu 

The tetradic predicate “sent” is translated into capital “S” and the names Nnanna, 

Agu, Chima and Umuahia into “n” “a” “c” and “u” respectively. 

Kalu transferred his property to his children in a will. 

Tkpcw 

The tetradic predicate “transferred” is translated into capital “T” and the names kalu, 

property, children and will into “k”, “p”, “c” and “w” respectively. 

Peter bought the car from Amadi in Lagos 

Bpcal 

The tetradic predicate “bought” is translated into capital B and the names Peter, car 

Amadi and Lagos into “p”, “c”, “a” and “l” respectively. 

It is clear from the foregoing that in symbolizing relational propositions the rule is 

that a predicate letter followed by any finite series of names is a well-formed formula. Thus 
 

L n c 

Predicate 

 
I b m c 

predicate 

 
T k p c w 

predicate 

names 

 

 
names 

 
 

 
names 

 

are all wff’s 

It is notable to indicate here that we can form propositional functions with relational 

predicates. In this connection, what is required is to replace one or all the individual names 

with individual variables. Accordingly, just as a propositional function of a variable, for 

example, “x” is a human” could be translated into Hx, so a propositional function of a dyadic 

relation such as “x” is a friend of ‘y’ is symbolized as Fxy. In the same vein the propositional 

function “x introduced y to z” is symbolized as Ixyz’ and the propositional function “x sent 

y to z from w” is symbolized as Sxyzw. As a matter of fact the following 

Fxy 

Ixyz 

Sxyzw 



are wff’s, so are 

 
T r r k 

 

T 
 

T x b y a 

In this later set, we see that there is mixture of names and variables. The import of this 

that just as we have the rule that a predicate letter followed by any finite series of names 

is a wff, two other rules follow 

(1) A predicate letter followed by any finite series of variables is a wff. 

(2) A predicate letter followed by a mixture of names and variables is a wff. 

Having mastered these rules governing the symbolization of relational propositions 

we can symbolize some relational expressions. 

1. Either Tamuno is not a friend of Adaku or Tamuno is not a friend of Ogonnaya 

~Fta v ~ Fto 

or 

~Fxy v Fxz 

In the first symbolization we used the names “t” “a” and “o” for Tamuno, Adaku and 

Ogonnaya respectively and capital “F” for the dyadic predicate; while in the second we 

used variables x,y and z for Tamuno, Adaku and Ogonnaya respectively. 

 
2. If Ijoma, Kelechi and Okorie are friends then either Nwankwo marries 

Chinyere or Edak loves Archibong 

 
Fiko  (Mnc v Lea) 

or 

Fxyz  (Mwc v Lea) 

 
3. If Chima loves Ola and Dele is taller than Musa then either Chima is not richer 

than Peter or Ola does not love Peter. 

 
(Lco  Tdm)  (~Rcp v ~ Lop) 

or 

(Lxo  Tym)  (~Rxz v ~Loz) 

 
In the symbolizations in 1 – 3 above whereas in the first names are used, the alternate 

symbolization is normally a mixture of names and variables. 

It becomes indeed significant at this point to introduce the use of quantifiers in 

symbolizing relational propositions. In this connection, the dyadic relational proposition: 

“Somebody is a friend to Tunde” which reads “there exists an individual such that, that 

individual is a friend to Tunde” is symbolized as 

(x) Fxt 

Tunde is a friend to someone is symbolized as 

(x) Ftx 

Everybody is a friend of Tunde is symbolized as 

(x) Fxt 

x 

x y y z 



Tunde is a friend of everyone is symbolized as 

(x) Ftx 

 
We notice that in the above symbolizations that in symbolizing “Tunde is the friend 

of everyone or somebody”, the name of Tunde is placed before the variable while 

“Everyone or somebody is a friend of Tunde” is symbolized such that the variable is placed 

before the name. This means that any one of 

(x) Fxt 

(y) Fyt 

(z) Fzt 

is a correct symbolization of “somebody is a friend of Tunde”, while any one of 

(x) Ftx 

(y) Fty 

(z) Ftz 

is a correct symbolization of “Tunde is a friend of someone”. 

Similarly, 

(x) Fxt 

(y) Fyt 

(z) Fzt 

is a correct symbolization of “Everybody is a friend of Tunde” while any one of 

(x) Ftx 

(y) Fty 

(z) Ftz 

is a correct symbolization of “Tunde is a friend of everybody”. 

Everyone is not a friend of Tunde would be symbolized by any one of 

~ (x) Fxt 

~ (y) Fyt 

~ (z) Fzt 

while “Tunde is not a friend of everyone” is symbolized by any one of 

~ (x) Ftx 

~ (y) Fty 

~ (z) Ftz 

However, when several quantifiers or even more than one quantifier occurs in a 

single relational proposition, symbolization becomes more complicated. The simplest 

propositions of this kind are 

1. Everyone is a friend to everyone 

(x) (y)  Fxy 

2. Someone is a friend to someone. 

(x) (y)  Fxy 

3. Nobody is a friend to anybody 

(x) (y)  ~Fxy 

If we consider other completely general relational propositions that are complex, the 

complication in symbolizing such propositions became more obvious. 

4. “If someone is taller than everybody then everybody attracts someone”. 

(x) (y)  Txy  (x) (y)  Axy 



This expression reads as “if there exist an x and for any y, x is taller than y, then for any x 

and for at least one y, x attracts y”. 

5. “Either everyone loves someone or someone does not love someone 

(x) (y) Lxy  v (x) (y)  ~Lxy 

6. “If everyone likes John then John likes himself or someone does not like 

John” 

(x) Lxj  (Ljj v (y) ~Lyj) 

7. “If everyone is loved by someone then someone is loved by everyone” 

(x) (y)  Lxy  (x) (y) Lxy 

Because of the apparent complicated character of relational proposition, the best 

way to translate relational propositions into logical symbolism is by adopting a kind of 

stepwise process. 

Thus to symbolize the proposition: 

8. “Any sound academic can outsmart some politician”, as a first step we may 

write 

(x) {(x is a sound academic)  (x can outsmart some politician) 

Next, the consequent of the conditional between the braces 

X can outsmart some politician 

is symbolized as a generalization or quantified expression: 

(y) [(y is a politician)  (x can outsmart y)] 

Using the abbreviations, “Sx”, “Px”, and “Oxy” for is “x is a sound academic”, “x is a 

politician”, and “x can beat y”, the expression in 8 is symbolized as follows 

(x) [Sx  (y) (Py  Oxy) 

Applying this same stepwise process the expression: 

9. “Some politicians can outsmart all sound academics” 

would first translate into 

(x) [(x is a politician)  (x can outsmart all sound academics)] 

then into 

(x) {(x is a politician)  (y) [(y is a sound academic)  (x can outsmart y)]} 

and finally into 

(x) [Px  (x) (Sy  Oxy)] 

We can also apply this same method to more complex cases, where more than one relation 

is involved.  For example in the expression: 

10. Anyone who transfers everything to everyone is sure to offend somebody 

the first step is to paraphrase it as 

(x) {[x is a person)  (x transfers everything to everyone)]  [x offends somebody]} 

The second conjunct of the antecedent 

x transfers everything to everyone 

may be further paraphrased first as 

(y) [(y is a person)  (x transfer everything to y)] 

and then as 

(y) [(y is a person)  (z) (x transfers z to y)] 

The consequent in our first paraphrase 

x offends somebody 

has its structure clearly by being expressed as 

(u) [(u is a person)  (x offends u)] 

The original proposition can now be expressed instead as 



(x) {{(x is a person)  (y) [(y is a person)  (z) 

(x transfers z to y)]}  (u)[(u is a person)  (x offends u)]} 

Then using the abbreviations Px, Txyz, Oxy for “x is a person”, “x transfers y to z”, and “x 

offends y”, our expression in 10 is expressed as 

(x) {{Px  (y) [Py  (z) Txzy]}  (u) (Pu  Pxu)} 

3.4 Conclusion 

Analyses of the internal structure of relational propositions in predicate (quantificational) 

logic helps in displaying the relationship that hold between individuals in a proposition, 

which ultimately facilitates the symbolization of relational propositions and logical 

inferences involving such relational propositions. 

3.5 Summary 

This unit introduced the learner to the analyses of the internal structure of certain 

propositions of quantification logic called relational propositions. It gives an exposition of 

the types of relationship that hold between propositions and name of the predicate that 

holds such relations and how to form propositional functions with relational predicates. It 

further demonstrates which predicate letter followed by any finite series of variables are 

well-formed formula, and which predicate letter followed by a mixture of names and 

variables are well-formed formula. It generally facilitates how to symbolize relational 

propositions and how to use the quantifiers in symbolizing relational propositions. 

3.6 Glossary 

Dyadic relation One of the types of a relational propositions which expresses a relation 

between two individuals such as ‘Amarachi is the sister of Uchechi”, “Agu loves Chinyere” 

etc It is also called binary relation. 

Quaternary Relation. This is also called tetradic relation; it is a relation in which four 

individuals relate. 

Relational Proposition. A proposition which in such that given any predicate some or all 

individuals share the attribute of the predicate with some other individuals. 

Triadic Relation A relation in which three individuals relate; it is also called ternary 

relation. 

3.7 Check your Progress 

Exercise 3.7.1 

Using the appropriate relational predicates and individual names, symbolize each of the 

following relational propositions. 

(1) Chika is a Nigerian citizen 

(2) Chika is not the brother of Udodirim 

(3) Okoro is not happy if and only if either Archibong is not happy and Briggs is a friend 

of Boma or it is not true that Tamuno is not a friend of Archibong. 

(4) Either if Uche is born in Umuahia and Okorie speaks French then Kalu is not an 

indigene of Rivers State or if Amaka is not born in Port-Harcourt then Chima is not 

a friend to Uche. 

(5) If Emeka is taller than Okoroafor then either Amadi is not a brother to Chinedu or 

both Okoroafor and Ukaegbu are not parties to the argument. 

(6) If Chijioke is taller than Ngozi and Ngozi loves Diri then if Okey is taller than Chijioke, 

Ngozi does not love Diri. 



(7) Agu is taller than Chibuzo if and only if Obinna is stronger than Ikechi then Agu is 

not stronger than Chibuzo. 

(8) If Nwoye, Alice, Okoronkwo and Udo studied together then either Okoronkwo and 

Alice will pass the examination or if all four of them fail then Ijoma, Esther and 

Ogonnaya will win the scholarship. 

(9) It is not true that if Chukwu is a brother to both Ugo and Onyema then either Ewa, 

Archibong and Florence are citizens of Cross River State or Ewa is not a friend to 

both Ugo and Florence. 

(10) Okoro is taller than Chinwe and Muoneke if either Ukaegbu, Ijoma and Agu are 

brothers or Chinwe is not really friend to Muoneke. 

Exercise 3.7.2 

Using the appropriate relational predicates and individual variables, symbolize each 

of the above relational propositions. 

Exercise 3.7.3 

Using the appropriate Quantifiers, relational predicates and individual variables, 

symbolize the following relational propositions. 

1. If Everyone is a French citizen then either nobody is born in the English speaking 

world or someone is not a French citizen 

2. Either nobody is a friend to Tunde or if somebody is a friend to Tunde then it is not 

the case that nobody is a friend to everybody. 

3. If three friends are traveling together then either somebody is a friend to all three or 

the three friends cannot travel together. 

4. Everyone loves John if and only if either someone is not a friend to Boma or no one 

loves Chima and Uchechi. 

5. If everyone loves Amarachi and Uchechi then either somebody is not truthful or 

someone does not love Amarachi but loves Uchechi. 

6. If both Chinedu and Joseph are brothers to Ezinne then if everyone is a friend to 

Ezinne the everyone is a friend to Chinedu and Joseph. 

7. If everyone is happy then either someone who loves Ukanna is a friend to everyone 

or if Oji is loved by everybody then Enyinnaya is not a friend to someone. 

8. If any two brothers are quarrelling and someone is a friend to both of then either 

someone intervenes or nobody is a friend to both of them. 

9. Both if Kalu is not a friend to everyone then someone is not happy with Nkechi and 

either everyone likes Ijeoma or no one loves both Nkechi and Kalu. 

10. If Ukaegbu hates anyone who is insulting then if everyone who likes Ukaegbu, either 

everyone hates anyone who is insulting or Ukaegbu is not liked by somebody. 
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4.1 Introduction 

This study unit introduces the learner to Properties of Relations. These properties are 

normally grouped under Symmetrical, Transitive and Reflexive. Symmetrical relations are further 

analyzed into asymmetrical and non-symmetrical while Transitive properties are also analyzed into 

Transitive, Intransitive and Non-Transitive relations while Reflexive properties may be further 

characterized as Reflexive, Irreflexive or non-reflexive. 

4.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. analyze the properties of relations into three broad categories and nine sub 

categories 

2. symbolize the various categories of the properties of relations. 

3. distinguish between the various types of relations 

4. use the appropriate relational Predicate and individual variables, in symbolizing 

which relational proposition is Symmetrical, Asymmetrical and Non-symmetrical 

5. use the appropriate relational Predicate and individual variables, in symbolizing 

which relational proposition is Transitive, Intransitive  and Non-Transitive 

6. use the appropriate relational Predicate and individual variables, in symbolizing 

which relational proposition is Reflexive, Irreflexive and Non-reflexive 

4.3 Properties of Relations 

In everyday usage, relational propositions such “is as strong as”, “is stronger than”, “is 

married to” are common. An analysis of such phrases indicates some properties of relations 

themselves. These properties are normally grouped under Symmetrical, Transitive and Reflexive. 

A relation is, said to be symmetrical if when one thing bears a particular relation to a second, 

the second bear it also to the first. In this sense, a relation of the form Mxy and Myx where “M” 

stands for “is married to” is symmetrical 

If x is married to y is true then y is married to x must be true. That is, if (x), (y) Mxy is 

true then (x) (y) Myx must also be true; which could be expressed as 

(x) (y) (Mxy  Myx) 

The relations “is standing with”, “has the same height as”, “weighs the same as “ are all 

symmetrical. 

If, however, when one thing bears a relation to a second then the second cannot bear it to 

the first, such a relation is said to be asymmetrical. In this sense, any relation of the form Txy and 

Tyx, where “T” stands for “taller than” is asymmetrical; if x is taller than y then y cannot be taller 

than x. Accordingly if (x) (y) Txy is true then (x) (y) Tyx must be false, and this could be 

expressed as 

(x) (y (Txy  ~ Tyx) 



The relations “is the mother of” “is bigger than” are other examples of asymmetrical relation. The 

point here is that given any x and y, if x is (for example) the mother of y, then it is not the case that 

y is the mother of x”. 

A relation, which is neither symmetrical nor asymmetrical, is said to be non-symmetrical. In 

this case, a non-symmetrical relation arises when we cannot definitely say whether the relation Lxy 

is Lyx or ~Lyx, that is, where “L” stands for “looking at”, if x is looking at y, we cannot for sure say 

whether y is also looking at x or not looking at x. 

Other examples of non-symmetrical relation include “x loves y”, “x is the sister of y”, “x 

admires y”. If “x loves y” it does not follow that “y loves x” nor does it follow that “y does not love 

x”. Similarly, if “x is the sister of y”, it does not follow that y is a sister to x (y could possibly be a 

brother instead) nor does it follow that y is not a sister to x. So also so, if “x admires y”, it does not 

follow that “y admires x” nor does it follow that y does not admire x. 

Relations may also be characterized as Reflexive, Irreflexive or non-reflexive. 

A relation is defined as reflexive if a thing has that relation to itself. In this sense, for any 

relation between x and y, if x shares that relation to itself, we have a reflexive relation. The formula 

for a reflexive relation accordingly is 

(x) Sxx 

where “S” stands for “as stronger as” 

Here if x is as strong as y, it means that x is as strong as itself. Similarly, the relation “is 

identical with” is reflexive since everything must be identical with itself. 

A distinction, however, is usually made between relations that are totally reflexive and those 

that are just reflexive. A relation of the form “Rxx” is totally reflexive, but a relation of the form “Rxy” 

is not totally reflexive. The relation of love is one example of not totally reflexive relations; when 

we say that “x loves y”, it does not necessarily follow that “y loves x”, or that “everybody love 

themselves”. 

If, on the other hand, nothing (or no individual) bears that relation to itself, we say it is an 

irreflexive relation. If, for example, x is taller than y, x cannot be taller than (itself) x. Thus in an 

irreflexive relation the formula is 

(x) ~Txx 

where “T” stands for “taller than”. 

Other examples of irreflexive relation are “faster than” “is a parent of” etc. 

Relations that are neither reflexive nor irreflexive are said to be non-reflexive relations. In 

this type of relation, some individuals bear that relation to themselves while others do not. For 

example “x loves y” or “x takes care of y” are non-reflexive because it is possible for x to love y and 

at the same time x will not love (itself) x”. Just as x can love y and also love itself (x). Similarly, if 

x takes care of y, it is possible that x takes care of (itself) x or x does not take care of (itself) x. 

Finally, relations may be characterized as Transitive, Intransitive and Non-Transitive. A 

relation is said to be transitive if it is such that if one thing bears it to a second, and the second 

bears it to a third, then the first must bear it to third. Thus in a transitive relation the formula is 

(x) (y) (z) [( Sxy  Syx)  Sxz] 

where “S” stands for stronger than. 

In this respect, if x is stronger than y and y is stronger than z then x is stronger than z. 

A relation is called intransitive if when one thing bears that relation to a second, and the 

second to a third, then the first cannot bear it to the third. An intransitive relation is thus presented 

symbolically as 

(x) (y) (z) [(Gxy  Gyz)  ~ Gxz] 

where “G” stands for grandmother 

In this reading if x is the grandmother of y and y is the grandmother of z, x cannot be the 

grandmother of z. Similarly, if x is the father of y and y is the father of z, x cannot be the father of  

z, that is, 

(x) (y) (z) [( Fxy  Fyz)  ~ Fxz] 

where “F” stands for father. 



Other examples of intransitive relation include “is two years older than”, “is mother 

of” etc. 

Relations that are neither transitive nor intransitive are classified as non-transitive 

relations. In this type of relation, for any three individuals x,y and z, the relation that holds 

between x and y on one hand, and y and z on the other hand, does hold between x and z 

at times. In this sense, if x loves y on one hand, and y loves z on the other hand, x at times 

may love z also and at other times may not love z. Other non-transitive relations include 

hate, look at, admire etc. 

4.4 Conclusion 

Analyses of relational propositions yield relational properties that are grouped broadly into 

Symmetrical, Transitive and Reflexive and further subcategorized into symmetrical, 

asymmetrical and non-symmetrical; Transitive, Intransitive and Non-Transitive and into 

Reflexive, Irreflexive and non-reflexive. All these properties of relations using appropriate 

relational Predicate and individual variables can be symbolized. 

4.5 Summary 

This unit introduced the learner to the analyses of the properties of relations. A relation is, 

said to be symmetrical if when one thing bears a particular relation to a second, the second 

bear it also to the first. If, however, when one thing bears a relation to a second then the 

second cannot bear it to the first, such a relation is said to be asymmetrical, and a relation, 

which is such that we cannot definitely say whether, it holds between two or more 

individuals or not is said to non-symmetrical. Secondly, a relation is defined as reflexive if 

a thing has that relation to itself. If, on the other hand, no individual bears that relation to 

itself, we say it is an irreflexive relation and when a relation is such that some individuals 

bear that relation to themselves while others do not we say the relation is non-reflexive. 

Finally, a relation is said to be transitive if it is such that if one thing bears it to a second, 

and the second bears it to a third, then the first must bear it to third. On the other hand, a 

relation is called intransitive if when one thing bears that relation to a second, and the 

second to a third, then the first cannot bear it to the third. And a relation, which for any 

three individuals x,y and z, the relation that holds between x and y on one hand, and y and 

z on the other hand, does hold between x and z at times is called non-transitive. 

 
4.6 Glossary 

Asymmetrical Relation – A property of relations, which is such that when one thing bears a 

relation to a second then the second, cannot bear it to the first. For example, the relation “taller 

than”; if “X” is taller than “Y”, then “Y” cannot be taller than “X”. 

Intransitive Relation – A relation which is such that if one thing bears that relation to a second, 

and the second to a third, then the first cannot bear it to the third. For example, if x is the father of 

y and y is the father of z, x cannot be the father of z. This is expressed in (x) (y) (z) [(FxyFxz) 

 ~Fxz]. 

Irreflexive Relation – A relation which a thing or an individual cannot bear to itself. For example, 

if x is taller than y, x cannot be taller than (itself) x. Thus (x) ~Txx expresses an irreflexive relation. 

Non-reflexive Relation. A relation, which some things or individuals bear to themselves while 

others do not. For example, “x loves y”; it is possible for x to love y and at the same time x will not 

love (itself) “x”. Just as x can love y and also love itself (x). 



Non-transitive A type of relation which is such that for any three individuals x, y and z, the type 

of relation that holds between x and y on one hand, and y and z on the other hand, does hold 

between x and z at times. In this sense, if x loves y on one hand, and y loves z on the other hand, 

x at times may love z also and at other times may not love z. 

Non-symmetrical Relation – A relation, which we cannot definitely say whether, it holds between 

two or more individuals or not. For example loves, if “x loves y, it does not follow that y loves x nor 

does it follow that y does not love x. 

Reflexive Relation – A relation, like identity, which a thing bears to itself. For any relation between 

x and y, if x shares that relation to itself, we have a reflexive relation. If x is, for example as strong 

as y, it means that x is as strong as itself. 

Symmetrical relation – A relation which is such that if one thing bears it to a second, the second 

must bear it also to the first. If x is married to y, then y must be married to y. 

Transitive Relation – A relation which is such that if one thing bears it to a second, and the second 

bears it to a third, then the first must bear it to the third. If x is stronger than y and y is stronger 

than z, then x is stronger than z. 

 
4.7 Check your Progress 

Exercise 4.7 

Using the appropriate relational Predicate and individual variables, symbolize each of the 

following expressions; and state whether the relation is symmetrical, transitive or reflexive. 

 
1.   is stronger than    

2.   is as strong as   

3.   is the father of     

4.   is west of     

5.    loves     

6.    can out smart     

7.    is equal to     

8.    is better than     

9.    and are as strong as     

10.    is the uncle of and    
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1.1 Introduction 

This study unit introduces the learner to how to construct formal proofs of validity for 

arguments whose validity depends upon the internal structures of the simple propositions 

that make up the argument. It introduces some new rules that are specific to 

Quantificational Logic. These rules are primarily concerned with dropping and adding of 

quantifiers hence will enable the learner to handle statements that have quantifiers. 

1.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. understand some new rules specific to quantificational logic used in formal 

proof of validity 

2. construct formal proof of validity for arguments in quantificational logic 

1.3. Formal Proof of Validity in Quantificational Logic 

One principal purpose of symbolization in logic is to put arguments into a form convenient 

for testing their validity. This accordingly invites the need for us to now focus on how to 

construct formal proofs of validity for arguments whose validity depends upon the internal 

structures of the simple propositions that make up the argument. In doing this, we have to 

add to the twenty rules of inference and Replacement some new rules that are specific to 

Quantificational Logic; that is, rules that deal with the inner structures of simple 

propositions. 

1.3.1 Rules of Quantification and Recapitulation of Rules of Inference 

The rules of Quantification are four in number and operate to strengthens our 

capacity to construct formal proofs of validity of arguments forms that have quantifiers; they 

primarily are concerned with dropping and adding of quantifiers. 

1. Universal Instantiation (U.I) 

(x) x 
 

:.  v (where v is any individual symbol) 

A universal propositional function is true if all its substitution instances are true, the 

rule of Universal Instantiation thus permits the substitution instance of a Universal 

Generalization. In essence, this rule says that any substitution instance of a propositional 

function can be validly inferred from its Universal quantification. This means that the rule 



of Universal Instantiation permits us to substitute for instance “Ha” for (x) Hx, that is, drop 

the Universal quantifier and replace or substitute the variables attached to the predicate 

with any individual constant. It is important to underscore the point that the variable x in 

Hx could be substituted by any constant, say Hb, Hc, Hd etc. 

2. Universal Generalization (U.G) 

y 

 (x) x (where y denotes any arbitrarily selected individual and y is not 

within the scope of any assumption containing the special symbol “y”) 

Universal Generalization is a rule which says that from the substitution instance of 

a propositional function with respect to the name of any arbitrarily selected individual, one 

may validly infer the Universal quantification of that propositional function. In essence, this 

rule permits us to make conclusion from a particular instance or individual within the 

Universe of discourse to all the individuals, infact, the rule permits us to introduce the 

universal quantifier to an unquantified wff of predicate logic. Thus if “Ha” is an individual 

or element from a universe of discourse we can validly introduce the universal quantifier 

and replace the individual constant with a variable, that is, infer (x) Hx. It is in this 

connection that it is said that Universal Generalization permits us generalize, that is, go 

from a special substitution instance to a generalized or universally quantified expression. 

3. Existential Instantiation (E.I) 

(x) x 

:. v (where v is any individual constant other than y having no pervious 

occurrence in the context) 

This rule says that from the existential quantification of a propositional function, we 

can infer the truth of its substitution instance with respect to any individual constant, other 

than y, that occurs nowhere earlier in the context. In other words, the rule permits us to 

infer a proposition from an existential propositional function by replacing the individual 

variable with an individual constant outside the scope of the individual variable. That is, it 

enables us to drop the Existential quantifier and substitute the variable attached to the 

predicate letter with an individual constant, which has not occurred earlier in the proof in 

the same context. Thus, we can infer validly “Ha” from (x) Hx, but in so doing we should 

make sure that “a” has not occurred earlier in the proof in the same context. 

4. Existential Generalization (EG) 

   v  

 (x) x (where v is any individual symbol) 

The rule of EG says that from any true substitution instance of a propositional 

function, we can validly infer the existential quantification of that propositional function. The 

point here is that if we take “v” to denote any individual constant, we can infer the existential 

generalization of a propositional function by replacing the individual name or constant with 

an individual variable. Simply understood the rule permits us to introduce an Existential 

quantifier to a predicate wff of the form “Ha” and to replace the individual constant “a” with 

an individual variable, say x. 

These four additional rules of inference, that is UI, UG, EI and EG permit the 

transformation of non-compound, generalized propositions into equivalent compound 

propositions to which our twenty rules of inference and replacement may be readily applied, 



and also permit the transformation of compound propositions into equivalent non- 

compound propositions. 

It would be expedient here to refresh our familiarity with the rules of inference and 

replacement. 

Although, it has been stated that most textbooks on logic give nine elementary valid 

argument forms, in this text, we will adopt a union of the rules as given by living M. Copi in 

two books, namely Introduction to Logic and Symbolic Logic. A union of the rules as given 

in these books give us ten elementary valid arguments that can be used in constructing 

formal proofs of validity.  An outline of these rules is as follows: 

1. Modus Ponens (M.P) 

p  q 

p / q 

2. Modus Tollens (M.T) 

p  q 

~q /~p 

3. Hypothetical Syllogism (H.S) 

p  q 

q  r / p  r 

4. Disjunctive Syllogism (D.S) 

p v q 

~ p / q 

5. Constructive Dilema (C.D) 

(p  q)  (r  s) 

p v r / q v s 

6. Destructive Dilema (D.D) 

(p  q )  ( r  s) 

~q v ~s/ ~p v ~r 

7. Absorption (Abs.) 

p  q / p  (p  q) 

8. Simplification (Simp.) 

p  q / p 

9. Conjunction (Conj.) 

p 

q / p  q 

10. Addition (Add.) 

p / p v q 

The validity of the above argument forms can be established using the truth tables 

method. Their significance, however, find relief in the construction of formal proofs of 

validity for a wide range of more complicated arguments. There is, at this point, the need 



to explain these rules and also give substitution instances of each of them. Accordingly, 

beginning with the first; 

p  q 

p / q 

that is, Modus Ponens ( abbreviated (M.P) says that in any implicational argument form 

once we can establish the antecedent, we can conclude the consequent. In other words, 

if we affirm the antecedent of an implication, the consequent follows, that is, we also affirm 

the consequent. The inference is said to be in the mood, or modus ponendo ponens ; the 

expression signifies that by affirming (in the premiss(es) we affirm (in the conclusion). This 

rule is derived from the Latin ponene, which means to take a stand or to affirm. Thus, if an 

implicational proposition says “if it is raining, then it is wet outside”, and we affirm that “it is 

raining” (the antecedent) then it follows with logical necessity that “it is wet outside” (that 

is, we can validly affirm the consequent). 

It is important to note that this rule applies to any implicational expression 

whatsoever. It follows, therefore, that in an argument form, no matter how complex, if and 

where the major connective is an implication, that is, the horse show” ” symbol, we are 

permitted to affirm the consequent if we find any occurrence of the antecedent 

The second 

p  q 

~ q / ~ p 

called Modus Tollens (abbreviated M.T) is to the effect that given any implicational 

proposition, once the consequent is denied it follows that the antecedent, must be denied, 

or can be validly denied. Here, the Latin “tollere”, meaning ‘to lift up or deny’, is understood 

in the sense that by denying (in the premiss(es) we deny (in the conclusion). Like in Modus 

Ponens the major connective of propositional or argument forms where Modus Tollens 

apply must be an implication, that is, be the horseshoe “” symbol; it could be simple or 

complex. 

The third rule: 

p  q 

q  r / p  r 

called Hypothetical syllogism (abbreviate H. S) asserts that if we have two conditional 

propositions such that the consequent of the first is the antecedent of the second, it follows 

that the antecedent of the first conditional implies the consequent of the second conditional, 

that is, the consequent of the second conditional follows from the antecedent of the first 

conditional. It is important to note here that ordinarily a syllogism is a deductive argument 

in which a conclusion is inferred from two premisses; in this sense, the term aptly 

characterized means a syllogism that contains hypothetical (conditional) propositions that 

are such that the consequent of the second premiss of the conditional follows from the 

antecedent of the first premiss conditional. 

The fourth rule, called Disjunctive Syllogism (abbreviated D.S) is of the form: 

p v q 

~ p / q 



and it says that given any disjunctive proposition, to deny the first disjunct implies asserting 

the second disjunct; that is, the rule is such that in an argument form if one premiss is a 

disjunction and another premiss is the denial of one (normally the first) of the two disjuncts, 

we are permitted to conclude the other disjunct. In other words, if the major connective in 

an argument form is the vel: “v” symbol, we can validly assert the second disjunct if we 

deny, or find an occurrence of the denial of, the first disjunct 

The fifth rule, which has the form: 

( p  q )  ( r  s ) 

p v r / q v s 

is called Constructive Dilemma (abbreviated C.D) is to the effect that given a conjunction 

of two conditional or implication propositions, if we assert the disjunction of their 

antecedents, the assertion of the disjunction of their consequents necessarily follows. That 

is, the rule permits us to conclude the disjunction of the consequents of two implicational 

propositions once the disjunction of the antecedents has been asserted or is established. 

The sixth rule, which is Destructive Dilemma (abbreviated D.D) is expressed as follows: 

( p  q )  ( r  s ) 

~ q v ~ s / ~ p v ~ r 

It is just like Constructive Dilemma, in the sense that both involve a choice between two 

alternatives in the conjunction of two implications. But unlike in Constructive Dilemma 

where the choice is such that the assertion of a disjunction of the antecedents implies the 

assertion of a disjunction of the consequents; in Destructive Dilemma the choice is between 

the negations of a disjunction of the consequents and the negations of a disjunction of the 

antecedents. This rule therefore permits us to conclude the disjunction of the negations of 

the antecedents of two implicational propositions connected by a conjunction once we find 

an occurrence of the disjunction of the negations of their consequents. 

The seventh rule called Absorption (abbreviated Abs.) has the form: 

p  q / p  ( p  q ) 

and it asserts that given an implicational proposition the inference of the antecedent implies 

both the antecedent and the consequent; the rule permits us to, given an implication, 

conclude that the antecedent implies both itself and the consequent. 

The eight rule, called Simplification (abbreviated Simp.) according to which 

p  q / p 

merely says that given a conjunctive proposition, we are permitted to conclude the first 

conjunct as a separate proposition; that is, the rule allows the separation of conjoined 

propositions. 

The ninth rule, called Conjunction (abbreviated Conj.) says 

p 

q / p  q 

which is to the effect that if we know two separate facts or propositions to be true, we can 

assert that the first and second are true. In this sense, the rule enables us to combine 

independent propositional forms using the connective and ““; it permits propositions 

assumed to be true to be combined in one compound proposition. 

Finally, rule ten, called Addition (abbreviated Add.) according to which 

p/p v q 



r] 

This rule, also called Logical Addition, allows us to introduce any propositional form 

whatsoever to a given propositional form with the disjunction operator, the vel: “v”. The 

idea here is that it a propositional form or a premiss is true, then its disjunction with any 

propositional form or premiss as a component will be true, no matter what the other disjunct 

is. 

These ten Rules of Inference we had demonstrated enables us to establish the validity of 

a wide range of arguments, which can also be shown to be valid using the truth tables with 

the advantage however of elegance and convenience. The procedure generally is that we 

build bridges between the premisses and conclusion, using these elementary valid 

argument forms; that the conclusion of the argument is arrived at from the premisses by 

our bridge building using these valid argument forms exclusively proves that the argument 

is valid. 

It was demonstrated also that there are some obviously valid arguments whose 

validity cannot be proved using only the ten elementary valid argument forms. For example: 

~ (P v Q) /:.~Q 

In this connection, it becomes necessary that we introduced some other rules to 

complement the ten rules. These are the rules of replacement. Continuing the numbering 

from the ten elementary valid argument forms, they are: 

11 De Morgan’s Theorems (DeM.) 

~ (p  q)  (~p v ~ q) 

(p  q)  (~p v ~ q) 

~ (p v q)  (~p  ~ q) 

(p v q)  (~p  ~ q) 

12. Commutation (Comm.): (p v q)  (q v p) 

(p  q)  (q  p) 

13. Association (Assoc.): 

[p v (q v r)]  [(p v q) v r] 

[p  (q  r)]  [(p  q) 

14. Distribution (Dist.): 

[p  (q v r)]  [(p  q) v (p  r)] 

[p v (q  r)]  [p v q)  (p v r)] 

15. Double Negation (D.N.): p  ~~p 

16. Transposition (Trans.): (p  q)  (~q ~p) 

17. Material Implication (Impl.): (p  q)  (~p v q) 

18. Material Equivalence (Equiv.): 

(p  q)  [(p  q)  (qp)] 

(p  q)  [(p  q) v (~p  ~q)] 

19. Exportation (Exp.):[(p  q)  r]  [p  (q  r)] 

20. Tautology: p  (p v p) 

p  (p  p) 



These rules of replacement operate to demonstrate that the logical constants are inter 

definable, that is the operators on proposition are mutually interdependent. It is therefore 

possible to transform a wff containing any of the constants into another wff in which that 

particular constant does not appear at all but in place of it another constant(s). When we 

transform such wff and the truth-table definition of the formulae yield the same truth 

function, we say they are equivalent. It was shown, for example that we can transform any 

wff containing any number of occurrence of  into an equivalent wff in which  does not 

appear at all instead certain complexes of “~” and “v” arise. Similarly, any wff containing 

 can be transformed into an equivalent wff containing ~ and v, but not  . Further any wff 

containing  can be transformed into any equivalent containing  and  , but not  - and 

thus in turn by the previous steps it can be further transformed into one containing ~ and v 

but neither  nor  nor . Thus, for every wff of propositional logic there is an equivalent 

wff, expressing precisely the same truth function. 

The upshot of this is that because we can transform propositions containing a 

particular operator into an equivalent proposition in which that operator is replaced we may 

always replace a proposition with an equivalent proposition, since this replacement will 

always result in the same truth value, no matter the truth value of the component 

propositions. 

1.3.2 Application of Rules of Quantification and Inference 

With the four Rules of Quantification, namely, UI, UG, EI and EG and the twenty 

rules of inference we are now in a position to construct formal proofs of validity of 

arguments whose validity depends on the inner structure of some non-compound 

propositions within them, as in the following: 

(1)      1.      (x) [~Ax v ~Bx] 

2.      (x) [Zx  Ax]  / (x) [~Bx  Zx] 

3. Za  Aa 2 EI 

4. ~Aa v ~ Ba 1 UI 

5. Aa  Za 3 Comm 

6. Aa 5 Simp 

7. ~ ~ Aa 6 DN 

8. ~ Ba 4,7 DS 

9. Za 3 Simp 

10. ~Ba  Za 8,9 Conj 

11. (x) [~Bx  Zx] 10 UG 

 
In the above argument we first eliminated the quantifiers and replaced the individual 

variables in the argument with individual names by applying EI and UI respectively to lines 

2 and 1 and generated lines 3 and 4 before applying the relevant rules to derive our 

conclusion, which was itself derived by applying EG to line 10. Thus while we used EI and 

UI to eliminate the quantifiers so that we can apply the rules of inference, when we arrived 

at the conjunction of ~Ba and Za we used EG to introduce the quantifier and to replace the 

individual constants with individual variables. Special note need to be taken in that we first 

applied EI before UI notwithstanding that the first quantified premiss is a Universally 

quantified one. The point is that because an existential quantification of propositional logic 

is true if it has at least one true substitution instance, it is customary to treat existential 

quantifiers first before the Universal quantifiers. 



(2) 1. (x)) [Ax  Bx] 

2. (x) [(Bx v Cx)  Dx] /  ~ (~Da v ~ Aa) 

3. Aa  Ba 1EI 

4. (Ba v Ca)  Da 2 UI 

5. Ba ( Aa 3 Comm 

6. Ba 5 Simp. 

7. Ba v Ca 6 Add 

8. Da 4,7 MP 

9. Aa 3 Simp 

10. Da ( Aa 8,9 Conj. 

11. ~(~Da v ~ Aa) 10 DeM 

In the above argument, the conclusion is not quantified and the individual constants 

or names appearing in the conclusion is “a”. In taking our first step which is eliminating the 

quantifiers and replacing the individual variables in the premisses with individual constants 

we were guided by the occurrence of “a” in the conclusion, hence we replaced the 

individual variables with “a” in applying EI and UI to lines 1 and 2. After eliminating the 

quantifiers and replacing the variables, we then were in a position to and did apply the rules 

of inference until we derived our conclusion. 

(3) 1. (x) [Dx Gx] 

2. (x) [Gx  Px] 

3. (x) [~Mx  ~(Dx  Px)] 

4. (x) [Mx  Tx] /( (x) [Dx  Tx] 

5. Da  Ga 1 EI 

6. Ga  Pa 2 UI 

7. ~Ma  ~ (Da  Pa) 3 UI 

8. Ma  Ta 4 UI 

9. Ga  Da 5 Comm 

10. Ga 9 Simp 

11. Pa 6,9 MP 

12. Da 5 Simp 

13. Da Pa 12,11 Conj 

14. ~~(Da  Pa) 13 DN 

15. ~~Ma 7,14 MT 

16. Ma 15 DN 

17. Ta 8,16 MP 

18. Da  Ta 12,17 Conj 

19. (x) [Dx Tx] 18 EG 

The validity of the same argument could also be proved by applying some other rules as 

below: 

 
(3b) 1. (x) [Dx  Gx] 

2. (x) [Gx  Px] 

3. (x) [~Mx  ~(Dx  Px)] 

4. (x) [Mx  Tx] /( (x) [Dx  Tx] 



5. Db  Gb 1 EI 

6. Gb  Pb 2 UI 

7. ~Mb  ~(Db  Pb) 3 UI 

8. Mb  Tb 4 UI 

9. Gb  Db) 5 Comm 

10. Gb 9 Simp 

11. P 6,9 MP 

12. Db 5 Simp 

13. Db  Pb 12,11 Conj 

14. (Db  Pb)  Mb 7 Trans. 

15. Mb 14,13 MP 

16. Tb 8,15 MP 

17. Db  Tb 12, 16 Conj 

18. (x) [Dx  Tx] 17 EG 
 

The actual difference in the proof of validity of arguments 3(a) and (b) lie not in the 

individual constant “a” and “b”, but in the application of Transposition rule in line 14 of 

13(b) instead of Double Negation in lines 14 and 15 of 13(a). 

(4.) 1. (x) [Bx ( Rx]  [Jx ( Hx] 

/( (x) [(Bx v Jx)  (Hx v Rx)] 

2. (By  Ry)  (Jy  Hy) 1 EI 

3. By  Ry 2 Simp 

4. ~By v Ry 3 Impl. 

5. (~By v Ry) v Hy 4 Add 

6. ~By v (Ry v Hy) 5 Assoc 

7. (Ry v Hy) v ~ By 6 Comm 

8. (Jy  Hy)  (By  Ry) 2 Comm 

9. Jy  Hy 8 Simp 

10. ~Jy v Hy 9 Impl. 

11. (~Jy v Hy) v Ry 10 Add 

12. ~Jy v (Hy v Ry) 11 Assoc 

13. ~Jy v (Ry v Hy) 12 Comm 

14. (Ry v Hy) v ~Jy 13 Comm 

15. [(Ry v Hy) v ~ By]  [(Ry v Hy) v ~Jy) 7,14 Conj 

16. [(Ry v Hy) v (~By  ~Jy) 15 Dist 

17. (~By  ~Jy) v (Ry v Hy) 16 Comm 

18. ~(By v Jy) v (Ry v Hy) 17 DeM 

19. ~(By v Jy) v (Hy v Ry) 18 Comm 

20. (By v Jy)  (Hy v Ry) 19 Impl. 

21. (x) [(Bx v Jx)  ( Hy v Rx)] 20 UG 

The point to remark in proving the formal validity of argument 4 above is that in applying 

the rule of Universal instantiation to line 1 we substituted an individual variable “y” for 

another individual variable “x”. This is done because our conclusion is universally 

quantified, if we, therefore, substitute any individual constant for “x” before applying 

Universal Generalization then we are bound to make a wrong inference. The rule of 

Universal Generalization says that y denotes any arbitrarily selected individual, and since 



the truth of any substitution instance of a propositional function follows from its Universal 

quantification, we can infer the substitution instance that results from replacing “x” by “y”. 

The gist here is that where the conclusion of an argument is universally quantified, in 

applying Universal instantiation we should substitute the individual variable “y” for the 

individual variable “x” 
 

(5.) 1. (x)  Rx ( Sx)]  (x) (Gx  Hx)] 

2. (x) [Hx  Rx] /((x)~ [~Sx  ~ Fx] 

3. [(x) (Gx  Hx)]  [(x) (Rx  Sx)] 

 

 
1 Comm 

 4. (x) [Gx Hx] 

5. (x) [Rx  Sx] 

6. Ga  Ha 

7. Ha  Ra 

8. Ra  Sa 

9. Ha  Ga 

3 Simp 

1 Simp 

4 EI 

2 UI 

5 UI 

6 Comm 

 10. Ha 9 Simp 

 11. Ra 7,10 MP 

 12. Sa 8,11 MP 

 13. Sa v Fa 

14. ~(~Sa ~ Fa) 

15. (x)~[~ Sx  ~Fx] 

12 Add 

13 DeM 

14 EG 
 

In the above argument, the requirement to the effect that we have to handle EI before UI, 

is the reason why we did not begin our proof by applying the rule of instantiations. We 

rather had to first apply commutation to line 1 so that we would be enabled to simplify line 

1 such that the conjunction of the Universally and Existentially quantified expressions are 

separated. This is deemed necessary so that we will follow procedure and apply EI first 

as is exemplified in line 6. After applying EI, we went ahead to apply UI before applying 

the twenty rules of inference. 

It is, however significant to highlight here that like the first ten rules of inference, the 

four rules of quantification, that is, UI, UG, EI and EG can be applied only to whole lines in 

a proof. 

1.4 Conclusion 

Four additional rules of inference, that specifically deal with quantification, that is UI, 

UG, EI and EG permit the transformation of non-compound, generalized propositions into 

equivalent compound propositions to which our twenty rules of inference and replacement 

may be readily applied, and also permit the transformation of compound propositions into 

equivalent non-compound propositions. Thus with the rules of UI, UG, EI and EG we are 

equipped to construct formal proofs of validity for arguments whose validity depends upon 

the internal structures of the simple propositions that make up the argument. 

1.5 Summary 

This unit to strengthen our capacity to construct formal proofs of validity of arguments 

whose validity depends upon the internal structures of the simple propositions that make 

up the argument introduced the learner to four additional rules, namely UI, UG, EI and EG. 

The rule of Universal Instantiation (UI) permits us to substitute for instance “Ha” for (x) 

Hx, that is, drop the Universal quantifier and replace or substitute the variables attached to 

the predicate with any individual constant. The rule of Universal Generalization (UG) 



permits us generalize from a special substitution instance to a generalized or universally 

quantified expression, that is, from “Ha”, we can validly infer (x) Hx. The rule of Existential 

Instantiation says that from the existential quantification of a propositional function, we can 

infer the truth of its substitution instance with respect to any individual constant, other than 

y, that occurs nowhere earlier in the context. Thus, we can infer validly “Ha” from (x) Hx, 

but in so doing we should make sure that “a” has not occurred earlier in the proof in the 

same context. Finally, Existential Generalization (EG) says that from any true substitution 

instance of a propositional function, we can validly infer the existential quantification of that 

propositional function. The rule thus permits us to introduce an Existential quantifier to a 

predicate wff of the form “Ha” and to replace the individual constant “a” with an individual 

variable, say x. 

 
1.6 Glossary 

Absorption (abbreviated Abs.) One of the ten elementary valid argument forms which is 

to the effect that if p implies q we can validly infer that p implies both p and q. This 

symbolized as p  (p  q). 

Addition (abbreviated as Add.) One of the ten elementary valid argument forms which is 

to the effect that given any propositional form we can validly infer another propositional 

form with the disjunction connective. Expressed as p, then p v q the rule states that if a 

propositional form or a premiss is true, a disjunction of it with another propositional form or 

premiss as a component will be true no matter what the other disjunct is. 

Association (Abbreviated as Assoc.) One of the rules of replacement applied primarily to 

a valid regrouping of disjunctive and conjunctive propositions. The rule permits us to 

replace validly [p v (q v r)] with [(p v q) v r] and vice versa, and also [p(q r)] with [(p 

q)  r] and vice versa. 

Commutation (abbreviated Comm.) This is a type of logical equivalence; one of the rules 

of replacement that permits the valid reordering of the components of conjunctive or 

disjunctive propositions. The rule permits us to replace p v q with q v p and vice-versa, 

and p  q with q  p and vice versa. 

Conjunction (abbreviated “Conj ”) is the name of a rule of inference, one of the ten 

elementary valid argument forms; it permits the combination of independent propositions 

assumed to be true in one compound proposition. Thus if we have p, q we can validly infer 

p  q. 

Constructive Dilemma (abbreviated “C.D.”) One of the ten elementary valid argument 

forms which permits the inference of the disjunction of the consequents of two implicational 

propositions once the disjunction of their antecedents is established. Thus we can from ( 

p q)  ( r  s) validly infer q v s if p v r is established, that is, if ( p  q)  ( r  s) is true, 

and p v r is also true, then q v s must be true. 

De Morgan’s theorem (DeM .) One of the rules of replacement which is such that it 

permits the mutual replacement of a conjunction with a disjunction and vice versa, in such 

a manner that negated variables eliminate their negations both inside and outside the 

scope of a parentheses and unnegated variables acquired negations also outside and 

inside the scope of a parentheses. Thus ~(p  q) transforms into ~ p v ~ q; p  q into ~(~ 

p v ~ q) and vice versa; similarly ~(p v q) transforms into ~ p  ~ q, ~ (p v q) into ~ p  ~ 

q and vice versa. 



Destructive Dilemma One of the ten elementary valid argument follows; it permits the 

conclusion of a negated disjunction of the antecedent of a conjoined implications once the 

disjunction of the negations of their consequents is established. Thus, we can from (p  

q)  (q  s) validly infer ~ p v ~ r if ~ q v~ s is established, this means that if ( p q)  ( r 

 s) and ~ q v ~ s is true then ~ p v ~ r must be true. 138, 144 

Disjunctive Syllogism (D. S.) One of the ten elementary valid argument forms which is 

such that given any disjunctive proposition, to deny the first disjunct validly implies 

asserting the second disjunct. 

Distribution One the rules of replacement which is applied to conjunctive and disjunctive 

wff’s in such a manner that whenever we have conjunction as a major connective with 

disjunction as minor or vice versa in an expression, we distribute the variables such that 

the conjunction turns out to be distributed into itself and a disjunction, and the disjunction 

into itself and a conjunction. Thus [p (q v r)] replaces [(p  q ) v (p  r)] and vice versa ; 

also [ p v (q  r)]  replaces [ (p v q)  (p v r)] and vice versa. 

Double Negation – One of the rules of replacement expressing logical equivalence by 

permitting the valid mutual replacement of any symbol by the negation of the negation of 

that symbol; that is, permits the inference of a symbol from a canceling out is its 

consecutive denials or negations. This is symbolized as p  ~~p and vice versa. 161-166 

Existential Generalization (E.G.) A rule of inference in the theory of quantification which 

permits the valid substitution of a propositional function with the existential quantification 

of that propositional function, that is from v, we can validly infer (x) x. 

Existential Instantiation (E.I.) A rule of inference admissible in quantification theory 

which permits one to validly infer from the existential quantification of a propositional 

function the truth of its substitution instance with respect to any individual constant that 

does not occur earlier in that context; that is, from (x) x, we can infer v. 

Exportation (Exp.) The name of a rule of inference expressing the logical equivalence 

that permits the mutual replacement of a conditional with a conjunctive antecedent, by an 

association of conditionals, that is, (p  q)  r is logically equivalent and therefore validly 

replaces p  (q  r), and vice versa. 

Formal Proof of Validity – The deduction of the conclusion of an argument from its 

premisses by a sequence of statement forms each of which is either a premiss of the given 

argument, or follows from the preceding statement form of the sequence by one of the 

rules of inference. 

Instantiation A process in quantification theory of substituting an individual constant for 

individual variables, thereby converting a propositional function into a proposition. 

Material Equivalence (Equiv) a rule of logical inference that permits the transformation of 

bi-conditionals into a conjunction of conditionals, and into a disjunction of conjunctions and 

vice versa. Accordingly p  q and [(p q)  (q  p)] are materially equivalent and therefore 

mutually replaceable. Similarly, p  q and [(p  q) v (~p  ~q) are materially equivalent 

and therefore mutually replaceable. 

Material Implication (abbreviated Impl.) the name of a replacement rule that permits, 

subject to the introduction or elimination of a negation sign, the transformation of a 

conditional into a disjunction and vice-versa. Accordingly p q and ~p v q mutually 

replaces one another and are therefore logically equivalent. 



Modus Ponens (M.P.) One of the ten elementary valid argument forms according to which 

it the antecedent of a conditional premiss is affirmed, the consequent of the premiss 

follows, that is, would be validly affirmed. This is expressed by p  q, p, therefore q. 

Modus Tollens (M.T.) One of the ten elementary valid argument forms according to, which 

if the consequent of a conditional premiss if denied, the antecedent of that premiss would 

be validly denied. This is expressed by p  q, ~q therefore ~p. 

Replacement, Rule of A rule which permits logically equivalent expressions to replaces 

each other wherever they occur. Ten such rules that evince logical equivalence forms 

part of the rules of inference. 

Rules of Inference – The rules that permit valid inferences from statements assumed as 

premisses. In this Self Study Material, we have thirty rules of inferences: ten elementary 

valid argument forms, ten rules of replacement, that is, logically equivalent expressions 

that are mutually replaceable, the rule of conditional proof, the rule of indirect proof, four 

rules governing instantiation and generalization in quantified logic, and four rules of 

Quantifier negation. 

Simplification (Simp.) - One of the ten elementary valid argument forms which as a rule 

of inference permits the separation of conjoined statement forms. If the conjunction of p 

and q is given, the rule permits the inference that p. This is expressed as p  q, therefore 

p. 

Tautology (abbreviated Taut) is the name of an expression of logical equivalence, a rule 

of inference that permits the mutual replacement of p by (p v p), and the mutual 

replacement of p by (p  p). 

Universal Instantiation (U.I.) A rule of inference in quantificational logic that permits the 

valid inference of any substitution instance of a propositional function from the universal 

quantification of that propositional function. 

Universal Generalization (U.G.) A rule inference in quantificational logic that permits the 

valid inference of a generalized, or universally quantified expression from an expression 

that is given as true of any arbitrarily selected individual. 

 
1.7 Check your Progress 

Exercise 1.7 

(A) Construct a formal proof of validity for each of the following arguments. 

(i) (x)(Ax  ~ Bx) 

(x)(Cx • Ax) 

(x)(Cx • ~ Bx) 

 

(ii) (x)(Dx  ~ Ex) 

(x)(Fx  Ex) 

(x)(Fx  ~ Dx) 

 

(iii) (x)(Gx  Hx) 

(x)(Ix  ~Hx) 

(x)(Ix  ~ Gx) 

 

(iv) (x)(Jx • Kx) 

(x)(Jx  Lx) 

(x)(Lx • Kx) 



(v) (x)(Mx  Nx) 

(x)(Mx • Ox) 

(x)(Ox • Nx) 

 

(vi) (x)(Px •~ Qx) 

(x)(Px  Rx) 

(x)(Rx •~ Qx) 

 

(vii) (x)(Sx  ~ Tx) 

(x)(Sx • Ux) 

(x)(Ux •~ Tx) 

 

(viii)  (x)(Vx  Wx) 

(x)(Wx  ~Xx) 

(x)(Xx  ~ Vx) 

 

(ix) (x)(Yx • Zx) 

(x)(Zx  Ax) 

(x)(Ax • Yx) 

 

(x) (x)(Bx  ~ Cx) 

(x)(Cx • Dx) 

(x)(Dx •~ Bx) 

 

(xi) (x)(Fx  Gx) 

(x)(Fx • ~Gx) 

(x)(Gx •~ Fx) 

 
(B) Construct a formal proof of validity for each of the following arguments, in each case 
using the suggested notations. 

 
(i) No athletes are bookworms. Carol is a bookworm. Therefore Carol is not an athlete. 

(Ax, Bx c) 
(ii) All dancers are exuberant. Some fencers are not exuberant. Therefore some 

fencers are not dancers. (Dx, Ex, Fx) 
(iii) No gamblers are happy. Some idealists are happy. Therefore some idealists are 

not gamblers. (Gx, Hx, Ix) 
(iv) All jesters are knaves. No knaves are lucky. Therefore no jesters are lucky. (Jx, Kx 

Lx) 
(v) All mountaineers are neighborly. Some outlaws are mountaineers. Therefore some 

outlaws are neighborly. (Mx, Nx, Ox) 
(vi) Only pacifists are Quakers. There are religious Quakers. Therefore pacifists are 

sometimes religious. (Px, Qx, Rx) 
(vii) To be a swindler is to be a thief. None but the underprivileged are thieves. 

Therefore swindlers are always underprivileged. (Sx, Tx, Ux) 
(viii) No violinists are not wealthy. There are no wealthy xylophonists. Therefore 

violinists are never xylophonists. (Vx, Wx, Xx) 
(ix) None but the brave deserve the fair. Only soldiers are brave. Therefore the fair are 

deserved only by soldiers. (Dx: x deserves the fair; Bx: x is brave; Sx: x is a soldier) 
(x) Everyone that asketh receiveth. Simon receiveth not. Therefore Simon asketh not. 

(Ax Rx, Sx) 
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2.1 Introduction 

This study unit introduces the learner to a method of formal proof of validity or 

technique called Conditional Proof. Generally, the conditional proof is a device for 

shortening and simplifying proof. However, in this Unit, we treat conditional proof as an 

additional rule, having, as it were, the same status with the Elementary Valid Argument 

forms and the Rules of Replacement. This latter position adopted in this unit does not, 

however mean that this method and the rules are akin, it differs, indeed from the rules in 

several important respects. It allows us to draw conclusions based on the assumption that 

a certain condition is true. 

An important advantage of the conditional proof method is that it allows us to draw 

conclusions based on limited information. By assuming a certain situation to be true, we 

can draw conclusions that may not be immediately obvious based on the available 

information. This can be especially useful in situations where we do not have complete 

information or where we are trying to prove a statement that seems counterintuitive. 

2.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. understand a new technique used to test the validity of an argument, 

particularly those that the conclusion is conditional. 

2. construct formal proof of validity for arguments using the Conditional Proof 

method 

3. with much easy show that a proposition's truth follow from another 

proposition than to prove it independently. 

2.3 The Method of Conditional Proof 

The method of Conditional Proof (C.P.) is different in kind from the rules of inference 

or replacements. There are a certain types of arguments, which cannot be tested with any 

of the rules discussed in the previous unit without further support. Further, C.P is not a 

system of proof, which does away with the twenty rules. It rather increases the rules to 

twenty-one. As a rule, the method of Conditional Proof is compulsorily used in testing the 

validity when the conclusion is conditional. This rule is characteristic of C.P in the sense 

that nowhere else it is used. Hence, this rule can be designated as the rule of C.P. 



2.3.1 Conditional Proof in Proof of Validity 

The rule of conditional proof allows us to deduce a conditional proposition from a 

conjunction of premisses by a sequence of elementary valid arguments, which satisfy the 

relevant rules of inference. That is, all premisses in C.P. are be supported by rules of 

inference. The additional premiss, which is a characteristic mark of C.P., is always the 

antecedent of the conclusion and the construction of proof always begins with antecedent 

of the conclusion as the premiss. This premiss itself is called C.P. 

Simply presented, the Rule of conditional proof could be stated as follows: at any 

point in a proof, any proposition P may be put down as a line of the proof with the 

justification “Assumed Conditional Proof” (A.C.P.), provided that a mark is made against 

the number of that line. 

Following Irving Copi in Symbolic Logic, we, in this unit, shall adopt the use of a 

bent arrow with its head pointing at the assumption from the left, its shaft bent down to run 

along all lines within the scope of the assumption, and then bent inward to mark the end of 

the scope of that assumption. (For the starring method, see Purtill, Richard 1971:61 – 63). 

An assumption would be discharged after our arrow bends inward, and, in this respect, if 

an assumption is a proposition p and the last proposition where the arrow bends inwards 

is q we would write immediately under the arrow p  q. We then cite all lines lying from the 

assumption to the line that discharges it as being justified by the Rule of Conditional Proof 

(RCP). 

This is illustrated below as follows: 
 

p  q 
 

1 P  

2   

3   

4   

5 
q  

6 p  q 1-5 RCP 

 

In this method of proof, no arrowed line would be the conclusion of an argument and 

no arrowed line would be cited after its assumption is discharged. The justification for this 

rule is as follows: if by assuming a proposition p we can prove together with certain 

premisses, another proposition q, then we have shown that, if those premisses are true, 

then if p is true, then q is true. The upshot of this is that the chief use of the Rule of 

Conditional Proof (R.C.P.) is with respect to conditional statements; and here our proof is 

conducted by assuming as an extra premiss the antecedent of our conclusion and then 

work towards deriving the consequent of the conclusion. That is, if we have in our 

conclusion (A  B)  C, after setting out the premisses and the conclusion we proceed as 

follows: 



p 

q 

q 

p 

A  






C 

(A  B) C 

Nevertheless, we also use the rule to establish conclusions of other forms of arguments, 

that is, conclusions that are not expressed in conditional form. However, when we have 

such argument forms it is required that first we convert such expressions to conditional 

propositions and then proceed with the proof; and after working out the conclusion, we 

convert them back to their original presentation. For example, if we have an argument with 

its conclusion as ~p v q we begin by first transforming it into an implication, then prove the 

validity and transform it once more back into its original disjunctive expression, as 

illustrated below 

~p v q 

I I I 

p  q by Implication 
 
 
 
 
 

 

p  q 

~ p v q Implication 

 

Similarly if we have p v q, it first transforms to ~ ~p v q by Double Negation, then to ~ p  

q by Implication. A conclusion of the form p  q is proved by using two separate Conditional 

Proofs to establish p  q and q  p and thus conjoin them applying Material Equivalence 

that is, 

p  q 
III 

(p  q)  (q  p) 
 
 
 
 
 

 
p  q 

 

q  p 

(p  q)  (q  P) Conj. 

p  q Equiv. 

p 

q 



~p 

q 

~p 

p 

A conclusion of the form ~(~p  ~q) can be established by proving ~p  q. Applying De 

Morgan ~(~ p  ~ q) transforms first into p v q and applying Material Implication into ~p  

q, that is, 

~(~p  ~q) 

III 

p v q 

III 

~p  q 

~p  q 

III 

p v q Impl. 

III 

~(~p  ~q) De Morgan 
 

Further, a conclusion either of the form p or ~p can be established first by addition. In any 

of the cases, if we have p v p or ~p v ~p, applying Implication this transforms to ~p  p or 

p  ~p. Then ~p  p transforms into p v p which applying Tautology yields p. In the same 

vein, p  ~ p transforms into ~ p v ~ p which also applying Tautology yields ~p, that is, 

 
p 

III 

p v p Add 

III 

~ ~ p v p DN 

III 

~ p  p Impl. 
 

~p  p 

III 

~ ~p v p Impl. 

III 

p v p DN 

III 

p Taut. 



With these set down procedures we shall take samples of argument forms and applying 

the Rule of Conditional Proof (RCP) prove their validity. 

(1) 

1. C  (N v A) 

2. N  S 

3. A  S 

4. S  ~D / D  ~C 

5. D A C P 

6. ~~ D 5 DN 

7. ~ S 4,6 MT 

8. ~ A 3,7 MT 

9. ~ N 2,7 MT 

10. ~N  ~A 9,8 Conj 

11. ~(N v A) 10 DeM 

12 ~ C 1,11 

13. D  ~ C 5 – 12 R C P 

In applying the Rule of Conditional Proof above, we set out the argument in lines 1 

– 4 and used the stroke “/” to indicate and separate the conclusion from the premisses. In 

line 5 we assumed the antecedent of the conclusion as an added and new premiss 

justifying this by writing Assumed Conditional Premiss (abbreviated as A C P). Applying 

the 20 rules of inference in lines 6-12 we worked towards and deduced the consequent of 

the conditional conclusion. On deducing or arriving at the consequent the assumption was 

discharged; the bent arrow with its head pointing at the assumption from the left bent 

inward to mark the end of the scope of the assumption. Line 13 cites all the lines lying 

from the assumption, that is line 5 to the line that discharges it, that is, the line indicating, 

the consequent of the condition, which is line 12, that is lines 5 – 12 as being justified by 

the Rule of Conditional Proof. 

One significance of the introduction of R C P comes out in high relief here; it makes 

proofs simpler, which would otherwise be complicated if conducted with the 20 rules of 

inference. The above argument was proved using the 20 rules but the deduction procedure 

was more exerting and complicated. 

(2)       1.       ~A v ~B 

2. B  D 

3. ~A  [~(C  D) v F] /  C  F 

4. C A C P 

5. B 2 Simp 

6. ~B v ~A 1 Comm 

7. ~~ B 5 DN 

8. ~ A 6,7 DS 

9. ~(C  D) v F 3,8 MP 

10. D  B 2 Comm 

11. D 10 Simp 

12. C  D 4,11 Conj. 

13. ~ ~ (C  D) 12 DN 

  14. F  9, 13 DS 

15. C  F 4 – 14 R C P 



Conditional proof method could also be applied to arguments whose part(s) of the 

conclusion is/are not in conditional form provided the major operator is the “”, that is, it is 

fundamentally a conditional. For example 

(3)       1.~ (~A v B) v ~(C v D) / D  ~ (~A  ~E) 

2. D A C P 

3. D v C 2 Add 

4. C v D 3 Comm 

5. (~A v B)  ~(C v D) 1 Impl. 

6. ~ ~(C v D) 4 DN 

7. ~ (~A v B) 5, 6 MT 

8. A    ~ B 7 DeM 

9. A 8 Simp 

10. A v E 9 Add 

11. ~ (~A  ~E) 10 DeM 

12. D  ~ (~A  ~E) 2-11 RCP 

It is to be noted further that argument 3 has in its conclusion a variable or constant 

that has no occurrence in the premisses; this is E. But using the rule of addition we were 

enabled to introduce it in line 10. 

It is also pertinent to remark that the assumed new premiss, that is, the antecedent 

of the conclusion need not appear, even be utilized, in the proof unless it is necessary and 

germane in proving our argument. For example, in the proof below, the assumed premiss 

does not appear in the premisses and is not utilized in proving the consequent: 

(4)       1.       X  ~(X v A) 

2. (X  R) v S / Z  S 

3. Z A C P 

4. S v (X  R) 2 Comm 

5. (S v X)  (S v R) 4 Dist. 

6. S v X 5 Simp 

7. ~X v ~(X v A) 1 Impl 

8. ~X v (~X  ~A) 7 DeM 

9. (~X v ~X)  (~X v ~A) 8 Dist 

10. ~X v ~X 9 Simp 

11. ~ X 10 Taut 

12. X v S 6 Comm 

  13. S  12,11 DS 

14. Z  S 3-13RCP 

R C P as already highlighted is also used to establish the validity of arguments that 

are not expressed in conditional form. This is illustrated by the following examples: 

(5) 1. (A  B) v ~(C  D) 

2. (C  D) / (A  B) v (Q  V) 

III 

~ ~(A  B) v (Q  V) 

III 

~(A  B)  (Q  V) 



3. ~ (A  B) A C P 

4. ~(C  D) v (A  B) 1 Comm 

5. ~ ~ (C  D) 2 DN 

6. A  B 4,5 DS 

7. ~ (A  B) v (Q  V) 3 Add 

8. ~ ~ (A  B) 6 DN 

9. Q  V 7,8 DS 

10. ~ (A  B)  (Q  V) 3-9 RCP 

11. ~ ~ (A  B) v (Q  V) 10 Impl. 

12. (A  B) v (Q  V) 11 DN 

In the above proof our conclusion is a disjunction, we thus had to transform into a 

conditional by applying the rule of Double Negation and Implication. Thereafter we 

assumed the antecedent of the transformed conclusion and worked towards the 

consequent; at getting at the consequent in line 9 we applied RCP to 3-10 and then 

proceeded to apply Implication and Double Negation to arrive at the original conclusion. 

6)        1.         [W  (~X  ~Y)]  [Z  ~(X v Y) 

2.        (~A  W)  (~B  Z) 

3. (A  X)  (B  Y) /  X  Y 

III 

(X  Y)  (Y  X) 

III 

X  Y 

Y  X 

4. X A C P 

5. X v Y 4 Add 

6.         [Z  ~(X v Y]  [W  (~X  ~Y)] 1 Comm 

7.         Z  ~ (X v Y) 6 Simp 

8. ~ Z 7,5 MT 

9. (~B  Z)  (~A  W) 2 Comm 

10. ~B  Z 9 Simp. 

11. ~ ~ B 10,8 MT 

12. B 11 DN 

13. (B  Y)  (A  X) 3 Comm 

14. B  Y 13 Simp 

  15. Y  14,12 MP 

16. X  Y 4-15 RCP 

17. Y ACP 

18. Y v X 17 Add 

19. X v Y 18 Comm 

20. ~(~X  ~Y) 19 DeM 

21. W  (~X  ~Y) 1 Simp. 

22. ~ W 21,20MT 

23. ~A  W 2 Simp. 

24. ~ ~ A 23,22MT 

25. A 24 DN 

26. A  X 3 Simp. 

27. X 26,25MP 

28. Y  X 17-27RCP 

  29. (XY) (YX)  16,28Conj 

30. X  Y 29Equiv 



In proving the validity of the above argument, applying R C P, we began by applying 

the rule of Equivalence to X  Y which is the conclusion of the argument, this yielded (X 

Y)(Y  X); then we applied Simplification to separate (XY)(Y  X). We then worked 

out X  Y in lines 4-15 and Y  X in lines 17 – 27, we then applied the rule of Conjunction 

(Conj) to lines 16 and 28 to derive (X  Y)  (Y  X) in line 29 and applied Material 

Equivalence to line 29 to derive X  Y in line 30. 

2.3.2 The Strengthened rule of Conditional Proof 

In this method of Conditional Proof, the construction of proof does not necessarily 

assume the antecedent of the conclusion. The structure of this method is that an assumption 

is made initially. There is no need to know the truth-status of the assumption because an 

assumption may be false, but the conclusion can still be true. Further, the assumption can be 

any component of any premiss or conclusion. The method is called the strengthened rule 

because we enjoy more freedom in making assumption or assumptions, which means that 

plurality of assumptions is allowed. It strengthens our repertoire of testing equipment. Another 

feature of this method is the limit of assumption. The last step is always outside the limits of 

assumption. If there are two or more than two assumptions in an argument, then there will be 

a distinct last step with respect to each assumption. This last step can be regarded as the 

conclusion relative to that particular assumption. It shows that the last step is deduced with the 

help of assumption in conjunction with the previous steps in such a way that the rules of 

inference permit such conjunction. Before the conclusion is reached, the function of 

assumption also ceases. Then it will have no role to play. Then, automatically, the assumption 

is said to have been discharged. 

In applying this strengthened rule, we would have two or more arrowed lines, that is, 

assumptions and discharge lines. The procedure in this connection is that after one 

assumption of limited scope has been discharged, another such assumption may be made and 

then discharged. Alternatively, a second assumption of limited scope may be written within 

the scope of the first. What this comes to is that scopes of different assumptions may follow 

each other, or one scope may be contained entirely within another. If the scope of an 

assumption does not extend all the way to the end of a proof, then the final line of the proof 

does not depend on that assumption, but has been proved to follow from the original premisses 

alone. The upshot is that we need not restrict ourselves to using as assumptions only the 

antecedents of conditional conclusions. Any proposition can thus be taken as an assumption 

of limited scope, for the final line, that is, the conclusion will always be beyond its scope and 

independent of it. This could be illustrated as follows: 

p  q 

p A. C P. 

 
 

r A. C. P. 

 
 

s 

r  s R. C. P. 

 
q 

p  q R. C. P. 



p  [(q  r)  s] 

p 

 

 
(q  r) 

 

 
s 

(q  r)  s 

p  [(q  r)  s] 

 
To demonstrate the application of conditional proofs within conditional proofs, we shall 

work out some examples as in below: 

 
(1) 1. A v (B  D) 

2. [B  (B  D)]  (F v G) 

3. (F  A)  (G  H) / A v H 

III 

~~A v H 

~A  H 

 
4. ~A A.C.P. 

5. B  D 1,4 DS 

6. B A.C.P. 

7. D 5,6 M.P 

8. B  D 6,7 Conj 

9. B  (B  D) 6 – 8 R.C.P. 

10. F v G 2, 9 MP 

11. A v H 3, 10 CD 

12. ~ ~A v H 11 DN 

13. ~A  H 12 Impl. 

  14. H  13,4 MP 

15. ~A  H 4 – 14 RCP 

16. ~ ~A v H 15 Impl 

17. A v H DN 

 
(2) 1. A  (B  C) 

2. (D  C)  E 

3. F  (D  ~E) /~ A v (~B v ~ F) 



4. E A C P 

5. B  W 1,4 MP 
 

 6. B A C P 

7. W 

8. W  (G  S) 

5,6 MP 

2 Exp. 

9. G  S 7,8 MP 

10. ~G v S 

11. ~ (G  ~S) 

9 Impl 

10 DeM 

   12. ~ U  3,11 MT 

13. B  ~ U 6 – 12  RCP 

 14. E  (B  ~ U) 4 – 13 RCP 

 
In proving argument No. 1 it is clear that the second assumption is contained entirely within 

the first and that the final line, that is the conclusion is beyond its scope and somewhat 

independent of it. Infact the second assumption is not in any way part of the conclusion. 

This underscores the point that RCP allows us to introduce any proposition whatsoever, 

that is, assume any premiss in proving the validity of an argument. 

In proving argument No.2, lines 4 – 13 lie within the scope of the first assumption, 

while lines 6-12 lie within the scope of the second assumption. The point on relief here is 

that the scope of an assumption p in a proof consists of all lines p through q, where the line 

following q is of the form p  q and is inferred by R.C.P. from that sequence of lines. 

Accordingly, the second assumption in argument 9 above lies within the scope of the first 

because it lies between the first assumption and line 14, which is derived by RCP from the 

sequence of lines 4 through 13. 

2. 3.3. Conditional Proof of Validity in Quantificational Logic 

The Rule of Conditional Proof is also applicable in Quantificational Logic. Like in the 

above, the procedure is to begin by assuming the antecedent of the conclusion of the 

argument that we want to prove as an extra premiss and then work to derive the 

consequent. Once we deduce the consequent of the conclusion, then we deduce the entire 

conclusion by conditional proof. The distinguish feature of applying CP in quantificational 

logic is that the antecedent of the conclusion is a statement function, not a complete 

statement. Thus, only the statement function is assumed as the first line in the conditional 

sequence. The quantifier is added after the sequence is discharged. The following are 

examples of the application of conditional proof to Quantificational theory. 

 
(1) 1. (x) [Ax  Bx] 

2. (x) [Cx  AX] / ((x) [Cx  Bx] 
3. Cy A CP 

4. Ay  By 1 UI 

5. Cy  Ay 2 UI 
6. Ay 5,3 MP 

   7. By  4,6 MP 

8. Cy  By 3 – 7 RCP 

9. (x) Cx  Bx 8 UG 



We started our proof above by assuming Cy which is the instantiation mode of the 

antecedent of our conclusion; thereafter we applied UI to lines 1 and 2 and then worked 

towards deriving the consequent. After deriving By we discharged our arrow and 

concluded Cy  By; and finally applied UG to arrive at our conclusion in its quantified form. 

 

(2) 1. (x)Mx  Rx] 

2. (x) [Rx  Hx] 

3. [(x) (Mx  Bx)]  {(x) [Hx  (Dx  Px)]} 

/( (x) ~(Dx  ~Px) 

III 

~ Dx v Px 

III 

Dx  Px 

 

4. Da ACP 

5. (x) (Mx  Bx) 3 Simp 

6. (x) [Hx  (Dx  Px)]  [(x) (Mx  Bx) ] 3 Comm 

7. (x) [Hx  {Dx  Px)] 6 Simp 

8. Ma  Ba 5 EI 

9. Ma  Ra I UI 

10. Ra  Ha 2 UI 

11. Ha  (Da  Pa) 7 UI 

12. Ma  Ha 9,10 HS 

13.   Ma  8 Simp 

14. Ha 12,13 MP 

15. (Ha  Da)  Pa 11 Exp. 

16. Ha  Da 14,7 Conj 

17. Pa 15,16 MP 

18. Da  Pa 4-17 RCP 

19. ~Da v Pa 18 Impl. 

20. ~(Da  ~Pa) 19 DeM 

21. (x) ~(Dx  ~Px) 20 UG 

 
We can also apply the strengthened Conditional Proof in arguments involving quantifiers, 

as indeed we had in propositional logic. This is exemplified as in 

 

(3) 1. (x) [~(Kx  Lx)  ~(Mx v Nx)] 

2. (x) {~[Px v Qx)  Rx] ( ~(Kx v Sx)} 

/ (x) [Mx  (Px  Rx)] 



3. My ACP 

4. ~(Ky  Ly)  ~(My v Ny) 1 UI 

5. ~[(Py v Qy)  Ry]  ~(Ky v Sy) 2 UI 

6. My v Ny 3 Add 

7. ~~(My v Ny)  ~~(Ky  Ly) 4 Trans 

8. (My v Ny)  (Ky  Ly) 7 DN 

9. Ky  Ly 8, 6 MP 

10. Ky 9 Simp 

11. Ky v Sy 10 Add 

12. ~~(Ky v Sy) 11 DN 

13. ~~[(Py v Qy)  Ry] 5,12 MT 

14. (Py v Qy)  Ry 13 DN 

15. Py ACP 

16. Py v Qy 15 Add 

17. Ry 14,16 MP 

18. Py  Ry 15–17 RCP 

19. My  (Py  Ry) 3-18 RCP 

20. (x) [Mx  (Px  Rx)] 19 UG 
 

2.4 Conclusion 

The Conditional Proof is an additional rule that allows us to draw conclusions based 

on the assumption that a certain condition is true. In procedure, we begin using the rule by 

introducing an assumption, which is the antecedent of the conditional we wish to derive. 

We then proceed "normally", that is, using our rules of inference and equivalence rules, 

until we derive the consequent of the desired conditional. Finally, we invoke CP to infer the 

conditional. The goal is to demonstrate that if the ACP [Assumed Conditional Proof ] were 

true, then the desired conclusion necessarily follows. The validity of a conditional proof 

does not require that the ACP [Assumed Conditional Proof] to be true, only that if it were 

true it would lead to the consequent." 

The conditional proof will often simplify a proof, especially one that has a conditional 

in the conclusion, making the proof shorter or easier to solve. It is also notable that we use 

the rule to establish conclusions of other forms of arguments, that is, conclusions not 

expressed in conditional form. However, when we have such argument forms it is required 

that first we convert such expressions to conditional propositions and then proceed with 

the proof; and after working out the conclusion, we convert them back to their original 

presentation. These procedures are made possible because the operators on propositions 

are inter-definable. 

2.5 Summary 

Conditional proofs exist to connect several conjectures that are otherwise unproven, 

so that the proof of one conjecture may immediately imply the validity of several others. It 

is much easier to prove the truth of a proposition by deriving it from another proposition 

than by independently proving it. 

This unit strengthens our repertoire of testing the validity of arguments by allowing 

us to deduce a conditional proposition from a conjunction of premisses by a sequence of 

elementary valid arguments, which satisfy the relevant rules of inference. 



An important advantage of the conditional proof method is that it allows us to draw 

conclusions based on limited information. By assuming a certain situation to be true, we 

can draw conclusions that may not be immediately obvious based on the available 

information. The method also makes proofs simpler, which would otherwise be complicated 

if conducted with the 20 rules of inference. 

2.6 Glossary 

Conditional Proof – A method of proving the validity of an argument by assuming at any point in 

a proof a proposition “p” and proving together with certain premisses another proposition q; the 

point is that if those premisses are true then if p is true, then q is true. 

2.7 Check your Progress 

Exercises 

(1) Using the Conditional Proof Method, prove the validity of the following arguments. 
 

(1) 1. (J  K)  L 

 2. M  J 

 3. ~K  ~N / (M  N)  L 

(2) 1. U v ~V 

 2. W  V 

 3. ~W  ~X /  ~X v V 

(3) 1. (K v L)  [(M v N)  B] / K  (M  N) 

(4) 1. P  (D  ~H) 

 2. (F  S)  B 

 3. (B  D)  ~ H / F  (S  ~ P) 

(5) 1. M v ~ R 

 2. (K  G)  (M  S) 

 3. S  K / ~ (R  ~ G) 

(6) 1. (K  L)  (M  N) 

 
 

(7) 

2. 

 
1. 

(L v N)  {[O  (O v P)]  (K  M)} 

/ K  M 

A  (B v C) 

 2. E  (C v P) 

 3. ~C / ~ (B v P)  ~ (A v E) 

(8) 1. (T  E)  (A  L) / (T v A)  (E v L) 

(9) 1. A  B 

 2. B  [(C  ~ ~ C)  D] / A  D 

(10) 1. 

2. (Z 

A  B 

 X) v (Q  R) / (A  B)  [(Z  X) v N] 



(ii) Construct a formal proof of validity for each of the following arguments, using the Rule 

of Conditional wherever deemed applicable. 
 

(1.) 1. (x) [~Bx  ~Ax]  

 2. (x) [(Ax  Bx)  Dx] / (x) [Ax  Dx] 

(2) 1. (x) [Rx  Sx] 

 2. ~ Tb  ~Sb / ~ Rb 

(3) 1. (x) [Zx  Xx] 

 2. (x) [Zx  Xx] / Xx v Ux 

(4) 1. (x) [Dx  ~ Ex] 

 2. (x) [Kx  Dx] / (x) [Da  Fa] 

(5) 1. (x) [(Bx v Gx)  Fx] 

 2. (x) [(Fx v Vx)  Nx] / (x) ~ [Bx  ~ Nx] 

(6) 1. (x) ~[Cx  ~(Fx v Gx)] 

 2. (x) [Fx  Rx] 

 3. ~(x) [Cx  Rx] / (x) [Cx  Kx] 

(7) 1. (x) [Hx  ~Jx] 

 2. (x) [~Hx  Ax] / (x) [~Ax  ~Jx] 

(8) 1. [(x) (~Ex  ~Dx)]  [(x) (Bx  Rx)] 

 2. (x) (~Dx  ~Rx] / (x) [~Ex  ~Hx] 

(9) 1. (x) [(Gx  Hx)  (Ix  Jx)] 

 2. (x) [(Gx  Kx)  Hx] / (x) [(Gx  Kx)  Ix] 

(10) 1. (x) [Ax  (Sx  Wx)] 
 

 2. (x) [(Ax  (Sx  ~Wx)]  

 3. (x) [Ax  Ix] / (x) [Ix  Ax]  
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3.1 Introduction 

This study unit introduces the learner to a method of formal proof of validity or 

technique called Indirect Proof. It is a device for shortening and simplifying proofs, whereby 

we prove a conclusion by showing its negation to be self-contradictory. Like we did with 

Conditional Proof, we treat Indirect Proof, in this unit, as an additional rule, having, as it 

were, the same status with the rules of inference. Similarly also this not mean that Indirect 

Proof and the rules are akin, it differs, indeed from the rules of inference in several 

important respects. It allows us to draw conclusions based on the assumption that a certain 

condition is true. 

3.2 Intended Learning Outcomes 

It is expected that at the end of this unit, you will be able to: 

1. understand a new technique used to test the validity of an argument by 

reasoning in reverse direction. 

2. construct formal proof of validity for arguments using the Indirect Proof 

method 

3. with much easy show that a proposition's truth follow from another 

proposition than to prove it independently. 

3.3 The Method of Indirect Proof 
Indirect Proof method is also known as Reductio Proof because of its similarity with 

traditional Reductio ad absurdum (Raa) technique, a method very common in the 

construction of proof of geometrical theorems. This method is characterized, as it were, by 

a special feature, it involves proving an argument valid by showing that a counterexample 

leads to either an absurdity or to a contradiction. Thus, in order to prove a certain 

statement, its contradiction is assumed to be true from which the conclusion, which 

contradicts our assumption, is logically deduced. If A contradicts ~ B, then either A must 

be false or ~ B must be false. A cannot be false because it is logically deduced from what 

is purported to be true. Therefore ~B must be false, which means that B must be true. This 

is how a theorem in geometry or an argument in logic is, sometimes, proved. . In geometry, 

Euclid in deriving his theorems usually begins by assuming the opposite of what he wants 

to prove. Rene Descartes in his celebrated methodic doubt that culminated in the Cogito 

ergo sum began by denying his existence since the senses are deceptive or at times 



misleading. He ran into contradiction or absurdity because he realized that for him to think 

he must exist, hence the famous but, nevertheless, controversial dictum: Cogito ergo sum 

“I think, therefore I am”. 

3.3.1 Indirect Proof in Formal Proof of Validity 

Indirect proof involves the assumption of the contrary (that is denial) of what we 

want to prove; if our assumption leads to a contradiction or “reduces to an absurdity” then 

that assumption must be false, and so its denial – the conclusion to be proved must be 

true. The point here is that if an argument is valid and we assume the contrary, that is 

assume that the argument is invalid by making the premiss(es) true and the conclusion 

false, then we are bound to deduce a contradiction from our assumption. 

The method of conducting Indirect Proof (I. P.) thus involves beginning by assuming 

as an extra premiss the negation of the conclusion of our argument, and then work towards 

deriving a contradiction from the premisses of the argument by any sequence of the rules 

of inference. An outline of this procedure is as follows: 

1. Assume as an extra premiss the negation of the conclusion of the argument (this is 

indicated by writing A.I.P. meaning Assumed Indirect Premiss besides the extra 

premiss). 

2. From the Assumed premiss and the other premiss(es) derive a contradiction. 

3. The negation of the Assumed Premiss (which is normally the original conclusion of 

the argument) is written as the final line of the proof. This is justified by the point 

that if a contradiction is derived from the negated Assumed Premiss, it means that 

the original conclusion is valid. 

4. To indicate the method of Proof applied write I P besides the last line. 

5. Use (as in conditional proof) a bent arrow with its head pointing at the A IP from the 

right, its shaft bent down to run along all lines within the scope of the assumption, 

and then bent inward to mark the end of the scope of the assumption and proof of 

I.P. This procedure is illustrated as follows: 

1. ~ (A v F) 

2. (~A  ~N)  (O v N) 

3. ~N v (E  ~N)] / O v N 

4. ~ (O v N) AIP 

5. ~ O  ~N 4 DeM 

6. ~ O 5 Simp 

7. ~A  ~F 1 DeM 

8. ~ A 7 Simp 

9. ~N  ~O 5 Comm 

10. ~ N 9 Simp 

11. ~A  ~N 8,10 Conj. 

12. O v N 2,11 MP 

13. N 12,6 DS 

14. N  ~ N 13,10 Conj. 

15. O v N 4-14 IP 

 
In argument 1 above we began by assuming as an extra premiss a negation of the 

conclusion; the conclusion is O v N and our Assumed premiss is ~(O v N) as shown in line 

4. We then worked towards deriving a contradiction and this is achieved in line 14 where 



we have N  ~N, we then concluded our proof using I.P to arrive at our original conclusion 

O v N. 

The point is significant that what is important in the Indirect Proof method is that a 

contradiction be derived; it is immaterial which of the variables is used to derive this. In 

fact, it is possible to derive different contradictions from the same argument. This could be 

exemplified using argument 1 above as follows: 

1. ~ (A v F) 

2.       (~A  ~N)  (O v N) 

3. ~ N v (E  ~N) / O v N 

4. ~ (O v N) AIP 

5. ~ O  ~N 1 DeM 

6. ~ N  ~ O 5 Comm 

7. ~ A  ~F 1 DeM 

8. ~ N 6 Simp 

9. ~ A 7 Simp 

10. ~A  ~ N 9,8 Conj 

11. O v N 2,10 MP 

12. N v O 11 Comm 

13. O 12,8 DS 

14. ~ O 5 Simp 

15. O ~O 13, 14 Conj 

16. O v N 4 – 15 IP 
 

Let us look at the following other arguments using I.P 
 

(2) 1. Z  (~A v G) 

2. (Z  A)  [~ E  (G v Z)] / E v G 

3. ~ (E v G) AIP 

4. ~ E  ~G 3 DeM 

5. ~ E 4 Simp 

6. ~ E  (G v Z)  (Z  A) 2 Comm 

7. ~E  (G v Z) 6 Simp 

8. G v Z 7,5 MP 

9. ~G  ~E 4 Comm 

10. ~ G 9 Simp 

11. Z 8,10 DS 

12. ~A v G 1,11 MP 

13. Z  A 2 Simp 

14. A 13,11 MP 

15. ~ ~ A 14 DN 

16. G 12,15 DS 

17. G  ~ G 16,10 Conj 

18. E v G 3-17 IP 

 
(3) 1. (R  W)  (X  Y) 

2. ~(~X  ~Z)  (~Y v R) / R 

3. ~R AIP 

4. ~R v W 3 Add 

5. R  W 4 Impl 



N 

6. X  Y 

7. X 

8. X v Z 

9. (X v Z)  (~Y v R) 

1,5 MP 

6 Simp 

7 Add 

2 DeM 

10. ~Y v R 9,8 MP 

11. Y  X 6 Comm 

12. Y 11 Simp 

13. ~ ~ Y 12 DN 

14. R 10,13 DS 

15. R  ~R 14,3 Conj. 
 

In argument 3, the Indirect Proof could be conducted without showing clearly a 

contradiction; it is obvious that line 14 and 3 are contradictory R~R. The proof is therefore 

successful and we may well end our proof at line 14. However, to maintain consistency in 

our pattern we instead of stopping at line 14 conjoined lines 14 and 3 in line 15 to indicate 

clearly the contradiction. Nevertheless, the validity of our proof above, if terminated at line 

14 would not be vitiated. 

More exerting proof is illustrated in argument no. 4 below. 

(4)       1.        (E v N)  [(W v S)  (~M  P)] 

2.        (M  ~R)  G /N  (~G  ~S) 

3.         ~ [N  (~G  ~S)] AIP 

4. ~ [~N v (~G  ~S)] 3 Impl. 

5. ~ [~N v (~ ~G v ~S)] 4 Impl. 

6. ~ [~N v (G v ~S)] 5 DN 

7. N  ~ (G v ~S) 6 DeM 

8. N 7 Simp 

9. ~ (G v ~S)  7 Comm. 

10. ~ (G v ~S) 9 Simp 

11. ~G  S 10 DeM 

12. ~ G 11 Simp 

13. S  ~G 11 Comm 

14. S 13 Simp. 

15. N v E 8 Add 

16. E v N 15 Comm 

17. (W v S)  (~M  P) 1,16 MP 

18. S v W 14 Add 

19. W v S 18 Comm 

20. ~M  P 17,19  MP 

21. ~ M 20 Simp 

22. ~ M v ~R 21 Add 

23. M  ~R 22 Impl. 

24. G 2,22 MP 

25. G  ~ G 24,12 Conj. 

26. N  (~G  ~S) 3-25 IP 

 
It is important to note in the above proof, the stepwise application of the rule of implication 

in lines 4 and 5. 



(5) 1. (~Z  ~A)  (~F  ~ U) / ~U v (Q v ~Z) 

2. ~ [~U v (Q v ~Z)] AIP 

3. U  ~ (Q v ~Z) 2 DeM 

4. U 3 Simp 

5. ~ (Q v ~Z)  U 3 Comm 

6. ~ (Q v ~ Z) 5 Simp 

7. ~Q  Z 6 DeM 

8. Z  ~Q 7 Comm 

9. Z  8 Simp 

10. Z v ~ A 9 Add 

11. ~A v Z 10 Comm 

12. A  Z 11 Impl 

13. (A  Z)  (~F  ~ U) 1 Trans 

14. ~F  ~ U 13, 12 MP 

15. ~U  ~ F 14 Comm 

16. ~ U 15 Simp 

17. U  ~U 4,16 Conj 

18. ~U v (Q v ~Z) 2 – 17 I P 

 
(6) 1. (~Z v ~ O)  (~Z  ~E) 

2. ~O  ~U / E  ~ U 

3. ~ (E  ~ U) AIP 

4. ~ (~E v ~ U) 3 Impl 

5. E  U 4 DeM 

6. E 5 Simp 

7. ~ ~ E 7 DN 

8. (~Z  ~ E)  (~Z v ~ O) 1 Comm 

9. ~Z  ~ E 8 Simp 

10. ~ ~ Z 9,7 MT 

11. ~Z v ~ O 1 Simp 

12. ~ O 11,10 DS 

13. Z  ~ O 11 Impl. 

14. Z  ~ U 13,2 HS 

15. Z 10 DN 

16. ~ U 14,15  MP 

17. U  E 5 Comm 

18. U 17 Simp 

19. U  ~ U 18,16 Conj 

20. E  ~ U 3 – 19 IP 



3.3.2 Indirect Proof of Validity in Quantificational Logic 

We also apply the Rule of Indirect Proof in Quantificational Logic. This, as already 
elaborated above, involves the assumption of the negation of the conclusion as an extra 
premiss and then work towards deducing a contradiction from the premisses and the 
assumed extra premiss, which is the negated conclusion. In this respect if have the 
argument: 

(1)      1.      (x) [Px  (Qx  Rx)[ 

2.      (x) (Px  Qx) 

3.      (x) [~Sx  (Rx v Px)] / ( (x) ~[~Sx  ~Rx] 

our first step would be to negate the conclusion which would yield ~ (x) ~[S (~Rx] as the 
assumed indirect premiss. 

It is nevertheless possible to conduct a formal proof of validity for this argument, but 
the introduction of a rule called the Rule of Quantifier Negation (QN) also called 
Exchanging Quantifying Expression (EQ) would be very useful hence facilitate our capacity 
to demonstrate the validity of arguments when applying the Indirect Proof Method 

3.3.2.1 The Rule of Quantifier Negation (QN) 
The rule of quantifier Negation has to do with the relationship between Universal 

and Existential Quantifiers. It involves the introduction of the negation symbol ~ to the 
Quantifiers of Quantificational Logic. We had in a previous unit developed four Equivalence 
rules by introducing the negation symbol ~ to the quantifiers, and it is these four 
equivalence rules of relationship between the Existential and Universal quantifiers as set 
again below that is called the rule of Quantifier Negation: 

 

1. [(x) x]  [~(x) ~x] 

2. [(x) x]  [~(x) ~x] where  stands for any 

3. [(x) ~x]  [~(x) x] predicate whatsoever 

4. [(x) ~x]  [~(x) x] 

Being equivalence rules, the implication is that any of the above logically equivalent 

expressions may replace each other where they occur. In this sense (x) x may replace 

~(x) ~x whenever it occurs and vice versa; this applies to rules 2 – 4 above also. 

Let us now illustrate the application of QN in Indirect Proof Method. Our argument 
would thus be set out as follows: 

 
1. (x) [Px  (Qx  Rx)] 

2. (x) [Px  Qx] 

3. (x) [~Sx  (Rx v Px)]  ( ~(x) ~[~Sx  ~Rx] 

4. ~(x) ~[~Sx  ~Rx AIP 

5. (x) [~Sx  ~Rx] 4 QN 

6. ~Sa  ~Ra 5 UI 

7. Pa  (Qa  Ra) 1 UI 

8. Pa  Qa 2 UI 

9. ~Sa  (Ra v Pa) 3 UI 

10. ~Sa 6 Simp 

11. Ra v Pa 9,10 MP 

12. ~Ra  Sa 6 Comm 

13. ~Ra 12 Simp 

14. Pa 11,13 DS 

15. Qa 8,14 MP 

16. Qa  Ra 7,14 MP 

17. Ra 16,15 MP 

18. Ra  ~Ra 17,13 Conj 

19. ~(x) ~(~Sx  ~Rx) 5 – 18 IP 



  
 

(3) 1. (x) [Ex  Fx] 

2. (x) [Ex  (Fx  Gx)] 

3. (x) [Fx  (Gx  Rx)] / (x) (Ex  Rx) 

4. ~(x) (Ex  Rx) AIP 

5. (x)~ [Ex  Rx) 4 QN 

6. ~(Ez  Rz) 6 EI 

7. Ez  Fz 1 UI 

8. Ez  (Fz  Gz) 2 UI 

9. Fz  (Gz  Rz) 3 UI 

10. ~(~Ez v Rz) 7 Impl. 

11. Ez  ~Rz 11 DeM 

12. Ez 12 Simp 

13. Fz 8,13 MP 

14. ~Rz  Ez 12 Comm 

15. ~Rz 16 Simp 

(2) 1. (x) (Ex  Fx)  

2. (x) (Gx  Hx) 

3. [(x) (Fx  Ix)]  [(x) (Ex  Gx)] 

4. (x) (Hx  Jx) / (x) (Ix  J) 

5. ~ (x) (Ix  Jx) AIP 

6. (x) ~ (Ix  Jx) 5 QN 

7. (x) (Fx  Ix) 3 Simp 

8. [(x) (Ex  Gx)]  [(x (Fx  Ix)] 3 Comm 

9. ((x) (Ex  Gx) 8 Simp 

10. Ea  Ga 9 EI 

11. ~(la  Ja) 6 UI 

12. Ea  Fa 1 UI 

13. Ga  Ha 2 UI 

14. Ha  Ja 4 UI 

15. Fa  la 7 UI 

16. ~la v ~Ja 11 DeM 

17. Ea 10 Simp 

18. Fa 12,17 MP 

19. la 15,18 MP 

20. Ga  Ea 10 Comm 

21. Ga 20 Simp 

22. Ha 13,21 MP 

23. Ja 14,22 MP 

24. ~ ~la 19 DN 

25. ~Ja 16,24 DS 

26. Ja  ~Ja 23,25 Conj 

27. (x) (Ix  Jx) 5-26 IP 

 



16. Fz  Gz 9,13 MP 

17. Gz 17,14 MP 

18. Gz  Rz 10,14 MP 

19. Rz 19,18 MP 

20. Rz  ~Rz 20,16 Conj 

21. (x) [Ex  Rx] 5 – 20 IP 

 

3.4 Conclusion 

Indirect Proof is an additional rule that proves a proposition by showing that its denial 

conjoined with other propositions previously proved or accepted leads to a contradiction. 

In indirect proof, also known as proof by contradiction, one assumes the opposite of what is 

to be proved, and then derives a contradiction from that assumption. The contradiction shows 

that the original assumption is false, which means that the statement to be proved must be 

true. In procedure, we begin by assuming as an extra premiss the negation of the 

conclusion of our argument, and then work towards deriving a contradiction from the 

premisses of the argument by any sequence of the rules of inference. The point is that if 

an argument is valid and we assume the contrary, that is assume that the argument is 

invalid by making the premiss(es) true and the conclusion false, then we are bound to 

deduce a contradiction from our assumption. 

Indirect proof will often simplify a proof, thereby making proofs shorter or easier to 

solve. The method of proof is called "indirect" because from taking what seems to be the 

opposite stance from the proof's declaration, then trying to prove that. If you "fail" to prove 

the falsity of the initial conclusion, then the argument must be valid. 

3.5 Summary 

The indirect proof method shows the truth of a statement by assuming its negation 

and then showing that this leads to a contradiction. 

This unit strengthens our repertoire of testing the validity of arguments by allowing 

us to assume as an extra premiss the negation of the conclusion of the argument, and from 

the assumed premiss and the other premiss(es) derive a contradiction. The derivation of a 

contradiction from the negated assumed premiss, means that the original conclusion is 

valid. 

It is pertinent to, however, note that as in Conditional Proof we begin proof in Indirect 

Proof with assumption; we assume as an extra premiss, the contradiction of what has to 

be proved, that is we begin by denying the conclusion. Remarkably, Indirect Proof differs 

from Conditional Proof in that in the former what is assumed is a part of the argument 

whereas in the case of the later it is not. 

3.6 Glossary 

Indirect Proof A method of proving the validity of an argument by showing that a 

counterexample leads either to an absurdity or to a contradiction. That is the rules of 

inference that permit (i) inferring not ~p having derived a contradiction from p and (ii) 

inferring p having derived a contradiction from ~p 

Quantifier Negation (QN) – Also called Exchanging Quantifying Expression (EQ) it has 

to do with the introduction of the negation symbol ~ to the quantifiers of Quantification 

theory 



Reductio ad absurdum: Reductio ad absurdum (Latin: reduction to the absurd) is a form 

of argument in which a proposition is disproved by assuming the opposite of what is to be 

proved and deducing its implications to absurd , i.e., self-contradictory consequence. 

3.7 Check your Progress 

Exercises 

For each of the following argument forms, construct an Indirect Proof. 

(1) 1. ~(~R v ~ Q) 

2. [~(D  V)  ~ R]  [v  (U  A)] 

/ E v A 

(2) 1. (A  B)  (~B  ~ J) 

2. ~ A  (J v F) / F v G 

(3) 1. ~W  ~X 

2. Y  (W  ~W) 

3. A  Z / ~X  A 

(4) 1. ~K v ~ M 

2. K  R 

3. ~M  [(X  R)  A] / X  A 

(5) 1. E  (B  W) 

2. (W  G)  S 

3. U  (G  ~S) / E  (B  ~ U) 

(6) 1. ~C v (A v N) 

2. (A  S)  (N  S) 

3. S  ~ D / C  ~ D 
 

(7) 1. (A  B) v [(C  D)  E] 

2. (A  B)  E / E 

(8) 1. (~Z v X)  (~U v D) 

2. ~X v ~ D / Z  ~ Y 
 

(9) 1. (A  B)  ~ C 

2. C v ~ D / D  ~ (~A v ~ B) 
 

(10) 1. (~K v M)  (A  B) 

2. (M v B)  {[Z  (X v Z)]  (K  A)} 

/ K  A 

III Construct Indirect proofs for each of the following arguments. 

(1) 1. (x) [Ax  (Kx  Mx] 

2. (x) (Ax  Bx) / (x) (~Mb  ~Kb) 

(2) 1. (x) (Ax  Dx) 

2. (x) (Fx  ~Dx) / (x) [Fx  ~Ax] 

 

(3) 1. (x) (Ax  Bx) 



2. (x) (~Bx  ~Ax) / (x) (~Ax  Bx) 

(4) 1. (x) [(Gx  Hx)  (Ix  Jx)] 

2. (x) [(Gx  Kx)  Hx] / (x) [(Gx  Kx)  Ix] 

(5) 1. (x) ~(~Rx v ~Sx) 

2. (x) [~(~Sx  ~Mx)  Bx] / (x) (Bx  Rx) 

(6) 1. (x) [Ex  ~ Dx] 

2. (x) [Kx  Dx] / (x) [Da  Fa] 

(7) 1. (x) [(Gx  Hx)  (Ix  Jx)] 

2. (x) [(Gx  Kx)  Hx] / (x) [(Gx  Kx)  Ix] 
 

(8) 1. (x) [Ax  (Sx  Wx)] 

2. (x) [(Ax  (Sx  ~Wx)] 

3. (x) [Ax  Ix] / (x) [Ix  Ax] 

(9) 1. x) [Ax  Bx] 

2. (x) [(Ax  Bx)  Dx] / (x) [~Dx  ~Ax] 

(10) 1. (x) [Zx  Xx] 

2. (x) [Zx  Xx] / Xx v Ux 
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1.1 Introduction 

This study unit introduces the learner to a truth tree pattern of lines and symbolized 

statements that reveals whether it is possible for a given compound statement to be true. 

If it is possible, the truth tree also shows what truth values may be assigned to the simple 

components of that statement to obtain a true result. 

1.2 Intended Learning Outcomes (ILO’s) 

It is expected that at the end of this unit, you will be able to 

1. construct truth tree involving the reduction of the compound statement into 

simple statements and/or negated simple statements 

2. determine whether individual statements are self-consistent or self- 

contradictory using the truth tree technique 

3. test groups of statements for consistency using the truth tree technique 

1.2 Truth Tree Test of Propositions 

Truth trees also known as the "semantic tableau" test was conceived independently 

by E. W. Beth and Jaakko Hintikka in the 1950's. Several truth-tree formats have been 

developed but in this course material we shall follow the format devised by Richard Jeffrey. 

A truth tree is a pattern of lines and symbolized statements that reveals whether it 

is possible for a given compound statement to be true. If it is possible, the truth tree also 

shows what truth values may be assigned to the simple components of that statement to 

obtain a true result. Thus, a truth tree accomplishes many of the same things as a truth 

table, and the use of truth trees can be adapted to determine everything that truth tables 

can determine. However, truth trees accomplish some things more naturally than anything 

else, namely, determining whether individual statements are self-consistent or self- 

contradictory, testing groups of statements for consistency, and testing arguments for 

validity. Truth trees get their name from the fact that their pattern of lines and symbolized 

statements resembles an inverted tree, with the trunk at the top and the branches at the 

bottom. 



1.3.1 General Procedure for Constructing Truth Tree 

1.3.1 (a) Decomposition of Propositions 

The general procedure for constructing a truth tree involves the reduction of the 

compound statement into simple statements and/or negated simple statements. This is 

called decomposition. Thus if we have the following compound statement: 

(A • ~B) v (C • ~D) 

to construct a truth tree we begin with the main operator in the statement, which in this 

case is a vel (v). We note that the truth functional definition of the vel operator stipulates 

that the given compound statement is true if and only if (A • ~B) is true or (C • ~D) 

is true (or both). This double alternative for truth is represented in a truth tree by branching. 

Branching is accomplished by splitting the compound statement into its two components 

and writing those components adjacent to each other beneath the compound statement: 

 
The two branches extending downward from the given statement represent alternate 

pathways for truth. The given compound statement will be true if (A •~B) is true or (C • ~D) 

is true (or both). Thus, each branch represents a sufficient condition for the truth of the 

compound statement. In this initial stage of our truth tree, the compound statement is said 

to have been decomposed into its two conjunctive components. We indicate this 

decomposition by placing a check mark to the right of the compound statement. We now 

proceed to decompose the conjunctive statements (A •~B) and (C • ~D). To accomplish 

this, we note that the truth functional definition of the dot operator (•) stipulates that a 

conjunctive statement is true if and only if both of its components are true. This requirement 

that both components be true is represented in a truth tree by stacking. Stacking is 

accomplished by splitting a compound statement into its components and writing those 

components in a vertical column beneath the statement: 

 

As a result of the stacking arrangement given to A and ~B, any "movement" (which we will 

describe shortly) along the left-hand branch (or pathway) must pass through both ~B and 

A. Similarly, any movement along the right-hand branch (or pathway) must pass through 

both ~D and C. This arrangement reflects the requirement that both conjuncts must be true 

for the entire conjunction to be true. Each of the conjunctive statements has now been 



decomposed into its components, and to indicate this fact, we place a check mark to the 

right of each. 

The truth tree for the given compound statement is now finished. A truth tree is said 

to be finished when the given statement has been completely decomposed into simple 

statements and/or negated simple statements. In the present example, the given statement 

has been completely decomposed into A, ~B, C, and ~D. When the truth tree is 

finished, we may proceed to evaluate its paths. Unlike truth tree construction, which 

involves a downward procedure, evaluation involves an upward procedure in which we 

begin at the bottom of the various paths and move upward to the given compound 

statement. When conducting this evaluation, we ignore all statements that have been 

checked. 

 
1.3.1 (b) Decomposition Rules 

The rationale for decomposing disjunctive statements and conjunctive 

statements has been explained. Disjunctive statements are decomposed by branching, 

and conjunctive statements are decomposed by stacking. The general rules are as follows: 

 

 

We now proceed to explain how statements involving the other three logical operators are 

decomposed. The rule for negated simple statements is suggested by the example 

explained above. Negated simple statements are represented in truth trees by single 

negated letters. No further decomposition is possible. 

The rule for conditional statements reflects the fact that p  q is logically equivalent 

to ~p v q. This equivalence may be established by means of a truth table, but it is also 

suggested by many instances from ordinary language. For example, the English statement 

"If you irritate me, then I will slap you" is equivalent in meaning to "Either you do not irritate 

me, or I will slap you." Thus, the rule for the material conditional is: 
 

 

The decomposition rule for bi-conditional statements is dictated by the truth functional 

assignments needed to make bi-conditional statements true. The statement form p • q is 

true if and only if p and q have the same truth value; in other words, it is true when either 

p and q are both true or p and q are both false. Therefore, p • q is logically equivalent to 

the disjunction [(p • q) v (~p • ~q)]. Accordingly, the rule for bi-conditionals is as follows: 

 

 



Let us now turn to the rules for negated statements involving the five operators. The easiest 

of these is the rule for negated negations. The statement form ~ ~p is logically equivalent 

to p. Thus, ~ ~p is decomposed as follows: 

 
(5) ~ ~p 

p 

 
This rule is so simple that it may be applied with any of the other rules in a single step. 

The decomposition rules for negated conjunctions and negated disjunctions are 

derived from De Morgan's rule. According to this rule, which may be proved by truth tables, 

~ (p • q) is logically equivalent to ~p v ~q, and ~ (p v q) is logically equivalent to ~p • ~q. 

Thus, the decomposition rules for these statement forms are as follows: 

 
 
 

 
The rule for negated conditionals is dictated by the truth functional assignments under 

which unnegated conditionals are false. The statement form ~(p  q) is true if and only if p  

q is false; but p  q is false if and only if p is true and q is false. Thus, ~(p  q) is logically 

equivalent to p • ~q. Accordingly, the decomposition rule is: 

 
(8) ~( p  q ) 

p 

~q 

Finally, the rule for negated bi-conditionals, like the rule for negated conditionals, is 

dictated by the truth functional assignments under which un-negated bi-conditionals are false. 

The statement form p • q is false if and only if p and q have opposite truth values; in other 

words, it is false when either p is true and q is false or p is false and q is true. Thus, ~(p  q) is 

logically equivalent to [(p • ~q) v (~p • q)], and so the decomposition rule for negated bi- 

conditionals is: 

 
 
 

 



The decomposition rules are summarized as follows: 
 
 

 

 
 

With these rules, it will be demonstrated that Truth trees accomplish some things 

more naturally than anything else, namely, determining whether individual statements are 

self-consistent or self-contradictory, testing groups of statements for consistency, and 

testing arguments for validity. We will begin with the application of 

truth trees to determining self- consistent and self-contradictory statements. 

1.3.2 Truth Tree Test of Consistency and Contradiction 

Preliminarily, a pair of statements is said to be consistent if and only if there is at 

least one line on their truth tables in which both statements turn out true. Also any group 

of statements could be tested for consistency--not just pairs of statements. Applying this 

idea to single statements, we can say that a single statement is self-consistent (or internally 

consistent) if its truth table has at least one line on which the statement turns out true. If 

there is no such line--that is, if the statement turns out false on every line--the statement is 

self-contradictory. Determining whether a single statement is self-consistent or self- 

contradictory is the most basic function of a truth tree. 

If we take our example of: 

(A • ~B) v (C • ~D) 

to illustrate how to determine self-consistency and self-contradictory using a truth tree we 

are faced with the possible ways to assign truth values to A, B, C, and D in such a way 

that the compound statement turns out true. To use the truth tree to do this, we begin with 

the main operator in the statement, which in this case is a vel (v). Applying the rule for the 

decomposition of a disjunctive statement we have: 



 
 

and then if we applying the stacking rule for the decomposition of a conjunctive statement 

we have: 

 
 

 
The truth tree for the given compound statement is now finished that is, the given 

statement has been completely decomposed into A, ~B, C, and ~D. Because the truth tree 

is finished, we may proceed to evaluate its paths. Evaluating the left-hand path reveals that 

making ~B and A true causes the given statement to be true; and evaluating the right-hand 

path reveals that making ~D and C true causes the given statement to be true. In other 

words, the given statement is true if and only if A is true and B is false, or C is true and D 

is false (or both). Because it is possible to assign truth values in such a way as to make 

the given compound statement true, that statement is self-consistent. 

Let us construct truth trees for three additional examples. We now try a conjunctive 

statement: 

(K  G) • ~(K v G) 

Because the main operator is the dot, we begin by decomposing the conjunction. As we 

do so, we place a check to the right of it: 
 

Next, we have the option of decomposing the conditional statement first, followed by the 

negated disjunction, or the negated disjunction first, followed by the conditional statement. 

When faced with such an option, a handy rule of thumb is: Always decompose the non- 

branching (stacking) statement(s) first. Following this rule ensures that the resulting truth 

tree will be simpler. Here, the non-branching statement is the negated disjunction. Thus, 

we have: 



 
Note that the negated disjunction is checked as it is decomposed. Next, we decompose 

the conditional statement: 

 

 
The truth tree is now finished, so we may proceed to evaluate its paths. Examining 

the bottom of the truth tree, we see that it contains two paths that lead upward to the given 

compound statement. If we take the right-hand path, we encounter first a G and then a ~G, 

which is a contradiction. The occurrence of this contradiction means that it is impossible 

for the path to contain all true statements. In such a case we say that the path is "closed," 

and we indicate this fact by placing an × at the bottom end. This × may be thought of as 

"blocking" the path. On the other hand, if we take the left-hand path, we encounter first a 

~K, then a ~G, and finally another ~K. Because no contradiction is encountered, it is 

possible for the path to contain all true statements. In such a case we say that the path is 

"open." 

The fact that at least one path is open indicates that the given compound statement 

is self-consistent. Also, the appearance of the statements ~K and ~G in the left-hand path 

means that the given compound statement turns out true when ~K is true and ~G is true; 

that is, when K and G are both false. This fact can be verified by entering these truth values 

into the original statement and using them to compute its truth value. 

Here is the third example: (H • ~N)  (N v ~H) 

First, the bi-conditional is decomposed: 

 
 

 
Next, the conjunction and the negated disjunction (which involve no branching) are 

decomposed: 



Note that when ~(N v ~H) was decomposed, ~~H was replaced with H in a single step. 

Lastly, the disjunction and the negated conjunction are decomposed. These steps 

involve branching: 

 
 
 
 

 

When we attempt to ascend any of the four paths of this truth tree, we encounter a 

contradiction. This means that all four paths are closed, and we indicate this fact by placing 

an "×" at the bottom end of each path. When all of the paths of a truth tree are closed, we 

say that the truth tree itself is closed, and this tells us that the given proposition is self- 

contradictory. There is no possibility for the given proposition to be true. At this point it 

should be apparent that there are alternate ways of constructing truth trees for most 

statements. For example, we often have the option of decomposing a disjunctive statement 

first, followed by a conjunctive statement, or a conjunctive statement first, followed by a 

disjunctive statement. Thus, the question arises whether the method of construction affects 

the outcome. The answer is no, it does not. Thus, the example we just finished could have 

been decomposed differently, but no matter which sequence we might have chosen, the 

resulting truth tree would have turned out closed. A similar remark applies to open truth 

trees. Mindful of this fact, we can now assert an important rule for truth trees: 

Rule 1: A statement is self-contradictory if and only if it has a closed truth tree. 

Our fourth example involves a negated conditional statement: 

~{[P v (R • S)]  [(R v S)  (P  R)]} 

First, we decompose the negated conditional statement in braces; next, the resulting 

negated conditional statement in brackets; and then, the resulting negated conditional 

statement in parentheses: 

 
 
 
 
 
 

Next, we have the option of decomposing either P v (R • S) or R v S. Noting that ~R 

appears in the existing truth tree and that this letter will contradict the R in R v S, we choose 



to decompose R v S first, then P v (R • S). This sequence results in a truth tree that is 

slightly shorter than the truth tree that would have resulted if we had decomposed these 

statements in reverse order: 

 

 
The truth tree is now finished and we can proceed to evaluate its paths. Because a 

contradiction (R and ~R) appears in the upper left-hand path, the path is closed, and we 

indicate this fact by placing an × beneath the R. Because this path is closed, no further 

entries need be made beneath the R. A contradiction (R and ~R) also appears in the lower 

right-hand path, so we place an × at the bottom end of this path as well. One path remains 

open, however, and this means that the given proposition is self-consistent. Examination 

of the open path reveals that the proposition turns out true when P is true, S is true, and R 

is false. 

A final point needs to be made about decomposing disjunctions. Consider, for 

example, the following proposition: 

(A v B) • (C v D) 

The finished truth tree for this proposition is as follows: 
 

 

 
It is important to notice that when the second disjunction (C v D) is decomposed, identical 

entries must be made under both A and B. We can express this requirement as a general 

principle governing the decomposition of any statement. Whenever a statement is 

decomposed, the resulting components must be attached to the end of every open branch 

beneath the decomposed statement. 



The basic principles of truth tree construction and path evaluation may now be 

summarized: 

(1) Truth tree construction begins with the main operator of a statement. 

(2) Truth tree construction proceeds downward, while path evaluation proceeds 

upward. 

(3) Statements that entail stacking should be decomposed before statements 

that entail branching. 

(4) Whenever a statement is decomposed, a check mark is placed to the right 

of it. Checked statements are ignored in the phase of path evaluation. 

(5) A truth tree is finished when the given statement is completely 

decomposed into simple statements and/or negated simple statements. 

(6) A path is closed if and only if it contains  a contradiction. Such paths 

are "blocked" by placing an × at the bottom end. 

(7) Any path that is not closed is open. 

(8) A truth tree is closed if and only if all its paths are closed. 

(9) A statement is self-contradictory if and only if it has a closed truth tree. 

Otherwise it is self-consistent. 

(10) Whenever a statement is decomposed, the resulting components must be 

attached to the end of every open branch beneath the decomposed statement. 

1.3.3 Testing Groups of Statements for Consistency 

In the previous section in this unit, we saw how truth trees are used to test 

individual statements for self-consistency. In this section we use truth trees to test groups 

of statements for consistency. Suppose we are given the following group of statements: 

S1, S2, S3, . . . , Sn 

These statements are consistent with one another if and only if it is possible to assign 

truth values to their simple components in such a way that all of the statements turn out 

true. But if it is possible to assign truth values in this way, then, and only then, will the 

following conjunction turn out true: 

S1 • S2 • S3 • . . . • Sn. 

As a result, the statements S1, S2, S3, . . . , Sn are consistent if and only if the 

conjunction formed from them is self-consistent. 

To see this idea from another angle, suppose we construct a truth table for the 

statements S1, S2, S3, . . . , Sn , and suppose there is at least one line in that truth table 

in which all of the statements turn out true. The group of statements is then consistent. But 

each and every one of these statements is true on a line if and only if the conjunction of 

those statements is true on that line. Thus, the group of statements is consistent if and only 

if the conjunction of those statements is self-consistent. Stated otherwise, the group of 

statements is inconsistent if and only if the conjunction of those statements is self- 

contradictory. 

Now, applying truth trees to this idea, the statement S1 • S2 • S3 • . . . • Sn is self- 

contradictory if and only if it has a closed truth tree. Thus, we have the following rule: 

Rule 2: A group of statements is inconsistent if and only if the conjunction of those 

statements has a closed truth tree.(Rule 1 is already stated in the previous section) 

In constructing such a truth tree, we can skip the step of actually writing out the 

conjunction of the statements. We need only stack the statements in a column and proceed 



as with any other conjunctive statement. For example, suppose we are given the following 

group of statements: 

A • B, A  (C v ~D),  B  (D • ~ C) 

We begin by stacking these statements in a column and proceed to construct a truth 

tree in the normal fashion. The finished truth tree is as follows: 
 

 
Because every path of the truth tree is closed, the truth tree itself is closed. This means 

that there is no path by which all of the statements can be true. Therefore, the given group 

of statements is inconsistent. At this 

point we may observe something that may have been noticed earlier: If any finished path 

of a truth tree is open, the statement we are testing is self-consistent. A path is said to be 

finished if finishing the entire truth tree would involve making no changes in that path. Thus, 

if we are not interested in finding all of the truth value assignments that make the statement 

true, it is not necessary to finish the other paths. As an illustration of this fact, consider the 

following truth tree. Only the left-hand part has been finished: 

 

 



The path leading upward from B, in the lower left-hand corner, is finished. If the entire truth 

tree were to be finished, no changes would have to be made to that path. Also, that path 

reveals no contradictions. Thus, the path is open, and the given group of statements is 

consistent. The statements turn out true when B is true, C is true, and A is true. If we are 

only interested in finding one set of truth values that makes the group of statements true, 

it is not necessary to finish the truth tree. 

Note that in this example, the third statement from the top has been checked even 

though it has not been completely decomposed. It has only been decomposed in regard to 

the left-hand branch. This amounts to a modification of our convention for checking 

statements, and it should only be used when we are intentionally leaving part of the truth 

tree unfinished. 

1.4 Conclusion 

he truth tree technique has many attractive features: Like formal proofs, it can be 

employed in other branches of logic; like full truth tables, it is an effective procedure; and 

like proofs and brief truth tables, it is a practical test for complex arguments. In fact, truth 

trees provide an alternate decision procedure for assessing validity, logical equivalence, 

satisfiability and other logical properties of sentences and arguments. The advantage of 

truth trees is that it is a decision procedure whose complexity is not a function of the 

number of propositional letters in the formula being analyzed. The method is capable of 

being adapted to a more expressive logical language. 

1.5 Summary 

The truth tree method applies immediately to look for counterexamples to a 

sentence being a contradiction. We make the sentence to be tested the first line of a tree. 

If there are one or more counterexamples, that is, cases in which the sentence is true, the 

tree method is guaranteed to find them. If the tree method does not turn up a 

counterexample, that is, if all paths close, we know there are no cases in which the 

sentence is true. But if there are no cases in which it is true, the sentence is false in all 

cases; in other words, it is a contradiction. 

In the same vein, truth trees test for consistency; a group of statements is consistent 

if and only if the conjunction of those statements is self-consistent. Stated otherwise, the 

group of statements is inconsistent if and only if the conjunction of those statements is self- 

contradictory. 

1.6 Glossary. 

Branching: splitting the compound statement into its two components and writing those 

components adjacent to each other beneath the compound statement: Each branch will 

represent one way of making true all the sentences which appear along it. The left branch 

will make line 1 true by making 'A' true. The right branch will make line 1 true by making 'B' 

true. Since the paths have branched, they represent alternative ways of making line 1 true. 

Closed Branch: A branch containing a proposition P and its literal negation ~P. A closed 

branch is represented by an 𝗫 

Closed Tree: A tree is closed when all of the tree’s branches are closed. A closed tree 

will have an 𝗫 under every branch. 

Counterexample. Counterexample disproves a statement by giving a situation where the 

statement is false; truth tree as a proof by contradiction, proves a statement by assuming 

its negation and obtaining a contradiction. 



Consistency: A set of one or more propositional logic sentences is consistent if and only 

if there is at least one assignment of truth values to sentence letters which makes all of the 

sentences true. The truth tree method applies immediately to test a set of sentences for 

consistency. 

Decomposition: A mechanism that breaks the statement down into its constituent pieces. 

Decomposition occurs by applying specific decomposition rules. There are 9 

decomposition rules, each applying to a specific type of decomposable proposition 

Open Branch: An open branch is a branch that is not closed. That is, a branch that does 

not contain a proposition P and its literal negation ~P. 

Stacking: splitting a compound statement into its components and writing those 

components in a vertical column beneath the statement A stacking rule is a truth-tree rule 

where the condition under which a proposition 'P' is true is represented by stacking. A 

stacking rule is applied to propositions that are true under one truth-value assignment. 

1.7 Check your Progress 

Exercises I 

Determine whether the following propositions are self-consistent or self-contradictory by 

constructing a truth tree for each. For those that are self-consistent, identify at least one 

set of truth values that makes the proposition true. Test your answer by using these truth 

values to compute the truth value of the given proposition. 

1. (K  ~M) • (M  ~K) 

2. (S  ~R)  ~(R  ~S) 

3. ~[(N  ~B)  (B  N)] 

4. ~[(E • G) É (E • ~G)] 

5. [A • ~(R v H)] • [R • ~(A • H)] 

6. ~{[P  (B  ~P)]  [B  (P  ~B)]} 

7. [R  (N • ~C)] • [N  (C • R)] 

8. [(G • ~E) v (G • ~C)] • [(G v D)  (E • C)] 

9. [S • (P v ~R)]  [R •~(S • P)] 

10. ~{[C  (K  M)]  [K  (C  M)]} 

Exercises II 

Use truth trees to determine if each of the following groups of statements is consistent or 

inconsistent. If consistent, identify one set of truth values that makes the group of 

statements true. Then, test your answer by entering these truth values into the statements 

of that group and proceed to prove that each statement turns out true. 

1. M  ~D, K v D, M • K 

2. S • R, S  G, ~R v ~G 

3. C  (N • ~H), N  ~C, C v H 

4. (P • ~B)  (Q v D), ~(P v Q), B  D 

5. (S • C)  (E v G), S  C, E  G, S • ~G 

6. (R  B)  (R • ~Q), R  (B • Q), ~B v R 

7. T  (F v ~A), R  (A v ~F), T • R, ~(A  F) 

8. S  (N • ~C), H  (C v ~N), H v S 

9. (D v ~B)  (N • T), Q v ~B, D v ~Q, N  T 

10. (B v E)  ~S, G  (S • E), A  (S • B), A v G 
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2.1 Introduction 

This study unit introduces the learner to another method of proof of validity that takes the 

form of indirect proof or argument by reduction ad absurdum called the truth tree test 

2.2 Intended Learning Outcomes (ILO’s) 

It is expected that at the end of this unit, the learner will be to 

1. apply a less challenging method of testing validity of arguments 

2. explain the rules governing the use of truth tree tests of validity 

3. state how counterexamples are identified 

4. construct truth tree tests of the validity and invalidity of arguments 

2.3 Truth-Tree Tests of Validity in Propositional Logic 

The truth tree test of validity takes the form of indirect proof or argument by reduction 

ad absurdum. According to Richard Jeffery (1989:31) the truth trees method might aptly 

be called refutation trees or reduction trees. It proves the validity of an argument by refuting 

the hypothesis that the premisses together with the denial of the conclusion form a 

satifiable set. This means that the method tries to demonstrate that a counterexample to a 

valid argument will lead to some inconsistency (counterexamples are cases in which the 

premisses are all true and the conclusion false). 

By definition, a valid argument is one in which it is impossible for the premisses to 

be true and the conclusion false. In other words, a valid argument is one in which it is 

impossible for the premisses and the negation of the conclusion all to be true. But this 

means that an argument is valid if and only if the conjunctive statement formed from the 

premisses and the negation of the conclusion is self-contradictory. Now, applying truth 

trees to this idea, we have the following rule: 

Rule 3: An argument is valid if and only if the conjunction of the premisses and the negation 

of the conclusion has a closed truth tree 

If the truth tree produced from the conjunction of the premisses and the negation of 

the conclusion is closed, there is no path by which the premisses can be true and the 

conclusion false, and so the argument is valid. On the other hand, if this truth tree is open, 

then there is such a path, and so the argument is invalid.       The idea behind this rule 

can be stated symbolically. Suppose we have an argument consisting of the following 

premisses and conclusion: 

P1 

P2 

P3 



M 

Pn 

C 

This argument is valid if and only if the following conjunctive statement has a closed truth 

tree: 

P1 & P2 & P3 & . . . & Pn & ~C 

To construct a truth tree for this conjunctive statement, we simply stack the premisses and 

the negation of the conclusion and proceed as with any other conjunctive statement. 

Consider, for example, the following argument: 

A  (B •C) 

(D v E)  F 

A v ~F 

E  C 

 
Combining these premisses with the negation of the conclusion, we have the following 

finished truth tree: 
 
 

 

 
Because all paths are closed, it is impossible for the premisses to be true and the 
conclusion false. Thus, the argument is valid. Here is another argument: 

A  ~(B • C) 

 A  C 

B 
 

The finished truth tree is as follows: 



 

 
 
 
 

Because one path of this finished truth tree is open, the argument is invalid. The open path 

reveals that the argument has true premisses and a false conclusion when C is true, B is 

false, and A is true. 

How can we identify Counterexamples? 

Counterexamples are used to prove that a statement is invalid. 

Identify the hypothesis and the conclusion in the given statement. 

The counterexample must be true for the hypothesis but false for the conclusion. 

Outline of how to test arguments using the Truth Trees method 

1. List the premisses and the negation of the conclusion in a vertical column. This is to 

assume invalidity. This column forms the "trunk" of the tree. 

2. Take any compound statement in the trunk, check it off, and draw its truth-conditions at 

the bottom of the trunk, following the decomposition rules from the chart below. If 

compound statements remain on any branch, check them off and break them down, listing 

their truth conditions (by the branching rules) at the bottom of every open branch below 

them. Repeat until each compound statement in each branch has been checked off and 

broken down (decomposed) 

Tip: To save labor and paper, check off and breakdown all non-branching compounds 

before any branching compounds. 

3. If a branch contains contradictory information anywhere along it, including the trunk, 

then close that branch with an x at its bottom. When these steps are complete, then either: 

All branches are closed. This means that the initial assumption of invalidity 

leads to contradiction; hence the assumption is false. The argument is valid. 

At least one branch is open. This means that the assumption of invalidity is not 

contradictory; there is at least one assignment of truth-values, which makes all the 

premisses true and the conclusion false. The argument is invalid. 

Each open branch is a counterexample --a vertical, or jagged, representation of an 

invalidating row of a truth table. 



General rules 

To list a statement (in trunk or branch) is to assign it the truth-value T. 

Decomposition rules apply only to whole statements, not to compounds that are 

components of larger compounds. In deciding which decomposition rule to apply to a 

statement, look only at the statement's main connective. A compound will branch if and 

only if it has more than one T in its truth table column. 

Branching represents inclusive disjunction: the statement is true under one or the 

other or both of the conditions that branch below it. Non-branching represents conjunction: 

the statement is true only under both the conditions listed below it. The 

decomposed components of a compound must be listed at the bottom of every open 

branch below the compound. 

2.4 Conclusion 

The truth tree test is designed such that it is guaranteed to turn up at least one 

counterexample to an argument if there are any counterexamples. If the method finds a 

counterexample, we know the argument is invalid. If the method runs to completion without 

turning up a counterexample, we know there are no counterexamples, so we know that the 

argument is valid. 

This method is more nearly mechanical than is natural deduction. This fact makes 

truth trees less of a challenging, but also less aggravating, because they are easier to do. 

Truth trees also have the advantage of making the content of propositional logic statements 

dear, in a way which helps in proving general facts about systems of logic. 

2.5 Summary 

To use a tree to test for validity, you write down at the root of the tree all premisses and 

the negation of the conclusion. Then you work through the tree until you find an open and 

completed branch or all branches are closed. If you found an open and completed branch, 

then that means that it is possible for all statements in the root of the tree to be true, which 

in turn means that it is possible for all premisses to be true while the conclusion is false. 

Hence, the argument is invalid. If all branches closed, the opposite is true, i.e. the argument 

is valid. 

2.6 Glossary 

2.7 Check your Progress 

 
1. F  (S  R) 2. B  (H • T) 

 ~R  
S  ~F 

~(T • E)  

~B 

 
3. 

 

G  A 

G  N  

G  (A • N 

 

4. R  (T v K) 

~(K • P ) 

R  T 

 
5. 

 
(~ S • P ) 

S  ~ F 

S  F 

 

6. J  ~ ( A  P ) 

R  ( J • ~ P ) 

R  A 

 
7. 

 
G 

 
D 

 
8. E  (A v T) 

 F  T (A • T)  M  

~(D v T)  E  M 
~ (G v F ) 



9. Q v P 

Q v T 

~(T v P) 
N  Q 

10. ~ [(P v B )  (Q v D)] 

P  ~D 

Q  B 

P  B 

 
11. 

 
(N  J)  G 

 
12. ~[Q  (N • C)] 

 ~(G • N) 

J  ~D 

K  G 

C v T 

T  ~(Q v E) 
~ N 

 
13. 

 

H  (Q  ~H) 

P v E)  (Q • L) 

 
14 

 

. L  (N  C) 
~ C  (L v N) 

~ (E • H) N  C 

 
15. E v ~(G • B) 

F  (B • K)   
E v G 
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3.1 Introduction 

This study unit introduces the learner to how to apply the truth tree method to test validity 

in Predicate (Quantificational) Logic 

3.2 Intended Learning Outcomes (ILO’s) 

It is expected that at the end of this unit, the learner will be able to 

1. explain the rules governing proof of invalidity in Predicate Logic 

2. construct truth tree tests of invalidity in Predicate Logic 

3.3 Proving Invalidity in Predicate Logic 

In the previous unit, we underscored the point that to say that an argument is valid 

is to say that in every possible case in which the premisses are true, the conclusion is true 

also. We re-express this by saying that an argument is valid if and only if it has no 

counterexamples, that is, no possible cases in which the premisses are true and the 

conclusion false. In propositional logic, the trees were really just a labor-saving device. We 

could always go back and check through all the truth tree lines. 

Predicate logic changes everything; although truth trees can be used in predicate 

logic to prove the validity of many fairly simple arguments, these proofs usually turn out to 

be longer and more complicated than corresponding proofs by natural deduction. A more 

practical application for truth trees is to prove the invalidity of invalid arguments. When 

used for this purpose, one general approach to the subject depends upon the same 

principles as the finite universe method. 

The use of truth trees presented in this section is confined to that approach. The 

finite universe method depends on the idea that any argument that can have true 

premisses and a false conclusion in a universe containing only a few members is invalid. 

First a universe of one is tried, then a universe of two, then a universe of three, and so on. 

Eventually some universe having a finite size will be found in which it is possible for the 

premisses to be true and the conclusion false. Identifying an assignment of truth-values in 

that universe that gives this result proves the argument invalid. In a finite universe, 

universally quantified statements are equivalent to finite conjunctions of singular 

statements, and existentially quantified statements are equivalent to finite disjunctions of 

singular statements. Thus, in a universe consisting of two members, which we will name a 

and b, the statement 

(x ) Fx is equivalent to Fa • Fb, and (x)Fx is equivalent to Fa v Fb. In a universe 

consisting of three members, which we will name a, b, c, (x)Fx is equivalent to Fa • Fb • 



Fc, and (x)Fx is equivalent to Fa v Fb v Fc, and so on. In a universe consisting of only 

one member, which we will name a, both (x)Fx and (x)Fx are equivalent to Fa. 

 
To use truth trees to prove invalidity in predicate logic follow these three steps: 

(1) Select a universe of a certain size. 

(2) Translate the argument into conjunctions and/or disjunctions of singular statements 

as just explained. 

(3) Construct a truth tree and evaluate its paths. Step 3 is accomplished in basically the 

same way as it is for arguments in propositional logic.  The 

difficulty with using truth trees to prove invalidity in predicate logic arises from the fact that 

universally quantified statements are often expressed as conditionals (which involve 

branching), and existentially quantified statements are translated in a finite universe as 

disjunctions (which also involve branching). The result is that truth trees for predicate logic 

can expand off the page in a horizontal direction. We can often avoid 

this problem, however, by strategically finishing only one branch (or path) of the truth tree, 

and leaving the other branches dangling. If we know that the argument in question is 

invalid, our only interest is in finding one assignment of truth values that makes the 

premisses true and the conclusion false. If, in constructing our truth tree, we strategically 

avoid finishing paths that will close, we can usually finish a single open path fairly quickly. 

This open path will disclose the needed truth value assignment. 

Consider, for example, the following argument: 
 

(x)(Fx v Gx) 

(x)~Fx 

(x)Gx 

To prove this argument invalid we first consider a universe containing only one member. 

If we call that member a, the argument becomes equivalent to: 

Fa v Ga 

~Fa 

Ga 

After negating the conclusion, the truth tree for this argument is as follows: 

 

 
Since the truth tree is closed, it is impossible for the argument to have true premisses and 

a false conclusion in a universe of only one member, so next we try a universe of two. If  

we name the second member b, the argument becomes equivalent to: 
 

(Fa v Ga) v (Fb v Gb) 

~Fa v ~Fb 

Ga • Gb 

In performing this translation for a two-member universe, remember that statements 

with existential quantifiers become disjunctions, and statements with universal quantifiers 



become conjunctions. After negating the conclusion, we proceed to construct a truth tree; 

but to keep it simple, we finish only part of it. To help identify the steps, we have numbered 

the lines and noted the source of the various steps in the right-hand margin. Also, we have 

adopted our modified convention of placing check marks next to statements that are 

decomposed in at least one branch: 

 
 
 

 
 

The two open paths at the bottom of the tree are finished, because if the entire truth 

tree were finished, nothing would have to be changed in these two paths. The left-hand 

path reveals that the argument will have true premisses and a false conclusion in a two- 

member universe when Ga is false, Fb is false, and Fa is true. When these truth-values 

are assigned to the simple statements in the original argument (as converted to a two- 

member universe), the premiss turn out true and the conclusion false. Thus, we have 

proved the argument invalid. If all the paths of this truth tree had turned out to be closed, 

then we would have to proceed to a universe of three, and continue until at least one open 

path appeared at the bottom of the tree. When using unfinished truth trees to prove 

invalidity in predicate logic, the objective is to avoid closed branches. Thus, one must use 

foresight in constructing such a truth tree. If it appears in advance that a certain path will 

close, then there is no point in working with that path. Instead, another path should be 

selected that looks more promising. When truth trees are used to prove invalidity, their sole 

purpose is to disclose an assignment of truth-values that makes the premisses true and 

the conclusion false. Just one such assignment of truth values is all that we need. There is 

no point in finding more than one. After an open path has been found, the truth values 

revealed by that path should be assigned to the simple statements in the argument and 

then used to compute the truth value of the premisses and conclusion. This will ensure that 

no mistakes have been made in the construction of the truth tree. 

3.4 Conclusion 

Everything we learned about truth trees in propositional logic carries over to 

predicate logic. Someone gives us an argument and asks us whether it is valid. We proceed 

by searching for a counterexample. We begin by listing the premisses and the denial of 

the conclusion as the beginning of a tree. Just as before, if we can make these true we 

will have a case in which the premisses are true and the conclusion false, which is a 

counterexample and which shows the argument to be invalid. If we can establish that the 



method does not turn up a counterexample, we conclude that there is none and that the 

argument is valid. 

3.5 Summary 

The tree method for predicate logic works in exactly the same way, with just one 

change: Each branch is no longer a way of developing a line of a truth tree which will make 

all the sentences along the branch true. Instead, a branch is a way of developing 

an interpretation which will make all the sentences along the branch true. All you have 

to do is to stop thinking in terms of building a line of a truth table (an assignment of truth 

values to sentence letters). Instead, start thinking in terms of building an interpretation. 

 
3.6 Glossary 

Finite universe method. This method is used to show that an invalid argument is indeed 

invalid by constructing a small model in which the premises of the argument are all true but 

the conclusion false. That conjunction, of course, is false, since b is not square. Hence, 

(x)Sx is false as well. 

3.7 Check your Progress 

Exercises 

Prove the following arguments invalid by constructing (at least) an unfinished truth tree for 

each. A finished open path will reveal an assignment of truth values that makes the 

premisses true and the conclusion false for a universe of a certain size. Test your answer 

by using these truth values to compute the truth value of the premisses and conclusion. All 

of these arguments will fail in a universe of less than three members. 

 
1. (x) (Fx  Gx) 2. (x) (Fx  Gx) 

(x) [Fx  (Gx • Hx)]  ~ Ge  
Fc • ~ Ge 

 
3. (x) (Fx  Gx) 4. (x) (Fx  Gx) 

(x) (Gx • Hx  Fc  

(x)(Fx • Hx) (x) Gx 
 

 

5. (x) (Fx  Gx) 6. (x) (Fx v Gx) 

(x) ~ Fx  (x) ~ Fx 

(x) ~ Gx  (x) ~ Gx 
 

7. (x)(Fx  Gx) 8. (x) (Fx  Gx) 

(x) (Fx v Gx)  (x)  Fx 

(x) Fx (x) Gx 

 
 
 

9. (x) (Fx v Gx) 10. (x) (Fx  Gx) 

(x) ~ Fx  (x) (Jx v ~ Gx) 

(x) Gx (x) (Fx  Jx) 
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