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Course Introduction 
 

The phenomena we normally observe in nature can be broadly classified 

into two categories: those concerned with matter and those concerned 

with waves. Physics courses usually begin with discussion of phenomena 

dealing with matter mechanics and properties of matter. Next comes the 

phenomena of waves. Out of our five senses (touch, taste, smell, hearing 

and seeing), two deal with the waves—hearing and seeing. Our contact 

with the external world is mainly through these two senses. Sound and 

light, though of entirely different nature, have many properties in 

common. In this course, you will learn about waves in general. This 

unified approach to wave motion is meant to bring out the underlying 

similarity between apparently widely differing phenomena. Even our 

understanding of modern physics, particularly quantum mechanics, 

depends upon a clear understanding of this course. 

 

Before coming to wave motion it is essential to understand the physics of 

oscillations of an isolated body as well as of two or more bodies coupled 

together. The first part of this course deals with the study of oscillations 

of an isolated system such as a pendulum and two or more bodies coupled 

together, under different conditions. In particular, the effect of damping 

and an external harmonic force are discussed in detail. The second part 

deals with wave motion. The basics of progressive waves, their reflection, 

transmission and refraction are discussed in detail. Superposition of 

waves can give rise to beats, stationary waves, interference and 

diffraction. These have been discussed with particular emphasis on sound 

waves. 

 

In Unit 1 of this course we have developed the mathematical theory of 

simple harmonic motion. It is used to study oscillations, by analogy, of 

entirely different systems from different branches of physics. Unit 2 deals 

with the superposition of two or more collinear or orthogonal harmonic 

oscillations of same/different frequencies. 

 

In nature, most oscillations left to themselves die down gradually. This 

happens because of damping. The effect of damping on harmonic 

oscillations is discussed in Unit 3. In Unit 4 you will learn about the 

motion of a damped harmonic oscillator on which a periodic harmonic 

force is acting. This leads to the spectacular phenomenon of resonance. 

Unit 5 deals with the analysis of coupled oscillations. You will learn that 

in the limit of their number becoming very large, we are lead to the 

phenomenon of wave motion.  

 

In Unit 6, you will learn the basic concepts and vocabulary of wave 

motion as well as wave propagation in one and more dimensions. The 

wave equation for one dimensional progressive waves in a stretched string 
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as well as fluids (gases and liquids) are established. Its connection with 

wave impedance presented by a medium is also discussed for transverse 

as well as longitudinal waves. 

 

In Unit 7, you will learn the changes a wave undergoes at the interface of 

two different media, using Huygen’s construction and the concept of 

wave impedance. Expressions for reflection and transmission amplitude 

and energy coefficients are derived. In this unit we have also discussed 

Doppler’s effect and shock waves. 

 

In Units 8 and 9, you will learn about the superposition of waves. You 

will study superposition of waves under different conditions. You will see 

that the superposition of two waves which have the same amplitude, 

frequency and wavelength but are moving in opposite directions result in 

the formation of stationary waves. These are basically responsible for 

production of music. Two waves having slightly different frequencies but 

traveling in the same direction give rise to a wave group and beats. In Unit 

9 

 

In each unit, we have given many SAQ's and TQ's to' fix-up your ideas. 

If you are not able to solve them yourself, you can look for solutions at 

the end of each unit. 

 

We hope that after studying this Block you will realise the wide 

applicability of simple harmonic motion and its connection with wave 

motion. You are, therefore, expected to master the mathematical 

technique needed to study SHM under different conditions. 

 

We wish you success. 
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UNIT 1    SIMPLE HARMONIC MOTION 

Structure 

1.1      Introduction Objectives 

1.2     Simple Harmonic Motion (SHM): Basic Characteristics 

Oscillations of Spring-mass system  

1.3     Differential Equation of SHM 

1.4 Solution of the Differential Equation for SHM Amplitude and 

Phase Time Period and  

Frequency Velocity and Acceleration 

1.5     Transformation of-Energy in Oscillating Systems: Potential and 

Kinetic Energies 

1.6     Calculation of Average Values of Quantities Associated with 

SH./l 

1.7 Examples of Physical Systems Executing SHM  

Simple Pendulum 

Compound Pendulum 

Torsional Systems 

An L-C Circuit  

An Acoustic Oscillator  

A Diatomic Molecule: Two-body Oscillations 

1.8     Summary 

1.9     Terminal Questions  

1.10 Solutions 

 

1.1    INTRODUCTION 
In your school science courses you must have learnt about different 

types of motions. You are familiar with the motion of falling bodies, 

planets and satellites. A body 1 released from rest and falling freely 

(under the action of gravity) moves along a straight line. But an object 

dropped from an aeroplane or a ball thrown up in the air follows a 

curved path (except when it is thrown exactly vertically). You must have 

also observed the motion of the pendulum of a wall clock and vibrating 

string of a violin or some other string instrument. These are examples of 

oscillatory motion. The simplest kind of oscillatory motion which can be 

analyzed mathematically is the Simple Harmonic Motion (SHM). We 

can analyze oscillatory motions of systems of entirely different physical 

nature in terms of SHM. For example, the equation of motion that we 

derive for a pendulum will be similar to the equation of motion of a 

charge in a circuit containing an inductor and a capacitor. The form of 

solutions of these equations and the time variation of energy in these 

systems show remarkable similarities. However, there are many 

important phenomena which arise due to superposition of two or more 

harmonic oscillations. For example, our eardrum vibrates under a 

complex combination of harmonic vibrations. But we shall discuss this 

aspect in the next unit. 
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In this unit we will study oscillatory systems using simple mathematical 

techniques. Our emphasis would be on highlighting the similarities 

between different systems. 

 

Objectives 
After studying this unit you should be able to: 

 state the basic criteria for the simple harmonic motion of a 

system 

 establish the differential equation for a system executing SHM 

and solve it 

 define the terms amplitude, phase and time period 

 compute potential, kinetic and total energies of a body executing 

SHM 

 deduce expressions for average potential and average kinetic 

energies and discuss their significance 

 write down the equation of motion and expressions for 

displacement, time period and energy of  

 simple physical systems executing SHM 

 identify similarities between different oscillating systems. 

 define wave motion an state its characteristics 

 distinguish between longitudinal and transverse waves 

 represent graphically waves at a fixed position or at a fixed time 

 relate wavelength, frequency and speed of a wave 

 establish wave equations for longitudinal and transverse waves 

 compute the energy transported by a progressive wave 

 derive expressions for velocities of longitudinal and transverse 

waves 

 derive expressions for characteristic impedance and acoustic 

impedance 

 write two and three dimensional wave equations 

 

 

1.2 SIMPLE HARMONIC MOTION: BASIC 

CHARACTERISTICS 
You all know that each hand of a clock comes back to a given position 

after the lapse of a certain time. This is a familiar example of periodic 

motion. When a body in periodic motion moves to-and-fro (or back and 

forth) about its position, the motion is called vibratoryor oscillatory. 

Oscillatory motion is a common phenomenon. Well known examples of 

oscillatory motion are: the oscillating bob of a pendulum clock, the 

piston of an engine, the vibrating strings of a musical instrument, the 

oscillating uranium nucleus before it fissions, even large scale buildings 

and bridges may at times undergo oscillatory motion. Many stars exhibit 

periodic variations in brightness). You must have observed that 

normally such oscillations, left to themselves, do not continue 
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indefinitely, i.e., they gradually die down due to various damping factors 

like friction and air resistance, etc. Thus, in actual practice, the 

oscillatory motion may be quite complex, as for instance, the vibrations 

of a violin string. We begin our study with the discussion of the essential 

features of SHM. For this we consider an idealised model of a spring-

mass system, as an example of a simple harmonic oscillator. 

 

1.2.1    Oscillations of a Spring-mass System 

A spring-mass system consists of a spring of negligible mass whose one 

end is fixed to a rigid support and the other end carries a block of mass 

m which lies flat on a horizontal frictionless table (Fig. 1.1a). Let us take 

the x -axis to be along the length of the spring. When the mass is at rest, 

we mark a point on it and we define the origin of the axis by this point. 

That is, at equilibrium the mark lies at x 0. 

 

If the spring is stretched by pulling the mass longitudinally, due to 

elasticity a restoring force comes into play which tends to bring the mass 

back towards the equilibrium position (Fig l.lb). If the spring were 

compressed the restoring force would tend to extend the spring and 

restore the mass to its equilibrium position (Fig. l.lc). 

 

 
 

Fig. 1.1 A Spring-mass System as an ideal oscillator (a) The equilibrium 

configuration, (b) An extended configuration, (c) A compressed 

configuration. 

 

The more you stretch/compress the spring, the more will be the restoring 

force. So the direction of the restoring force is always opposite to the 

displacement. If total change in the length is small compared to the 
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original length, then the magnitude of restoring force is linearly 

proportional to the displacement. Mathematically, we can write 

 

kxF          
  (1.1) 

 

The negative sign signifies that the restoring force opposes the 

displacement. The quantity k is called the spring constant or the force 

constant of the spring. It is numerically equal to the magnitude of 

restoring force exerted by the spring for unit extension. Its SI unit is Nm-

1. 

 

SAQ 1 
The spring in Fig. 1.1 a is stretched by 5 cm when a force of 2 N is 

applied. Calculate the spring constant. How much will this spring be 

compressed by a force of 2.5 N? 

 

How does the spring-mass system oscillate? To answer this question, we 

note that when we pull the mass, the spring is stretched. The restoring 

force tends to bring the mass back to its equilibrium position ( x = 0). 

Therefore, on being released, the mass moves towards the equilibrium 

position. In this process it acquires kinetic energy and overshoots the 

equilibrium position. Do you know why? It is because of inertia. Once it 

overshoots and moves to the other side, the spring is compressed and the 

mass is acted upon by a restoring force but in the opposite direction. 

Thus we can say that oscillatory motion results from two intrinsic 

properties of the system: (i) elasticity and (ii) inertia. 

 

What is the direction of the restoring force vis-a-vis the equilibrium 

position of an oscillating body? 

 

The restoring force is always directed towards the equilibrium position 

of the oscillating body. 

In discussing the spring-mass system we observed two important points: 

(i) The restoring force is linearly proportional to the 

displacement of mass from its equilibrium position. 

(ii)   The restoring force is always directed towards the 

equilibrium position. 

 

Any oscillatory motion which satisfies both these conditions is called 

simple harmonic motion. The study of SHM is important because, as 

you will see, oscillatory motion of systems of entirely different physical 

nature can be analyzed in terms of it. 
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Let us now study the effect of gravity on oscillations of spring-mass 

system. Consider a spring of negligible mass suspended from a rigid 

support with a mass m attached to its lower end (Fig.1.2). 

 

 
 

Fig 1.2: A vertically hanging spring-mats system, (a) The sprint with no 

object suspended from it, (b) The spring in equilibrium with 

mass m suspended, (c) Spring-mass system displaced from 

equilibrium position. 

 

Let us choose the X-axis along the length of the spring. We take the 

bottom of the spring as our reference point, X = 0, when no weight is 

attached to it (Fig. l.2a). When a mass m is suspended from the spring, 

let the reference point move to X=X0(Fig. 1.2b). At equilibrium, the 

weight, mg, balances the spring force, kX0..Since the net force is zero, 

we have 

  

 
00  kXmg

 
or 

0kXmg 
        

 (1.2) 

 

Now if the mass is pulled downwards so that the reference mark shifts to 

X1 (Fig 1.2c), then the total restoring force will be kX1and points in the 

upward direction. The net downward force will therefore be (using Eq. 

(1.2)), 

 

kxXXkkXmg  )( 101  

where 01 XXx 
. 

 

Thus, the resulting restoring force on the mass is 
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 kxF   
 

where x is its displacement from the equilibrium position, 0X
. This 

result is of the same form as Eq. (1.1) for the horizontal arrangement. It 

is thus clear that gravity has no effect on the frequency of oscillations of 

a mass hanging vertically from a spring; it only displaces the 

equilibrium. 

 

1.3 DIFFERENTIAL EQUATION OF SIMPLE HARMONIC 

MOTION 

 

Let us now find the differential equation which describes the oscillatory 

motion of a spring-mass system. The equation of motion of such a 

system is given by equating the two forces acting on the mass: 

 

mass   acceleration = restoring force 

or 

 
kx

dt

xd
m 

2

2

  

where 
2

2

dt

xd

is the acceleration of the body. 

 

It is important to note that in this equation, the equilibrium position of 

the body is taken as the origin, x = 0. 

 

You will note that the quantity k/m has units of 
211211 ).(   smkgmgkgkgNm . Hence we can replace k/m by 

2

0  

where 0
 is called the angular frequency of the oscillatory motion. 

Then the above equation takes the form 

2

2

2

0
0

x
m x

dt

d  

       (1.3) 

 

It may be remarked here that Eq. (1.3) is the differential form of Eq. 

(1.1) and describes simple harmonic motion in one dimension. 

 

A differential equation having terms involving only the first power of 

the variable and its derivatives is known as a linear differential equation. 

If such an equation contains no term independent of the variable it is 

said to be homogeneous. We may, therefore, say that Eq. (1.3) is a 

second order linear homogeneous equation. Its solution will contain two 

arbitrary constants. 

 

 

1.4 SOLUTION OF THE DIFFERENTIAL EQUATION  
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FOR SHM 

 

To find the displacement of the mass at any time t, we have to solve Eq. 

(1.3) subject to given initial conditions. A close inspection of Eq. (1.3) 

shows that x should be such a function that its second derivative with 

respect to time is the negative of the function itself, except for a 

multiplying factor o>o. From elementary calculus, we know that sine 

and cosine functions have this property. 

You can check that this property does not change even if sine and cosine 

functions have a constant multiplying factor. 

 

A general solution for x (t) can thus be expressed as a linear 

combination of both sine and cosine terms, i.e., 

 

tAtAtx  sincos)( 21        
 (1.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Putting cos1 AA   and sin2 AA  , we get 

 )cos()(   tAtx  
 

Differentiating this equation twice with respect to time and comparing 

the resultant expression with Eq. (1.3), we obtain 0 
. The negative 

 

t
dt

td



cos

)(sin
  and t

dt

td



sin

)(sin 2

2

2

  

 

Similarly, 

 

t
dt

td



sin

)(cos
   and t

dt

td



cos

)(cos 2

2

2

  

 

BABABA sinsincoscos)cos(   

ABBABA cossincossin)sin(   
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sign is dropped as it gives negative frequency which is a physically 

absurd quantity. 

 

Substituting 0 
 in the above equation, we get 

 

 
)cos()( 0   tAtx
       

 (1.5) 

  

The constants A and   occurring in Eq. (1.5) are determined using the 

initial conditions on displacement (x) and velocity dt

dx

. 

 

Let us assume that the mass is held steady at some distance a from the 

equilibrium position and then released at t  = 0. Thus the initial 

conditions are: at t  = 0, x = a 

and dt

dx

 = 0. Then, from Eq. (1.5) we would have  

 

 x (at t = 0) = aA cos  

and 

 dt

dx

(at t = 0) = 
0sin0  A

 

 

These conditions are sufficient to fix A and  . The second condition 

tells us that   is either zero or n  (n = 1, 2, ...). We reject the second 

option because the first condition requires cos   to be positive. Thus 

with the above initial conditions, Eq. (1.5) has the simple form 

 

 tax cos         
 (1.6) 

 

SAQ2 

Take sin1 BA   and cos2 BA   in Eq.(1.4). In this case show that the 

solution is 

 

 

 

We therefore observe that both cosine and sine forms are valid solutions 

of Eq. (1.3). If you plot Eq. (1.5), the graph will be a cosine curve with a 

definite initial phase (Fig. 1.3). 
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Fig. 1.3: Displacement-time graph of simple harmonic motion with an 

initial phase   

 

1.4.1    Phase and Amplitude 

The quantity 
)( 0  t
, occurring in Eq. (1.5) is called the phase angle 

or the phase angle of the system at t = 0, also called the initial phase we 

start measuring the displacement. If at 0xx 
, then, from Eq. (1.5) it 

follows that 

 

 
cos0 ax 

 
 

We know that the value of the sine and cosine .functions lies between 1 

and 1 . When 
)cos( 0  t
= 1 or 1 , the displacement has the 

maximum value. Let us denote it by a or a . The quantity a  is called 

the amplitude of oscillation. 

 

We can, therefore, rewrite Eq. (1.5) as 

 

 

 
)cos()( 0   ttx
       

 (1.7) 

 

The displacement-time graphs for   = 0, 2/  and   are shown in 

Fig.1.4. In all the cases, the graphs have exactly the same shape if we 

shift the origin along the time axis. When the phase difference is  two 

oscillations are said to be in opposite phase or out of phase by  . 
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Fig. 1.4: Plot of Eq. (1.7) for  = 0, 2/  and   

 

The mass in Fig .1.1 oscillates with an amplitude a. If the time is 

measured from the instant when it is at (i) x = + a, (ii) x = a , and (iii) 

2/ax  , calculate the phase constant for the equations (a) 
)sin( 0   tax
 and (b) 

)cos( 0   tax
. 

 

1.4.2    Time Period and Frequency 

If we put 
)/2( 0 tt
in Eq. (1.7), we obtain 

)(tx  = 
])/2(cos[ 00  ta
 

 = 
]2cos[ 0  ta
 

 = 
)cos( 0  ta
 

 

That is, the displacement of the particle repeats itself after an interval of 

time 0/2 
. In other words, the oscillating particle completes one 

vibration in time 0/2 
. This time is called the period of vibration or 

the time period. We denote it by T : 

 

 0/2 T
       

 (1.8) 

 

For a spring-mass system, mk /
2

0  ,so that 

 

 kmT /2        
 (1.9) 

 

The number of vibrations executed by the oscillator per second is called 

the frequency. The unit of frequency is Hertz (Hz). Denoting it 0 , we 

have for a spring-mass system 
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 m

k

T 


2

11
0 

      
 (1.10) 

 

This means that stiffer the spring, higher will be the frequency of 

vibration. 

 

1.4.3    Velocity and Acceleration 
We know that the displacement of a mass executing simple harmonic 

motion is given by 

 
)cos( 0   tax
 

 

Therefore, the instantaneous velocity, which is the lust time derivative 

of displacement, is given by 

 

 
)sin( 00   ta

dt

dx
v

     
 (1.11) 

 

We can rewrite it as 

  

 
)2/cos( 00   tav
     

 (1.12a) 

 

You may also like to know the value of v at any point v. To this end, we 

rewrite Eq. (1.11) as 

 
2/1

0

22

0 )]cos([   taa
for axa    

 (1.12b) 

 

We also know that acceleration is the first time derivative of velocity. 

From Eq. (1.11)  

 

 

 

 

 
)cos( 0

2

0   ta
dt

dv

 

 )cos( 0

2

0   ta      
 (1.13a) 

 

Obviously, in terms of displacement, 

 2cos1sin  ;  sin)90cos( 0   
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x

dt

dv 2

0
       

 (1.13b) 

 

If you compare Eqs. (1.7), (1.12 a) and (1.13 a), you will note that (i) 

a0
is the velocity amplitude and a

2

0 is the acceleration amplitude, and 

(ii) velocity is ahead of displacement by 2/ and acceleration is ahead 

of velocity by 2/ . 

 

If you plot displacement, velocity, and acceleration as functions of time, 

you will get graphs as shown in Fig.1.5. 

 

 
 

Fig. 1.5: Time variation of displacement, velocity and acceleration of a 

body executing SHM      

 (  = 0) 

 

SAQ4 

The displacement of a particle executing simple harmonic motion is 

given hy )0625.0(4cos01.0  tx  metre. Deduce (i) the amplitude, (ii) 

the time-period, (iii) maximum speed, (iv) maximum acceleration and 

(v) initial displacement. 

 

1.5    TRANSFORMATION OF ENERGY IN OSCILLATING 

SYSTEMS: POTENTIAL AND KINETIC ENERGIES 

 

Consider the spring-mass system shown in Fig 1.1. When the mass is 

pulled, the spring is elongated. The amount of energy required to 

elongate the spring through a distance dx is equal to the work done in 

bringing about this change. It is given by 
dxFdUdW 0

, where 0F
 is 

the applied force (such as by hand). This force is balanced by the 

restoring force. That is, its magnitude is same as that of F and we can 
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write 
kxF 0 . Therefore, the energy required to elongate the spring 

through a distance x is 

 

 

2

00
0

2

1
kxxdxkdxFU

xx

 
      

 (1.14) 

 

This energy is stored in the spring in the form of potential energy and is 

responsible for oscillations of the spring-mass system. 

 

On substituting for the displacement from Eq. (1.7) in Eq. (1.14), we get 

 

 
)cos(

2

1
0

2   tkaU
      

 (1.15) 

 

Note that at t  = 0, the potential energy is  

 

 
22

0 cos
2

1
kaU 

       
 (1.16) 

 

As the mass is released, it moves towards the equilibrium position and 

the potential energy starts changing into kinetic energy (K.E). The 

kinetic energy at any time / is given by 

2

2

1
.. mvEK 

. Using Eq. (1.11), 

we get 

 

 
)(sin

2

1
.. 0

22

0   tmEK
 

          = 
)(sin

2

1
0

22  tka
      

 (1.17) 

since mk /
2

0  . 

 

One can also express K.E. interms of the displacement by writing ..EK  

in terms of the displacement by writing 

  

 
)](cos1[

2

1
.. 0

22   tkaEK
 

 
)(cos

2

1

2

1
0

222   tkaka
    

 (1.17) 
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)(

2

1

2

1

2

1 2222 xakkxka 
    

 (1.18) 

 

This shows that when an oscillating body passes through the equilibrium 

position )0( x , its kinetic energy is maximum and equal to 

2

2

1
ka

. 

 

SAQ5 
Show that the periods of potential and kinetic energies are one-half of 

the period of vibration. 

 

It is thus clear from the explicit time dependence of Eqs. (1.15) and 

(1.17) that in a spring-mass system the mass and the spring alternately 

exchange energy. Let us consider that the initial phase   = 0. At t = 0, 

the potential energy stored in the spring is maximum and K.E. of the 

mass is zero. At t = T/4, the potential energy is zero and K. E. is 

maximum. As the mass oscillates, energy oscillates from kinetic form to 

potential form and vice versa. At any instant, the total energy, E, of the 

oscillator will be sum of both these energies. Hence, from Eqs. (1.15) 

and (1.17), we can write 

2

0

22

0

22

2

1
)(sin

2

1
)(cos

2

1
.. katkatkaEKUE  

 
  (1.19) 

This means that the total energy remains constant (independent of time) 

and is proportional to the square of the amplitude. As long as there are 

no dissipative forces like friction, the total mechanical energy will be 

conserved. 

 

 
 

Fig. 1.6 Variation of potential energy (U), kinetic energy (K.E) and total 

energy (E) with  

displacement according to Eqs. (1.14), (1.18) and (1.19) 
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The plots of U and K.E. as a function of x as obtained from Eqs. (1.14) 

and (1.18) are shown in Fig 1.6. You will note that  

 

(i) the shape of these curves is parabolic, (ii) the shape is symmetric 

about the origin, and (iii) the potential and kinetic energy curves are 

inverted with respect to one another. Why? This is due to the phase 

difference of 2/  between the displacement and velocity of a harmonic 

oscillator. At any value of x, the total energy is the sum of kinetic and 

potential energies and is equal to 

2

2

1
ka

. This is represented by the 

horizontal line. 

 

The points where this horizontal line intersects the potential energy 

curve are called the 'turning points.' The oscillating particle cannot go 

beyond these and turns back towards the equilibrium position  At these 

points, the total energy of the oscillator is entirely potential 

)
2

1
( 2kaUE 

and K.E. is zero. At the equilibrium position (x = 0) the 

energy is entirely kinetic 
)

2

1
..( 2kaEEK 

so that the maximum speed, 

maxv
is given by the relation 

Emv 2

max
2

1

, i.e., mEv /2max  . 

 

At any intermediate position, energy is partly kinetic and partly 

potential, but the total energy always remains the same. The 

transformation of energy in a spring-mass system is shown in Fig  1.7. 
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Fig 1.7 Energy transformation in a spring-mass system at various times. 

The bars indicate  

potential and kinetic energies are shown at intervals of 8/Tt  . 

 

 

Do you know why the point of minimum potential energy is regarded as 

the position of stable equilibrium? This is because there is no net force 

acting on the system in this position.                            

 

SAQ 6 
A body of mass m fell from height h onto the pan of a spring balance. 

The masses of the pan and the spring are negligible. The stiffness 

constant of the spring is k. Having stuck to the pan, the body executes 

harmonic oscillations in the vertical direction. Find the amplitude and 

the energy of oscillation. 

 

1.6    CALCULATION OF AVERAGE VALUES OF 

QUANTITIES ASSOCIATED WITH SHM 
In Fig. 1.5 we have plotted displacement, velocity and acceleration as a 

function of time. You will note that for any complete cycle in each case, 

the area under the curve for the first half is exactly equal to the area 

under the curve in the second half and the two are opposite in sign. Thus 

over one complete cycle the algebraic sum of these areas is zero. This 

means that the average values of displacement, velocity and acceleration 

over one complete cycle are zero. If we plot x2(or 
2v ) versus t , the 

curves would lie in the upper half only so that the total area will be 
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positive during one complete cycle. This suggests that we can talk about 

average values of kinetic and potential energies. 

 

The time average of kinetic energy over one complete cycle is defined 

as 

 

 T

dtEK

EK

T


 0

..

..
       

 (l.20a) 

 

On substituting for K.E from Eq. (1.17), we get 

 

  
T

dtt
T

ka
EK

0
0

2
2

)(sin
2

.. 
     

 (1.20b) 

 

On solving the integral in Eq. (l.20b) you will find that its value is 2/T . 

So, the expression for average kinetic energy reduces to 

 

 4
..

2ka
EK 

       
 (1.21)  

 

Similarly, one can show that the average value of potential energy over 

one cycle is 

4

2ka
U 

        
 (1.22) 

 

That is, the average kinetic energy of a harmonic oscillator is equal to 

the average potential energy over one complete period. 

 

Thus the sum of average kinetic and average potential energies is equal 

to the total energy: 

  UEK .. = 

22

4

1

4

1
kaka 

 

   = 
Eka 2

2

1

 

 

1.7    EXAMPLES OF PHYSICAL SYSTEMS EXECUTING SHM 
We have seen that for a system to execute simple harmonic motion, 

i»must have two parts: one which can store potential energy (like 

spring) and the other capable of storing kinetic energy (such as mass). 
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We will now study physical systems executing SHM using techniques 

developed for our model spring-mass system. 

 

1.7.1    Simple Pendulum 

A simple pendulum is an idealized system consisting of a point mass 

(bob) suspended by an inextensible, weightless string. As the bob of 

mass m is displaced by an angle  from its equilibrium position, the 

restoring force is provided by the tangential component of the weight 

mg along the arc (Fig. 1.8). It is given by 

 

 sinmgF   
 

 
 

Fig. 1.8 A simple pendulum 

 

The equation of motion of the bob is, therefore, 

sin
2

2

mg
dt

xd
m 

       
 (1.23) 

 

The bob is moving along the arc whose length at any instant is given by 

x. If the corresponding angular displacement from the equilibrium 

position is  , then the length of arc is 

 

lx          
 (1.24) 

 

where l  is length of the string by which the bob is suspended. 

Differentiating Eq. (1.24) twice with respect to t, and substituting the 

result in Eq. (1.23), we get 

 

 



sin

2

2

l

g

dt

d


       
  (1.25) 
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For small angular displacements, sin  may be approximated to  . In 

this approximation, Eq. (1.25) takes the form 

 

 
02

02

2

 


dt

d

       
  (1.26) 

 

where lg /0  . 

 

Eq. (1.26) is exactly of the standard form (1.3) showing that pendulum 

executes simple harmonic motion. The time period of oscillation is 

given by 

 

glT /2
2

0







       
 (1.27) 

By analogy, we can write the general solution of the Eq. (1.26) as 

 
)cos( 0   tm        

 (1.28) 

 

where is the maximum angular displacement.    

   

 

From Eq. (1.27) you will note that for small angular displacements, the 

frequency of oscillation of a simple pendulum depends on g and but not 

on the mass of the bob. The appearance of the factor g in Eq. (1.27) 

implies that a pendulum clock will move slower near the equator than at 

the poles. Do you know why? This is because the value of g varies with 

latitude. For the same reason, the period of a pendulum will be different 

on moons and planets. 

 

When the amplitude of oscillation is not small, we are required to solve 

the general Eq. (1.25). The time period, which can be expressed in the 

form of a series involving the maximum angular displacement m  is 

given by 

 

 








 ...

2
sin

4

3

2

1

2
sin

2

1
12 4

2

2

2

2

2

mm

g

l
T




 
 

You can check the accuracy of Eq. (1.27) by comparing the value of T 

obtained from Eq. (1.29). For example, you will find that when m  is 

15° (corresponding to a total to andfro angular displacement of 30°), the 
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actual value of time period differs from that given by Eq. (1.27) by less 

than 0.5%. 

 

SAQ7 

Use the principle of conservation of energy to show that the angular 

speed of a simple pendulum is given by, 

 

 

2/1

2
)]cos1([

2






  mglE

ml


 
 

where the symbols have the usual meanings. 

 

1.7.2   Compound Pendulum 
A compound pendulum is a rigid body capable of oscillating freely 

about a horizontal axis passing through it (Fig 1.9). At equilibrium 

position, the center of gravity G lies vertically below the point of 

suspension S. Let the distance SG be l . If the pendulum is given a small 

angular displacement  at any instant, it oscillates over the same path. Is 

its motion simple harmonic? To answer this question we note that the 

restoring torque about S is sinmgl and it tends to bring the pendulum 

towards the equilibrium position. 

 

If I is the moment of inertia of the body about the horizontal axis 

passing through S, the restoring torque equals 
22 / dtId  . Hence, the 

equation of motion can be written as 

 

 

 

 

 

 

 
 

The moment of inertia is the ratio of the torque of a 

body rotating about a given axis to the angular 

acceleration about that axis. Note that moment of 

inertia always refers to a definite axis of rotation. 
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Fig. 1.9 A rigid body oscillating about a horizontal axis: Compound 

pendulum. 

 

 



sin

2

2

mgl
dt

d
I 

       
 (1.30) 

 

For small angular displacement,  sin  and Eq. (1.30) takes the form 

 

 
0

2

2

 


I

mgl

dt

d

       
 (1.31) 

 

This equation shows that a compound pendulum executes SHM and the 

time period is given by 

 
mglIT /2

2

0







       
 (1.32) 

There is a very useful and important theorem of parallel axes in the 

study of moment of inertia. According to this theorem, the moment of 

inertia I  of a body about any axis and its inertia gI
 about a parallel axis 

passing through its center of gravity are connected by the relation 

 

 
2mlII g 
        

 (1.33) 

 

where l  is the distance between the two axes and 
2

rg mkI 
.The quantity 

kris the radius of gyration of the body about the axis passing through G. 

It is the radial distance at which the whole mass of the body could be 

placed without any change in the moment of inertia of the body about 

that axis. 

 

On substituting the expression for I  from Eq. (1.33) in Eq. (1.32), we 

obtain 

 

 gl

lk
T r

22

2


 

       
 (1.34) 

On comparing this expression for T with that given by Eq. (1.27) for a 

simple pendulum, you will note that two periods become equal if l  in 

Eq. (1.27) is replaced by 
llkL r  )/( 2

. This is called the length of an 
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equivalent simple pendulum. If we produce the line SG and take a point 

O on it such that SO = 
l

l

k r 
2

, then O is called the center of oscillation. 

 

1.7.3    Torsional Systems 
If one end of a long thin wire is clamped to a rigid support and the other 

end is fixed to the centre of a massive body such as a disc, cylinder, 

sphere or rod, then the arrangement is called a torsional pendulum (Fig 

1.10). You will come across many instruments in your physics 

laboratory which execute torsional oscillations. The most familiar of 

these is the inertia table. It is commonly used to determine the moment 

of inertia of regular as well as irregular bodies. Ammeters, voltmeters 

and moving coil galvanometers are other measuring devices where 

restoring torque is provided by spiral springs or suspension fibres. 

 

 
 

Fig. 1.10 Torsional Pendulum: Restoring torque is opposite to  . 

 

When a torsional system is twisted and then left free, it executes 

torsional oscillations in a horizontal plane. For an angular displacement 

 , the restoring torque is 
tk

. Here, tk
 is a constant which depends on 

the properties of the wire. 

 

If I  is the moment of inertia of the system about the axis of rotation and 
22 / dtd   is the angular acceleration, then the equation of motion is 

 

 



tk

dt

d
I 

2

2
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or 


 2

02

2


dt

d

        

 (1.35) 

 

where lkt /0  . This is exactly of the standard form (1.3). Hence, the 

motion is SHM and the period of oscillation is 

 

 tkIT /2         
 (1.35a) 

 

You will note that this expression for T contains no approximation. This 

means that the time period for large amplitude oscillations will also 

remain the same, provided the elastic limit of the suspension wire is not 

exceeded. The solution of Eq. (1.35) is given by Eq. (1.28). 

 

 

SAQ8 
A solid sphere of mass 3 kg and radius 0.01 m suspended from a wire. 

Find the period of oscillations, if the torque required to twist the wire is 

0.04 N-m rad-1. The moment of inertia of a sphere about an axis passing 

through its centre is given by 

  

 

2

5

2
mrI 

 
 

 

1.7.4   An L-C Circuit 
So far we have discussed oscillations of mechanical systems. We will 

now discuss harmonic oscillations of charge in an ideal (R = 0) L-C 

circuit depicted in Fig. 1.11. As we know, an L-C circuit has no moving 

parts, but the electric and magnetic energies in such a circuit play roles 

analogous to potential and kinetic energies respectively for a spring-

mass system. For simplicity, we assume that the inductor has no 

resistance. 
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Fig. 1.11   An ideal L-C circuit. 

 

In a pendulum, the mean position is taken as the equilibrium state. What 

is the equilibrium state in an L-C circuit? It corresponds to the state 

when there is no current in the circuit. It may be disturbed by charging 

or discharging the capacitor. Let the capacitor be given a charge 

Q0coulomb. Then the voltage across the capacitor plates will be Qo/C. 

Now if the circuit is disconnected, the capacitor discharges through the 

inductor. As a result, current starts building up in the circuit gradually 

and the charge on the plates of the capacitor decreases. At any time t , 

let the current in the circuit be q  and the charge on capacitor plates be q. 

Then the voltage drop across the inductor will be 

  

 dt

dI
LVL 

 
 

This must be equal to the voltage 
CqVc /

 across the capacitor plates at 

that time. Thus, we can write 

 Lc VV 
 

or dt

dI
L

C

q


        

 (1.36) 

 

Since dtdqI / and
2

2

dt

qd

dt

dI


, Eq. (1.36) takes the form 

 

 
02

02

2

 q
dt

qd


       
 (1.37) 
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where LC

12

0 
. This means that one can have a wide range of 

frequencies by changing the values of L and C. That is how you tune 

different stations in your radio sets. 

 

Eq. (1.37) represents SHM and has the solution 

 

 
)cos( 00   tqq
       

 (1.38) 

 

This shows that charge oscillates harmonically with the period  

 

LCT 2         
 (1.39)      

Differentiating Eq. (1.38) with respect to time, we get the instantaneous 

current 

  

 
)sin( 000   tQI
 

 
)2/cos( 00   tI
 

 

where 000 QI 
. 

 

Thus the current leads the charge in phase by 2/ . In practice, you will 

always find that an inductor offers some resistance in an L-C circuit. Its 

effect on charge oscillations will be discussed in Unit 3. 

 

Let us now calculate the energy stored in the inductor L and the 

capacitor C at any instant t. As the current rises from zero to I in time t, 

the energy stored in the inductor, EL, is obtained by integrating the 

instantaneous power with respect to time, 

i.e. 

 

 


t

LL dtIVE
0  

The negative sign implies that work is done against, rather than by the 

emf. On substituting for VL, we get 

 

 

2

0 2

1
LIIdt

dt

dI
LE

I

L  
 

 

The energy stored in the capacitor at time t is 

  

 
CqEC 2/2
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Thus the total energy 

 

 C

q
LIEEE CL

2
2

2

1

2

1


      
 (1.40) 

This expression, for total energy is similar to the one for mechanical 

oscillator 
)

2

1

2

1
( 22 kxmvE 

. As q and I vary with time, the inductor 

and capacitor exchange energy periodically. This is similar to the energy 

exchange in the spring-mass system. Further, the mass and inductor play 

analogous roles in mechanical and electrical systems, respectively. 

 

SAQ 9 

Calculate the frequency of electrical oscillations when an inductor of 20 

mH is connected with a capacitor of 1 F . If the maximum potential 

difference across the capacitor is 10 V, calculate the energy of 

oscillation. 

 

1.7.5 An Acoustic Oscillator 

Consider a flask of volume V  with a narrow neck of length l  and area 

of cross-section A , such that V lA (Fig. 1.12). Such a system is also 

called Helmholiz resonator because the system can resonate when the 

frequency of sound incident on it coincides with its natural frequency. 

We will here calculate the expression for the natural frequency of the 

resonator. 

 

 
Fig. 1.12 (a) An Acoustic oscillator, (b) As air in the neck is pushed, air 

in the flask is  

compressed, and (c) Due to elasticity, air in the flask exerts a 

restoring force on the air in the neck. 

 

We consider free vibrations of air in the neck of the flask. As the air in 

the neck moves in, the air in the flask is compressed. If air in the neck 

goes out, the air in the flask is rarefied. So the air in the neck behaves 

like the mass and the air in the flask behaves like the spring in a 

mechanical oscillator. 
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Suppose that the air in the neck moves inward through a distance x from 

the equilibrium position. The change in the volume of the air in the bulb 
V = x A. Let the increase in pressure over the atmospheric pressure be 

p . We know that the volume of a gas depends on the pressure as well 

as the temperature. Therefore, the pressure changes in acoustic 

vibrations should alternately heat and cool the air in the flask as it gets 

compressed and rarefied. We assume that the pressure changes are so 

rapid that they do not permit any exchange of heat. That is, the process 

is adiabatic. Hence, we can write 

 

 V

Ax
E

V

V
Ep  




      
  (1.41) 

 

where E
is the adiabatic elasticity of the gas. It is defined as the ratio of 

the stress to volume strain. Numerically, stress is same as pressure. So 

we can write 

 

 )/( VV

p
E






 
 

The negative sign signifies the fact that as pressure increases, volume 

decreases and vice-versa. 

 

This excess pressure p  of air inside the bulb provides the restoring 

force F, which acts upward. We can therefore write 

 

 
x

V

AE
pAF

2




 
 

If  is the density of air, the mass of the air in the neck lAm  . Hence, 

the equation of motion of air in the neck can be written as 

 

 
x

V

AE

dt

xd
lA

2

2

2


 
 

or 
0

2

2

 x
Vl

AE

dt

xd





       

 (1.42) 

 

This equation has the standard form for simple harmonic motion. Hence, 

the frequency of oscillation of air in the neck is  
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 vl

Av

vl

AE
s






22

1
0 

 
 

where sv
= 

 /E
 is the speed of sound. We know that sv

is 

proportional to the square root of temperature. So the frequency of 

vibration of air in a flask is also proportional to the square root of the 

temperature. 

 

SAQ 10 
A flask has a neck of radius 1 cm and length 10 cm. If the capacity of 

the flask is 2 litres, determine the frequency at which the system will 

resonate (speed of sound in air = 350 ms-1). 

 

 

 

1.7.6    A Diatomic Molecule: Two-Body Oscillations 
A diatomic molecule like HCl is an example of a two-body system 

which can oscillate along the line joining the two atoms. The atoms of a 

diatomic molecule are coupled through forces which have electrostatic 

origin. The bonding between them may be likened to a spring. Thus we 

may consider a diatomic molecule as a system of two masses connected 

by a spring. We will now consider the oscillations of such a system. 

 

Suppose that two masses 1m and 2m  are connected by a spring of force 

constant k. The masses are constrained to oscillate along the axis of the 

spring (Fig. 1.13a). Let 0r  be the normal length of the spring. We choose 

X -axis along the line joining the two masses. If 1X  and 2X  are the 

coordinates of the two ends of the spring at time t, the change in length 

is given by 

 

 012 )( rXXx 
       

 (1.44)  
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(b) Fig. 1.13 (a) A two-body oscillator (b) An equivalent one-body 

oscillator. 

 

For x> 0, x = 0 and x< 0, the spring is extended, normal and compressed 

respectively. Suppose that at a given instant of time the spring is 

extended, i.e. x > 0. Though the spring exerts the same force (kx) on the 

two masses, the force 1F (= kx) acting on 1m opposes the force )(2 kxF 

on 2m , i.e., 

 

kxF 1  and kxF 2  

 

According to Newton's second law, above equation can be written as 

 

 
kx

dt

Xd
m 

2

1

2

1

 
 

and 

 
kx

dt

Xd
m 

2

2

2

2

 
 

On rearranging terms, we obtain 

 1

2

1

2

m

kx

dt

Xd


        
 (1.45a) 

and 

 1

2

1

2

m

kx

dt

Xd


        
 (1.45b) 

 

On subtracting one from the other, we get 

 

kx
mmdt

XXd












21

2

12

2
11)(

 
 

Since 0r  denotes a constant length of the spring, Eq. (1.44) tells us that 

 
0

2

2

 x
k

dt

xd

        
 (1.46) 
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where 21

21

1

21

11

mm

mm

mm 















 is called the reduced mass of the 

system. 

 

Eq. (1.46) describes simple harmonic oscillation of frequency 

  

 



 /

2

1
0 k

       
 (1.47) 

 

This means that a diatomic molecule behaves as a single object of mass 
 , connected by a spring of force constant k (Fig. 1.13b). 

 

SAQ 11 

For an HCl molecule, 0r = 1.3Å. Find the value of the force constant and 

the frequency of oscillation. Given: Hm = kg271067.1   and Hcl mm 35
. 

Use 

229

0

109
4

1  CNm
 . 

 

1.7 SUMMARY 

1. Simple Harmonic Motion: An oscillatory motion is said to be 

simple harmonic when the acceleration is proportional to the 

displacement and is always directed against it. We can also 

say that in SHM the restoring force is linearly proportional to 

the displacement and acts against it. 

2. Differential Equation of SHM is 

02

02

2

 x
dt

xd


, where 0
= mk /  

 

3. The most general solution of the differential equation of SHM 

is 

)cos( 0   tax
 

 

4. The period and frequency characterizing a SHM are 

represented by the relations: 

0

2




T

 and T

1

2

0
0 






 

 

5. Total Energy of oscillation 

E = U + K. E. 

     = 
)(sin

2

1
)(cos

2

1
0

22

0

22   tkatka
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    = 

2

max

2

2

1

2

1
mvka 

 

 

The time averaged kinetic energy and potential energy are the same; 

equal to 

2

4

1
ka

. 

 

System Differential 

equation 

Inertial 

factor 

Sprin

g 

factor 

0
 Period of 

oscillatio

n 

Spring-

mass 

system 

0 kxxm   m  k  mk /  km /2  

Simple 

pendulum 
0 

l

mg
m 

 

m  
l

mg

 

lg /  gl /2  

Compoun

d 

pendulum 

0  mgll 
 I  mgl  Imgl /  mglI /2  

Torsional 

pendulum 
0  tkl 

 
I  tk

 Ikt /  tkI /2  

L-C 

circuit 
0

1
 q

C
qL 

 

L  C/1  LC/1  LC2  

Acoustic 

resonator 0

2

 x
V

AE
xlA


 

 

lA  

V

AE 2



 



Vl

AE 2

 
AE

Vl




2

 
Two-

body 

oscillator 

0 kxx  

21

21

mm

mm




 

k  /k  k/2   

 

1.8 TERMINAL QUESTIONS 

1. In Figs. 1.14a, b, and c, three combinations of two springs of 

force constants 1k  and 2k  are given. Show that the periods of 

oscillation in the three cases are: 

(a) )/(2 21 kkm   

(b) )/(2 21 kkm   

(c) )/1/1/(2 21 kkm   
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2. A smooth tunnel is bored through the earth along one of its 

diameters and a ball is dropped into it. Show that the ball will 

execute simple harmonic motion with period gRT /2  

where R  is the radius of the earth and g  is the acceleration 

due to gravity at the surface of the earth. Assume the earth to 

be a homogeneous sphere of uniform density. 

 

3. Find the angular frequency and the amplitude of harmonic 

oscillations of a particle if at distances 1x  and 2x from the 

equilibrium position its velocity equals 1v  and 2v  

respectively. 

 

4. Show that the centers of suspension and oscillations in a 

compound pendulum are mutually interchangeable. 

 

5. The potential energy of a diatomic molecule at a separation r  

of its atoms is represented as 

 

9

0

2

4
)(

r

c

r

e
rU 

  
 

The first term represents the attractive part and the second 

term represents the repulsive part. Show that the force 

constant is 
3

00

2 /2 re  , where 0r  is the equilibrium separation. 

 

 Hint: krF   and dr

dU
F 

. 
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1.9 SOLUTIONS 

SAQ 1 

 Force constant ntDisplaceme

Force
k 

= 

1

2
40

100.5

0.2 





Nm

m

N

 

 

 Compressed length = Force / Force constant = 

m
Nm

N 3

1
103.6

40

5.2 




 
 

SAQ 2 

 Putting sin1 BA   and cos2 BA   in equation (1.4), we get 
)sin()(   tBtx  

 since ABBABA cossincossin)sin(   

 

SAQ 3 

(a) 
)sin( 0   tax
 

 Since time is measured from the instant ax  , we get 

 (i) sinaax  , i.e., sin = 1 or 2/   

 

 Similarly, 

 

 (ii) sinaax  , i.e., sin = 1  or 2/   

 

and 

 

 (iii) 
sin

2
a

a
x 

, i.e., sin = 2

1

 or 4/   

 

(b) 
)cos( 0   tax
 

 At t = 0, 

 (i) cosaax  , i.e., 1cos   or  0 

 (ii) cosaax  , i.e., 1cos   or    

 (iii) 
cos

2
a

a
x 

, i.e., 2

1
cos 

 or 4/   

 

SAQ 4 

 )0625.0(4cos01.0  tx   

 Compare it with the standard equation 
)cos( 0   tax
. We can 

write 

(i) Amplitude a = 0.01 m 



PHY 203        OSCILLATIONS AND WAVES 

34 

(ii) Period 







4

22

0

T

= 0.5 s  

(iii) Maximum speed = 
11

0 13.001.04   msmsa   

(iv) Maximum acceleration = 
2222

0 6.101.0)4(   smmsa   

(v) Displacement at t = 0 is 
mx 0625.04cos01.00  

  

      = 

mm 3101.7
2

1
01.0 

 

SAQ 5 

 The graphs for the variation of U, K.E and E with time are shown 

in Fig. 1.6. 

 Since ])/([cos)2/1()/( 00

22

0   tkatU  

          = 
)(cos)2/1( 0

22  tka
 

          = )(cos)2/1( 0

22  tka  

          = U(t) 

 

This means that the period of oscillation of potential energy is 

0/
, i.e., one half of that of vibration. 

 

Similarly, you can show that the period of oscillation of kinetic 

energy is 0/
. This means that in each cycle, fixed amount of 

energy is transferred from the mass to the spring and back again 

twice. 

 

SAQ 6 

Potential energy (P.E.) = mgh  and maximum kinetic energy 
2

max )2/1(.).( kaEK 
. By equating these expressions, we can 

calculate the amplitude of the oscillation, i.e., 

  

2/1
2











k

mgh
a

 
 

SAQ 7  

 )cos( llmgU  ; 
2)()2/1(.. lmEK   

 
2)()2/1()cos1(..  lmmglUEKE   

 
2/12 )}]cos1({/2[   mglEml
 

 

SAQ 8 

 tkIT /2 ; tk
 is the torque producing unit angular 

displacement. 

 For a sphere, 
2)5/2( mRI   
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 tk

mR
T

5

2
2

2



 

     = 
1

22

04.05

)01.0(32
2





radNm

mkg


 

     = 0.34 s 

 

SAQ 9 

163

0 )1010202(
2

1   FmH
LC





= 1125 Hz 

 JVFCVE 52262 1051010)2/1()2/1(    
 

 

 

 

SAQ 10 

  Vl

Avs




2
0 

  

Since V = 2 litres = 2000 c.c. = 
33332 102)10(2000 mm   , we 

get 

  mm

mms
13

221

0
10102

)01(.

2

350














 
        = 69.8 Hz 

 

An audible note of about this frequency can be heard when an 

empty flask of this size is suddenly uncorked. 

 

SAQ 11 

 The force constant of a diatomic molecule is given by 

  
3310

229219

3

0

2

)103.1(

109)106.1(2

4

2

m

CNmC

r

e
k










  

      = 209.7 
1Nm  

 

 Since 

  

kg
mm

mm

ClH

ClH

36

1067.135 27





 

  kg

Nm
k

27

1

0
1067.135

367.209

2

1
/

2

1















 

        = 
13107.5  Hz 
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Terminal Questions 

1a. In this arrangement, both springs will be extended by the same 

length x . The restoring force 

  xkxkF 21   
 or 

  
0)( 212

2

 xkk
dt

xd
m

 
 Hence, the period of the system is given by 

  21

2
kk

m
T


 

 
 

  b. In this arrangement, if the mass is displaced up or down by x , the 

restoring forces are 

  xkF 11   and xkF 22   

 Hence,  

 xkxkF 21   
i.e., 

 
0)( 212

2

 xkk
dt

xd
m

 

 so that the period 21

2
kk

m
T


 

. 

 

c. Here the two springs are connected in series. When the mass is 

displaced by x , the same restoring force will act in the springs, 

extending them by 1x  and 2x  due to their different force 

constants. Thus, 

2211 xkxkF   
 and 

  2121 // kFkFxxx   
 i.e., 

  Fkkx )/1/1( 21   

 or  

x

kk

F













21

11

1

 

 Therefore time period T = 21

11
2

kk

m





. 

 

2. The force on a mass m  at the surface of the earth is 
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2R

GmM
mg 

, i.e., 
2R

GM
g 

     

 (i) 

Now,  3)3/4( RM   assuming the earth to be a sphere of radius 
R  and of uniform density  . Therefore, 

  
GR

R

GR
Rg 




3

4

3

4
2

3


     

 (ii) 

 If 'g  is the acceleration due to gravity at a depth d  below the 

surface of the earth, then 

  )()3/4(' dRGg        
 (iii) 

 Dividing Eq. (iii) by Eq. (ii), we get 

  RdRgg /)(/'        
 (iv) 

If the distance to be measured from the center of the earth, let us 

put xdR  . Then, Eq. (iv) can be rewritten as 

  
x

R

g

dt

xd
g 

2

2

'
 

where the negative sign shows that acceleration is directed 

towards the center of the earth. Thus, 

  
0

2

2

 x
R

g

dt

xd

 
 This equation represents SHM whose period is 

  gRT /2  
 

3. 
)cos( 0   tax
 

  
)sin( 00   ta

dt

dx
v

 

   = 
2

2

0 1
a

x
a  

 

 Hence, we can write 

  
2

2

1

0

1 1
a

x

a

v


  

 and 
2

2

2

0

2 1
a

x

a

v


  

 On squaring these expressions, we get 

  
2

2

1

2

0

1 1
a

x

a

v










  
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2

2

2

2

0

2 1
a

x

a

v










  
 These equations may be combined to give 

  
2

1

2

2

2

2

2

1
0

xx

vv






 
 Using this result in Eq. (i), we get on simplification 

  
2

2

2

1

2

1

2

2

2

2

2

1

vv

xvxv
a






 
 

4. For a compound pendulum, time period  

g

ll

g

llk
T r '

2
)/(

2
2





 

    
 (i) 

Suppose 'T  is the time period, when the pendulum is suspended 

from the center of oscillation. Then we can write 

  g

llk
T r ')'/(

2'
2 

 

      
 (ii) 

The distance between the center of oscillation and centre of 

gravity lkl r /' 2 , i.e., '2 llkr  . Using this in Eq. (ii), we get 

 
T

g

llk
T r 




')'/(
2'

2



 
That is, the periods about the centre of suspension and centre of 

oscillation are equal. This property of a compound pendulum is 

called mutual interchangeability of the centres of suspension and 

oscillation. The mutual interchangeability of centres of 

suspension and oscillation of a compound pendulum arises 

because the periods of oscillation about S and O are equal. In all, 

there are four points (S, O´, O, S´) on the line SS´ (so that GS = 

GS´ and GO = GO´) about which the periods of oscillation are 

the same. 

 

5. 
9

0

2

4
)(

r

c

r

e
rU 

  

  
102

0

2 91

4 r

c

r

e

dr

dU
F 

  

 At the equilibrium separation, 0rr 
, force vanishes, i.e.,  

  

0
91

4 10

0

2

00

2


r

c

r

e

  
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 or 0

8

0

2

36

re
c 

  

 Now, 000

113

0

2

2

2 902

4 rrrrrr
r

c

r

e

dr

Ud






 

    = 0

2

3

0

3

00

2

2

51

2 

e

rr

e


 

    = 
3

00

22

r

e

  

 which is positive. Hence, 0rr 
 is the separation at stable 

equilibrium, and  

 Force constant 

  
3

00

22

r

e
k




 
 

1.8 Reference for further Studies 

 

Textbooks: 

1. The Physics of Vibrations and Waves. By H. John Pain. 6th Edition, 

2018. Available at: 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATION

S_AND_WAVES_Sixth_Edition 

2. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

 

Video Links 

 

https://youtu.be/jxstE6A_CYQ 

https://youtu.be/tNpuTx7UQbw 

 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://z-lib.is/book/oscillations-and-waves-15178533
https://z-lib.is/book/oscillations-and-waves-15178533
https://youtu.be/jxstE6A_CYQ
https://youtu.be/tNpuTx7UQbw
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UNIT 2 SUPERPOSITION OF HARMONIC OSCILLATIONS 

Structure 
2.1    Introduction Objectives 

2.2     Principle of Superposition 

2.3     Superposition of Two Harmonic Oscillations of the Same 

Frequency along the Same  

Line 

2.4     Superposition of Two Collinear Harmonic Oscillations of 

Different Frequencies 

2.5    Superposition of Many Harmonic Oscillations of the Same 

Frequency 

Method of Vector Addition Method of Complex Numbers ' 

2.6     Oscillations in Two Dimensions 

Superposition of Two Mutually Perpendicular Harmonic 

Oscillations of the Same Frequency Superposition of Two 

Rectangular Harmonic Oscillations with Nearly Equal 

Frequencies: Lissajous Figures 

2.7     Summary 

2.8     Terminal Questions 

2.9 Solutions 

 

2.1    INTRODUCTION 
In Unit 1, we studied simple harmonic motion and considered a number 

of examples from different areas of physics. We found that in each case 

the motion is governed by a homogeneous second order differential 

equation. The solution of this equation gives us information regarding 

displacement of the body as a function of time. In many situations, one 

has to deal with a combination of two or more simple harmonic 

oscillations. Do you know that our eardrums vibrate under a complex 

combination of harmonic vibrations? The resultant effect is given by the 

principle of superposition. You must have observed that oscillations of a 

swing gradually die out, when left to itself. This is due to factors like 

friction and air resistance. The system loses energy and its motion is 

said to be damped. We will discuss damped harmonic oscillations in the 

next unit. 

 

In this unit we first discuss the principle of superposition. Then you will 

learn to apply this principle to situations where two (or more) harmonic 

oscillations are superposed, either along the same line or in 

perpendicular directions. 

 

Objectives 
After studying this unit, you should be able to 

 state the principle of superposition 



PHY 203        OSCILLATIONS AND WAVES 

 

41 

 apply the principle of superposition to two harmonic oscillations 

of (a) the same frequency and (b) different frequencies along the 

same line 

 apply the methods of vector addition and complex numbers for 

superposition of many simple harmonic oscillations, and 

 apply the principle of superposition to two mutually 

perpendicular harmonic oscillations of different 

frequencies/phases and describe the formation of Lissajous 

figures. 

 

2.2   PRINCIPLE OF SUPERPOSITION 

We know that for small oscillations, a simple pendulum executes simple 

harmonic motion. Let us reconsider this motion and release the bob at 

the instant t = 0 when it has initial displacement 1a . Let the 

displacement at a subsequent time t  be 1x . Let us repeat the experiment 

with an initial displacement 2a . Let the displacement after the same 

interval of time t be 2x . Now if we take the initial displacement to be the 

sum of the earlier displacements, viz., 21 aa  , then according to the 

superposition principle,, the displacement 3x
 after the same interval of 

time t  will be 

 

 213 xxx 
 

 

You can perform this activity by taking three identical simple 

pendulums. Release all three bobs simultaneously such that their initial 

velocities are zero and initial displacements of the first, second and the 

third pendulum are 1a , 2a  and 21 aa  , respectively. You will find that at 

any time the displacement 3x
 of the third pendulum will be the algebraic 

sum of the displacements of the other two. In general, the initial 

velocities may be non-zero. Thus, the principle of superposition can be 

stated as follows: 

 

Superposition of Simple Harmonic Oscillations 

When we superpose the initial conditions corresponding to velocities 

and amplitudes, the resultant displacement of two (or more) harmonic 

displacements will be simply the algebraic sum of the individual 

displacements at all subsequent times. 

 

You will note that the principle of superposition holds for any number of 

simple harmonic oscillations. These may be in the same or mutually 

perpendicular directions, i.e. in two dimensions. 

 

In Unit 1, we observed that Eq. (1.3) describes SHM: 
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x

dt

xd 2

02

2


        

 (2.1) 

 

This is a linear homogeneous equation of second order. 

 

Such an equation has an important property that the sum of its two 

linearly independent solutions is itself a solution. We have already used 

this property in Unit I while writing Eq. (1.4). 

 

Let )(1 tx  and )(2 tx  respectively satisfy equations 

 

 
1

2

02

1

2

x
dt

xd


        
 (2.2) 

 
2

2

02

2

2

x
dt

xd


       
 (2.3) 

 

Then by adding Eqs. (2.2) and (2.3), we get 

 
)(

)(
21

2

02

21

2

xx
dt

xxd





      
 (2.4) 

According to the principle of superposition, the sum of two 

displacements given by  

 )()()( 21 txtxtx         
 (2.5) 

also satisfies Eq. (2.1). In other words, the superposition of two 

displacements satisfies the same linear homogeneous differential 

equation which is satisfied individually by 1x  and 2x . 

 

SAQ 1 
For a simple pendulum we know that the equation of motion is 

 

 



sin02

2


dt

d
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If in this equation you use the expansion 

 

 
...

!7!5!3
sin

753





 

 

will it remain linear in  ? If you retain the first two terms and consider 

the resulting equation for the two displacements 1 and 2 , will the 

principle of superposition still hold? If not, why? 

 

You will find that in the case of a simple pendulum you can apply the 

principle of superposition only for small oscillations, i.e. when  sin . 

Here we shall study only those oscillations for which the displacement 

satisfies linear homogeneous differential equations. 

 

2.3   SUPERPOSITION OF TWO HARMONIC 
OSCILLATIONS OF THE SAME FREQUENCY ALONG THE SAME 

LINE  

 

Let us superpose two collinear (along the same line) harmonic 

oscillations of amplitudes 1a  and 2a  having frequency 0
 and a phase 

difference of  . The displacements of these oscillations are given by 

 
tax 011 cos

       
 (2.6) 

and 
)cos( 022   tax
       

  

                  = 
ta 02 cos
       

 (2.7) 

According to the principle of superposition, the resultant displacement is 

given by 

 

 )(tx = )()( 21 txtx   

        = 
tata 0201 coscos  
 

A linear differential equation has terms involving only the 

first power of the variable and its derivatives. A 

homogeneous equation contains no term independent of the 

variable. 

 

Let there be a set of functions 
1x , 

2x , …, nx . If their linear 

combination nn xcxcxc  ...2211 vanishes only when 

0...21  nccc , 
1x , 

2x , …, nx are said to be linearly 

independent. 
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        = 
taa 021 cos)( 

      

 (2.8) 

 

This represents a simple harmonic motion of amplitude )( 21 aa  . In 

particular, if two amplitudes are equal, i.e. 21 aa  ,the resultant 

displacement will be zero at all times. The displacement-time graph 

depicting this situation is shown in Fig. 2.1. 

 

 
Fig. 2.1 Superposition of two collinear harmonic oscillations of equal 

amplitude but out of  

phase by   

 

SAQ 2 

Two harmonic oscillations of amplitudes 1a  and 2a  have the same 

frequency 0
 and are in phase. Show that their superposition gives a 

harmonic oscillation of amplitude 21 aa  . 

 

We will now discuss the general case of superposition of two harmonic 

oscillations. Let one of these be characterized by amplitude 1a  and 

initial phase 1  and the other with amplitude 2a  and phase 2 . Both 

oscillations have frequency 0
 and are collinear, i.e. they are along the 

same line. Then, we can write  

 

 
)cos( 1011   tax
       

 (2.9) 

and  
)cos( 2022   tax
       

 (2.10) 

 

According to the principle of superposition, the resultant displacement is 

the sum of 1x and 2x and we have 

 

 
)cos()cos()()()( 20210121   tatatxtxtx

 
 

Using the expression for the cosine of the sum of two angles, this can be 

written as 

 

 101101 sinsincoscos)(  tatatx 
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             + 202202 sinsincoscos  tata 
    

  

 

Collecting the coefficients of 
t0cos

, and 
t0sin
, we get 

 
taatx 02221 cos)coscos()(  
 

  
taa 02211 sin)sinsin(  
    

 (2.11) 

 

 

 

Since 1a , 2a , 1  and 2  are constant, we can set 

 

 2211 coscoscos  aaa        
 (2.12) 

 2211 sinsinsin  aaa        
 (2.13) 

 

where a  and   have to be determined. Then, we can rewrite Eq. (2.11) 

in the form 

 

 
tatatx 00 sinsincoscos)(  
 

 

It has the form of the cosine of the sum of two angles and can be 

expressed as 

 

 
)cos()( 0   tatx
       

 (2.14) 

 

This equation has the same form as either of our original equations for 

separate harmonic oscillations. Hence, we have the important result that 

the sum of two collinear harmonic oscillations of the same frequency is 

also a harmonic oscillation of the same frequency and along the same 

line. But it has a new amplitude and a new phase constant  . The 

amplitude can easily be calculated by squaring Eqs. (2.12) and (2.13) 

and adding the resultant expressions. On simplification we have 

 

 )cos(2 2121

2

2

2

1

2   aaaaa      
 (2.15) 

 

Similarly, the phase   is determined by dividing Eq. (2.13) by Eq. 

(2.12): 

 

BABABA sinsincoscos)cos(   
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











 

2211

22111

coscos

sinsin
tan






aa

aa

     
 (2.16) 

 

SAQ 3 

Two harmonic oscillations of frequency 0
 have initial phases 1  and 

2  and amplitudes 1a  and 2a . Their resultant has the phase 

 

 (a)  n221   

and (b)  )12(21  n  

 

where n  is an integer. Using Eq. (2.15), show that the amplitudes of the 

resultant oscillations are equal to )( 21 aa   and )( 21 aa  , respectively. 

 

SAQ 4 

Two harmonic oscillations of frequency 0
 having an amplitude 1 cm 

and initial phases zero and 2/ , respectively, are superposed. Calculate 

the amplitude and the phase of the resultant vibration. 

 

2.4    SUPERPOSITION OF TWO COLLINEAR 

HARMONIC OSCILLATIONS OF DIFFERENT 

FREQUENCIES 
In a number of cases, we have to deal with superposition of two or more 

harmonic oscillations having different angular frequencies. A 

microphone diaphragm and human eardrums are simultaneously 

subjected to various vibrations. For simplicity, we shall first consider 

superposition of two harmonic oscillations having the same amplitude a  

but slightly different frequencies 1  and 2  such that 21   : 

 

 )cos( 111   tax  

 
)cos( 202   tax
 

 

We note that the phase difference between these two harmonic 

vibrations is 

  

)()( 2121   t  
 

The first term t)( 21    changes continuously with time. But the 

second term )( 21    is constant in time and as such it does not play any 

significant role here. Therefore, we may assume that the initial phase of 

two oscillations are zero. Then, two harmonic oscillations can be written 

as 
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 tatx 11 cos)(   

and tatx 22 cos)(         

 (2.17) 

 

The superposition of two oscillations gives the resultant 

  

)coscos()()()( 2121 ttatxtxtx       
 (2.18) 

 

This equation can be rewritten in a particularly simple form using the 

formula 

2
cos

2
cos2coscos

BABA
BA




 
  

ttatx 






 







 


2
cos

2
cos2)( 2121 

    
 (2.19) 

 

This is an oscillatory motion with angular frequency 







 

2

21 

 and 

amplitude 
ta 






 

2
cos2 21 

  

 

Let us define an average angular frequency 

  

 2

21 



av

      
 (2.20a) 

 

and a modulated angular frequency  

 
2/)( 21mod  

      
 (2.20b) 

 

Then we find that the amplitude 

 

 
tata modmod cos2)( 
      

 (2.20c) 

 

varies with a frequency 







42

21mod 

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This also implies that in one complete cycle the modulated amplitude 

takes values of a2 , 0, a2 , 0 and a2  for 
tmod
= 0, 2/ ,  , 2/3  and 

2 , respectively. The resultant oscillation can be written as 

 

 
ttatx avcos)()( mod
      

 (2.21) 

 

This equation resembles the equation of SHM. But this resemblance is 

misleading because its amplitude varies with time. 

 

Fig. 2.2 Plot of Eq. (2.21) 

 

The displacement-time graph depicting the resultant of two collinear 

harmonic oscillations of different frequencies is shown in Fig. 2.2. You 

will note that individual oscillations are harmonic but their superposition 

shows variation with time; it is periodic but not simple harmonic. 

 

In the general case, we consider two harmonic oscillations having 

amplitudes 1a  and 2a  and angular frequencies 1  and 2 . If their initial 

phases are zero, the resultant oscillation can be written as 

  
)cos()()( modmod   ttatx av      

 (2.22) 

 

The modulated amplitude and phase constant are respectively given by 

  
2/1

mod21

2

2

2

1mod )]2cos(2[)( taaaata      
 (2.23) 

 

and 














taa

taa

mod21

mod21
mod

cos)(

sin)(






      

 (2.24) 

 

For 1a = 2a  you will note that the expression for 
)(mod ta
reduces Eq. 

(2.20c) and 
0mod 

. 
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If 1  and 2  are nearly equal, mod
 would be much less than av

 and 

the modulated amplitude will vary very slowly with time. That is, for 

av mod  one can regard 
)(mod ta
 as essentially constant over the 

period 
)/2( av
. Then, Eq. (2.22) will represent an almost harmonic 

oscillation of angular frequency av
. 

 

The amplitude of the resulting motion is maximum )( 21 aa   when 

 
12cos mod t

. This means that 
 nt 22 mod 

  n = 0, 1, 2, … 

 

or  nt 2)( 21   n = 0, 1, 2, … 

 

or  t 0 , )(

1

21   , )(

2

21   , …, )( 21  

n

 

 

where )2/( 11    and )2/( 22    are the frequencies of two 

harmonic oscillations. 

 

Similarly, you will note that the amplitude of the resultant oscillation 

attains a minimum value ( 21 aa  ) when 

  

12cos mod t
 

 

That is, when 

   

)(2

1

21  
t

, )(2

3

21   , )(2

5

21   , … 

 

 

2.5 SUPERPOSITION OF MANY HARMONIC OSCILLATIONS 

OF THE SAME  

FREQUENCY 
In the preceding sections, we considered superposition of two collinear 

harmonic oscillations. How will you calculate the resultant of a number 

of harmonic oscillations of the same frequency? You may suggest that 

an obvious way is to extend the procedure outlined in Sec. 2.3. But we 

find that the mathematical analysis, though simple, becomes unwieldy. 

A convenient way out in such a case is to use either the method of 

vector analysis or complex numbers. We will now discuss these in turn. 
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2.5.1    Method of Vector Addition 

This method is based on the fact that the displacement of a harmonic 

oscillation is the projection of a uniform circular motion on the diameter 

of the circle. Therefore, it is important to understand the connection 

between SHM and uniform circular motion. 

 

Uniform Circular Motion and SHM 

Let us suppose that a particle moves in a circle with constant speed V  

(Fig. 2.3). The radius vector joining the centre of the circle and position 

of the particle on the circumference will rotate with a constant angular 

frequency. We take the x -axis to be along the direction of the radius 

vector at time t = 0. Then the angle made by the radius vector with the 
x -axis at any time t will be given by 

  
 

Fig. 2.3 Uniform circular motion and its connection with SHM 

 

R

Vt


circletheofradius

arcoflength


 
 

The x - and y - components of the position of the particle at time t  are 

 cosRx   

and sinRy   

 

Thus,  

 dt

d
R

dt

dx 
sin

  = 
 sin0 R

 

 

since R

V

dt

d
 0



 

 

Similarly, you can write 

 

 
 cos0 R

dt

dy


 
 

Differentiating again with respect to time, we get 
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x
dt

xd 2

02

2


 

and 
y

dt

yd 2

02

2


 

 

These expressions show that when a particle moves uniformly in a 

circle, its projections along x - and y - axes execute SHM. In other 

words, a simple harmonic motion may be viewed as a projection of a 

uniformly rotating vector on a reference axis. 

 

Suppose that the vector OP' with |OP'| = a0 is rotating with an angular 

frequency 0
 in an anticlockwise direction, as shown in Fig. 2.4. Let P 

be the foot of the perpendicular drawn from P' on x -axis.  

Then OP = x is the projection of OP' on the x -axis. As vector OP' 

rotates at constant speed, the point P executes simple harmonicmotion 

along the x -axis. Its period of oscillation is equal to the period of the 

rotating vector OP'. 

 Let 
'

0OP  be the initial position of a rotating vector. Its projection 0OP
on 

the x -axis is 
cos0a

. If this rotating vector moves from 
'

0OP  to OP' in 

time t , then tOPP 0

'

0'   and 
)(' 0   tOP
. Then we can write 

 

 

 

Fig. 2.4a Projections of a rotating 

vector along the diameter of a circle 

 

 OxPOPOP 'cos'   

or 
)cos( 00   tax

  

     (2.28a) 

Thus, point P executes simple harmonic motion along x-axis. 

 

If you project OP' onthe y -axis, you will find that the point 

corresponding to the foot of the normal satisfies the equation 
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)sin( 00   tay
      

 (2.28b) 

 

This means that a rotating vector can, in general, be resolved into two 

orthogonal components, and we can write 

yx yxr 
  (2.29) 

 

where xx
 and yy

 are unit vectors along the x - and the y -axes, 

respectively. 

 

Vector Addition 

Let us now consider the superposition of n  harmonic oscillations, all 

having the same amplitude 0a
 and angular frequency 0

. The initial 

phases of successive oscillations differ by 0 . Let the first of these 

oscillations be described by the equation 

 

 
tatx 001 cos)( 
 

 

Then, other oscillations are given by 

 

 
)cos()( 0002   tatx
 
)2cos()( 0003   tatx

 
. 

])1(cos[)( 000   ntatxn     
 (2.30) 

From the principle of superposition, the resultant oscillation is given by 

  

 
...)2cos()cos([cos)( 000000   tttatx

 

   
}])1(cos{ 00   nt

   
 (2.31) 

 

Let us denote the harmonic oscillations given in Eq. (2.31) as 

projections of rotating vectors 
'

1OP , 
'

2OP , 
'

3OP
, …  (Fig. 2.4b). 
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Fig. 2.4b Projections of rotating vectors 
'

1OP , 
'

2OP , … on the diameter of 

a circle 

 

 

 

 

To find the resultant of these vectors, we translate them parallel to 

themselves so that the head of the first coincides with the tail of the 

second and so on. You will observe that 

(i) combining vectors form successive sides of an incomplete n -

sided polygon (Fig. 2.4c) 

(ii) ,|| '

1

'

1 OPOP
'

2

'

2

'

1 || OPPP , 
'

3

'

3

'

2 || OPPP  and so on. 

 

 
 

Fig. 2.4c: Superposition of a large number of harmonic oscillations 

of equal amplitude 0a
 and havingsuccessive phase difference 0  

 

Let us now project each of these vectors along the x -axis. Then, we get 

 1x  = Proj x)( '

1OP
 = 

ta 00 cos
 

 2x = Proj x)( '

2

'

1PP = 
)cos( 000  ta
 

 

When a vector is translated parallel to itself, it remains unaltered. 
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 3x
= Proj x)( '

3

'

2PP
= 

)2cos( 000  ta
 

 . 

 . 

 nx
= Proj xnn )( ''

1PP  = 
))1(cos( 000   nta
 

 

The law of vector addition implies that the resultant of 
'

1OP , 
'

2

'

1PP , 
'

3

'

2PP
, 

… is given by the vector 
'

nOP
, i.e., 

  
'

1

'

3

'

2

'

2

'

1

'

1

' ...  nn PPPPPOPOP
 

 

Thus,  Proj
)( '

nOP
= Proj x)( '

1OP
+ Proj x)( '

2

'

1PP
+ … 

or 
...)()()()( 321  txtxtxtx

 

 

Let the length of 
'

nOP
 be a  and its phase with respect to the first vector 

be  . Then the projection of 
'

nOP
 along the x -axis is given by 

 )(tx Proj
)cos()( 0

'   taxnOP
 

 

Hence, the sum in Eq. (2.31) reduces to calculating a  and   

characterising the resultant vector 
'

nOP . To this end, we recall that any 

regular polygon will lie on a circle of radius r , as shown in Fig. 2.4b. 

The angle subtended at the centre C  of the circle by individual vectors 

will be equal to 0 . Hence, the total angle subtended at C  by the 

resultant vector 
'

nOP  will be 0n
. 

 

 

 

 

From the triangle OCPn we note that  

 0

22 cos22 nrra 
 

 

 

Using the trigonometric relation  2sin212cos   and simplifying the 

resultant expression, we get 

 
)2/sin(2 0nra 
      

 (2.33a) 

 

Similarly, we can show that 

A circle is an infinite-sided regular polygon 
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)2/sin(2 00 ra 

      
 (2.33b) 

On combining Eqs. (2.33a) and (2.33b), we obtain the amplitude of the 

resultant vector 
'

nOP : 

 )2/sin(

)2/sin(

0

0

0


n
aa 

      
 (2.34) 

The phase difference   of the resultant oscillation relative to the first 

oscillation is given by 

 
''

1 nCOPCOP        
 (2.35) 

 

In the isosceles 
'

1COP , 
'

1OCP = 0  and 2/'

1  COP . 

 

Since the sum of the angles of a triangle is equal to  , we can write 

 
'

1

'

1

'

1 OCPCOPCOP    

  = 
0

2



 

 

  = 
0

2





      

 (2.36a) 

 

Similarly, in the isosceles 
'

nCOP , 0

' nOCPn   and 
OCPCOP nn

'' 
. 

 

Therefore, 0

'2  nCOPn 
 

Or  22

0' 
nCOPn 

      

 (2.36b) 

 

Hence, by combining Eqs. (2.35) and (2.36), we get 

2
)1(

222

00

0





 

















 nn

    

 (2.37) 

 

That is, the initial phase of the resultant oscillation is equal to half the 

phase difference between the n th and the first oscillations. Hence, 
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




























2

)1(cos

2
sin

2
sin

)( 0
0

0

0

0








nt

n

atx

   
 (2.38) 

 

We shall obtain the same result in the next subsection using the method 

of complex numbers. For the moment, let us examine the behavior of the 

amplitude of the resultant oscillation defined by Eq. (2.38): 

 




















2
sin

2
sin

0

0

0 


n

aa

 
 

You will notice that the value of a depends on the value of 0 . When n  

is very large, 0  becomes very small. Then, using Eq. (2.37), we can 

write 

 22
)1( 00 


n

n 
 

so that n




22
sin 00

 

Hence, for large n , we have 

 





 sin

)/(

sin
00 na

n
aa 

 

    = 

sin
A

 

Fig. 2.5 Plot of 

sinA

as a function of   
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That is, the polygon becomes an arc of the circle with center at O and 

length 
Ana 0  with a as chord. The plot of 

sin
A

for different values 

of  is shown in Fig. 2.5. 

The pattern is symmetric about   = 0 and is zero for  nsin ( n  = 1, 

2,...) except at  =0. When  = 0, 0 = 0 and the resultant of n 

oscillations (vectors) is a straight line of length A. As  increases, A 

becomes the arc of the circle until at  = 2/  the last and first 

contributions are out of phase and the arc A becomes a semi-circle 

whose diameter is the resultant a. A further increase in   curls the 

length A into the circumference of a circle )(   with a zero resultant 

and so on. 

 

SAQ5 

Three collinear harmonic oscillations, represented by tx 20cos41  , 

)3/20cos(42   tx , 
)3/220cos(43   tx
are superposed. 

Determine the amplitude and phase of the resultant vibration. 

 

2.5.2    Method of Complex Numbers 

In the preceding section we used a geometrical method of vector 

addition to calculate the resultant of n superposed harmonic oscillations. 

The same result can be obtained in a very convenient and compact form 

using the method of complex numbers. In fact, as you proceed you will 

observe that the use of complex numbers simplifies mathematical steps 

very much. We know that in complex number notation, a vector can be 

represented as 
)](exp[ 0   tiaz

. The complex exponential )exp( i is 

given by 

  

  sincos)exp( ii   

with )]Re[exp(cos  i   

 )]Im[exp(sin  i =  

 

Let us now see how this technique of complex numbers is used to obtain 

the resultant of n harmonic oscillations given by Eq. (2.30). In the 

complex exponential notation, we can write 

 

 
)exp( 001 tiaZ 

 

 
)(exp[ 0002   tiaZ
 

 
)]2(exp[ 0003   iaZ

      
 (2.40) 

 

The principle of superposition implies that the resultant, Z , is given by 
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))1((

0

)(

00
00000 ...
 


ntititi

eaeaeaZ  

      = ]...1[ 0000 )1(2

0

 


niiiti
eeeea  

 

This series is in geometric progression with common ratio 
0ie . Its sum 

is given by 

 

 
0

0

1

1
)exp( 00 




i

in

e

e
tiaZ






 

       = 
















2/2/

2/2/

2/

2/

00
00

00

0

0

)exp(









ii

inin

i

in

ee

ee

e

e
tia

 

Using the relation 

 i

ee ii

2
sin







 

we get 

 






































2

exp
2

exp

2
sin

2
sin

)exp( 00

0

0

00








iin

n

tiaZ

 

      = 







 

2

)1(
exp

)2/sin(

)2/sin(
)exp( 0

0

0

00








nin
tia

   

 (2.42) 

 

Since 
)](exp[ 0   tiaZ

, we find that the amplitude and phase of the 

resultant vibration are the same as given by Eqs. (2.34) and (2.37), 

respectively. 

 

The cosine form of the resultant oscillation is obtained by taking the real 

part of Eq. (2.42). 

 

2.6 OSCILLATIONS IN TWO DIMENSIONS 

So far we have confined our discussion to harmonic oscillations in one 

dimension. But oscillatory motion in two dimensions is also possible. 

Most familiar example is the motion of a simple pendulum whose bob is 

free to swing in any direction in the x-y plane. (We call this arrangement 

a spherical pendulum.) We displace the pendulum in the x-direction and 

as we release it, we give it an impulse in the y-direction. What happens 

when such a pendulum oscillates? The result is a composite motion 

whose maximum x-displacement occurs when y-displacement is zero 

and y-velocity is maximum and vice versa. Remember that since the 

time period of the pendulum depends only on the acceleration due to 

gravity and the length of the cord, the frequency of the superposed 
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SHM's will be the same. The result is a curved path, in general, an 

ellipse. 

 

We now apply the principle of superposition to the case where two 

harmonic oscillations are perpendicular to each other. 

 

2.6.1    Superposition of Two Mutually Perpendicular Harmonic 

Oscillations of the Same Frequency 

Consider two mutually perpendicular oscillations having amplitudes 1a

and 2a ,such that 21 aa   and angular frequency 0
. These are described 

by equations 

 

 
tax 011 cos

      
 (2.43) 

and 
)cos( 022   tax
      

 (2.44) 

 

Here we have taken the initial phase of the vibrations along the x and the 

y-axes to be zero and   respectively. That is,  is the phase difference 

between the two vibrations. 

 

We shall first find out the resultant oscillation for a few particular values 

of phase difference  . 

 

Case 1.  = 0 or   

For   = 0 

 
tax 01 cos
 

and 

 
tay 02 cos
 

Therefore 

 

 12 // aaxy   
or 

 xaay )/( 12         
 (2.45) 

 

Similarly, for   , 

 
tax 01 cos
 

 
tay 02 cos

 
 

So that  
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 xaay )/( 12        
 (2.46) 

 

Eqs. (2.45) and (2.46) describe straight lines passing through the origin. 

This means that the resultant motion of the particle is along a straight 

line. However, for   = 0 the motion is along one diagonal (PR in Fig. 

2.6a) but when   the motion is along the other diagonal (QS in Fig. 

2.6b). 

 

 

 

 

 

Case II.  = 2/  

In this case the two vibrations are given by 

 
tax 01 cos
 

 
)2/cos( 02   tay
= 

ta 02 sin
 

 

 
 

Fig. 2.6 Superposition of two mutually perpendicular harmonic 

oscillations having the same  

frequency different phases 

 

On squaring these expressions and adding the resultant expressions, we 

get 

 

  22

2

2

2

2

1

2

sincos
a

y

a

x

1     

  (2.47) 

 

This is the equation of an ellipse. Thus the resultant motion of the 

particle is along an ellipse whose principal axes lie along the x- and the 

y-axes. The semi-major and semi-minor axes of the ellipse are 1a and 2a . 

Note that as time increases x decreases from its maximum positive value 

The equation of a straight line is cmxy  , where 

m  is the slope and c  is the intercept on the y -axis. 
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but y  becomes more and more negative. Thus, the ellipse is described 

in the clockwise direction as shown in Fig. 2.6c. If you analyze the case 

when 2/3   or 2/  , you will obtain the same ellipse, but the 

motion will be in the anticlockwise direction (Fig. 2.6d). 

 

When amplitudes 1a  and 2a  are equal, aaa  21 , Eq. (2.47) reduces to 

  
222 ayx   

 

This equation represents a circle of radius a . This means that the ellipse 

reduces to a circle. 

 

General case 

We will now consider the general case for any arbitrary value of  . Let 

the two SHM’s given by Eqs. (2.43) and (2.44) be superposed. To find 

the resultant oscillation, we write Eq. (2.44) as 

  

 
 sinsincoscos)cos( 000

2

ttt
a

y


   
 (2.48) 

 

From Eq. (2.43), 

 10 /cos axt 
 

so that  
)/(1sin 2

1

2

0 axt 
 

 

Substituting these values of 
t0cos
 and 

t0sin
in Eq. (2.48), we have 

 



sin)/(1

cos 2

1

2

12

ax
a

x

a

y


 

or 
 sin)/(1cos 2

1

2

21

ax
a

y

a

x


 

 

Squaring both sides and arranging terms, we get 

  

 

 2

21

2

2

2

2

1

2

sincos2 
aa

xy

a

y

a

x

     
 (2.49) 

 

as the equation of the resultant path. This describes an ellipse whose 

axes are inclined to the coordinate axes. 

 

For some typical values of   lying between 0  and  , the resultant paths 

traced out by the resultant oscillation when two mutually perpendicular 
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SHM’s of equal frequency are superposed are shown in Fig. 2.7. These 

can be most easily demonstrated on a cathode ray oscilloscope. 

 

 
 

Fig. 2.7 Superposition of two mutually perpendicular harmonic 

oscillations of the same  

       frequency and having values of   lying between 0 and 2  

 

We may thus conclude that an elliptical motion is a combination of two 

mutually perpendicular linear harmonic oscillations of unequal 

amplitudes and having a phase difference  . A circular motion is a 

combination of two harmonic oscillations of equal amplitudes 

 

SAQ6 
In a cathode ray oscilloscope, the deflection of electrons by two 

mutually perpendicular electric fields is given by 

 

 tx 2cos4  

 )6/2cos(4   ty  
 

What will be the resultant path of electrons? 

 

2.6.2   Superposition of Two Rectangular Harmonic Oscillations of 

Nearly Equal Frequencies: Lissajous Figures 
 

We now know that when two orthonormal vibrations have exactly the 

same frequency, the shape of the curve traced out by the resultant 

oscillation depends on the phase difference between component 

vibrations. For a few values of the phase difference  in the range 0 to 
2  radians, these curves are shown in Fig. 2.6. When the two individual 

rectangular vibrations are of slightly different frequencies, the resulting 

motion is more complex. This is because the relative phase 
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])([ 012102   ttt
of the two vibrations gradually 

changes with time. This makes the shape of the figure to undergo a slow 

change. If the amplitudes of vibrations are 1a and 2a , respectively, then 

the resulting figure always lies in a rectangle of sides 12a and 22a . The 

patterns which are traced out are called Lissajous figures. When the two 

vibrations are in the same phase, i.e.   = 0, the Lissajous figure reduces 

to a straight line and coincides with the diagonal y = xaa )/( 12  of the 

rectangle. As   changes from 0 to 2/ , the Lissajous figure is an ellipse 

and passes through oblique positions in the rectangle. When  increases 

from 2/ to  , the ellipse closes into a straight line which coincides 

with the (other) diagonal y xaa )/( 12 of the rectangle. Further, as   

changes from  to 2 , the series of changes mentioned above take place 

in the reverse order. In general, the shape of curve depends on the 

amplitudes, frequencies and the phase difference. All these changes are 

shown in Fig 2.7. The phase  changes by 2  in the time interval 

)/(2 12   . Therefore, the period of the complete cycle of changes is 

)/(2 12    and its frequency is 



2

12 

21   , i.e., equal to the 

difference of the frequencies of the individual vibrations. 

 

Lissajous figures can be illustrated easily by means of a cathode ray 

oscilloscope (CRO). Different alternating sinusoidal voltages are applied 

at XX and YY deflection plates of the CRO. The electron beam traces the 

resultant effect on the fluorescent screen. When the applied voltages 

have the same frequency, we can obtain various curves of Fig. 2.7 by 

adjusting the phases and amplitudes. 

 

If the frequencies of individual perpendicular vibrations are in the ratio 

2:1, the Lissajous figures are relatively complex. It has the shape of 

parabola for   = 0 or  and for  = 2/ its shape is that of figure '8'. To 

clarify this let us study the following example: 

 

Two rectangular harmonic vibrations having frequencies in the ratio 2:1 

are represented as follows: 

 

 
)2cos( 01   tax

      
 (2.50) 

and 
tay 02 cos

       

 (2.51) 

 

We will calculate the resultant motion for   = 0, 2/ and  . 
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(i) When  = 0, 
tax 01 2cos 
= )1cos2( 0

2

1 ta   

and 

  
tay 02 cos

 

Since 
t

a

y
0

2

cos

, we can rewrite the above equation as 

  

1
2

2

2

2

1


a

y

a

x

 
On rearranging terms, we get 

  

)(
2

1

1

2

22 ax
a

a
y 

     
 (2.52) 

This equation represents a parabola (Fig. 2.8a). 

 

(ii) When 2


 

 

tax 01 2sin 
 

 or   
tt

a

x
00

1

cossin2 

 

 and  
tay 02 cos

 

 Since we can write 

   2

0cos
a

y
t 

 

 and  
2

2

2

0 1sin
a

y
t 

 

 

 The first of these equations reduces to 

 

   
2

2

2

21

1
2

a

y

a

y

a

x


 
 

 On squaring and rearranging terms, we get 

   

01
4

2

1

2

2

2

2

2

2

2











a

x

a

y

a

y

    
 (2.8b) 

 

 which represents figure ‘8’ in shape (Fig. 2.8b). 

 

 

(iii) When    
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tax 01 2cos 
 

 or   
1cos2 0

2

1

 
a

x

 

 and  
tay 02 cos

 

 

 On combining these equations, we get 

 

 

   0   2/       
 

Fig 2.8 Superposition of two harmonic oscillations having frequencies in 

the ratio 2:1 and 

    phase difference   = (i) 0, (ii) 2/  and  , respectively 

     

   

1
2

1

2

2

2


a

x

a

y

 

  or  

)(
2

1

1

2

22 ax
a

a
y 

     

 (2.54) 

 

This represents a parabola which is oppositely directed to 

the case when  = 0 (Fig. 2.8c). 

 

2.7 SUMMARY 

The principle of superposition states that when we superpose the initial 

conditions corresponding to velocities and amplitudes, the resultant 

displacement of two (or more) harmonic displacements will be simply 

the algebraic sum of the individual displacements at all subsequent 

times. 

 

 )()()( 21 txtxtx   
  

When two collinear harmonic oscillations of the same frequency, given 

by 

 

 
)cos( 1011   tax

       
  

and  
)cos( 2022   tax
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are superposed, the resultant is given by 

 

 
)cos()( 0   tatx
   

where 
2/1

2121

2

2

2

1 )]cos(2[   aaaaa       

and 












 

2211

22111

coscos

sinsin
tan






aa

aa

     

  

 

When two collinear harmonic oscillations of different frequencies are 

superposed, the modulated oscillation is represented by 

 
ttatx avcos)()( mod
 

       

where 
tata modmod cos2)( 
 

     

with  2

21
mod







 

and  2

21 



av

 

 

Superposition of n  harmonic collinear oscillations of the same 

amplitude 
)( 0a

and frequency 
)( 0

 but having a constant phase 

difference 
)( 0  between successive oscillations yields a harmonic 

oscillation. It is given by 

 
)cos()( 0   tatx
 

where  




















2
sin

2
sin

0

0

0



n
a

a

 

and 2
)1( 0  n

 

 

When two mutually perpendicular harmonic oscillations are superpose, 

the resultant form traces out different curves. If the oscillations have 

equal frequencies, the shape of the curve depends on the phase 

difference. In general, the curve is elliptical but for certain phases, it 

closes into a straight line. When the frequencies are nearly equal, the 

curves are termed Lissajous figures. 
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2.8 TERMINAL QUESTIONS 

1. The motion of a simple pendulum is described by the differential 

equation 

 
04

2

2

 x
dt

xd

 
 Solve it for the following initial conditions: (i) at t = 0, x = 3 cm 

and 
0

dt

dx

 

 (ii) at t 0, x = 2 cm and 
4

dt

dx

cm 
1s . Denote these two 

solutions by 1x  and 2x .  

Show that for a new displacement 213 xxx 
, the initial 

conditions on the bob are the superposition of the initial 

conditions of 1x  and 2x .  

 

2. Two simple harmonic vibrations are represented by 

 )6/20sin(31   tx  
 and 

 )3/20sin(42   tx . 

 Find the amplitude, phase constant and the period of resultant 

vibration. 

 

3. Consider the following two simple harmonic oscillations 

 tax 111 cos  
 and  

 tax 222 cos  
Use complex number analysis to obtain the following expressions 

of the amplitude for the resultant motion: 
2/1

2121

2

2

2

1 ])cos(2[ taaaaa  
 

Show that the resultant amplitude oscillates between the values 

21 aa   and 21 aa  . 

 

4. Two tuning forks A and B of frequencies close to each other are used 

to obtain Lissajous figures and it is observed that the figure goes through 

a cycle of changes in 20 s. Now if A is loaded slightly with wax, the 

figure goes through a cycle of changes in 10 s. If the frequency of B is 

300 Hz, what is the frequency of A before and after loading? 
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2.9 SOLUTIONS 

 

SAQ 

1. On using the given expansion, we get 

0...
!5!3

53

02

2
















dt

d

 

Since this equation contains terms of power higher than  , it is 

not linear. 

 

Even if we retain the first two terms in the expansion, the 

resulting equation will not be linear and hence the principle of 

superposition will not hold. 

 

2. 
tax 011 cos
 

tax 022 cos
 

According to the principle of superposition 

taaxxx 02121 cos)( 
 

Since the cosine function varies between + 1 and 1 , the 

amplitude of the resultant oscillation is || 21 aa  . 

 

3. The resultant of two harmonic oscillations having amplitudes 

1a  and 2a  and initial phases 1  and 2  is given by 

)cos(2 2121

2

2

2

1

2   aaaaa
     (i) 

(a) When 21   = n2 , 1)cos( 21   and Eq. (i) reduces to  

  

 21

2

2

2

1

2 2 aaaaa 
 

       = 
2

21 )( aa 
 

 so that  

 )( 21 aaa   
 The negative sign is dropped as it will be physically 

absurd. 

 

(b) When 21   = )12( n , 1)cos( 21   

 Then Eq. (i) reduces to 

 21

2

2

2

1

2 2 aaaaa 
 

       = 
2

21 )( aa 
 

 so that 

 )( 21 aaa   
 As before, the negative sign is dropped. 
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4. From Eq. (2.15), we get for 21 aa   
2/1

211 )]cos(1[2   aa  

 Since 21   = 2/ , this expression reduces to 22 1  aa cm 

since 1a 1 cm. 

 Similarly, from Eq. (2.16), we get 

 1tan   or 4/  . 

 

5. Here, n = 3, 0a
= 4 and 

3/0  
 rad. From Eq. (2.34) we note 

that the amplitude of the resultant oscillation is given by 





















2
sin

2
sin

0

0

0 

n

aa

 

     = 
























32
sin

32

3
sin

0 



a

 

     = 


















6
sin

2
sin

0 



a

 

Since 
1

2
sin 



 and 2

1

6
sin 



, we get 

 02aa 
= 8 units 

 

The phase of the resultant oscillation is given by Eq. (2.37): 

  

2
)1( 0  n

 

    = 6
2




 

    = 3



rad. 

 

6. Using Eq. (2.49), we have 

  6
sin

6
cos

44

2

44

2

2

2

2

2 





xyyx
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 or 4

1

2

3

16

2

1616

22


xyyx

 

 or 04322  xyyx  

 The resultant path is an ellipse. 

 

2.10 Terminal Questions 

1. 
04

2

2

 x
dt

xd

        

 (i) 

 Comparing it with the standard equation for SHM 
0

2

02

2

 x
dt

xd


,  

 We find that the solution of this equation is 

  )2cos(  tax       
 (ii) 

 Differentiating Eq. (ii) with respect to t , we get 

  
)2sin(2  ta

dt

dx

      
 (iii) 

 

(1) Since at t = 0, 3x cm and 
0

dt

dx

, from Eqs. (ii) and (iii), 

we obtain 

3 cm = cosa  

  and sin20 a  

 

The latter of these two relations implies that  = 0. Using 

this in the former, we get 

 a = 3 cm 

Therefore, the complete solution is 

 ttx 2cos3)(   cm     

 (iv) 

 

(2) Again if at t 0, x = 2 cm and 
4

dt

dx

cm
1s , we find 

2 cm = cosa  

  and 4 cm
1s  = sin2a  

  or 2 cm
1s  = sina  

 

  On dividing one by the other, we get 

   1tan   or 4


 

. Hence, 22a  cm 

Therefore, the solution in the second case is 
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









4
2cos222


tx

cm    

 (v) 

Since superposition of 1x  and 2x  yields 3x
, from Eqs. (iv) 

and (v), we get 

 

cmtcmtxxx 









4
2cos222cos3213



 
      = 

cmttcmt ]4/sin2sin4/cos2[cos222cos3    
      = 

cmttcmt ]4/sin2sin4/cos2[cos222cos3    

      = 

cmttcmt 







 2sin

2

1
2cos

2

1
222cos3

 

      = cmtcmt 2sin22cos5   

 

Now, if we superpose the initial conditions of 1x  and 2x , 

we have 

at 0t , x = 5 cm and 

14  scm
dt

dx

, 

 5 cm = cosa  

and 4 cm = sin2a  

 

Hence,  5

2
tan 

 

 29

2
sin 

 

29

5
cos 

 

and 29a  cm 

 

Therefore, the solution obtained on superposing initial 

conditions is 
)2cos(293  tx
cm = 

]sin2sincos2[cos29  tt   cm 

On substituting for cos  and sin , we get 

cmtcmtx 2sin22cos53 
 

This is the same as given by Eq. (vi) and obtained by the 

superposition of 1x  and 2x . 
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2. )2/6/20cos(31   tx  cm 

 and  )2/3/20cos(42   tx cm 

 or )3/20cos(31   tx  cm 

 and  )6/20cos(42   tx  cm 

 

 Hence, the resulting vibration is defined by 

 )20cos(   tax cm 

 where 
2/122 )6/cos43243( a  cm 

 

    = 
2/1)312169(  cm 

  =  6.77 cm 

 and 












 

6/cos43/cos3

6/sin43/sin3
tan 1






= 


















343

433
tan 1

 

            = 24.0  

 

3. )exp()exp( 2211 tiatiaz    

 
)()(*)( 2121

2121

2 titititi
eaeaeaeazza






 

        = 
])(exp[])(exp[ 21212121

2

2

2

1 tiaatiaaaa  
 

 

 On taking the real part, we get 

 
2/1

2121

2

2

2

1 ])cos(2[ taaaaa  
 

 When   t)( 21  or )12( n , 21min aaa  . 

 When 0)( 21  t , or n , 21max aaa 
. 

 Hence, the resultant amplitude oscillates between the values 

21 aa   and 21 aa  . 

 

4. 05.0 BA  Hz 

Now on loading the prong of the tuning fork A with wax, the 

frequency of A will decrease. However, now the cycle of changes 

of figures is completed in 10 s and hence the frequency difference 

increases to 0.1. This means that the frequencies of A before and 

after loading are, respectively, (300-0.05) Hz = 299.95 Hz and 

(300 – 0.1) Hz = 299.9 Hz. 
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2.11 Reference for Further Studies 

 

Textbooks 

1. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

2. Stress, Vibration, and Wave Analysis in Aerospace Composites. By 

Victor Giurgiutiu 1st Edition, 2022. Available at: 

https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-

aerospace-composites/giurgiutiu/978-0-12-813308-8 

 

Video Links 

 

https://youtu.be/xrejP8ZG9Hs 

https://youtu.be/OgiSvdMHPn8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://z-lib.is/book/oscillations-and-waves-15178533
https://z-lib.is/book/oscillations-and-waves-15178533
https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
https://youtu.be/xrejP8ZG9Hs
https://youtu.be/OgiSvdMHPn8
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UNIT 3   DAMPED HARMONIC MOTION 

Structure 
3.1 Introduction  

Objectives 

3.2    Differential Equation of a Damped Oscillator 

3.3 Solutions of the Differential Equation  

Heavy Damping  

Critical Damping  

Weak or Light Damping 

3.4    Average Energy of a Weakly Damped Oscillator Average Power 

Dissipated Over One  

Cycle 

3.5 Methods of Describing Damping  

Logarithmic Decrement  

Relaxation Time  

The Quality Factor  

3.6 Examples of Weakly Damped Systems  

An LCR Circuit  

A Suspension Type Galvanometer 

3.7    Summary 

3.8    Terminal Questions 

3.9 Solutions 

 

3.1    INTRODUCTION 
In Unit 1 you learnt that SHM is a universal phenomenon. Now you also 

know that in the ideal case the total energy of a harmonic oscillator 

remains constant in time and the displacement follows a sine curve. This 

implies that once such a system is set in motion it will continue to 

oscillate forever. Such oscillations are said to be free or undamped. Do 

you know of any physical system in the real world which experiences no 

damping? Probably there is none. You must have observed that 

oscillations of a swing, a simple or torsional pendulum and a spring-

mass system when left to themselves, die down gradually. Similarly, the 

amplitude of oscillation of charge in an LCR circuit or of the coil in a 

suspended type galvanometer becomes smaller and smaller. This implies 

that every oscillating system loses some energy as time elapses. The 

question now arises: Where does this energy go? To answer this, we 

note that when a body oscillates in a medium it experiences resistance to 

its motion. This means that damping force comes into play. Damping 

force can arise within the body itself, as well as due to the surrounding 

medium (air or liquid). The work done by the oscillating system against 

the damping forces leads to dissipation of energy of the system. That is, 

the energy of an oscillating body is used up in overcoming damping. But 

in some engineering systems we knowingly introduce damping. A 

familiar example is that of brakes – we increase friction to reduce the 
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speed of a vehicle in a short time. In general, damping causes wasteful 

loss of energy. Therefore, we invariably try to minimize it. 

 

Many a time it is desirable to maintain the oscillations of a system. For 

this we have to feed energy from an outside agency to make up for the 

energy losses due to damping. Such oscillations are called forced 

oscillations. You will learn various aspects of such oscillations in the 

next unit. 

 

In this unit you will learn to establish and solve the equation of motion 

of a damped harmonic oscillator. Damping may be quantified in terms 

of logarithmic decrement, relaxation time and quality factor. You will 

also learn to compute expressions for the logarithmic decrement, power 

dissipated in one cycle and the quality factor. 

 

Objectives 
After going through this unit you will be able to: 

 

 establish the differential equation for a damped harmonic 

oscillator and solve it 

 analyze the effect of damping on amplitude, energy and period of 

oscillation 

 highlight differences between weakly damped, critically damped 

and over-damped systems 

 derive expressions foe power dissipated in one oscillation 

 compute relaxation time and quality factor of a damped 

oscillator, and 

 draw analogies between different physical- systems. 

 

 

3.2    DIFFERENTIAL EQUATION OF A DAMPED 

OSCILLATOR  

While considering the motion of a damped oscillator, some of the 

questions that come to our mind are: Will Eq.(1.2) still hold? If not, 

what modification is necessary? How to describe damped motion 

quantitatively? To answer these questions we again consider the spring-

mass system of Unit 1. Let us imagine that the mass moves horizontally 

in a viscous medium, say inside a lubricated cylinder, as shown in 

Fig.3.1. As the mass moves, it will experience a drag, which we denote 

by dF
. The question now arises: How to predict the magnitude of this 

damping force? Usually, it is difficult to quantify it exactly. However, 

we can make a reasonable estimate based on our experience. For 

oscillations of sufficiently small amplitude, it is fairly reasonable to 

model the damping force after Stokes' law. That is, we take dF
to be 

proportional to velocity and write 
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vFd 

        
 (3.1) 

 

 
 

Fig. 3.1 A damped spring-mass system 

 

The negative sign signifies that the damping force opposes motion. The 

constant of proportionality   is called the damping coefficient. 

Numerically, it is equal to force per unit velocity and is measured in 

1

1

2

1








 skg

ms

kgms

ms

N

. 

 

We will now establish the differential equation which describes the 

oscillatory motion of a damped harmonic oscillator. Let us take the x -

axis to be along the length of the spring. We define the origin of the axis 

(x = 0) as the equilibrium position of the mass. Imagine that the mass (in 

the spring-mass system) is pulled longitudinally and then released. It 

gets displaced from its equilibrium position. At any instant, the forces 

acting on the spring-mass system are:  

(i) a restoring force: kx where k is the spring factor, and  

(ii) a damping force: v . where dt

dx
v 

is the instantaneous 

velocity of the oscillator.  

 

This means that for a damped harmonic oscillator, the equation of 

motion must include the restoring force as well as the damping force. 

Hence, in this case Eq. (1.2) is modified to. 

 

 dt

dx
kx

dt

xd
m 

2

2

       
 (3.2) 

After rearranging terms and dividing throughout by m, the equation of 

motion of a damped oscillator takes the form 

The force experienced by a body falling freely in a viscous medium is given by rvFd 6 .  This is 

known as Stokes' law. Here  is the coefficient of viscosity of the medium and r is radius of body – 

assumed to be spherical, and v  is its velocity. 
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02 2

02

2

 x
dt

dx
b

dt

xd


      
 (3.3) 

 

where 
mk /2

0 
.(You will note that a factor of 2 has been introduced in 

the damping term as it helps us to obtain a neat expression for the 

solution of this equation.) The constant b has the dimensions of  

 

 

1

1

2

massvelocity

force 








T
MLT

MLT

 
 

Hence, its unit is 
1s , which is the same as that of 0

. 

 

You will note that like Eq. (1.3), Eq. (3.3) is a linear second order 

homogeneous differential equation with constant coefficients. If there 

were no damping, the second term in Eq. (3.3) will be zero and the 

general solution of the resulting equation will be given by Eq. (1.5), i.e. 

)cos( 0   tAx
. On the other hand, if there is damping and no 

restoring force, the third term in Eq.(3.3) will be zero. Then the general 

solution of the resulting equation is given by 
DCetx bt  2)(

,where C 

and D are constants. (You can show this by substituting the assumed 

solution in Eqs. (3.3).) This means that the displacement will decrease 

exponentially in the absence of any restoring force. Thus we expect that 

the general solution of Eq. (3.3) will represent an oscillatory motion 

whose amplitude decreases with time. 

 

3.3   SOLUTIONS OF THE DIFFERENTIAL EQUATION 
How does damping influence the amplitude of oscillation? To discover 

this, we have to solve Eq. (3.3) when both the restoring force and the 

damping force are present. The general solution, as discussed above, 

should involve both exponential and harmonic terms. Let us therefore 

take a solution of the form 

 

 )exp()( tatx         
 (3.4) 

 

where a  and   are unknown constants. 

 

Differentiating Eq.(3.4) twice with respect to time, we get 

 

 
)exp( ta

dt

dx

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and 
)exp(2

2

2

ta
dt

xd


 

 

Substituting these expressions in Eq. (3.3), we get 

 

 
0)exp()2( 2

0

2  tab 
     

 (3.5) 

 

For this equation to hold at all times, we should either have 

  

 a = 0 

 

which is trivial, or 

 

 
02 2

0

2   b
       

 (3.6) 

 

This equation is quadratic in  . Let us call the two roots 1  and 2  

 

 

 

 

 

 

 
2/12

0

2

1 )(   bb
      

 (3.7a) 

and 
2/12

0

2

2 )(   bb
      

 (3.7b)  

 

These roots determine the motion of the oscillator. Obviously   has 

dimensions of inverse time. Did you not expect it from the form of 
)exp( t ? 

 

Thus, the two possible solutions of Eq. (3.3) are 

 

 
]})({exp[)( 2/12

0

2

11 tbbatx 
 

and 
]})({exp[)( 2/12

0

2

22 tbbatx 
     

 (3.8) 

 

Since Eq.(3.3) is linear, the principle .of superposition is applicable. 

Hence, the general solution is obtained by the superposition of 1x  and 2x

: 

The roots of the equation 02  cbxax are given by a

acbb
x

2

42 

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]})(exp{exp{})exp{()[exp()( 2/12

0

2

2

2/12

0

2

1 tbatbabttx  

 (3.9) 

 

You will note the quantity can be negative, zero or positive 

respectively, depending on whether b is less than, equal, to or greater 

than 0
 respectively. We, therefore, have three possibilities: 

(i) If 0b
, we say that the system is over damped, 

(ii) If 0b
, we have a critically damped system, 

(iii) If 0b
, we have an under-damped system. 

Each of these conditions gives a different solution, which describes a 

particular behavior. 

 

We will now discuss these solutions in order of their increasing 

importance. 

 

3.3.1    Heavy Damping 
When resistance to motion is very strong, the system is said to be 

heavily damped. Can you name a heavily damped system of practical 

interest? Springs joining wagons of a train constitute the most important 

heavily damped system. In your physics laboratory, vibrations of a 

pendulum in a viscous medium such as thick oil and motion of the coil 

of a dead beat galvanometer are heavily damped systems. 

 

Mathematically, a system is said to be heavily damped if 0b
. Then 

the quantity is positive definite. If we put 

 

 
2

0

2   b  
 

The general solution for damped oscillator given by Eq. (3.9) reduces to 

 

 )]exp()exp()[exp()[exp()( 211 tatatabttx     
 (3.10) 

 

This represents non-oscillatory behavior. Such a motion is called dead-

beat. The actual displacement will, however, be determined by the 

initial conditions. Let us suppose that to begin with, the oscillator is at 

its equilibrium position, i.e 0x  at 0t . Then we give it a sudden kick 

so that it acquires a velocity 0v
, i.e 0vv 

 at 0t . Then from Eq. 

(3.10) we have 

 

)( 2

0

2 b

)( 2

0

2 b



PHY 203        OSCILLATIONS AND WAVES 

80 

 021  aa  

and 02121 )()( vaaaab  
 

 

These equations may be solved to give 

 

 2

0
21

v
aa 

 
 

On substituting these results in Eq. (3.10), we can write the solution in 

compact form:  

 

 

)]exp())[exp(exp(
2

)( 0 ttbt
v

tx 




 

         = 

ttb
v




sinh)exp(0 

      

 (3.11) 

 

where )]exp())[exp(2/1(sinh ttt   is the hyperbolic sine function. 

From Eq. (3.11) it is clear that )(tx will be determined by the interplay of 

an increasing hyperbolic function and a decaying exponential. These are 

plotted separately in Fig.3.2(a). Fig. 3.2(b) shows the plot of Eq. (3.11) 

for a heavily damped system when it is suddenly disturbed from its 

equilibrium position. You will note that initially the displacement 

increases with time. But soon the exponential term becomes important 

and displacement begins to decrease gradually. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2a Plot of xsinh  and )exp( x  

 

  

  
0 0 

xy sinh

 

xey 
 

y  y  

x  x  
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Fig. 3.2b Plot of Eq. (3.11) for a heavily damped system 

 

3.3.2     Critical Damping 

You may have observed that on hitting an isolated road bump, a car 

bounces up and down and the occupants feel uncomfortable. To 

minimize this discomfort, the bouncing caused by the road bumps must 

be damped very rapidly and the automobile restored to equilibrium 

quickly. For this we use critically damped shock absorbers. Critical 

damping is also useful in recording instruments such as a galvanometer 

(pointer type as well as suspended coil type) which experience sudden 

impulses. We require the pointer to move to the correct position in 

minimum time and stay there without executing oscillations. Similarly, a 

ballistic galvanometer coil is required to return to zero displacement 

immediately. 

 

Mathematically, we say that a system is critically damped if b is equal to 

the natural frequency, 0
, of the system. This means that 

2

0

2 b
= 0, so 

that Eq (3.9) reduces to 

 

 )exp()()( 21 taatx     

         = )exp( bta         

 (3.12) 

 

where 21 aaa  . 

 

Let us pause for a minute and recall that the solution of the differential 

equation for SHM involves two arbitrary constants which are fixed by 

giving the initial conditions. But Eq. (3.12) has only one constant. Does 

this mean that it is not a complete solution? It is important to understand 

how this happens. The reason is simple: the quadratic equation for   

(Eq. 3.6) has equal roots. So, the two terms in Eq. (3.9) give the same 

time dependence and reduce to one term. It can be easily verified that in 

this case the general solution of Eq. (3.3) is 

 

)(tx  

t  0 
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 )exp()()( btqtptx        
 (3.13a) 

 

where p and q are constants, p has the dimensions of length and q those 

of velocity. These can be determined easily from the initial conditions. 

 

Let us assume that the system is disturbed from its mean equilibrium 

position by a sudden impulse. (The coil of a suspended type 

galvanometer receives some electric charge at t = 0.) That is, at t = 0, 

)0(x = 0 and 
0

0

v
dt

dx

t


 . This gives p = 0 and 0vq 

, so that the 

complete solution is 

 

 
)exp()( 0 bttvtx 
       

 (3.13b) 

 

Fig. 3.3 illustrates the displacement-time graph of a critically damped 

system described 

by Eq. (3.13 b). At maximum displacement, 

0
max


xxdt

dx

 and 

0

max

2

2


xx

dt

xd

. 

This occurs at time bt /1 : 

 

 
001

0max 736.0368.0
mv

b

v
tevx  

 
 

 
 

Fig. 3.3 Displacement-time graph for a critically damped system 

described by Eq. (3.13b) 
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3.3.3   Weak or light damping 

When 0b
,we refer to it as a case of weak damping. This implies that 

)( 2

0

2 b
is a negative quantity, i.e. 

2/12

0

2 )( b
 is imaginary. Let us 

rewrite it as 

 

 
2/122

0

2/12

0

2 )(1)( bb  
 

           = di
 

 

where 1i  and 

 

 

2/1

2

2
2/122

0
4

)( 









mm

k
bd




     
 (3.14) 

 

is a real positive quantity. You will note that for no damping )0( b , d
 

reduces to 0
, the natural frequency of the oscillator. 

 

On combining Eqs. (3.9) and (3.14) we find that the displacement now 

has the form 

 

 
)]exp()exp()[exp()( 21 tiatiabttx dd  

   
 (3.15) 

 

To compare the behavior of a damped oscillator with that of a free 

oscillator, we should recast Eq.(3.15) so that the displacement varies 

sinusoidally. To do this, we write the complex exponential in terms of 

sine and cosine functions. This gives 

 

 

 

 

 
)]sin(cos)sin(cos)[exp()( 21 titatitabttx dddd  

 
 

On collecting coefficients of 
tdcos

 and 
tdsin
, we obtain 

  

 
]sin)(cos))[(exp()( 2121 taaitaabttx dd  
  

 (3.16) 

 

Let us now put 

 

xixix sincos)exp(   
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cos021 aaa 

 

and 
sin)( 021 aaai 

      

  (3.17) 

 

where 0a
 and   are arbitrary constants. These are given by 

 210 2 aaa 
 

and 

 21

21tan
aa

aa
i






       
 (3.18) 

 

From the second of these results we note that tan 0 is a complex 

quantity. Does this moan that   is also complex? How can we interpret 

a complex angle? To know this, we use the identity 

 

 
 22 tan1sec 

  
 

and calculate cos . The result is 

  

 21

21

2
cos

aa

aa 


 
 

This means that cos , and hence  , is real. 

Substituting Eq. (3.17) into Eq. (3.16) we find that the expression within 

the parentheses is the cosine of the sum of two angles. Hence, the 

general solution of Eq. (3.3) for a weakly damped oscillator ( 0b
) is 

 

 
)cos()exp()( 0   tbtatx d      

 (3.19) 

 

with d
 as given by Eq. (3.14). You will note that the solution given by 

Eq. (3.19) describes sinusoidal motion with frequency d
which remains 

the same throughout the motion. This property is crucial for the use of 

oscillators in accurate timepieces. How is the amplitude modified vis-a-

vis an ideal SHM? You will note that the amplitude decreases 

exponentially with time at a rate governed by b. So we can say that the 

motion of a weakly damped system is not simple harmonic.  

 

The damped oscillatory behavior described by Eq. (3.19) is plotted in 

Fig. 3.4 for the particular case of  = 0. Since the cosine function varies 
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between +1 and 1 , we observe that the displacement-time curve lies 

between 
)exp(0 bta 
 and 

)exp(0 bta 
. Thus, we may conclude that 

damping results in decrease of amplitude and angular frequency. 

 

 

 
Fig. 3.4 Displacement-time graph for a weakly damped harmonic 

oscillator 

 

How does damping influence the period of oscillation? You can 

discover this effect by noting that the period of oscillation is given by 

 

 
2

22/122

0

4

2

)(

22

mm

kb
T

d 


















 
 

If 0b , 0 d . This means that the period of vibration of a damped 

oscillator is more than that of an ideal oscillator. Did you not expect it 

since damping forces resist motion?  

 

SAQ 1 

The amplitude of vibration of a damped spring-mass system decreases 

from 10 cm to 2.5 cm in 200 s. If this oscillator performs 100 

oscillations in this time, compare the periods with and without damping. 

 

We have discussed solutions of the differential equation for a damped 

oscillator for heavy, critical and weak damping. In the following 

discussion we shall concentrate only on weakly damped systems. 

 

 

3.4   AVERAGE ENERGY OF A WEAKLY DAMPED 

OSCILLATOR      

In Unit 1 we calculated the average energy of an undamped oscillator. 

The question now arises: How does damping influence the average 

energy of a weakly damped oscillator? To answer this we note that in 

the presence of damping the amplitude of oscillation decreases with the 

0 

)(tx  

t  

)exp(0 bta 

 

)exp(0 bta 
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passage of time. This means that energy is dissipated in overcoming 

resistance to motion. From Unit I we recall that at any time, the total 

energy of a harmonic oscillator is made up of kinetic and potential 

components. We can still use the same definition and write 

 

 )().(.)( tUtEKtE   

          = 

2

2

2

1

2

1
kx

dt

dx
m 









      

 (3.20) 

 

where dtdx / denotes instantaneous velocity. 

 

For a weakly damped harmonic oscillator, the instantaneous 

displacement is given by Eq.(3.19): 
)cos()exp()( 0   tbtatx d . By differentiating it with respect to time, 

we get instantaneous velocity: 

 

 

2

0 )]sin()cos()[exp(
)(

  ttbbtav
dt

tdx
ddd

 
  (3.21) 

 

Hence, kinetic energy of the oscillator is 
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0

2

)]sin()cos()[2exp(
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1
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






 ttbbtma
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mEK ddd

 

          = 
)(sin)(cos)[2exp(

2

1 22222

0   ttbbtma ddd

 

  + 
)](2sin  tb dd       

 (3.22a) 

 

Similarly, the potential energy of the oscillator is 

 

 

22

0

2

2

1

2

1
xmkxU 

 

since 
2

0mk 
. 

 

On substituting for x , we get 

 

 
)(cos)2exp(

2

1 22

0

2

0   tbtmaU d

    
 (3.22b) 

 

Hence, the total energy of the oscillator at any time t  is given by  
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 )(tE
)(sin)(cos))[(2exp(

2

1 2222

0

22

0   ttbbtma ddd

 

   + 
)](2sin  tb dd      

 (3.23) 

 

 

When damping is small, the amplitude of oscillation does not change 

much over one oscillation. So we may take the factor )2exp( bt as 

essentially constant. Further, since 

2/1)(cos)(sin 22   tt dd  and 
0)sin(   td , the 

energy of a weakly damped oscillator when averaged over one cycle is 

given by 
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1 2222
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22
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        + 
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            = 
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   = 
)2exp(

2

1 2

0

2

0 btma 
    

  (3.24a) 

 

From Unit 1 we recall that 

2

0

2

0
2

1
ma

 is the total energy of an undamped 

oscillator. Hence, we can write 

 
)2exp(0 btEE 
      

 (3.24b) 

 

This shows that the average energy of a weakly damped oscillator 

decreases exponentially with time. This is illustrated in Fig. 3.5. From 

Eq.(3.24 b) you will also observe that the rate of decay of energy 

depends on the value of b; larger the value of b, faster will be the decay. 
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Fig. 3.5 Time variation of average energy for a weakly damped system 

 

3.4.1    Average Power Dissipated Over One Cycle 
Since energy of a damped oscillator does not remain constant in time, 










dt

dE

 is not 

zero. In fact, it is negative. The rate of loss of energy at any time gives 

instantaneous power dissipated. From Eq. (3.20) we can write 
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On combining this result with Eq. (3.2) we find that power dissipated by 

a damped oscillator is given by 

 

 

2
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
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




dt

dx
tP 

  
 

This relation shows that the rate of doing work against the frictional 

force is directly proportional to the square of instantaneous velocity. On 

substituting for 









dt

dx

 from Eq. (3.21), we obtain 
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  + 
)]2sin(  tb dd  

 

Hence, the average power dissipated over one cycle is given by 
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           =  Eb2  

 

The negative sign here signifies that power is dissipated. 

 

3.5    METHODS OF CHARACTERISING DAMPED SYSTEMS 

We now know that in the viscous damping model, a damped oscillator is 

characterized by   and 0
. We also know that this model applies to 

vastly different physical systems. Therefore, you may ask: Are there 

other ways of characterizing damped oscillations? Experience tells us 

that in certain cases it is more convenient to use other parameters to 

characterize damped motion. In all cases we can relate these to y and 

coo. We will now discuss these briefly. 

 

3.5.1    Logarithmic Decrement 
The most convenient way to determine the amount of damping present 

in a system is to measure the rate at which amplitude of oscillation dies 

away. Let us consider the damped vibration shown graphically in Fig. 

3.6. Let 0a
 and 1a be the first two successive amplitudes of oscillation 

separated by one period. 

 

 
 

 

Fig. 3.6 A damped oscillation. The first two amplitudes are 0a
 and 1a  

 

You will note that these amplitudes lie in the same direction/quadrant. If 
T  is the period of oscillation, then using Eq. (3.19) for a weakly damped 

oscillator, we can write 

 
)exp(01 bTaa 
 

 

so that 

)2/exp()exp(
1

0 mTbT
a

a
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 (3.26) 
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You will note that in the ratio 10 / aa
, the larger amplitude is in the 

numerator. That is why this ratio is called the decrement. It is denoted 

by the symbol d. You may now ask: Is the decrement same for any two 

consecutive amplitudes? The answer is: yes, it is. To show this let us 

consider the ratio of the second and the third amplitudes. These are 

observed for t = Tand t = 2T, respectively in Eq. (3.19). Then, we can 

write 
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)2exp(
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2
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a







 
 

So, we may conclude that for any two consecutive amplitudes separated 

by one period, we have 

 

 

dbT
a

a

n

n  )exp(1

       
 (3.27) 

 

That is, decrement is the same for two successive amplitudes and we can 

write 

 

 

d
a

a

a

a

a
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a
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2
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1
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 (3.28) 

 

The logarithm of the ratio of successive amplitudes of oscillation 

separated by one period is called the logarithmic decrement. It is 

usually denoted by the symbol  : 
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n

2
ln 1 

 







 

       
 (3.29a) 

 

This equation shows that we can measure   by knowing two successive 

amplitudes. But from an experimental point of view it is more 

convenient and accurate to compare amplitudes of oscillations separated 

by n periods. That is, we measure naa /0 . To compute this ratio, we first 

invert Eq. (3.29 a) to write 
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n
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The ratio naa /0 can now be written as 
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 (3.30) 

 

since the ratio of any two consecutive amplitudes is the same.  

 

Taking the log of both sides, we get the required result:           
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


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a

n

0ln
1



        
 (3.31) 

 

This shows that if we plot 
)/ln( 0 naa
 versus n for different values of n, 

we will obtain a straight line. The slope of the line gives us  . 

 

SAQ2 
A damped harmonic oscillator has the first amplitude of 20 cm. It 

reduces to 2 cm after 100 oscillations, each of period 4.6 s. Calculate the 

logarithmic decrement and damping constant. Compute the number of 

oscillations in which the amplitude drops 

by 50%. 

 

3.5.2    Relaxation Time 
In physics we often measure decay of a quantity in terms of the fraction 

1e of the initial value. This gives us another way of expressing the 

damping effect by means of the time taken by the amplitude to decay to 
1e  = 0.368 of its original value. This time is called the relaxation time. 

To understand this, we recall that the amplitude of a damped oscillation 

is given by  

 

 
)exp()( 0 btata 
 

 

If we denote the amplitude of oscillation after an interval of time r by a 

(t + T), we can write 

 

 
)](exp[)( 0   tbata

 
 

Bytaking the ratio )(/)( tata  ,we obtain 
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    = e

1

 for b = 1      

 (3.32) 

 

This shows that for 
1 b  the amplitude drops to e/1 = 0.368 of its 

initial value. Using this result in Eq. (3.25), we get 

 

 


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E
P

2

 
 

The relaxation time,  , is therefore a measure of the rapidity with which 

motion is damped. (You will note that the negative sign occurring in Eq. 

(3.25) has been dropped here.) 

 

3.5.3   The Quality Factor 
Yet another way of expressing the damping effect is by means of the 

rate of decay of energy. From Eq. (3.24 b) we note that the average 

energy of a weakly damped oscillator decays to 
1

0

eE  in time 



m

b
t 

2

1

 seconds. If d
 is its angular frequency, then in this time the 

oscillator will vibrate through 
 /md radians. The number of radians 

through which a weakly damped system oscillates as its average energy 

decays to 
1

0

eE is a measure of the quality factor, Q :; 

 

 22





 ddd

b

m
Q 

      
 (3.33) 

 

You will note that Q is only a number and has no dimensions. In 

general,  is small so that Q is very large. A tuning fork has Q of a 

thousand or so, whereas a rubber band exhibits a much lower (~10) Q. 

This is due to the internal friction generated by the coiling of the long 

chain of molecules in a rubber band. An undamped oscillator )0(   has 

an infinite quality factor. 

 

For a weakly damped mechanical oscillator, the quality factor can be 

expressed in terms of the spring factor and damping constant. For weak 

damping, 

 

 mkd /0   
 

Hence, 
2/kmQ 
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That is, the quality factor of a weakly damped oscillator is directly 

proportional to the square root of k and inversely proportional to  . 

 

We can rewrite Eq. (3.33) in a more physically meaningful form using 

Eq. (3.25): 
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d
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 (3.34) 

 

The quality factor is related to the fractional change in the frequency of 

an undamped oscillator. To establish this relation, we note that, 
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where we have used Eq. (3.33). This result can be rewritten as 
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        = 
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where in the binomial expansion we have retained terms up to first order 

in 
2Q . Hence, the fractional change in 0

 is )8/(1 2Q . 

 

SAQ4 
The quality factor of a tuning fork of frequency 256 Hz is 103. Calculate 

the time in which its energy becomes 10% of its initial value. 

 

3.6    EXAMPLES OF DAMPED SYSTEMS 

You know that all harmonic oscillators in nature have some damping, 

which in general, is quite small. To enable you to appreciate the effect 

of damping, we will consider two specific cases: (i) Oscillations of 

charge in an LCR circuit, and (ii) motion of the coil in a suspension type 

galvanometer. These are of particular interest to us as the former has 



PHY 203        OSCILLATIONS AND WAVES 

94 

wide applications in radio engineering and the latter is used in the 

physics laboratory. 

 

3.6.1    An LCR Circuit 
In Unit 1 we observed that in an ideal LC circuit, charge excites SHM. 

Do you expect any change in this behavior when a resistor is added? To 

answer this question, we consider Fig. 3.7. If a current I  flows through 

the circuit due to discharging/charging of the capacitor, the voltage drop 

across the resistor is RI . Thus Eq. (1.36) Now modifies to - 

 

 dt

dq

dt

dI
L

C

q


 
 

Eq. (3.35) may be rewritten as 

 

 
 

Fig. 3.7 An LCR circuit 
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q
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dq
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qd
L

      
 (3.36) 

 

Comparing it with Eq. (3.2) we find that L, R and 1/C are respectively 

analogous to m, and k. This means that a resistor in an electric circuit 

has an exactly analogous effect as that of the viscous force in a 

mechanical system. 

 

To proceed further, we divide Eq. (3.36) throughout by L obtaining  

 

 
0

1
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2

 q
LCdt

dq

L

R

dt

qd

      
 (3.37) 

 

In this form, Eq. (3.37) is analogous to Eq. (3.3) and the two may be 

compared directly. This gives 
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 LC

12
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and L

R
b

2


        

 (3.38) 

 

We know that b has dimensions of time inverse. This means that R/L has 

the unit of 
1s , same as that of 0

. That is why 
L0

is measured in ohm. 

 

With these analogies all the results of Section 3.3 apply to Eq. (3.37). 

For a weakly damped circuit, the charge on the capacitor plates at time t 

is 
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 (3.39a) 

with angular frequency 
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 (3.39b) 

 

Eq. (3.39 a) shows that the charge amplitude 








 t

L

R
q

2
exp0

will decay at 

a rate which depends on the resistance. Thus in an LCR circuit, 

resistance is the only dissipative element; an increase in R increases the 

rate of decay of the charge and decreases the frequency of oscillations. 

 

Since 
L0

 is measured in ohms, 
C0/1 

 is also measured in ohms. 

These are respectively referred to as inductive reactance and capacitive 

reactance. 

 

For 0R , Eq (3.39 a) reduces to Eq. (1.38) and 0 d . The Q value 

of a weakly damped LCR circuit is 

 

 C

L

RR

L

b
Q d 1

2
0  



      
 (3.40) 

 

This equation shows that for a purely inductive circuit ( 0R ), the 

quality factor will be infinite. 
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SAQ 5 

In an -LCR circuit, L= 2mH and C= 5  F. If R =1 , 40  and I00 , 

calculate the 

frequency of oscillation and the quality factor when the discharge is 

oscillatory. 

 

3.6.2    A Suspension Type Galvanometer 
A suspension type galvanometer consists of a current carrying coil 

suspended in a magnetic field. The field is produced by a horseshoe 

magnet. The magnet is shaped so that the coil is aligned always along 

the magnetic lines of force. To ensure uniform strength, an iron cylinder 

is suspended between the poles of the magnet, as shown in Fig. (3.8). 

When we pass Charge through the galvanometer coil, it rotates through 

some angle  . Since the coil is mechanically a torsional pendulum, it 

experiences a restoring couple 
tk

and a damping couple dt

d


. Do 

you know how damping creeps in, in this case? It has origin in air 

friction and electromagnetic induction. 

 

 

 
 

Fig. 3.8 A schematic representation of a suspension type galvanometer. 

 

Hence, for the motion of the coil, Eq.(1.35) modifies to 

Part of the damping arises from the viscous drag of air. In general, it is small. As the 

galvanometer coil rotates in the magnetic field, an induced e.m.f. is produced, which 

opposes its motion in accordance with Lenz's law. This so-called electromagnetic 

damping controls the motion of the coil when galvanometer is in use. 
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2

2

       
 (3.41) 

 

where I  is the moment of inertia of the coil about the axis of 

suspension. Comparing it with Eq. (3.2) we find that I  and tk
are 

analogous to m and k respectively. 

 

Dividing throughout by I  and defining 

 

 Ib /2   

and Ikt /2
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 (3.42) 

 

we get 
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2
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dt

d
b

dt

d

      

 (3.43) 

 

This equation is of the same form as Eq. (3.3). Hence, all results 

deduced earlier will apply to the motion of the coil described by Eq. 

(3.43). 

 

For low damping, the solution of Eq. (3.43) is  

 

 
)cos()exp( 00   tbt
      

 (3.44) 

 

where 
)exp(0 bt
is the amplitude of oscillation. Eq. (3.44) describes 

oscillatory motion with the period of oscillation T given by 
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 (3.45) 

 

This explains why a weakly damped suspension type galvanometer is 

called a ballistic galvanometer. You will note that for damping to be 

small, we must decrease  and increase I . The question now arises: 

How can we reduce  ? As mentioned earlier, air damping is usually 

small. Nevertheless, it will always be present. To reduce 

electromagnetic damping, we must minimize the induced emf. To 

ensure this, we wind the coil over a non-conducting bamboo or ivory 
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frame. If the frame is metallic, it is cut at one place, so that no current 

can flow through it. 

The quality factor of a ballistic galvanometer is 
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 (3.46a) 

 

If 
2

2

4II

k t 


, this expression reduces to 

 
2

Ik
Q t

 
 

This relation shows that a lightly damped suspension type galvanometer 

will have high quality factor. 

 

SAQ6 
The period of vibration of a galvanometer coil is 4 s. The amplitude of 

its vibration decreases to one-tenth of its original value in 46 s. 

Calculate the damping constant  and the quality factor. 

 

 

 

3.7   SUMMARY 

1.       The differential equation of a damped harmonic oscillator is 

  
02 2

02

2

 x
dt

dx
b

dt

xd


 

where mb /2   and 
mk /2

0  . The solution of the equation for 

heavy damping is 

)]exp()exp()[exp()( 21 tatabttx    

where 
2
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2   b
 

 

For critical damping 

 )exp()()( btqtptx   
and in the case of weak damping, 

 
)cos()( 00    teatx bt

 
 

2. The amplitude and average energy of a weakly damped oscillator 

decrease exponentially with time: 

  
bteaa  0  

 and 
)2exp(0 btEE 
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 where 0a
 is the initial amplitude and 0E

 is the total initial 

energy. 

 

3. The period of a weakly damped system is given by  
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4. The logarithmic decrement is defined as the logarithm of the ratio 

of successive amplitudes separated by one period. It is given by 

  

bT
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5. The rate of loss of energy or power dissipated by a weakly 

damped harmonic oscillator over one cycle is 

  /2  EP  
 

6. The Q -factor of a weakly damped oscillator is given by 

  
2/dQ 

 
 

7. The differential equation describing flow of charge in a LCR 

circuit is 
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The effect of L, R and 1/C in an LCR circuit is respectively 

analogous to those of m ,   and k  in a mechanical oscillator. In a 

weakly damped circuit, the charge oscillates harmonically: 

  
)cos(

2
exp)( 0  








 tt

L

R
qtq d

 
 and the frequency of oscillation is given by 

  
2

2

4

1

2

1

L

R

LC
d 




 
 For low R circuit 

  
CL

R
RLQ /

1
/0  

 
 

8. The differential equation of a damped suspension type 

galvanometer is 

  






tk

dt

d

dt

d
I 

2

2

= 0 

 For weak damping, it describes ballistic motion given by 

  
)cos()exp(0   tbt d  
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 where 
2

2

4II

kt
d


 

 

 

3.7 TERMINAL QUESTIONS 

1. A simple pendulum has a period of 2 s and an amplitude of 

50.After 20 complete oscillations, its amplitude is reduced to 

40. Find the damping constant and the time constant. 

 

2. The quality factor of a sonometer wire is 4,000. The wire 

vibrates at a frequency of 300 Hz. Find the time in which the 

amplitude decreases to half of its original value. 

 

3. A box of mass 0.2 kg is attached to one end of a spring whose 

other end is fixed to a rigid support. When a mass of 0.8 kg is 

placed inside the box, the system performs 4 oscillations per 

second and the amplitude falls from 2 cm to 1 cm in 30 s. 

Calculate (i) the force constant, (ii) the relaxation time and 

(iii) the Q-factor. 

 

4. In an LCR circuit L = 5 mH, C = 2 F and R = 0.2 . Will the 

discharge be oscillatory? If so, calculate the frequency and 

quality factor of the circuit. How long does charge oscillation 

take to decay to half? What value of R will make the 

discharge just non-oscillatory? 

 

5. The quality factor of a tuning fork of frequency 512 Hz is 
4106 . Calculate the time in which its energy is reduced to 

1e  of its energy in the absence of damping. How many 

oscillations will the tuning fork make in this time? 

 

3.9 SOLUTIONS 

SAQ’s 

1. 100

200s
Td 

= 2 s  

 Now, 
2/122

0 )(

2
2

b
sTd








 

 so that 
222

0 b
 

 Hence, 
2/122

0

0
)(

22

b
T












 

 To compute b , we use the relation 

  
)exp(0 btaa 
 

 This may be rewritten as 
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









a

a

t
b 0ln

1

 

      = 









cm

cm

s 5.2

10
ln

200

1

 

       = 
4log

200

3.2
10

s  

       = 
13109.6  s  

 

 Substituting this value in (i), we get 

 

  
2/1220

])015942.0([

2






T

  2 s  dT
  

 This means that the system is weakly damped. 

 

2. We know that 

  










na

a

n

0ln
1



 

      = 
10ln

100

1

 

      = 

2

10 103.210log
100

3.2 
 

 Since T
b




 

 we get  

  s
b

6.4

103.2 2


 

     = 
3100.5  1s  

  

 Further, to calculate n  for which the amplitude dropsby 50%, we 

invert (i) to write 

  










na

a
n 0ln

1


 

      = 
2

10

2 103.2

2log3.2

103.2

2ln
 


  

      = 30 

 

3. Since 

  










na

a

n
bT 0ln

1


 
 we can write 
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)/ln(

1
0 naa

nT
b 

 

      = 
4ln

200

1

s  

      = 

1

200

6010.03.2 
s

 

 Hence, 

  
s

sb
145

6010.03.2

2001
1








 
 

4. Q = 
310  and  = 256 Hz 

 We know that for weak damping, Q  is given by 

  





2

0Q
 

 On inverting this relation, we get 

  
1

3

256

10



s

Q




= 1.24 s  

 Since 
)/2exp()2exp( 00 tEbtEE 
, we get for 

10/1/ 0 EE
 

  











t2
exp

10

1

 
 Hence,  

  
10ln

2


t

 

     = 
3.2

2

24.1


 

     = 1.4 s  

 

5. 
3102 L H and C = 

6105  F 

   

28

43
10

105102

11
s

FHLC







  
 

 Case I: R = 1  

   
223

2

2

2

)102(4

1

4 HL

R





= 
2

2
4106

H




 

 Thus,  

  
2

2

4

1

L

R

LC


 so that the discharge is oscillatory. The 

frequency of oscillation 

  
2

2

4

1

2

1

L

R

LC





 
      = 1.6 kHz 
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 and the quality factor of the circuit 

  






1

102106.12 313

0 Hs

R

L
Q



 
       = 20 

 

 Case II: R = 40  

 In this case, 

  
2

2
8

223

2

2

2

10
)102(4

4040

4 HHL

R 









 

 Hence, 
2

2

4

1

L

R

LC


 and this is the case of critical damping. 

 

 Case III: R = 100  

 Here, 

  
2

2
8

223

22

2

2

106
)102(4

100

4 HHL

R 









 

 That is, LCL

R 1

4 2

2


. This corresponds to dead beat motion. 

 

 You will note that increasing resistance in the circuit increases 

damping. 

 

6. 
22

0

2

b
T








= 4 s  

 or 

  4

2
22

0


  b

 
 Also,  

  

bt
a

a

n









10lnln 0

 
 or 

  
10ln

1

t
b 

 

     = 

10log
46

3.2
10

s = 0.05 
1s  

 

 Hence, 

  
22

0 )4649.20025.0(  s
 

         = 2.467 
2s  

   0
= 1.57

1s  
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 and 

  
7.15

1.0

57.1

22

00 
b

Q


 
 

3.10 Terminal Questions 

1. Since 
bte 0 , we can write 

  












 0ln
1

t
b

 
 Substituting the given data, we get 

  4

5
ln

40

1
b

 

     =  
131057.5  s  

 and 

  


b

1


179.5 
1s  

 

2. Since 2

0
Q

, we can write 0

2




Q


= 3002

40002





 = 4.24 s  

 Now, 
/

00

tbt eaeaa    

  
ss

a

a
t 94.22ln24.4ln 0  

 
 

3. (i) Here, 
1

0 414.322  srad
= 25rad

1s  

  But mk /0   or 
2

0mk  = 
122 625251   Nmskg  

 

 (ii) 
bteaa  0  or 0.01 m = 0.02 m 

be 30

 

   

12103.2
30

2ln  sb
 

  Hence, relaxation time  = 
12103.2

11



sb = 43.5 s 

 

 (iii) For a weakly damped system, 
5.4325

2

0 


Q
= 1088 

  Here, 

28

63
10

102105

11 





 s

HLC  

  And 
2

2

223

22

2

2

400
)105(4

)2.0(

4 HHL

R 









 

  Since 
2

2

4

1

L

R

LC


, the discharge is oscillatory and has 

frequency 



PHY 203        OSCILLATIONS AND WAVES 

 

105 

   
2

2

4

1

2

1

L

R

LC





= 1.59
310 Hz 

 

  The quality factor of the circuit is 

   






2.0

1051059.12 313
0 s

R

L
Q



= 250 

  Also, 

   

2ln
1052

2.0
ln

2 3

0

Hq

q

L

R
t















= 14 s 

  The discharge will be just non-oscillatory when 

   
2

2

4

1

L

R

LC


 or C

L
R

42 
= 

14

6

3

10
102

1054 









HF

H

or 

   R = 100  

 

5. The average energy of a damped harmonic oscillator at any time 
t  is given by 

 

  
)2exp(0 btEE 

 

             = 
)/2exp(0 tE 
 

 where 
1 b  is the relaxation time. 

 When 2/t , e

E
E 0

 

 Also, 2

 dQ 
 

 Hence,  

  d

Q




2


= 
1

4

5122

1062




s = 37.3 s 

 Thus, energy will reduce to e/1  of its initial value in 18.7 s. 

 

 The number of oscillations made by the tuning fork in this time is 

given by 

  
tn d 
 

      = 51218.7 

      = 95.7
210  
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3.11 Reference for Further Studies 

 

Textbooks 

 

1. The Physics of Vibrations and Waves. By H. John Pain. 6th Edition, 

2018. Available at: 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATION

S_AND_WAVES_Sixth_Edition 

2. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

 

Video Links 

 

https://youtu.be/qxDvW8_fm7I 

 

https://youtu.be/8AHQ6gBSxAU 

 

https://youtu.be/y0YFw9ZzSyM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://z-lib.is/book/oscillations-and-waves-15178533
https://z-lib.is/book/oscillations-and-waves-15178533
https://youtu.be/qxDvW8_fm7I
https://youtu.be/8AHQ6gBSxAU
https://youtu.be/y0YFw9ZzSyM
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UNIT 4   FORCED OSCILLATIONS AND RESONANCE 

 

Structure 
4.1     Introduction Objectives 

4.2     Differential Equation for a Weakly Damped Forced Oscillator 

4.3 Solutions of the Differential Equation  

Steady-state Solution 

4.4 Effect of the Frequency of the Driving Force on the Amplitude 

and Phase of Steady-state Forced Oscillations  

Low Driving Frequency  

Resonance Frequency  

High Driving Frequency 

4.5     Power Absorbed by a Forced Oscillator 

4.6     Quality Factor 

Q in Terms of Band Width: Sharpness of a Resonance 

4.7 An LCR Circuit  

4.8 Summary  

4.9 Terminal Questions  

4.10 Solutions 

 

4.1    INTRODUCTION 
In the previous unit we studied how the presence of damping affects the 

amplitude and the frequency of oscillation of a system. However, in 

systems, such as a wall clock or an ideal LC circuit, oscillations do not 

seem to die out. To maintain oscillations, we have to feed energy to the 

system from an external agent called a driver. In general, the 

frequencies of the driver and the driven system may not match. But in 

steady-state, irrespective of its natural frequency, the system oscillates 

with the frequency of the applied periodic force. Such oscillations are 

called forced oscillations. However, when the frequency of the driving 

force exactly matches the natural frequency of the vibrating system a 

spectacular effect is observed; the amplitude of forced oscillations 

becomes very large and we say that resonance occurs. Do you know that 

Galileo was the first physicist who understood how and why resonance 

occurs? 

 

Resonances are desirable in many mechanical and molecular 

phenomena. But resonance can be disastrous also; it can literally break 

an oscillating system apart. For instance, fast blowing wind may set a 

suspension bridge in oscillation. If the frequency of the fluctuating force 

produced by the wind matches the natural frequency of the bridge, it 

gains in amplitude and may ultimately collapse. In 1940, the Tacoma 

Narrows bridge in Washington State collapsed within 4 months of its 

being opened. Similarly, when the army marches on a suspension 

bridge, soldiers are instructed to break step to avoid resonant vibrations. 

In practice, isolated systems are rare. In solid state and molecular 
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physics, two or more systems are coupled through interatomic forces. In 

an electric circuit we have inductive and capacitive couplings. The 

oscillations of such systems will be studied in the next unit. 

 

In this unit we shall study, in detail, the response of a system when it is 

driven by an external harmonic force. 

 

Objectives 
After studying this unit, you should be able to: 

 

 establish the differential equation of a system driven by a 

harmonic force and solve it 

 analyze the response of the oscillator at different frequencies  

 compute resonance width and the quality factor of a forced 

oscillator, and 

 establish the differential equation for an LCR circuit under the 

influence of harmonic emf and write its solution by drawing an 

analogy with a mechanical system. 

 

4.2   DIFFERENTIAL EQUATION FOR A WEAKLY DAMPED 

FORCED OSCILLATOR 

To establish the differential equation of a forced weakly damped 

harmonic oscillator, let us again consider the spring-mass system of Unit 

3. It is now also subjected to an external driving force, )(tF . That is, 

instead of. allowing the model oscillator to oscillate at its natural 

frequency, we push it back and forth periodically at a frequency  (Fig. 

4.1). We can write the driving force as 

 

 
tFtF cos)( 0

       
 (4.1) 

where 0F
 is a constant. 

 

 
 

Fig. 4.1 A weakly damped forced spring-mass system. 
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Let the mass be displaced from its equilibrium position and then 

released. At any instant, it is subject to (i) a restoring force, kx , (ii) a 

damping force, dt

dx


and (iii) a driving force, 
tFtF cos)( 0

. 

 

So for a forced oscillator Eq. (3.2) is modified to 

 

 
tF

dt

dx
kx

dt

xd
m  cos02

2


     

 (4.2) 

 

Dividing by m and rearranging terms, the equation of motion of a forced 

oscillator takes the form 

 

tfx
dt

dx
b

dt

xd
 cos2 0

2

02

2


     

 (4.3) 

 

where mb /2  , mk /2

0   and 
mFf /00   is a measure of the driving 

force. 

 

You may now ask: Does this equation apply only to a mass on a spring? 

No, it applies to any oscillator whose natural frequency is 0
 and is 

subject to a harmonic driving force. 

 

You will note that Eq. (4.3) is an inhomogeneous second order linear 

differential equation with constant coefficients. We will now solve this 

equation to learn about the motion of a forced oscillator. 

 

4.3    SOLUTIONS OF THE DIFFERENTIAL EQUATION 
Before we solve Eq. (4.3), let us analyze the situation physically. From 

the previous unit you will recall that when there is no applied force, a 

weakly damped system 
)( 0b
 oscillates harmonically with angular 

frequency 
22

0 bd  
.But when a driving force of angular frequency 

  is applied, it imposes its own frequency on the oscillator. Thus, we 

expect that the actual motion will be a result of superposition of two 

oscillations; one of frequency d
 (of damped oscillations) and the other 

of frequency   (of the driving force). Thus, when d 
 the general 

solution of Eq. (4.3) can be written as. 

 

 )()()( 21 txtxtx   
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where )(1 tx is a solution of the equation obtained by replacing the RHS 

of Eq. (4.3) by zero.        

 

On substituting this result in Eq. (4.3), you will find that )(2 tx satisfies 

the equation 

 

 
tfx

dt

dx
b

dt

xd
 cos2 02

2

0
2

2

2

2


 

 

It is thus clear that )( 21 xx  is the complete solution of Eq. (4.3). In your 

course on differential equations you must have learnt that 1x is called the 

complementary function and )(2 tx is called the particular integral. 

 

You may recall that when there is no driving force, the displacement of 

a weakly damped ( 0b
) system at any instant is given by Eq. (3.19):  

 

 )cos()( 01    teatx d

bt

 
 

Obviously this complementary function decays exponentially and after 

some time it will disappear. That is why it is also referred to as the 

transient solution. In the transient state, the system oscillates with some 

frequency which is other than its natural frequency or the frequency of 

the driving force. 

 

After a sufficiently long time )( t , natural oscillations of the spring-

mass system will disappear due to damping. However, we know that the 

general solution of Eq. (4.3) will not decay with time. That is, the 

system will oscillate with the frequency of the driving force. The system 

is then said to be in the steady-state. We will now obtain the steady-state 

solution of Eq. (4.3). 

 

4.3.1    Steady-state Solution 
To obtain the steady state solution of Eq. (4.3), let us suppose that the 

displacement of the forced oscillator is given by 

 

 )cos()(2   tatx       
 (4.4) 

 

where a and  are unknown constants. By comparing Eqs. (4. 1) and 

(4.4) you will note that the driving force leads the displacement in phase 

by an angle  . 
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To determine a  and  we differentiate Eq. (4.4) twice with respect to 

time. This gives, 

 

 
)sin(2   ta

dt

dx

 
 

and 
)cos(2

2

2

2

  ta
dt

xd

 

 

Substituting these results back in Eq. (4.3), we get 

 

 
tftabta  cos)sin(2)cos()( 0

22

0 
 

 

Using, the formulae  
 sinsincoscos)cos( ttt   and  
 sincossin)sin( tsostt   

and rearranging terms, we get 

 

 tfaba  cos]sin2cos)[( 0

22

0   

  + 
taba  sincos]2sin)[( 22

0 
= 0   

 (4.5) 

 

We know that both tcos and tsin never simultaneously become zero; 

when one vanishes, the other takes a maximum value. Therefore, Eq. 

(4.5) can be satisfied only when both terms within the square brackets 

become zero separately, i.e. 

0

22

0 sin2cos)( faba        
 (4.6a) 

0cos2sin)( 22

0   aba      
 (4.6b) 

 

  

 

Eq. (4.6b) readily gives the phase by which the driving force leads the 

displacement: 

 

 
22

0

1 2
tan







  b

       
 (4.7a)  

 

The amplitude of steady-state displacement can be determined from Eq. 

(4.6a) once we know the values of sin  and cos . To get these values 
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we construct the so-called acoustic impedance triangle, as shown in Fig. 

4.2. We can readily write  

 

 
 

Fig. 4.2 An acoustic impedance triangle 

 

2/122222

0 ]4)[(

2
sin






b

b




 

and 
2/122222

0

22

0

]4)[(

)(
cos






b




 

  

Using these values of sin  and cos  in Eq. (4.6a) and rearranging 

terms, we get 

 

 
2/122222

0

0

2/122222

0

0

]4)[(]4)[(  bm

F

b

f
a







  
 (4.7b) 

 

Thus, we find that the steady-state amplitude of forced oscillations 

depends on (i) amplitude and angular frequency of the driving force, (ii) 

mass and the natural angular frequency of the oscillating system and (iii) 

the damping constant. 

 

Putting this value of a in Eq. (4.4) we can write the steady-state solution 

of Eq.(4.3) as 

 

 

)cos(
]4)[(

)(
2/122222
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0

2 
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 t
bm

F
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 (4.8)  

 

The important point to note here is that the steady-state solution has the 

frequency of the driving force and its amplitude is constant. Moreover, 

its phase is also defined completely with respect to the driving force. 

Therefore, it does not depend on the initial conditions. In other words, 
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the motion of a driven system in steady-state is independent of the way 

we start the oscillation. 

 

The transient solution, steady-state solution and their sum, 
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i.e. the complete general solution of Eq. (4.3) are shown in Fig. 4.3. The 

contribution of the transient part diminishes with time and ultimately 

disappears completely. The time for which transients persist is 

determined by b and hence by the damping factor  . The greater the 

value of b, the more quickly do the transients die out. 

 

For an undamped system, the steady-state solution is obtained by putting 

b = 0 in Eqs. (4.7a) and (4.8). This gives  

  

 0  

and 

t
m

F
tx 


cos

)(
)(

22

0

0

2




      

 (4.9) 

 

That is, the driving force and the displacement are in phase )0(  . 

From this we may conclude that phase lag is essentially a consequence 

of damping. We further note that if the frequency of the driving force 

equals the frequency of the undamped oscillator, its amplitude will 

become infinitely large. Then resonance is said to occur. 

 

You may now ask: Do we observe infinitely large amplitude in practice? 

No, the amplitude is finite since some damping is always present in 

every system. 
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Fig. 4.3 Time variation of the transient solution, steady-state solution 

and the general solution of  

 Eq. (4.3) for a weakly damped system. 

 

4.4    EFFECT OF THE FREQUENCY OF THE DRIVING 

FORCE  

ON THE AMPLITUDE AND PHASE OF STEADY-STATE 

FORCED OSCILLATIONS 
We know that the variation with the frequency of the driving force of 

the steady-state amplitude )(a  ofa forced system is given by Eq. 

(4.7b). Depending on the relative magnitudes of the natural and the 

driving frequencies, three cases arise. We will now discuss these 

separately in detail. 

 

4.4.1 Low Driving Frequency 
)( 0 
 

To know the behavior of )(a at low driving frequencies, we first 

rewrite 

Eq. (4.7 b) as 
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For 0 
, we note that the ratio 

2

0

2 /  will be much less than one. 

So, we neglect terms containing 
2

0

2 / . This gives 
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a 0

2

0

0
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 (4.10a) 

 

Thus, at very low driving frequencies, the steady-state amplitude of the 

oscillation is controlled by the stiffness constant and the magnitude of 

the driving force. 

 

Under this condition Eq. (4.7 a) yields  
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   (4.10b)  

 

That is, the driving force and the steady-state displacement are in phase. 
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4.4.2    Resonance Frequency 
)( 0 
 

To calculate the value of )(a at resonance, we set 0 
 in Eq. (4.7b). 

The first term in the denominator vanishes and the amplitude is given by 

 

 0

0

0
2

)(
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
b

f
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 (4.11a) 

 

From this we note that at resonance the amplitude depends upon the 

damping; it is inversely proportional to b. That is why in actual practice 

the amplitude never becomes infinite. 

 

Similarly by setting 0 
 in Eq. (4.7a) we find that 

 

 tan    
so that 

 2/          
 (4.11b) 

 

This means that the driving force and the displacement are out of phase 

by 2/ . You may be thinking that the value of )(a given by Eq. 

(4.11a) is maximum. This however is not true. Why? To answer this, let 

us maximize )(a . That is, differentiate Eq. (4.7b) with respect to   and 

set the resulting expression equal to zero. The frequency at which the 

first derivative becomes zero and the second derivative is negative gives 

the correct answer: 
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This equality will hold only when the numerator vanishes identically, 

i.e. 
08)(4 222

0   b
 for r  . 

 

We ignore the root r = 0, which is trivial. Then we must have  

  

 
02 22
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This equation is quadratic in r , and the acceptable root is 

 

 
2/122

0 )2( br          
 (4.12) 

 

The root corresponding to the negative sign is physically meaningless 

and is ignored.  

 

For )(a to be maximum, its second derivative with respect to  should 

be negative. You can easily verify that at 
2/122

0 )2( br  
r

d

ad






2

2

is 

negative. Thus, we canconclude that the peak value of amplitude is 

attained at a frequency slightly below 0
. The shift is caused due to 

damping. We can visualize it as follows: When the driver imparts 

maximum push, the driven system does not accept it instantly due to a 

finite phase difference between )(tx  and )(tF .  

 

On substituting for 0
 from Eq. (4.12) in Eq. (4.7b) and simplifying the 

resulting expression, we get the peak value of steady-state amplitude: 
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 (4.13) 

 

When at a particular frequency, the amplitude of the driven system 

becomes maximum, we say that amplitude resonance occurs. The 

frequency r is referred to as the resonance frequency. It is instructive 

to note that r is less than 0
 as well as 

22

0 bd  
. 

 

4.43   High Driving Frequency 

For 0 
 we rewrite Eq. (4.7b) as 
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and neglect terms containing 
22

0 /
 as well as 

2)/2( b , as they are 

both much smaller than unity. Then the amplitude of resulting vibration 

is given by 
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 (4.14a) 

 

That is, at high frequencies the amplitude decreases as 
2/1   and 

ultimately becomes zero. 

 

Similarly, from Eq. (4.7a), the phase is given by 
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or            

 (4.14b) 

 

This means that at high frequencies the driving force and displacement 

are out of phase by  . 

 

We may thus conclude that 

(i)     The amplitude of oscillation in steady-state varies with 

frequency. It becomes maximum  

at 
)2( 22

0 br  
 and has value 

)(2/ 22

00 bbf 
. For r  , 

)(a  decreases as 
2 . 

(ii)     The displacement lags behind the driving force by an angle  , 

which increases from zero  

at 0  to   at extremely high frequencies. At 0 
, 2/  . 

 

The frequency dependence of )(a and )( is shown in Fig. 4.4. 

 

 
 

Fig. 4.4 Frequency variation of (a) steady-state amplitude, and (b) phase 

of a forced oscillator 
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4.5  POWER ABSORBED BY A FORCED OSCILLATOR 

You now know that every oscillating system loses energy in doing work 

against damping. But oscillations of a forced oscillator are maintained 

by the energy supplied by the driving force. It is, therefore, important to 

know the average rate at which energy must be supplied to the system to 

sustain steady-state oscillations. So, we now calculate the average power 

absorbed by the oscillating system. 

 

By definition, the instantaneous power is given by 

 

 )(tP force   velocity 

          = vtF )(  

 

Differentiating Eq. (4.8) with respect to time, we get  
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 (4.15) 

where 
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 (4.15a) 

is the velocity amplitude and 

 2/          
 (4.15b) 

 

is the phase difference between velocity and the applied force. On 

substituting for )(tF and v  from Eqs. (4.1) and (4.15), respectively we 

find that the instantaneous power absorbed by the oscillator is given by 

 

 
)cos(cos)( 00   ttvFtP
 

 

Since  sinsincoscos)cos( ttt  , we can rewrite the 

expression for instantaneous power as 

 

 
]sinsincoscos[cos)( 2

00  tttvFtP 
 

 

 

From this we can easily calculate the average power absorbed over one 

cycle: 
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 tvFtvFP  2

0000 coscos2sinsin
2

1

  
 (4.16) 

 

From Unit 1 you may recall that  t2sin = 0 so that the first term on 

the RHS of Eq. (4.16) drops out. Also 2/1cos2  t . Then Eq. (4.16) 

reduces to 
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 (4.17) 

 

On substituting for sin from Fig. 4.2 and 0v
 from Eq. (4.15a) in Eq. 

(4.17), we get 
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From Eq. (4.17) we note that the average power absorbed by a forced 

oscillator will be maximum when  cos1sin  , i.e., 2/  )0(  . 

This happens for 0 
. This happens for 0 

. Using this result in 

Eq. (4.18), we get 
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 (4.19) 

 

That is, the peak value of average power absorbed by a maintained 

system is determined by damping and the amplitude of the driving force. 

The frequency variation of  P  is shown in Fig. 4.5 
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Fig.4.5. Frequency variation of average power, a., and a>:correspond to 

hair-power points. 

 

It is important to note that unlike the case of amplitude resonance, 

maximum average      Forced Oscillations and Resonance power is 

transferred at the natural frequency of the system. This arises because 

velocity and driving force are in phase. 

 

4.6   QUALITY FACTOR 
 

In Unit 3, we defined the quality factor of a damped oscillator as 

 cycleoneindissipatedenergyaverage

cycleoneinstoredenergyaverage
2Q

 
 

You can use the same definition to calculate Q of a forced oscillator 

once you know  E  and  P . 

 

SAQ1 
Show that the average energy of a forced oscillator is  
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and the quality factor is given by 
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Another equivalent and more useful interpretation of the quality factor is 

in terms of amplitudes. The Q factor is defined as the ratio of the 

amplitude at resonance to the amplitude at low frequencies )0(  . 
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Using this definition, the value of the quality factor can be calculated 

rather easily on dividing Eq. (4.13) by Eq. (4. l0a). 
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If damping is small, 
2

0

2 b and the expression for the quality factor 

reduces to 
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which is the same as Eq. (3.33) with b = 0. 

 

SAQ 2 

Using Eq. (4.20b), show that the amplitude and phase of a weakly 

damped forced oscillator can be expressed as 
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where 
2

000 / mFa  . 

 

For different values of Q frequency variation of )(a  and )(  based 

on these equations is shown in Fig.4.6. We observe that as Q increases 

(i.e., damping decreases), the value of )(a increases.  
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Fig. 4.6 (a) Amplitude as a function of driving frequency for different 

values of Q, 

(b) Phase difference   as a function of driving frequency for 

different values of Q. 

 

SAQ3  

Express  P in terms of Q and show that 
Q
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F
P 0
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4.6.1    Q in Terms of Band Width: Sharpness of a Resonance 
The Q of a system can also be defined as 
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To calculate the frequency at which average power drops to half its 

maximum value we can write from SAQ 3 
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On simplification we can write 
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so that 
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This equation has 4 roots. Of these, two roots correspond to negative 

frequencies and are physically unacceptable. The other two acceptable 

roots are 
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 (4.22)  

 

Obviously, the second of these roots is greater than 0
 and the other 

root is smaller than 0
. This is illustrated in Fig. 4.5. 

 

The frequency interval between two half-power points is 
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From Eq. (4.23) it is clear that a high Q system has small bandwidth and 

the resonance is said to be sharp. On the other hand, a low Q system has 

a large bandwidth and the resonance is said to be flat. This is illustrated 

in Fig. 4.6. Thus, the sharpness of resonance refers to the rapid rate of 

the fall of power with frequency on either side of resonance. We 

measure it in terms of the Q -value of the system. The Q factor has its 

greatest importance in reference to electrical circuits which we will 

discuss now. 

 

SAQ 4  

Calculate the energy stored in a mass of 0.1 kg attached to a spring. The 

mass is oscillating with an amplitude of 5 cm and is in resonance with a 

driving force of frequency 30 Hz. If the Q factor is 100, calculate the 

power loss. 
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4.7   AN LCR CIRCUIT 

We have so far discussed the resonant behavior of a simple mechanical 

system subject to a periodic force. Another physical system which also 

exhibits resonant behavior is a series LCR circuit containing a source of 

alternating e.m.f. We will discuss the behavior of this system by 

drawing similarities with a mechanical system. 

 

From Unit 3 we know that in an LCR circuit, charge oscillations die out 

because of power losses in the resistance. What changes do you expect 

in this behavior when a source of alternating e.m.f. of frequency   is 

introduced? To answer this question, let us consider Fig, 4.7. Let I  be 

the current in the circuit at a given time. Then, the applied e.m.f is equal 

to the sum of the potential differences across the capacitor, resistor and 

the inductor. Then Eq. (3.35) modifies to 

 

 
tE

dt

dI
LRI

C

q
cos0

      
 (4.24) 

 

 
 

Fig. 4.7 A harmonically driven LCR circuit 

 

Since dt

dq
I 

, this equation can be rewritten as 
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 (4.25) 

 

Dividing through by L , we get 
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 (4.26) 

 

In this form Eq. (4.26) is similar to Eq. (4.3). Hence its steady-state 

solution can be written by analogy. For a weakly damped system, the 

charge on capacitor plates at any instant of time is given by 
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where 
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 is the angular frequency of oscillation and  
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defines the phase with respect to applied emf. 

 

 

The current in the circuit is obtained by differentiating Eq. (4.27) with 

respect to t . The result is 
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where 2/   is the phase difference between 0E
 and I . Since 
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From Eq. (4.29) we note that current in a LCR circuit is a function of the 

frequency. 
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L
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1
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, the circuit is capacitive in nature and we can write 
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Thus, if we are working at low frequencies and R is also small, the 

current amplitude will be small. What will be its magnitude for  0? 

In this limit I  0 and leads the applied emf by 2/ . 

 

As the driving frequency increases, the reactance  
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decreases 

and current amplitude increases. When  
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 (4.31) 

 

the term under the radical sign in Eq. (4.29) becomes minimum; equal to 

R . Then the current attains its peak value 
REI /00  and the circuit is 

said to resonate with frequency 

 

 LC
r




2

1


        
 (4.32) 

 

At resonance, the current and applied emf are in phase. When the 

driving frequency is high, the circuit will be inductive and the current 

lags behind emf by 2/ . 

 

For different values of R , the frequency variation of peak current and 

phase is shown in Fig. 4.8. You will observe that the lower the 

resistance, the higher the peak value of the current and the sharper the 

resonance. 

 

 
 

Fig. 4.8 Frequency variation of peak current and phase for different 

values of R in  
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a driven LCR circuit 

 

The power in an electric circuit is defined as the product of current and 

the emf. For an LCR circuit, we can write 

 

 
)cos(cos00   ttIEEIP
 

 

where 

2

2

00

1
/ 










C
LREI




 

 

Using the formula )cos()cos(coscos2 BABABA  ,we can rewrite 

the above expression for power as 

 

 
)]2cos([cos

2

00   t
IE

P
 

 

Power averaged over one complete cycle is obtained by noting that 
0)2cos(   t . Hence 

 

 
cos

2

00 IE
P 

 

            = 
cosrmsrms IE

 

 

where 2/0EErms   and 2/0II rms   are, respectively the root mean 

square values of emf and current. Since  P  varies with cos , it is 

customary to call cos  the power factor. 

 

The quality factor of an LCR circuit is given by 

 

 R

L
A 0


        
 (4.34) 

 

where LC/10   

 

You can verify that the bandwidth of power resonance curve for an LCR 

circuit is given by 

 QL

R 0

12

2 


 

      
 (4.35) 

so that 
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 pointspowerhalfatwidthFull

resonanceatFrequency


Q

 
 

The Q  of a circuit determines its ability to select a narrow band of 

frequencies from a wide range of input frequencies. This, therefore, 

acquires particular importance in relation to radio receivers. Signals of 

various frequencies from all stations are present around the antenna. But 

the receiver selects just one particular station to which we wish to tune 

and discards others. Normally, radio receivers operating in MHz region 

have Q  values of the order of 
210  to 

310 . Microwave cavities have Q  

values of the order of 
510 . 

 

4.8 SUMMARY 

 When a harmonic force 
tFF cos0

 is impressed upon a 

damped harmonic oscillator, the oscillator executes forced 

oscillations. The differential equation of motion of a driven 

oscillator is 

tFx
dt

dx
b

dt

xd
 cos2 0

2

02

2


 

 where b2 = m



, m

k
0

 and m

F
f 0

0 
 

 

 The general solution of the differential equation of a driven 

oscillator is 

)cos()cos()( 0    teatatx d

bt

 
 where  

 

  
2/122222

0

0

]4)[(  b

f
a




 
 and 

  
22

0

1 2
tan







  b

 
 

 are steady-state amplitude and phase respectively. 

 

 Amplitude resonance occurs at a frequency 

)2/1(12 2

0

22

0 Qbr  
 

 At resonance frequency 

  
2/122

0

0

max
)(2 bb

f
a




  
 

 The average power absorbed by a forced oscillator is given by 
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sin
2

1
00vFP 

 
 It is a maximum when 2/  . 

  

 The quality factor of a forced oscillator can be interpreted as 

amplitude Forced Oscillations and Resonance amplification. It is 

related to full width at half maximum by the relation 

12

0






Q

 
 

 The differential equation of a driven LCR circuit is 

t
L

E

LC

q

dt

dq

L

R

dt

qd
cos0

2

2


 

 

 Its steady-state solution is given by 

  

)cos(

1

/
2/12

2

0 

































 t

L

R

LC

LE
q

   
 

 with 

21

/
tan










LC

LR

      

  

 

4.9    TERMINAL QUESTIONS 

1. A body of mass 0.1 kg is suspended from a spring of force 

constant 100 
1Nm . The frictional force acting on the body dF

 = 

5 v  N. Set up the differential equation of motion and find the 

period of free oscillations. Now a harmonic force tF 20cos2 is 

applied.  Calculate the amplitude of forced oscillations and phase 

lag in the steady-state. 

2. For a high Q -system, show that the width of the amplitude 

resonance curve is nearly b3 , where the full width is measured 

between those frequencies where 
2/maxaa 

. 

 

3. An alternating potential of frequency 
510 Hz and amplitude 1.2 V 

is applied to a series LCR circuit. If L = 0.5 mH and R = 40 , 

find the value of the capacitance C to get resonance. Also 

calculate the rms value of this current. 
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4.10   SOLUTIONS  

SAQ 1 

  2)2/1(.. vmEK  

  
22222 )4/1()(sin)2/1( amtam    

 U  2)2/1( xk  

  
22

0

222

0 )4/1()(cos)2/1( amtam    
Therefore, the time-averaged energy is 

  E  
22

0

2 )()4/1( am    

The average energy dissipated per second is  2v = 
22amb . 

By definition, 

 cycleoneindissipatedenergyaverage

cycleoneinstoredenergyaverage
2Q

 

 secondper dissipatedenergyaverage  period time

cycleoneinstoredenergyaverage
2


 

   

 
22

222

0

4

)(
2

aTmb

am









 

 b



4

22

0 
 

 

SAQ 2 

From Eq. (4.7b) we recall that the amplitude of a weakly damped forced 

oscillator is given by 

 
2/122222

0

0

]4)[(  bm

F
a




 

 

2/1

2

0

22

0

0

0

0

4

/




































b

mF

 
 

If we put 
2

0

0

0
m

F
a 

 and use Eq. (4.20), we get the required result: 

   

2/1

2

2

0

0

0
0

1

/
)(



























Q
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










  
 

Similarly, from Eq. (4.7a), we recall that 

 
22

0

2
tan









b
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











0

0
0

2










b

 

or  












0

0

/1
tan










Q

 

 

SAQ 3 

From Eq. (4.18) 

 ]4)[( 22222

0

22

0





bm

bF
P




 

Putting b
Q

2

0


, we get  

 )]/()[(2 22

0

2222

0

22

00

QmQ

F
P








 
 

At 0 
, the denominator in the parenthesis will become minimum 

and the average power absorbed by the oscillator becomes maximum: 

 0

2

0
max

2 m

QF
P 

 

     = 
2

0

0

2

0

2

1





m

QF

 

     = k

QF 0

2

0

2

1 

 

 

SAQ 4 

From SAQ 1, you would recall that the average energy of a weakly 

damped oscillator is given by 

 

222

0 )(
4

a
m

E  
 

At resonance, 0 
, and the expression for average energy reduces to 

22

0)2/1( amE 
 

            = 
2221 ))105()302(1.0)2/1( mskg     

            = 4.44 J 

 

Now, cycleoneindissipatedenergyaverage

cycleoneinstoredenergyaverage
2Q

 

Period sT )30/1( ,  

Average energy dissipated in 100

44.42
)30/1(





s
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 = 0.28 J 

Average energy dissipated per second = 28.030 J = 8.4 J. 

 

4.11 Terminal Questions 

1. For free oscillations, the differential equation is 

  xkxxm    

 Substituting m = 0.1 kg, k = 100 
1Nm  and  = 5 

1smN we get 

  dt

dx
x

dt

xd
51001.0

2

2


 

 or 
0100050

2

2

 x
dt

dx

dt

xd

 

  Period 
ss

b
T 32.0

]6251000[

2

][

2
2/12/122

0














. 

 

 On the application of the harmonic force, the equation of motion 

becomes 

  
tx

dt

dx

dt

xd
20cos20100050

2

2


 

 Here,  
2/122222

0

0

]4)[(  b

f
a




 

   = 
22/12 ]4002500)4001000[(

/20
 s

kgN

 

   = 
3107.1  m 

 4001000

20502
tan

22

0













b

 
  tan = 1.67 

 or 
01.59  

 

2. Let r  be the value of the angular frequency when 2

maxa
a 

. 

 Using Eq. (4.7b) and (4.13), we get 

  
2/122

0

0

2/122222

0

0

)(4]4)[( bb

f

b

f



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 On cross-multiplying and squaring both sides, we get 

 

  
)(164)( 22

0

222222

0 bbb  
 

 

Since 
22

0

2 2br 
, we can rewrite this as  

 

  )(164)2( 222222222 bbbb rr    
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For low damping, we can write this as 

  
2222222 164)( rr bb    

or 

  
22222 12)( rr b    

 

On taking square roots, we get 

  rr b 3222   
or 

  

b
b

r

r
r 3

322 










 

Half bandwidth br 3||    

and Full bandwidth br 32||22   = m/3  . 

 

3. At resonance, capacitance is given by 

  Hs
C

r

3225222 105.0)10()14.3(4

1

4

1
 


  

       = 
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 


24

2.1

2

0 V

R

E

R

E
I rms

rms

 
       = 0.21 A (at resonance RZ  ) 

 

 Peak-potential difference across the capacitor 

  = Peak current  reactance offered by the capacitor 

  = CR

E



10 
 

  = Fs

V
915 105102

1

4

2.1
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
   

  = 95.5 V 
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https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-

aerospace-composites/giurgiutiu/978-0-12-813308-8 

4. Physics of Oscillation and Waves with use of Matlab and Python. By 

Richard Fitzpatrick. © Springer 2018. ISBN: 978-3-319-72313-6. 
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Video Links 

 

https://youtu.be/ST0QlbytnBQ 

 

https://youtu.be/36_PtW-tmAM 

 

https://youtu.be/vLaFAKnaRJU 

 

https://youtu.be/vLaFAKnaRJU 
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https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
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UNIT 5    COUPLED OSCILLATIONS 

Structure 
5.1    Introduction Objectives 

5.2 Oscillations of Two Coupled Masses  

Differential Equation  

Normal Co-ordinates and Normal Modes  

Modulation of Coupled Oscillations  

Energy of Two Coupled Masses  

General Procedure for Calculating Normal Mode Frequencies 

5.3 Normal Mode Analysis of other Coupled Systems  

Two Coupled Pendulums  

Inductively Coupled LC-circuits 

5.4    Longitudinal Oscillations of N Coupled Masses: The Wave 

Equation 

5.5    Summary 

5.6    Terminal Questions 

5.7 Solutions 

 

5.1    INTRODUCTION 
In this block so far you have studied isolated (single) oscillating systems 

such as a spring-mass system, a pendulum or a torsional oscillator. In 

nature we also come across many examples of coupled oscillators. We 

know that atoms in a solid are coupled by interatomic forces. In 

molecules, say the water molecule, two hydrogen Moms are coupled to 

an oxygen atom while in a carbon dioxide molecule oxygen atoms are 

coupled to one carbon atom. In all these cases, oscillations of one atom 

are affected by the presence of other atom(s). In radio and TV 

transmission, we use electrical circuits with inductive/capacitive 

couplings. Therefore, it is important to extend our study of preceding 

units to cases where such simple systems are coupled. 

 

We begin this unit with a study of longitudinal oscillations of coupled 

masses. Do you expect the motion of these masses to be simple 

harmonic? You will learn that their motion is not simple harmonic. But 

it is possible to analyze it in terms of normal modes, each of which has a 

definite frequency and represents SHM. The presence of coupling leads 

to exchange of energy between two masses. To illustrate this further, we 

will determine, by analogy, normal mode frequencies of two coupled 

pendulums and two inductively coupled LC circuits. This analysis will 

then be extended to N coupled oscillators. When N becomes very large, 

i.e. we have a homogeneous medium, exchange of energy leads to the 

phenomenon of wave motion. 

 

In the next unit you will learn the details of wave propagation with 

particular reference to waves in strings, liquids and gases. 
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Objectives 
After studying this unit, you should be able to: 

 

 describe the effect of coupling on the oscillations of individual 

oscillators 

 establish the equation of motion of a coupled system executing 

longitudinal oscillations 

 define normal modes and analyze the motion of two coupled 

oscillators in terms of normal     modes 

 compute, by analogy, the normal mode frequencies for a physical 

system of interest, and derive the wave equation. 

 

 

5.2    OSCILLATIONS OF TWO COUPLED MASSES 
To analyze the effect of coupling we start again with the model spring-

mass system. We consider two such identical systems connected 

(coupled) by a spring, as shown in Fig. 5.la. In this system we have two 

equal masses attached to springs of stiffness constant k' and coupled to 

each other by a spring of stiffness constant k. In the equilibrium 

position, springs do not exert any force on either mass. The motion of 

this system will depend on the initial conditions. That is, the motion may 

be transverse or longitudinal depending on how the masses are 

disturbed. For simplicity, we first consider longitudinal motion of these 

two coupled masses. 

 

We pull one of the masses longitudinally and then release H. The 

restoring force will tend to bring it back to its equilibrium position. As it 

overshoots the equilibrium. mark, the coupling spring will pull the other 

mass. As a result, both masses start oscillating longitudinally. This 

means that motion imparted to one of the two coupled masses is not 

confined to it only;it is transmitted to the other mass as well. We now 

establish the equation of motion of these masses. 

 

5.2.1    The Differential Equation 
We choose x -axis along the length of the spring with O as the origin 

(Fig. 5.la). 
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Fig. 5.1 Longitudinal oscillations of two coupled masses,  

                          (a) Equilibrium configuration (b) Configuration at time 

t. 

 

Let AX and BX be the coordinates of the centre of the masses A and B 

respectively. When mass B is displaced towards the right and then 

released, mass A will also get pulled towards the right due to the 

coupling spring. The coupled system would then start oscillating. 

Suppose AX and BX are the instantaneous positions of masses A and B 

respectively. Then their displacements from their respective equilibrium 

positions are given by 

 

 BB Xxx 2  and AA Xxx 1  

 

Now at any instant of time during oscillation, the forces acting on mass 

A are 

(i) restoring force : 1')(' xkXxk AA  ; and  

(ii) a coupling force : )()()( 12 xxkXXxxk ABAB   

 

We are here assuming that the masses are moving on a frictionless 

surface. By Newton's second law, the equation of motion of mass A is 

thus given by 

 

 
][)('

2

2

AABBAA
A XxXxkXxk

dt

xd
m 

 

or 
)('

)(
1212

1

2

2

2

xxkxk
dt

xd
m

dt

Xxd
m AA 



   

 (5.1) 
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since 
0

dt

dX A

. 

 

Dividing through by m  and rearranging terms, we get 

 

 
0)( 12

2

1

2

02

1

2

 xxx
dt

xd
s

     
 (5.2) 

where m

k '2

0 
 and m

k
s 2

 

 

Similarly, the equation of motion of the mass B  is 

 

 
)(' 1222

2

2

xxkxk
dt

xd
m 

      
 (5.3) 

 

This can also be written as 

 
0)( 12

2

2

2

02

2

2

 xxx
dt

xd
s

     
 (5.4) 

 

Let us pause for a minute and ask: Do Eqs. (5.2) and (5.4) represent 

simple harmonic motion? No, we cannot, in general, identify the motion 

described by these equations as simple harmonic because of the 

presence of the coupling term 
)( 12

2 xxs  . This means that the analysis 

of previous units will not work since these equations are coupled in 1x  

and 2x . The question now arises: How to solve these equations? These 

equations will have to be solved simultaneously. For this purpose, we 

first add Eqs. (5.2) and (5.4) to obtain 

 

 
0)()( 21

2

0212

2

 xxxx
dt

d


     
 (5.5a) 

 

Next we subtract Eq. (5.4) from Eq. (5.2) and rearrange terms. This 

gives 

 

 
0))(2()( 21

22

0212

2

 xxxx
dt

d
s

    
 (5.5b) 
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By looking at Eqs. (5.5a) and (5.5b) you will recognize that these are 

standard equations for SHM. This suggests that if we introduce two new 

variables defined as 

 

 211 xx          
 (5.6a) 

and 

 212 xx          
 (5.6b) 

 

the motion of a coupled system can be described in terms of two 

uncoupled and independent equations: 
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2
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1

2
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dt

d

       
 (5.7) 

and 
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2

22

2

2

 


dt

d

       
 (5.8) 

 

where we have put 

 

 
mk /'2

0

2

1 
       

 (5.9) 

and 

 m

kk
s

2'
2 22

0

2

2


 

      
 (5.10) 

 

We therefore find that new co-ordinates 1  and 2  have decoupled Eqs, 

(5.2) and (5.4) into two independent equations which describe simple 

harmonic motions of frequencies 1  and 2  and 12   . The new 

coordinates are referred to as normal coordinates and simple harmonic 

motion associated with each coordinate is called a normal mode. Each 

normal mode has its own characteristic frequency called the normal 

mode frequency. 

 

5.2.2    Normal Coordinates and Normal Modes 

The normal coordinates 1  and 2 are not a measure of displacement like 

ordinary co-ordinates 1x  and 2x . Yet they specify the configuration of a 

coupled system at any instant of time. Using the analysis of Unit I, you 

can readily write the general solution of Eqs. (5.7) and (5.8) as 
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 )cos()( 1111   tat       
 (5.11) 

and 

 )cos()( 2222   tat       
 (5.12) 

 

where 1a  and 2a  are the amplitudes of normal modes and, 1  and 2  are 

their initial phases. 

Since )(1 tx = 2/)( 21   , we can write the displacement of mass A as 

 

 
)]cos()cos([

2

1
)( 2221111   tatatx

   
 (5.13) 

 

Similarly, we can write the displacement of the mass B as  

 

 
)]cos()cos([

2

1
)( 2221112   tatatx

   
 (5.13) 

 

The constants 1a , 2a , 1 , 2  are fixed by the initial conditions. Once we 

know these, we can completely determine the motion of the coupled 

masses. 

 

SAQ 1 
Solve Eqs. (5.13) and (5.14) subject to the following initial conditions: 

 

(A) ax )0(1 , ax )0(2 , 

0
0

1 
tdt

dx

 and 

0
0

2 
tdt

dx

 

(B) ax )0(1 , ax )0(2 , 

0
0

1 
tdt

dx

 and 

0
0

2 
tdt

dx

 

 

On solving this SAQ you will observe that when both masses are 

initially given the same displacement to the right and then released, their 

displacements are equal, i.e. )()( 21 txtx  , or 2 = 0 at all times. The 

motion is described by Eq. (5.7) and the normal mode frequency is the 

same as that of the uncoupled masses. This means that coupling has no 

influence and both masses oscillate in phase. In this mode of vibration, 

the coupling spring is neither stretched nor compressed (and is as good 

as not being there), as shown in Fig. 5.2a. 
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Fig.5.2. Normal modes (a) When two coupled masses are given equal 

displacement in the same  

 direction, (b)When two coupled masses are pulled together 

equally. 

 

When two coupled masses are initially pulled, equally towards each 

other and then released, the displacements are equal but out of phase by 

 , i.e., 21 xx  or 1 = 0 (Fig 5.2b). The normal mode frequency will be 

higher than that of the uncoupled masses )( 12   . This means that the 

coupling spring is either compressed or stretched and we say that 

coupling is effective. We thus conclude that normal coordinates allow us 

to write the equation of motion of a coupled system into a set of linear 

differential equations with constant coefficients. Each equation contains 

only one dependent variable. Moreover, the motion of a coupled system 

may be regarded as a superposition of its possible normal modes. 

 

 

5.2.3    Modulation of Coupled Oscillations 
In the above discussion we assumed that the two coupled masses are 

pulled equally in the same direction orin opposite directions. What will 

happen if only one of them is pulled and then released? To understand 

this, we have to solve Eqs. (5.13) and (5.14). Suppose the initial 

condition is as follows: 

 ax 2)0(1  , 0)0(2 x , 

0
0

1 
tdt

dx

 and 

0
0

2 
tdt

dx

   

 (5.15) 

 

You will find that the displacements of two coupled masses are given by 

 

 )cos(cos)( 211 ttatx         
 (5.16a) 

and 

 )cos(cos)( 212 ttatx         
 (5.16b) 
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Expressing the sum (difference) of two cosine functions into their 

product, these equations can be rewritten in a physically more familiar 

form: 

 

 
ttatx 






 







 


2
cos

2
cos2)( 1212

1



    
 (5.17) 

and 

 
ttatx 






 







 


2
sin

2
sin2)( 1212

2



    
 (5.18) 

 

You would recall that Eq. (5.17) is essentially the same as Eq. (2.19) 

obtained for modulated oscillations. As before, we define 
2/)( 21  av  as the average angular frequency and 
2/)( 12mod  

 as the modulated angular frequency. 

 

Then Eqs. (5.17) and (5.18) represent modulated oscillations 

respectively defined by  

 

 
ttatx avcos)()( mod1 

      
 (5.19) 

and 

 
ttbtx avsin)()( mod2 

      
 (5.20) 

where 

 
taa modmod cos2 

       
 (5.21) 

and  

 
tab modmod sin2 
       

 (5.22) 

are modulated amplitudes. 

 

What is the phase difference between the displacements of the two 

masses? Since sine and cosine functions differ by 2/ , the phase 

difference between the displacements of the coupled masses is 2/ . The 

same is true of modulated amplitudes as well. 

 

The displacement-time graphs for the two masses are shown in Fig. 5.3. 

We observe at t = 0, the amplitude of A is maximum while that of the 

mass at B  is zero. With time, the amplitude of A  decreases and 

becomes zero at 4/Tt  while that of B becomes a maximum. After 
4/Tt  , this trend is reversed for the succeeding quarter of the period. 
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This process will repeat itself indefinitely provided damping is not 

present. 

 

 
 

5.2.4   Energy of Two Coupled Masses  

If the coupling between two masses is weak, 2 will be only slightly 

different from 1 , so that mod
 will be very small. Consequently moda

and modb
 will take quite some time to show an observable change. That 

is, moda
and modb

 will be practically constant over a cycle of angular 

frequency av
. Then Eqs. (5.19) and (5.20) can be regarded as 

characterizing almost simple harmonic motion. Let us now calculate the 

energies of masses A and B using these equations. 

 

We know that the energy of an oscillator executing SHM is given by 

 

 
tmatamE avav mod

2222

mod

2

1 cos2)(
2

1
 

 
and 

 
tmatbmE avav mod

2222

mod

2

2 cos2)(
2

1
 

 
 

The total energy of two masses coupled through a spring which stores 

almost no energy is given by 

 

 
22

21 2 avmaEEE 
      

 (5.24) 

 

which remains constant with time. 

 

Using Eq. (5.24), we can rewrite Eqs. (5.23a) and (5.23b) as 

 

 
])cos(1[

2
121 t

E
E  

      
 (5.25a) 
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and 

 
])cos(1[

2
122 t

E
E  

      
 (5.25b) 

 

These equations show that at 0t , EE 1  and 02 E . That is, to begin 

with, mass at A possesses all the energy. As time passes, energy of mass 

at A starts decreasing. But mass at B begins to gain energy such that the 

total energy of the system remains constant. 

 

When 2/)( 12   t , the two masses share energy equally. When 

  t)( 12 , 01 E  and EE 2 , i.e. mass B possesses all the energy. 

As time passes, the energy exchange process continues. That is, the total 

energy flows back and forth twice between two masses in time T, given 

by 

  

 )/(2 12  T  
 

5.2.5    General Procedure for Calculating Normal Mode 

Frequencies 
In most physical situations of interest, coupled masses may not be equal. 

Then the above analysis is not of much use; it has to be modified. To 

calculate normal mode frequencies in such cases, we follow the 

procedure outlined below: 

 

(i)    Write down the equation of motion of coupled masses;  

(ii)    Assume a normal mode solution; 

(iii)    Substitute it in the equations of motion and compare the ratios of 

normal mode  

amplitudes; and 

(iv)     Solve the resultant equation. 

 

We now illustrate this procedure for two unequal masses 1m  and 2m

coupled through a spring of force constant k. The equations of motion of 

two coupled masses are 

 

 )(' 12111 xxkxkxm        
 (5.26a) 

and 

 )(' 12222 xxkxkxm        
 (5.26b) 

 

Let us assume solutions of the form 
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 )cos(11   tax  
and 

 )cos(22   tax  
 

where   is the angular frequency and   is the initial phase.  

Then 

 1

2

1 xx   
and 

 2

2

2 xx   
 

On substituting for 1x  and 2x  in Eqs.(5.26a) and (5.26b), we get 

  

 
21

2

1

2

0 x
m

k
x

m

k









 

      
 (5.27a) 

and 

 
12

2

2

2

0 x
m

k
x

m

k









 

      
 (5.27b) 

 

From Eq. (5.27a) we can write 

 

 











2

1

2

0

1

2
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m

k

mk

x

x

 
 

and from Eq. (5.27b), we have 

 2

2

2

2

0

2

1

/ mk

m

k

x

x














 
 

For non-zero values of 1x  and 2x , we can equate these values of 21 / xx  

to obtain 

 

 








 2

1

2

0

1/


m

k

mk

= 2

2

2

2

0

/ mk

m

k








 

 

 

On cross-multiplying, we get 
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02 2
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
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This equation is quadratic in 
2 and has roots  

 

 
2

0

2

1           
 (5.28a) 

and 

 










21

2

0

2

2

11

mm
k

      
 (5.28b) 

 

You will note that for 21 mm  , these results reproduce Eqs. (5.9) and 

(5.10). 

 

5.3     NORMAL MODE ANALYSIS OF OTHER 

COUPLED SYSTEMS 
So far we have analyzed the motion of two coupled masses. This 

analysis can readily be extended to other systems of entirely different 

physical nature. We will first compute normal mode frequencies of two 

coupled simple pendulums by drawing analogies from the preceding 

analysis. 

 

 

5.3.1    Two Coupled Pendulums 
Let us consider two identical simple pendulums A and B having bobs of 

equal mass, m , and suspended by strings of equal length l , as shown in 

Fig. 5.4 (a). The bobs of the two pendulums are connected by a 

weightless, spring of force constant k. In the equilibrium position, the 

distance between the bobs is equal to the length of the unstretched 

spring. 

 

Suppose that both bobs are displaced to the right from their respective 

equilibrium positions. Let )(1 tx  and )(2 tx  be the displacements of these 

bobs at time t , as shown in Fig. 5.4 (b). The tension in the coupling 

spring will be )( 21 xxk  . It opposes the acceleration of A but will 

support the acceleration of B. For small amplitude approximation, we 

recall from Unit 1 that the equation of motion of a simple pendulum is 

 

 
x

l

mg

dt

xd
m 

2

2
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Fig. 5.4 Two identical pendulums simple together (a) Equilibrium 

configuration (b) Instantaneous  

 configuration 

 

In the present case, the equations of motion of bobs A and B are 

 

 
)( 2112

1

2

xxkx
l

mg

dt

xd
m 










 
and 

 

 
)( 2122

2

2

xxkx
l

mg

dt

xd
m 










 
 

The term )( 21 xxk  arises due to the presence of coupling. Dividing 

throughout by m and rearranging terms, we get 

 

 

 
0)( 21

2

1

2

02

1

2

 xxx
dt

xd
s

     
 (5.29a) 

and 

 
0)( 21

2

2

2

02

2

2

 xxx
dt

xd
s

     
 (5.29b) 

 

where we have substituted 
lg /2

0 
 and 

mks /2 
. 

 

You will recognize that these equations are respectively identical to Eqs. 

(5.2) and (5.4). Thus the entire analysis of preceding sections applies 

and we can describe the motion of coupled pendulums by drawing 
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analogies. The normal modes of this system are shown in Fig. 5.5. In 

mode 1 )( 21 xx  , the bobs are in phase and oscillate with frequency 

lg /01  . But in mode 2 21( xx   or )12 xx  , the bobs are in 

opposite phase and oscillate with frequency 
2/12/122

02 )]/(2)/[(]2[ mklgs   . 

 

 
 

 

Fig. 5.5 Normal modes of a coupled pendulum (a) In-phase normal 

mode (b) Out-of-phase  

normal mode. 

 

 

 

SAQ 2 
The kinetic and potential energies of two identical coupled pendulums 

are given by 

 
])()[(

2
.. 2

2

2

1 xx
m

EK  
 

and 
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
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


 
 

where dt

dx
x i

i 
 ( i = 1,2). Express these in terms of normal coordinates. 

 

On solving this SAQ, you will observe that 

 

 

2

2

2

1 )(
4

)(
4
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EK 
 

and 
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4

1 2

2

2

2

2

1

2

1  mmU 
 

 

We can rewrite these expressions in a more elegant form by defining 

normal coordinates as 

 

 
)(

2
211 xx

m


and 
)(

2
212 xx

m


    

 (5.30) 

 

SAQ 3 

Using the definition given in Eq. (5.30), calculate the total energy of a 

system of two coupled pendulums in terms of normal coordinates. At 

any instant, kgm3

1 105.1   and kgm3

2 105.0  . Calculate )(1 tx  

and )(2 tx  at the same instant. Given m = 0.1 kg. 

 

In the above discussion you have learnt to calculate normal mode 

frequencies of two pendulums whose bobs are coupled. Will these 

frequencies remain the same if the strings of these pendulums were 

coupled, as shown in Fig. 5.6 (a). To discover the answer to this 

question, we consider the configuration shown in Fig 5.6 (b). At any 

time t , let the change in the length of the spring be 

))(/('' 1212 xxldxx  , where 1x  and 2x  are displacements of the bob 

from their equilibrium positions and d is the distance between the points 

of suspension and coupling. Hence, the restoring force in the spring is 

given by 

 

 
)()''( 1212 xx

l

kd
xxkF 

 
 

 
 

 

Fig. 5.6 Two identical simple pendulums whose strings are coupled by a 

spring (a) Equilibrium  
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configuration (b) Instantaneous configuration 

 

 

SAQ 4 
Write down the equations of motion of two pendulums coupled at a 

distance d from the point of suspension. Compute the normal mode 

frequencies by analogy. You will find that the frequencies of the normal 

modes are given by 

 

 l

g
1

 
and 

 
2

2

2

2

ml

kd

l

g


 
 

This shows that 2  depends on the distance between the points of 

suspension and coupling. Obviously, for ld  ,the expression for 2  

reduces to that for coupled bobs. 

 

5.3.2   Inductively Coupled LC circuits 
In Unit 1 we learnt that in an LC-circuit, charge oscillates back and forth 

with a frequency vo — 1 / (2ir \^LC). The form of energy repeatedly 

changes from electric to magnetic and vice versa. If two such circuits 

are coupled, we expect that some energy will foe exchanged between 

them. This study finds important applications in areas of power 

transmission and radio reception. Let us therefore consider two LC-

circuits, as show in Fig. 5.7. Do you know as to how these circuits are 

coupled? These circuits are coupled inductively. This coupling forms the 

basis of operation of a voltage transformer as well as an oscillator. 

 

 

 

 

 

 

 

Two electrical circuits are said to be inductively coupled when a change in the 

magnetic flux linked with one circuit induces emf (and hence gives rise to a 

current) in the other circuit. The coupling coefficient is given by 
21/ LLM , 

where M is mutual inductance and 
1L  and 

2L are self-inductances of two coupled 

circuits. 
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Fig. 5.7 Two inductively coupled identical LC circuits. 

 

Let 
I

and 2I be the instantaneous values of currents in the two circuits. 

The equation of motion of charge in circuit 1 is obtained by modifying 

Eq. (1.36) as 

 

 dt

dI
M

dt

dI
L

C

q 21
1

1

1 

 
 

where dtMdI /2  is the emf produced in circuit 1 due to current 2I in the 

second circuit. Obviously, it tends to increase 1I . Similarly, for circuit 2 

we can write 

 

 dt

dI
M

dt

dI
L

C

q 12
2

2

2 

 
 

Since dt

dq
I 

 and 
2

2

dt

qd

dt

dI


, we can rewrite these equations as 

 

 
2

2

2

1

1

2

2

1

2

dt

qd

L

M
q

dt

qd
p 

      
 (5.31a) 

and 

 
2

1

2

2

2

2

2

2

2

dt

qd

L

M
q

dt

qd
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 (5.31b) 

 

Eqs. (5.31a) and (5.3Ib) are two coupled equations. To find normal 

mode frequencies, we write 

 

 )cos(1   tAq  
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Using these in Eqs. (5.31a) and (5.31b), we get 
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Equating the values 21 / qq  obtained from these equations, we have 
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This expression may be rearranged as 

 

 

224
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2
2222 )()(  

LL

M
sp

    
 (5.32) 

 

where  is the coupling coefficient. 

Eq. (5.32) is quadratic in 
2 ; its roots give us normal mode frequencies. 

For simplicity, we assume that the circuits are identical so that their 

natural frequencies are equal, i.e. 0  sp , say, then 

 

 
42222

0 )(    
or 

 
222

0  
 

so that 

 







1

0

        
  

 

The acceptable normal mode frequencies are those values of   which 

correspond to positive roots and are given by 

 







1

0

        
 (5.33a) 

and 

 


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
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1

0

        
 (5.33b) 
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When coupling is weak )1(  , 021  
 and the two circuits 

behave as essentially independent. But when coupling is strong, 1  and 

2  will be much different. 

 

SAQ 5 

Two identical inductively coupled circuits, each having a natural 

frequency of 600 Hz, have coupling coefficient 0.44. Calculate the two 

normal mode frequencies. 

 

5.4 LONGITUDINAL OSCILLATIONS OF N COUPLED 

MASSES: THE WAVE EQUATION 

We know that every fluid or a solid contains more than two coupled 

atoms held by intermolecular forces. To know normal modes of such a 

system we have to extend the preceding analysis to three or in general to 

N coupled oscillators, which may not all be of the same mass. 

 

For simplicity, we first consider a system of N identical masses held 

together by )1( N  identical springs, each of force constant k, as shown 

in Fig. 5.8. The free ends of the system are rigidly fixed at x = 0 and x = 
l . In the equilibrium state, the masses are situated at x = a, 2a, ..., Na so 

that l = (N + 1) d. If 1n
, n

 and 1n
 are respective displacements of 

)1( n th, n th and )1( n th masses from their mean positions, we can 

write the equation of motion of the n th mass as  

 
Fig. 5.8 Equilibrium configuration for N coupled masses 

 
)()( 112

2

  nnnn
n kk

dt

d
m 



    
 (5.34)  

 

From Unit 1 you may recall that the spring constant k is defined as 

restoring force per unit extension. So we can write k = F/d, where d is 

extension in the spring. Using this relation in Eq. (5.34), we get 
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
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


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

 
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F
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d nnnnn 11

2
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 (5.35) 

 

Now let us assume that N . The separation between any two 

consecutive masses will become very small. That is, we will have a 
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continuous distribution of masses. Then we can replace d by x and Eq. 

(5.35) becomes 
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xxm

F
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or 
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
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






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
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2
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 (5.36) 

 

If the n th mass is located at a distance x from the origin, then in the 

limit 0x , we have 
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d
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F
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 (5.37) 

 

This means that   is now a function of t a well as x . We know that any 

continuous function )( xxf   can be expressed in terms of the function 

defined at x  and its derivatives using the following expansion: 
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 (5.38) 

 

Taking dxd / as f  and retaining terms only up to first orderin Ax, we 

canwrite 
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 (5.39) 

 

so that terms within the square brackets in Eq. (5.37) can be rewritten as 
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 (5.40) 

 

Using this result in Eq. (5.37) and re-arranging terms, we get 
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where l = xm / . You will observe that Eq. (5.41) is a partial 

differential equation. Moreover, the quantity lF /  has the dimensions 

of the square of velocity. For this reason, this equation is referred to as 

the wave equation. 

 

We thus find that longitudinal motion of a large number of coupled 

masses results in the phenomenon of wave propagation. We obtain a 

similar equation for a system of large number of coupled masses 

executing transverse oscillations. These will be discussed in detail later. 

 

5.5   SUMMARY 

 The longitudinal oscillations of two (identical) coupled masses 

are nut simple harmonic. The resultant amplitudes of coupled 

masses resemble a modulated pattern. 

 

 The displacement of either of the two (identical) coupled masses 

can be regarded as superposition of normal modes of the system. 

Each mode represents .an independent SHM. The normal mode 

frequencies are given by 

m

k '
1 

 and m

kk 2'
2




 

 where k  and 'k  are spring constants. 

 

 

 The total energy of two identical coupled masses is given by 
222 avmaE 

. It flows back and forth twice between the masses in 

time given by 

12

2






T

 
 

 The normal mode frequencies of a system of two coupled 

pendulums are given by 

l

g
1

 and m

k

l

g 2
2 

 

 

 The Energy-exchange during longitudinal oscillations of # 

coupled masses leads to the propagation of a wave in the limit 
N . The wave equation is given by 

2
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5.6   TERMINAL QUESTIONS 
1.        An object of mass m is suspended to a rigid support with the help 

of a spring of force constant K. It vibrates with a frequency 2 Hz 

(Fig. 5.9a.). Next two identical objects A and B, each of mass m, 

are joined together by a spring of force constant K'. Then these 

are connected to rigid supports 1S and 2S by two identical springs, 

each of force constant K (Fig. 5.9b). Now, if A is clamped, B 

vibrates with a frequency 2.5 Hz. Calculate the frequencies of the 

two modes of vibration. 

 
(a) (b) 

 

Fig. 5.9 

 

2. Two equal masses )(m  are connected to each other with the help 

of a spring of force constant K and then the upper mass is 

connected to a rigid support by an identical spring as shown in 

Fig. 5.10. The system is made to oscillate in the vertical 

direction. Show that the two normal frequencies are given by 

  m

K

2
)53(2 

 

 
 

Fig. 5.10 

 

3. Consider two capacitively coupled circuits shown in Fig. 5.11. 

Write down the equations of motion for current and compute 

normal mode frequencies. 
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Fig. 5.11 

 

 

 

 

5.7 SOLUTIONS 

SAQ 1 

 
)]cos()cos([

2

1

2
222111

21
1 





 tatax

  
 (i) 

and 

 
)]cos()cos([

2

1

2
222111

21
2 





 tatax

  
 (ii) 

 
)]sin()sin([

2

1
22221111

1   tata
dt

dx

   
 (iii)  

 
)]sin()sin([

2

1
22221111

2   tata
dt

dx

   
 (iv)  

 

(A) Using the initial conditions, we get 

  2211 coscos2  aaa  , 2211 coscos2  aaa   

 and 

  222111 sinsin0  aa  , 222111 sinsin0  aa   

 Hence, 

  aa 2cos 11  , 0cos 22 a , 0sin 111 a , 0sin 222 a  

 As 1a , 2a , 1 , 2  are not equal to zero, 

  021  , aa 21  , 2a = 0 

  tax 11 cos , tax 12 cos  

 That is, ta 11 cos   and ta 22 cos2    
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SAQ 2 

At the displacements 1x  and 2x , the speeds of pendulums A and B will 

be 11 / xdtdx   and 22 / xdtdx   respectively. Therefore,  

 Kinetic energy 
2

2

2

1 )()2/1()()2/1(.. xmxmEK      

 (i) 

 Potential energy ..EP = 
2

21

22

2

2

1

2

0 )()2/1()()2/1( xxmxxm s  

  (ii) 

Where l

g
2

0
 and m

k
s 2

 

From Eqs. (5.6a) and (5.6b), we have 

 2
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 and 2
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Hence,  
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 (v) 

where 
22

0

2

2 2 s 
 

 

SAQ 3 

If normal coordinates are defined as 

 
)(

2
211 xx

m


 and 
)(

2
212 xx

m


 

we can write 

 
)(

2

1
211  

m
x

 and 
)(

2

1
212  

m
x

 

 

Substituting in (i) and (ii) of SAQ 2, we get 

[ )(2)()( 2222 baababa  ] 



PHY 203        OSCILLATIONS AND WAVES 

 

159 

 
])()[(

2

1
.. 2
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 (i) 

and 

 
)(
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1
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 (ii) 

 

Hence, the total energy of the coupled pendulum in terms of normal 

coordinates is 

 
])()[(
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mmkg
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x 32/13

1 105.410)50.050.1(
2.0
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mmkg
kg

x 32/13

2 102.210)50.050.1(
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1  

 
 

SAQ 4 

The equations of motion of the coupled pendulums A and B are 

 
)( 122
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11 xx
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g
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and 

 
)( 122

2

22 xx
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x
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g
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By comparing these equations with Eqs. (5.29a) and (5.29b), we get 

 l

g
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and 
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SAQ 5 

From Eqs. (5.33a) and (5.33b), we have 

 







1

0
1

 
and 

 








1

0

2

 

Here, 0
= 600 Hz and 


= 0.44 so that 

 44.1

600
1 

Hz = 500 Hz 

and 
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 56.0

600
2 

Hz = 802 Hz 

 

5.8 Terminal Questions 

1. 0 = 



 22

1 0
m

K

= 2 Hz 

  

2222

0

22

0 16244  
m

k

(Hz)2   

 (i) 

 When A is clamped, the equation of motion of B will be given by 

  
B

B xKK
dt
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dt

xd

 

 The frequency of this simple harmonic motion is given by 

  m

K

m

K
B
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2
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= 2.5 Hz 

  

2222 )5.2(44
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225 (Hz)2  

 (ii) 

 Subtracting Eq. (i) from Eq. (ii), we get 

  

29
'


m

K

(Hz)2 

 Now, the angular frequencies of two normal modes of vibration 

are given by 
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= 

)1816( 22  
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  2

172 
Hz = 2.9 Hz 

 

2. Equations of motion of mass A and B are: 

  
)( 212

1

2

xxK
dt
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 and 
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 Hence,  
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 Let us assume that  

  )cos(11   tAx  
 and 

  )cos(22   tAx  
 Then, 

  1

2

1 xx 
 

 and 

  2

2

2 xx 
 

 Using these results in Eqs. (i) and (ii) we get 
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For non-zero values of 1x  and 2x , this set of simultaneous 

equations can be solved for normal mode frequencies by equating 

the following determinant to zero: 
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 m
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Thus,  m

K

2
)53(2 

for the slower mode. 

and 

 m

K

2
)53(2 

for the faster mode. 

 

3. Refer to Fig. 5.11. The equations governing the balance of emf’s 

in two circuits are 
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  C

q

C

q

dt

di
L 311 

 
and 

 C

q

C

q

dt

di
L 322 

 
Differentiating these equations with respect to time and using the 

relation dtdqi / , we get 
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and 
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If we replace L  by m , C/1  by kk '  and i  by x , then these 

equations become identical to Eqs. (5.1) and (5.3). Hence, the 

two normal frequencies of the system are: 

 LC

1
1 

 
and 

 LC

3
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. 
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Video Links 

 

https://youtu.be/-pXnfzQfupE 

 

https://youtu.be/4WhrNjg3I_o 

 

https://youtu.be/Ye92jN6FrlU 

 

 

 

 

 

 

 

  

https://youtu.be/-pXnfzQfupE
https://youtu.be/4WhrNjg3I_o
https://youtu.be/Ye92jN6FrlU
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UNIT 6    WAVE MOTION 

Structure 

6.1     Introduction 

Objectives 

6.2     Basic Concepts of Wave Motion 

Types of Waves 

Propagation of Waves 

Graphical Representation of Wave Motion 

Relation between Phase Velocity, Frequency and Wavelength 

6.3     Mathematical Description of Wave Motion 

Phase and Phase Difference 

Energy Transported by Progressive Waves 

6.4    One-Dimensional Progressive Waves: Wave Equation 

Waves on a Stretched String  

Waves in a Fluid  

Waves in a Uniform Rod 

6.5     Wave Motion and Impedance 

Impedance offered by Strings: Transverse Waves 1                 

Impedance offered by Gases: Sound Waves 

6.6  Waves in Two and Three Dimensions 

6.7  Summary 

6.8  Terminal Questions 

6.9 Solutions 

 

6.1    INTRODUCTION 

In Unit 5 you have learnt that when one mass in a system of N coupled 

masses is disturbed, the disturbance is gradually felt by all other masses. 

You can think of many other similar situations in which oscillations at 

one place are transmitted to some other place through the intervening 

medium. When we talk, our vocal cord inside the throat vibrates. It 

causes air molecules to vibrate and the effect-speech is transmitted. 

When it makes our ear drum to vibrate, it is heard. Do you know what 

carries the audio information? The information is carried by a (sound) 

wave which propagates through the medium (air). If you have ever stood 

at a seashore, you would need no description of waves. 

 

In addition to sound and water waves, other familiar types of waves are: 

ultrasound waves and electromagnetic waves, which include visible 

light, radio waves, microwaves and x-rays. Matter waves, shock waves, 

and seismic waves are other less familiar but important types of waves. 

You will note that all our communications depend on transmission of 

signals through waves. The use of x-rays in medical diagnosis is so very 

well known. Nowadays we also use ultrasound waves – sound waves of 

frequency greater than 20 kHz – to make images of soft tissues in the 

interior of humans. Sound waves are used in sound ranging; sonars and 

prospecting for mineral deposits and oil – commodities governing the 
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economy of nations these days. This means that understanding of the 

physics of wave motion is of fundamental importance to us. In this unit 

we will confine to mechanical waves with particular reference to sound 

waves. 

 

When a progressive wave reaches the boundary of a finite medium or an 

interface between two media, waves undergo reflection and/or 

refraction. These will be discussed in detail in the next unit. 

 

You would recall that our discussion of oscillations was simplified 

because of some basic similarities between different physical systems. 

Once we understood the behavior of a model spring-mass system, we 

could easily draw analogies for others. Exactly the same simplification 

occurs in the study of waves. The basic description of a wave and the 

parameters required to quantify this description remain the same when 

we deal with a one-dimensional (1-D) wave travelling along a string, a 

2-Dwave on the surface of a liquid or a 3-D sound wave. For this reason, 

in this unit we shall first consider basic characteristics of wave motion. 

Then we would calculate the energy transported by progressive waves. 

The vocabulary language and ideas developed here will then be applied 

to waves on strings, liquids and gases. 

 

Objectives 

After going through this unit, you should be able to: 

 

 define wave motion and state its characteristics 

 distinguish between longitudinal and transverse waves 

 represent graphically waves at a fixed position or at a fixed time 

 relate wavelength, frequency and speed of a wave 

 establish wave equations for longitudinal and transverse waves 

 compute the energy transported by a progressive wave 

 derive expressions for velocities of longitudinal and transverse 

waves 

 derive expressions for characteristic impedance and acoustic 

impedance 

 write two and three dimensional wave equations. 

 

6.2    BASIC CONCEPTS OF WAVE MOTION 
You may have enjoyed dropping small pebbles in still water. It will not 

take you long to convince yourself that water itself does not move with 

the wave (evidenced as circular disturbance). If you place a paper boat, a 

flower or a small piece of wood, you will observe that it bounces up and 

down, without any forward motion. You may ask: Why does the paper 

boat bounces up and down? It bounces due to the energy imparted by 

waves. Let us reconsider the motion of a system of N coupled masses 

(Fig. 6.1). If we disturb the first mass from its equilibrium position, 
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individual masses gradually begin to oscillate about their respective 

equilibrium positions. That is, neither of the masses (or connecting 

springs) nor the system as a whole move from its position. What moves 

instead is a wave, which carries energy. How can you say that? It is 

evidenced by compression and stretching of springs as the wave 

propagates. Thus the most important characteristic of wave motion is: A 

wave transports energy but not matter. 

 

 
 

Fig. 6.1 The motion of a disturbed mass in the coupled spring-mass 

system. The disturbance is eventually communicated to adjacent masses. 

This results in wave propagation. You would note that regions of 

compression and elongation move along the system, which is shown 

here at two different times. 

 

A vivid demonstration of the energy carried by water waves is in 

damage caused in coastal areas by tidal waves in stormy weather. Do 

you know that 3m high oceanic wave can lift 30 bags of wheat by about 

10 ft.?  

 

Another important characteristic of mechanical waves is their velocity 

of propagation, referred to as wave velocity. It is defined as the distance 

covered by a wave in unit time. It is different from the particle velocity, 

i.e. the velocity with which the particles of the medium vibrate to-and-

fro about their respective equilibrium positions. Moreover, the wave 

velocity depends on the nature of the medium in which a wave 

propagates. A wave has a characteristic amplitude, wavelength and 

frequency. You must have learnt about these in your earlier classes. We 

will, however recapitulate these in sub-section 6.2.4. 

 

You can see with unaided eyes the actual propagation of a disturbance in 

water. Can you see a sound wave propagating in air? Obviously, you 

cannot. Then you may like to know as to how we detect sound waves. 

We observe the motion at the source (like a guitar string or drum 

membrane) or at the receiver (microphone membrane). Another question 

that comes to our mind is: Are sound waves and water waves similar? If 

not, how are waves classified? Let us now proceed to know the answer 

to this question. 
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6.2.1    Types of Waves 
In your school you must have learnt that waves can be classified as 

transverse or longitudinal depending upon the direction of vibration of 

particles relative to the direction of propagation of the wave. In fact, we 

can classify waves in many other ways. For instance, we have 

mechanical and non-mechanical waves depending on whether a wave 

needs a medium for propagation or not. Sound waves and water waves 

are mechanical (or elastic) waves whereas light waves are not. Waves 

can also be classified as one-, two- and three-dimensional waves, 

according to the number of dimensions in which they propagate energy. 

Waves on strings are one-dimensional (1-D). Ripples on water are two-

dimensional (2-D). Sound waves and light waves originating from a 

small source are three-dimensional (3-D). Sometimes we classify waves 

as plane waves or spherical waves depending on the shape of the 

wavefront. In 2-D, a spherical wave appears circular, as in case of waves 

on the surface of water. 

 

Waves set up by a single, isolated disturbance are called pulses. The 

dropping of a stone in still water of a pond, the sound produced by 

clapping of hands, a single word of greeting or command shouted from 

one person to another belong to this category. When an engine joins the 

compartments, the jerk produces a disturbance which is carried through 

as a pulse. But continuous and regular oscillations produce periodic 

waves. This, along with waveforms for sound produced by a violin and a 

piano, is shown in Fig. 6.2. The simplest type of a periodic wave is a 

harmonic wave. 

 

 
Fig. 6.2 Waveform for (a) harmonic wave (b) the violin and (c) piano 

 

When the motion of particles of the medium is perpendicular to the 

direction in which the wave propagates, it is called a transverse wave. 

Waves on a string under tension are transverse, as in a violin. You can 

generate transverse waves on a coupled spring-mass system of Fig. 6.1 

by displacing a mass at right angles to the spring as shown in Fig. 6.3a. 
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(Electromagnetic waves are also transverse in nature. But they do not 

require medium for propagation.) 

 

 
 

Fig. 6.3 (a) A transverse wave and (b) a longitudinal wave on a coiled 

spring-mass system.  

The broad arrow Indicates the direction of wave propagation. 

 

When the motion of particles of the medium is along the direction in 

which wave propagates, the wave is called a longitudinal wave. Sound 

waves in air are the most familiar example of longitudinal waves. You 

can generate a longitudinal wave on a coupled spring-mass system of 

Fig. 6.1 by displacing a mass along the length of the spring (Fig. 6.3b). 

 

In your school you may have been told that water waves, produced by 

winds or otherwise, are transverse and the motion is confined to the 

surface. But this is not correct. Strictly speaking, the motion gradually 

extends with diminishing amplitude to deeper layers. Moreover, 

oscillations have longitudinal as well as transverse components. That is, 

water waves are composite; partly transverse and partly longitudinal. 

This is illustrated in Fig. 6.4. Similar waves can occur at the surfaces of 

elastic solids. Such waves are called Rayleigh waves. 

 

 
 

Fig. 6.4 Water waves are composite. The arrows at different points 

indicate instantaneous  

velocity of water whereas dotted circles are paths traced out by parcels 

of water as the wave passes. The direction of wave propagation is shown 

by the broad arrow. 

 

In general, only longitudinal waves can propagate in gases and liquids 

but in solids both transverse and longitudinal waves can propagate. 
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Earlier in this course, you have read about torsional oscillations. When 

such a disturbance propagates in a medium, we have a torsional wave. 

In the following sections, you will learn about mechanical waves in 

general and sound waves in particular. But before that you should 

answer the following SAQ. 

SAQ1 

(i)    The frequency of ultrasound wave is more than .......... 

(ii)   Water waves are .......... waves 

(iii)  Waves transfer.......... not .......... 

(iv)  Light waves require .......... medium 

(v)   Waves on sitar strings are .......... 

 

6.2.2   Propagation of Waves 
To see how waves propagate in a medium, you can perform the 

following activity: 

Take a long elastic string and fix its one end to a distant wall. Hold the 

other end tightly. Move your hand up and down. What do you observe? 

A disturbance travels along the string. This disturbance is due to the up 

and down motion of the particles of the string about their respective 

mean positions. When the motion of the arm (hand) is periodic, the 

disturbance on the string is a wave with a sinusoidal profile. The shape 

of a portion of the string at intervals of 8/T  is shown in Fig. 6.5. You 

will observe that the waveform moves to the right, as shown by the 

broad arrow. You may ask: Why is the whole string not displaced 

simultaneously? The time lag between different parts is due to gradual 

transfer of disturbance between successive particles. 
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Fig. 6.5 A periodic motion of the hand generates waves with a 

sinusoidal profile. In parts (b)-(j)  

we have depicted wave profile on the string at intervals of 8/T  

 

In this connection, it is important to distinguish between the motion of 

the waveform and the motion of a particle of the string. While the 

waveform moves with a constant speed, the particles of the string 

execute SHM. To illustrate this difference clearly, let us mark nine 

equidistant points on the initial portion of the string. We assume that this 

string oscillates with a period T. Let us tie one end of this string (at mark 

1) to a vertically oscillating spring-mass system as shown in Fig. 6.6. As 

the mass m on the spring moves up and down, the particles at the 

marked positions begin to oscillate one after the other. In time /; the 

disturbance initiated at the first particle will reach the ninth particle. 

This means that in the interval 8/T , the disturbance propagates from the 

particle at mark 1 to the particle at mark 2. Similarly, in the next 778 

intervals, the disturbance travels from the panicle at mark 2 to the 

particle at mark 3 and so on. In parts (a) - (i) of Fig. 6.7 we have shown 

the instantaneous positions of particles at all nine marked positions at 

intervals of 778. (The arrows indicate the directions of motion along 
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with which particles at various marks are about to move.) You will 

observe that 

 

 

 
 

Fig. 6.6 A string fastened to an oscillating spring mass system: 

Illustration of the difference  

between motion of the waveform and the motion of particles 

 

(i) At t = 0, all the particles are at their respective mean positions. 

(ii) At t = T, the first, fifth and ninth particles are at their respective 

mean positions. The first and ninth particles are about to move upward 

whereas the fifth particle is about to move downward. The third and 

seventh particles are at position of maximum displacement but on 

opposite sides of the horizontal axis. The envelope joining the 

instantaneous positions of all the particles at marked positions in Fig. 

6.7 (i) are similar to those in Fig. 6.5 and represents a transverse wave. 

The positions of the third and the seventh particles denote a trough and 

&crest, respectively. 

 

The important point to note here is that while the wave moves along the 

string all panicles of the string are oscillating up and down about their 

respective equilibrium positions with the same period (D and amplitude 

(a). This wave remains progressive till it reaches the fixed end. 

 

We would now like you to know to represent a wave graphically as well 

as mathematically. This forms the subject of our discussion in the 

following sections. 
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Fig. 6.7 Instantaneous profiles at intervals of 8/T  when a transverse 

wave is 

   generated on a string. 

 

6.2.3   Representation of Wave Motion 
From the above activity you would recall that when a wave moves along 

a string/spring, three parameters are involved: particle displacement, its 

position and time. In a 2-D graph, you can either plot displacement 

against time (at a given position) as shown in Fig. 6.8a or displacement 

against position (at a given time) as shown in Fig. 6.8b. You can easily 

identity that both plots are sinusoidal and have amplitude a. We can 

represent these as 
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The argument of the sine function ensures that the function repeats itself 

regularly. 

 

We can draw an analogy between the wavelength and the period. The 

wavelength is separation in space between successive in-phase points 
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on the wave. On the other hand, period is separation in time between 

equivalent instants in successive cycles of vibration. This means that the 

wavelength and the period are respectively the spatial and the temporal 

properties of a wave. 

 

 
 

Fig. 6.8 (a) The profile of vibrations at a given position in the path of a 

wave, and (b) the profile  

 of a wave at a particular Instant. It is snapshot of the wave travelling 

along the string. 

 

 

It is important to note that the scales for )(xy and )(ty are different, For 

sound waves, the displacement amplitudes are a small fraction of 1 mm 

whereas x extends to several meters. 

 

Human ears can hear sound of 1000 Hz quite clearly. The amplitude of 

the wave corresponding to the faintest sound that a normal human ear 

can hear is approximately 
1110

m. This is smaller than the radius of the 

atom (= 
1010

m). Yet our ears respond to such a small displacement! 

 

Another point about graphical representation is that it can be used for 

both transverse and longitudinal waves. 

 

 
 

Fig. 6.9 Graphical representation of a longitudinal wave 
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In longitudinal waves, the displacement of particles is along the 

direction of wave propagation. In Fig. 6.9, the hollow circles represent 

the mean positions of equidistant particles in a medium. The arrows 

show their (rather magnified) longitudinal displacements at a given time. 

You will observe that the arrows are neither equal in length nor in the 

same direction. This is clear from the positions of solid circles, which 

describe instantaneous positions of the particles corresponding to the 

heads of the arrows. The displacements to the right are shown in the 

graph towards + y axis and displacements to the left towards the  –y 

axis. 

 

For every arrow directed to the right, we draw a proportionate line 

upward. Similarly, for every arrow directed to the left, a proportionate 

line is drawn downward. On drawing a smooth curve through the heads 

of these lines, we find that the graph resembles the displacement-time 

curve for a transverse wave. If we look at the solid circles, we note that 

around the positions A and B, the particles have crowded together while 

around the position C, they have separated farther. These represent 

regions of compression and rarefaction. That is, there are alternate 

regions where density (pressure) are higher and lower than average. A 

sound wave propagating in air is very similar to the longitudinal waves 

that you can generate on your string/spring. This similarity is clearly 

illustrated in Fig. 6.10. A sound wave may be considered either as a 

pressure wave or as a displacement wave. However, the pressure wave 

is 90° put of phase with the displacement wave. That is, when 

displacement from equilibrium at a point is maximum, the excess 

pressure (over the normal) is zero and vice versa. The variations of 

pressure and density are represented graphically in. Fig. 6.11. This 

means that in longitudinal waves, alternate high and low pressures 

propagate along the wave. 

 

 
 

Fig. 6.11 The sound waves can be viewed in terms of changes in 

pressure or density 

 

6.2.4    Relation between Wave Velocity, Frequency and Wavelength 
Refer to Fig. 6.7(i). You will note that the first and ninth particles are in 

the same state of vibration. They are, therefore, said to be in phase with 

each another. The distance between successive particles vibrating in 
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phase is known as the wavelength. It is usually denoted by Greek letter 
  (lambda). Since the wave moves a distance of one full wavelength in 

one period, its speed  

 

 T
v




period

wavelength

       
 (6.3) 

 

Since frequency, f , is the reciprocal of the period T, we can also write  

 

 fv   
 

That is, the speed of any wave is equal to the product of its frequency 

and the wavelength. This equation predicts that in a given medium, the 

speed of a wave of given frequency is constant, this is a very important 

relation. 

You will note that we have derived Eq. (6.4) with reference to a 

transverse wave in a string. But it holds for all other media like air, 

water, glass etc. as well as longitudinal waves. At STP, the speeds of 

sound waves in air, water and steel are 332 m
1s , 1500 m

1s  and 5100 

m
1s , respectively. (This explains why the whistle of an approaching 

train may be heard twice - first as the sound travels through the railroad 

track and again as it (travels through the air.) Ripples on the surface of a 

pond move with a speed of about 0.2 m
1s . The seismic waves move 

with a speed of the order of 
3106 m

1s  in the earth's outer crust and 

light moves with a speed of 
8103 m

1s . That is why light that 

originates on or near the earth reaches us almost instantly. 

 

6.3   MATHEMATICAL DESCRIPTION OF WAVE MOTION 
In the preceding section you have learnt that at a particular time, a wave 

is described by Eq. (6.1). As time passes, the wave propagates along the 

+ x  direction. So at a given value of x, the displacement of medium 

particles must change with time. This information is not contained in 

Eq. (6.1). This means that it is not a complete equation for the wave. 

You would like to know as to how we can modify Eq. (6.1). To answer 

this question, let us consider Fig. 6.12, which shows a 'snapshot' of a 

wave moving with speed v  along x -axis. Now imagine two particles, 

say at A ( x = 0) and at B separated by a distance x. You can easily 

convince yourself that a disturbance created at A will reach B in time 
vt / . This means that the particle at B will have the same displacement 

as particle at A at time vxtt /'  .Mathematically, we can express this 

as 
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Fig. 6.12 Planes A and Bare separated by a distance x. 

 

We can obtain )0( xy on replacing t in Eq. (6.2) by vxtt /'  .Then it 

readily follows that when a wave moves along + x  direction with speed 
v , the displacement of medium particles as a function of x and t is given 

by the equation 
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or 
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 (6.6b) 

since Tv / . We can also rewrite this equation as 
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 (6.6c) 

 

At t = 0 (as also when t/T is an integer), this equation reduces to Eq. 

(6.1). [The negative sign implies slight re-adjustment in the phase of the 

wave at t = 0.] Further, you can check that this equation displays 

periodicity by calculating the displacement at a distance x +   from the 

origin. To ensure that you have grasped these ideas we would like you to 

solve the following SAQ. 

 

SAQ3 
A 275 Hz sound wave travels with a speed of 340 ms along the x-axis. 

Each point of the medium moves up and down through 5.0 mm. Write 

down the equation for the wave. Calculate (i) the wavelength of the 

wave, and (ii) velocity and acceleration of medium particles. 

 

Eqs. (6.6a), (6.6b) and (6.6c) show that if we sit at a fixed position x = 0 

say, then the displacement varies sinusoidal in time: 
)/2sin(),0( Ttatxy  . We know that this relation expresses SHM 

with angular frequency 
T/20  

. 
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Another equivalent and convenient form for ),( txy is written in terms of 

the wave number, k defined as the number of radians of wave cycle per 

unit distance: 

  

 

2
k

 
 

 (You should not confuse this k with spring constant used earlier.) 

 

You will recognize that the wave number is the spatial analog of the 

angular frequency. In 

terms of 0
and k , we can also write the wave equation as 

 

 
)sin(),( 0 kxtatxy  
      

 (6.6d) 

 

The simple way in which k and 0
 enter this description of the wave 

explains why these quantities are so often used. 

 

On comparing Eqs. (6.6a) and (6.6d) you will observe that v and k are 

connected through the relation 

 

 k
v 0


        
 (6.7) 

  

Eqs. (6.6a - d) provide us equivalent description of a travelling wave 

moving in the + x direction. But the choice of the particular form to be 

used for a specific problem is a matter of convenience. How would you 

describe a wave propagating in the negative x -direction? You can easily 

convince yourself that to describe a wave moving in the negative x -

direction, we should replace x by x in Eq. (6.6).  

 

SAQ4 

A sinusoidal water wave having a maximum height of 7.4 cm above the 

equilibrium water level is propagating in the x  direction with a speed 

of 93 cm
1s . The distance between two successive crests is 55 cm.  

Write the wave equation in terms of angular frequency and wave 

number. Also calculate the particle velocity. 

 

6.3.1    Phase and Phase Difference 

In a periodic motion, particle displacement, velocity, and acceleration 

repeatedly undergo a cycle of changes. The different stages in a cycle 
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may be described in terms of the phase angle. The argument of the sine 

function is called the phase angle or simply phase. We will denote it by 

the symbol  . Thus, the phase at x at time t in a wave represented by Eq. 

(6.6d) is given by 

 

 
kxt  0

        
 (6.8) 

 

You will note that the phase changes both with time and the space 

coordinate. With time, it changes according to 

 

 
tft   20 for fixed x      

 (6.9a) 

and with position according to 

 xk  for fixed t       

  (6.9b) 

 

The minus sign in this equation signifies that in a wave moving along 
x direction, the forward points lag in phase. That is, they reach the 

successive stages of vibration later. 

 

6.3.2    Phase Velocity 

From our experience we know that water waves travel with constant 

velocity as long as the properties of the medium remain constant. For 

harmonic progressive waves, this velocity is called the phase velocity, pv

. To show this, let us follow a given wave crest or through as the wave 

propagates. In order to keep the phase ),( tx  defined by Eq. (6.8) 

constant, we must look for different x as t changes. Thus by taking the 

differential of ),( tx  and setting the result equal to zero, you can find 

the relation between x and t for a point of constant phase. The 

differential of ),( tx  is given by 

 

 
kdxdtd  0

 
 

It will become zero provided dxand dt  are related by 
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 (6.10) 

 

On comparing Eqs. (6.7) and (6.10) you will observe that the expression 

deduced earlier is actually the phase velocity. 
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6.3.3    Energy Transported by Progressive Waves 

We now know that the most spectacular characteristic of progressive 

waves is that they transport energy we will now calculate the energy 

carried by a wave. To do so, we should know both the kinetic energy 

and the potential energy. If the instantaneous displacement of a particle 

is 
)sin(),( 0 kxtatxy  
,then the equation of a wave moving along + x 

direction is  

 

 

Let us consider a thin layer of thickness and cross-sectional area A at a 

distance x from the source. If   is the density of the medium, the mass 

of the layer is Ax . Therefore, kinetic energy of the layer 
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This expression implies that kinetic energy oscillates between zero and 

22

0
2

1
axA 

. This is because the value of the function )(cos 0

2 kxt   

varies between 0 and 1. 

 

Over one full cycle, the average value of 2cos  is 2

1

. So, the average 

kinetic energy over a time period is 
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What about the potential energy? From Unit 1 you would recall that in 

SHM, the average kinetic energy and average potential energy are equal. 

Is the same true for a harmonic wave as well? Physically, we except so. 

Let us now compute potential energy analytically. 

 

The layer under consideration will be subject to a force 
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We know that the work done by this force, when the layer of interest is 

displaced through y from its equilibrium position, is stored in the layer 

as its potential energy. So we can write 
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The minus sign tells us that the work is done on the layer. (This is of no 

consequence when we calculate total energy of the wave.) The time-

averaged potential energy of the wave is 

 

  ..22

0

2 EKxAafU      (6.14) 

 

On combining Eqs. (6.11) and (6.13), we find that the total energy of the 

wave is  

 

UEKE  .. = xAfa  2

0

222  =  UEK ..   (6.15) 

 

This shows that half the energy of the wave is kinetic and the other half 

is potential. 

 

What happens to this energy? As the layer moves, it pushes the next 

layer. In the process, it transmits its energy. Now you may like to know: 

How long does this layer take to give up its energy? Or, what is the 

average rate of energy flow? To calculate this, we note that if the wave 

is moving at speed v  the energy passes the layer in time vxt /

.Hence  
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This shows that average rate of energy flow, or what we call power,is 

proportional to wave 

Speed and the square of the amplitude. 

 

6.3.4   Intensity and the Inverse Square Law 
From our common experience we know that the chirping of birds, the 

shout of a person, vehicular noise, sound of crackers or light from a 

lamp fade out beyond a certain distance. If it were not true, noise 
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pollution would have made life hell on our planet. To understand the 

principle governing such situations, we note that amplitude of an 

outward spreading wave decreases as the distance from the source 

increases. This means that the average rate of energy flow associated 

with a wave decreases as it spreads out. It is therefore not very useful to 

talk about the total energy of progressive waves. In general, it makes 

more sense to describe the strength of a wave by specifying its intensity. 

It is defined as the energy carried by a wave in unit time across a unit 

area normal to the direction of motion. 

 

Using this definition, Eq. (6.16) gives 

 

  22

0

22 )2/1(2 AvVvfaI      (6.16b) 

 

where afVA 0

2 2 . 

 

The SI units of intensity are 
12  sJm or 

2Wm . From Unit 1, you will 

recall that total energy is proportional to the square of the amplitude of 

oscillation. In the same way, the intensity of a wave at a given position 

is proportional to the square of amplitude at that position. For a second 

wave, we can write 
2

0pI        (6.18 a) 

 

where 0p
is the maximum change in pressure over normal pressure. Note 

that when we express intensity in terms of 0p
, the frequency does not 

appear explicitly in the expression. This means that 100 Hz sound wave 

has the same intensity as a 10 kHz sound wave; both have the same 

amplitude. 

 

How does the intensity of a wave at a point vary with distance from the 

source? 

 

We know that the area crossed by a wave increases as it spreads out. If it 

originates from a point source or the distance from the source is much 

greater than the size of the source, the area will be almost spherical 

)( 2r . Then principle of conservation of energy demands that 
24 IrE  be constant. So as r increases, intensity decreases as 

2/1 r : 

  

 
2

1

r
I 

       (6.18b) 

 

On combining Eqs. (6.18 a) and (6.18 b), we find that 
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 r
p

1
0 

 
 

Since 0pa 
, this relation implies that amplitude of a wave is inversely 

proportional to the distance from the source. This explains why we can 

be heard up to a certain distance. (Beyond this the amplitude becomes 

too small to affect our eardrums.) You must note that these results will 

hold if the wave is not absorbed or obstructed. In Table 6.1 we have 

listed intensities of waves generated from different sources. 

Table 6.1 Wave Intensities 

 

Source/Wave Intensity  

Sound 

Threshold of hearing 

Rustle of leaves 

Whisper, intensity at eardrum 

Ordinary conversation 

Street traffic 

Bursting cracker, at 1 m 

Jet Taking off, at 30m 

 

Electromagnetic Waves 

Radio in home 

TV signal, 5.0 km from 50 kW 

transmitter 

Sunlight intensity at earth's orbit 

1m from typical camera flash 

Inside microwave oven 

Target of laser fusion experiment 

 

Seismic wave 

5 km from Richter 7.0 quake 

 

10-12 

10-11 

10-10 

3.210-6 

10-5 

810-5 

5 

 

 

10-8 

1.610-4 

1368 

4000 

6000 

1018 

 

 

4104 

 

SAQ5 
At a distance of 1m from a bursting cracker, the intensity of sound is 8

510 2Wm . The threshold of human hearing is about 
21210  Wm . If 

sound waves spread out evenly in all directions, how far from the source 

could such a sound be heard? 

 

Our ear is sensitive to an extremely large range of intensities. So we can 

define a logarithmic intensity scale. The intensity level of a sound wave 

is defined by the equation 

 

 
)/ln(10 0II
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where 0I
(= 

21210  Wm ) denotes the threshold of hearing. Intensity levels 

are expressed in decibels, abbreviated db. Our ear can tolerate intensity 

up to 120 db. 

 

6.4     ONE DIMENSIONAL PROGRESSIVE WAVES: WAVE 

EQUATION 

Do you know how music reaches you? What determines whether or not 

waves can propagate in a medium and when they move, how fast they 

do so? Experimental investigations show that the speed of waves does 

not depend on the wavelength or period. This means that the answer to 

these questions should lie in the physical properties of the medium. To 

discover this, now we consider particular physical systems. For 

simplicity, we first study waves on a stretched string. 

 

6.4.1    Waves on a Stretched String 

Consider a uniform string, having mass per unit length m, stretched by a 

force F. Let us choose the x -axis along the length of the string in its 

equilibrium state. Suppose that the string is plucked so that a part of it is 

normal to the length of the string, i.e. along the y -axis (Fig. 6.13). What 

happens when the string is released? It results in wave motion. We wish 

to know the speed of this wave. We expect that the interplay of inertia 

and elasticity of the medium will determine the wave speed. For a 

stretched string, the elasticity is measured by the tension in the string 

and inertia is measured by m. Before proceeding further, we would like 

you to carry out the following exercise. 

 

 
 

Fig. 6.13: A magnified view of a small element of the stretched string. 

The net force acting on it  

   is non-zero. The vertical distortion is exaggerated (for clarity) 

 

SAQ6 
Using dimensional analysis, show that 
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 mFKv /  
 

where K is some dimensionless constant. 

 

We will now analyze the problem mechanically by considering a small 

element along the string. 

Suppose that the string is distorted slightly so that the magnitude of 

tension on the string essentially remains unchanged. Fig. 6.13 shows 

(magnified view of) a small element of the distorted string. You will 

observe that the direction of the (tension) force varies along the element 

under consideration. Why? This is because the string is curved. This 

means that the tension forces pulling at opposite ends of the element, 

although of the same magnitude, do not exactly cancel out. To calculate 

the net force along x and y-axis, we resolve F in rectangular 

components. The difference in the x and y components of tension 

between the right and the left ends of the element is respectively given 

by 

 

 12 coscos  FFFx 
  

and 12 sinsin  FFFy 
 

  

Where 1  and 2  are angles which the tangents drawn at the ends make 

with the horizontal. For small oscillations (  4°). 

 

 1coscos 21    
 

This means that there is no net force in the x -direction, xF
= 0, and the 

string will be very nearly horizontal. This implies that the sines of the 

angles are very nearly the same as their tangents, i.e. 

 

11 tansin    

and  22 tansin    

 

But the tangents of the two angles are just the slopes of the string - or 

the derivatives dtdy / at the ends of the element under consideration. 

Then, the -component of the force on the element is approximately 

  

 
)tan(tan 12   FFy  

       = 











 xxx dx

txdy

dx

txdy
F

),(),(

     

 (6.20) 
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From the previous unit you may recall that the quantity in parentheses is 

just the change in the first derivative from one end of the interval x to 

the other. Dividing that change by x gives, in the limit 0x , the rate 

of change of the first derivative. But we know that the displacement of 

the string is a function of position as well as time. If either of these 

variables changes, the displacement also changes. You will recognize 

that Eq. (6.20) is valid for the configuration of the string at a particular 

instant of time. Therefore, the derivative in this equation is to be taken 

with the time fixed. We call a derivative taken with respect to one 

variable while other(s) is (are) kept constant a partial derivative. We 

denote partial derivatives with the symbol   in place of the usual 

symbol 'd'. Then, Eq. (6.20) can be rewritten as 

 

  

 

 

 

 

 
x

x

txy
FFy 






2

2 ),(

 
 

This equation gives the net force on the segment x . By Newton's 

second law of motion, we can equate this force to the product of mass 

and acceleration of the segment. The mass of the segment of length x

is xm . Then, we can write 

 

 
x

t

txy
F

t

txy
xm 











2

2

2

2 ),(),(

 
 

Cancelling x  on both sides, we obtain  

 

  
2

2

2

2 ),(),(

t

txy

F

m

x

txy










     
 (6.21) 

 

You can check that mF / has dimensions of velocity square. 

 

Eq. (6.21) has been obtained by applying Newton's second law to a 

small element of a stretched string. Since there is nothing special about 

this particular element on the string, this equation applies to the whole 

of it. 

 

Let us pause for a minute and ask: What goals we set for ourselves and 

how Eq. (6.21) helps us in attaining them? We wish to know what 

The Taylor series expansion of a function )( xxf   about 

the point x  is given by ...)()( 



 x

x

f
xfxxf  
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determines the speed of a wave. To know this let us assume that a 

harmonic wave described by 

 

 
)sin(),( 0 kxtatxy  
 

 

moves on the string. If this mathematical form is consistent with 

Newton's law, then you can be sure that such waves can move on the 

string. To see this, you should calculate the second partial derivatives of 

the particle displacement: 

 

 
)sin( 0

2

2

2

kxtak
x

y







 
and 

 
)sin( 0

2

02

2

kxta
t

y







  
 

Substituting these derivatives in Eq. (6.21), we get, on simplification  

 

 

2

0

2 
F

m
k 

 
or 

 m

F

k









2

0

 
 

What is implied by this equality? We know that it has followed from 

Newton's law of motion applied to a stretched string when a harmonic 

wave is travelling along it. So, the above relation tells us that only those 

waves can propagate on the string for which wave properties 0
and k

are related to F  and m through the relation 

  

 m

F

k
0

      
 

But 
k/0

 is just the wave speed (Eq. 6.7), so that 

 

 m

F

k
v  0

        
 (6.22) 

 

This relation tells us that the velocity of a (transverse) wave on a 

stretched string depends on tension as well as mass per unit length of the 

string, not on wavelength or time period. This means that v is not a 

property of the material of the string. It involves an external factor – 
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tension – which can be adjusted for fine-tuning. This explains why 

musicians are seen adjusting tension in their stringed instruments. 

However, no such thing is done in case of a flute or a harmonium. 

 

Using Eq. (6.22), we can write Eq. (6.21) in the form 

 

 
2

2

22

2 1),(

t

y

vx

txy










       
 (6.23) 

 

This result is identical to Eq. (5.41) and expresses one dimensional wave 

equation. It holds so long as the oscillations of the string have small 

amplitude. You may now ask: Will Eq. (6.23) hold for large amplitude 

disturbances as well? The answer to this question is that large amplitude 

oscillations result in a more complicated equation and the wave speed 

tend to depend on wavelength as well. Before you proceed further, you 

may like to solve the following 

 

SAQ 7 

A 1 m long string having mass 1 g is sketched with a force of 10 N. 

Calculate the speed of transverse waves. 

 

We now know that the speed of a wave is determined by the interplay of 

elasticity and inertia of the medium. Elasticity gives rise to the restoring 

force and inertia tells us how the medium responds to them. Since a 

fluid (gas or liquid) lacks rigidity, transverse waves can propagate only 

in solids. However, longitudinal waves can propagate in all phases of 

matter – plasmas, gases, liquids and solids – in the form of 

condensations and rarefactions. We will now consider wave propagation 

in a fluid. 

 

6.4.2   Waves in a Fluid 

Let us consider a fixed mass of a fluid of density   contained in a long 

tube of cross sectional area A and under pressure 0p
. As for a string, we 

shall consider a small element (column) of the fluid. Let us assume that 

the column is at rest and is contained in the region PQRSP extending 

between planes at x and xx  ;(Fig. 6.14a). Then the mass of the 

column PQRSP is xA . How can you generate longitudinal waves in 

the fluid? You can do so by placing a vibrating tuning fork at its one end 

or displacing the fluid to the right using a piston. As the wave passes 

through the column under consideration, its pressure, density and 

volume change. Let us assume that in time t  planes PQ and SR move to 

P'Q' and S'R', respectively, as shown in Fig. 6.14b. If the planes PQ and 

SR are displaced through )(x and )( xx   the change in thickness, l

, is 
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x

x
xxxl 







 )()(

 
 

In writing this expression we have used Taylor series expansion for 
)( xx  about )(x . This means that the change in volume V is 

 

 x
xAlAV







 
 

 
 

Fig, 6.14: (a) Equilibrium state of the column PQRS ofa fluid contained 

in a long tube of cross  

    sectional area A. (b) Displaced position of column under pressure 

difference 

 

The volume strain, which is defined as the change in volume per unit 

volume, is given by  

 xxA

x
xA

V

V














 



      
 (6.24) 

  

 

The minus sign signifies that the column is compressed. This happens 

because the pressure on its two sides does not balance. Let the 

difference of pressures be )()( xpxxp  . 

 

The net force acting on the column is, therefore )]()([ xpxxpA  . 

Using Taylor series and retaining only first order term in x , we can 

write 
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 F = 
x

x

xp
A 



 )(

 

     = 
x

x

pp
A 



 )( 0

 

     = 
x

x

p
A 



 )(

  

 

where 0p
is the equilibrium pressure and p  is the excess pressure due 

to the wave. 

 

Hence, the equation of motion for the column under consideration, 

according to Newton's second law, is 

 

 x

p
xA

t
xA











)(
2

2


      
 (6.25) 

 

To express this result in a familiar form, we note that p and E , the 

bulk modulus of elasticity, are connected by the relation 

 

 VV

p
E

/strainvolume

stress






 
 

The negative sign is included to account for the fact that when pressure 

increases, volume decreases. This ensures that E is positive. 

We can rewrite it as 

 

 







 


V

V
Ep

 
 

On substituting for VV /  from Eq. (6.24), we get 

 

 x
Ep







 
 

Using this result in Eq. (6.25) we find that  

 

 
2

2

x

 


 = 
















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E



 

  = 
2

2

x
E

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or 
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2

2

2

2 ),(

x

txE

t 






 





       
 (6.26) 

 

If we identify 

 /Ev          
 (6.26a) 

 

as the speed of longitudinal waves, Eq. (6.26) becomes identical to Eq. 

(5.41). 

 

You will note that the wave speed is determined only by F and  ; two 

properties of the medium through which the wave is propagating. Let us 

now consider the propagation of sound waves in a gas. 

 

a. Sound Waves in a Gas 
For a gaseous medium, such as air, the volume elasticity depends upon 

the thermodynamic changes arising in the medium, when a longitudinal 

wave is propagation. These changes can be isothermal or adiabatic. For 

sound waves, Newton assumed that changes in the medium are 

isothermal. For an isothermal change, you can check using Boyle's law 

that the volume elasticity equals equilibrium pressure. Then, we can 

write 

 

 /0pv          
 (6.27) 

 

This is known as Newton's formula for the velocity of sound. 

 

For air at STP,  = 1.29
3mkg  and 0p

= 1.01105
2mN . Then the 

velocity of sound in air using Newton's formula comes out to be 

  

 
3

25

29.1

1001.1





mkg

Nm
v

= 280 m 

 

But experiments show that the velocity of sound in air at STP is 332 m
1s . This gives rise to an interesting question: How could Newton come 

so close to the correct answer and yet miss it by about 15%? It means 

that something is wrong with his derivation. You may now ask: How to 

explain the discrepancy? The problem lies with the use of Boyle's law, 

which holds only at constant temperature. The discrepancy was solved 

when Laplace pointed out that when sound waves move in a medium, 

the particles oscillate very rapidly. In the process, regions of 

compression are heated up while the regions of rarefaction get cooled. 
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That is, local changes in temperature do occur when sound propagates in 

air. This effect produces a larger phase velocity. However, the total 

energy of the system is conserved. This means that adiabatic changes 

occur in air when sound propagates. 

 

For an adiabatic change, E is   times the pressure, where  is the ratio 

of the specific heats at constant pressure and at constant volume, i.e. 

0pE 
. Then Eq. (6.27) becomes 



 0p
v 

        
 (6.28) 

 

For air, = 1.4. So the velocity of sound in air at STP works out to be 331 

m
1s , which is an excellent agreement with the measured value. This 

shows that Laplace's agreement is correct. 

At a given temperature, 
/0p

 is constant for a gas. So Eq, (6.28) shows 

that the velocity of a longitudinal wave is independent of pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You will now like to know why the heat does not have time to flow 

from a compression to a rarefaction and equalize the temperature 

everywhere. To attain this condition, heat has to flow a distance of one-

half wavelength in a time much shorter than one-half of the period of 

oscillation. This means that we would need 

 

 soundheat vv 
        

 (6.29) 

 

A process is said to be isothermal if temperature remains constant during the 

process. In an adiabatic process, the total energy of the system remains constant. 

 

For an isothermal process, Boyle’s law states that pV = constant. Any change in p  

and/or V  is related as 0 VppV  or pE
VV

p







/
. 

 

For an adiabatic change, the equation of state is pV constant. The change in p  

and V  are connected through the relation 01   VVppV   , or 

pE
VV

p







/
. 
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Since heat flow is mostly due to conduction, the speed of air molecules 

is given by 

 

 M

Tk
v H

rms 
        

 (6.30) 

 

where M is the mass of air molecules and T  is the absolute temperature. 

We can similarly write 

 

 M

Tk
v H

sound

       
 (6.31) 

 

Thus, even if air molecules travel a distance of 2/ , they will not be 

able to transfer heat in time. In practice they move randomly in zig-zag 

paths of the order of 
510

cm and as long as cm510 , the adiabatic 

flow is a very good approximation. The shortest wavelength for audible 

sound (1.6cm) corresponds to 20 kHz. 

 

The ability to measure the speed of sound has been put to many uses in 

defense. During World War I, a technique called sound ranging was 

developed to locate the position of enemy guns by using the sound of 

cannon in action. 

 

b. Sound Waves in a Liquid 

Liquids are, in general, almost incompressible. For water, 
291022.2  mNE and 

310 kg
3m . This gives a wave velocity of 

about 1500 
1ms . Compare this with the speed of sound in air at STP. 

Though air is about 
310

 times less dense than water, sound propagates 

faster in water than air. This means that we can send messages from one 

ship to another faster via water than in air. This has led to the 

development of Sonar. High frequency sound waves are used in Sonar 

which can measure the depth of sea bed, detect submarines and enemy 

torpedoes. 

 

6.4.3    Waves in a Uniform Rod 

For a solid elastic rod, changes take place only in length; the volume 

remaining almost constant. The bulk modulus is replaced by Young's 

modulus defined as  

 

 ll

p

strainallongitudin

stress
Y

/


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Then Eq. (6.26) modifies to 

  

 
2

2

2

2

x

Y

t 






 





       
 (6.32a) 

 

which is the equation of wave motion in the rod. The velocity of 

longitudinal waves is given 

 

 

Y
v 

        
 (6.32b) 

 

This shows that v  is independent of the cross-sectional area of the rod. 

 

SAQ8 

For a steel rod, 
211102  NmY and 

37800  kgm . Compute the speed 

of sound. On working out this SAQ you will find that 
13105  msv , 

which shows that longitudinal waves travel faster in a solid than in a gas 

or a liquid. This means that you can know about a coming train by 

putting your ear on the rails. However, you are advised never to do so! 

 

6.5    WAVE MOTION AND IMPEDANCE 
When a wave travels through a medium, the medium opposes its 

motion. This resistance to wave motion is called the wave impedance. 

You should not confuse it with the electric impedance in the case of AC 

circuits where it arises due to resistance offered to the flow of current. 

The impedance offered to the transverse waves travelling on strings is 

called the Characteristic Impedance. Usually, the impedance offered to 

the longitudinal (sound) waves in air is called the 'acoustic impedance'. 

You may now ask: Why impedance arises and what factors determine 

it? To discover the answer to this question, we recall that when a wave 

propagates in a medium, each particle vibrates about its mean position. 

Moreover, each particle in motion attempts to make the succeeding 

particle vibrate by transferring energy. Likewise, each particle at rest 

tends to slow down the neighbouring particle. That is, a vibrating 

particle experiences a dragging force, which is similar to the viscous 

force. According to Newton's third law of motion, it will be equal to the 

driving force F. From Unit 3 of this course you would recall that when 

oscillations of the particles are small, we can model the viscous force on 

the basis of stokes' law and write 

  

vF Z  
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The constant of proportionality Z is called the wave impedance. From 

this equation it is clear that impedance is numerically equal to the 

driving force which imparts unit velocity to a particle. We will now 

consider some specific examples. 

 

6.5.1    Impedance Offered by Strings: Transverse Waves 
Let us consider a wave travelling on a stretched string. Let us choose the 
x -axis along the length of the string (see Fig. 6.15). The transverse 

waves are generated by applying a harmonic force 
tFF 00 cos
at the 

end 0x  of the string. The displacement of the particles of the string at 

position x and at time t  is given by Eq. (6.6d). 

 

 
 

Fig. 6.15 A siring vibrating under the harmonic force 

 

Let T  be the tension in the string. The vertical component of tension 
)(T  along the negative y- 

direction is equal to the applied transverse force (to give zero resultant 

force at the x = 0 end 

of the string): 

 

 
 sincos 00 TtF 

 
 

For small values of  (  5°),  tansin  , so that we can write 

 

 
 tancos 00 TtF 

       
 (6.33) 

  

The tangent (or slope) is defined at the x = 0 end of the string. Using Eq. 

(6.6d) we can relate )/( dxdy  to )/( dtdy : 

 

 dt

dyk

dx

dy

0


 
 

Inserting this result in Eq. (6.33), we get 
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Since 
ta

dt

dy

x

00

0

cos








 , this equality becomes 

  

ta
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tF 00

0

00 coscos 

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      = 
ta

v

T
00 cos

 

where 
kv /0

. 

 

Writing 0a
= 0v

 as the velocity amplitude of the wave, the above 

equation reduces to 

 

 
t

v
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0
00 coscos  

 
 

giving 

 v

Tv
F 0

0 
        

  

v

T

v

F


0

0

      (6.34) 

 

This result specifies the ratio of the amplitude of the applied force to the 

amplitude of particle velocity for transverse waves in terms of the 

tension in the string and particle velocity. This result can be used to get 

an expression for the characteristic impedance (Z) of the string which is 

defined as: 

 

 )(wavetheofamplitudevelocitytransverse

)(forceappliedtransversetheofamplitude

0

0

v

F
Z 

 
 

Using Eq. (6.34), we find that 

  

 v

T

v

F
Z 

0

0

       (6.35) 

 

This result shows that the characteristic impedance has units of sNm 1

 

but its dimensions are 
1MT . 

 

From Eq. (6.26a) we recall that mTv / where m is the mass per unit 

length of the string. 
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Then Eq. (6.36) can be written as: 

 

 
Tm

v

T
Z 

       
 (6.36a) 

 

Alternatively, if we eliminate T we can write 

 

mv
v

mv
Z 

2

       
 (6.36b) 

 

From Eq. (6.36a) we find that the characteristic impedance is governed 

by the mass per unit length of the string and the tension in it. This means 

that a sonometer wire will offer different impedance when it is loaded 

by different weights. Eq. (6.36b) tells us that since Z is related to the 

velocity of the wave, it depends on the inertia as well as the elasticity of 

the medium. 

 

SAQ9 
Calculate the characteristic impedance offered by a thin wire of steel 

stretched by a force of 

80 N. It weights 2 g per metre. 

 

6.5.2   Impedance Offered by Gases: Sound Waves 
For sound waves propagating in a gas, the role played by excess 

pressure due to the wave is analogous to that of applied force in case of 

a transverse wave. So we define the acoustic impedance as: 

 

 t

p
Z






/ velocityparticle

 wavesound a  todue pressure excess

    
 (6.37) 

 

It means that dimensionally Z is the ratio of force per unit area to 

velocity. 

 

The excess pressure p  experienced by the medium when a longitudinal 

wave propagates through it is given by 

 

 x
Ep







        
 (6.38) 
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where E is the Bulk modulus of elasticity of the medium. This means 

that to know Z, we must compute t



 and x



. To do so, we recall that 

the particle displacement for a longitudinal wave travelling in the +ve x

-direction is written as 

 

 






 )(

2
sin),( xvtatx






 
 

Differentiating it with respect to x and t , we get  

 

 











)(

2
cos

2
xvta

x 







     
 (6.39a) 

and 

 




















)(

2
cos

2
xvt

v
a

t 







     
 (6.39b) 

 

On combining Eqs. (6.38) and (6.39a), we find that 

 

 















 )(

2
cos

2
xvtEap









     
 (6.40) 

 

On substituting for p and t / from Eqs. (6.40) and (6.39b) in Eq. 

(6.37) we find that the acoustic impedance is given by 

 

 )](/2cos[)/2(

)](/2cos[)/2(

/ xvtva

xvtEa

t

p
Z















     
 (6.41) 

     =  v

E

        

   

 

where v  is the wave velocity. This result shows that the units of acoustic 

impedance are sNm 3

 and the dimensions are 
12  TML  (You should 

verify these before proceeding further.) 

 

From Eq. (6.26a) we recall that the wave velocity is given by  

 

 

E
v 
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where   is the density of the medium. Hence the acoustic impedance Z 

can also be expressed as: 

 

 
vE

v

E
Z  

       
 (6.42) 

 

This result shows that the acoustic impedance Z is given by the product 

of the density of the medium and the wave velocity. This means that the 

denser the medium, the greater will be the impedance offered. Yet we 

know that sound moves faster in solids than gases. 

 

In the next unit, you will apply these results to compute reflection and 

transmission amplitude and energy coefficients for a wave incident on a 

boundary separating two media. 

 

SAQ10 

Calculate the acoustic impedance of air at standard temperature and 

pressure. Use  = 1.29
3mkg and v = 332 

1sm . Will this value be more 

for air or water? Justify your answer. 

 

6.6   WAVES IN TWO AND THREE DIMENSIONS  

So far we have confined ourselves to waves propagating along 1-D, as 

in a stretched string. The waves are constrained to move along the string 

whereas particles vibrate in perpendicular direction. But all musical 

instruments are not stringed. What happens when a drum membrane is 

suddenly disturbed in a direction normal to the plane of the membrane? 

Particles of the membrane vibrate along the direction of the applied 

force. But tension in the membrane makes the disturbance to spread over 

the surface. That is, waves on stretched membranes ate two-dimensional 

(2-D). Similarly, surface waves or ripples on water, caused by dropping 

a pebble into a quite pond, are 2-D. In such cases, the displacement is a 

function of x, y and t,i.e. ),,( tyx  .You may now ask: What is the 

equation of a 2-Dwave? Will the preceding analysis as such apply in this 

case? 

 

We will not go into mathematical details to answer these questions. 

However, from physical consideration, extension of Eq. (6.23) for 2-

Dwave is a straightforward exercise. Since forces along x and y axes act 

independently, each one will contribute analogous term to the wave 

equation so that Eq. (6.23) modifies to 
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),,(
),,(

2

2

2

2

2

2

tyx
yx

F

t

tyx




























    
 (6.43) 

 

The solution of this equation is 

 
)sin(),,( 0 rk  tatyx 

      
 (6.44) 

where 
ykxkyxkk yxyx  )()( jijirk

. 

 

Let us pause for a minute and ask: Do sound and light waves emanate 

radially from a small two-dimensional source? How can we describe 

seismic waves or a wave propagating in an elastic solid? These are 

three-dimensional waves. To analyze 3-Dwaves we have to extend the 

preceding arguments. The result is a 3-Dwave equation. 

 

SAQ 11 

Generalize Eq. (6.43) in three dimensions. 

 

6.7    SUMMARY 

 Mechanical (elastic) waves can be transverse as well as 

longitudinal. In a transverse wave, particles of the medium 

vibrate normal to the direction in which a wave moves, in a 

longitudinal wave vibrations of the particles of the medium are 

along the direction of wave propagation. 

 

The wave velocity, frequency and wavelength are connected by the 

relation: fv  . We can also express v  as ratio of the angular 

frequency and wave number: k
v 0


. 

 

 A harmonic wave in 1-D is described by the equation  

 





















x

T

t
atxy 2sin),(

= 






 )(

2
sin xvta





 

   = 
)sin( 0 kxta 
 

where T  is the time period. The phase of a wave,   = 
kxt 0

 varies 

both with time and space. 

 

 Waves carry energy. The total energy carried by a wave is half 

kinetic and half potential: 

 

 
xAfaE   2

0

222
 

       =  UEK ..  
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 The average rate of energy flow or average power is proportional 

to the wave speed and to the square of the wave amplitude: 

AfaP  2

0

22  
 For waves propagating in space, intensity is a more useful 

measure of energy carried by waves. The intensity of a plane 

wave remains constant as the wave propagates. But for spherical 

waves, the intensity decreases as the inverse square of the 

distance from the source. 

 A wave propagating along a string (1-D wave) is described by the 

equation  

2

2
2

2

2 ),(),(

x

tx
v

t

tx








 

 
 

where ),( tx is the displacement and v is the wave speed.   

 The speed of a wave on a stretched string is given by 

mFv /  
where F is the tension in the string and m is the mass per unit length. For 

a longitudinal wave 

  /Ev   
 where E  is the elasticity and   is the density of the medium. For 

sound waves in air 

  0/ pv   
where  is the ratio of specific heats at constant pressure to that at 

constant volume. For sound waves in solids 

 /Yv   
where Y  is the Young’s modulus of elasticity and   is the density of 

the medium. 

 When a wave travels through a medium, the medium opposes its 

motion. This resistance to wave motion is referred to as the wave 

impedance. In case of transverse waves, the characteristic 

impedance is given by 

mvTm
v

T
Z 

 
For sound waves in air, the acoustic impedance is given by  

vE
v

E
Z  

 
 A wave propagating in 2-Dis described by the equation 

),(
),(

2

2

2

2
2

2

2

tr
yx

v
t

tr


























 
 The solution of this equation is given by 

  
)sin(),( 0 rk  tatr 
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 where 
ykxk yx rk

 and 
222

yx kkk 
. 

 

6.8   TERMINAL QUESTIONS 
1.  A transverse harmonic wave of amplitude 1 cm is generated at one 

end )0( x  of a long  string by a tuning fork of frequency 500 Hz. At 

one instant of time, the displacements of the particles at x = 10 cm is – 

0.5 cm and at x = 20 cm is 0.5 cm. Calculate the velocity and the 

wavelength of the wave. If the wave is travelling along the positive x

direction and the end x = 0 is at the equilibrium position at t = 0, write 

the displacement in terms of the wave velocity. 

 

2. In normal conversation, the intensity (energy flux/area) of sound is 
6105  2Wm . The frequency of normal human voice is about 1000 Hz. 

Compute the amplitude of sound waves, given that the density of air at 

STP is 1.29 
3mkg .Take the velocity of sound at STP as 332

1sm . 

 

3. The wavelength of a note of sound of frequency 500 Hz is found to be 

0.70 m at room temperature (15°C). Given that the density of air at STP 

is 1.29 
3mkg , calculate  . 

 

4. A longitudinal disturbance generated by an earthquake travels 103 km 

in 2.5 minutes. If the average density of the rock is taken to be 
33107.2  kgm , calculate the bulk modulus of elasticity of the rock. 

 

6.9 SOLUTIONS 

SAQs 

1.  (i) 20 kHz  (ii) composite  (iii) no  (v) 

transverse 

 

2.   From Eq. (6.4), we have 

 

c
v 

 

For  = 4000Å = 
7104  m , the frequency of visible light is 

m

ms
f

7

18

104

103









 

     = 
114105.7  s  

Similarly for  = 7200Å, we have 

m

ms
f

7

18

102.7

103









 

     = 
114101.4  s  

 

3. The wave equation is 
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















 

340
600sin)105.2(),( 3 x

tmtxy 
 

 The wavelength is given by 

 
1

1

275

340





s

ms

f

v


= 1.24 m . 

 The velocity of the medium particles is 

 





















 

340
600cos)600)(105.2( 13 x

ts
t

y
v 

 
 and acceleration is 

 





















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340
600sin)600)(105.2( 213

2

2 x
tsm

t

y
a 

 
 

4. A wave moving along the x -direction is described by the equation 

 
)sin(),( 0 kxtatxy  
 

 The angular frequency is connected to v  and   by the relation 

 




v2
0 

 

 Here v = 93 
1scm  and   = 55 cm. Hence,  

 cm

scm

55

932 1

0







 

        = 

1

55

372 s
 

 Similarly, the wave number is related to wavelength as 

 

1

35

4

557

2222 



 cm

cm
k





 
 Hence, 

 








 xtcmtxy

35

4

35

372
sin)4.7(),(

  

  = )1.06.10cos(6.78 1 xtscm 

 

 

5.  
25108  WmI  

 
212

0 10  WmI
 

The intensity falls off as the inverse square of the distance. If r  denotes 

the distance at which this sound could just be heard, then 

 
2

2

212

25

)1(10

108

m

r

Wm

Wm







 

 
3109r m = 9 km 

 But this is not observed in practice. It is because of absorption of 

energy by the medium. 

 

6. ),( mFkfv   
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ba mFKv ][]][[][   

 
bA MLMLTLT ][][][ 121    

 or 

 ]][][[][ 21 ababa TLMLT    
 On comparing the powers of T , we get 

 a21   
 or 

 2/1a  
 On comparing the powers of L , we have 

 ba 1 

 Or 1 ab  =  2/1  

Hence, 

mFkv /  
 

7. We know that the wave velocity on a stretched string is given by 

 mFv /  
 On substituting the given values, we get 

 
1310

10



kgm

N
v

 

    = 100 
1sm  

 From Eq. (6.32b), 

  /v  
 On inserting the given values, you will get 

 
3

211

7800

102





mkg

Nm
v

 

    = 
13105  ms  

 

9. 
10.2  gmm = 

13100.2  mkg  and 

 NT 80  
 From Eq. (6.36b) we recall that impedance offered by a string is 

given by 

 TmZ   
 On substituting the given data, you will get 

 
)100.2()80( 13  kgmNZ

 

    = 0.4 sNm 1

 

 

10. From Eq. (6.41), we have 

 vZ   

 Here,  = 1.29 
3kgm  and 

1332  msv  

  )332()29.1( 13   mskgmZ  

           =
122 )1028.4(  skgm  
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           = sNm 321028.4   

The impedance offered by water will be more than that offered by air. 

This is because the density of water is much greater than that for air at 

STP. Also, the velocity of sound in water is almost five times the 

velocity of sound in air. 

 

11. In 3-D, the wave equation has the form 

 
),(

),( 22

2

2

trv
t

tr






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6.10 TQs 

 

1. We know that a harmonic wave in 1-D is described by 

 






 )(

2
sin),( xvtatx






 
 where a = 1 cm 

(a) At cmx 10 , cmtx 5.0),(   

 






 )10(

2
sin)1(5.0 vtcmcm





 
or 

 





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







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2
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





vt

 
This equality implies that 

6

7
)10(

2 




vt

 
or 


12

7
10 vt

        (i) 

 

(b) At cmx 20 , cmtx 5.0),(   

 6
sin)20(

2
sin)1(5.0












 vtcmcm

 
so that 

 12
20


vt

        (ii) 

From (i) and (ii), we get 

 
10

2




 
or 

 cm20  
     = 0.2 m  

We know that 

 fv   
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 
1100)2.0()500(  msmHzv  

Hence, 

)]100(10sin[)01.0()100(
2.0

2
sin)01.0(),( xtmxtcmtx 





 




 
 

2. The expression for the intensity is 

vafI 22

0

22   
so that 

 vf
a

 2

11

0



 

Here, 
1332  msv , 

329.1  kgm , 
Hzf 10000  , 

26105  WmI . 

Hence,  

 
13

26

33229.12

105

100014.3

1











mskgm

Wm

Hz
a

 

    = 
8104.2  m 

 

3. Here we use the expression 



 p
v 1

; 0

0

0


 p
v 

 

and the gas equation  

 T

pV

T

Vp


0

00

 
 

The gas equation can be rewritten in terms of   and 0  as 

 T

T

p

p 0

0

0 




 

since Vm /  and 00 /Vm
 

Since fv 1 , we find that 

mHzv 70.05001   

      = 350 
1ms  

Hence,  

 K

K

T

T

p

p

v

v

)15273(

2730

0

0

1

0








 
so that 

 

11

0 341
288

273
)350(   ms

K

K
msv

 
Hence,  , the ratio of specific heats at constant pressure to that at 

constant volume, is given by 

 
332

321

0

0

2

0

106.138.976.0

29.1)341(
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


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mkgmsm

kgmms
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v 
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    = 1.5 

 

4. The speed of the seismic wave is 

13
33

107.6
605.2

1010 



 ms

s

m
v

 
 Since 

  

E
v 

 
 we can write 

  2vE   
 On substituting the given data, we get 

  
33213 107.2)107.6(   kgmmsE   

      = 
210101.12  Nm  

 

 

6.11. Reference for further Studies 

 

Textbooks 

 

1. The Physics of Vibrations and Waves. By H. John Pain. 6th Edition, 

2018. Available at: 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATION

S_AND_WAVES_Sixth_Edition 

2. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

3. Stress, Vibration, and Wave Analysis in Aerospace Composites. By 

Victor Giurgiutiu 1st Edition, 2022. Available at: 

https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-

aerospace-composites/giurgiutiu/978-0-12-813308-8 

4. Physics of Oscillation and Waves with use of Matlab and Python. By 

Richard Fitzpatrick. © Springer 2018. ISBN: 978-3-319-72313-6. 

https://doi.org/10.1007/978-3-319-72314-3 

5. Introduction to the Physics of Waves by Tim Freegarde 1st edition, 

2013. 

https://www.google.com.ng/books/edition/Introduction_to_the_Physics_

of_Waves/Q-

daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=fron

tcover 

 

 

  

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://z-lib.is/book/oscillations-and-waves-15178533
https://z-lib.is/book/oscillations-and-waves-15178533
https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
https://doi.org/10.1007/978-3-319-72314-3
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover


PHY 203        OSCILLATIONS AND WAVES 

 

207 

Video Links 

 

https://youtu.be/TglGm1xMbGE 

 

https://youtu.be/xobSuCkaiU8 

 

https://youtu.be/UMC1EI-2sLo 

 

 

  

https://youtu.be/TglGm1xMbGE
https://youtu.be/xobSuCkaiU8
https://youtu.be/UMC1EI-2sLo
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UNIT 7   WAVES AT THE BOUNDARY OF TWO MEDIA 

Structure 
7.1     Introduction 

Objectives 

7.2    The Concept of Wavefront and Huygens' Construction 

Reflection of Waves  

Refractionof Waves 

7.3     Reflection and Transmission Amplitude Coefficients 

Transverse Wives  

Longitudinal Waves 

7.4    Reflection and Transmission Energy Coefficients 

7.5    The Doppler Effect 

Source in Motion and Observer Stationary 

Source Stationary and Observer in Motion  

Source and Observer both in Motion 

7.6  Shock Waves 

7.7  Summary 

7.8  Terminal Questions 

7.9 Solutions 

 

7.1    INTRODUCTION 
In Unit 6 we discussed the basic characteristics of wave motion. The 

propagation of waves on strings and in fluids was discussed with 

particular reference to sound. You may now ask: What happens to a 

wave when it encounters a rigid barrier, as for instance, in the case of a 

string whose one end is tied to a rigid wall. The wave energy will not 

flow into the wall. But the wave cannot stop there. Then where will its 

energy go? What happens is that the wave turns around and bounces 

back along the string. We say that the wave has been reflected. 

 

You must have experienced sound reflection in the form of echoes in 

large halls or in the neighborhood of hills. You must have also observed 

reflection of water (sea) waves from a fixed barrier (sea shore). In the 

case of light, reflection from silvered surfaces, say in a looking mirror, 

is the most common optical effect we know. The reflection of ultrasonic 

(sound) waves forms the operating principle of sonars in depth-ranging, 

navigation, prospecting for oil and mineral deposits. The reflection of 

e.m. waves governs the working of a radar for detection of aircrafts. 

Reflection of radio waves by the ionosphere makes signal transmission 

from one place to another possible and is so crucial in the area of 

communications. 

 

You may now like to know as to what would happen to the incident 

wave. You would agree that the boundary is not very rigid and 

properties of the medium change suddenly. Now suppose that we 

connect two strings of different mass per unit lengths. We observe that 
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in such a case energy is partly transmitted into the second string and the 

rest is reflected back along the first. The phenomenon of partial 

reflection and transmission at a junction of strings has its analog in the 

behavior of all waves at interfaces between two different media. 

Shallow water waves are partially reflected if water depth changes 

suddenly. Light incident on our atmosphere undergoes partial reflection 

because of changes in the density of the medium. Partial reflection of 

ultrasound waves at the interfaces of body tissues with different 

densities makes ultrasound a valuable diagnostic tool. 

 

Does this mean that waves never undergo complete refraction? Were 

this true, we could not explain the working of lenses, which is 

fundamental to seeing and our contact with the surroundings. You may 

have seen the sun before actual sunrise and after actual sunset. This is 

because of refraction of light in the atmosphere. 

 

In Sections 7.2 and 7.3 you will learn, using the concepts of Huygens' 

construction and the concept of impedance, that when a wave is incident 

at a boundary separating two media, its wavelength changes but 

frequency remains constant. But there are many situations where the 

frequency of a wave also undergoes a change. This effect is known as 

Doppler Effect. You will learn it in Section 7.5. 

 

After going through this unit, you will be able to: 

 

 define a wavefront 

 construct the wave front for a given source 

 explain reflection and refraction of waves using Huygens' 

construction 

 compute the reflection and transmission amplitude coefficients 

 compute reflection and transmission energy coefficients 

 compute the apparent frequency of sound when the source and/or 

the observer (listener)   

 are in motion. 

 

7.2 THE CONCEPT OF WAVEFRONT AND HUYGENS' 

CONSTRUCTION 

Let us consider the propagation of a wave on the surface of water. If you 

dip your finger in water repeatedly, a series of crests and troughs travel 

out. That is, waves set out in all directions. At any instant, a trough or a 

crest is circular in shape. The locus of points in the same phase at a 

particular time is called a wavefront. The shape of the wavefront 

depends on the nature of source. In the case of waves from a point 

source in air, the wavefronts are spherical. (In two dimensions, as on the 

water surface, the wavefronts are circular.) If the source is a long slit, 

the wavefront will be cylindrical. At large distances from the source 
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(whether point or slit), the wavefront appears to be a plane. To 

understand the formation of wavefronts, we use Huygens' construction. 

Following Huygens, we make the following assumptions: 

 

i)     Each point on a wavefront becomes a fresh source of secondary 

wavelets, which move  

out in all directions with the speed of the wave in that medium. 

ii)    The new wavefront, at any later time, is given by the forward 

envelope of the secondary  

wavelets at that time. 

iii)  In an isotropic medium, the energy carried by waves is 

transmitted equally in all  

directions. 

 

If S is the source of sound or light (Fig. 7.la), then after an interval of 

time t , all particles of the medium lying on the surface AB vibrate in the 

same phase. This is because all particles on the surface AB are 

equidistant from the source. Any disturbance emanating from S is 

handed on to them at the same time. 

 

According to Huygen's construction, surface AB is called a primary 

wavefront. Each point on AB, like a, b, c,etc., acts as secondary source 

(derived from the original source S). These secondary sources give out 

waves (or disturbances) in all directions as demonstrated by drawing 

circles around the points a, b, c, etc. The envelope of all these waves 

(which acts as a tangent to all of them at any given instant), like the one 

at CD, forms another wavefront, called the secondary wavefront. This, 

in short, means that the source S gives out wavelets in all directions. The 

envelope of these wavelets acts as a primary wavefront. Each point on 

this primary wavefront acts as a source for secondary wavelets. An 

envelope of these secondary wavelets forms a secondary wavefront. 

Each point on this secondary wavefront gives out further wavelets to 

form further secondary wavefronts. This process goes on and the wave 

keeps on spreading in space. 

The direction SP (Fig. 7.la) in which the disturbance (originating at S) 

propagates is called a ray. A ray is always normal to the expanding 

wavefront. 

 

To visualise the Huygens' construction in space, you may imagine a 

point source to be at the centre of a hollow sphere. The outer surface of 

this sphere then acts as a primary wavefront. If this sphere is further 

enclosed by another hollow sphere of larger radius, the outer surface of 

the second hollow sphere will then act as a secondary wavefront. If this 

sphere is further enclosed by another sphere of still bigger radius, the 

surface of the outermost sphere becomes the secondary wavefront. For 

this, the surface of the inner sphere acts as the primary wavefront. In 
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two dimensions, the primary and secondary wavefronts appear to be 

concentric circles, the parts of which are shown in Figs. 7.la and 7.1 b. 

 

 
 

Fig. 7.1 (a) Construction of Huygens' wavefront, (b) Depletion of • 

Secondary source 

 

The formation of secondary sources as visualised by Huygens can also 

be understood pictorially through a simple diagram. If we place a screen 

XY with a tiny hole at S' in the path of waves emanating from the source 

S, S' acts as a secondary source (Fig. 7.1b). This gives out waves on the 

other side of the screen. These waves spread out from S' as if S' is an 

original source itself.  

 

In your school classes you have studied reflection and refraction of 

waves. We observe these whenever a wave travelling in one medium, 

say air, meets the boundary of another medium. Suppose we clamp one 

end of a string to a rigid wall and generate a pulse by moving the other 

end. You will observe that the pulse is reflected at the fixed end. 

Similarly, you can study the reflection of ripples in a water basin. You 

will be surprised to know that the same physical laws govern the 

reflection (refraction) of all waves, including light. We will now 

consider reflection and refraction of waves using Huygens' wave theory. 

 

7.2.1    Reflection of Waves 
Refer to Fig. 7.2. LMrepresents a part of a plane wavefront travelling 

towards a smooth reflecting surface S1S2, It first strikes at A and then at 

successive points towards D. If v is the wave speed, the point M on the 

wavefront reaches D at a time vDCt / later compared to the point L. 

According to Huygens' Principle, each point on the reflecting surface 

will give rise to secondary wavelets. In this case we expect that they 

should constitute the reflected wavefront. Can you locate the reflected 

wavefront? To discover this, we note that at the instant D is just 
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disturbed, the wavelet from A has grown for time vDC /  and has 

travelled to E so that the distance AE is equal to DC. We can draw a 

circle of radius AE (= DC) to represent this wavelet  

 

 
 

Fig. 7.2 Huygens' construction for reflection of wives 

 

 

with A as centre. Similarly, we can draw many circles from the 

intermediate points. The tangent or the envelope to these circles from D 

defines the reflected wavefront. 

 

From Fig, 7.2 it is clear that  s ACD and DEA, are congruent. Hence 

 

 ADECAD   
 

or 

 ri          
 (7.1) 

 

That is, the angle of incidence is equal to the angle of reflection. 

Moreover, you will note that the incident ray, the reflected ray and the 

normal at the point of incidence lie in the plane of the paper. 

 

In this connection it is important to mention here that the reflected 

wavefront undergoes a phase change of  . In fact, it is true for any 

wave travelling in a rarer medium (air) and undergoing reflection at the 

interface with a denser medium (water). However, the reverse is not 

true. 

 

7.2.2    Refraction of Waves 

When a wave reaches the boundary of two different media, it may be 

partly reflected and partly transmitted. You can study this by joining two 

strings: one thick and another thin so that their mass per unit lengths are 

different- In Unit 6, you have learnt that the velocity of a wave is 

inversely proportional to the density of the medium. This means that 

when a wave moves from a lighter to a denser medium, its velocity 
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decreases. This results in a change (decrease) in wavelength. But the 

frequency remains the same. Fig. 7.3 depicts this situation when a wave 

is refracted (i.e. only transmitted). 

 

 
 

21    

21 vv   
 

Fig. 7.3 Refraction of a wave changes its wavelength 

 

Let tv
and t  respectively denote the speed and wavelength of a wave of 

frequency f in a rarer medium. On being refracted at the interface of a 

denser medium, let its speed and wavelength be dv
 and d , respectively. 

Mathematically, we can connect these quantities through the relation 

 

 d

d

t

t vv




        
 (7.2) 

 

since f is the same. 

 

This relation holds for waves in water, air and string alike. 

 

Using Huygens’ principle, you can prove the laws of refraction as well 

(TQ1). But you will agree that Huygens' method is essentially 

geometrical and can be used when the wave is either reflected or 

refracted at the interface. You may now ask: Can we apply this method 

to study partial reflection and refraction, as in the case of two strings 

having different mass per unit lengths? In principle, we .can do so but it 

is more convenient to study partial reflection and refraction in terms of 

impedance offered by a medium. To this end, we normally compute 

reflection and transmission amplitude coefficients. You will now learn 

to compute these in the following section. 
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7.3    REFLECTION AND TRANSMISSION AMPLITUDE 

COEFFICIENTS 
From Unit 6 you would recall that different media offer different 

impedances to waves travelling through them. These impedances 

depend on the properties of the medium. You may like to know how 

waves respond to the abrupt change of impedance at the boundary of the 

media? We now answer this interesting question by considering 

transverse waves. 

 

7.3.1    Transverse Waves 
Let us reconsider the strings AO and OB joined together at O and kept 

under the same tension T. Let us assume that they offer characteristic 

impedances of 1Z  and 2Z , respectively. A wave travelling in the 

positive x -direction (Fig. 7.4) gets partly reflected and partly 

transmitted at O. The particle displacements due to incident, reflected 

and transmitted waves can be written as: 

 

)sin(),( 10 xktatxy ii  
      

 (7.3) 

)sin(),( 10 xktatxy rr  
      

 (7.4) 

and 

)sin(),( 20 xktatxy tt  
      

 (7.5) 

 

 
 

Fig. 7.4 Transverse waves on strings having different mass per unit 

length 

 

where the subscripts i , r  and t  on displacements and the amplitudes 

refer to the incident, reflected and the transmitted waves, respectively. 

You will note that the angular frequency of these waves remains the 

same. Moreover, the propagation constant for the incident and the 

reflected waves is the same but differs for the transmitted wave. Do you 

know why? This is because the wave speed changes as the density of the 
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medium changes. You would also note that for the reflected wave we 

have used a positive sign before xk1 . This is because it is travelling in 

the negative x -direction. 

 

To give physical meaning to the reflection and transmission coefficients, 

we have to consider the boundary conditions. The boundary conditions 

are the conditions which must be satisfied at the interface where the two 

media meet. Here the total displacement and the total transverse 

component of tension on one side of the boundary are the result of the 

combination of incident and reflected waves. So the boundary 

conditions in this case are: 

 

1.     The particle displacements immediately to the left and the right 

of the boundary (i.e. at 
x  = 0 must also be the same. This implies that the particle velocities

t

txy



 ),(

should also be the same. 

2.     The transverse components of tension 














x

txy
T

),(

 must also be 

the same immediately on two sides of the boundary. 

 

These conditions require:  

 000
),(),(),(




xtxrxi txytxytxy
    

 (7.6) 

 and 
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 (7.7) 

 

Using Eqs. (7.3) to (7.5), the condition expressed by Eq. (7.6)  

 

 
tatata tri 000 sinsinsin  
 

or 

 tri aaa 
        

 (7.8) 

 

The condition expressed by Eq. (7.7) gives: 

 

 
tTkatTkatTka ri 0210101 coscoscos  
 

or 

 tri TakaaTk 21 )( 
       

 (7.9) 

 

We know that 
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11

11

1 2
22

vfmT
v

f
TTk 








= 12 Zf  

 

where 1Z  is impedance offered by the first medium. 

 

In arriving at this result, we have used Eqs. (6.22) and (6.36b). 

Similarly, you can write  

 

 22 2 ZfTk    
 

where 2Z  is the impedance offered by the second medium.  

 

Using these results, we can rewrite Eq. (7.9) as 

 

 tri aZfaaZf 21 2)(2  
 

or 

 tri aZaaZ 21 )( 
       

 (7.10) 

 

Eqs. (7.8) and (7.10) enable us to calculate the ratios ir aa /
and it aa /

. 

These ratios give us the fractions of the incident amplitude reflected and 

transmitted at the boundary. These ratios are usually called the reflection 

and transmission amplitude coefficients. We will denote these by the 

symbols 12R  and 12T : 

 

 21

21
12

ZZ

ZZ

a

a
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i
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




       
 (7.11) 

and 

 21

1
12

2

ZZ

Z

a

a
T

i

t




       
 (7.12)  

 

We note that the reflection and transmission amplitude coefficients 

depend only on the impedances of the two media. 

 

Let us now consider the implications of results arrived at in Eqs. (7.11) 

and (7.12): 

 

(i)     Assume that the string is rigidly fixed to a wall. This means that 

the second medium is  
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extremely heavy, meaning thereby that 2Z . In such a case, 112 R  

and 12T = 0. This result implies that ir aa 
and ta

= 0. That is, the 

amplitude of reflected wave is equal to the amplitude of incident wave 

with just a reversal of sign and there is no transmitted wave. This means 

that the incident wave suffers a change of phase of  on reflection from 

a denser medium. 

 

(ii)    When 12 ZZ  ,i.e. the second string (medium) is denser, 12R  is 

still negative, implying  

a phase change of  on reflection. In this case, however, the incident 

wave is partly reflected and partly transmitted. 

 

(iii)   When 12 ZZ  , 12R  is positive, indicating no change of phase on 

reflection. Both transmitted and reflected waves exist in this case also. 

 

(iv)    When 21 ZZ  , 12R = 0 showing no reflected wave. In this case 12T

= 1, which gives it aa 
This means that the amplitude of a transmitted 

wave is equal to the amplitude of the incident wave. 

 

The points, (i), (ii) and (iii) above clearly show that if a wave travelling 

in a medium of lower impedance meets the boundary of a medium of 

higher impedance (air to water), the reflected wave undergoes a phase 

change of  . If, however, a wave travelling through a medium of higher 

impedance meets the boundary of a medium of lower impedance (water 

to air), no change of phase takes place for the reflected wave. You may 

also note that 12T  is always positive, indicating that there is no change of 

phase for the transmitted wave in any case. These results are depicted in 

Fig. 7.5. 

From Eq. (6.36a, b), you will recall that for a given tension, the wave 

velocity will be lower in a medium of higher impedance. Using this 

observation, can you now connect the above discussion with the one 

given in Sec. 7.2.1? Is there not a one to one correspondence between 

the two cases? This explains why we expected all waves, whether sound 

waves, water waves, waves on string or light waves to follow the same 

laws. 

 

Coming to the point (iv) above, we note that when 21 ZZ  , the two 

strings are made up of the same material and there effectively exists no 

boundary. That is why there is no reflection at all. 

 

 

 



PHY 203        OSCILLATIONS AND WAVES 

218 

 
 

Fig. 7.5 Reflected and transmitted waves when the incident wave (a) 

travels front a medium of lower impedance to a medium of higher 

Impedance, and (b) when reverse b the case 

 

SAQ 1 

Two strings of linear densities 1m and 2m  (= 4 1m ) are joined together and 

stretched with the same tension T. For transverse wave, calculate the 

reflection and transmission amplitude coefficients. 

 

 

 

 

 

7.3.2   Longitudinal Waves 
To analyze the reflection and transmission of longitudinal waves, you 

can follow the same procedure as outlined for transverse waves. Let us 

consider a wave incident on a boundary at 0x  separating media of 

acoustic impedances 1Z  and 2Z . As in the case of transverse waves, you 

can represent the particle displacements for the incident, reflected and 

transmitted waves by expressions similar to Eqs. (7.3), (7.4) and (7.5). 

 

The boundary conditions in this case are: 
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(i)   The particle displacement ),( tx  is continuous at the boundary. 

That is, it has the same  

value immediately to the left and right of the boundary at 0x . 

 

(ii)   The excess pressure is also the same immediately on the two sides 

of the boundary. 

 

Using the boundary conditions stated above you can show that the 

reflected and the transmitted longitudinal waves obey the same 

characteristics as transverse waves (TQ5). 

 

7.4   REFLECTION AND TRANSMISSION 

ENERGYCOEFFICIENTS 

 

We know that progressive waves are a useful means of transferring 

energy from one point to another in a medium. It is therefore interesting 

to consider as to what happens to the energy in a wave when it 

encounters the boundary between two media of differing impedances. 

As before, we will consider transverse as well as longitudinal waves. 

 

You have seen in Unit 6 that when a string of mass per unit length m 

vibrates with amplitude a and angular frequency 0
, the total energy is 

given by 

 

 

2

0

2

2

1
maE 

        
 (7.13) 

 

Let us assume that the wave is travelling with a speed v . Then the rate 

at which the energy is carried along the string is obtained by multiplying 

the expression for energy with the speed v  of the wave and is equal to 

vma 2

0

2

2

1


. 

 

Now refer to the case of the transverse waves discussed in Section 7.3.1. 

The rate at which the energy reaches the boundary alongwith the 

incident wave is given by 
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(7.14) 

 

Similarly, the rates at which the energy leaves the boundary alongwith 

the reflected and the transmitted waves are 
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 (7.15) 

and 
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2

1
tt aZP 
       

 (7.16)  

 

Using Eqs. (7.8) and (7.10), we can write ra  and ta
 in terms of ia

. 

Substituting the resulting expression in Eqs. (7.15) and (7.16) we find 

that 
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and 
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 (7.18) 

 

These results can be used to obtain the reflection and transmission 

energy coefficients ER  and ER : 
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 (7.20) 

 

We note from Eq. (7.19) that if 21 ZZ  : (which is also possible if we 

have 2211 mTmT  , 0ER . That is, no energy is reflected back when 

impedances match. Such an impedance matching plays a very important 

role in energy transmission. Long distance cables carrying energy need 

to be matched accurately at all joints; otherwise a lot of energy will be 

wasted due to reflection. We need impedance matching when we wish to 

transfer sound energy from air in a loudspeaker to the air of the room. 

Similarly, when light waves travel from air into glass lens or a slab, we 

wish not to have reflections (as it will reduce intensity). 
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SAQ 2 
Show that the energy is conserved when a transverse wave meets the 

boundary between two media of characteristic impedances 1Z and 2Z . 

 

For longitudinal waves, it is customary to calculate energy transfer in 

terms of their intensity. From Unit 6 we recall that the intensity of sound 

waves in a gas is given by 

 

 
vaI 2

0

2

2

1


 

   = Zaf 2222          

(7.21) 

 

where Z  is the impedance offered by the medium to wave motion. 

Hence the incident, reflected and transmitted wave intensities can be 

written as 

 

 1

2222 ZafI ii         
 (7.22) 

 1

2222 ZafI rr         
 (7.23) 

and 

 2

2222 ZafI tt         
 (7.24) 

 

Using these equations, you can easily show that the reflection and 

transmission energy coefficients are given by 
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 (7.26) 

You will observe that these relations are the same as for transverse 

waves. This means that the same conclusions hold even for longitudinal 

waves.  

 

SAQ 3 

Sound waves are incident on a water-steel interface. Show that 86% of 

the energy is reflected back. Impedances of water and steel are 

respectively sNm 361043.1   and sNm 37109.3  . 
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7.5    THE DOPPLER EFFECT 
We have so far discussed the situations where the wavelength (or the 

wave velocity) undergoes achange, but its frequency remains the same. 

Do you know of any situation where the frequency of a wave changes, 

or at least appears to change? In this context we are reminded of an 

anecdote. The famous physicist W.L. Bragg jumped a red-right while 

driving in London. He was booked for the offence. In the following lines 

we report the conversation Bragg had with the Magistrate when the 

latter asked him to appear in his court. 

 

Magistrate: Why did you jump the red light? 

Bragg: Sir, I saw it as green light. 

Magistrate: At what speed of your vehicle do you see a red light as 

green? 

Bragg: (on some calculation) He could do so if he was driving at about 

two hundred million 

kilometers per hour.  

Magistrate: O.K. you are now fined for over-speeding. 

 

This dialogue suggests that frequency can change with the speed of the 

observer or source. You all must have heard the whistle of a moving 

train. What do you feel when the train approaches you? The pitch of the 

whistle seems to rise. But when the engine passes by, the pitch appears 

to decrease. The apparent change of frequency due to the relative motion 

between the source and the observer (or the listener) is known as the 

Doppler Effect. 

 

In general, when the source approaches the listener or the listener 

approaches the source, or both approach each other, the apparent 

frequency is higher than the actual frequency of the sound produced by 

the source. Similarly when the source moves away from the listener, or 

when the listener moves away from the source, or when both move 

away from each other, the apparent frequency is lower than the actual 

frequency of the sound produced by the source. 

 

Do you know that Doppler shift in ultrasound reflected from moving 

body tissues allows measurement of blood flow? It is commonly used by 

obstetricians to detect foetal heartbeat. Do you know how it arises? As 

the heart muscle pulsates, the reflected ultrasound waves are Doppler 

shifted from the incident waves. Similarly, a sonar makes use of the 

Doppler effect in determining the velocity of a submarine relative to a 

ship. 

 

The electromagnetic waves, including light, are also subject to the 

Doppler effect. In air navigation, radar works by measuring the Doppler 
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shift of high frequency radio waves reflected from moving aeroplanes. 

The Doppler shift of starlight allows us to study stellar motion. When 

we examine light from stars in a spectrograph, we observe several 

spectral lines. These lines are slightly shifted as compared to the 

corresponding lines from the same elements on the earth. This shift is 

generally towards the red-end and is attributed to stellar motion. This is 

illustrated in Fig. 7.6 for hydrogen atoms in a double star system. (The 

Doppler shift of light from distant galaxies is an evidence that our 

universe is expanding.) 

 

 

 
 

Fig. 7.6 The wavelength of light emitted by hydrogen atoms in a binary 

star reveals the stellar  

motion 

 

To study the Doppler effect for sound waves, we have to consider the 

following situations:  

(i)     Whether the source is in motion, or the observer is in motion, or 

both are in motion. 

(ii)    Whether the motion is along the line joining the source and the 

observer, or inclined (at an angle) to it. 

(iii)   Whether the direction of motion of the medium is along or 

opposite to the direction of         propagation of sound. 

(iv)  Whether the speed of the source is greater or smaller than the 

speed of sound produced by it. 

We will now consider some of these possibilities. 

 

7.5.1    Source in Motion and Observer Stationary 

Let us suppose that a source Sis producing sound of frequency f ,and 

wavelength  . The waves emitted by the source spread out as spherical 

wavefronts of sound. When the velocity of the source is less than the 

velocity of sound, wavefronts lie inside one another. The distance 
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between successive wavefronts is minimum along the direction of 

motion and maximum in a direction opposite to it (Fig. 7.7). 

 

 
 

Fig. 7.7 Successive wavefronts emitted by a moving source 

 

Representing the same situation in terms of waves, asshown in Fig. 7.8a, 

we find that if v  the speed of sound produced, f waves occupy a length 

v in one second, if the source is stationary. After one second, when the 

source has moved a distance u , towards the listener, the same number of 

waves get crowded a length 
)( suv 
 as shown in Fig. 7.8 (b). 

 

 
 

 

Fig. 7.8 Crowding of waves when source H moving 

 

The reduced wavelength, ' , then becomes 

 

 f

uv s
'

 
 

The apparent frequency of sound (heard by the listener) is then 
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If, however, the source moves away from the observer (in a direction 

opposite to sound), su
, is negative and Eq. (7.27) becomes 

 

suv

v
ff


'

        
 (7.28) 

 

To fix up the ideas discussed above, you may now like to solve a SAQ. 

 

SAQ4 
A person is standing near a railway track. A train approaches him/her 

with a speed of 72 
1hkm . The apparent frequency of the whistle heard 

by the person is 700 Hz.What is the actual frequency of the whistle? Use 

the speed of sound in air as 350 
1ms . 

 

7.5.2   Source Stationary and Observer in Motion 
If the observer is at rest, the length of the block of waves passing him 

per second is v  and contains f waves. However, when the observer 

moves with speed 0u
, he will be at 'O after one second and find that 

only a block of waves with length 
)( 0uv 
passes him in one second. For 

him the apparent frequency is then 

v

uv
f

uv
f 00'







       
 (7.29) 

 

 
 

Fig. 7.9 Waves received when listener is moving 
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If the listener moves towards the source, su
is negative, and the apparent 

frequency is given by 

v

uv
ff 0'




        
 (7.30) 

 

7.53   Source and Observer both in Motion      
When both source and observer are in motion (and approach each other), 

we have to combine the results contained in Eqs.(7.27) and (7.29). The 

source in motion causes a change in wavelength. The listener in motion 

results in a change of number of waves received. In such a case, 

apparent frequency 'f is given by 

 

 wavelengthreduced

received  wavesofblock  oflength 
'f

  = 0

0

uv

uv





  

 (7.31) 

 

You may now ask: Is there any difference in the apparent frequency 

when the source approaches the listener or the listener approaches the 

source with the same velocity? Eq. (7.31) tells us that the apparent 

frequency will be different in these cases. 

 

For electromagnetic waves, Eq. (7.31) has to be modified. For sound, 0u

and su
 are measured relative to the medium. This is because the medium 

determines the wave speed. However, e.m. waves do not require a 

medium for propagation so that their speed relative to source or the 

observer is always the same. For these waves we have to consider only 

the relative motion of the source and the observer. If 0u
 is the speed of 

source relative to observer, and 
vu s  , we can rewrite Eq. (7.31) as 
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u
ff
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'

  = 

1

1













v

u
f s

     (7.32)  

 

Using binomial expansion and retaining only first order terms in 
)/( vs uu
, we get 

  

 










v

u
ff s1'

 
 

In air navigation, we take su
 to be twice the approach velocity of the 

aeroplane. This is because the radar detects em-waves sent by it and 

reflected back by the aeroplane. 
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SAQ 5 

A stationary observer notes that the spectral line of wavelength 4000 A 

emitted by a star is shifted towards the red from its normal position by 

100 A. Calculate the speed of the star in the line of sight? Speed of light 

= 
8103 1ms . 

 

7.6    SHOCK WAVES 
So far we have considered the cases where the velocity of sound is 

greater than the velocity of the source. As su
increases, Eq. (7.31) 

predicts that Doppler shifted frequency will increase gradually and 

diverge for 
vus  . What does this mean? When the source moves 

exactly at wave speed, wave crests emitted in the forward direction pile 

up into a very large amplitude at the front of the source, as shown in Fig. 

7.10. 

 

Now you may ask: What happens when the speed of source exceeds the 

speed of sound waves as for supersonic planes? To discover the answer 

to this question, let us see if we can draw wave patterns similar to those 

shown in Fig. 7.7. 

 
 

     

Fig, 7.10 Schematic representation of piling of waves when the source 

moves at the wave speed 

 

Let us suppose that the source is at point A at t  = 0. After time t ,the 

waves emitted at A are on a sphere of radius vt . Since 
vus  ,the 

distance travelled by the source AS = 
tu s  is more than the distance 

travelled by sound waves. The waves emitted at successive points, 

B,C,D, E.... are on the line A'S, where the circles are most crowded. We 

thus see that sound waves pile up on a cone whose half angle is given by 

suv /sin 
 as shown in Fig. 7.11a. No sound waves are present outside 

this cone. The velocity of sound waves is normal to the surface of the 

cone. When this cone hits an observer, he detects the sudden arrival of a 

vus 
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large amplitude wave, known as a shock wave. A supersonic aircraft 

generates shock waves, also called sonic booms, due to the formation of 

two principal shock fronts; one at its nose and the other at its tail (Fig. 

7.11b). A strong boom can break window glasses or cause other damage 

to buildings. 

 

 
 

 
 

Fig. 7.11 (a) Shock waves created by a sound moving faster than the 

speed of sound,                   

  (b) Sonic booms produced by a supersonic aircraft 

 

Shock waves are also generated in a ripple tank by a moving source for 

Mach numbers greater than one. You can also observe that shock waves 

are formed by a boat moving faster than the speed of water waves. 

 

7.7   SUMMARY 

 The locus of points in a given phase is called a wavefront. The 

shape of a wavefront depends on the nature of the source. 

 According to Huygens, each point on a wavefront becomes a 

fresh source of secondary wavelets, which move out in all 

directions with the speed of the wave in that medium. 

 When waves travelling through one medium meet the boundary 

of another medium with a different impedance, they are partly 

reflected and partly transmitted. The reflection and transmission 

amplitude coefficients are respectively given by 
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 When a wave travelling from a medium of lower impedance is 

reflected from a medium of higher impedance, a phase change of 
 takes place.  

 Due to the relative motion between the source of sound waves 

and the observer (listener), the apparent frequency of the sound is 

different from the actual one. This is known as the Doppler 

effect. The Doppler shifted frequency (when both approach each 

other) is given by 

svv

uv
ff




 0'

 
 

7.8   TERMINAL QUESTION 

1. Using Huygens construction, verify that r

i

v

v

sin

sin

2

1
12 

 

2. A sound wave travelling through air falls normally on the surface of 

water. Calculate the ratio  

of the amplitude of sound wave that enters the second medium to the 

amplitude of the incident wave. Use  = 1.29 
3kgm . Speeds of sound in 

air and water are 350 
1ms  and 1500 

1ms  respectively. 

3. A rope is made up of a number of identical strands twisted 

together. At one point, the rope becomes frayed so that only a 

single strand continues (Fig. 7.12). The rope is held under tension 

and a wave of amplitude 1.0 cm is sent from the single strand. 

The wave reflected back along the single strand has an amplitude 

of 0.45 cm. How many strands are in the rope? 

 

 
 

Fig. 7.12 A frayed rope 

 

4.  A car moving at a velocity 20 
1ms  passes by a stationary source of 

frequency 500 Hz. The closest distance between them is 20 m. Calculate 
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the apparent frequency heard by the driver as a function of distance. 

Take 
1340  msv  

5. Using boundary conditions for longitudinal waves, calculate the 

amplitude reflection and 

transmission coefficients. 

 

7.9    SOLUTIONS 

 

SAQs 
1.  We know that impedance is related to tension and mass per unit 

length through the relation 

  mTZ   
For the given strings 

  TmZ 11   and TmZ 22   

  2

1

2
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1 
m

m

Z

Z

   
From Eqs. (7.11) and (7.12), we note that the reflection and transmission 

amplitude coefficients are 
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The negative sign in 12R implies a phase change of  at the interface. 

 

2.     From Eq. (7.14) we know that the rate at which energy reaches 

the boundary is given by  
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2

1
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Similarly, the rate at which energy leaves the boundary with reflected 

and transmitted 

waves is given by 

  

22

01

22

012
2

1

2

1
tr aZaZP  

 

On substituting for ra and ta
 we get 
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Since the rate at which energy arrives al the interface is equal to the rate 

at which energy leaves the interface (with reflected and transmitted 

waves), we can say that energy is conserved in this process. 

 

3.     Reflection energy coefficient 
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         = 










43.40

57.37

= 0.86 

This means that when sound waves are incident on water-steel interface, 

only 86% of the energy is reflected back. 

 

4. From Eq. (7.27) we have v 

  suv

v
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Rearranging terms, we can write  
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Here v = 350 
1ms , 'f = 700 Hz and 

11 2072   mskmhus  

  

HzHz
ms

msms
f 660700

350

20350
1

11








 






 
 

5.     Since the wavelength increases, we can say that the star is 

moving away along the line of sight. This means that frequency 

decreases. Using Eq. (7.28) for the case of light you can write 
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Since /cv  , you can write 
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Here ' = 4100 Å and 
18103  msc  

 

Hence, 
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100

4000

103 18





ms

us

 

      = 
16103.7  ms  

      = 
13103.7  kms  

 

7.10 TQs 

 

1. Refer to Fig 7.13. AB represents a part of a wavefront moving towards 

the interface, S1S2which separates the two media say air and water. Let 

us assume that wave speeds in medium 1 and medium 2 be 1v  and 2v

respectively. 

 

 
 

 

Fig. 7.13: Huygen's construction to deduct the laws of refraction 

 

The wavefront will first strike at C and then at successive points towards 

D. The point B on the wavefront reaches D at a time 1/' vDBt   later 

than the point A reaches C. From each point on S1S2, a secondary 

wavelet starts growing into the second medium at speed 2v .At the 

instant when D is just disturbed, the wavelet from C has grown for time 

)/'( 1vDBt  and acquired the radius 

  
2

1

'
' v

v

DB
CC 

       
 (i) 

You can represent this wavelet by drawing an arc of radius 'CC with C  

as center. Draw a tangent DC" from D to this arc If you repeat this 

process for other intermediate points between C and D you will observe 

that DC" is a common tangent to all of them. Thus, DC" represents the 

refracted wavefront. 

 

From  s  CB'D and CC" D, you can write  
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Using the result contained in (i), you would get 

  2

1
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v
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i
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= a constant 

 

That is, the sine of the angle of incidence to the sine of angle of 

refraction of the wavefront is equal to the ratio of the wave speeds and is 

a constant This constant is known as the refractive index of medium 2 

with respect to medium I. We denote it by the symbol 12 . 

 

For sound, with medium 1 as air and medium 2 as water  

  23.012   
and for light  

12 = 1.33 

 

2.     
3

1 29.1  kgm  
3

2 1000  kgm  
1

1 350  msv  
1

2 1500  msv  
 

Since sound waves are longitudinal, from Eq. (7.12) we have 
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 Since vZ  , we can write 
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Using this result in (i), we get 
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3.     From Eq, (7.11) you can write 

  21

21

ZZ

ZZ

a

a
x

i

t






 

      = 1)/(

1)/(

21

21





ZZ

ZZ

 

 

For a string under tension, mZ  , so we can write 



PHY 203        OSCILLATIONS AND WAVES 

234 

 2

1

2

1

m

m

Z

Z

 
Hence 

  
1/

1/

21

21






mm

mm
x

 
Assume that the first portion has n  strands. Then 
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Solving this for n , we find that  
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x
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Hence,  
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      = 6.76 

  7 

 

4. In this case, the velocity of the car is not directed towards the sound 

source (Fig. 7.14a), and we have to find the component of the velocity 

vector directed towards the source. Referring to Fig. 7.14b it is given by 

 

 
 

Fig. 7.14 (a) Observer moving along a line not intersecting the line of 

motion of source 
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(b)  The component of velocity of observer towards the source is 

responsible for 

     Doppler shift 
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Then the space dependence Doppler-shifted frequency is given by 
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You can plot this as a function of x for 100 m <x < 100 m. At x = 0, the 

car is moving perpendicular to the wave and at the instant when the car 

passes this point, the driver hears the true frequency, 500 Hz. 

 

5.     The particle displacement for the incident, reflected and 

transmitted waves are 

  
)sin(),( 10 xktatx ii  
     

 (i) 

  
)sin(),( 10 xktatx rr  
     

 (ii) 

and 

 
)sin(),( 20 xktatx tt  
     

 (iii) 

 

The boundary conditions in this case are: 

 

1. The particle displacement ),( tx  is continuous at the boundary. That 

is, it has the same value immediately to the left and the right of the 

boundary at x = 0. 

2. The excess pressure is the same on the two sides of the boundary. 
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The first condition implies that 

tri aaa 
   (iv) 

For a longitudinal wave, x
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 and 0p
 is the equilibrium pressure, we find that 

0p
 cancels out on both sides and the second condition implies that 
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Eq. (v) gives: 
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Multiplying by 11v , we get 
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 Similarly, you can show that 
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Using these results in (vi), we find that 
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Since relations (vi) and (vii) connecting the incident, reflected and 

transmitted amplitudes are exactly the same as in the transverse case, the 

reflection and transmission amplitude 50 coefficients are also given by 

the same relations. 
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Textbook 

 

1. The Physics of Vibrations and Waves. By H. John Pain. 6th Edition, 

2018. Available at: 
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https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATION

S_AND_WAVES_Sixth_Edition 

2. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

3. Stress, Vibration, and Wave Analysis in Aerospace Composites. By 

Victor Giurgiutiu 1st Edition, 2022. Available at: 

https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-

aerospace-composites/giurgiutiu/978-0-12-813308-8 

4. Physics of Oscillation and Waves with use of Matlab and Python. By 

Richard Fitzpatrick. © Springer 2018. ISBN: 978-3-319-72313-6. 

https://doi.org/10.1007/978-3-319-72314-3 

5. Introduction to the Physics of Waves by Tim Freegarde 1st edition, 

2013. 

https://www.google.com.ng/books/edition/Introduction_to_the_Physics_

of_Waves/Q-

daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=fron

tcover 

 

Video Links 

 

https://youtu.be/InIApf8s1KA 

 

https://youtu.be/G3iz4z8TLQQ 

 

https://youtu.be/PyHc2WPVwbo 
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UNIT 8   SUPERPOSITION OF WAVES-1 

Structure 
8.1    Introduction 

Objectives 

8.2    Principle of Superposition of Waves 

8.3    Stationary Waves 

Velocity of a Particle and Strain at any Point in a Stationary 

Wave  

Harmonics in Stationary Waves  

Properties of Stationary Waves 

8.4  Wave Groups and Group Velocity 

8.5  Beats 

8.6  Summary 

8.7  Terminal Questions 

8.8 Solutions 

 

8.1    INTRODUCTION 
You have studied in Unit 2, how a particle acted upon simultaneously by 

two simple harmonic oscillations gives rise to the formation of Lissajous 

figures. 

 

You have also read about the general characteristics of waves in Unit 6; 

and of their behavior at the interface of two media in Unit 7. In this unit 

you will study the principle of superposition of waves. Under certain 

conditions, the superposition of waves leads to some interesting 

phenomena like the formation of stationary waves, beats, wave groups, 

interference, diffraction etc. In the present unit you will study the 

phenomena of stationary waves, wave group and beats. The other two 

topics, viz. Interference and Diffraction, will be discussed in Unit 9. 

 

In the present unit you will study the basic features, especially the sound 

producing part of the woodwind instruments. There are two basic types 

of pipes, viz. flute pipe and reed pipe, which you will study in this unit. 

Stationary waves are formed when two waves of the same angular 

frequency (i.e., same ( ), same wavelength (i.e., of the same wave 

vector or propagation constant k) and of same amplitude, travelling in 

opposite directions superpose on each other. On the other hand, if two 

sound waves of slightly different frequencies are superposed, they 

produce beats. 

 

Wave groups, sometimes also called the wave packets, are the result of 

superposition of waves of slightly different frequencies. The concept of 

wave packet is of great importance in the study of quantum mechanics, 

which we consider later. 
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In the next Unit you will study the superposition of two waves, which 

leads to the phenomena of interference. There you will also study the 

necessary conditions for the interference of two waves. Towards the 

end, you will learn about diffraction of waves and some typical cases of 

diffraction phenomena. 

 

Objectives 

 After going through this unit, you will be able to 

 Describe the principle of superposition of waves 

 Explain the ideas underlying the formation of stationary waves 

 Identify the positions of nodes and antinodes on a stationary 

wave 

 List the characteristics of stationary waves 

 Describe the formation of wave groups 

 Compute the value of group velocity knowing the dependence of 

wave velocity on wavelength 

 Calculate the number of beats produced if the frequencies of two 

superposing notes are known. 

 

8.2    PRINCIPLE OF SUPERPOSITION OF WAVES 
In Unit 2 of this course material, you have studied the superposition of 

simple harmonic motions. You saw that when two or more simple 

harmonic motions act simultaneously on a particle, the resultant 

displacement of the particle at any instant of time is simply given by the 

algebraic sum of the individual displacements. This can also be 

extended to the case of waves.   

 

Two or more waves can traverse the same path in a given space, 

independent of one another. This means that the resultant displacement 

of a particle at a given time is simply the algebraic sum of the 

displacements that are given to the particle by the individual waves. In 

other words, we can say that the resultant displacement of the particle is 

found simply by adding algebraically the displacements due to the 

individual waves. This is known as superposition of waves. 

 

An interesting case of superposition of waves is that of radio waves. 

You know that radio waves ofdifferent frequencies are transmitted hy 

different radio stations to broadcast their programmes. When they fall 

on the receiving antenna, the resultant electric current set up in the 

antenna is quite complex because of the superposition of different 

waves. Nevertheless, we find that we can still tune to a particular 

station. That is, out of the many, we can still choose and pick up the 

particular wave we want. In other words, if we have a wave group 

obtained by the superposition of a large number of individual waves, we 

can still separate the different waves that were superposed. This is 
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indicative of the individual behavior of waves, which is the basis of the 

superposition principle in waves. 

 

Now you can demonstrate the principle of superposition by considering 

two pulses travelling on a rope in opposite directions as shown in Fig. 

8.1. Before and after crossing each other, they act completely 

independently. At the time of crossing, the resultant displacement is the 

algebraic sum of the individual displacements. 

 

 
 

Fig. 8.1 Superposition or two pulses travelling in opposite directions 

 

You have also studied in Unit 2, the mathematical basis for the 

superposition of oscillations. It lies in the linearity of the equation. 

Consider two waves acting independently on a particle at any position x. 

Let ),(1 txy and ),(2 txy be the displacements of the particle at the instant 

of time t  due to the two waves. Then the resultant displacement ),( txY

of the particle is mathematically written as:  

 

),(),(),( 21 txytxytxY        
 (8.1) 

 

You have studied in Unit 6, that a wave is essentially characterized by 

its amplitude, angular frequency, wave vector and phase. Depending on 

which of these components are the same or different, you will study the 

various phenomena in Physics due to the superposition of waves. Let us 

consider some of these phenomena. For this, you consider the 

superposition of the following pair of waves. 
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 (8.2) 
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You will draw the following conclusion from above combination of 

waves.  

 

(a) In case (i) only the amplitude of two waves differ. 

Now let us consider the superposition of two waves of the same angular 

frequency, wave vector and phase but different amplitude. These two 

waves are shown in case (i). Now applying Eq. (8.1) we can calculate 

that the resultant wave is given by 

 

 )sin()sin(),( 21 kxtakxtatxY    

  = )sin()( 21 kxtaa        

 (8.3) 

 

Eq. (8.3) implies that the resultant wave has same the frequency and 

phase and the resultant amplitude is )( 21 aa  . It is shown in Fig. 8.2. 

 

 
 

Fig. 8.2 Superposition of two waves of same frequency, wave vector and 

phase, but differing  

amplitudes 1a  and 2a  

 

(b) In case (ii) only the phase of two waves differ. 

Now you will consider the superposition of two waves which have the 

same amplitude, frequency and wave vector but differ in phase. When 

such waves superpose, you will find that the phenomenon of 

interference will occur. You will study this phenomenon in detail in Unit 

9. 

 

(c) In case (iii), the frequency   and wave vector k of the two waves 

differ. 

Now let us consider the case when the frequencies and wave vectors of 

two waves differ slightly. In such a case, irrespective of phase difference 

the superposition results in an interesting phenomenon of 'Beats'. If 

however many waves of slightly different frequencies superpose, then 

they form a waves group (or a wave packet). This gives rise to group 

velocity, quite distinct from the wave velocity. You will study group 

velocity in detail in Section 8.4. 
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(d) In case (iv), the waves equations have different signs before the 

wave vector (k). In this case, the first wave ),(1 txy  is propagating along 

the positive direction of x -axis, while the other wave, ),(2 txy , is 

propagating in negative direction along x -axis. This implies that they 

are propagating in opposite directions. When such kind of waves 

superpose then stationary or standing waves are produced. You will 

study stationary waves in Section 8.3. 

 

 

 

8.3    STATIONARY WAVES 
You have just learnt in the above section that stationary waves result if 

two waves of same angular frequency (i.e,  ) and wavelength (i.e. of 

same wave vector k), and of same amplitude travelling in opposite 

directions superpose on each other. To realize waves of exactly the same 

amplitude and wavelength, it is easier to consider one wave as incident 

wave, and the other as reflected wave from a rigid boundary. 

 

The reflection of the incident wave can take place at a fixed boundary 

(like that of a string fixed to a wall, or the closed end of an organ pipe) 

or at a free boundary (like the free end of a string, or the open end of an 

organ pipe). We have learnt in the last Unit that at a fixed boundary, the 

displacement ),( txy stays zero, and the reflected wave changes its sign. 

At a free boundary, however, the reflected wave has the same sign as the 

incident wave. In other words, at a fixed boundary, a phase change of 

takes place, while at a free boundary, no such change of phase takes 

place. 

 

Let us consider the case where the reflection is taking place at a free 

boundary. In this case, the 

resultant displacement is given by: 

  

 )sin()sin(),( kxtakxtatxY    

  = kxta cossin2        

 (8.4) 

 

This can be written as:  

 

 tkxatxY sin)cos2(),(        
 (8.5) 

 

From Eq. (8.5) you see that the amplitude is given by )cos2( kxa  which 

is not fixed. It is dependent (or varies harmonically) on the position x  of 
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the particle. Further, the resultant motion has the same frequency and 

the wavelength as the individual waves. 

 

Looking at equation (8.4) we note that the particles distributed along the 
x -axis execute vibrations perpendicular to the x -axis. The amplitudes 

with which they execute these vibrations are different at different 

positions along the x -axis. However, the time period of vibrations of all 

the particles is same. 

 

We note that Eq. (8.5) does not represent a travelling wave since the 

argument of the sine function is independent of the space variable x . 

We thus see that although we started with two waves propagating in 

opposite directions, we have ended up with something that does not 

propagate in space. The wave that does not travel (or propagate) is 

called a stationary (or a standing) wave. Since it does not propagate, it 

transports no energy along with it. 

From equation (8.5) it is clear that the displacement ),( txY is maximum 

when 

 

 
1

2
coscos  xkx





      
 (8.6) 

and minimum when 

 
0

2
coscos  xkx





       
 (8.7) 

  

To satisfy Eq. (8.6) we require, 





mx 

2

. Similarly Eq, (8.7) requires 

2
)12(

2 




 mx

 
with m = 0, 1, 2, ... These give the points of maximum displacement at 
x = 0, 2/ ,  , ..., 2/m ; and minimum displacement at x = 4/ , 

4/3 , …, 4/)12( m . 

 

The points of maximum displacement are called 'Antinodes', while those 

of minimum displacement are called 'Nodes'. The distance between any 

two consecutive nodes or antinodes is 2/ , while that between a node 

and an antinode is 4/  (Fig. 8.3). 

 

From the above discussion you have learnt that a stationary wave results 

due to the superposition of two identical progressive waves travelling in 

opposite directions. The result is a non-progressive wave in which the 

disturbance is not handed over from one particle to the next. The space 
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(or the region) where the two waves superpose gets divided into 

compartments or segments (Fig. 8.3). Each segment ends with points 

called the nodes where the displacement of the particles is always zero. 

 

 
 

Fig 8.3 The envelope of a standing wave showing the pattern ofnodes 

and antinodes 

 

The particles at the central points of these segments (called the 

antinodes) execute vibrations with maximum amplitude. The particles 

lying in-between the nodes and the antinodes execute vibrations with 

amplitudes lying in between zero and the maximum amplitude. This is 

shown in Fig. 8.4. 

 

The particle a, for example, is always at rest. The particle b always 

executes vibration with maximum amplitude, and the particle c always 

with intermediate amplitude as shown in Fig. 8.4. 
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Fig 8.4 Stationary wave, with arrowheads indicating the amplitudes with 

which various particles  

vibrate 

 

SAQ 1 
Derive equation for the displacement of a particle lying on a standing 

wave on a string fixed at both ends. Will the fixed end of a string be a 

node or an antinode? If the standing wave is in an open-ended air pipe, 

will there be a node or an antinode at the end? How do you explain the 

absence of energy flow in a standing wave? 

 

8.3.1   Velocity of a Particle and Strain at any Point in a Stationary 

Wave 
You know that the velocity of a particle is defined as the rate of change 

of displacement with respect to time. The velocity of a particle in a 

stationary wave is calculated by differentiating the resultant 

displacement ),( txY with respect to time keeping x as constant. If we 

differentiate Eq. (8.5) w.r.t. time, we get 

 

 velocity = 
tkxa

t

Y
 coscos2





     

 (8.8) 

The velocity is maximum when cos kx = ± 1, i.e. at points where x = 0, 
2/ ,  , ..., 2/m . 

 

(see Eq. (8.6) and the discussion that follows). The velocity is minimum 

(zero) when cos kx = 0, i.e. at points where x = 4/ , 4/3 , …, 
4/)12( m .It means that the velocity is maximum at the antinodes 

where the displacement is also maximum. The velocity is zero at the 

nodes where the displacement is zero. At points in between the 

antinodes and nodes, the velocity gradually decreases from maximum at 

the antinodes to zero at the nodes. The lengths of the arrowheads in Fig. 

8.4 may also be taken to represent the velocities of the particles in a 

stationary wave. 

 

The strain on a particle in a stationary wave can be calculated by 

differentiating the resultant amplitude i.e. ),( txY w.r.t. x keeping t  

constant. If we differentiate Eq. (8.5) w.r.t. x  we get strain 

 

 
tkxak

x

y
sinsin2





      
 (8.9) 
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You can show that the strain is maximum for the particles at the nodes 

where the displacement and the velocity are zero. This can also be 

visualized from Fig. 8.4. The particles at the nodes are stretched by 

particles moving in opposite directions. The strain is minimum at the 

antinodes where the displacement and velocity are maximum. Again 

referring to Fig. 8.4, we can see that the particles at the antinodes always 

move along with the particles at their sides, not causing much strain on 

particles at the antinodes. 

 

In the case of stationary waves, the particles get divided into segments 

like the P, Q and R in as shown in Fig. 8.4. Particles in one segment 

always move along in the same direction. When particles in segment P 

move up, those in Q move down. When those in Q move up, the ones in 

P move down. That is, in any two adjacent segments, particles move in 

opposite directions. 

 

All particles in a particular segment reach the extreme positions at the 

same time, and also pass through the mean positions at the same time. 

This is shown in Fig. 8.5. All this is possible since all the particles have 

the same time period T but have different velocities. The particles which 

have to cover larger distances have greater velocities. Those which have 

to cover smaller distances, have smaller velocities. 

 

 
Fig. 8.5 Stationary waves on a string fixed at both ends. Shape of the 

string at different times  

during atime period is shown 

 

Now coming to the individual particle, we can see when its velocity is 

maximum, and when it is zero. Writing Eq. (8.8) as: 
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you can see that the particle velocity is zero for 4/Tt   and 4/3T , and 

is maximum for 0t , 2/T  and T .Thus, during each time period, the 

particles of the medium have their maximum velocity when they pass 

through the mean position, and have zero velocity when they are at the 

extreme positions. Now in the next section you willstudy the conditions 

for producing different harmonics in stationary waves. 

 

8.3.2   Harmonics in Stationary Waves 
All musical instruments based on strings utilize the stationary wave 

phenomenon. A string clamped at both ends allows stationary waves 

with some fixed wavelengths. 

 

If the length of the string is L , the wavelength of the possible stationary 

waves on this string, starting from the longest wavelength are: L2 , 
L

3

2

, 

2

L

,..., etc. (See Fig. 8.6). 

 

These wavelengths determine the frequencies of oscillation of the string 

through the relation vf  . Here v the velocity of the transverse wave 

on the string. It is given by the relation  

 

 

T
v 

 
 

where T is the tension in the string, and   is the linear mass density 

(mass per unit length) of the string. 

 

The lowest frequency 0f
of vibration is called the fundamental 

frequency. It is given by: 

 

 

T

L

v
f

2

1
0 

       
 (8.10) 

 

The other frequencies are called the overtones, and are integral multiples 

of the fundamental frequency 0f
(See Fig. 8.6). 
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The fundamental frequency is also called the first harmonic. The first 

overtone, with frequency 02 ff 
, is called the second harmonic. The 

second overtone, with frequency 03 ff 
, is called the third harmonic, 

and so on. 

 

 
 

Fig. 8.6 Allowed stationary waves on a string or length L clamped at its 

ends 

 

 

The musical instruments based on the principle of standing wave are 

flute, reed, etc. The primary elements, which determine the tone, quality 

and overall sound are (1) the source of noise or vibration (2) the size and 

shape of the bore, and (3) the size and positions of the finger holes. The 

quality of woodwind tones depends on the combination of physical and 

musical experience. From the physics point of view, the air is stored 

under pressure in the wind chest. A large reservoir is required to keep 

the pressure steady, while the various combinations of notes are played 

with fingers. In the above instruments one end is open, making them 

open ended organ pipes. The closed end of an organ pipe acts as a fixed 

boundary, while the open end as a free boundary. At the closed end 

there is always a node, and at the open end there is always an antinode. 

 

For a pipe having one end closed, the fundamental wavelength is L4

. This gives the fundamental frequency 
Lvf 4/0  . In such a pipe, the 

even-numbered harmonics are absent (See Fig. 8.7). For a both ended 

open pipe, the fundamental wavelength is L2 , giving  fundamental 

frequency 
Lvf 2/0  . 
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Fig. 8.7 Modes of vibration of longitudinal stationary waves in organ 

pipes with (a) one end  

closed, and (b) both ends open 

 

SAQ 2 

(a) A piano string of length 1 m (mass per unit length 0.015 
1kgm ) 

fixed at both ends is to be used to strike a fundamental note of 

frequency f = 220 Hz. Find the tension to be applied to the 

string. 

 

(b)  Estimate the frequency of the fundamental mode in a one end 

closed organ pipe of length 

1.0 m. Use velocity of sound v =350 m/s. What happens to frequency if 

the pipe is overblown? 

 

8.3.3    Properties of Stationary Waves 

The properties of stationary waves that distinguish them from 

progressive waves have been highlighted in the foregoing discussion. 

Can you now write down the various points which characterize the 

stationary waves. After doing this, compare your points with the ones 

listed below:  

 

(i)     Stationary waves are not progressive. In these the disturbance is 

not handed over from 

one particle to the next. 

 

(ii)    The amplitude of each particle is not the same. It is maximum at 

the antinodes and zero at the nodes. In between, it gradually decreases 

from that at the antinode to the one at the node, i.e., zero. 

 

(iii)    The distance between two consecutive nodes or two consecutive 

antinodes is half the wavelength of the stationary wave. The medium 
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splits into segments, with the length of each segment equal to half the 

wavelength. 

 

(iv)    All the particles between two consecutive nodes are in phase, i.e. 

they reach their maximum and minimum displacement positions (mean 

positions) at the same time. The phase of particles, in one segment is 

opposite to that of particles in the adjoining segment. 

(v)    The velocity of particles at the nodes is zero. The velocity of 

particles at the antinodes is maximum. For particles in between, the 

velocity gradually decreases from that at the antinodes to the one at the 

nodes (i.e. zero). 

 

8.4    WAVE GROUPS AND GROUP VELOCITY 
So far we have considered the superposition of two identical waves 

travelling in opposite directions to give rise to stationary waves. Now let 

us see what happens when two waves of slightly different angular 

frequencies 1  and 2  travelling in the same direction, superpose on 

each other (Case iii). To avoid unnecessary mathematical complexities, 

we take the amplitudes of the two waves to be equal. The superposition 

of such two waves is given by 

 

 )sin()sin(),( 21 kxtakxtatxY    

  = 






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)()(
sin2 21212121 xkktxkkt

a


 (8.11) 

If 1  and 2 , and similarly 1k  and 2k , are only slightly different, we 

can write   21  and kkk  21 .  

 

Further, writing 
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Eq. (8.11) becomes: 
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 (8.12) 

 

Now let us see what the new wave form represented by Eq. (8.12) looks 

like. Firstly, its amplitude is twice that of the amplitude of either wave. 

Secondly, it is made up of two parts. The faster varying part (i.e. sine 

part) has a frequency which is the mean of the frequencies of the two 

component waves. The slowly varying part (i.e. cosine part) has a 
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frequency which is half of the difference of the two frequencies. The 

propagation vector of the slowly varying part of the superposed wave is 
2/k . It acts as an envelope over the faster varying part as shown in 

Fig.8.8. 

 

 
 

Fig. 8.8 Superposition of two waves of slightly different frequencies 1

& 2  

 

The superposition, as you can see in Fig. 8.8, results in the formation of 

groups (or segments) called wave groups (or wave packets). A wave 

group can travel with a velocity which may be different from that of the 

individual waves, or of the resultant wave. The velocity of the wave 

group is called the group velocity. The ratio of angular frequency and 

wave vector of the slowly moving part of the superposed wave is called 

group velocity. It is given by the following relation  

 

 kk
vg













2/

2/

       
 (8.13) 

 

If a group consists of a number of component waves with angular 

frequencies lying between 1  and 2 (with 21   ), and similarly in 

wave vector 1k and 2k (with 21 kk 
), the group velocity gv

is then 

written as : 

 

 dk

d

k
vg









       
 (8.14) 

 

Here d  and dk  represent the spreads (gaps between the maximum and 

the minimum) in angular frequencies and propagation constants of the 

component waves that go to make a wave group. 
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The velocity of the resultant superposed wave is called the phase 

velocity. You can obtain this using Eq. (8. 12), i.e. 

 

 av

av

p
k

v




 
 

If, however, the individual wave velocities are equal, i.e. 

 

 2

2

1

1

kk




= v  (say) 

 

then, 

v
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vkvk

kk
v p 


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





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and 

v
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vkvk

kk
vg 











21

21

21

21

2/)(

2/)( 

 

 

i.e., the group velocity is equal to the phase velocity. 

 

The group velocity is a more fundamental quantity in physics as the 

energy is transferred by the wave with the group velocity. The relation 

between the phase and the group velocities is given by: 

 

 
)(vk

dk

d

dk

d
vg 



 
 

which on simplification gives 

 

 dk

dv
kvvg 

 
 

If we write 

 /2k         
 (8.15) 

then, 





ddk

2

2


 

 

Inserting this in Eq. (8.15), we get 

 

 ))(/2(

2
2 



d

dv
vvg




 

       = 


d

dv
v 

       

  (8.16) 
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This gives another relation connecting the phase and the group 

velocities. The wavelength of the resultant wave is given by 

 

 k




2


 
 

and that of the enveloping wave by: 

 

 kk
e










4

2/

2

 
 

since k  is very small compared to k , 
 e . 

If 1  and 2  represent the wavelengths of the component waves, it can 

be easily shown that 

 

 12

21

2 




e

        
 (8.17) 

 

This gives the length (or the extent) of the wave group. We can see from 

Fig. 8.9 that the length of the wave group is half of the wavelength of 

the enveloping wave, i.e., it is equal to 
2/e . 

  

To illustrate the difference between phase and group velocities, we 

consider the striking example of waves in deep water – called “gravity 

waves." These waves are strongly dispersive. For them, the phase 

velocity is found to be proportional to the square root of the wavelength, 

i.e., 

 

 
2/1Cv p   

or 

 
2/1

1kCvp   (since )/2 k  

Here, the new constant, 21 CC  . 
2/1

1kCv p  , therefore, 
2/1

1kC . 

Differentiating   with respect to k , we get, 

 
pg vkC

dk

d
v

2

1

2

1 2/1

1  

 
 

That is, the group velocity for gravity waves is just half of the phase 

velocity. In other words, for these waves, the component wave crests 

move faster through the group as a whole. 
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Fig. 8.9 Wave group and its extent 

 

SAQ 3 

The phase velocity of a wave in a certain medium is represented by: 

 

 21 CCv   
 

where 1C  and 2C are constants. What is its group velocity? 

 

8.5    BEATS 
We have seen above that the superposition of two waves of slightly 

different angular frequencies 1  and 2  leads to the formation of wave 

groups. You may have noticed from Figs. 8.8 and Fig. 8.9 that we have 

plotted the resultant displacement ),( txY against distance x . This may be 

called the superposition in space. For this we kept the time t as constant. 

We may now consider another type of superposition, where we may plot 
),( txY against t and call it superposition in time. For this we may keep x  

as constant. 

 

The superposition in time for sound waves leads to the interesting 

phenomenon of beats. The beats are loud sounds which we hear at 

regular intervals of time depending on the difference in frequencies of 

the two superposing waves. The beats are often used by musicians for 

tuning their instruments. 

 

Let us consider two waves of slightly different angular frequencies 1  

and 2 , and of the same amplitude a, proceeding in the same direction, 

as we have done in the last section. Let us fix the spatial coordinate x in 

Eq. (8.10), say, at x = 0. This corresponds to an observer standing at x = 

0, and watching the waves passing by. He will observe a resultant 

waveform given by: 

 

tatatYtxY 21 sinsin),0(),(    
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 = 
ta av

2
cossin2






       

 (8.18) 

  

Like the earlier case discussed in Section 8.4, Eq. (8.18) indicates that 

the amplitude of the resultant wave at a given point is not constant, but 

varies in time. This has an angular frequency 

2

21 



av

. Its amplitude varies between a2  and zero, because of the 

presence of the 







 
t

2
cos



 term. This term acts as an envelope on the 

sine term. 

If 1  and 2  are nearly equal,   is small. In that case the amplitude of 

the resultant wave varies slowly. The periodic rise and fall of this wave 

leads to the appearance of beats; or to the hearing of loud sounds at 

regular intervals of time. 

 

Beat are heard at the maxima of amplitude (See Fig. 8.10). They occur 

whenever 
1

2
cos 


t



. This is because the intensity of sound is 

directly proportional to the square of the amplitude. The maximum 

amplitude occurs twice in every time period associated with the angular 

frequency 2



. Thus the frequency of beau is simply the difference of 

the two component frequencies i.e. )( 21   . 

 

In terms of frequencies 1f  and 2f ,the beat frequency is 





2
21


 fff

. The time 

elapsed between any two consecutive beats, called the beat period = f

1

(see Fig. 8.10). 
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Fig. 8.10 Formation of bead due to superposition of two waves of nearly 

the same frequency 

 

SAQ 4 

When a certain note of a piano is sounded with a tuning fork of 

frequency 560 Hz, 6 beats are heard every second. Find the frequency of 

the note. 

 

8.6   SUMMARY 
 

1.     When two waves travelling through the same space superpose on 

each other, the resultant displacement at any point is given by the 

algebraic sum of the individual displacements. 

 

2.     Stationary waves result because of the superposition of two 

waves of same amplitude, frequency and wavelength travelling in 

opposite directions and confined between two 

points. 

 

3.     On a stationary wave, nodes and antinodes are points of zero and 

maximum displacement, respectively. Distance between any two 

consecutive nodes or antinodes is half the wavelength of the stationary 

wave.    

 

4.     Both transverse and longitudinal waves can have different modes 

of vibration. 

 

5.     Superposition of two waves of slightly different frequencies 

travelling in the same direction gives rise to a wave group, and beats. 

 

6.     The number of beats produced per second is equal to the 

difference in the frequencies of the two waves. 

 

7.     The velocity with which a wave group travels is called the group 

velocity. It is equal to the wave velocity if the two component waves 

have the same velocity; otherwise, it is different from the wave velocity. 

 

8.     The smaller the difference between the wavelengths of the 

component waves, the greater the length of the wave group. 

 

 

8.7   TERMINAL QUESTIONS 
1.     Two points on a string are observed as a travelling wave passes 

them. The points are at  

01 x  and 2x = 1 m. The transverse motion of the two points are found 

to be as follows: 
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  ty 3sin2.01   

  )8/3sin(2.02   ty  
 (a) What is the frequency in hertz? 

(b) What is the wavelength? 

(c) With what speed does the wave travel? 

 

2.     Fifty tuning forks are arranged in order of increasing frequency 

and any two successive forks gives 5 beats per second when sounded 

together. If the last fork gives the octave of the first, calculate the 

frequency of the latter. (A note is octave of another nole if its frequency 

is double that of the other.) 

 

3.     A closed pipe, 25cm long, resounds when full of oxygen, to a 

given tuning fork. Find the length of a closed pipe, full of hydrogen 

which will resound to the same tuning fork. (Velocity of sound in 

oxygen = 320 m/s and velocity of sound in hydrogen = 1280 m/s). 

 

4.     The phase velocity )(v of transverse wave in a crystal of atomic 

separation d is given by 

  )2/(

)2/sin(

kd

kd
Cv 

 

where C  is a constant. Show that the group velocity is )2/cos(kdC  

 

 

8.8   SOLUTIONS 

SAQ l 
Since there is a phase change of  on reflection at the fixed end, the 

reflected wave is given by: 

 )sin(2 kxtay    
This leads to the resultant displacement  

)sin()sin(),( kxtakxtatxY    

 = tkxa cossin2  

 = tA cos  

with kxaA sin2  

 

At the fixed end, there is always a node, as the displacement is zero. In 

open-ended pipes, as shown, there is always an antinode at the end. 

 

A standing wave is formed because of a positive x directed incident 

wave, and a negative x directed reflected wave. Each carry the same 

amount of energy in opposite directions. The net energy flow is thus 

always zero. 

 

SAQ2 
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(a)   Wavelength of fundamental mode 
mL 2122   

 velocity of wave = smmz /4402220   

 From 

T
v 

, 2vT   

 = mkgsm /015.0)/440( 2   

 = N3109.2   

 

(b) Wavelength of fundamental mode  

  mmL 4144   

 Frequency 
Hz

m

smv
f 885.87

4

/350


  

By overblowing the pipe, pitch jumps by a factor of 3, giving the next 

harmonic with frequency Hzf 264883  . 

 

SAQ3  
We know that 




d

dv
vvg 

, 

For the wave in question, 
2C

d

dv


  

Inserting in the above equation, 

 1221 CCCCvg  
 

 

SAQ4 

Let the frequency of the note be f . Then 

 6 = [560 f ] 

 Hzf 554  or 566 Hz  

In this case, the frequency of the note cannot be found without 

ambiguity. However, it is 

either of the above two. 

 

TQs 

1(a)   f =1.5 Hz 

  (b)  
m

n 116

16




, n 1, 2, 3, … for positive moving wave. 

 
m

n 116

16




, n 1, 2, 3, … for positive moving wave. 

(c)  smu /5/8 , etc. 

 smv /24 , etc. 
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2.     Let the frequency of the first note be n. 

Then the frequency of the Second fork = n + 5 = n + (2 – 1)5  

Frequency of the Third fork = n + 5 + 5 = n + 10 = n + (3 – 1)5  

Frequency of the Fourth fork = n + 5 + 5 + 5 = n + 15 – n + (4 – 1)5  

Frequency of the Fifth fork = n + 20 = n + (5 – 1)5  

Therefore, the frequency of the 50th fork 
2455)150(  nn  

Since the frequency of 50th fork is 2n then  

n + 245 = 2n  

So n = 245 Hz. 

 

3.     For the first pipe, the fundamental frequency 

  1

0

1
4l

v
f 

 

where 0v
 is the velocity of sound in oxygen and 1l is the length of the 1st 

pipe. For the 

second pipe, the fundamental frequency is 

 24
2

l

v
f h

 

Where hv
 is the velocity of sound in hydrogen and 2l  is the length of the 

pipe.  

Since both the pipes resound to the same frequency, therefore 

  21 ff   or 21

0

44 l

v

l

v h

 

  

cm
ms

ms
l 10025

320

1380
1

1

2 




 
 

4.     Group velocity          

  dk

d
vg




 
 and 

  kv , we have 

       = )2/(

)2/(
sin

kd

kd
C

 

Now 

  )2/(

)2/sin(
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kd
kCkv 

 

   = 
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  2
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
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 or 

  
)2/cos(kdCvg   

 

 

8.9 Reference for further Studies 

 

Textbooks 

 

1. The Physics of Vibrations and Waves. By H. John Pain. 6th Edition, 

2018. Available at: 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATION

S_AND_WAVES_Sixth_Edition 

2. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

3. Stress, Vibration, and Wave Analysis in Aerospace Composites. By 

Victor Giurgiutiu 1st Edition, 2022. Available at: 

https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-

aerospace-composites/giurgiutiu/978-0-12-813308-8 

4. Introduction to the Physics of Waves by Tim Freegarde 1st edition, 

2013. 

https://www.google.com.ng/books/edition/Introduction_to_the_Physics_

of_Waves/Q-

daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=fron

tcover 

Video Links 

 

https://youtu.be/hnZ1FKVWN4k 

 

https://youtu.be/gDpvJ2jLA5I 

 

https://youtu.be/LJbpXx8fMUk 
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UNIT 9   SUPERPOSITION OF WAVES- II 

Structure 

9.1    Introduction Objectives 

9.2    Interference Coherent Sources 

Interference between Waves from Two Slits  

Intensity Distribution in Interference Pattern  

Interference in Thin Films 

9.3    Diffraction 

Different Types of Diffraction: Fraunhofer and Fresnel  

Fraunhofer Diffraction by a Single Slit  

Diffraction at a Straight Edge 

9.4    Summary 

9.5    Terminal Questions 

9.6 Solutions 

 

9.1    INTRODUCTION 

In the last unit you have studied the principle of superposition of waves 

and employed it to study the phenomena of formation of stationary 

waves, wave groups and beats. 

 

You have also learnt about the superposition of two waves which have 

the same amplitude and frequency but differ in phase. When such waves 

superimpose on each other, the phenomenon of interference takes place. 

For producing interference, the sources of waves must be coherent. That 

is, they must emit waves with zero or constant difference of phase. In 

this unit you will study how coherent sources are produced, and how 

intensity varies in an interference pattern. You will also learn about the 

appearance of colors in thin films of oil spread over water. 

 

The phenomenon of diffraction which results due to the superposition of 

many waves of same amplitude and frequency, but differing slightly in 

phase, is usually referred to as the bending of waves round the corners. 

Because of this phenomenon, we are at times inclined to think as if 

waves do not travel in straight lines. There are two classes of diffraction 

patterns, called Fresnel and Fraunhofer classes of diffraction. You will 

learn that the distinction between these two types of diffraction is related 

to the relative separations between the sources of waves and the 

obstacles (or the apertures) producing the diffraction patterns. 

 

Both interference and diffraction are very important phenomena in 

physics. They have contributed immensely in justifying the wave nature 

of light. The difference between the two is quite subtle. Interference 

arises because of superposition of waves originating from two (or more) 

narrow sources, derived from the same source. Diffraction arises from 

superposition of wavelets from different numerous parts of the same 

wavefront, as will be discussed later in this unit. 
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In Unit 6, you have studied different kinds of waves like sound and light 

waves. You have also studied that sound waves are longitudinal while 

light waves are transverse. Both give rise to the same phenomena when 

waves superpose on each other. Basically whatever is true for one kind 

of wave is also true for the other; if light waves show the phenomenon, 

of interference and diffraction, so do sound waves. Light wave effects 

have to be observed while sound wave effects have to be heard. Since 

the wavelength of sound waves is much greater than the wavelength of 

visible region light waves, the sound wave effects are in general on a 

larger scale compared to the effects of the light waves. 

 

 

 

 

 

Objectives 

After going through this unit, you will be able to: 

 give examples of coherent sources 

 derive the condition connecting the path difference between 

waves from two coherent sources and the wavelength of the 

waves used for getting maxima and minima of intensity on a 

screen placed in the path of waves 

 outline the variation of intensity in an interference pattern 

 explain the principle associated with the appearance of colors in 

thin films 

 explain the phenomenon of diffraction 

 explain the diffraction obtained by a single slit, and 

 describe the intensity distribution in a diffraction pattern. 

 

9.2    INTERFERENCE 

In Unit 8, you have studied the superposition of two waves. You have 

seen that under certain special condition superposition leads to the 

phenomenon of interference. We will now study the phenomenon of 

interference in detail. Let us consider the superposition of the following 

two waves: 

)sin(1 kxtay    
and 

)sin(2   kxtay . 

 

These two waves have the same angular frequency  and the same wave 

vector k, and are travelling along the same direction. They have a phase 

difference   that remains constant with time. Can you determine the 

energy distribution after these waves have superposed? If you try, you 

will find that this distribution is not uniform in space. The energy is 
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found to be maximum at certain points and minimum (or probably zero) 

at others. This type of energy distribution in space is known as an 

interference pattern. 

 

InFig. 9.1, the interference pattern of two waves in a shallow water tank 

is shown. Here 1S  and 2S  are two sources which produce circular waves 

on the water surface. The sources 1S  and 2S  have to be adjusted in such 

a way that the waves produced by them on the surface of water are in 

constant phase. The resultant of these waves will produce an 

interference pattern. When the crest of one wave falls on the crest of 

another wave, a stronger crest (i.e., one with larger amplitude) is 

produced. Similarly, when a trough of one wave falls on the trough of 

another wave, a shallower trough is produced. However, when a crest of 

one wave meets a trough of another wave, their effects cancel out. Thus 

it leads to doubling of the amplitude at some points and its reduction to 

zero at others. This leads to, what we call, 'an interference pattern.' 

 

 
Fig 9.1 Interference on the surface of water waves 

In most interference experiments performed in the laboratory, the 

interference pattern is in the form of fringes. The interference fringes are 

alternately bright and dark bands, as shown in Fig. 9.2. 

 
 

Fig 9.2 Interference fringes. 

 

A bright band appears on the screen wherever the crest of one wave falls 

on the crest of another, or wherever the trough of one falls on the trough 

of another. Wherever the crest of one falls on the trough of another, a 

dark band is produced. 
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From the above discussion, we can draw the conclusion that for 

producing an interference pattern, you require basically two sources. 

Now, the question arises, what should be the nature of these sources? 

 

9.2.1    Coherent Sources 

For producing interference, we require two coherent sources. Let us now 

discuss what coherent sources are and what their special properties are. 

 

We find from experience that to have a stable and a well-defined 

interference pattern, the two sources must emit waves either with zero, 

or with constant difference of phase, say,  . If the sources emit waves 

with zero or constant difference of phase, they are called coherent 

sources. How can we obtain such sources? The easiest way to obtain 

coherent sources is to obtain them from the same original source. 

 

One way to obtain such sources in optics is to put an opaque screen 

containing two slits in the path of waves emitted by a single source, as 

shown in Fig. 9.3. The waves originating from the slits have zero, or a 

constant difference of phase. When these waves overlap, an interference 

pattern is obtained. This you will study in detail in Subsection 9.3.2. 

 

 
 

Fig.9.3 Two coherent sources 1S  and 2S obtained from a single source S 

in an optics experiment 

In sound, two coherent sources may be obtained by dividing the original 

longitudinal wave into two parts as shown in Fig. 9.4. Here one part 

goes via path I, while the other part goes via path II. These parts 

combine again to produce interference. The intensity of sound at any 

point can easily be noted, though qualitatively, by listening to the sound 

around this point. 
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Fig 9.4 Coherent sources. Path I and II for producing interference of 

sound waves 

 

Let us now pause for a minute and think as to what will happen if 

instead of two coherent sources we use two independent sources. We 

find from experimentation that if we use any two independent sources, 

interference pattern is not produced. This is because with independent 

sources, the phase difference between the waves changes rapidly and at 

random, giving rise to fast changing interference patterns. Two 

independent light sources just give a general illumination on the screen. 

 

SAQ I 

Can two small bulbs of 60 W each placed behind two slits form two 

coherent sources for interference purpose? If not, why? 

 

9.2.2   Interference of Waves from Two Slits 

In the last section, you have seen how two coherent sources can be 

formed from a single source. In the present section you will study the 

formation of an interference pattern due to such a system. Let S be a 

point source of the waves. Here (Fig. 9.5) 1S  and 2S  are two narrow slits 

which are equidistant from the source. A screen MN is kept parallel to 

the plane of the slits. The screen is at a distance D from the mid-point of 

the slits. Since the slits are equidistant from the source, the wavefront 

reaches the slits 1S  and 2S  at the same time, i.e., with zero phase 

difference. 
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Fig 9.5: Set-up for observing the interference of wave 

 

The waves from slits 1S  and 2S , separated by a distance d , are in phase 

with each other. Whatever phase difference gets created subsequently 

between the waves from the two sources is due to their travelling 

different distances. The slits 1S  and 2S  act like coherent sources and   

waves of angular frequency   and amplitude A. Let us consider a point 

P at a distance of ix
 from S and 2x  from 2x . Let these distances be 

sufficiently large compared to d. Let the displacement at P due to the 

waves from S, be 

 

 )sin( 11 kxtAy          
 (9.1) 

 

then the displacement at the same point due to source 2S  will be 

 

 )sin( 22 kxtAy          
 (9.2)  

 

It is clear from Eqs (9.1) and (9.2) that the path difference (i.e., the 

difference between the paths covered) between the two waves at P is 

given by )( 21 xx  .This will lead to a phase difference of 

 

 
)(

2
12 xx 






  
 

This is because the phase difference is always associated with the path 

difference according to 

the relation 
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 

differencepath 

2

difference phase


  
 

Due to the superposition of waves at P we get 

 

 21 yyy   
 

In the expanded form Eq. (9.4) can be written as 

 

     = ]sincoscossinsincoscos[sin 2211 kxtkxtkxtkxtA    

     = tkxkxAtkkA  cos)sin(sinsin)cos(cos 2121    

 (9.5) 

 

The terms in parentheses are constant in time. Let us write  

 

 cos)cos(cos 121 AkkA        
 (9.6) 

and 

 )sin)sin(sin 121 AkkA        
 (9.7) 

 

so that Eq. (9.5) can be expressed as 

 

 )sincos(cossin1  ttAy   

     = )sin(1  tA        

 (9.8) 

 

Using Eqs. (9.6) and (9.7), we get 

 

 
2

21

22

21

22

1 )sin(sin)cos(cos kxkxAkxkxAA   

        = ]sinsincoscos1[2 2121

2 kxkxkkxA   

        = )cos1(2)](cos1[2 2

12

2  AxxkA    

 (9.9) 

 

where, we have used Eq. (9.3) for the phase difference  . Dividing Eq. 

(9.7) by (9.6), and expressing the sum of sine and cosine terms as 

produced, we get  

 

 21

21

coscos

sinsin
tan

kxkx

kxkx





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           = 2

)(
cos

2

)(
cos2

2

)(
cos

2

)(
sin2

2121

2121

xxkxxk

xxkxxk





 

           = 







 

2
tan 21 xx

k

  

or   = 







 

2
tan 211 xx

k

      

 (9.10) 

Eq. (9.9) gives us an expression for the intensity of the resultant wave at 

point P. as 

 

 )cos1(2 22

1  AAI       
 (9.11) 

or 

 2/cos4 22 AI   
 

Clearly, when 12/cos  , 

the intensity 
24AI   

which is the maximum intensity and may be denoted by maxI
. 

 

Now we calculate the position of maxima. Let d be the distance between 

the centers of the two slits,   be the angle at which we observe the 

beams and )( 12 xx  the path difference between the two waves. 

Then from Fig. 9.6, 

 

 d

xx 12sin



   or    )(sin 12 xxd   

 

Maxima in intensity are obtained whenever this path difference is an 

integral multiple of  , the 

wavelength of the waves used. Thus for maxima, 

 
 nd sin  with n = 0, 1, 2, …     

 (9.13) 

 

Interference minima occur whenever this path difference becomes an 

odd integral multiple of 
2/ , i.e., 

 

 2/)12(sin   nd  with n = 0, 1, 2, …    

 (9.14) 
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Fig 9.6 : Relation between d and   

 

SAQ 2 

Light passes through two narrow slits with d = 0.8mm. On a screen 

1.6m away the distance of the second order maximum from the axis is 

2.5 mm. What is the wavelength of the light used? 

 

In our discussion so far, we have assumed that the two waves have equal 

amplitudes. If, however, we assume they have amplitudes 1a and 2a

respectively, then one can show that the resultant amplitude 1A  will be 

given by 

 

 cos2 21

2

2

2

1

2

1 aaaaA        
 (9.15) 

 

In this case the maxima and minima of intensities (as will be shown in 

Subsection 9.2.3) become: 

 

 







2

21min

2

21max

)(

)(

aaI

aaI

       
 (9.16) 

 

with their ratio as 

 

 
2

21

2

21

min

max

)(

)(

aa

aa

I

I






       
 (9.17) 

 

9.2.3    Intensity Distribution in Interference Pattern 

We have seen that the two waves of amplitudes 1a  and 2a  and having a 

phase difference,  , are superposed, the resulting intensity I , is given 

by 
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 cos2 21

2

2

2

1

2 aaaaAI   
 

To study the variation of intensity with phase difference,  ,  let us plot 

a graph of I  versus  . This is shown in Fig. 9.7. When the phase 

difference is 0, 2 , 4 , etc., cos = 1. We then have maximum of 

intensity, i.e. 

 

 21

2

2

2

1

2

max 2 aaaaAI   

          = 
2

21 )( aa         

 (9.18)  

 

 
 

Fig 9.7 Graph between I  and   

 

On the other hand, whenever the phase differences is  , 3 , 5 , etc., 
1cos  . We then have minimum of intensity, i.e. 

 

 21

2

2

2

1

2

max 2 aaaaAI   

          = 
2

21 )( aa         

 (9.19)  

 

For a particular case, when the amplitudes are equal i.e., 21 aa  = a ,the 

intensity varies from a maximum of 
24a to a minimum of zero. In the 

case of light waves from a monochromatic source, one would observe 

the dark fringes of zero intensity separated by bright fringes. 

 

The intensity distribution curve shows that when the two waves arrive at 

a point on the screen (exactly) out of phase, they interfere destructively 

and the resulting intensity (or energy flux) is zero. Whatever amount of 

energy is lost from a dip in the zero intensity is, by energy conservation, 

found to be redistributed in the maximum intensity peak. 

We have seen earlier that for waves of equal amplitude, the intensity can 

be written as  

 

 2/cos4)cos1(2 222  aaI   
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Since the average value of 2/cos2   is 1/2, the dotted line at 
22aI   in 

Fig. 9.7 is the average intensity, which is actually the sum of the 

separate intensities from each slit. 

 

It can be seen from Fig. 9.5 that the path difference between the waves 

reaching P from 1S  and 2S = sin)( 12 dxx  . If   is very small, and is 

measured in radians we can use the approximation 

 

   tansin  
  

Using (9.13), we can write for maxima 

 

 
 n

D

y
dd  0sin

 
 

giving  

 

 d

nD
yn




, where n = 0, 1, 2, … 

 

where ny
 is the distance of the n th maxima from the point where the 

perpendicular bisector or the line joining the two slits meets the screen.  

 

Writing the positions of two adjacent maxima as 

  

 d

nD
yn




 
and 

 d

Dn
yn

)1(
1




 

the separation y  between any two consecutive maxima (or the fringe 

widths B ) is 

 

 d

D
yyB nn


 1

 
 

This shows that as long as   is very small, the separation between the 

two consecutive maxima of intensity is independent of n, i.e., the 

maxima are evenly spaced. Similarly, it can be shown that the separation 

between two adjacent minima is also equal to d

D

, and that they too are 

equally spaced. 
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SAQ 3 

(a)    If the two sources 1S  and 2S  in Fig. 9.3 emit waves (i) in phase, 

and (ii) out of phase by  , discuss the intensity of resultant wave along 

the perpendicular bisector of 1S  and 2S . 

(b)  If two waves of amplitude ratio 5:1 interfere, deduce the ratio of 

intensities at maxima and minima. 

 

SAQ 4 

Two loudspeakers connected to a common amplifier are 5m apart. As 

one walks along a straight path 100m away from the speakers, at what 

spatial period does the intensity vary? Assume that the wavelength of 

sound waves = 0.3m. 

 

The interference of light also explains the origin of beautiful colors from 

oil films on water or soap bubbles. In the next section, we attempt to 

discuss these in brief. 

 

9.2.4   Interference in Thin Films 

You have studied the relations for bright and dark fringes in Subsection 

9.2.3. These relations will be used to account for the colors in thin films. 

 

Consider a ray of light AB incident on a thin film of uniform thickness t 

and refractive index   as shown in Fig. 9.8. A part of this is reflected 

along BC while the remaining part is refracted along BD into the film. 

At D it is again partly reflected along DE. The ray DE partly emerges 

into the air along EF, which is parallel to BC. The incident ray thus 

divides at B into two beams of different amplitudes, out of which the 

refracted beam suffers multiple reflections at D, E, etc. EH is 

perpendicular from E on BC. 

 

The path difference between the rays BC and EF in the reflected system 

is 

 
BHDEBD  )(  

 

This can be shown to be equal to rt cos2 , i.e., 
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Fig. 9.8 Interference in thin films BD is extended to I  so that BD = DI. 

The path difference between the reflected ray BC and EF is 
rGIDEBD cos2)(    

 

Path difference = rt cos2  

 

where r  is the angle of refraction in the film. We have already learnt 

that a phase change of  takes place on reflection at a denser medium. 

This is equivalent to a path difference of 2/ . The ray BC is due to 

reflection at a denser medium. Hence the net path difference between 

the reflected rays BC and EF is given by: 

 

Path difference = 2/cos2  rt  

 

The film appears bright when 

 

 2/cos2  rt = n       

  (9.22) 

 

and dark when 

 

 2/cos2  rt = 2/)12( n      

 (9.22) 

 

We thus see that with monochromatic light alternate bright and dark 

fringes are obtained. With white light, which is a mixture of several 

colors, colored fringes are obtained. 

 

We have seen above that the path difference depends on   and r, apart 

from t and  . Path difference is different for different colors as   is 

different for different colors. Similarly, for different angles of incidence, 
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the angles of refraction r  are different. Viewing it from different 

direction shows different colors. These all lead to the appearance of 

colors in thin films. These arise because of the interference of light. 

 

9.3   DIFFRACTION 

It is experimentally observed that when a beam of light passes through a 

small opening (a small circular hole or a narrow slit) it spreads to some 

extent into the region of the geometrical shadow. This is known as 

diffraction of light. 

 

Consider a point source of monochromatic light S as shown in Fig. 9.9. 

Place an obstacle, say a penny or a sharp razor blade, halfway between 

the source and the screen. Following the rules of geometrical optics, we 

expect to see a well-defined and distinct shadow as shown in Fig. 9.9. 

Now you carefully examine the shadow. If the experiment is performed 

in a dark room and the wavelength of the light used is of the order of the 

size of the edges of the obstacle, you will find that the edges of the 

shadow are not sharp. Inside the shadow, near the edges, the intensity of 

light gradually decreases. Outside the shadow it gradually increases, 

forming alternatively bright and dark fringes as shown for a penny in 

Fig. 9.10. 

 

 
 

Fig 9.9 Diffraction due to a rectangular block 
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Fig 9.10 Photographs of diffraction pattern in the shadow of a penny 

 

Consider water waves in a ripple tank. Suppose you generate plane 

waves on the surface of water in a ripple by giving a periodic up and 

down motion to a straight vibrator such as a ruler. Consider an obstacle, 

such as a slit AB placed in the path of the waves which are travelling as 

shown in Fig. 9.11a. As long as the opening AB is large, the plane waves 

passing through it appear nearly plane waves. The edges of the emergent 

plane waves roughly correspond to the edges of the slit AB. However, 

when the width of the slit is made narrow, say comparable to the 

wavelength of the water waves, then the parallel plane waves entering 

into the small opening spread out in the form of approximately circular 

concentric arcs as shown in Fig. 9.11b. 

 

 
 

Fig 9.11 Diffraction pattern obtained by the bending of waves round 

corners 

 

Consequently, these circular waves not only travel in the straight 

direction but also around the boundaries of the opening. This 

phenomenon of bending of waves around the edges of the aperture (or of 

the obstacle) is known as diffraction. 

 

This property of bending of waves is distinctly observed when the 

wavelength of the waves involved is comparable to the size of the 

opening (or of the obstacle) through which the waves pass. For sound 
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waves of frequency 500 Hz the wavelength in air is 0.6m, while that for 

yellow light it is 
7106  m. Clearly, in the case of sound if the entrance 

to the room is about 1 m, we may observe diffraction of sound. 

However, in the case of light, the dimension of the opening must be of 

the order of 
610

m for a similar diffraction of light to be observed. Thus 

it is far more difficult to observe diffraction of light than of water waves 

or sound waves. Anyway diffraction of light can be observed in 

specially devised experiments and we will discuss these now. 

 

9.3.1    Different Types of Diffraction: Fraunhofer and Fresnel 

Diffraction of light is usually classified into two types: Fraunhofer and 

Fresnel diffractions. In Fraunhofer diffraction (or the far-field 

diffraction), the diffracting system (i.e. an obstacle, or an aperture) is so 

far away from the source that the waves generating the pattern may be 

regarded as plane. This can be achieved in the laboratory by making the 

rays of light parallel by placing the source at the focus of a convex lens. 

In Fresnel (or the near-field diffraction), on the other hand, the source of 

waves is so close to the diffracting system that the waves generating the 

pattern still retain their curved characteristics. This means that in Fresnel 

diffraction the convex lens is not used, and the wavefront remains 

spherical or cylindrical depending on the nature of the source. 

 

Whatever may be the class of diffraction, the resultant distribution of 

energy in space, or on a screen, is obtained due to the superposition of 

waves from different parts of the same wave front. In the Fraunhofer 

class, the wavefront considered is plane, while it is spherical or 

cylindrical in the Fresnel class. In interference, we have two or more 

wave sources; while in diffraction, we have many, almost tending to 

infinity. 

 

In the discussion to follow, we consider two cases in optics, one of 

diffraction due to a narrow single slit, and the other of diffraction at a 

straight edge. The former belongs to the Fraunhofer class, while the 

latter to the Fresnel class. 

 

9.3.2    Fraunhofer Diffraction by a Single Slit 

Let us analyze the diffraction pattern produced by plane waves passing 

through a single slit. We may note that a given slit or an aperture, 

howsoever small or narrow it may be, has a finite size. According to 

Huygen's principle, every point in it acts as a source of secondary 

wavelets. This fact gives rise to an interference between waves from 

various regions of the same slit. 

 

Fig. 9.12 represents an enlarged diagram of a narrow slit of width, d.Let 

us assume that as the plane wavefront reaches the slit, all points in it 

emit the secondary wavelets in the same phase. Thus if the disturbance 
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is observed at point P on the far side of the slit at angle   to the normal, 

then there is a net path difference of  sind  between the waves from the 

two edges of the slit AB. According to Eq. (9.3), this corresponds to a 

phase difference of  /sin2 d . 

 

 
 

 

Fig 9.12a Diffraction due to a single slit. Note that light is not travelling 

in a straight line. 

 

 
 

Fig 9.12b Graph of sin 

sin

versus   

 

Now imagine the slit AB isdivided into a large number of strips of equal 

width, d . Each of these strips sends secondary wavelets and the path 

difference between the waves arriving at a point P from two adjacent 

strips is equal to sind . The corresponding phase difference   is 

given by 

 

 




sin2 d


       
 (9.24) 
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If we divide the slit AS into a total number of N strips, then clearly 
dNd  ,and the total phase difference  

 

 









NdN

d



sin

2sin2

     
 (9.25) 

 

Suppose that the amplitude of the secondary wave from each strip is 

denoted by sA
.Then the resultant disturbance at P is obtained by the 

superposition of the waves from all these strips. In other words, 

 

 
)2sin()sin()sin(   tAtAtAY sss  

  + … (up to N terms)      

 (9.26) 

 

where  /2 r  is the phase difference corresponding to the distance r 

from the first slit to point P. 

 

You would recall that we have already discussed this problem of 

superposition in detail in Unit 2. It was shown there that the amplitude A 

of the resultant is obtained by the vector sum of N vectors of length sA
, 

each of which makes an angle  with its adjacent vector (see Fig. 9.13). 

 

 
 

Fig 9.13 Vectorial addition of contributions from adjacent sources lo 

give the resultant amplitude. 

 

In this case the resultant amplitude is given by 

 

 )2/sin(

)2/sin(



N
AA s

       
 (9.27) 

 

We must, however, remember that this subdivision of a slit into a finite 

number of sub-slits (or strips) is artificial. We take the limit as N , 
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0d . In this case we have a continuous variation of phase. The vector 

diagram given in Fig. 9.13 then becomes a smooth circular arc of radius 

R. The resultant amplitude is then 

 

 

sin
0AA 

        
 (9.28) 

 

with 
RNA 0 , and 




sind


. 

From Eq. (9.28), the intensity 0I
 of light at any angle   with respect to 

the incident direction is given by: 

 

 
2

2

0

sin




II 

        
 (9.29) 

 

The plot of intensity on screen is given in Fig. (9.12). 

 

For a single slit Fraunhofer diffraction pattern, the minima of intensity 

are observed at angles n from the incident direction, where 

 

 ndn  sin
        

 (9.30) 

 

Here n = 1, 2, 3, etc. is the number of the diffraction dark band, starting 

from the central maximum. 

 

From Eq. (9.29), you may also note that in the limit as 0 , 0I
 

approaches 0I
. This becomes 

the intensity of the central maximum. This is because 
1

sin
lim

0


 



 . 

 

For values of  , for which 0sin  , 
00 I

. This gives us the positions 

of various minima which appear for values of  equal to n . The 

corresponding values of n  may be calculated using the earlier given 

relation, i.e., 

 

 
 /sin nd

 
 

For finding the positions of various maxima lying in-between the 

different minima, we have to 
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differentiate the function 

sin

with respect to   and equate that to zero. 

An elaborate calculation shows that these maxima, also called the 

secondary maxima, appear at values of  429.1 , 459.2 , etc. (The 

details of this calculation will be given in our course on optics). The 

heights of these secondary maxima are 1/21, 1/61, 1/120 respectively of 

the central maxima. This gives us an idea of the intensity distribution in 

a single slit diffraction pattern which is shown in Fig. 9.12b. 

 

The angular spread of the intensity curve is given by 

 

 d


 sin

 
 

This shows that as the wavelength   increases, or the width of the slit 

decreases, the angular spread increases. That is, the narrower the slit, the 

wider the diffraction pattern. Similarly, the greater the wavelength, the 

more widely spread is the pattern. 

 

In terms of the distance D between the slit and the screen the width of 

the central maximum, y , on the screen is given by 

 

 d

D
y




        
 (9.31)  

 

The central peak in the intensity curve is called the primary maximum, 

while the other peaks are called secondary maxima. The height of the 

primary maximum is much more than any of the secondary maxima. 

 

SAQ5 

Calculate the angular spread of the central maximum for light of 

wavelength 6000Å when the width of the slit is (i) 
210

m and (ii) 
5102  m. 

 

9.3.3    Diffraction at a Straight Edge 

If we put an obstacle in the path of waves, like a shaving blade in the 

path of light from a tiny source, we find that the image of the edge of the 

blade is not sharp. Instead, the intensity of light on the screen shows a 

pattern as shown in Fig. 9.14. The light is also found in the region which 

otherwise should have been a shadow region. 
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Fig 9.14 Diffraction due to an obstacle placed in the path of tight waves. 

Note that there is light intensity in the Geometrical shadow region, 

showing that light is not travelling in a straight line. 

 

The intensity curve of a diffraction pattern is always quite different from 

that of an interference pattern. In the latter, the heights and widths of 

peaks are always equal (see Fig. 9.7) meaning thereby that all the 

maxima (or minima) are of the same intensity, and are equally spaced. 

This, however, is not the case in a diffraction pattern. In a diffraction 

pattern, the maxima (or minima) are not of same intensity, and are not 

equally spaced (see Figs. 9.12 and 9.14). 

 

SAQ6 

Sound waves of frequency 1650 Hz fall normally on an opening of 

width 0.6m. A listener walks parallel to the opening at a distance of 3 m, 

starting from a point on the perpendicular bisector of the opening. Find 

the positions at which he will observe a minima of sound. 

Take the speed of second in air to be 330 
1sm . 

9.4    SUMMARY 

1.     Two sources are said to be coherent if they emit waves with no or 

constant difference of  

phase.  

 

2.     As a result of the superposition of waves from two coherent 

sources, the distribution of      

energy in space is not uniform. It is found to alternately pass through 

maxima and minima. Such a distribution of energy is called an 

interference pattern. 
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3.     If two waves of the same frequency and of amplitudes 1a and 2a

,and phases 1 and 2  are acting on a particle, then according to the 

superposition principle, the amplitude A of the resultant wave is 

represented by  

  )cos(2 2121

2

2

2

1

2   aaaaA  
 

4.     The phase difference between two interfering waves (from two 

coherent sources), if they travel in different paths, is calculated by using 

the relation:  

phase difference =  /2  (path difference) 

 

Maxima in intensity are observed where the path difference is an 

integral multiple of  ,        the wavelength of light used. 

 

5.     The distance between any two adjacent maxima or minima in an 

interference pattern is  given by: 

  d

D
 

 

where   is called the fringe width,   is the wavelength of the light 

used, d  is the distance between the two coherent sources, and D is the 

distance between the sources and the screen.  

 

6.     Diffraction refers to the bending of waves around corners. There 

are two classes of 

diffraction patterns, named as the Fraunhofer and the Fresnel 

diffractions.  

 

7.     Fresnel diffraction phenomena are observed when the source and 

the screen for observing the diffraction pattern are at a finite distance 

from the diffracting aperture or the obstacle. 

 

8.     In the Fraunhofer diffraction the source and the screen are at 

infinite distance from the aperture causing the diffraction. 

 

9.     In a single slit diffraction pattern, the minima in intensity are 

observed at angles n  given by: ndn  sin
. 

 

9.5   TERMINAL QUESTIONS 

1.     What will be the path difference between the light waves from 

two coherent sources to produce the third dark fringe? It is given that the 

wavelength of the light is 5896Å. 

 

2.     Young's experiment is performed with the light of the green 

mercury line. If the fringes are measured with a micrometer eye-piece 
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80 cm behind the double slit, it is found that 20 of them occupy a 

distance of 10.92 mm. Find the distance between two slits, given that the 

wavelength of green mercury line is 5460 Å. 

 

3.     Light of wavelength 5000Å is incident normally on a slit. The 

first minimum of the diffraction pattern is observed to lie at a distance of 

5mm from the central maximum on the screen placed at a distance of 2 

m from the slit. Calculate the width of the slit. 

 

9.6    SOLUTIONS 

SAQs 

 

SAQ 1 

The light waves emitted by these bulbs are neither in the same phase, 

nor are they with a constant difference of phase. 

 

SAQ 2 

For small angles, sin  can be set equal to y/D, where y is the distance of 

a given maximum from the axis and D is the distance from the slits to 

the screen. For a maximum of second order, we can write: 

  nd sin  with n = 2 

which gives:                         

 
n

D

y
d 









 

or nD

dy


 

where y = 2.5 mm, D = 1.6 m and d = 0.8 mm 

 
mm

m

mmmmmm 3
3

1025.1
8.1

)1025.1)(5.2)(8.0( 






 

  

SAQ 3 

(a)  Path difference between waves along the perpendicular bisector 

is zero. If sources emit waves in phase, there will be maximum intensity 

along the perpendicular bisector. In the second case, there will be 

minimum of intensity along the perpendicular bisector. 

(b) 

5
25

2

2

2

2

2

2

2

1 
a

a

a

a


 

 

25.2
16

36

)15(

)15(
2

2

min

max 





I

I

 
 

SAQ 4 

 m

m

d

D
y

0.5

1003.0 2



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     = 6.0 m 

 
 

SAQ 5 

(i)    Using Eq. 9.30 

  

8

2

10

106000
10

106000
sin 









md




m 

 

For such a small value of sin , 

 230

1
106106000sin 58  

degrees 

(ii) 

5

5

10

103000
102

106000
sin 











 

           = 0.03 radians 

           = 1416.3

18003.0 

  

           = 1.8 degrees 

 

 
 

SAQ 6 

 
2.0

1650

330

frequency

 speed


m and 

 6.0d m 
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 Positions of minima appear where 

  nd sin , with n = 1, 2, 3, … 

 Positions of minima thus lie along the directions d

n
n


 1sin

, 

i.e., 

 

011

1 19
3

1
sin

6.0

2.0
sin  

 

 

011

2 42
3

2
sin

6.0

2.02
sin 


 

 
 The observer will find minima at 

 344.0319tan3tan 0

11  Dx  
      = 1.03 m 

 9.0342tan3tan 0

22  Dx  
      = 2.7 m 

 (Note that the positions of minima are not equidistant.) 

 

TQs 

1. Let   be the path length between waves for the 3rd dark fringe. Then, 

  2/)12(   n  with 2n  

   5896Å = 5896
1010  m 

  
610 104740.12/)1058965(   m 

 

2. The fringe width   in Young’s experiment is dD /  . Since 20 

fringes occupy a distance of 10.92 mm, the fringe width   is 

  )20/92.10( mm = )20/1092.10( 3 m 

 Also, 

 D = 80 cm = 0.8 m and 
710460.5  m 

  
3

7

1092.10

208.010460.5







d

m = 
4100.8  m 

      = 
1100.8  mm = 0.8 mm 

 

3. The angles of diffraction for minimum intensity due to Fraunhofer 

diffraction at a single slit are given by: 

   nd sin  with n = 1, 2, 3, … 

 For the first minimum, n = 1. We can thus write 

   sind  
 If   is small, then  sin (  is in radians) 

   d  or d/  radians 

 Here,  = 5000Å = 
8105000  cm and d = ? 

  d/105000 8  radians     

 (A) 
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The distance between the first minimum and the central maximum is 0.5 

cm, and the distance of the screen from the slit is 2 m. 

 i.e., 200 cm. This gives 

  200/5.0  radians      

 (B) 

Equating Eqs. (A) and (B), we get 

 cm

cm

d

cm

200

5.0105000 8


 

 
or 

 5.0/200105000 8   cmd  
     = 0.02 cm 

 

9.7 Reference for further Studies 

 

Textbooks 

 

1. The Physics of Vibrations and Waves. By H. John Pain. 6th Edition, 

2018. Available at: 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATION

S_AND_WAVES_Sixth_Edition 

2. Oscillations and Waves: An Introduction by Richard Fitzpatrick. 3rd 

Edition, 2020. ISBN: 1466566086. Publisher: CRC Press. https://z-

lib.is/book/oscillations-and-waves-15178533 

3. Stress, Vibration, and Wave Analysis in Aerospace Composites. By 

Victor Giurgiutiu 1st Edition, 2022. Available at: 

https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-

aerospace-composites/giurgiutiu/978-0-12-813308-8 

4. Introduction to the Physics of Waves by Tim Freegarde 1st edition, 

2013. 

https://www.google.com.ng/books/edition/Introduction_to_the_Physics_

of_Waves/Q-

daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=fron

tcover 

Video Links 

 

https://youtu.be/hnZ1FKVWN4k 

 

https://youtu.be/gDpvJ2jLA5I 

 

https://youtu.be/LJbpXx8fMUk 

 

https://youtu.be/JZaFl8yR1tc 

 

https://youtu.be/TAGlpuMYdk4 

 

https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://www.academia.edu/4560525/THE_PHYSICS_OF_VIBRATIONS_AND_WAVES_Sixth_Edition
https://z-lib.is/book/oscillations-and-waves-15178533
https://z-lib.is/book/oscillations-and-waves-15178533
https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
https://shop.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://www.google.com.ng/books/edition/Introduction_to_the_Physics_of_Waves/Q-daRiE7MGEC?hl=en&gbpv=1&dq=textbook+on+waves&printsec=frontcover
https://youtu.be/hnZ1FKVWN4k
https://youtu.be/gDpvJ2jLA5I
https://youtu.be/LJbpXx8fMUk
https://youtu.be/JZaFl8yR1tc
https://youtu.be/TAGlpuMYdk4
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