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Study Guide and Course Introduction  
 

The best way to learn a subject is to solve problems. We have given many 

solved examples, self-assessment questions and terminal questions. 

Answer to Self-Assessment Exercises and TMAs are given at the end of 

each unit. 

 

After reading a section of a particular unit ask yourself - What have I 

learnt? Attempt all self-assessment questions. Don't skip any of them as 

they are designed to assess your understanding of the subject. But don't 

get tempted to look at the answers given at the end of each unit before you 

try out the Self-Assessment Exercises and Tutor marked Assignments! 

 

In this course, we shall study electrostatics in an insulating medium, as 

well as the magnetic properties of matter. 

 

As you know, in an insulator, there are no free charges that can move 

through the material under the influence of an electric field. The only 

possible motion in the presence of an electric field is a small displacement 

of the positive and negative charges in opposite direction. The 

displacement is usually small as compared to atomic dimensions. The 

relative permittivity r , of any insulator is also called its dielectric 

constant. Of course, the name is probably relevant because all insulators 

exhibit an effect called a dielectric effect, which is a very useful name. 

We have tried to develop the concept in a very simple way so that you 

should not encounter any difficulty in understanding them. At some 

relevant places, we have introduced SAQ so that you can check the 

progress of your understanding the concept. In case, you are unable to 

solve any SAQ then, you should go through the previous section and again 

try to solve it. After solving the Self-Assessment Exercises you can check 

them from the answers given at the end of the book. We have also given 

some TMA's which you will solve after completing the unit. These TMA's 

cover the whole unit and their answers are also given at the end of the 

unit. 

 

In Unit 1, we will describe a simple model of the dielectric material and 

the ' behaviour of a dielectric in an electric field. After that we have 

introduced a new vector known as displacement vector and establish a 

relationship between displacement vector D & electric field E. Then, we 

have solved some boundary value problem for D and E. In the last section 

of the present this unit you will study Dielectric strength and Dielectric 

break down. 

 

In Unit 2, we will develop the concept which connects charge and 

potential. This is known as capacitance and the device in which electric 

fields are set up for the purpose of charge 'storage' is called a capacitor. 
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It will be clear to you later that effective capacitors need to have large 

conductor area separated by a small gap. We have also described energy 

stored in a capacitor and in a dielectric medium. In the last section of this 

unit you will study different forms of practical capacitors which are 

commercially used. 

 

In unit 3, you will study the microscopic properties of dielectric. Here, 

you will learn about the microscopic picture of a dielectric in a uniform 

electric field, calculation of local field and Clausius-Mossotti formula in 

the case of a gas. After that you will establish the relation between 

polarisability, relative permittivity and refractive index. In the last section 

of this unit you will learn the effect of an alternating field on a dielectric. 

 

In Unit 4 we study how the various materials behave in a magnetic field. 

In order to understand the magnetic properties of material, you will study 

the magnetic properties of the atom. You will see how the atom gives rise 

to magnetic moment, and discover that in the presence of a magnetic field 

the magnetic moment undergoes “precession.” Paramagnetism and 

diamagnetism have been explained from the point of view of classical 

physics.  

 

Unit 5 is an extension of Unit 4. In this unit, ferromagnetism is explained. 

It introduces the auxiliary magnetic field H in addition to the magnetic 

induction B. Finally, it considers the analysis of magnetic circuits.  
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UNIT 1    MACROSCOPIC PROPERTIES OF 
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1.0    INTRODUCTION 
 

In the previous courses in electromagnetism, you have learnt the 

concepts of electric field, electrostatic energy and the nature of the 

electrostatic force. However, for reasons of simplicity we confined, for 

most parts, our considerations of these concepts for charges that are 

placed in vacuum. For example, Coulomb's law of electrostatic force is 

the electric field due to a distribution of charges given in Unit 4; refer to 

the situation in which the surrounding medium is vacuum. Of equal 

importance is the situation in which the electrical phenomenon occurs in 

the presence of a material medium. Here we must distinguish between 

two different situations, as the physics of these situations is completely 

different. The first situation is when the medium consists of insulating 

materials i.e., those materials which do not conduct electricity. The 

second situation corresponds to the case when the medium consists of 

conducting materials, i.e. materials like metals which are conductor of 

electricity. The conducting materials contain electrons which are free to 

move within the material. These electrons move under the action of an 

electric field and constitute current. We shall study conducting materials 

and electric fields in conducting materials at a later stage. 

 

In the present unit, you will study the electric field in the presence of an 

insulator. In these materials there are practically no free electrons or 

number of such electrons is so small that the conduction is not possible. 

In 1837, Faraday experimentally found that when an insulating material 
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– also called dielectric (such as mica, glass or polystyrene etc.) – is 

introduced between the two plates of a capacitor, it is found that the 

capacitance is increased by a factor which is greater than one. This 

factor is known as the dielectric constant (K) of the material. It was also 

found that this capacitance is independent of the shape and size of the 

material but it varies from material to material. In the case of glass, the 

value of the dielectric constant is 6, while for water it is 80. All the 

electrons in these materials are bound to their respective atoms or 

molecules. 

 

When a potential difference is applied to the insulators no electric 

current flows; however, the study of their behaviour in the presence of 

an electric field gives us very useful information. The choice of a proper 

dielectric in a capacitor, the understanding of double refraction in quartz 

or calcite crystals is based on such studies. Natural materials, such as 

wood, cotton, natural rubber, mica are some popular examples of 

electric insulators. A large number of varieties of plastics are also good 

dielectrics. 

 

Dielectric substances are insulator (or non-conducting) substances as 

they do not allow conduction of electricity through them. 

  

In this unit first, of all we will study a simple model of dielectric 

material and deduce a relationship between applied field E and the 

dipole moment p of a molecule/atom. You will learn about electric 

polarisation in a dielectric material and define polarisation vector P. You 

must have studied Gauss's law in vacuum. You will now apply it to a 

dielectric medium. Here we will also introduce you to a new vector 

known as the electric displacement vector D. After that we will discuss 

the continuity of D and E at the interface between two dielectrics. 

 

In recent years dielectric materials have become important especially 

due to their large scale use in electric and electronic devices. There is 

high demand for the improvement of operating reliability of these 

devices. Reliability of these devices is measured to a great extent by the 

quality of electrical insulation. In the last section you will study 

dielectric strength and break down in dielectrics. 

In the next unit you will study the details of capacitors, especially the 

capacitance of a capacitor, energy stored in a capacitor, capacitor with 

dielectric, different forms of capacitors, etc. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the behaviour of a dielectric in an electric field 

 deduce Gauss's law for a dielectric medium 

 define dielectric polarisation and classify  dielectrics as polar and 

nonpolar 

 explain Displacement Vector (D) and relate it to the electric field 

strength (E) 

 define dielectric constant 

 state and derive the boundary conditions on E and D 

 explain dielectric strength and dielectric breakdown. 
 

3.0 MAIN CONTENT 
 

3.1     Simple Model of the Dielectric Material 
 

You must be aware that: 
 

 every material is made up of a very large number of 

atoms/molecules, 

 an atom consists of a positively charged nucleus and negatively 

charged particles, with electrons revolving around it, 

 the total positive charge of the nucleus is balanced by the total 

negative charge of the electrons in the atom, so that the atom, as a 

whole, is electrically neutral w.r.t. any point present outside the 

atom, 

 a molecule may be constituted by atom of the same kind, or of 

different kinds. 
 

To understand the polarisation we shall consider a crude model of the 

atom. A simple crude model of an atom is shown in Fig. 1.1. 

 

 
Fig. 1.1 Model of an Atom 

The nucleus is at the centre, and the various electrons revolving around 

it can be thought of as a spherically symmetric cloud of electrons. For 

points outside the atom this cloud of electrons can be regarded as 

concentrated at the centre of the atom as a point charge. 
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In most of the atoms and molecules, the centres of positive and negative 

charges coincide with each other, whereas, in some molecules the 

centres of the two charges are located at different points. Such 

molecules are called polar molecules. 

 

Further, we note that in dielectrics, all the electrons are firmly bound to 

their respective atoms and are unable to move about freely. In the 

absence of an electric field, the charges inside the molecules/atoms 

occupy their equilibrium positions. The arrangement of the molecules in 

a dielectric material is shown in Fig. 1.2. 

 

 
Fig. 1.2 The arrangement of the atoms in a dielectric material 

 

 

The charge centres are shown coincident at the centre of the sphere. 

Keeping this picture of a dielectric in mind we shall proceed to study its 

behaviour in an electric field in the next section. 

 

3.2 Behaviour of a Dielectric in an Electric Field 

 
You have seen in Section 1.2 that in a dielectric material, the centres of 

positive and negative charges of its atoms are found to coincide at the 

centre of the sphere. It is shown in Fig. 1.3. 

 

 

 
Fig. 1.3 Atoms in which the centres of charges are coincident with 

the centre of the spheres 
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A charge experiences a force in the presence of an electric field. 

Therefore, when a dielectric material is placed in an electric field, the 

positive charge of each atom experiences a force along the direction of 

the field and the negative charge in a direction opposite to it. This results 

in small displacement of charge centres of the atoms or molecules. This 

is also true of molecules whose charge centres do not coincide in the 

absence of an electric field. The separation of the charge centres due to 

an applied field E is shown in Fig. 1.4.  

 

Electric dipole moment per unit volume is known as polarisation 

 

 

 
Fig. 1.4 The separation of the charge centres due to an applied field 

E. 

 

 

This phenomenon is called polarisation. Thus when an electrically 

neutral molecule is placed in an electric field, it gets polarised, with 

positive charges moving towards one end and negative charges towards 

the other. The otherwise neutral atom thus becomes a dipole with a 

dipole moment, which is proportional to electric field.  

 

Now we consider another kind of molecule in which the charge centres 

do not coincide as shown in Fig. 1.5. 

 

 
Fig. 1.5 A dielectric material in which charge centres do not 

coincide 
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Due to this reason the molecule already possesses a dipole moment. 

Such materials are called polar materials. For such materials, let the 

initial orientation of the dipole axis be AOB as shown in Fig. 1.6. 

 

 
Fig. 1.6 Molecule possessing a dipole moment 

 

 

Now an electric field E is applied. This field pulls the charge centres 

along lines parallel to its direction. Thus the electric field exerts a torque 

on the dipole causing it to reorient in the direction of the field. In the 

absence of an electric field these polar materials do not have any 

resultant dipole moment, as the dipoles of the different molecules are 

oriented in random directions due to thermal agitation. When an electric 

field is applied, each of these molecules reorients itself in the direction 

of the field, and a net polarisation of the material results. The 

reorientation or polarisation of the medium is not perfect again due to 

thermal agitation. Thus polarisation depends both on field (linearly) and 

temperature. 

 

SELF ASSESSMENT EXERCISE 1 
 

What are dielectrics? In what respects do they differ from conductor?  

 

 

3.2.1 Non-Polar and Polar Molecules 
 

We have considered two types of molecules. One in which the centre of 

positive charges coincide with the centre of negative charges. The 

molecule as a whole has no resultant charge. Molecules of this type are 

called Non-polar. Examples of Non-polar molecules are air, hydrogen, 

benzene, carbon, tetrachloride, etc. The second type is the one in which 

the centre of positive charges and the centre of negative charges do not 

coincide. In this case the molecule possesses a permanent dipole 

moment. This type of molecule is called a Polar Molecule. Examples of 

polar molecules are water, glass, etc. 
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Thus we see that, a Non-polar molecule acquires a Dipole Moment only 

in the presence of an electric field: whereas in a Polar Molecule the 

already existing dipole moment orients itself in the direction of the 

external electric field. Even in polar molecules, there is some induced 

dipole moment due to additional separation of charges, however this 

effect is comparatively much smaller than the reorientation effect and is 

thus ignored for polar molecules. 

 

3.2.1 Polarisation Vector P 
 

Let us study the effect of an electric field on a dielectric material by 

keeping a dielectric slab between two parallel plates as shown in Fig. 

1.7. The electric field is set up by connecting the plates to a battery. 

 

We limit our discussion to a homogeneous and isotropic dielectric. A 

homogeneous and isotropic dielectric is one in which the electrical 

properties are the same at all points in all directions. The applied electric 

field displaces the charge centres of the constituent molecules of the 

dielectric. The separation of the charge centres is shown in Fig. 1.7. We 

find that the negative charges of one molecule faces the positive charges 

of its neighbour. Thus within the dielectric body, the charges neutralise. 

However, the charges appearing on the surface of the dielectric are not 

neutralised. These charges are known as Polarisation Surface Charges. 

The entire effect of the polarisation can be accounted for by the charges 

which appear on the ends of the specimen. The net surface charge, 

however, is bound and depends on the relative displacement of the 

charges. It is reasonable to expect that the relative displacement of 

positive and negative charges is proportional to the average field E 

inside the specimen. 

 

 
Fig. 1.7: Effect of an Electric field on a dielectric material by 

keeping a dielectric slab between two parallel plates 

 

 

From Fig. 1.7, we find that these polarisation charges appear only on 

those surfaces of the dielectric which are perpendicular to the direction 

of the field. No surface charges appear on faces parallel to the field. 

Such a situation occurs only in the special case of a rectangular block of 

dielectric kept between the plates of a parallel plate condenser. It is 
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shown later in this section that surface density of bound charges depends 

on the shape of the dielectric material. 

 

The polarisation of the material is quantitatively discussed in terms of 

dipole moment induced by the electric field. Recall that the moment of a 

dipole consisting of charges q and -q separated by a displacement d is 

given by P = q d. It is known from experiments that the induced dipole 

moment (p) of the molecule increases with the increase in the average 

field E. We can say that p is proportional to E 

 

or Ep                  (1.1) 

 

where   is the constant of proportionality known as Molecular/Atomic 

Polarisability. Let us now define a new vector quantity which we shall 

represent by P and shall call it polarisation of the dielectric or just 

polarisation. Polarisation P is defined as the electric dipole moment per 

unit volume of the dielectric. It is important to note that the term 

polarisation is used in a general sense to describe what happens in a 

dielectric when the dielectric is subjected to an external electric field. It 

is also used in this specific sense to denote the dipole moment per unit 

volume. 

 

Let us first consider a special case of n polarised molecules each with a 

dipole moment p present per unit volume of a dielectric and let all the 

dipole moments be parallel to each other. Then from the definition of P 

 
pP n  

 

 

 

From the above definition, units of P are 

 

Units of P = 2

23
mC

m

Coulomb

m

mCoulomb    

 

In general, P is a point function depending upon the coordinates. In such 

cases, where the ideal situation mentioned above is not satisfied, we 

would consider an infinitesimal volume V throughout which all the p's 

can be expected to be parallel and write the equation 

 







N

i

i

V V1
0

lim
P

P  ( N  is the number of dipoles in volume V)       (1.la) 

 

Here V is large compared to the molecular volume but small compared 

to ordinary volumes. Thus, although p is a point function, it is a space 



PHY 204                                                                                     ELECTRODYNAMICS I 

 

9 

average of p. The direction of p will, of course, be parallel to the vector 

sum of the dipole moment of the molecules within V. In such a case 

where the p's are not parallel, as in a dielectric that has polar molecules, 

Eq. (1.la) still holds as the defining equation for p. 

 

SELF ASSESSMENT EXERCISE 2 
 

Show that the dipole moment of a molecule p and the dipole moment per 

unit volume are related by 

 

P = np 

 

where n  is the number of molecules per unit volume of the dielectric. 

To understand the physical meaning of P, we consider the special case 

of a rectangular block of a dielectric material of length L and cross-

sectional area A. Fig. 1.8 represents such a block. 

 

 
Fig. 1.8 Surface polarisation charges on a rectangular block of 

dielectric 

 

 
Fig. 1.8a  Surface polarisation charges. Actual displacement of charge on 

right is cosdx  

 

 

Let p be the surface density of polarisation charges, viz., the number of 

charges on a unit area or charge/unit area on the surface. The total 

number of polarisation charges appearing on the surface = A  

 

Induced dipole moment = LA               (1.2) 
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Volume of the slab = AL  

 

By definition dipole moment per unit volume = P 

 

Induced dipole moment = ALP               (1.3) 

Now we can compare the magnitudes of Eqs. (5.2) and (5.3) to obtain 

the magnitude P of the polarisation vector to be 

 

pP                   (1.4) 

 

Thus, the surface density of charges appearing on the faces 

perpendicular to the field is a measure of P, the polarisation vector. Eq. 

(1.4) is true for a special geometry when the dielectric material is a 

rectangular block. For a block shown in Fig. 1.8a the surface on the right 

is not perpendicular to P. The normal unit vector (n) to the surface 

makes an angle   with P.   If the charges are displaced by a distance dx 

the effective displacement is cosdx  for the surface on the right. If n is 

the number of charged particle and q is the charge on each particle, then 

the surface charge density   is given by 

 

np Pqdxn  nP cos                (1.5) 

 

where q is the positive charge on each atom/molecule and Pn is the 

component of P normal to the surface on the right. This also shows why 

no charges appear on the surfaces parallel to the applied field (  = 90°) 

and on the left side of the block the angle between P and n, the unit 

vector normal to the surface is 180°; the surface charge density is 

negative. 

 

For an ideal, homogeneous and isotropic dielectric, the polarisation P is 

proportional to the average field E, i.e., 

 

EP 0                  (1.6) 

 

Where EP 0/   and is known as electrical susceptibility. This 

relation is related to Eq. (1.1); Eq. (1.1) refers to one molecule, whereas 

Eq. (1.6) refers to the material. Thus the latter is a macroscopic version 

of Eq. (1.1). The constant 0  is included for the purpose of simplifying 

the later relationships. 

 

The relation (1.6) requires that P be linearly related to the average 

(microscopic) field. This average field would be the external applied 

field as modified by the polarisation surface charges. The susceptibility 

is a characteristic of the material and gives the measure of the ease with 
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which it can be polarised, it is simply related to   for the nonpolar 

materials. 

 

From SAE 1 npP   using Eq. (1, 4), we get 

 

 npp    

 

The dipole moment per atom in this case p = cosdxq   

 

3.3 Gauss' Law in a Dielectric 
 

You have studied Gauss law in vacuum. Here, we shall modify and 

generalise it for dielectric material. Consider two metallic plates as 

shown in Fig. 1.9. Let E0 be the electric field between these two plates. 

Now, we introduce a dielectric material between the plates. When the 

dielectric is introduced, there is a reduction in the electric field, which 

implies a reduction in the charge per unit area. Since no charge has 

leaked off from the plates, such a reduction can be only due to the 

induced charge appearing on the two surfaces of the dielectric. Due to 

this reason, the dielectric surface adjacent to the positive plate must have 

an induced negative charge, and the surface adjacent to the negative 

plate must have an induced positive charge of equal magnitude. It is 

shown in Fig. 1.9. 

 

 
Fig. 1.9 Induced charges on the faces of a dielectric in an external 

field 

 

 

For the sake of simplicity, you consider the charge on the surface of 

dielectric material as shown in Fig. 1.9a. Now we apply Gauss' flux 

theorem to a region which is wholly within the dielectric such as the 

Gaussian volume at region 1 of Fig. 1.9a. 
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Fig.1.9a Gaussian volumes at 1 and 2 inside a dielectric. The 

displacement of charges at the surfaces perpendicular to the applied 

field is shown 

 

 

The net charge inside this volume is zero even though this material is 

polarised. The positive charges and negative charges are equal. For this 

volume the flux of field through the surface is zero. We can write 

 

0

1

0

1at  surface

 
S

dd SPSE                 (1.7) 

 

This shows that "lines" of P are just like lines of E except for a constant 

)( 0 . Instead of this Gaussian volume, suppose we take another one at 

region 2. In this Gaussian volume one surface is inside the dielectric and 

the other is outside it The curved surface is parallel to the lines of field 

(E or P). For the surface of this Gaussian volume outside the material, P 

is nonexistent. However, lines of P must terminate inside the Gaussian 

volume. Hence the net flux of P is finite and negative as shown in 

Fig.1.9a since the component of P normal to the surface, i.e. nP and 

p the surface charge density are equal to each other in magnitude, the 

surface integral 

 

dSdSPd pn  SP                (1.8) 

 

= pq  

 

Where pq  is the charge inside the Gaussian volume. Thus, the flux of P 

is equal to the negative of the charge included in the Gaussian volume. 

Notice the difference in the flux of P and the flux of E. 

 

Now we can generalise Gauss’ flux theorem. Since the effects of 

polarised matter can be accounted for by the polarisation surface 

charges, the electric field in any region can be related to the sum of both 

free and polarisation charges. Thus in general 

 

)(
1

d
0surface closed

pf qq  
SE                (1.9) 
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where pq represents free charges and pq  the polarisation charges. 

 

SELF ASSESSMENT EXERCISE 3 
 

Two parallel plates of area of cross section of 100cm2 are given equal 

and opposite charge of 7100.1  C. The space between the plates is filled 

with a dielectric material, and the electric field within the dielectric is 

3.3   105 V/m. What is the dielectric constant of the dielectric and the 

surface charge density on the plate? 

Using Gauss' theorem for vectors this surface integral can be converted 

into a volume integral. Thus the above equation becomes 

 

 
V

pf

V

dVdV )(
1

)(
0




E             (1.10) 

 

where f and p  are respectively the free and bound charge densities. 

As this is true for any volume, the integrands can be equated. Thus 

 

pf   E                (1.11)  

 

The flux of   through the closed surface is given by (See equation 1.8) 

 

  dVqd pp SP  

which can be written using Gauss' flux theorem 

 

 

 E0 = Pf  

 PE 0  = f  

 )( 0 PE    = f  

 D   = f              (1.12) 

 

where PED  0 is known as the electric displacement vector. (Note 

that 1.12 is already Gauss's Law.)  

 

SELF ASSESSMNENT EXERCISE 4  

 

Show that Eq. (1.12) reduces to Eq. (1.11) when P = 0. 

 

The dimension of D is the same as that of P. The units of D are 2mC . 
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From Eqs. (1.12) and (1.10) we observe that the source of D is the free 

charge density f , whereas the source of E is the total charge density 

pf   . 

 

When we write 00EP  (see Eq. 1.5), we have  

 

ED 0)1(                (1.13) 

 

Where r = )1(   is known as the relative permittivity of the medium. 

Another usual form of electric displacement vector D is given by 

 

ED                 (1.14) 

 

where 0 r . 

 

Eq. (1.14) provides the relation between Electric displacement D and 

electric field E. 

 

SELF ASSESSMENT EXERCISE 5 

 

Consider two rectangular plates of area of a cross section of 
41045.6  m2. Each is kept parallel to the other. The separation between, 

them is 3102  m and a voltage of 10V is applied across these plates. If a 

material of dielectric constant 6.0 is introduced within the region 

between the two plates, calculate: 

 

(i)  Capacitance 

(ii)  The magnitude of the charge stored on each plate. 

(iii)  The dielectric displacement D 

(iv)  The polarisation 

 

3.4 Displacement Vector D 
 

It is one of the basic vectors for an electric field that depends only on the 

magnitude of free charge and its distribution. 

 

In Section 1.4, we introduced a new vector D and called it Displacement 

Vector (or) Electric Displacement. 

 

We found (see Sec. 1.4) that the electric displacement is defined by 

PED  0 ; Gauss' law in dielectric is  given by dVqd f SD . For an 

isolated charge q, kept at the centre of a dielectric sphere of radius r, we 

find that the Gauss' flux theorem gives (being a case of spherical 

symmetry) 
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 qDr ))(4( 2  

 

Which gives 

 
24/ rq rD                 (1.15) 

 

 ED  we get 24/ rq rE             (1.16) 

 

From (1.16) it follows that the force F, between two charges 1q  and 2q , 

kept at a distance r in a dielectric medium is given by 

 

rF
2

21

4 r

qq


                (1.17) 

 

and the expression for the potential   at a distance r from q is 

 

rq  4/                (1.18) 

 

When we compare Eq. 1.16 with the corresponding expression for E in 

free space, Eq. 1.17 and 1.18 show similar expressions for Coulomb 

force and potentials. We may find that in all these expressions, 0  has 

been replaced by   in a dielectric medium. 

 

 

SELF ASSESSMENT EXERCISE 6 

 

Two large metal plates each of area 1 sq. metre face each other at a 

distance one metre apart. They carry equal and opposite charges on their 

surfaces. If the electric intensity between the plates is 50 newton per 

coulomb, calculate the charge on the plates. 

 

With this background, we may wrongly conclude that D for a dielectric 

medium is same as E for free space. It is therefore important to clearly 

distinguish between these two vector quantities: 

 

 E is defined as the force acting on unit charge, irrespective of 

whether a dielectric medium is present or not. It is to be 

calculated taking into account the free or external charges as well 

as the induced charges of the medium. On the other hand D is 

defined as PED  0 , and it is a vector like electric field, but is 

determined only by free or external charges. Note from Eqs. 

(1.15) and (1.16) that the value of D does not depend upon the 
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dielectric constant while the value of E as well as the force 

between the charges involve  . 

 

 The quantity   SD d  is usually referred to as the electric flux 

through the element of area Sd . For this reason D is also known 

as electric flux density. From the integral form of Gauss' law in 

dielectrics, we find that the total flux is q, through an area 

surrounding a charge q, and this flux is unaltered by the 

presence of a dielectric medium. This is not true in the case of 

total flux of electric intensity, since 

 

 


q
d

S

 SE  

 

 Since D   is a vector, we may draw lines of displacement in the 

same way as we draw the lines of force. The number of lines of 

displacement passing through a unit area is proportional to (D). 

These lines of displacement begin and end only on free charges, 

since the origin of D is the conduction charges/charge density 

(see Section 1.4). 

 

Again by using Gauss' law it can be shown easily that the lines of 

displacement are continuous in a space containing no free charges. In 

other words, at the boundary of two dielectrics, if there are no free 

charges the lines of D are continuous, while the lines of E are not 

continuous because lines of electric force can end on both free and 

polarisation charges. This behaviour of D and E is dealt with in a greater 

detail in the next section. These rules are contained in two Boundary 

conditions at the interface between two dielectric media. 

 

3.5     Boundary Conditions on D and E 
 

We wish to determine the relationships that E and D must satisfy at the 

interface between two dielectrics. Here, we will assume that there are 

only polarisation charges at the interface i.e., since the dielectrics are 

ideal they have no free electrons, and thus there is no conduction charge 

at the interface. Later, these boundary conditions will be useful for 

proving laws of reflection and refraction of electromagnetic waves. Now 

we will determine the boundary condition for vector D. 

 

Boundary conditions give the way in which the basic vectors change 

when they are incident on the surface of discontinuity in dielectric 

behaviour. 

 

 



PHY 204                                                                                     ELECTRODYNAMICS I 

 

17 

Boundary Condition for D 
 

We apply the Gauss' law for dielectrics to a small cylinder in the shape 

of a pill box which intersects the boundary between two dielectric media 

and whose axis is normal to the boundary. 

 

Fig. 1.10 shows the cylinder. Let the height of the pill box be very small 

compared to its cross sectional area. The contribution to   SD d  comes 

from the components of D normal to the boundary. That is, 

 

  SD d  = SS dDdD nn 12                (1.19) 

Fig. 1.10 Boundary condition for D between two dielectric media 

 

where 1nD  and 2nD  are the normal components of D in media 1 and 2 

respectively. 1nD  is opposite to the direction of the normal to dS in the 

medium )( 1 . Further   SD d  = 0 since there are no free charges on the 

boundary surface. 

 

 21 nn DD                (1.20) 

 

Thus the normal components of electrical displacement vectors are 

continuous across the boundary (having no free charges). 

 

 

Boundary condition for E 

 

We shall make use of the conservative nature of the electric field in this 

case. To obtain the boundary condition for E, we calculate the work 

 

dSd nDSD   where n is the unit vector along the outward drawn 

normal to the area dS. This representation gives the boundary 

condition as 21 DnDn   

which gives Eq. (1.20). Otherwise the boundary conditions becomes 

2211 coscos  DD   

where 1  and 2  are the angles between n and 1D  and n and 

2D respectively. 
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done in taking a unit charge around a rectangular loop ABCDA, Fig. 

1.11 shows such a loop. The sides BC and AC of the loop are very 

small. As the work done in taking a unit charge round a closed path is 

zero (conservative force) 

 

 
ABCDA

d 0lE                (1.21) 

 

          D    C        

   1  

 

   2  

           A   B 

Fig. 1.11 Boundary condition for E between two dielectric media 

 

Let 1tE and 2tE  be the tangential components of E in the media 1 and 2 

respectively as shown in Fig. 1.11. Then,  

 

 
CD

1

AB

1

ABCDA

dlEdlEd ttlE              (1.22) 

 

where l  = AB = CD. 

 

Using Eq. 1.21 in Eq. 1.22 we get 

 

21 tt EE                 (1.23) 

 

Eq. 1.23 states that the tangential component of the electric field is 

continuous along the boundary. Note that to calculate work done, we 

need force, which is related to the electric field. 

 

The boundary condition contained in Eq. (1.23) may be written in the 

vector form as  

 

1En = 2En  

 

where 1E , 2E  are the corresponding electric fields and n is the unit 

vector normal to the boundary. 

 

SELF ASSESSMENT EXERCISE 7 
 

Prove Eq. 1.23a using equation 1.23. Using the vector identity. 

 

  
Surface

)()( dSdSd EnnElE  
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Note on Eq. 1.23a  

 

We write Eq. (1.23a) as 

 

2211 sinsin  EE              (1.23b) 

 

where 1  and 2  are the angles between n and 1E  and n and 2E  

respectively in the media 1 and 2. 

 

This is yet another form of the boundary condition. We write Eq. 1.23b 

as  

 

 2

2

2
1

1

1 sinsin 





DD
  

or 

 

 
2

1

22

11

sin

sin










D

D
           (1.23c) 

 

Eq. (1.23c) implies that the tangential component of D is not continuous 

across the boundary. 

 

SELF ASSESSMENT EXERCISE 8 

 

Show that the normal component of E is discontinuous across a 

dielectric boundary. 

3.6 Dielectric Strength and Breakdown 

 
We have seen that under the influence of an external electric field, 

polarisation results due to the displacement of the charge centres. In our 

discussion, we have treated the phenomenon as an elastic process. A 

question that arises in our minds is, "what would happen if the applied 

field is increased considerably? One thing that is certain is that the 

charge centres will experience a considerable pulling force. If the 

pulling force is less than the binding force between the charge centres, 

the material will retain the dielectric property and on removing the field 

the charge centres will return to their equilibrium positions. If the 

pulling force just balances the binding force, the charges will just be 

able to overcome the strain of the separation and any slight imbalance 

will loosen the bonds between the electrons and the nucleus. A further 

increase of the applied field will result in the separation of the charges. 

Once this happens the electrons will be accelerated. The fast moving 

electrons will collide with the other atoms and multiply in number. This 

will result in the flow of conduction current. The minimum potential that 
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causes the charge separation is known as the breakdown potential and 

the process is known as the dielectric breakdown. 

 

Breakdown potential varies from substance to substance. It also depends 

on the thickness of the dielectric (thickness measured along the direction 

of the field). The field strength at which the dielectric is about to break 

down is known as the Dielectric Strength. It is measured in kilovolts 

per metre. Knowledge of the breakdown potential is very important for 

practical situations, as in the use of capacitors in electrical circuits. 

When a dielectric is subjected to a gradually increasing electric 

potential, a stage will be reached when the electron of the constituent 

molecule is torn away from the nucleus. Now the dielectric breaks 

down, viz., loses its dielectric properties, and begins to conduct 

electricity. 

 

The breakdown voltage is the applied potential difference per unit 

thickness of the dielectric when the dielectric just breakdown. 

 

4.0 CONCLUSION 

 
In this unit we have examined the behaviour of dielectrics and the 

deduction of Gauss’s law. In addition, we have explained the terms, 

dielectric breakdown and dielectric strength as well as defined dielectric 

constant. 

 

5.0 SUMMARY 
 

When an electric field is applied to an insulating material, it gets 

polarised. This means that a dipole moment is created in the material. 

This dipole moment is also exhibited as a surface charge density. 

 

Electric dipole moment per unit volume is known as polarisation. 

At the atomic level, the polarisation of a medium takes place in two 

ways, as there are two kinds of molecules: polar and nonpolar. In 

nonpolar molecules the centres of positive and negative charges lie at 

the same point and their inherent dipole moment is zero. 

 

In polar molecules the positive and negative charge centres lie at 

different points and consequently there is an inherent dipole moment 

associated with the molecules, though the net charge of the molecule is 

zero. 

 

For a dielectric medium, it is convenient to introduce another vector 

related to E and P, This is called the displacement vector D defined as 
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 PED  0  

 

For the analysis of dielectric behaviour, the relation between the 

polarisation vector P and the total electric field E is important. For an 

ideal, homogeneous and isotropic dielectric, the relation is expressed as 

 

 EP e 0  

 

The constant e  is known as the electric susceptibility of the medium. 

 

The constant  , corresponding to the susceptibility e  is known as the 

atomic (or molecular) polarisability when we consider the polarisation 

of a single atom (or molecule). 

 

In a polarised piece of a dielectric, the volume charge density p (= – 

div P ) and the surface charge density p  are given by nP   or nP . 

The presence of dielectric leads to the modification of the Gauss' law. 

It's modification is 

 

 qdS  nD0  

 

where q is the total unit free or external charge 

or div D =   

 

where D depends only on the magnitude of free charge and distribution. 

 

The general relation between the vectors D, E and P can be used to 

define the dielectric constant K and permittivity r  of dielectric 

medium. Using the permittivity , the relation between D, P and E can 

be expressed in the linear form 

 
ED   

 

EEP )()1( 0  k  

 

The vectors E and D satisfy certain boundary conditions on the interface 

between two dielectric media. These conditions are: 

 

(i) The tangential component of E is the same on each side of the 

boundary, i.e., tt EE 21   and  

(ii) The normal component of D is same on each side of the 

boundary, i.e., 21 nn DD   
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Dielectric strength is the applied potential difference per unit thickness 

of the dielectric when the dielectric just breaks down. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 

(1)    Calculate the relative displacement of the nucleus of the molecule 

modelled in Fig. 1.12 (spherically symmetric molecule) when it is 

subjected to an external electric field and hence, its polarisability. 

 

(2)    Suppose two metallic conducting plates are kept as shown in Fig. 

1.13. 

 

 

 

 

 

 

 

 

   

 

 Fig. 1.12: Model of atom.                Fig. 1.12a 

 

 

The area of cross section of each plate is 2.0 m2 and they are 10–2 apart. 

The potential difference between them in vacuum 0V  is 3000 volts, and 

it decreases to 1000 volts when a sheet of dielectric 1 cm thick is 

inserted between the plates. Calculate the following: 

 

(a)  The relative permittivity K of the dielectric, 

(b)  its permittivity,  , 

(c)  its susceptibility  , 

(d)  the electric intensity between the plates in vacuum (here it is 

given that  Intensity = Voltage across the plate/Area of Cross 

section, 

(e)  the resultant electric intensity in the dielectric, 

(f)  the electric intensity set up by the bounded charges. 
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Fig. 1.13 Two metallic conducting plates (a) and (b) with dielectric 

material. 

 

(3)    Consider two isotropic dielectric medium 1 and 2 separated by a 

charge free boundary as shown in Fig. 1.14 

 

 
Fig. 1.14: Line of force across the boundary between two dielectrics 

 

 

Now, an electric vector 1E  goes from medium 1 and enters into medium 

2. If i is the angle of incidence and r is the angle of reflection, prove that 
 

 
2

1

tan

tan






r

i
 

 

(4) Show that the polarisation charge density at the interface between 

two dielectrics is 
 

 1

1

21
0' Enp 







  
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1.0    INTRODUCTION 
 

You have studied in your earlier classes that the potential of a conductor 

increases as the charge placed on it is increased. Mathematically we 

write 

 

Q  or CQ                  (2.1) 

 

where C is the proportionality constant. 

 

We call this constant C the capacity or capacitance. We also call any 

device that has capacitance a the capacitor (condenser). You are already 

familiar with this device. 

 

We change the capacitance in our radio-transistor while operating the 

'tuning' knob and get the radio station of our choice. Capacitors are used 

in many electrical or electronic circuits, they provide coupling between 

amplifier stages, smoothen the output of power supplies. They are used 
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in motors, fans, in combination with inductances to produce oscillations 

which when transmitted become radio signals/TV signals etc. Besides 

these, capacitors have a variety of applications in electric power 

transmission. 

 

In the present unit, we shall learn about capacitance, capacitors of 

different forms, energy stored in a capacitor, and the working principle 

of a capacitor. We have studied the macroscopic properties of dielectrics 

in Unit 1. Here we will study the effect on the capacitance of a 

capacitor, when a dielectric is placed between the two plates of a 

capacitor. Then we will introduce some practical capacitors. 

 

In next unit we will study the microscopic properties of the dielectrics.  

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define capacitance of a capacitor 

 describe capacitors of different geometries and obtain 

mathematical expression for their capacitance 

 able to calculate the energy stored in a capacitor 

 describe the effect of introducing a dielectric material in a 

capacitor 

 obtain expressions for the effective capacitance of grouping a 

number of capacitors in series and in parallel 

 describe practical capacitors such as a guard condenser and an 

electrolytic capacitor. 

 

3.0 MAIN CONTENT 
 

3.1     Capacitance 
 

A capacitor or a condenser is an electronic device for storing electrical 

energy by allowing charges to accumulate on metal plates. This 

electrical energy is recovered when these charges are allowed to move 

away from these plates into the circuit of which the capacitor forms a 

part. Any device which can store charges is a capacitor. For example, an 

insulated conducting spherical shell of radius R can store charges; hence 

it can be used as a condenser. Let us see how it works as a capacitor. If a 

charge Q is placed on it, the outer surface of the shell becomes an 

equipotential surface. The potential of the outer surface of the shell is 

given by 
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R

Q

04
                   (2.2) 

 

with infinity as zero potential. Instead of infinity we can regard the 

ground (earth) as zero potential. Then the capacitance of this shell (w.r.t. 

ground) is 

 

R
Q

C 04

  Coulomb/Volt              (2.3) 

 

The unit of capacitance C in SI system is the farad.  

 

Farad = Coulomb/Volt               (2.4) 

 

If R = 100 cm in the above spherical shell its capacity in farads is  

 

 10

0 101.1100)4(   Farad 

 

Thus it is clear from this that if a capacitor is to be made with one unit 

(farad) capacity it has to have huge dimensions (1010 m in the above 

case). Practical forms of condensers have small dimensions and smaller 

units such as picofarad ( 1210  Farad) and microfarad ( 61010  Farad) are 

more commonly used. The symbolic representation of a capacitor is  

o—|   |—o. 

 

The above example of a spherical conductor as a capacitor is given only 

to illustrate the concept. However, the most commonly used practical 

form of condensers always has a system of two metal sheets (circular, 

cylindrical or rectangular) kept close to each other with an insulator 

separating the two sheets. This system has the ability to have larger 

capacity without having the corresponding larger dimensions. You will 

learn more about this in detail in the next section. 

 

3.2    The Parallel Plate Capacitor or Condenser 
 

This is the simplest and most commonly used form of a condenser. A 

parallel plate condenser consists of two rectangular or circular sheets 

(plates) of a metal arranged parallel to each other, separated by a 

distance d. The value of d is usually very small and an insulating 

material is normally inserted between the two sheets. See Fig. 2.1. A 

charge Q (positive) placed on the upper plate distributes equally on this 

plate to make it an equipotential surface. The lower plate is shown 

grounded. The lower plate is therefore at ground potential (zero 

potential). Because of electrostatic induction an equal amount of 

negative charge appears on the upper side of the lower plate. This 
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induced negative charge pulls up almost all the positive charge placed 

on the upper plate to the lower side of the upper plate. Thus the electric 

field now gets confined to the space between the two plates: the positive 

charge acting as sources and the negative charge as sink (the lines of 

force originate on the positive charges and end on negative charges). 

The induced negative charge is equal lo the amount of positive charge 

because of the zero field requirement inside the material of the 

conducting sheets. Besides, both the metal sheets are equipotential 

surfaces. The lines of force field lines are normal to these sheets except 

at edges. See Fig. 2.1. Since all the field lines originate from the upper 

plate and end on the lower plate, the value of the electric field, E is 

uniform in the space between the plates except at the edge. The edge 

effects are negligible if the area of the plates, A, is large compared to d. 

Since E is uniform the potential difference between the upper and the 

lower plates is given by 

 

 

 
Fig. 2.1 Parallel plate condenser A and B are the metal plates 

separated at a distance ''d . 

 

 

 EddlE  12   

 

where 2 , 1  refer to the potentials of upper and lower plates 

respectively. As the lower plate is earthed, 

 

1 = 0; Ed2                 (2.5) 

 

To evaluate E let us use Gauss's theorm. Suppose we evaluate the 

electric flux for a closed cylindrical surface EFGH of base area S with 

its axis normal to the plate. See Fig. 2.2 
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Fig. 2.2 Gaussian closed cylinder EFGH 

 

One of the horizontal surfaces is inside the metal and the other in the 

space between the plates; the curved faces are parallel to the field lines. 

There is no flux through EF as the field inside the conducting surface is 

zero. Similarly, there is zero flux through EH and FG as the curved 

surfaces of the Gaussian cylinder are parallel to the field lines. 

 

 

 

The flux through the surface HG of area S is equal to ES . Since E  is 

along the normal to the area, hence, we can apply Gauss' theorem. 

According to Gauss theorem 

 

0

S
ES  , 

0


E                 (2.6) 

 

where,   is the charge per unit area on the condenser plate. The 

potential 2  of the upper plate is Ed  from Eq (2.1). The total charge Q 

is A  

 

d

AQ
C 0


                  (2.7) 

 

By keeping a small value for d, the capacity C can be increased. In the 

above derivation we have taken the medium between the plates to be 

vacuum. The above arrangement has the advantage of the electric field 

being unaffected by the presence of other charges or conductors in the 

Since the potential is defined as the work done per unit 

charge, the work done in moving a small charge q  

against a charge potential   will be work done = q .  

 

But Cq / . 

 

The total work done in charging a capacitor to Q 

coulombs is given by 

Total work done = 
C

q

C

qdq
Q

2

2

0

  
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neighbourhood of the capacitor. Moreover, if the area A of the plates is 

much greater than d the correction for the capacitance due to the 

nonuniform field at the edges is negligible. 

 

SELF ASSESSMENT EXERCISE 1 

 

Suppose we have the distance of separation between the plates, what 

happens to the capacitance? 

 

SELF ASSESSMENT EXERCISE 2 

 

Find the charge on a 1000 pF capacitor when charged to a voltage of 24 

V. 

 

In the next subsection you will learn about the energy stored in a 

capacitor. 

 

3.2.1   Energy Stored in a Capacitor 
 

The work done, W  in assembling a charge Q by adding infinitesimal 

increments of charge is given by: 

 

QW
2

1
                  (2.8) 

 

Where   is the final potential of the charged body. In the case of a 

capacitor of capacitance C, this work, done in placing a charge Q on the 

capacitor must also be given by similar expression, i.e., 

 

QW
2

1
                  (2.9) 

 

This can be written in terms of the capacitance /QC   as 

 

C

Q
CW

22

1 2
2    Joules. 

 

This work is stored up in the electric field as potential energy.  

 

SELF ASSESSMENT EXERCISE 3 

 

Show that in a parallel plate capacitor of area A and the separation of 

plates by a distance d in vacuum the energy stored in the (space) volume 

of the electric field between the plates is given by Q
2

1
. 
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3.3    Parallel Plate Capacitor with Dielectrics 

 

When a dielectric slab is inserted between the parallel plates of a 

condenser the capacity increases. The polarised dielectric slab ABCD 

(see Fig. 2.3) reduces the electric field E inside the dielectric by a factor 

( r/1 ) where r  is the relative permittivity as discussed in the last unit: 

This can be proved by computing the electric field by using Gauss' law 

for electric displacement, D inside the dielectric ABCD. Recall the 

Gaussian cylinder used in evaluating E in Section 2.2. The flux of D is 

now given by (only free charges contribute to the flux) 

 

 
Fig. 2.3   Dielectric slab between capacitor plates 

 

SDS                 (2.11) 

 

as the bound surface charges do not contribute to this flux and 

 

ED r0                (2.12) 

 

for an isotropic uniformly polarised dielectric. Thus the field  

 

r

E




0

                (2.13) 

 

The potential difference between the plates is equal to Ed , where d is 

now the thickness of the slab filling the entire space between the plates. 

The capacitance now becomes 

 

Ed

A

Ed

AQ
C r


0               (2.14) 

 

The value of the capacitance C increases by the factor r , which is the 

relative permittivity of the dielectric material. 

 

From Eq. (2.14) we note that the capacitance of a parallel plate capacitor 

increases with the increase in surface area (A) of the plates and also with 

the decrease of the distance separating the plates. 
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The effect of introducing a dielectric in between the plates increases the 

capacitance ( r  > 1). Thus the inclusion of a dielectric enables the 

capacitor to hold more charges at a given potential difference between 

the plates. 

 

We rewrite Eq. (2.14) as 

 

)//(0 rdAC                (2.15) 

 

and compare it with Eq. (2.7). We find that a dielectric of thickness d 

has an equivalent free space thickness )/( rd  . This observation will be 

useful later when we deal with the capacitor in which the space in 

between the plates is only partially filled with a dielectric. 

 

SELF ASSESSMENT EXERCISE 4 
 

Find the capacitance of the parallel plate capacitor consisting of two 

parallel plates of area 0.04 m2 each and placed 310 m apart in free space. 

 

A capacitor is shown in Fig. 2.4 in which a dielectric slab of thickness t 

is inserted between the plates kept apart at a distance d. We write the 

capacitance of this capacitor, on the basis of the equivalent free space 

thickness of the dielectric. We find the free space thickness between the 

plates = )( td  , where t  is the thickness of the dielectric material. This t  

is equivalent to rt /  in free space. The capacitor of Fig. 2.4 is 

equivalent to a capacitor with free space between the plates, with the 

separation of )/( rttd  . We write the expression for the capacitance 

as 

 

rttd

A
C





/

0


               (2.16) 

 

 

 
Fig. 2.4 
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Fig. 2.5 The equivalent capacitor 

 

Now we will obtain Eq. (2.16) with another simple method. Let the 

voltage across the capacitor which is shown in Fig. 2.4 be V. When a 

dielectric of thickness ' t ' is introduced between the two plates of the 

capacitor, the distance between the positive plate of the capacitor and 

the upper surface of the dielectric is say 1d  and from lower surface of 

dielectric to negative plate of the capacitor is 2d . Now assume that the 

voltage between positive plate and upper surface of the dielectric is 1V , 

the voltage between upper and the lower surface of the dielectric is 2V  

and the lower plate of the dielectric to the negative plate of the capacitor 

is 3V . The total voltage V  across capacitor is the sum of these three 

voltages i.e., 

 

 321 VVVV   

 

Let E  be the field inside the dielectric. Then 

 

 EdV 11  , rtEV /2   and EdV 23   

 

 rtEEddV /)( 21    

 

From the figure 

 

 tddd  21  

 

 )(21 tddd   

 

From the above equation we get 

 

 rtEEtdV /)(   

 

Using Eq. (2.5), we get that in this case 

 

 ]/)[( rttdd   
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From Eq. (2.15), we get 

 

 C  = 
d

A0  

  = 
]/)[( 0

0





ttd

A


 

 

We can also find that the ratio of the capacitance with dielectric between 

the plates to the capacitance with free space between the plates is equal 

to the relative permittivity, viz., 

 

 
 platesbetween  space free with Capacit.

 platesbetween  dielectric with Capacit.
r  

 

The relative permittivities ( r ) of some of the most common materials 

are given in Table 2.1. 

 

Table 2.1:  Relative permittivity ( r ) of some common materials 

 

Air 

Castor Oil 

Mica 

Glass 

Bakelite 

Paper 

Porcelain 

Quartz 

Water 

1.0006 

4.7 

5-9 

4.5-7.00 

4.5-7.5 

2 -2.3 

5.5 

1.5 

81 

                        

SELF ASSESSMENT EXERCISE 5 
 

A dielectric of relative permittivity 3 is filled into the space between the 

plates of a capacitor. Find the factor by which the capacitance is 

increased, if the dielectric is only sufficient to fill up 3/4 of the gap. 

 

3.3.1 Voltage Rating of a Capacitor 
 

Capacitors are designed and manufactured to operate at a certain 

maximum voltage, which depends on the distance between the plates of 

the capacitor. If the voltage is exceeded, the electrons jump across the 

space between the plates and this can result in permanent damage to the 

capacitor. The maximum safe voltage is called the working voltage. The 

capacity and the working voltage (WV) is marked on the capacitor in the 

case of bigger capacitors and indicated by the colour code (similar to 
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that of resistance) in the case of capacitors having low values of  

capacitance. 

 

3.4 Capacitance of a Cylindrical Capacitor 

 
In Section 2.3, we have calculated the capacitance of a parallel plate 

capacitor. Another important form of capacitor is a cylindrical capacitor. 

This is shown in Fig. 2.6a. A section of this capacitor is shown in Fig. 

2.6b. It is made up of two hollow coaxial cylindrical conductors of radii 

a and b. The space between the cylinders is filled with a dielectric of 

relative permittivity r . Practical forms of such capacitors are: 

 

(i)     a coaxial cable, in which the inner conductor is a wire and the 

outer conductor is normally a mesh of conducting wire separated 

from the inner conductor by an insulator (usually plastic). 

In Fig. 2.6b, the direction of the field lines is radial, viz., normal to the 

surface of the cylinder. Small lines in between the two cylinders, show 

the direction of fixed line. 

 

 
Fig. 2.6:   (a) Cylindrical capacitor {b) cross section of the 

cylindrical capacitor 

 

(ii)    the submarine cable, in which a copper conductor is covered by 

polystyrene (the outer conductor is sea water). Since both the 

inner and outer cylinders are conductors, they are equipotential 

surfaces. The field is radial (normal to the surface of the 

cylinder): Because of cylindrical symmetry we conclude that the 

capacitance is proportional to the length of the cylinder (as the 

length increases, the area of the plot increases). We shall now 

find the capacitance per unit length of the capacitor. 

 

     A  B 

 
Fig. 2.7 Gaussian surface ABCD 

 

Let the charge per unit length placed on the inner cylinder of the 

capacitor be  . The outer cylinder is grounded. An equal and 

D C 
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opposite amount of charge appears on the inner side of the outer 

cylinder. This is because of the zero field in the conductor. To 

evaluate the field let us consider a coaxial closed cylindrical 

surface ABCD of unit length and of radius r. See Fig. 2.7. The 

electric field is normal to the inner cylindrical surface and is also 

confined to the space between the cylinders. The flux of electric 

displacement vector, D, through the bottom and top surfaces of 

this Gaussian cylinder ABCD is zero as D is parallel to these 

faces. The flux of D is only through the curved surface of ABCD 

and as D is normal to this at all points; the flux through this 

closed Gaussian surface is given by 

 

lDSD   )2( rd               (2.17) 

 

Now ED r 0  for isotropic uniformly polarised dielectrics. Using 

Gauss' law we get 

 

  ErrD r0)2(2                        (2.18) 

 

where   is the free charge enclosed by the Gaussian surface.  

 

Thus  

 

rr
E





02
                (2.19) 

 

To find the capacitance, we require the potential difference between the 

two cylinders. The expression for potential difference is given by 

 


a

b

Edr                (2.20) 

 

Four our case, Eq. (2.20) becomes 

 

 ba    = 
a

b

Edr  

 

  = 
b

a r

dr
r 



02
 

 

  = 
b

ar r

dr

r 



02
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  = )/ln(
2 0

ab
r r


            (2.22) 

 

As the outer cylinder is grounded, b  = 0. 

 

Now, capacitance per unit length, C  is given by 

  

a /  =  
)/ln(

2 0

ab

r
              (2.23) 

 

Note: In the expression for the capacitance per unit length of a 

cylindrical capacitor, Eq. (2.23), we find that the capacitance depends on 

the ratio of the radii and on their absolute values. 

 

SELF ASSESSMENT EXERCISE 6 
 

Two cylindrical capacitors are of equal length and have the same 

dielectric. In one of them the radii of the inner and outer cylinders are 8 

and 10 cm, respectively and in the other they are 4 and 5 cm. Find the 

ratio of their capacitances. 

 

3.5 Capacitors in Series and Parallel 
 

In Section 2.5, we have seen the method of finding the capacitance per 

unit length of a cylindrical capacitor. We multiply the capacitance per 

unit length by the length for cylindrical capacitors and get the 

capacitance. Now we can consider a cylindrical capacitor of length 2 

units as consisting of two cylindrical capacitors of unit length joined end 

to end so that the inner cylinders are connected together and the outer 

cylinders also get connected similarly. This is shown in Fig. 2.8. 

 

 

 
Fig. 2.7 A long cylindrical capacitor seen as a particular 

combination of unit cylindrical capacitor 

 

 

We find immediately that in such a combination the charge on the 

capacitor is doubled and so the capacitance is also doubled since the 

potential difference remains constant. Two capacitors connected in 

parallel (symbolic representation) are shown in Fig. 2.8a. 
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Fig. 2.8a Two capacitors connected la parallel 

 

In this combination, we find that 

 

 the potential difference between the plates remains the same; 

 the charge on each capacitor adds up (more area is available for 

storing charges). 

 

We can find an equivalent capacitor that holds the same charge when 

kept at the same potential difference as the combinations of the 

capacitors. The capacitance of that capacitor is known as the Effective 

Capacitance of the combination. Before we proceed further, we note 

that capacitors can be grouped or combined in another way too. Here 

alternate plates of the capacitors are connected to the succeeding 

capacitor so that they form a series. Fig. 2.9 shows the combination; it is 

known as combination of capacitors in series. 

 

 

 
Fig. 2.9 Capacitors in Series 

 

If a voltage source is connected across the two end plates of the first and 

last capacitors of the series, equal charges will be induced in each 

capacitor whereas the potential difference across each capacitor will 

depend upon its capacitance. 

 

We shall find the mathematical formulas for the equivalent capacitance 

of the combination of capacitances in parallel and in series. 
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3.5.1 Combination of Capacitors in Parallel 
 

Fig. 2.10 shows the combination of three capacitors in parallel. 

 

 
Fig. 2.10 Capacitors in parallel 

 

Here, 1C , 2C  and 3C  are the capacitances of the individual capacitors, 

1Q , 2Q  and 3Q  are respectively the charges on them and   is the 

potential difference between the plates of each capacitor. We take C  to 

be the effective capacitance of the combination. The total charge Q  of 

the parallel combination is equal to 

 

 321 QQQQ         

  

Since   is same for this equivalent C  of the parallel combination, 

 

 


321 QQQQ
C


       

  

= 


321 QQQ
         

= 321 CCC               (2.24) 

 

Thus the effective capacitance of the parallel combination of capacitor is 

equal to the sum of the individual capacitances. 

 

3.5.2    Combination of Capacitors in Series 
 

Fig. 2.11 shows the combination of three capacitors in series. 

 

 
Fig. 2.11 Capacitors In series and the equivalent capacitors 
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Here 1C , 2C  and 3C  are the capacitances of the individual capacitors. 

The application of a voltage will place a charge Q  on one plate which 

induces a charge Q  on the other plate. The intermediate plates acquire 

equal and opposite charges, because of electrostatic induction. The 

potential drop across each will be inversely proportional to its 

capacitance. (Since /QC   gives CQ / , since Q  is fixed C/1 ). 

Thus 1 , 2 and 3 , the potential drops across the capacitors are such 

that 11 /1 C , 22 /1 C  and 33 /1 C . Now we replace the capacitors 

by a single capacitor of capacitance C  that holds the charge Q  when 

subjected to a potential difference 321   . This capacitance C  is 

known as the effective capacitance of the combination. We now write 

/QC   or QC //1  . But 321   . Therefore, 

 

 
QC

3211  
  

 

i.e. 

 

321

1111

CCCC
              (2.25) 

 

Thus for capacitors connected in series the reciprocals of the 

capacitances add up to give the reciprocal of the effective capacitance. 

 

SELF ASSESSMENT EXERCISE 7 

 

Determine the equivalent capacitance of the network shows in Fig. 2.12 

and the voltage drop across each of the capacitor of the series of 

capacitors. 

 

 
Fig. 2.12 
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SELF ASSESSMENT EXERCISE 8 
 

Calculate the effective capacitance of three capacitors arranged in such a 

way that two of them 1C  and 2C  are in series and the third, 3C , is in 

parallel with this series combination. 

 

3.6 Stored Energy in a Dielectric Medium 
 

In Section 2.3.1, we have studied that the energy stored in a parallel 

plate capacitor is given as 

  

 2

2

1
CU   

 

We know that 

 

 
d

A
C 0  

 

and 

 
 Ed  

 

Putting these values in the above Eq. we get 

 

 2

2
0

2

1
dE

d

A
U 


 

 

      = 2

0 )(
2

1
EAd  

 

or 

 

 2

0
2

1
E

v

U
  (since Edv  ) 

 

This is the energy per unit volume. 

 

When a dielectric of relative permittivity r  fills the space between the 

plate of the capacitor, then the effective capacitance is given by 

 

 
d

A
C r

die

0  
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The energy stored in a capacitor with a dielectric material is given by 

 

 2

2

1
CU   

 

 = 20 )(
2

1
Ed

d

Ar 


 

 

 = )(
2

1 2

0 dAEr   

 

 2

0
2

1
E

u

U
r   ( udA  ) 

 

In the case of a parallel plate condenser, the energy stored per unit 

volume is 2

0
2

1
E , which becomes DE 

2

1

2

1 2

0 Er  with the dielectric 

material. Where D is the electric displacement in the dielectric. We have 

considered here the case of a linear dielectric where E and D are in the 

same direction. However, there are dielectrics in which E and D are not 

in the same direction. Thus the energy stored per unit volume in a 

dielectric medium is given by 

 

DE 
2

1
 Joules/m2              (2.26) 

 

3.7    Practical Capacitors 
 

We shall now study some of the capacitors that are commonly in use. 

Capacitors may be broadly classified into two groups i.e., fixed and 

variable capacitors. They may be further classified according to their 

construction and use. The following are the classifications of the 

capacitor. 

 

 
 

Now, we will discuss each type of the capacitor one by one. 
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3.7.1   Fixed Capacitors 
 

These have fixed capacitance. These are essentially parallel plate 

capacitors, but compact enough to occupy less space. In their make they 

consist of two very thin layers of metal coated on the surface of mica or 

paper having a uniform coating of paraffin. The mica or paper forms the 

dielectric between the conductors. They are shown in Fig. 2.13. 

 

 
Fig. 2.13 Fixed capacitors 

 

This arrangement is rolled up to the compact form. Usually they are 

piled up in parallel to give a large capacitance. Though paraffin-waxed 

paper capacitors are cheaper, they absorb a good amount of power. For 

this reason these capacitors are used in alternating current circuits, radio-

sets, etc. 

 

3.7.2 Ceramic Capacitors 
 

These are low loss capacitors at all frequencies. Ceramic materials can 

be made to have very high relative permittivity. For example, teflon has 

r  = 8 but by the addition of titanim the value of r  becomes 100 and on 

adding barium titanate the value of r  may be increased to 5,000. Each 

piece of such dielectric is coated with silver on the two sides to form a 

capacitor of large capacitance. Yet another advantage with the ceramic 

dielectrics is that they have negative temperature coefficient. Ceramic 

capacitors are widely used in transistor circuits. 

 

3.7.3 Electrolytic Capacitors 

 
An electrolytic capacitor consists of two electrodes of aluminium, called 

the positive and the negative plates. The positive plate is electrolytically 

coaled with a thin layer of aluminium oxide. This coating serves as the 

dielectric. The two electrodes are in contact through the electrolyte 

which is a solution of glycerine and sodium (or a paste of borates, for 

example, ammonium borate). There are two types of electrolytic 

capacitors—the wet type and the dry type. 
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In the wet type the positive plate (A) is in the form of a cylinder to 

present a large surface area. This is immersed in the electrolyte (E) 

contained in a metal can (M). This can act as a negative plate. It is 

shown in Fig. 2.14. 

 

In the dry type both plates are in the form of long strips of aluminium 

foils. Aluminium oxide is deposited electrically on one (A) of the foils. 

This is kept separated from the other (B) by cotton gauze (C) soaked in 

the electrolyte. It is then rolled up to a cylindrical form. The oxide films 

on aluminium offer a low resistance to current in one direction and a 

very high resistance in the other direction. Hence an electrolytic 

capacitor must be placed in a DC circuit such that the potential of the 

oxide plate is always positive relative to the other plate. It is shown in 

Fig. 2.15 

 

 
Fig. 2.14 Wet type capacitor (electrolytic) 

 

 
Fig. 2.15 Dry type electrolytic capacitor 

 

3.7.4   Variable Air Capacitor/Gang Capacitor 
 

A very common capacitor whose capacitance can be varied continuously 

is used for tuning in a radio station. The capacity of this capacitor can be 

uniformly varied by rotating a knob (different forms of such a type of 

capacitor are shown in Fig. (2.16)). 
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Fig. 2.16 Variable air capacitor 

 

The capacitor consists of two sets of semicircular aluminium plates. One 

set of plates is fixed and the other set of plates can be rotated with the 

knob. As it is rotated, the moving set of plates gradually gets into (or 

comes out of) the interspace between the fixed set. The area of overlap 

between the two sets of plates can thus be uniformly varied. This 

changes the capacitance of the capacitor. The air between the plates acts 

as the dielectric. Usually it consists of two condensers attached to the 

same knob (ganged). When the knob is rotated the variation of C in both 

the plates takes place simultaneously. This is widely used in wireless 

sets and electronic circuits. See Table 2.1 for a comparative range of 

voltages for different types of condensers. 

 

SELF ASSESSMENT EXERCISE 9 
 

What is a variable capacitor? Give an example of a variable capacitor 

with a solid dielectric. 

 

3.7.5 Guard Ring Capacitor 
 

In Section 2.2 we calculated the capacitance of a parallel plate 

condenser. We neglected the nonuniformity of electric field at the edges. 

It is possible to get over the problem of edge effects by using a guard 

ring capacitor. In this capacitor a ring R is used around the upper plates 

of the parallel plate capacitor. The inner diameter of the ring is slightly 

larger than the diameter of the capacitor plate. The diameter of the other 

capacitor plate is equal to the outer diameter of the ring. Now the edge 

effects are absent as far as the plates and are concerned. In estimating 

the capacitance of the guard ring capacitor, we take the effective area of 

the plates as equal to the sum of the area of the plate A and half the area 

of the gap between A and R. 

 

In Table 2.2, the capacity range, max. Rating voltage and use of 

different types of capacitors are shown. 
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4.0 CONCLUSION 

           
In unit 2, we have defined and described capacitors and expressions for 

their capacitance have been obtained. The effects of adding dielectric 

materials on their properties have been highlighted while their practical 

uses have been described.  

        

5.0 SUMMARY 

 

 Any device which can store charge is a capacitor. The capacity of 

capacitor is given by, 

 

  
d

AQ
C 0


  

 

Where the symbols have their usual meaning. 

 

 The energy stored in a capacitor is given by 

 

  2

2

1
CW  = 

C

Q

2

2

 Joules 

 

The symbols have their usual meanings. 

 

 If you introduce an insulator of thickness t  between the two 

plates of a capacitor, then the resultant capacity is given by 

  

)//( 00  ttdAC   

 

Type of 

Dielectric 

Capacitance 

Range 

Max. Rating 

Voltage 

Remarks 

 

Paper 250 pF-10 

 F 

150KV Cheap, used in circuits 

where losses are not 

important. 

Mica 25 pF-.25 

 F 

2KV High quality, used in low 

circuit 

Ceramic 0.5 pF-0.01 

 F 

500 KV High quality used in low 

loss precision circuit   

where miniaturisation is 

important. 

Electrolytic 

(Aluminium 

Oxide) 

1  F-1000 

 F 

 

600 V at 

small 

capacitance 

 

Used where large 

capacitance is needed. 
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 The maximum safe voltage is called rating voltage of a capacitor. 

 

 The capacitance of a cylindrical capacitor, per unit length is given 

by 
)/ln(

2 0

ab

r
 

 

 If two capacitors 1C  and 2C  are connected in series, then the 

resultant capacity is given by 
21

21

CC

CC
C


  

 

 The resultant capacity of two capacitors 1C  and 2C , when 

connected in parallel is given by 21 CCC   

 

 The energy stored in a dielectric medium is given by DE 
2

1
 

 

 Practical capacitors are made in different ways, to suit the 

particular application. Layers of conducting foil and paper rolled 

up give a cheap form of capacitor, mica and metal foil stands 

high electric field but are more expensive. Electrolytic capacitors, 

in which the dielectric is a very thin oxide film deposited 

electrolytically, give very large capacitance. Ceramic capacitors 

are useful in transistor circuits where voltages are low but small 

size and compactness are very desirable. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

(1)  A capacitor has n similar plates at equal spacing, with the 

alternate plates connected together. Show that its capacitance is 

equal to DAn r /)1( 0 . 

(2)  What potential would be necessary between the parallel plates of 

a capacitor separated by a distance of 0.5cm in order that the 

gravitational force on a proton would be balanced by the electric 

field? Mass of proton = 271067.1  kg. 

 

(3)  A capacitor is made of two hollow concentric metal spheres of 

radii a and b (b>a). The outer sphere is earthed. See Fig. 2.18. 

Find the capacity. 
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Fig. 2.18 

 

(4)  In the arrangement shown in Fig. 2.19, find the values of the 

capacitances such that when a voltage is applied between the 

terminals A and B no voltage difference is set up between 

terminals C and D. 

 

 
Fig. 2.19 

 

(5)  Two capacitors one charged and the other uncharged are joined in 

parallel. Show that the final energy is less than the initial energy 

and derive the formula for the loss of energy in terms of the 

initial charges and the capacitances of the two capacitors. 
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1.0 INTRODUCTION  
 

In Unit 1, we have studied the macroscopic (average) behaviour of a 

dielectric in an electric field. We also found that the field is altered 

within the body of the dielectric. This can be accounted for by the 

charges appearing on the surface of the dielectric in the case of an 

isotropic material. In Unit 2, the macroscopic study of the dielectric 

behaviour was used to study the increase of capacitance in a condenser 

when a dielectric is placed between the plates of the condenser. 

 

In the present unit, we will describe the microscopic picture of a 

dielectric in which we will define the local field ( locE ), and the average 

macroscopic field inside the dielectric ( iE ). Further, we will derive the 

relationship between the local field and the macroscopic field. We will 

also study the effects of polarisation in nonpolar and polar molecules 

and derive the famous Clausius-Mossotti formula for polarisation of 

these molecules. Then we will derive Clausius-Mossotti equation for a 

gas. We will also study the relationship between polarisability and 

relative permittivity. After that, we will derive the relationship between 

polarisability and refractive index. As you know that capacitors are used 

in alternating fields, so we will also study the effect of an alternating 
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field on a dielectric. In the last section of this unit we will study the role 

of dielectrics in our daily life. 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define the local field and relate it with polarisation, 

 find the macroscopic field within the dielectric and relate it to 

polarisation. 

 relate the macroscopic electric field, the local field and the 

microscopic field within the dielectric, 

 write Clausius-Mossotti equation for a liquid and a gas, 

 establish a relationship between polarisability and Refractive 

index, 

 discuss the role of dielectrics in daily life. 

 

3.0 MAIN CONTENT 

 

3.1 microscopic picture of a dielectric in a uniform electric 

field-review 

 

In Unit 1 you have studied the average (macroscopic) behaviour of 

dielectrics. In this section, we will study the microscopic picture of a 

dielectric in a uniform electric field. Let us consider a dielectric in a 

uniform electric field as shown in Fig. 3.1. 

 

 
Fig. 3.1 A molecule in a dielectric medium 

 

In an electric field, the electrons and atomic nuclei of the dielectric 

material experience forces in opposite directions. We know that the 

electrons in a dielectric cannot move freely as in a conductor. Hence 

each atom becomes a tiny dipole with the positive and negative charge 

centres slightly separated. Taking the charge separation as a, the charge 

as q the dipole moment p in the direction of field associated with the 

atom or molecule 



PHY 204                                                                                     ELECTRODYNAMICS I 

50 

 ap q         (3.1) 

 

Eq. (3.1) gives the dipole moment induced in the atom/molecule by the 

field. Hence we call it the induced dipole moment. If there are n such 

dipoles in an element of volume V of the material, we can define the 

polarisation vector P as the (dielectric) dipole moment per unit volume 

as 

 

 
V

Vnp
p   

 

Within the dielectric the charges neutralise each other, the negative 

charge of one atom/molecule is neutralised by the positive charge of its 

neighbour. Thus within the bulk of the material, the electric field 

produces no charge density but only a dipole moment density. However, 

at the surface this charge cancellation is not complete, and polarisation 

charge densities of opposite signs appears at the two surfaces 

perpendicular to the field. Now what is the consequence of the 

appearance of polarisation charges? 

 

The consequence of this is that the electric field inside the dielectric is 

less than the electric field causing the polarisation. The polarisation 

charges give rise to an electric field in the opposite direction. This field 

opposes the electric field causing polarisation. It is shown in Fig. 3.2. 

 

 
                                 Fig. 3.2 Field Inside a dielectric 

 

 

Hence we conclude that inside the dielectric, the average electric field is 

less than the electric field causing polarisation. However, the 

macroscopic or average field is not a satisfactory measure of the local 

field responsible for the polarisation of each atom. 

 

Let us denote the field at the site or location of the atom or molecule as 

the local field. In the next section, we will calculate the local field inside 

a dielectric. 

 



PHY 204                                                                                     ELECTRODYNAMICS I 

 

51 

3.1.1   Definition of Local Field 
 

In this section we will define the local field in a dielectric material. This 

is the field on a unit positive charge kept at a location or site from which 

an atom or molecule has been removed provided the other charges 

remain unaffected. Fig.3.3 shows a site in a uniformly polarised medium 

from which a molecule/atom is removed when all other charges are kept 

intact at their positions. 

 

 

 
Fig. 3.3 A site in a uniformly polarised medium 

 

The extent of the charge separation depends on the magnitude of the 

local field. Hence we conclude that the induced dipole moment, p, is 

directly proportional to the local field, locE . Thus we have, 

 

locEP          (3.3) 

 

Where   is the constant of proportionality and is known as 

atomic/molecular polarisability and locE  the local field. 

 

To use Eq. (3.3) we require the value of locE . 

 

 

3.2 Determination of local field: electric fields in cavities of a  

Dielectric 
 

The polarisation of dense materials such as liquids and many solids 

changes the electric field inside the material. The field experienced by 

an individual atom/molecule depends on the polarisation of atoms in its 

immediate vicinity. The actual value of the field varies rapidly from 
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point to point. Very close to the nucleus it is very high and it is 

relatively small in between the atoms/molecules. By taking the mean of 

the fields over a space containing a very large number of atoms one gets 

the average value of the field. 

 

SELF ASSESSMENT EXERCISE 1 
 

Show that the field at the centre of a spherical cavity (filled with air) is 

zero. 

 

The field experienced by an individual atom/molecule may be called the 

local field, which is different from the average field. The local field is 

the one which causes the polarisation of the atom. The average field can 

be expressed as dV /  where V is the potential difference between two 

points of a dielectric, distant d apart. (as one obtains the field between 

the plates of a parallel plate condenser). The estimation of local field is 

not so easy. Let us consider three different cavities to find the local field 

in a dense dielectric, which has been uniformly polarised. See Fig. 3.4. 

 

 
Fig. 3.4 The field in a slot cut in a dielectric depends on the shape 

and orientation of the slot E shown Is the average field 

 

The directions of electric (average) field E and P are shown in Fig. 3.4. 

Suppose we cut a rectangular slot ABCDEFGH as in (a) of Fig. (3.4). 

The field E and the polarisation P are parallel to the faces ABCD, 

EFGH. The field inside this slot can be found out by evaluating the line 

integral of E around the curve C shown in Fig. 3.4(b). Since lE d has to 

be zero for the closed curve C the field inside this slot has to be the same 

as the field outside the slot. Therefore the field inside a thin slot cut 

parallel to the field is equal to the average field E. 

 

Now consider a thin rectangular slot with faces perpendicular to the 

average field E cut from the dielectric as shown in (c) A'B'C'D'E'F'G'H' 

of Fig. 3.4. To find the field inside this slot we use the Gauss' flux 
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theorem on a surface S with one face outside the slot and one face inside 

the slot. See Fig. 3.4(d). The flux of E through faces parallel to E is 

zero. Instead of the flux of E, let us consider the flux of electric 

displacement D. Let locE  be the field inside the slot, then 1D  inside the 

slot is locE0 . The D vector outside the slot is PE 0 . Now, as the flux 

of D through the closed surface S has to be zero (no free or external 

charges inside the Gaussian surface), we must have 

 

 PEE  00  loc  

 

 locE  = 0/PE        (3.4) 

 

The field inside the slot in this case is different from the field outside by 

0/P  because of the surface polarisation charges appearing on A'B'C'D' 

shown in Fig. 3.4(c). 

 

Another possible slot is a spherical hole, which is the most likely way an 

atom finds itself in most liquids and solids. We would expect that an atom 

finds itself, on the average, surrounded by other atoms in what would be a 

good approximation to a spherical hole. What is the local field in a 

spherical hole? Suppose we cut a spherical hole after "freezing" the state 

of polarisation from a uniformly polarised material. If we call locE  the 

field inside the spherical hole at its centre and 
pE  the field produced by 

the uniformly polarised dielectric spherical plug at its centre, then by 

adding locE  and
pE , we should get the average field E inside the 

dielectric. See Fig. 3.5. This should be true because of the superposition 

principle. Thus 

 

ploc EEE          (3.5) 

 

 
Fig. 3.5: The field at any point A in a dielectric can be considered as 

a sum of the field in a spherical hole plus the field due to the 

spherical plugand the required field 
 

ploc EEE          (3.6) 
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One can calculate 
pE (the field produced by the uniform polarised 

dielectric) as follows: 

 

The field 
pE  arises from bound charges of density = n = cosP . 

Hence the field due to the charges over an area dS is given as: 

 

 rE
2

0

)(cos

4

1

r

dS
d p




  

 

where, r  is the unit vector from the surface to the centre of the sphere 

where the field is to be calculated. 

 

Resolving 
pdE  into components parallel and perpendicular to P, it is 

clear from the symmetry of the situation that only the components 

parallel to the direction of P will contribute to the total field 
pE . Thus 

 
pE = 

pdE cos  

 

It should be noted that the direction of 
pE is parallel to that of P. We 

then have 

 

 dS
r

p 2

2

0

cos

4

1 


PE   

 

Now,  ddrdS sin2  

 

and the limits of   are from 0 to   and that of   from 0 to 2 .  

 

Hence 

 


ddp sincos
4

2

0


P

E  

 

        = 
2

cos

4

2

0




d

P
 

 

        = 
042

3



P
  

 

        = 
03

P
       (3.7) 
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Then the field experienced by an atom in a spherical hole is  

 

 
03

P
EE loc

  

 

To determine the field 
pE at an arbitrary point r inside the dielectric 

sphere, we consider the polarised sphere as a superposition of slightly 

displaced spheres of positive and negative charges. See Fig. 3.6. Further 

note that the field at point r is entirely determined by the charge 

contained in the sphere of radius r, interior to point r. 

 

 

 
Fig. 3.6 Superposition of slightly displaced sphere of positive and 

negative charges 

 

The sphere of positive charge can be regarded as a point charge at its 

centre and if P is the volume charge density then the positive charged 

sphere is equivalent to charge at its centre equal to 3

3

4
r


. Similarly the 

negative charged sphere is equivalent to a point charge at its centre. The 

magnitude of this point charge is same as 3

3

4
r


. If 'a' is the separation of 

the positive and negative charges in an atom, then the uniformly 

polarised dielectric is equivalent to a dipole of moment 3

3

4
r


a. If there 

are n dipoles per unit volume, q is the charge on each dipole then 

qnp  . [The number of positive or negative charges per unit volume is 

also equal to n in the spheres considered above]. Then the dipole 

moment of the sphere is given by 

 

 Pa
33

3

4

3

4
rnqr


  
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and the polarised sphere is equivalent to a dipole of moment P
3

3

4
r


kept 

at its centre. The potential due to this dipole at the point r on the surface 

is given by 

 

 
0

2

0

3

3

cos

4

cos

3

4







 rrP

r

Pr
  

 

where p , r,   are as shown in the Fig. 3.7. 

 

 
Fig. 3.7 Field outside a uniformly polarised sphere 

 

The polarisation is in the direction of E and if we take this to be the z -

direction with the origin at the centre then the potential at T is, 

 

 
03


PZ

  

 

This shows that the potential at a point depends only on its z coordinate. 

Hence the electric field is along the z direction and is given by: 

 

 
03

 P
E 




Z
p

 

 

This shows that the electric field inside the dielectric sphere is uniform 

and in the direction of the polarisation vector. Hence the field 

experienced by an atom in a spherical hole is, 

 

 
03

P
EE loc

      (3.8) 

 

The field in a spherical hole is greater than the average field by p3/P . 

 

 

 

 

 



PHY 204                                                                                     ELECTRODYNAMICS I 

 

57 

SELF ASSESSMENT EXERCISE 2 

 

Show that the field inside a uniform spherically symmetric charge 

distribution with charge density is equal to 
03

r
 where r is the position 

vector of the point with origin at the centre. 

 

3.3   The Clausius-Massotti Equation 
 

In a liquid we would expect an individual atom to be polarised by a field 

obtained in a spherical cavity rather than by the average (macroscopic) 

field. Thus using Eq. 3.8 and Eq. 3.3 we have, 

 

 locn EP   

  

03


P
EP  n        (3.9) 

 

This can be rewritten as: 

 

EP

03
1







n

n



         (3.10) 

 

The susceptibility   was defined in Unit 1 by the equation, 

 

EP  0  

 

Hence, 

 

    = 
0

0

3/1

/





n

n


        (3.11) 

 

Eq. 3.11 gives the relation between susceptibility and atomic/molecular 

polarisability. This is one form of the Clausius-Mossotti Equation. 

 

3.3.1    Polarisation in a Gas 
 

Unlike the atoms/molecules of a liquid or solid it is possible to consider 

the atoms/ molecules of a gas as far apart and independent. We can 

neglect the field due to the dipoles on the immediate neighbourhood of 

an individual molecule. Hence the local field causing polarisation is the 

average or macroscopic field E. Therefore we can write, 

 

 pEP n  0  
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where, n is the number of molecules per unit volume. If we consider 

only an individual atom/molecule and write the dipole moment p as: 

 

EP  0         (3.12) 

 

where,   is known as the atomic polarisability. Therefore   has the 

dimensions of volume and roughly equals the volume of an atom. 

 

We can relate   or   to the natural frequency of oscillation of electrons 

in the atom/molecule. If the atom is placed in an oscillating field E the 

centre of charge of electrons obeys the equation 

 

 qExm
dt

xd
m  2

02

2

  

 

where m is the mass of electron of charge q , xm 2

0  is the restoring force 

term and qE  the force from outside field - this equation is the same as 

the equation of forced oscillation. If the electric field varies with angular 

frequency   then, 

 

 
)( 22

0  


m

qE
x  

 

For our purposes in the electrostatic case   = 0 which means that 

 

 x  = 
2

0m

qE
 

  

and the dipole moment P is  

 

P  = xq  = 
2

0

2

m

q E
 

 

From Eq. (3.12) we can write the atomic polarisability as 

 

  = 
2

00

2

 m

q
       (3.13) 

 

and 

  

 n
E

P
000 )1(   
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2

00

2

1



m

nq
nr   

 

For hydrogen gas we can get a rough estimate of 0 . The energy needed 

to ionise the hydrogen atom is equal to 13.6 eV. Equating this to 




2

0h
 

where h  is the Planck's constant, we get 

 

 
34

19

1062.6

2106.16.13










 

 

 15

0 1065.20   

 

Substituting this in the equation 3.13 (a) we get 

 

 
m

nq
r

0

2

1


  1.00020 

 

The experimentally observed value is r = 1.00026. 

 

3.3.2 Relation between Polarisability and Relative Permittivity 
 

In Unit 1, you have noted that one can write P as: 

 

 EP )1(0  r  

 

where r  is the relative permittivity.  

 

Using Eq. 3.14 in Eq. 3.8 we get 

 

 3/)2(
3

0 E
P

EE  r

p




     (3.15) 

 

Using Eqs. 3.14 and 3.15 one can rewrite Eq. 3.9 as: 

  

P  = EE
3

)2(
)1(0


 r

r n


  

 

which yields, 

 

  = 
)2(

)1(3

2

0







 r

n
     (3.16) 
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Eq. 3.16 gives us the relation between atomic/molecular polarisability 

and the relative permittivity.  Eq. (3.16) is another form of the Clausius-

Mossoti equation. 

 

SELF ASSESSMENT EXERCISE 3 
 

Obtain Eq. 3.15 from Eq. 3.14. 

 

3.4  Relation between the Polarisability and Refractive Index 
 

For a dielectric, the refractive index   defined as the ratio of the speed 

of light in vacuum to the speed in the dielectric medium, can be shown 

to be equal to r . 

 

 r 2  

 

Using Eq. 3.15 in Eq, 3.14 we get 

 

)2(

)1(3
2

2
0











n
       (3.17) 

 

Eq. 3.17 gives the relation between polarisability and refractive index. 

This relation is known as the [. 

 

In all the equations discussed above, n represents the number density of 

atoms or molecules which is equal to WdN A /  where AN  is the 

Avogadro number, d the mass density and W the molecular weight. For 

gases, we have the gas equation relating pressure, P, volume, V and 

absolute temperature T given by 

 

RTVP ' = KTN A  

 where q is the mole number  

 

and VKTqNP A /' = nKT  

 

Therefore, KTpn /'  

 

Thus if we determine r  at different pressures for a gas, we can 

calculate the atomic/ molecular polarisability of a gas. For this we write 

Eq. 3.16 as 

 

   = 
)2(

)1(

'

3 0





r

r

p
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


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or 

 

 )/'(
3)2(

)1(

0

Tp
kr

r













     (3.18) 

 

Eq. 3.18 represents the linear relation between )2/()1(  rr   and 

)/'( Tp . If now a graph is drawn with )2/()1(  rr   on the y-axis and 

)/'( Tp  on the x -axis, we get a straight line, the slope of which gives 

( k03/  ). 

 

3.6 Behaviour of Dielectric in Changing or Alternating 

Fields 
 

So far we have considered only electrostatic fields in matter. Now we 

would like to look at the effects of electric fields that vary with time, 

like the field in the dielectric of a capacitor used in an alternating current 

circuit. 

 

Will the changes in polarisation keep up with the changes in the field? 

Will the polarisability, the ratio of P to E, at any instant be the same as 

in a static electric field? 

 

For very slow changes or small frequencies we do not expect any 

difference. However, for high frequencies or faster process we have to 

look at the response time for the polarisation. We have to separately 

consider two polarisation processes viz., induced polarisation and the 

orientation of permanent dipoles. We know that the induced polarisation 

occurs by the distortion of the electronic structure. In the distortion mass 

involved is that of electron and the distortion is very small, which means 

the structure is very stiff. From our knowledge of oscillatory motion (see 

the course on oscillations and waves), its natural frequencies of vibration 

are extremely high. Alternatively, the motions of electrons in atoms and 

molecules are characterised by periods of the order of the period of a 

visible light wave ( 1610  seconds). Thus the readjustment of the 

electronic structure i.e. the polarisation response is very rapid, occurring 

at the time scale of 1410 sec. For this reason we find that nonpolar 

substances behave the same way from dc up to frequencies close to 

those of visible light. 

 

We shall examine the situation in the light of Eq. 3.15, where we have 

expressed the Clausius-Mossotti formula in terms of the refractive 

index. We know that the refractive index is dependent on the 

wavelength or frequency. Thus, in a way 3.13 implies the variation of 

the polarisability with frequency. 
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Experimentally, d.c. values of r  can be found. The refractive index of 

the same substance can be determined by optical methods, using a 

spectrometer. A fairly good agreement is found between the refractive 

index and r  values for non-polar substances. However for polar 

substances, r  varies with frequency; it decreases with increase in 

frequency. The drop in the value of r  at high frequencies is due to the 

fact that the permanent dipoles are not able to follow the rapid 

alternation of the field. In other words the polarisation response of polar 

molecules is much slower. However, in the frequency range of visible 

light the refractive index and r  values show a fairly good agreement as 

indicated by nonpolar substances. 

 

3.7 The Role of Dielectric Capacitor in Our Practical Life 
 

Dielectrics have several applications. Dielectrics are used very widely in 

capacitors. Although the actual requirements vary depending on the 

application, there are certain characteristics which are desirable for their 

use in capacitors. A capacitor should be small, have high resistance, be 

capable of being used at high temperatures and have long life. From a 

commercial point of view it should also be cheap. Specially prepared 

thin kraft paper, free from holes and conducting particles, is used in 

power capacitors where withstanding high voltage stresses is more 

important than incurring dielectric losses. In addition, the kraft paper is 

impregnated with a suitable liquid such as chlorinated diphenyl. This 

increases the dielectric constant and thus reduces the size of the 

capacitor. In addition the breakdown strength is increased. 

 

In addition to paper capacitors for general purpose, other types of 

capacitors are used. In the film capacitors, thin film of teflon, mylar or 

polythene are used. These not only reduce the size of the capacitor but 

also have high resistivity. Teflon is used at high frequencies as it has 

low loss. In electric capacitors, an electrolyte is deposited on the 

impregnating paper. The size of such a capacitor is small as the film is 

very thin. Polarity and the maximum operating voltage are important 

specifications for these capacitors. 

 

Some ceramics can be used as temperature compensators in electronic 

circuits. High dielectric constant materials, where small variations in 

dielectric constant with temperature can be tolerated, help miniaturise 

capacitors. Barium titanate and its modifications are the best examples 

of such materials. 
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4.0 CONCLUSION 

 
In this unit, we have learnt about different types of fields relative to their 

polarisation. The Claussius-Massoti equation for liquids and gases has 

been derived and the roles of dielectrics in daily life have been highted. 

 

5.0 SUMMARY 
 

Inside a dielectric the average electric field is less than the electric field 

which causes the polarisation. 

 

In a dielectric material, the induced dipole moment p, is directly 

proportional to the local field and mathematically given by: 

locEP   

 

where the symbols have their usual meanings.  

 

The field inside a spherical hole is given by: 

 

03/ PEE loc  

 

which shows that the field in a spherical hole is greater than the average 

field.  

 

The relation between susceptibility and atomic/molecular polarisability 

is given by: 

 

 
0

0

3/1

/





n

n


 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

(1)    A sphere of linear dielectric material is placed in a uniform 

electric field 0E  (see Fig. TQ1). Find the field inside the sphere 

and polarisation in terms of external field 

 

(2)  The electric field inside a polarised sphere is uniform and equal 

to 03/ P . Prove this by superposing the internal fields of two 

spheres of charge whose centres are separated. 
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Fig. TQ1 A linear dielectric material placed in a uniform magnetic 

field 

 

(3)  Show that 0  times the force on a unit charge placed in a disc 

shaped cavity will measure the electric displacement (D) in a 

solid dielectric. 

 

(4)  A dielectric consists of a cubical array of atoms (or molecules) 

with spacing d between each atom along the ( x , y , z ) axis. It is 

influenced by a field locE  applied along the direction of z -axis. 

Evaluate the average field produced by all the dipoles. 
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Video Links 

1. https://www.youtube.com/watch?v=etjZmdmrjSU 

2. https://www.youtube.com/playlist?list=PLTBqohhFNBE_fZu9cpbluJA
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1.0 INTRODUCTION  
 

In Units 1 and 2, we learn how the magnetic field affects materials and 

how some materials produce magnetic field. You must have learnt in 

your school Physics Course that in equipment such as generator and 

motor, iron or iron alloy is used in their structure for the purpose of 

enhancing the magnetic flux and for confining it to a desired region. 

Therefore, we will study the magnetic properties of iron and a few other 

materials called ferromagnets, which have similar properties as iron. We 

shall also learn that all the materials are affected by the magnetic field to 

some extent, though the effect in some cases is weak. 

 

When we speak of magnetism in everyday conversation, we almost 

certainly have in mind an image of a bar magnet. You may have 

observed that a magnet can be used to lift nails, tacks, safety pins, and 

needles (Fig. 4.1a) while, on the other hand, you cannot use a magnet to 

pickup a piece of wood or paper (Fig. 4.1b). 
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Fig. 4.1 (a) Materials that are attracted to a magnet are called 

magnetic materials, (b) Materials that do not react to a magnet are 

called nonmagnetic materials 

 

Materials such as nails, needles etc., which are influenced by a magnet 

are called magnetic materials whereas other materials, like wood or 

paper, are called non-magnetic materials. However, this does not mean 

that there is no effect of magnetic field on non-magnetic materials. The 

difference between the behaviour of such materials and iron like 

magnetic materials is that the effect of magnetic field on non-magnetic 

material is very weak. 

 

There are two types of non-magnetic materials: diamagnetic and 

paramagnetic. Unit 4 deals with diamagnetic and paramagnetic effects. 

The ideas, concepts and various terms that you become familiar with in 

this Unit would help you in the study of ferromagnetism in the next 

Unit. In this unit, we present a simple classical account of magnetism, 

based on notion of classical physics. But you must keep in mind that it 

is not possible to understand the magnetic effects of materials from the 

point of view of classical physics. The magnetic effects are a completely 

quantum mechanical phenomena. Only modern quantum physics is 

capable of giving a detailed explanation of the magnetic properties of 

matter because the study requires the introduction and utilization of 

quantum mechanical properties of atoms. For a complete explanation, 

one must take recourse to quantum mechanics; however, a lot of, though 

incomplete, information about matter can be extracted by combining 

classical and quantum concepts. 

 

Basically, in this unit, we will try to understand, in a general way, the 

atomic origin of the various magnetic effects. The next unit is an 

extension of this unit. There, we will try to develop a treatment of 

magnetised matter based on some observed relations between the 

magnetic field and the parameters which characterise the material. 

Finally, we consider the analysis of the magnetic circuit, which is of 

particular importance in the design of the electromagnets. 
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2.0 OBJECTIVES 
 

After studying this unit you should be able to: 

 

 understand and explain: gyro-magnetic ratio, paramagnetism, 

diamagnetism, Larmor frequency 

 relate the magnetic dipole moment of an atomic magnet with its 

angular momentum 

 explain the phenomenon of diamagnetism in terms of Faraday 

induction and Lenz's principle 

 explain paramagnetism in terms of the torque on magnetic 

dipoles 

 find the precessional frequency of an atomic dipole in a magnetic 

field 

 appreciate that a lot of information about magnetism of matter 

can be obtained from the classical ideas of atomic magnetism. 

 

3.0 MAIN CONTENT 
 

3.1 Response of Various Substances to a Magnetic Field 
 

To show how the magnetic materials respond to a magnetic field, 

consider a strong electromagnet, which has one sharply pointed pole 

piece and one flat pole piece as shown in Fig. 4.2. 

 

 
Fig. 4.2 A small cylinder of bismuth is weakly repelled by the sharp 

pole) a piece of aluminium is attracted 

 

 

The magnetic field is much stronger in the region near the pointed pole 

whereas near the flat pole the field is weaker. This is because the lines 

must concentrate on the pointed pole. When the current is passed 

through the electromagnet (i.e., when the magnet is turned on), the 

hanging material is slightly displaced due to the small force acting on it. 

Some materials get displaced in the direction of increasing field, i.e., 

towards the pointed pole. Such materials are paramagnetic materials. 

Examples of such material are aluminium and liquid oxygen. On the 
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other hand, there are materials like bismuth, which are attracted in the 

direction of the decreasing field, i.e., it gets repelled from the pointed 

pole. Such materials are called diamagnetic. Finally, there is a small 

class of materials which feel a considerable stronger force (10 3 - 105 

times) towards the pointed pole. Such substances are called 

ferromagnetic materials. Examples are iron and magnetite. 

 

How does a substance experience a force in a magnetic field? And why 

does the force act in a particular direction for some substance while in 

opposite direction for other substance? If we can answer these questions, 

we will understand the mechanisms of paramagnetism, diamagnetism 

and ferromagnetism. Magnetic fields are due to electric charges in 

motion. In fact, if you could examine a piece of material on an atomic 

scale, you would visualize tiny current loops due to (i) electrons orbiting 

around nuclei and (ii) electrons spinning on their axes. For macroscopic 

purposes, these current loops are so small that they are regarded as the 

magnetic dipoles having magnetic moment. It is this magnetic moment, 

via which the atoms at a substance interact with the external field, and 

give rise to diamagnetic and paramagnetic effects. In this unit, you will 

understand the origin of paramagnetism and diamagnetism. 

Ferromagnetism has been left to be explained in the next unit. Let us 

first find out the value of the magnetic moment and see how it is related 

to the angular momentum of the atom. 

 

3.2    Magnetic Moment and Angular Momentum of an Atom 
 

Electrons in an atom are in constant motion around the nucleus. To 

describe their motion, one needs quantum mechanics, however, in this 

unit we shall use only classical arguments to obtain our results, though 

we repeat here that our description of the physical world is incomplete 

as we shall be leaving out quantum mechanics. 

 

We consider an electron in the atom to be moving, for simplicity, in a 

circular orbit around the nucleus under the influence of a central force, 

known as the electrostatic force, as shown in Fig. 4.3(a). As a result of 

this motion, the electron will have an angular momentum L about the 

nucleus. 
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Fig.4.3 (a) Classical model of an atom in which an electron moves at speed 

v in a circular orbit (b) The average electric current is the same as if the 

charge - e were divided into small bits, forming a rotating ring of charge, 

(c) The orbital angular momentum vector and the magnetic moment 

vector both point in opposite directions. 

 

 

The magnitude of this angular momentum is given by the product of the 

mass m of the electron, its speed v and the radius r of the circular path 

(see Fig. 4.3), i.e., 

 

mvrL          (4.l) 

 

Its direction is perpendicular to the plane of the orbit. The fact that 

orbital motion of the electron constitutes an electric current will 

immediately strike your mind. The average electric current is the same 

as if the charge on the electron were distributed in small bits, forming a 

rotating ring of charge, as shown in Fig. 4.3(b). The magnitude of this 

current is the charge times the frequency as this would equal to the 

charge per unit time passing through any point on its orbit. The 

frequency of rotation is the reciprocal of the period of rotation, vr /2 , 

hence the frequency of rotation has the value, rv 2/ . The current is then 

 

r

ev
I

2
          (4.2) 

 

The magnetic moment due to this current is the product of the current 

and the area of which the electron path is the boundary, that is, 
2rI  . Hence we have 

 

2

evr
         (4.3) 

 

It is also directed perpendicular to the plane of the orbit. Using Eq. (4.1) 

in Eq. (4.3) we get as follows: 

 

L
m

e

2
        (4-4) 
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The negative sign above indicates that   and L are in opposite 

directions, as shown in Fig. 4.3(c). Note that L is the orbital angular 

momentum of the electron. The ratio of the magnetic moment and the 

angular momentum is called the gyro-magnetic ratio. It is independent 

of the velocity and the radius of the orbit. 

 

According to quantum mechanics, )1(  llL   where l  is a positive 

integer and 
2

h
 , h  being Planck's constant. However, in some 

physical cases the applicability of classical models is close to reality, 

therefore, we will go ahead with the classical ideas. Further, the early 

work on the nature of magnetic materials was based on classical ideas, 

which gave intelligent guesses at the behaviour of these materials. 

 

SELF ASSESSMENT EXERCISE 1 
 

(1)      Show that the magnetic dipole moment can be expressed in units 

of 1JT  (Joule per Tesla). 

(2)      In the Bohr hydrogen atom, the orbital angular momentum of the 

electron is quantized in units of  , where h = 3410626.6  Js is 

Planck's constant. Calculate the smallest allowed magnitude of 

the atomic dipole moment in 1JT . (This quantity is known as 

Bohr magneton.) The mass of the electron is kg3110109.9  . 

 

In addition to its orbital motion, you know that, the electron in an atom 

behaves as if it were rotating around an axis of its own as shown in Fig. 

4.4. 

 

 
Fig. 4.4 The spin and the associated magnetic moment of the 

electron 

 

This property is called spin. Though strictly it is not possible to 

visualise the spin of a point particle like electron, for many purposes it 

helps to regard the electron as a ball of negative charge spinning around 

its axis. Then you can say that it is a current loop. Spin is entirely a 

quantum mechanical idea. Nevertheless, the spin of the electron has 
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associated with it an angular momentum and a magnetic moment. For 

purely quantum mechanical reasons with no classical explanation, we 

have 

 

μ S
m

e
         (4.5) 

 

where S is the spin angular momentum and μ is the spin magnetic 

moment. The gyromagnetic ratio in this case is twice that in the orbital 

case. 

 

In general, an atom has several electrons. The orbital and spin angular 

momenta of these electrons can be combined in a certain way, the rules 

of which are given by quantum mechanics, to give the total angular 

momentum J and a resulting total magnetic moment. It so happens that 

the direction of the magnetic moment is opposite to that of the angular 

momentum in this case as well, so that we have 

 

μ J
m

e
g

2
         (4.6) 

 

where g is a numerical factor known as Lande g-factor which is a 

characteristic of the state of the atom. The rules of quantum mechanics 

enable us to calculate the g-factor for any particular atomic state, g = 1 

for the pure orbital case and g = 2 for the pure spin case. 

 

The atom or molecules interacts with the external magnetic field due to 

its magnetic moment. But there is another way in which atomic currents 

and hence moments are affected by the field. In this case the magnetic 

moment is induced by the field. This effect leads to diamagnetism which 

we study in the next section. But before moving to the next section, try 

the following SAQ. 

 

SELF ASSESSMENT EXERCISE 2 

 

(1)      Compare Eq. (4.6) with (4.4) and (4.5), to find the value of g for 

(i) pure orbital case and for (ii) pure spin case. 

 

(2)     The experimentally measured electron spin magnetic moment is 
2241027.9 Am . Show that this value is consistent with the 

formula given by Eq. 4.5. 

(Hint: According to Bohr's theory
2


S . Here 

2

h
 , h being Planck's 

constant.) 
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3.3    Diamagnetism and Paramagnetism 
 

In many substances, atoms have no permanent magnetic dipole moments 

because the magnetic moments of various electrons in the atoms of these 

substances tend to cancel out, leaving no net magnetic moment in the 

atom. The orbital and spin magnetic moments exactly balance out. 

These materials exhibit diamagnetism. If a material of this type is placed 

in a magnetic field, little extra currents are induced in their atoms, 

according to the laws of electromagnetic induction, in such a direction 

as to oppose the magnetic field already present. Hence, in such a 

substance, the magnetic moments (on account of induced currents) are 

induced in a direction opposite to that of the external magnetic field. 

This effect is diamagnetism. It is a weaker effect. However, this effect is 

universal. 

 

There are other substances of which the atoms have permanent magnetic 

dipole moments. This is due to the fact that the magnetic moments due 

to orbital motion and spins of their electrons do not cancel out, but have 

a net value. When such a substance is placed in a magnetic field, besides 

possessing diamagnetism, which is always present, the dipoles of such a 

material tend to line up along the direction of the magnetic field. This is 

paramagnetism and the material is called paramagnetic. In a 

paramagnetic substance, the paramagnetism usually masks the ever 

present property of diamagnetism in every substance. 

 

Diamagnetism involves a change in the magnitude of the magnetic 

moment of an atom whereas paramagnetism involves change in the 

orientation of the magnetic moment of an atom. Let us see how. 

 

3.3.1 Diamagnetism – Effect of Magnetic Field on Atomic 

Orbits 
 

We consider an atom, which has no intrinsic magnetic dipole moment, 

and imagine that a magnetic field is slowly turned on in the space 

occupied by the atom. The act of switching the magnetic field introduces 

change in the magnetic field which, in turn, generates an electric field 

given by Faraday's law of induction. It states that the line integral of E 

around any closed path equals the rate of change of the magnetic flux   

through the surface enclosed by the path. 

 

For simplicity, we choose a circular path along which the electron in the 

atom is moving (see Fig. 4.5). The electric field around this path is given 

by Faraday's law as: 

 

 



dt

d
d lE  
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or 

 

)(2 2

  rB
dt

d
rE        (4.7) 

 

 

 
Fig. 4.5 An electron moving in circular orbit m a uniform magnetic 

Held that is normal to the Orbit 

 

where, r  is the radius of the circular path perpendicular to B. The 

above equation gives the circulating electric field whose strength is, 

 

dt

dBr
E

2

         (4.8) 

 

This electric field exerts a torque  reE  on the orbiting electron 

which must be equal to the rate of change of its angular momentum 
dt

dL
, 

that is, 

 

  reE
dt

dL
 

 

or 










 r

dt

dBr
e

dt

dL

2
 

 

or 
dt

dBr
e

dt

dL

2

2

        (4.9) 

  

The change in angular momentum, L , due to turning on the field is 

obtained by integrating Eq. (4.9) with respect to time from zero field as 

follows: 

 

B
re

L  

2

2

        (4.10) 
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Thus Eq. (4.10) shows that a build up of a magnetic field B causes a 

change in the angular momentum of the electron, L , and hence a 

change in the magnetic moment governed by Eq. (4.4) as follows: 

 

 L
m

e


2
  

B
m

re

4

2

         (4.11) 

 

The direction of the induced magnetic moment is opposite to that of B, 

which produces it as can be seen from the negative sign in the Eq. 

(4.11). In this equation, we have the term 2

r  which is the square of the 

radius of the particular electron orbit whose axis is along B. If B is along 

the z -axis, we put 2

r = x 2 + y 2. Thus, the average  

2r  would be 

2  2x , since  222 zyx , due to spherical symmetry.  

Further  2222222

3

1

3

1
rzyxzyx  gives 

 2

3

2
r . 

 

Hence the Eq. (4.11), which we shall write as 

 

 B
m

re

4

22 
   

 

becomes, 

 

B 2
2

6
r

m

e
       (4.12) 

 

We find that the induced magnetic moment in a diamagnetic atom is 

proportional to B and opposes it. This is diamagnetism of matter. If each 

molecule has n electrons, each with an orbit of radius r, then the change 

in the magnetic moment of the atom is 

 

 B 
electrons all

2
2

6
r

m

e
  

 

There is an alternative way of understanding the origin of diamagnetism 

which is based on the fact that an electron either speeds up or slows 

down depending on the orientation of the magnetic field. Let us see 

how. As shown in Fig. 4.6, in the absence of the magnetic field, the 

centripetal force 
r

mv 2

 is balanced by the electrical force as follows: 
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r

mv

r

e 2

2

2

04

1



      (4.13) 

 

Let us find out what happens to one of the orbits when an external 

magnetic field is applied as shown in Fig. 4.7. 

 

 
Fig. 4.6 There is no external magnetic field. Centripetal force is 

balanced by the electrical force 

 

 
Fig. 4.7 Magnetic field is perpendicular to the plane of the orbit 

 

 

In the presence of the magnetic field there is an additional term 

)( Bv e and under these conditions speed of the electron changes. 

Suppose the new speed is 1v , then 

 

 
r

mv

r

e
Bev

2

1

2

2

0

1
4

1



 

 

or 

  

))(()( 11

22

11 vvvv
r

m
vv

r

m
Bev   

 

If we assume that the change vvv  1  is small, we get  

 

 vv
r

m
Bev  )2( 11  

or 

 

m

rBe
v

2
        (4.14) 
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A change in orbital speed means a change in the dipole moment given 

by Eq. (4.3) as follows: 

 

B
m

re
rve

4
)(

2

1 22

       (4.15) 

This shows that change in   is opposite to the direction of B. In the 

absence of an external magnetic field, the electron orbits are randomly 

oriented and the orbital dipole moments cancel out. But in the presence 

of a magnetic field, the dipole moment of each atom changes and all get 

aligned antiparallel to the external field. This is the mechanism 

responsible for diamagnetism. This property of magnetic material is 

observed in all atoms. But as it is much weaker than paramagnetism it is 

observed only in those materials where paramagentism is absent. 

 

3.3.2 Paramagnetism – Torque on Magnetic Dipoles 
 

Paramagnetism is exhibited by those atoms which do not have magnetic 

dipole moment. The magnetic moment of an atom is due to the moment 

produced by the orbital currents of electrons and their "unpaired spins". 

A current loop having   as its magnetic dipole moment when placed in 

a uniform field experiences a torque T which is given by  

 

 τ = μ B  
 

The torque tends to align the dipoles so that the magnetic moment is 

lined up parallel to the field (in the way the permanent dipoles of 

dielectric are lined up with electric field). It is this torque which 

accounts for paramagnetism. You might expect every material to be 

paramagnetic since every spinning electron constitutes a magnetic 

dipole. But it is not so, as various electrons of the atom are found in 

pairs with opposing spins. The magnetic moment of such a pair of 

electrons is cancelled out. Thus paramagnetism is exhibited by those 

atoms or molecules in which the spin magnetic moment is not cancelled. 

That is why the word "unpaired spins" is written above. Paramagnetism 

is generally weak because the linings up forces are relatively small 

compared with the forces from the thermal motion which try to destroy 

the order. At low temperatures, there is more lining up and hence 

stronger the effect of paramagnetism. 

 

SELF ASSESSMENT EXERCISE 3 

 

A. Of the following materials, which would you expect to be 

paramagnetic and which diamagnetic? 

 

Copper, Bismuth, Aluminium, Sodium, Silver. 
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B. Would it be possible to prepare an alloy of, say, a diamagnetic 

material like copper and a paramagnetic material like aluminium 

so that the alloy will neither be paramagnetic nor diamagnetic? 

 

3.4 The Interaction of an Atom with Magnetic Field-Larmor 

Precession 
 

In the last subsection, while explaining paramagnetism we, considered 

an atom as a magnet with the magnetic moment μ. When placed in a 

uniform magnetic field B, it is acted upon by a torque τ = μ B , which 

tends to line it up along the direction of the magnetic field. But it is not 

so for the atomic magnet, because it has an angular momentum J like a 

spinning top. We already know that a rapidly spinning top or a 

gyroscope in the gravitational field is acted upon by a torque, the result 

of which is that it precesses about the direction of the field. Similarly, 

instead of lining up with the direction of the magnetic field, the atomic 

magnet precesses about the field direction. The angular momentum and 

with it the magnetic moment precess about the magnetic field, as shown 

in Fig. 4.8a. 

 

Due to the presence of the magnetic field, the atom will feel a torque T 

whose magnitude is given by: 

 

 sinB         (4.16) 

 

where   is the angle which  makes with B. The direction of the torque 

is perpendicular to the direction of magnetic field and also of , as 

shown in Fig. 4.8b. 

 

 
Fig. 4.8 (a) The angular momentum associated with atomic magnet 

processes about magnetic field (b) The presence of magnetic field 

results in the torque T. It is at right angles to the angular 

momentum; (c) The torque changes the direction of the angular 

momentum vector, causing precession 
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Notice that the torque is perpendicular to the vector J. Now according to 

Newton's second law 

 

τ 
dt

dJ
         (4.17) 

 

For small changes, we can write it as  

 

J = τ t         (4.18) 

 

In other words, the torque will produce a change in the angular 

momentum with time. Suppose that J  is the change in the angular 

momentum in an interval of time t . This J will be in the direction of 

τ. This will result in the tip of J moving in a circle about B as the axis. 

This is, in fact, a precession of J (so also of ) about the direction of B. 

The magnitude of J can be written by using Eq. (4.16) in Eq. (4.18) as 

follows: 

 

tBtJ  )sin(        (4.19) 

 

Although the torque τ, being at right angles to J, cannot change the 

magnitude of J, it can change its direction. Fig. 4.8c shows how the 

vector J  adds vectorially onto the vector J to bring this about. If p  is 

the angular velocity of the precession and   is angle of precession in 

time t , then 

 

t
p







         (4.20) 

 

From Fig. 4.8c we see that 

 

 







sin

)sin(

sin J

tB

J

J 



  

 

Dividing above by t , approaching the differential limit and putting 

dt

d
p


  , we get 

J

B
p


          (4.21) 

 

Substituting for J/  from the Eq. (4.6), we get 

 

B
m

e
gp

2
        (4.22) 
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as the angular speed of precession of an atomic magnet about the 

direction of B. If in Eq. (4.22) g = 1, then p  is called the Larmor 

frequency, and is proportional to B. It should be borne in mind that this 

is the classical picture. 

 

Now you may wonder if the atomic magnets (dipoles) precess about 

magnetic field, how many of these dipoles get aligned along the 

direction of magnetic field. We know that the potential energy of a 

dipole in the applied field is given by –  cosBB . Therefore, an 

unaligned dipole has a greater potential energy than an aligned one. If 

the energy of the dipole is conserved then it cannot change its direction 

with respect to the field, i.e. the value of angle   remains constant. So it 

keeps precessing about the field. However, by losing energy the atomic 

dipole gets aligned with the field. In a solid, the dipole can lose energy 

in various ways as its energy is transferred to other degrees of freedom 

and so it gets aligned with the field depending upon the temperature of 

the solid. To change the orientation of the dipole, the maximum energy 

required is B2 . If   is about 2310 Am–23 and a large field, say, 5T is 

applied then the potential energy will be of the order of 2210 joules. This 

is comparable to the thermal energy kT  at room temperature. Thus only 

a small fraction of the dipoles will be aligned parallel to B. In the next 

section it will be shown, using statistical mechanics, what fraction of 

dipoles is aligned along B. 

 

In the presence of the magnetic field, when the tiny magnetic dipoles 

present in the material get aligned along a particular direction we say 

that material becomes magnetized or magnetically polarized. The state 

of magnetic polarization of a material is described by the vector quantity 

called magnetisation, denoted by M. It is defined as the magnetic dipole 

moment per unit volume. It plays a role analogous to the polarization P 

in electrostatics. In the next section we will also find the expression of 

magnetisation for paramagnets. But before proceeding do the following 

SAE. 

 

SELF ASSESSMENT EXERCISE 4 

 

Water has all the electron spins exactly balanced so that their net 

magnetic moment is zero, but the water molecules still have a tiny 

magnetic moment of the hydrogen nuclei. In the magnetic field of 1.0 

Wb m –2  protons (in the form of H- nuclei of water) have the precession 

frequency of 42 MHz. Calculate the g - factor of the proton. 
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3.6 Magnetisation of Paramagnets 
 

In the presence of an external magnetic field, the magnetic moment 

tends to align along the direction of the magnetic field. But the thermal 

energy of the molecules in a macroscopic piece of magnetic material 

tends to randomise the direction of molecular dipole moments. 

Therefore, the degree of alignment depends both on the strength of the 

field and on the temperature. Let us derive the degree of alignment of 

the molecular dipoles, quantitatively, using statistical methods. 

 

Suppose there are N magnetic molecules per unit volume, each of 

magnetic moment  , at a temperature T. Classically, the magnetic 

dipole can make any arbitrary angle with the field direction (Fig. 4.9). In 

the absence of an external field, the probability that the dipoles will be 

between angles   and  d  is proportional to  dsin2 , which is the 

solid angle d  subtended by this range of angle. This probability leads 

to a zero average of the dipoles. When a magnetic field B is applied in 

the z - direction, the probability becomes also proportional to the 

Boltzmann distribution, kTUe / . Here U  B =  cosB  is the 

magnetic energy of the dipole when it is making an angle   with the 

magnetic field, k is the Boltzmann constant and T is the absolute 

temperature. 

 

 
Fig. 4.9 Calculation of the paramagnetic properties of materials in 

an external magnetic field 

 

According to Boltzmann's law the probability of finding 

molecules in a given state varies exponentially with the 

negative of the potential energy of that state divided 

by kT . In this case the energy E depends upon the angle 

  that the moment makes with the magnetic field. So 

probability is proportional to )/)(exp( kTU  . 
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Hence, the number of atoms (or molecules) dN per unit volume for 

which  makes angles between   and  d  with B, is given by 

 

  dKedN kTB sin2 /cos       (4.23) 

 

where K is a constant. 

 

Calling kTB /  as a, the total number of dipoles per unit volume of the 

specimen is 

 

 



 

0

cos sin2 dKedNN a  

 

Putting xcos , we have 

 








1

1

2 dxeKN ax  

 

     = )(
2 aa ee

a

K 


       (4.24) 

 

The magnetic dipole, making an angle   with B, makes a contribution 

 cos  to the intensity of magnetization M of the specimen. Hence, the 

magnetization of the specimen obtained by summing the contributions 

of all the dipoles in the unit volume is given by: 

 

 M  =   cosdN  

   

  =   dKe kTB sincos2 /cos  

    

  = 






1

1

2 xdxeK ax  

 

where, again, we have put xcos  and akTB / . Evaluating the 

above integral, we obtain 

 

 







  )(

1
)(

1
2

2

aaaa ee
a

ee
a

KM   

 

Substituting for K2 from the Eq. (4.24), we get 
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 
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 









a
aMM s

1
coth       (4.25) 

 

where NM s   is the saturation magnetization of the specimen when 

all the dipoles align with the magnetic field. The expression 
a

a
1

coth   is 

called the Langevin function which is denoted by )(aL . 

 

We now consider two cases: (i) when 
kT

B
 is very large. This would 

happen if the temperature were very low and/or B very large. For this 

case, 

 

 1
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1

111
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Hence, sMM  . These would be saturation. 

 

(ii)  When 
kT

B
 is small which means that T is large and / or B is 

small. In this case  
3

1
coth

a

a
a   and kTNBkTBMM s 3/)3/( 2  . 

  

The complete dependence of M on B is shown in Fig. 4.10. For your 

comparison, the dependence of M on B based on quantum mechanical 

calculation is also shown. 

 

 
Fig 4.10  The Magnetisation of paramagnetic material placed in a 

magnetic field B as a function of 
kT

B
a


  (i) is based on classical 

calculation with no restriction on the direction of dipole (ii) is based 
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on quantum mechanical calculation with restriction on the direction 

of dipole 
 

SELF ASSESSMENT EXERCISE 5 

Evaluate the integral 




1

1

xdxeax  

SELF ASSESSMENT EXERCISE 6 

Show that when kTBa /  is small, 
3

1
coth

aM

a
aMM s

s 







  

 

Let us now sum up what we have learnt in this unit. 

 

4.0 CONCLUSION 

 
In unit 4, we have explained gyromagnetic ratio, paramagnet-ism, 

diamagnetism and Larmor frequency. In addition, we have explained 

how to obtain information about magnetism of matter from the classical 

ideas of atomic magnetism.  

 

5.0 SUMMARY 
 

 All materials are, in some sense, magnetic and respond to the 

presence of a magnetic field. Materials can be classified into 

mainly three groups: diamagnetic, paramagnetic and 

ferromagnetic. Diamagnetism is displayed by those materials in 

which the atoms have no permanent magnetic dipole moments. 

Paramagnetism and ferromagnetism occurs in those materials in 

which the atoms have permanent magnetic dipoles. 

 

 The orbital motion of the electron is associated with a magnetic 

moment n, which is proportional to its orbital angular momentum 

J. We write this as 

 

μ J









m

e
g

2
 

 

 where e is the charge on electron, m the mass of electron and g is 

Lande g - factor which has a value 1 for orbital case and 2 for 

spin case. 

 

 The ratio of the magnetic dipole moment to the angular 

momentum is called the gyromagnetic ratio. 

 

 The magnetic dipoles in the magnetic materials are due to atomic 

currents of electrons in their orbits and due to their intrinsic spins. 
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 Change in the magnitude of the magnetic moment of atoms is 

responsible for diamagnetism whereas change in the orientation 

of the magnetic moment accounts for paramagnet ism. 

 

 Because the magnetic moment is associated with angular 

momentum, in the presence of a magnetic field, the atom does not 

simply turn along the magnetic field but precesses around it with 

a frequency Bmegp )2/( . This is called the Larmor 

precession. 

 

 When a diamagnetic atom is placed in an external magnetic field 

normal to its orbit, the field induces a magnetic moment opposing 

the field itself (Lenz's law) as 

 

   = B
m

er

4

2

 

 

where r and m are the radius of the orbit and mass of the electron. 

 

 When atoms of magnetic moment   are placed in a magnetic 

field B, then the Magnetisation M is given by  

 

 )/1(coth aaMM s   

 

where, 
kT

B
a


  and NM s   is the saturation magnetisation 

when all the dipoles are aligned in the direction of field. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 
1.     A uniformly charged disc having the charge q and radius r is 

rotating with constant angular velocity of magnitude  . Show 

that the magnetic dipole moment has the magnitude, )(
4

1 2rq . 

(Hint: Divide the sphere into narrow rings of rotating charge; find 

the current to which each ring is equivalent, its dipole moment 

and then integrate over all rings.) 

 

2.      Compare the precession frequency and the cyclotron frequency of 

the proton for the same value of the magnetic field B. 
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1.0    INTRODUCTION 
 

Earlier in this course you have studied the behaviour of dielectric 

materials in response to the external electric fields. This was done by 

investigating their properties in terms of electric dipoles, both natural 

and induced, present in these materials and their lining up in the electric 

field. The macroscopic properties of these materials were studied using 

the so-called polarization vector P, the electric dipole moment per unit 

volume. 

 

The magnetic properties of materials have a similar kind of explanation, 

albeit in a more complicated form, due to the absence of free magnetic 

monopoles. The magnetic dipoles in these materials are understood in 

terms of the so-called Amperian current loops, first introduced by 

Ampere. 

 

All materials are, in some sense, magnetic and exhibit magnetic 

properties of different kinds and of varying intensities. As you know, all 

materials, can be divided into three main categories:      (i) Diamagnetic; 

(ii) Paramagnetic and (3) Ferromagnetic materials. In this unit, we shall 

study the macroscopic behaviour of these materials. 

 

We understood the macroscopic properties of the dielectric materials 

using the fact that the atoms and molecules of these substances contain 

electrons, which are mobile and are responsible for the electric dipoles, 

natural and induced, in these substances. The polarisation of these 

substances is the gross effect of the alignment of these dipoles. Similarly 

we describe the magnetic properties of various materials in terms of the 

magnetic dipoles in these materials. 
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In Unit 4, we have already explained diamagnetism and paramagnetism 

in terms of magnetic dipoles. In this unit, first, we will mention the 

origin of ferromagnetism. Later, we will develop a description of the 

macroscopic properties of magnetic materials 

 

2.0  OBJECTIVES 
 

After studying this unit you should be able to: 

 

 understand and explain the terms: ferromagnetism, amperian 

current, magnetisation, magnetic intensity H, magnetic 

susceptibility, magnetic permeability, relative permeability 

 relate magnetisation M (which is experimentally measurable) and 

the atomic currents (which is not measurable) within the material 

 derive and understand the differential and integral equations for 

M and H and apply these to calculate fields for simple situations 

 interrelate B, H, M, no, H and y_< 

 relate B & H for various magnetic and non-magnetic materials 

 derive an equation in analogy with Ohm's law for a magnetic 

circuit. 

 

 

3.0 MAIN CONTENT 
 

3.1 Ferromagnetism 
 

Ferromagnetic materials are those materials, which respond very 

strongly to the presence of magnetic fields. In such materials, the 

magnetic dipole moment of the atoms arises due to the spins of unpaired 

 

 
Fig. 5.1: Domain 

 

Consider two electrons on atoms that are close to each other. If 

the electron spins are parallel, they stay away from each other 

due to Pauli’s principle, thereby reducing their coulomb energy 

of repulsion. On the other hand, if these spins are anti-parallel, 

the electrons can come close to each other and their coulomb 

energy is higher. Thus, by making their spins parallel, the 

electrons can reduce their energy. 
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electrons. These tend to line up parallel to each other. Such a line-up 

does not occur over the whole material, but it occurs over a small 

volume, known as 'domain\ as shown in Fig. 12.1. However, these 

volumes are large compared to the atomic or molecular dimensions. 

Such line-ups take place even in the absence of an external magnetic 

field. You must be wondering about the nature of forces that cause the 

spin magnetic moments of different atoms to line up parallel to each 

other. This can be explained only by using quantum mechanical idea of 

"exchange forces". We will not go into the details of exchange forces. 

About this, you will study in other courses of physics, but we are giving 

you some idea of exchange forces in the margin remark.  

 

 

 

In an unmagnetized ferromagnetic material, the magnetic moments of 

different domains are randomly oriented, and the resulting magnetic 

moment of the material, as a whole is zero, as shown in Fig. 5.2. 

However, in the presence of an external magnetic field, the magnetic 

moments of the domains line-up in such a manner as to give a net 

magnetic moment to the material in the direction of the field. The 

mechanism by which this happens is that the domains with the magnetic 

moments in the favoured directions increase in size at the expense of the 

other domains, as shown in Fig. 5.3a. 

 

 
Fig. 5.3 In a ferromagnetic material domain changes, resulting in a 

net magnetic moment, occur through (a) domain growth and (b) 

domain realignment 

 

 
Fig. 5.2 The domains in an unmagnetised bar of iron. The 

arrows show the alignment direction of the magnetic moment 

in each domain 
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In addition, the magnetic moments of the entire domains can rotate, as 

shown in Fig. 5.3b. The material is thus magnetised. If, after this, the 

external magnetic field is reduced to zero, there still remains a 

considerable amount of magnetization in the material. The material gets 

permanently magnetized. The behaviour of ferromagnetic materials, 

under the action of changing magnetic fields, is quite complicated and 

exhibits the phenomenon of hysteresis which literally means 'lagging 

behind'. You will study more about this in Sec. 5.5. 

 

Above a certain temperature, called the 'Curie Temperature', because 

the forces of thermal agitation dominate 'exchange' forces, the domains 

lose their dipole moments. The ferromagnetic material begins to behave 

like a paramagnetic material. When cooled, it recovers its ferromagnetic 

properties. 

 

Finally, we briefly mention two other types of magnetism, which are 

closely related to ferromagnetism. These are anti-ferromagnetism and 

ferrimagnetism (also called ferrites). In this course, we will not study the 

physics of antiferro- and ferrimagnetism. The main reason for 

mentioning these materials are that they are of technological importance, 

being used in magnetic recording tapes, antenna and in computer 

memory. 

 

In antiferromagnetic substances, the 'exchange' forces, as we mentioned 

earlier, play the role of setting the adjacent atoms into antiparallel 

alignment of their equal magnetic moments, that is, adjacent magnetic 

moments are set in opposite directions, as shown in Fig. 5.4 a. 

 

Such substances exhibit little or no evidence of magnetism present in the 

body. However, if these substances are heated above the temperature 

known as Neel temperature, the exchange force ceases to act and the 

substance behaves like any other paramagnetic material. 

 

In ferrimagnetic substances, known generally as ferrites, the exchange 

coupling locks the magnetic moments of the atoms in the material into a 

pattern, as shown in Fig. 5.4b. The external effects of such an alignment 

is intermediate between ferromagnetism and antiferromagnetism. Again, 

here the exchange coupling disappears above a certain temperature. 

 

 

 
Fig. 5.4 Relative orientation of electron spins in (a) 

antiferromagnetic material and (b) ferrite. 
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Thus, we find that the magnetization of the materials is due to 

permanent (and induced) magnetic dipoles in these materials. The 

magnetic dipole moments in these materials are due to the circulating 

electric currents, known as amperian currents at the atomic and 

molecular levels. You are expected to understand the correct 

relationship between magnetization in a material and the amperian 

currents, together with the basic difference (and sometimes similarities) 

between the behaviour of the magnetic materials in magnetic fields, and 

dielectrics (and conductors) in electric fields. 

 

Though the physics of paramagnetic and ferromagnetic materials have 

analogues in the electric case, diamagnetism is peculiar to magnetism. 

The student is advised to read the matter in this unit and find the 

analogies and appreciate the differences, if any, by referring back to the 

units on dielectrics. In the next section, we will find out the relationship 

between the macroscropic quantity M, which is experimentally 

measurable and the atomic currents (a microscopic quantity) within the 

material which is not measurable. With the help of this relationship, we 

can find out the magnetic field that magnetised matter itself produces. 

 

3.2 Magnetic Field Due to a Magnetised Material 
 

In Unit 1, we have described the macroscopic properties of dielectric 

materials in terms of the polarization vector P, the origin of which is in 

the dipole moments of its natural or induced electric dipoles. We shall 

adopt a similar procedure in the study of magnetic materials. You would 

be tempted to say that we should carry over all the equations in the study 

of dielectrics to magnetic materials. One way of doing this would be to 

replace the electric field vector E by B, then replace P by an analogous 

quantity which we shall call magnetization vector M which is the 

magnetic dipole moment per unit volume. Further, we replace the 

polarization charge density p  by magnetic 'charge' density m  

whatever that means, by writing m M  just as we had p P .  

 

In fact, people did something like this, and they believed that magnetic 

charges or monopoles exist. They have built a whole theory of 

electromagnetism on this assumption. However, we know that magnetic 

'charges' or monopoles have not yet been detected in any experiment so 

far, despite a long search for them. Now, we know that the 

magnetization of matter is due to circulating currents within the atoms of 

the materials. This was originally suggested by Ampere, and we call 

these circulating currents as 'amperian' current loops. These currents 

arise due to either the orbital motion of electrons in the atoms or their 

spins. These currents, obviously, do not involve large scale charge 

transport in the magnetic materials as in the case of conduction currents. 
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These currents are also known as magnetization currents, and we shall 

relate these currents to the magnetization vector M. 

 

Let us consider a slab of uniformly magnetised material, as shown in 

Fig. 5.5a. It contains a large number of atomic magnetic dipoles (evenly 

distributed throughout its volume) all pointing in the same direction. If 

  is the magnetic moment of each dipole, then the magnetisation M 

will be the product of   and the number of oriented dipoles per unit 

volume. You know that the dipoles can be indicated by tiny current 

loops. Suppose the slab consists of many tiny loops, as shown in Fig. 

5.5b. Let us consider any tiny loop of area a, as shown in Fig. 5.5c. In 

terms of magnetisation M, the magnitude of dipole moment   is written 

as follows: 

 

Madz         (5.1) 

 

where dz is the thickness of the slab. 

 

 

 
Fig. 5.5: (a) A thin slab of uniformly magnetized material, with the 

dipoles indicated by (b) and (c) tiny current loops is equivalent to 

(d) a ribbon of current/ flowing around the boundary 
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If the tiny loop has a circulating current I , then the dipole moment of 

the tiny loop is given by 

 

Ia          (5.2) 

Equating (5.1) and (5.2) we get 

 

dz

I
M   or MdzI         (5.3) 

 

Here we have assumed that the current loops corresponding to magnetic 

dipoles are large enough so that magnetisation does not vary appreciably 

from one loop to the next, so Eq. 5.3 shows that the current is the same 

in all current loops of Fig. 5.5b. Notice that within the slab, currents 

flowing in the various loops cancel, because every time if there is one 

going in one particular direction, then a continuous one is going in the 

exactly opposite direction. At the boundary of the slab, there is no 

adjacent loop to do the cancelling. Hence the whole thing is equivalent 

to the single loop of current I  flowing around the boundary, as shown 

in Fig. 5.5d. Therefore, the thin slab of magnetised material is equivalent 

to a single loop carrying the current Mdz, Hence, the magnetic field at 

any point external to the slab, is the same as that of the current Mdz. 

 

In case there is non-uniform magnetization in the material, the atomic 

currents in the (amperian) circulating current loops do not have the same 

magnitude at all points inside the material and, obviously, they do not 

cancel each other out inside such a material. Still we will find that 

magnetised matter is equivalent to a current distribution J = curl M. Let 

us see how we have arrived at this relation. 

 

In the non-uniformly magnetised material consider two little blocks of 

the volume zyx  , cubical in shape adjacent to each other along the y-

axis (see Fig. 5.6a). Let us call these blocks ' 1' and '21 respectively. Let 

the z -component of M in these blocks be )( yMz  and )( yyM z   

respectively. 

 

Let the amperian currents circulating round the block ' 1' be I ( 1 ) and 

round the block '2' be I  (2).Using Eq. (5.3) and referring to Fig. 5.6a we 

write, 

 

 zyMI zx  )()1(  

 

and 

 

zyyMI zx  )()2(  
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Fig. 5.6: Two adjacent chunks of magnetised material, with a larger 

arrow on the one to the right in (a) and above in (b), suggesting 

greater magnetisation at that point. On the surface where they join 

there is a net current in the x-direction. 

 

 

At the interface of the two blocks, there will be two contributions to the 

total current: I (1) flowing in the negative x -direction, produced due to 

block 1, and I  (2) flowing in the positive x-direction produced due to 

Block 2. The total current in the positive x -direction is the sum: 

 

zyMyyMII zzxx  )]()([)1()2(  

 

or  

 

zy
y

M
I z

x 



       (5.4) 

 

Eq. (5.4) gives the net magnetization current in the material at a point in 

the x -direction in terms of the z-component of M. The current per unit 

area, i.e., current density Jm flowing in the x -direction is given as 

follows: 

 

zy

I
J x

xm



)(  

 

where zy  is the area of cross-section of one such block for the current 

xI . Hence 

 

 
y

M
J z

xm



)(       (5.5) 

 

In these equations, we have put suffixes x  to the currents to indicate 

that, at the interface of the blocks, the current is along the x -axis. 
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There is another way of obtaining the current flowing in x-direction by 

considering these two tiny blocks, one above the other, along the z-axis, 

as shown in Fig. 5.6b. We obtain the relation as 

 

y

M
J z

xm



)(        (5.6) 

 

By superimposition of these two situations, we get 

 

x

yz
m

z

M

y

M
xJ )()( M









      (5.7) 

 

Eq. (5.7) is obviously the x -component of a vector equation relating Jm 

and the curl of M. Combining this with y and z components, we obtain 

 

MJ m         (5.8) 

 

Eq. (5.8) is a more general expression representing the relationship 

between the magnetisation and the equivalent current. We see from Eq. 

(5.8) that inside a uniformly magnetized material in which case M = 

constant; we have mJ  = 0. This is true. See Eq. (5.8), the current is only 

at the surface of the material where the magnetization has a 

discontinuity (dropping from a finite M to zero). Inside a non-uniformly 

magnetized material mJ is nonzero. 

 

We shall see in the next section that mJ , which is introduced to explain 

the origin of magnetisation in a material, is made to make its exit from 

If the magnetisation in the first block is 

y
y

M
zyxM 




),,( + higher order terms.  

The z -component of magnetisation of the first block in 

terms of )1(xI  is written as )1(xz IzM  . 

 

Similarly, the z -component of magnetisation of the 

second block neglecting high-order terms which vanish in 

the limit where each block becomes very small, is given 

by 

 

)2(x
z

z Iz
y

M
M 












  
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the equation, and only the conduction current density indicating the 

actual charge transport and which is experimentally measurable remains. 

 

3.3 The Auxiliary Field H (Magnetic Intensity) 
 

So far we have been considering that magnetisation is due to current 

associated with atomic magnetic moments and spin of the electron. Such 

currents are known as bound currents or magnetisation amperian 

current. The current density mJ in Eq. (5.8) is the bound current set up 

within the material. Suppose you have a piece of magnetised material. 

What field does this object produce? The answer is that the field 

produced by this object is just the field produced by the bound currents 

established in it. Suppose we wind a coil around this magnetic material 

and send through this coil a certain current, I  Then the field produced 

will be the sum of the field due to bound currents and the field due to 

current, I . The current I  is known as the free current because it is 

flowing through the coil and we can measure it by connecting an 

ammeter in series with the coil. (In case the magnetic material happens 

to be a conductor, the free current will be the current flowing through 

the material itself.) Remember that free currents are those caused by 

external voltage sources, while the internal currents arise due to the 

motion of the electrons in the atoms. The current is free, because 

someone has plugged a wire into a battery and it can be started and 

stopped with a switch. Therefore, the total current density J can be 

written as: 

 

mf JJJ                  (5.9) 

 

where, fJ  represents the free current density.  

 

Let us use Ampere's law to find the field. In differential form, it is 

written as:  

 

JB 0         (*) 

 

Using Eq. (5.9), Ampere's law would then take the form as follows: 

 

 )(0 mf JJB    

 

As mentioned earlier, we have no way to measure mJ experimentally, 

but we have a way to express it in terms of a measurable quantity, the 

magnetization vector M through the Eq. (5.8). We then have 
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)(00 MJB   f  

 

or  

 

fJM
B











0
                                           (5.10) 

 

Eq. (5.10) is the differential equation for the field 







M

B

0
 in terms of 

its source fJ , the free current density. This vector is given a new 

symbol H, i.e., 

 

HM
B


0

               (5.11) 

 

The vector H is called the magnetic 'intensity' vector, a name that rightly 

belongs to B, but, for historical reasons, has been given to H. Using Eq. 

(5.11), Eq. (5.10) becomes, 

 

fJH                  (5.12) 

 

In other words, H is related to the free current in the way B is related to 

the total current, bound plus free. This surely has made you think over 

the purpose of introducing the new vector field H. For practical reasons 

the vector H is very useful as it can be calculated from the knowledge of 

external current only, whereas B is related to the total current, which is 

not known. Eq. (5.12) can also be written in the integral form as 

 

fId  lH                 (5.13) 

 

where fI  is the conduction current through the surface bounded by the 

path of the line integral on the left. Here the line integral of H is around 

the closed path, which may or may not pass through the material. This 

equation can be used to calculate H, even in the presence of the 

magnetic material. 

 

SELF ASSESSMENT EXERCISE 1 

 

Fig. 5.7 shows a piece of iron wound by a coil carrying a current of 5A. 

Find the value of fId  lH  around the path (1), (2) and (3). Also 

state for which path(s) B = H and B  H. 
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From Eq. (5.3), we see that the unit in which M is measured is amperes 

per meter. Eq. (5.11) shows that the vector H has the units as M, hence 

H is also measured in amperes per metre. The electrical engineers 

working with electromagnets, transformers, etc., call the unit of H 

ampere turns per metre. Since 'turns', which is supposed to imply the 

number of turns in the coil carrying a current, is dimensionless, it need 

not confuse you. 

 

Magnetic Properties of Substance 
 

In paramagnetic and diamagnetic materials, the magnetisation is 

maintained by the field. When the field is removed, M disappears. In 

fact, it is found that M is proportional to B, provided that the field is not 

too strong. Thus 

 

 
 

BM          (5.14) 

 

 

It is conventional to express Eq. (5.14) in terms of H instead of B. Thus 

we have 

 

HM m         (5.15) 

 

The constant of proportionality m  is called the magnetic susceptibility 

of the material. It is a dimensionless quantity, which varies from one 

substance to another. We can characterise the magnetic properties of a 

substance by m . It is negative for diamagnetic substances and positive 

for paramagnetic materials. Its magnitude is very small compared to 

unity, that is | m | < < 1. For vacuum m  is zero, since M can only exist 

in magnetised matter. We give below a short table giving the values of 

m  for diamagnetic and paramagnetic substances at room temperature. 
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                               Material      
m  

Paramagnetic 

Paramagnetic 

Paramagnetic 

Paramagnetic 

Diamagnetic 

Diamagnetic 

Diamagnetic 

Diamagnetic 

Aluminium 

Sodium 

Tungsten 

Oxygen 

Bismuth 

Copper 

Silver 

Gold 

2.1 510  

0.84 510  

7.6 510  

190 510  

-1.64 510  

- 0.98 510  

- 2.4 510  

-3.5 510  

 

We have not given a table for the susceptibilities of ferromagnetic 

substances as m  depends not only on H but also on the previous 

mangetic history of the material. 

 

Using Eq. (5.11) in the form 

 

 )(0 MHB    

 

we have, 

 

HB )1(0 m        (5.16) 

 

    = HmK0  

 

                 HB        (5.17) 

 

where )1(00 mmK    

 

         
0


mK       (5.18) 

 

  is called the permeability of the medium and Km is called the 

relative permeability. We see that   has the same dimensions as 0  

and Km is dimensionless. In vacuum m = 0 and 0  . Relative 

permeability Km differs from unity by a very small amount as Km for 

para- and ferromagnetic materials are greater than unity and for 

diamagnetic material it is less than unity. 

 

The magnetic properties of a material are completely specified if any 

one of the three quantities, magnetic susceptibility, m , relative 

permeability Km or permeability   is known. 
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Example 1 
 

A toroid of aluminium of, length 1 m, is closely wound by 100 turns of 

wire carrying a steady current of 1 A. The magnetic field B in the toroid 

is found to be 4102567.1   Wb m– 2. Find    (i) H, (ii) m , and Km (iii) M 

in the toroid and (iv) equivalent surface magnetization current mI . 

 

Solution 

 

(i)      According to Eq. (5.13) 

 

  fId  lH  

 

To evaluate H produced by the current, we consider a circular 

integration path along the toroid. H is constant everywhere along this 

path of length 1m. The number of current turns threading this integration 

path is 1001A. Since H is everywhere parallel to the circular 

integration path, we get 

 

  H 1 m = 1001 A 

 

or 

 

  
m

A
H

1

1100
 = 100 A/m 

 

(ii)    From Eq. (5.16)  

 

HKB m0  

 

or 

 

 
100

1

104

107.1256
7

7

0







 H

B
Km = 1.00005 

 

and  

 

mm K )1(   

 

   1 mm K  = 1.00005 – 1 = 5105   

 

 (iii)  From Eq. (5.15) 

 

  HM m  
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 = 100105 5   A m – 1  = 3105   A m – 1 

 

(iv)  MLIm   

 

       = 3105   A m – 1 1 m = 5 mA 

 

In this solution, we have assumed B, H and M to be uniform over the 

cross-section of the toroid and along the axis of the toroid. 

 

Try to do the following SAE 

 

SELF ASSESSMENT EXERCISE 2 

  

An air-core solenoid wound with 20 turns per centimetre carries a 

current of 0.18 A. Find H and B at the centre of the solenoid. If an iron 

core of absolute permeability 3106  H m–1 is inserted in the solenoid, 

find the value of H and B? 

 

3.4 Relationship between B and H for Magnetic Material 
 

The specific dependence of M on B will be taken up in this section. The 

relationship between M and B or equivalently a relationship between B 

and H depend on the nature of the magnetic material, and are usually 

obtained from experiment. 

 

A convenient experimental arrangement is a toroid with any magnetic 

material in its interior. Around the toroid, two coils (primary and 

secondary) are wound, as shown in Fig. 5.8. 

 

If we consider the radius of the cross-section of the toroidal windings to 

be small in comparison with the radius of the toroid itself, the magnetic 

field within the toroid can be considered to be approximately uniform. A 

current passing through the primary coil establishes H. The 

establishment of the current in the primary coil induces an electromotive 

force (emf). By measuring the induced voltage, we can determine 

changes in flux   and hence, in B inside the magnetic material. If we 

take H as the independent variable, and if we keep the track of the 

changes in B starting from B = 0, we can always know what B is for a 

particular value of H. In this way, we can obtain a B-H curve for 

different types of magnetic material. 
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Fig. 5.8 Arrangement for investigating the relation between B and 

M, or B and H, in a magnetic material 

 

The experiment described above can be carried out for diamagnetic and 

paramagnetic materials by commencing with I = 0 and slowly 

increasing the value of I  to obtain a series of values of B and H. A plot 

of B against H for these substances is shown in the Fig. 5.9(a). We see 

that the graph is a straight line as expected from the relation 

 

HB m )1(0          (5.16) 

 

 
Fig. 5.9 Internal magnetic field (B) versus applied magnetic field (H) 

for different types of magnetic materials, (a) In diamagnetic and 

paramagnetic materials, the relationship is linear, (b) In 

ferromagnetic materials, the relationship depends on the strength of 

the applied field and on the past history of the material, in (b), the 

field strengths along the vertical am are much greater than along 

the horizontal axis. Arrows indicate the direction in which the fields 

are changed. 

 

where 0  and m  are constants. The slope of the graph is given by m  

can be determined using the following relation: 

 

 1
slope

0




m  
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For diamagnetic substances, slope  0  making 0m . For 

paramagnetic materials slope > 0 , so that m 0. 

 

If in the experiment given above we use ferromagnetic materials like 

iron, we obtain a typical     B – H curve as shown in Fig. 5.9(b). 

 

(i)      At I = 0, i.e., when H = 0, B is zero. When I  is increased. B and 

H are determined for increasing values of I . At first, B increases 

with H along the curve 'a'. At some high value of H, the curve 

(shown by the dashed line in the figure) becomes linear, 

indicating that M ceases to increase, as the material has reached 

saturation with all the domain dipole moments in the same 

direction. 

 

(ii)      If, after reaching saturation, we decrease the current in the coil to 

bring H back to zero, the E-H curve falls along the curve 'b'. 

When I  reaches zero, there is still some B left, implying that 

even when I = 0, there is still some magnetization of M  left in 

the specimen. The material is permanently magnetized. The value 

of B for H = 0 is called remanence. 

 

(iii)    If the current is reversed in the primary coil and made to increase 

its value, the B-H curve runs along the curve 'b' until B becomes 

zero at a certain value of H. This value of H is called the coercive 

force. If we continue to increase the value of the current in the 

negative direction, the curve continues along 'b' until saturation is 

reached again. 

 

(iv)    The current is now decreased until it becomes zero once again. 

This corresponds to H = 0, but B is not zero and have 

magnetization in the opposite direction. Here we reverse the 

current again, so that the current in the coil is once more along 

the positive direction. With the increasing current in this 

direction, the curve continues along the curve 'c' to meet the 

curve 'b' at saturation. 

 

If we alternate the current between large positive and negative values, 

the B-H curve goes back and forth along 'b ' and 'c ' in a cycle. This 

cycle curve is called hysteresis curve. It shows that B is not a single 

valued function of H, but depends on the previous treatment of the 

material. 

 

The shape of the hysteresis loop varies very widely from one substance 

to another. Those substances, like steel, alnico, etc., from which 

permanent magnets are made, have a very wide hysteresis loop with a 

large value of the coercive force (see Fig. 5.10). However, those 
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substances, like soft iron, permalloy, etc., from which electromagnets 

(temporary magnet) are made, should have large remanence but very 

small coercive force. Those ferromagnetic materials, which are used in 

the cores of transformers, like iron-silicon (0.8-4.8%) alloys, have very 

narrow hysteresis loop. 

 

 
Fig. 5.10 The hysteresis curves for a few materials. Curves (a) and 

(b) are respectively for specimen of soft - iron and steel materials 

 

 

3.5 Magnetic Circuits 
 

A magnetic circuit is the closed path taken by the magnetic flux set up in 

an electric machine or apparatus by a magnetising force. (The 

magnetising force may be due to a current coil or a permanent magnet.) 

 

In order to study the resemblance between a magnetic circuit and an 

electric circuit, we will develop a relation corresponding to Ohm's law, 

for a magnetic circuit. Let us consider the case of an iron ring (Fig. 5.11) 

magnetised by a current flowing through a coil wound closely over it.  

 

Suppose: 

 

I  = current flowing in the coil  

 

N  = number of turns in the coil 

 

l    = length of the magnetic circuit (mean circumference of 

the ring) 

 

A   = area of cross-section of the ring  

 

   = permeability of iron. 

 

In this case, all the magnetic flux produced is confined to the iron ring 

with very little leakage (we shall see the reason for this later). We have 

seen earlier that H inside the ring is given by 
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Fig. 5.11 Magnetic circuit 

 

NId  lH      (from Ampere's law) 

 

where, the path of integration is along the axis of the ring. As the line 

integral of electric field E over a circuital path is the electromotive force 

(e.m.f), by analogy, the line integral of H is termed as magnetomotive 

force (M.M.F.) 

 

 M.M.F. = NId  lH  

 

At every point along this path in the ring, we write 

 

 


B
H   

 

Further, if   is the magnetic flux given by   = BA, then AH / , 

hence 

 

M.M.F. =   NI
A

dl
d


lH      (5.19) 

 

where we have taken   outside the integral as it is constant at all cross-

sections of the ring. Eq. (5.19) reminds us of a similar equation for an 

electric circuit containing a source of E.M.F., namely, 

 

e.m.f. = current   resistance =  A

dl
I


    (5.20) 

 

The Eqs. (5.19) and (5.20) suggest that: 

 

(i)       The magnetomotive force (   lH d ) is analogous with e.m.f. 

(   lE d ). 
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(ii)     The magnetic flux   is analogous with current I  in Ohm's law, 

 

(iii)    The magnetic resistance known as reluctance 







 A

dl


  is 

analogous with electric resistance 







 A

dl
 

  

  M.M.F. = flux   reluctance 

 

or 

 

 Total flux = 




A

dl

NI



reluctance

 M.M.F
    (5.21) 

 

If we take  to be constant throughout the ring then 

 

reluctance  
A

L

A

dl


     (5.22)  

 

where L  is the length of the ring. However, we must recognise the 

significant difference between an electric circuit and a magnetic circuit: 

 

(i)       Energy is continuously being dissipated in the resistance of the 

electric circuit, whereas no energy is lost in the reluctance of the 

magnetic circuit. 

(ii)      The electric current is a true flow of the electrons but there is no 

flow of such particle in a magnetic flux. 

 

(iii)    At a given temperature, the resistivity   is independent of 

current, while the corresponding quantity 


1
 in reluctance varies 

with magnetic flux  . 

 

Reluctances in Series 
 

Let us assume that the toroid is made of more than one ferromagnetic 

material, each of which is of the same cross-sectional area A, but with 

different permeabilities 1 , 2 , … 
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Fig. 5.12 (a) A magnetic circuit composed of several materials: 

Reluctances in series, (b) Magnetic circuit consisting of two loops: 

Reluctances in parallel. 

 

Then, (see Fig. 5.12a) as before, we have  

 

 NI  =   lH d  

  = ...
21

  lHlH dd  

 

where the integrals on the right are taken over axial paths in the 

materials 1,2, .... Therefore, 

 

 M.M.F. = ...
2

2
1

1







 dl
A

dl
A 

 

   

= ...
2

2
1

1

  A

dl

A

dl


 

   

= 







 ...

2

1

1

1

A

L

A

L


 

 

=  ...)( 21  

 

so that the total reluctance of the given magnetic circuit is given by 

 

...21         (5.23) 

 

Reluctances in Parallel 
 

We shall next illustrate the case of a magnetic circuit in which the 

reluctances are in parallel. Fig. 5.12b shows such a magnetic circuit. The 

current carrying coils have N turns each, carrying a current I amperes. 
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The magnetic flux   threading the coil splits into two paths with fluxes 

1  and 2  as shown in the figure. Obviously, 21  . We assume 

that the area of cross-section A is constant everywhere in the circuit. 

 

Let the lengths of the paths ABCD, DA and DEFA shown in the figure 

be L , 1L , and 2L  respectively. For the path ABCDA, we have 

 

 NI  = 





DAABCD

dl
A

dl
A 

 

 

  = 1

1

1 L
A

L
A 





     (5.24) 

 

Similarly for the closed path ADEFA , we have 

 

 






DEFAAD

dl
A

dl
A 

0       (5.25) 

 

Notice that we have used 1  and 2  for the paths AD and DEFA. 

As ’s being different for these paths, H would be different. This 

makes  ’s different in these paths. Using 21   and Eq. (5.25), 

we write 

 

   = 
2

1

1

2
11

L

L




       

  

  = 









2

1

1

2
1 1

L

L




 

 

Substituting the value of 1  from the above equation in the Eq. (5.24), 

we have 

 NI  =


























A

L

A

L

A

L

A

L

L
A

2

2

1

1

2

2

1

1






 

 

or  

 

NI  = 













21

21      (5.26) 
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This shows that the reluctances of the paths DA and DEFA are in 

parallel as the magnetic flux   splits into 1  and 2  along these paths 

respectively. The combined reluctance   of these paths is given, in 

terms of the reluctances 1  and 2 of these paths, as follows 

 

21

111








       (5.27) 

 

Notice that the Eq. (5.24), (5.25) and 21   are the statements of 

Kirchhoff's laws for magnetic circuits. 

 

Now we see why the magnetic flux does not leak through the air. Air 

forms a parallel path for the flux, for air, 0   and for a ferromagnetic 

material 410 ; hence the air path is a very high reluctance path 

compared to that through the ferromagnetic material. The magnetic flux 

will follow the path of least reluctance, a situation similar to that in the 

electric circuit. 

 

The magnetic circuit formulae are used by the electrical engineers in 

calculations relating to electromagnets, motors and dynamos. The 

problem is usually to find the number of turns and the current in the 

winding of a coil, which is required to produce a certain flux density in 

the air gap of an electromagnet. Knowing the reluctance of the circuit, 

M.M.F. is calculated from the relation: 

 

M.M.F. = flux   reluctance 

 

Since M.M.F. is also NI (see Eq. (5.19)), the magnitude of ampere turns 

can be calculated. Let us illustrate it by studying the magnetic circuit of 

an electromagnet. 

 

Magnetic Circuit of an Electromagnet 

 

The magnetic circuit of an electromagnet consists of the yoke which 

forms the base of the magnet, the limbs on which the coil is wound, the 

pole pieces and the air gap. See Fig. 5.13. Let 1l  be the effective length 

and a the area of cross-section of the yoke. If 1  is the permeability of 

its iron, then 
11

1

a

l


 is the reluctance of the yoke. Similarly the reluctance 

of each limb is 
22

2

a

l


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and the reluctance of each pole piece is 
33

3

a

l


, while the reluctance of 

the air gap is 
40

4

a

l


 (because 0air ). Hence the total reluctance of the 

magnetic circuit is 

 

 
40

4

33

3

22

2

11

1 22

a

l

a

l

a

l

a

l


  

 

 

 
Fig. 5.13 Magnetic circuit of an electromagnet. 

 

If the magnetic circuit carries one and the same flux   across all its 

parts, then according to Eq. (5.19), the number of ampere turns is: 

 











40

4

33

3

22

2

11

1 22

a

l

a

l

a

l

a

l


     (5.28) 

 

Let us take another example of calculating the magnetic field B in the air 

gap of a toroid of Fig. 5.14. Here the toroid is of a ferromagnetic 

material (soft iron) with a small air gap of width 'd ' which is small 

compared to the length L  of the toroid. For this case, we have 

  

 NI  = 












A

d

A

dL

0

)(


,   being the flux through this 

magnetic circuit.  

 

 = ])([ 0

0

ddL
B




  

 

or  

 

B  = 
dL

NI

)( 00

0






     (5.29) 
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This is the value of the magnetic field in the air gap. Read the following 

example which shows how the air gap effectively increases the length of 

the toroid. 

 

 
Fig. 5.14: Magnetic field in the air gap  

 

Example 2 

 

Compare the examples of a complete toroid of length L  wound with a 

coil of N turns each carrying a current I  amperes and of a toroid of 

length ( dL ) with an air gap of length )( Ldd  . Show that the air gap 

effectively increases the length of the toroid by dKm )1(  , where Km is 

the relative permeability. 

 

Solution 
 

In the case of a complete toroid without the air gap, we have 













L
NIB / . In the event of an air gap of length d , we have from Eq. 

(5.29): 

 

 B  = 
dL

NI

)( 00

0






 

 

Dividing both the numerator and the denominator by 0 , we get 

 

 B  = 























00

)(
111



d
dL

NI

d
L

NI
 

 

  = 
])[(

1
)(

1

0

dKdL

NI

d
dL

NI

m














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so that 

 

 B  = 

])1([
1

dKL

NI

m 


 

 

If we compare this formula with that for the complete toroid, we see that 

L is effectively increased by dKm )1(  . 

Before ending this unit solve the following SAQ. 

 

SELF ASSESSMENT EXERCISE 3 
 

A soft iron ring with a 1.0 cm air gap is wound with a coil of 500 turns 

and carries a current of 2 A. The mean length of iron ring is 50 cm, its 

cross-section is 6cm2, its permeability is 2500 0 . Calculate the magnetic 

induction in the air gap. Find also B and H in the iron ring. 

 

Let us now sum up what we have learnt in this unit. 

 

4.0 CONCLUSION 

 
In this unit, we have explained the terms, ferromagnetism, amperian 

current, Magnetisation, M, Magnetic intensity, H, susceptibility, 

permeability etc. An analogy has been derived for magnetic circuit from 

Ohm’s law. In addition, we have learnt about the inter-relationship 

between, M, H and other quantities. 

 

5.0 SUMMARY 
 

The behaviour of the ferromagnetic materials is complicated on account 

of the permanent magnetization and the phenomenon of hysteresis. This 

behaviour is explained by the presence of the domains in these 

materials. In each domain the dipole moments are locked to remain 

parallel due to 'exchange' force. However, in the unmagnetised state, the 

magnetisation directions of different domains are random, resulting in a 

zero net magnetisation. There also exist two other kinds of magnetic 

materials: antiferromagnetic and ferrimagnetic. 
 

For non-uniform magnetisation, magnetised matter is equivalent to a 

current distribution MJ  , where M is magnetisation or magnetic 

moment per unit volume. 
 

The magnetic field produced by the magnetised material is obtained by 

Ampere's law as follows: 

 

 mf JJB   
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where fJ  is the free current density which flows through the material 

and mJ is the bound current density which is associated with 

magnetisation. This gives 

 
fJM

B











0
 

 

where 

 









 M

B
H

0
 is a new field vector. 

 

For paramagnetism and diamagnetism B, M and H are linearly related to 

each other, but for ferromagnetic materials which exhibit hysteresis, a 

non-linear behaviour. 

 

The study of the electromagnets, motors and dynamos involves the 

problem of current carrying coils containing ferromagnetic materials, 

i.e., it involves the study of magnetic circuits. We speak of the magnetic 

circuits when all the magnetic flux present is confined to a rather well-

defined path or paths. 

 

The magnetic circuit formula is: 

 

magnetomotive force (M.M.F.) = flux   reluctance 

 

M.M.F. is also equal to NI where N  is the number of turns of the coil 

wound over the magnetic material and I  the current flowing through 

each coil. 

 

Reluctance 
a

l


  

 

where l , a and   are the length, area of cross-section and permeability 

of the material. Additions of reluctances obey the same rules as 

additions of resistances. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Find the magnetizing field H and the magnetic flux density B at 

(a) a point 105 mm from a long straight wire carrying a current of 

15 A and (b) the centre of a 2000-turn solenoid which is 0.24m 

long and bears a current of 1.6 A. ( 7

0 104   H/m). 

2. A toroid of mean circumference 0.5 m has 500 turns, each 

carrying a current of 0.15 A. (a) Find H and B if the toroid has an 
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air core, (b) Find B and the magnetization M if the core is filled 

with iron of relative permeability 5000. 

 

3. A toroid with 1500 turns is wound on an iron ring 360 mm2 in 

cross-sectional area, of 0.75-m mean circumference and of 1500 

relative permeability. If the windings carry 0.24A, find (a) the 

magnetizing field H (b) the m.m.f., (c) the magnetic induction B, 

(d) the magnetic flux, and (e) the reluctance of the circuit. 

 

7.0 REFERENCES/FURTHER READING 
Griffith, D. J. (2013). Introduction to Electrodynamics, (4th Edition). Rearson. 

 

IGNOU (2005). Electricity and Magnetism Physics PHE-07, New  

          Delhi, India. 

 
Video Links 

1. https://www.youtube.com/watch?v=etjZmdmrjSU 

2. https://www.youtube.com/playlist?list=PLTBqohhFNBE_fZu9cpbluJA

q2yECyV8ZL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.youtube.com/watch?v=etjZmdmrjSU
https://www.youtube.com/playlist?list=PLTBqohhFNBE_fZu9cpbluJAq2yECyV8ZL
https://www.youtube.com/playlist?list=PLTBqohhFNBE_fZu9cpbluJAq2yECyV8ZL
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SOLUTIONS AND ANSWERS 

 

UNIT 1  

 

SELF ASSESSMNET EXERCISES 

 

(1)    Please see text. 

 

(2)   The dipole moment per molecule = p  

 

The number of molecules per unit volume = n  

 

 The dipole moment per unit volume = n p 

 

By definition, the dipole moment per unit volume = Polarisation P 

 

    P = n p 

 

(3) The dielectric constant K is given by 

 

0E

E
K   

 

without the dielectric the electric field would be  

 

 
)10100()1085.8(

100.1
2421212

7

0

0
mmNC

C

A

q
E











 

 

       = 261013.1  Vm  

 

Dielectric constant = 
25

26

103.3

1013.1








Vm

Vm
 

 

The surface charge density on the plate is 

 

 26

2

7

100.1
100

100.1 





 Cm
m

C

A

q
 

 

(4)    From Eq. (1.12) 

 

  f D  

 

(i) we know that 
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PED  0  

 

Putting the value of D in Eq. (i) 

 

f  PED 0
 

 

When P = 0, the above equation becomes  

 

 f  E0
       

  

(ii) 
0

 f
 E  

 

Eq. (1.11) is 

 

pf   E00  

 

when p = 0, the above equation reduces to 

 

  f  E00  

 or 

  
0

 f
 E  

 

(iii) Eq. (ii) and Eq. (iii) are the same. Hence prove the result.  

 

(5) (i)  The capacitance is 

   

l

A
C   

Before, calculating the capacitance, we will calculate the permittivity of 

the dielectric  as follows: 

 

    = r 0  

 

   = 1210)85.8)(0.6(  farad/m 

   = 111031.5  farad/m 

 

Thus, 

 

  111031.5( 
l

A
C  farad/m) 

        = 111071.1   farad 
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(ii) We know that 
   CVQ   

      = 111071.1(  farad) (10 V) 

      = 101071.1  C 

 

(iii) The dielectric displacement is calculated as follows: 

 

m

Vmfarad

l

V
ED

3

11

102

)10)(/1031.5(







   

 

 = 710655.2  Cm– 2  

 

(iv) The polarisation is 

 

l

V
DEDP 00    

           = 71066.2    

 

Cm– 2 
m

Vmfarad
3

12

102

)10)(/1085.8(







  

 

(6)    Let   be the charge density on the surface of the plates. 

Considering each plate as an infinite plane sheet charge, the 

intensity at a point between them due to positively charged plate 

= 02/  . 

 

The intensity at the point due to the negatively charged plate is 

also = 02/   acting in the same direction. Hence the resultant 

intensity at the point is 

 

  
000 22 










  

 

Since E = 50 N/C and 12

0 10854.8  farad/m 

 

  50
0





 

 

  5010854.850 12

0    

 

           = 12107.442  Cm – 2  

 

Total charge on each plate 
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  = E0 Area of each plate 

   

  = 1107.442 12    

 

  = 1010427.4  C 

 

(7)    From Eq. (1.21) we have 

 

  0 lE d  

 

From vector analysis we have 

 

   
Surface

dSd nElE )( =   dS)( En  

    

           = 0 

 

For   dS)( En  to be zero, the integrand )( En  has to be to zero. 

 

Again, in as much as )( En  represents a space derivative operation 

we can set En  to be either a constant or zero. If we set En  = 0 then 

a trivial result follows. So it is better to choose 

 

  En = a constant  

 

Applying this to Fig. 1.11, we get 

 

  21 EnEn   

 

which is Eq. (1.23a).  

 

(8)  The integral from of Gauss' law in dielectrics is 

 

   
Surface

dSD = total free charge enclosed 

 

(Refer to the Fig. 1.10) 

 

 dsds fnn  )( 12 DnDn  

 

where f  is the surface charge density on the interface between the 

dielectrics and n the unit vector along the outward drawn normal to the 
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surface 2nD  and 1nD  are the normal components of the displacement 

vector in media 2 and 1 respectively. 

 

When  = 0, we get 12 nn DnDn    

 

Now 111 nn ED   and 222 nn ED   

 
 ED   

 

 2211 nn EnEn    

or 

 
2

1

2

1










n

n

En

En
 

 

Thus we find that the normal component of E is discontinuous. 
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UNIT 2 SOLUTION & ANSWERS  

 

SELF ASSESSMENT EXERCISE'S 
 

(1) The potential difference (V) between the plates is not changed. 

But the electric field between the plates is )/(2)2//( dVdV  = 

twice the value of the electric field E. The doubling of the electric 

field doubles the charge on each plate. Therefore, VQC /  also 

doubles. Thus if we halve the distance of separation between the 

plates, the capacitance doubles. 

 

(2)  We know that 

 
 VQC /  

 

 C  = 1000 F 

 

  = 001.0 F 

and 

  V  = 24 V 

 

  Q  = 2410001.0 CV C = 0.024 C 

 

(3)  The energy stored in a capacitor is 

 

  W  = 2

2

1
C  

It can be written 

 

W =  C
2

1
  

 

(i) We know that 

 

 Q = C  

 

(ii) Using Eq. (ii) in Eq. (i), we get 

 

 W  = Q
2

1
 

Hence prove, the result.  

 

(4)  dAC /0  

 

 Here, 12

0 1085.8  F/m, 2104 A m2, d = 310 m 
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 Therefore, 

   

  10

3

212

1054.3
10

1041085.8 








C F 

 

Here C is the charge that raises the potential by unity or the charge 

holding capacity. 

 

(5)  We have 

   

 platesbetween  space free with Capacit.

 platesbetween  dielectric with Capacit.
r  

 

Here r = 3. Thus the capacitance of the capacitor will get trebled 

when the dielectric ( r = 3) is filled up in all the air space. 

 

Now a dielectric material is introduced. Let its thickness be t. The 

capacity of the capacitance is 

 

 
d

A
Cair

0 , 
)/(

0

r

dielectric
ttd

A
C






  

   

A

dtdA

C

C r

air

dielectric

0

0 )]/([



 
  

  = 
rttd

d

/
 

 

Here dt
4

3
  and r = 3. 

 

Therefore, 

  
234

3

4

3
/

dd
ddttd r 


   

 

Therefore 

  

  2
2/


d

d

C

C

air

dielectric  

 

That is, the capacitance will get doubled. 

 

(6)   )8/10ln(/2 01 rC   

 

 and 
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  )4/5ln(/2 02 rC   

 

  
)8/10ln(

)4/5ln(

2

1 
C

C
= 1 

 

 or  

 

21 CC   

 

(7)  When the capacitor are connected in series, the equivalent is 

given by 

 

  
05.0

1

1.0

1

02.0

1

05.0

11


rC
 

 

  TC = 0.01  F 

 

  Q   = VCT  

 

        = 61001.0220   

 

        = 6102.2  C 

 

 1V  = 
2

2

1 1005.0

102.2









C

Q
= 44 V 

 

 2V  = 
2

2

2 1002.0

102.2









C

Q
= 110 V 

 

 3V  = 
2

2

3 1001.0

102.2









C

Q
= 220 V 

 

(8)  The arrangement is shown in Fig. 2.20. Let 4C  be the effective 

capacitance of 1C  and 2C . Using series law of capacitors 

 

  
214

111

CCC
  

 

or 

 
21

21
4

CC

CC
C


  
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This capacitance 4C  then adds to 3C  to give the total capacitance C  of 

the combination i.e., 

 

34 CCC   

 

or 

 

21

21
3

CC

CC
CC


  

 

 
Fig. 2.20 
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UNIT 3  SOLUTIONS/ANSWERS  
 

SELF ASSESSMENT EXERCISE's 

 

(1)  We identify pairs of dipoles equidistant from the centre, from 

Unit 3, we know that the dipole field falls off with distance as 
2/1 r . Since equidistant pairs have directions of p opposite to one 

another, the overall field at the centre due to the pair is zero. This 

is the case for every other pair. Hence inE = 0. 

 

(2)  According to integral form of Gauss's law 

 

  dVds
0

1


nE  

Therefore, 

  3

0

2

3

1
4 rr 





E  

or 

 rE
03

1


  

in the vector form 

 03/)()( rrE r  

 

(3) 
0

0

0 3

)1(

3 





E
E

P
EE


 r

loc  

         = 
03

)1(3



 EE  r  

         = 3/)2( Er  
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UNIT 4 SOLUTIONS AND ANSWERS 

 

SELF ASSESSMENT EXERCISES 

 

1(a)    Potential energy U of the magnetic dipole is given by the relation: 

U μ B  where μ is the dipole moment and B is the magnetic 

field. 

 

Since U is expressed in Joules and B in Tesla, the above relation 

gives the unit of magnetic dipole moment as 1JT . 

 

  (b) From Eq. (11.4), L
m

e

2
 

2

nh
L   (because angular momentum of electron is quantized)  

where n  is an integer. 

 

Hence minimum allowed magnitude of dipole moment is given by 

putting n = 1, as follows: 

 

 



2

10626.6

)10109.9(2

10602.1

22

34

31

19

min

Js

kg

Ch

m

e 



 





  

 

or 

 

 

min = 1241027.9  kgJsC  

 

         = 1241027.9  TJ  

 

 the Bohr magneton is given by 1241027.9
4

 JT
m

eh


 

 

2.    (a) g = 1 (ii) 2g  

       (b)  Eq. (4.5) is S
m

e
    

 

hence 

 

  S
kg

C
Am 











31

19
224

101.9

106.1
1027.9  

so that 
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C

Amkg
S

19

22431

106.1

1027.901.9







   

 

          = 
C

mkgA 2
3610

6.1

27.91.9 


 

 

           = 361072.52  Js 

 

          = 34105272.0  Js 

 

But the spin angular momentum S is 
2


, therefore,  

  34105272.0
42




h
Js 

 

or  

h
34105272.0142.34  Js  

  

          = 3410626.6  Js 

 

 which is indeed the value of Planck’s constant. 

 

3.   (a)  Copper is slightly diamagnetic. Bismuth, Silver-   

diamagnetic, Aluminium & Sodium – paramagnetic 

 

(b)  No. Since the diamagnetic material is characterised by the 

absence of intrinsic magnetic dipoles and paramagnetic 

substances have magnetic dipoles, the alloy of these 

materials will be the material with intrinsic magnetic 

dipoles. Such a material will exhibit the property of 

paramagnetism which masks the diamagnetism of both 

components of the alloy. 

 

4.      We have the formula 

    

  B
m

e
gp

2
  

but  

ppf  2  

hence 

 
Be

m
fg p

12
2    

Now 

 

  1616 1093.263104214.422   ssf p  
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For proton, 1

19

31

106.1

101.9186022 








 kgC

e

m
 

 

   = 191015.21  kgC  

 

Given, 
B

1
= 1 21mWb  

 

Using this above we obtain g = 5.584, which is the proton g - factor.  

 

5.   (a)   dx
a

e

a

xe
dxxe

axax
ax  integrated by parts 

 

      = 
2

1

a

e

a

xe

a

e

aa

xe axaxaxax

  

Hence, )(
1

)(
11

2

1

1
2

1

1

1

1

aaaaax
ax

ax ee
a

ee
a

e
aa

xe
dxxe 




























  

 

6. We have 
aa

aa

ee

ee
a








coth  and also that  

 

...
!3!2

1
32


aa

aea  and ...
!3!2

1
32

 aa
ae a  

 

Hence, 

 
















 

!2
12...

!4!2
12

242 aaa
ee aa  

 


















 

!3
12...

!3
2

23 a
a

a
aee aa  

 

so that  

  acoth  = 






























6
1

2
1

1

6
1

2
1 22

2

2

aa

aa
a

a

 

 

   = 
3

1

123
1

1 42 a

a

aa

a









    
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Therefore, 

 

3

1
coth

a

a
a   and 3/aMM s  
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UNIT 5 SOLUTIONS AND ANSWERS 

 

SELF ASSESSMENT EXERCISEs 

 

1. Path (1) encloses I  = 5 A 

  

  Id  lH = 5 A 

  

 For path (2) Id 7 lH = 35 A 

 

 For path (3) Id 2 lH = 10 A 

 B = H for path (1) 

 

 B  H for paths (2) and (3) because these paths pass through iron. 

 

2. )18.0)(2000( 1 AmnIH  = 360 Am-1 

 

mTmAmHHB 45.0)360)(/104( 17

0    

 

If an iron core of absolute permeability 3106  H/m is inserted in 

the solenoid, then H remains unchanged, i.e., 

 

 H 360 Am-1  (unchanged) 

 

and   

 

 )360)(/106 13  AmmHHB   = 2.16 T 

 

3. The expression for the magnetic induction in the air gap is 

 

  B  = 
])1([ dKL

NI

m 


 

 

 Substituting the values given in the question, we get 

 

  B  = 
01.0)12500(50.0

10425002500 7



 
 

 

     = 
5.252550.0

101010 743 




 

= 0.123 Wb m– 2  

 

B in the iron ring has the same value as in air, but H in iron is given by 
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0mK

B
H   

 

 or  

 

  H = 0.123 / 2500 7104    

 

      = 39.1 Am– 1    

 

 

 

ANSWERS TO TMAS IN UNIT 1 

 

(1)    Let the applied electric field be E, the relative displacement of 

the nucleus be x, the radius of the electron cloud be R and the 

charge of the nucleus be q. The electron cloud is equivalent to a 

uniform sphere of charge with the charge density given by 

 

  
3)3/4( R

q




 

 

The total charge of the electron cloud = q  

 

We find the field at a distance x from the centre of the sphere using 

Gauss’ law. This gives 

 

  
3

3

0

3

0
)3/4(3

4
4

R

q
xEx





  

 

  
3

0

0
4 R

qx
E




  

 

The force on the nucleus 2qEF  , when it is displaced by an amount x. 

(F is the coulomb restoring force on the nucleus). Now 

 

  
3

0

2

4 R

xq


F  

 

External force on the nucleus = E q. This balances the coulomb 

restoring force 

 
 FE q   

 

or 
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3

0

2

4 R

xq
Eq


  

 

and 

 

  Ex
q

R3

04
  

 

The Resulting dipole moment per molecule  

 
xP q  

    = E
3

04 R   

 

The dipole moment is proportional to E.  

 

The molecular polarisability ( ) = 2

04 R  

 

(2) (a)  The dielectric constant K is given by  

  

  
V

V

V

VE
K

1000

3000

0




= 3 

 

(b)  00 3  K  

 

(c) 00 2   

 

(d) 5

2

3

0 103
10

103





 m

V

A

V
E V/m 

 

(e) 
m

V

A

V
E

2

5

10

101



 = 510  V/m 

 

The bound charges of the dielectric set up which opposes the 

electric field CQ due to the plate charges. The new field E is the 

resultant of the two 

 

(f)  EEEb  0  

      = 5102 V/m 

 

(3)    The tangential component of E at the boundary is continuous. 

Thus rEiE sinsin 21   
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The normal component of D is continuous. Here we will use 

ED  and write  

 

  rEiE coscos 2211    

 

 
21

tantan



ri
  

or 

  
2

1

tan

tan






r

i
 

 

(4)    The polarisation charges appear on the surfaces of the dielectric, 

perpendicular to the direction of the electric field. We write Eq. 

(1.4), viz., Pp   in the vector form as Pn p  

 

where n is the unit vector normal to the face on which 

polarisation charges appear and P the Polarisation vector. Let 1P  

and 2P  be the polarisation vector in the two media. At the 

interface between the two dielectrics, the surface density of 

polarisation charge p  is  

 

 )( 12 PPn p  

 

(i) From the Boundary condition for D we have 

 

  21 DnDn    

 

(ii) or 2211 EnEn    

(iii)  PED  0 , we have DEP  0  

 1101 DEP    and 2202 DEP      

(iv) using (iv) in (i) we get 

 

 'p  = )()( 110220 DEDE   nn  

  = )( 120 EnEn   in view of (ii) 

  = 12111210 )1/()/( EnEnEn    

   = En  ]/)[( 2210   
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ANSWER'S TO TUTOR MARKED ASSIGNMENT'S IN UNIT 2 

 

(1)  As seen from Figure 2.21, n plates provide (n-1) capacitors 

connected in parallel. The effective capacitance of (n-1) 

capacitors, of equal capacitance in parallel is  

 

= sum of the individual capacitance  

 

= (n-1)   capacitance of a single unit  

 

= (n-1) dAr /0  

 

 
 

Fig. 2.21 

 

For example in Fig. 2.21 the first 3 plates A, B, C give two 

capacitors AB & CB and so on. 

 

(2)  Let the required potential be equal to  . Then 
3105//   dE Volt/m 

 

Electrostatic force on proton = qE  

 

= q/102 2  

 

= 192 106.1102   Newtons 

 

Gravitational force   = 1.67 x 10~27 x 9.8 Newtons.  

 

Equating the two we get 

 

  
192

27

106.1102

8.91067.1







  

 

  10105   Volts 

  

(3)  If a charge q  is placed on the inner sphere of radius 'a' an equal 

and opposite amount of charge appears on the inner side of the 

outer sphere. The electric field gets confined to the space between 
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the concentric spheres. To evaluate E consider a Gaussian 

surface. The symmetry of the problem suggests a concentric 

sphere of radius r as Gaussian surface. The electric field, E, is 

normal to this surface and so the flux of E is given by 

 

  
p

q
Er


 24  

 

The potential of the inner sphere with reference to the outer sphere at 

zero potential is equal to 

 

  ba    = 
a

b
r

qdr

0

24 
 

   = 
a

br

q





1

4 0
 

       a   = 









ba

q

p

11

4
 since 0b  

 

Hence the capacitance is given by 

 

  
ab

baq
C


 04


 

 

(4)  The potentials of the two plates connected to the point C are the 

same. Hence if a charge 1q  is placed on one of these plates, the 

other plate will have an equal and opposite charge. When a 

voltage is applied between A and B, let a charge 1q  accumulate 

on 1C  and a charge 2q on 2C . Then the potential difference (p.d) 

between the plates of various condensers are given by 

 

  
1

1

C

q
, 

2

1

C

q
, 

3

2

C

q
 and 

4

2

C

q
 

 

 Now,  

 

  
4

2

3

2

2

1

1

1

C

q

C

q

C

q

C

q
 = p.d. across AB 

 

If the p.d between C and D is equal to zero 

 

 
4

2

2

1

C

q

C

q
  and 

3

2

1

1

C

q

C

q
  

 which on elimination gives 
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3

1

4

2

C

C

C

C
  

 

the required condition for zero potential difference between C and D. 

 

(5)  Let the initial charge on the capacitor of capacitance 1C  be equal 

to q. When this capacitor is joined to the uncharged capacitor of 

capacitance 2C , then the charge q distributes in such a way that 

the potentials are equal as the combination is a parallel one. Let a 

charge 2q  flow from the charged capacitor to the uncharged one. 

The charge which remains on the initially charged capacitor as a 

result of sharing of changes is then equal to 2qq  . As the 

potentials are equal, 

 

  
2

2

1

2

C

q

C

qq



 

 

  
21

2
2

CC

qC
q


 , 1

21

1
2 q

CC

qC
qq 


  

 

Initial potential energy of the charged capacitor (before sharing of 

charges ) is 

    

  1

1

2

2

1
U

C

q
U initial   

 

Final energy of the two capacitors is given by 

   

  
2

2

1

2

2

1

2

1

C

q

C

qq
U final 


  

 

Substituting for 2q  from above, 

 

  = 
2

21

2

2

2

21

2

1

)(2

1

)(2

1

CC

qC

CC

qC





 

    

= 
)(2 21

2

CC

q


 

 

Hence, the loss in energy = 
)(2

11

2 211

2

2

211

2

CCC

Cq

CCC

q













  
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ANSWERS TO TUTOR MARKEDASSSIGNMENTS IN UNIT 3 
 

(1)  The resultant field is no longer uniform in the neighbourhood of 

the sphere because of the polarisation of the sphere. Let P be the 

dipole moment per unit volume inside the sphere. We would 

expect P to be uniform as the dielectric material is linear. Then P 

is proportional to the electric field, inE , inside the sphere. If   is 

the susceptibility of the material then we can write P as 

 

  inEP  0  

 

This polarisation P produces a field inside the sphere, which is given by 

03/ P . 

 

The electric field inside the sphere, inE , can be regarded as a 

superposition of the uniform field 0E  and the field due to polarised 

(dipoles) charges. Thus 

 

  
0

0
3

P
EE in  

Substituting for P in terms of inE  

 
0

0

0
3

 in

in

E
EE   

Thus 

 

  0

0

)2(

3

)3(

3
E

E
E







r

in


 

  r  )1(  

 

 

and 

 

inr EP )1(0    

 

         = 
)2(

)1(3 0





r

r




 

 

The assumption of uniform polarisation is now seen to be self-consistent 
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(2) 

 
Fig. TQ2 A sphere of lined-up molecular dipoles 

 

The polarised dielectric sphere (a) of Fig. TQ2 can be regarded as a 

superposition of two spheres charged uniformly one with positive charge 

as in (b) and another with negative charge as in (c) of Fig. TQ2. The two 

spheres have centres at 1C  and 2C  which are separated by a distance a, 

say along the z-axis. This means that P is along the z direction. The field 

at R due to the positively charged sphere is given by 

 

 
0

2

0

3

343

4






 rr
E 

r
r  

 

where Rr 1C  and   is the charge density. Similarly the field at R due 

to the negatively charged sphere is 

 

03

'




r
E   

 

where Rr 2' C . Now   is along the z-direction and 12GC = a  is also 

along the z-direction. Adding E  and E  vectorially (See Fig. TQ) we 

get 

 

 
00 3

)'(
3 

 a
rrEE    

      = 03/ a  

 

as a is equal to the no. of either positive or negative charges per 

unit volume. 

 

(3)  We assume that the radius of the cavity to be greater than its 

thickness, measured parallel to the field. By this assumption, the 

field near A and B are the same as E. The field Eo at the centre of 

the cavity is therefore parallel to AE , the field near A. This is in 

accordance with the boundary condition for the normal 

component of D (= E0 ), viz., 

 

 nCA D)(0  EE  

 



PHY 204                                                                                     ELECTRODYNAMICS I 

 

137 

Here the normal component measures the complete vector D. Therefore 

we can conclude that 0  times the force on unit charge, viz., E, placed in 

a disc shaped cavity measures the electric displacement (D). 

 

(4)  The scalar potential due to a dipole of moment P at ( 'x , 'y , 'z ) is 

 

),,( zyx = 
3

0

2

0 4

)'(

4

cos

R

zzp

R

p



 
  

 

 since cos' Rzz   and 

 

  2222 )'()'()'( zzyyxxR   

 

The z-component of the field 

 

  
2

0

2

0 4

)'(3

4 R

zzp

R

p

z
E



 





  

 

       = 
2/5222

222

])'()'()'[(

)'()'()'(2

4 zzyyxx

yyxxzzp






 

 

We assume the dipole to be present at the origin. To find the average 

value of the field, we integrate the field. The integration is taken over by 

an Octant of the unit cell. The unit volume of the unit cell is 3d . Thus 

 

 E  = dzdydx
zyx

yxz

d

ddd

 


2/

0

2/3222

2222/

0

2/

0

2

0 )(

2

4

8



p
 

  = 
0

3

0
33 

P
E

p


d
  

3d

p
P   
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ANSWERS TO TMAS IN UNIT 4 
 

1.  The surface charge density is 
2r

q


 

 

The disc can be thought of as made up of number of rings. Let us 

consider a ring of radius R and width dR. 

 

The charge within this ring is given by  

 

 )(
2

)2(
22

RdR
r

q
RdR

r

q
dQ  


 

 

The current carried by this ring is its charge divided by the rotation 

period: 

 

 )(
/2 2

RdR
r

qdQ
dI






  

 

The magnetic moment contributed by this ring has magnitude 

 
 adId   

 

where a is the area of the ring.  

 

Therefore, 

 

  )( 3

2

2 dRR
r

q
dIRd


   

 

Taking into account all the rings (radius varying from 0 to r ), we get the 

magnitude of the magnetic moment as follows: 

 

 






rR

R

dRR
r

q
dm

0

3

2
)(


  

 

       = 

r

R

r

q

0

4

2 4








 

 

       = 24

2 4

1

4

1
rqr

r

q



  

 

2.     Precession frequency p  of a proton in a magnetic field is given 

by  
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B
m

q

J

B

p

p
2




  

 

(because
pm

q

J 2



, where q  is the charge and 

pm  is the mass of 

proton) 

 

Cyclotron frequency L  is 
m

qB
L




2
  

  

  







qB

m

m

qB

L

p 2

2
 

 

ANSWERS TO TMAS IN UNIT 5 

 

1.  (a) 
)105.0)(2(

15

2

1

2 0

0

0 m

A

r

I

r

IB
H






 = 22.7 Am– 1  

   

  ( 
r

I
B





2

0 ) 

  

 
105.010

)15)(2(
7 

B = 28.57  T 

 

  (b) A
m

nIH 6.1
24.0

2000
 = 13.33 Am– 1 

 

 A
m

B 6.1
24.0

2000

10

4
7












= 0.0168 T 

 

2. For a toroid, nIH  , and we use HHKB m   ))(10/4( 7 .  

 

 Thus, 

 

   (a) 
m5.0

turns500
H 15.0 A = 150 Am– 1 and 

 

 )150)(104( 117  AmHmB  = 0.188 mT 

 

   (b) )188.0(5000 mTB  = 0.94 T 

 

 Using MHB 0/   
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  M
 

150
104

94.0
7

  5105.7 M  Am– 1 

 

3.  (a) )24.0(
75.0

1500
A

m
nIH  = 480 Am– 1 

 

m.m.f = )75.0()480( 1 mAmHl  = 360 A 

 

(b) )480)(1500(
10

4

10

4
77




HK
B m = 0.905 T 

 

(c) 4

6

2
2 1026.3

10

360
)905.0(  

m
mWbBA  Wb 

 

(d) Reluctance = 16

4
101.1

1026.3

360m.m.f 








H        = 1.1 1H  
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