
 

 

 

 

 

 

PHY 206 

OPTICS I 
 

 

 

Course Team Dr. Sanjay Gupta (Adapter) - NOUN  

   Dr. Sanjay Gupta (Programme Leader) - NOUN  

Mr. E. A. Ibanga (Course Coordinator) - NOUN  

Mr. Momoh Kabiru Onotu (Course Reviewer) - 

NOUN  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

COURSE 

GUIDE 



PHY 206                                                                                                      COURSE GUIDE 

ii 

 

 

  

 

 

© 2023 by NOUN Press 

National Open University of Nigeria 

Headquarters 

University Village 

Plot 91, Cadastral Zone 

Nnamdi Azikiwe Expressway 

Jabi, Abuja 

 

 

Lagos Office 

14/16 Ahmadu Bello Way 

Victoria Island, Lagos 

 

 

e-mail:  centralinfo@nou.edu.ng 

URL:    www.nou.edu.ng 

 

 

All rights reserved. No part of this book may be reproduced, in any form 

or by any means, without permission in writing from the publisher. 

 

 

Reviewed & Reprinted 2023 

 

 

ISBN: 978-978-058-961-5 

 

 

 

 

 

 

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/


PHY 206                                                                                                      COURSE GUIDE 

iii 

CONTENTS           PAGE 

 

Introduction ............................................................................................. iv 

The Course ............................................................................................... iv 

Course Aims ............................................................................................. v 

Course Objectives ..................................................................................... v 

Working through this Course ................................................................... v 

The Course Material ................................................................................ vi 

Study Units .............................................................................................. vi 

Textbooks and References ..................................................................... vii 

Assessment ............................................................................................ vii 

Tutor-Marked Assignment .................................................................... vii 

Final Examination and Grading ............................................................. vii 

Summary ................................................................................................ vii 
 



PHY 206                                                                                                      COURSE GUIDE 

iv 

Introduction 
 

We are able to adore the wonders of nature and its creations by 

perceiving light through one of our sense organs.  In a way, light 

sustains life on our planet.  Through we see objects it illuminates, we 

cannot see light! The study of interaction of light with matter constitutes 

what we call optics.  It is one of the most fascinating courses taught to 

undergraduate science students.  Optical studies have contributed 

significantly to human understanding of the laws of nature.  While 

studying optics you will realize that there is explosive growth of this 

subject due to the realization of some well known physical principles for 

technical applications.  This is why optics occupies a prominent place in 

pure and applied sciences. 

 

The subject of optics emerged as a result of the fundamental work done 

by scientists of eminence such as Galileo, Newton, Huygens, Young, 

Fresnel, Fraunhofer, Grimaldi, Arago and Bartholims.  Maxwell 

provided a sound mathematical basis to classical optics.  Hertz qualified 

his work successfully.  In India, Sir J.C. Bose and Sir C.V. Raman made 

significant contributions. 

 

Your study of Optics course begins with the course PHY 209: Optics I.  

It is intended to establish the transverse electromagnetic nature of 

light.  The phenomena of Interference and Diffraction, which reveal the 

wave behaviour of light, are discussed in PHY 306: Optics II.  The 

development of lasers, fibre optics, holography and the progress made in 

optical communication, optical storage and optical computing with 

applications in space, defence and medicine have led to an explosive 

growth of optics in recent years.  You will get a glimpse of some of 

these topics in the last course, PHY 410. 

 

The Course 
 

This is a 2-credit unit course that is intended to introduce Light.  In unit 

1 we have shown that light is a transverse electromagnetic wave.  The 

wave equations for E and B are derived from Maxwell’s field equations.  

In Unit 2 we have discussed reflection and refraction of electromagnetic 

waves.  You will also learn that all laws of geometrical optics are 

inherent in Fermat’s principle. 

 

Perception of light by humans is discussed in Unit 3.  you will learn that 

human vision involves a mix of physical and physiological processes.  

The role of the eye as an image forming device is discussed in detail.  

Theories of colour vision are also given in brief. 
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Unit 4 discusses three polarization states of light.  You will learn that 

light can be polarized by reflection, refraction and selective absorption.  

Light propagation in anisotropic crystals and phenomenon of 

birefringence are discussed in detail. 

 

Course Aims 
 

This course aims at introducing some important facts and developments 

which were made to unfold the nature of light, reflection and refraction 

of light, perception of light and polarization of light. 

 

Course Objectives 
 

After studying this course, you should be able to: 

 

 Name phenomena distinguishing corpuscular and wave models of 

light; 

 Derive an expression for the velocity of electromagnetic waves; 

 Specify the frequency ranges of different portions of the 

electromagnetic spectrum; 

 Explain the importance of Poynting Vector; 

 Explain reflection and refraction of e.m. waves incident normally 

and obliquely on the interface separating two optically different 

media; 

 Apply Fermat’s principle to explain the reflection and refraction 

of light 

 Solve problems based on reflection and refraction of e.m. waves; 

 Explain the functions of different parts of the eye; 

 List common eye defects and suggest remedial measures; 

 Describe how human eye responds to colour, 

 Explain trichromatic and opponent-colour theories of colour 

vision; 

 Explain what is linearly, circularly or elliptically polarized state 

of light; 

 Describe how light can be polarized by reflection; 

 Solve simple problems based on Malus’ law and Brewster’s law; 

 Explain how optical birefringence helps in the production of 

polarized light, and 

 Explain the production of linearly polarized light by dichroism 

 

Working through this Course 

 
This is the first part of your training in optics beyond first year physics.  

You will get to know the dual nature of light, and appreciate, to large 

extent, the dual nature of matter itself.  In addition, you will also learn 
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reflection and refraction of light, perception of light and polarization of 

light.  Optics has contributed a lot to the development of science in the 

past, and still remains just as relevant to the modern world of 

engineering and technology.  It is therefore important for you to 

understand the language and vocabulary of optics very thoroughly. 

 

The Course Material 

 
You will be provided with the following materials: 

 

Course Guide 

Study Material containing study units 

 

With the course comes a light of recommended textbooks which are 

necessary as supplements to the course material.  However, note that it 

is not compulsory for you to acquire or indeed read them. 

 

Study Units  

 
The following study units are contained in this course: 

 

Module 1 

 

Unit 1  Nature of Light 

Unit 2  Reflection and Refraction of Light 

Unit 3  Perception of Light 

Unit 4  Polarisation of Light 

 

In unit 1, you will learn some important facts and developments which 

were made to unfold the nature of light. 

 

In unit 2, you will get to know what happens when electric and magnetic 

fields which make up together what know as light, when such a wave is 

incident on the boundary separating two optically different media. 

 

Unit 3 shows that perception of light is an interplay between physical 

and physiological phenomena.  You will also get an opportunity to 

understand internal eye structure and know how light is sensed. 

 

Unit 4 sheds some light on polarization, the simple state of polarized 

light, as well as birefringence – a property of materials helpful in 

producing polarized light. 
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Textbooks and References 

 
Some reference books, which you may find useful, are given below: 

 

Introduction to Modern Optics – Grant F. Fowles 

Fundamentals of optics – Jenkins and White. 

Optics – Hecht and Zajac 

Optics – Smith and Thompson 

 

Assessment  

 
There are two components of assessment for this course.  The Tutor 

Marked Assignment (TMA), and the end of course examination. 

 

Tutor-Marked Assignment 

 
The TMA is the continuous assessment component of your course.  It 

accounts for 30% of the total score.  You will be given 4 TMA’s to 

answer.  Three of these must be answered before you are allowed to sit 

for the end of course examination.  The TMA’s would be given to you 

by your facilitator and returned after they have been graded. 

 

Final Examination and Grading 
 

This examination concludes the assessment for the course.  It constitutes 

70% of the whole course. You will be informed of the time for the 

examination.  It may or may not coincide with the university semester 

examination. 

 

Summary  
 

This course is designed to lay a foundation for you for further studies in 

optics.  It explains the nature of light, gives an insight into the reflection 

and refraction of light, human vision and the polarization of light.  At 

the end of this course, you will be able to answer the following types of 

questions: 

 

 What phenomena distinguish corpuscular and wave models of 

light? 

 What are the frequency ranges of different portions of the 

electromagnetic spectrum? 

 What is the importance of the Poynting Vector? 

 Explain reflection and refraction of e.m. waves incident normally 

and obliquely on the interface separating two optically different 

media. 
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 How does the human eye respond to colour? 

 When do we say light is linearly, circularly or elliptically 

polarized? 

 How can light can be polarized by reflection? 

 How does optical birefringence help in the production of 

polarized light? 

 

We wish you success. 
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Course Introduction 
 

This course is intended to introduce light. From your previous physics 

courses, you may be familiar with some of the topics included here. But 

we have included such topics so to make the course self-contained. In 

Unit 1 we have shown that light is a transverse electromagnetic wave. 

The wave equations for E and B are derived from Maxwell's field 

equations. In Unit 2 we have discussed reflection and refraction of 

electromagnetic waves. You will also learn that all the laws of 

geometrical optics are inherent in Fermat's principle. 

 

Perception of light by humans is discussed in Unit 3. You will learn that 

human vision involves a mix of physical and physiological processes. 

The role of eye as an image-forming device is discussed in detail. 

Theories of colour vision are also given in brief. Unit 4 discusses three 

polarisation states of light. You will learn that light can be polarised by 

reflection, refraction and selective absorption. Light propagation in 

anisotropic crystals and the phenomenon of birefringence are discussed 

in detail. 
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Unit 1  Nature of Light 

Unit 2  Reflection and Refraction of Light 

Unit 3  Perception of Light 

Unit 4  Polarisation of Light 
 

 

UNIT 1   NATURE OF LIGHT 
 

CONTENTS 

 

1.0       Introduction 

2.0 Objectives 

3.0 Main Content 

3.1  The Corpuscular Model 

3.2 The Wave Model 

3.3  Light as an Electromagnetic Wave 

3.3.1 Energy Transfer: The Poynting Vector  

3.3.2 The Electromagnetic Spectrum 

4.0      Conclusion 

5.0 Summary 

6.0      Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0     INTRODUCTION 
 

You all know that light is responsible for our intimate contact with the 

universe through one of our sense organs. We are able to admire the 

wonders of the world and appreciate the beauty of nature only when 

there is light. The reds of the sun or the ruby, the greens of the grass or 

emerald and the blues of the sky or sapphire involve light. In a way light 

plays a vital role in sustaining life on earth. Even so, we are strangely 

unaware of its presence. We see not light but objects, (shapes, colours, 

textures and motion) as constructed by the brain from information 

received by it. 

 

Have you ever thought: What is light? How light behaves when it 

reaches our eyes? And so on. These questions proved very difficult even 

for the genius of the class of Newton and Einstein. In fact, search for 

answers to these gave birth to a new branch of physics: Optics, which is 

extremely relevant to the modern world. It occupies a prominent place in 

various branches of science, engineering and technology. Optical studies 

have contributed to our understanding of the laws of nature. With the 

development of lasers, fibre optics, holography, optical communication 

and computation, optics has emerged as a fertile area of practical 

applications. It is therefore important for you to understand the language 

and vocabulary of optics very thoroughly. 
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In this unit you will learn some important facts and developments which 

were made to unfold the nature of light. In Sec. 3.1 you will learn about 

the corpuscular (particle) model of light. In Sec. 3.2 we have discussed 

the wave model of light, with particular reference to electromagnetic 

waves. You may now be tempted to ask: Does light behave like a 

particle or a wave? You will learn that it is like neither! 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 name phenomena distinguishing corpuscular and wave models of 

light 

 derive an expression for the velocity of electromagnetic waves 

 specify the frequency ranges of different portions of 

electromagnetic spectrum, and 

 explain the importance of Poynting Vector. 

 

3.0 MAIN CONTENT 
 

3.1 The Corpuscular Model 
 

You must have read in your school physics course that corpuscular 

model is due to Newton. Contrary to this popular belief, the credit 

should be given to Descartes, although the earliest speculations about 

light are attributed to Pythagoras. 

 

The speed of propagation of light has been measured by a variety of 

means. The earliest measurement made by Roemer in 1676, who made 

use of observations of the motion of the moons of Jupiter and apparent 

variations in the periods of their orbits resulting from the finite speed of 

propagation of light from Jupiter to earth. The first completely terrestrial 

measurement of the speed of light was made by Fizeau in 1849. 

 

The corpuscular model is perhaps the simplest of the models of light. 

According to it, light consists of minute invisible stream of particles 

called corpuscles. A luminous body sends corpuscles out in all 

directions. These particles travel without being affected by earth's 

gravitation. Newton emphasized that corpuscles of different sizes 

stimulate sensation of different colours at the retina of our eye. 

 

In your physics courses at school you must have learnt about evidences 

in favour of this model. Can you recall them? The two most important 

experimental evidences are: 
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(i)     Light travels in straight lines. This rectilinear propagation of light 

is responsible for the formation of sharp (perfectly dark) 

shadows. If we illuminate a barrier in front of a white screen, the 

region of screen behind the barrier is completely dark and the 

region outside the barrier is completely lit. This suggests that 

light does not go around corners. Or does it? 

 

(ii)    Light can propagate through vacuum, i.e., light does not require 

any material medium, as does sound, for propagation. 

 

We can also predict the correct form of the laws of reflection and 

refraction using the corpuscular model. However, a serious flaw in this 

theory is encountered in respect of the speed of light. Corpuscular model 

predicts that light travels faster in a denser medium. This, as you now 

recognise, contradicts the experimental findings of Fizeau. Do you 

expect the speed of light to depend on the nature of the source or the 

medium in which light propagate? Obviously, it is a property of the 

medium. This means that the speed of light has a definite value for each 

medium.  

 

The other serious flaw in the corpuscular model came in the form of 

experimental observations like interference (re-distribution of energy in 

the form of dark and bright or coloured fringes), diffraction (bending 

around sharp edges) and polarization. 

 

You may now like to answer an SAE. 

 

SELF ASSESSMENT EXERCISE 1 
 

Grimaldi observed that the shadow of a very small circular obstacle 

placed in the path of light is smaller than its actual size. Discuss how it 

contradicts corpuscular model. 

 

In the experiment described in SAE 1, Grimaldi also observed coloured 

fringes around the shadow. This, as we now know, is a necessary 

consequence of the wavelike character of light. It is interesting to 

observe that even though Newton had some wavelike conception of 

light, he continued to emphasize the particle nature. You will learn about 

the wave model of light in the following section. 

 

 

 

3.2 The Wave Model 
 

The earliest systematic theory of light was put forward by a 

contemporary of Newton, Christian Huygens. Using the wave model, 
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Huygens was able to explain the laws of reflection and refraction. 

However, the authority and eminence of Newton was so great that no 

one reposed faith in Huygens' proposition. In fact, wave model was 

revived and shaped by Young through his interference experiments. 

 

Young showed that the wavelength of visible light lies in the range 4000 

Å to 7000 Å (Typical values of wavelength for sound range from 15 cm 

for a high-pitched whistle to 3 m for a deep male voice.) This explains 

why the wave character of light goes unnoticed (on a human scale). 

Interference fringes can be seen only when the spacing between two 

light sources is of the order of the wavelength of light. That is also why 

diffraction effects are small and light is said to approximately travel in 

straight lines. (A ray is defined as the path of energy propagation in the 

limit of  0). A satisfactory explanation of diffraction of light was 

given by Fresnel on the basis of the wave model. An important part in 

establishing wave model was played by polarisation – a subtle property 

of light. It established that light is a transverse wave; the oscillations are 

perpendicular to the path of propagation. But what is it that oscillates? 

The answer was provided by Maxwell who provided real physical 

significance and sound pedestal to the wave theory. Maxwell identified 

light with electromagnetic waves. A light wave is associated with 

changing electric and magnetic fields. You will learn these details now. 

 

3.3 Light as an Electromagnetic Wave 
 

A varying electric field gives rise to a time and space varying magnetic 

field and vice-versa. This interplay of coupled electric and magnetic 

fields results in the propagation of three-dimensional electromagnetic 

waves. To show this, we first recall Maxwell's field equations: 

 

  D        (1.1a) 

 0 B        (1.1b) 

 0





t

B
E       (1.1c) 

and 
t




D
JH       (1.1d)  

 

where   and J denote the free charge density and the conduction 

current density, respectively. E, D, B, and H respectively represent the 

electric field, electric displacement, magnetic induction and the 

magnetic field. These are connected through the following constitutive 

relations: 

 ED            (1.2a) 

 HB            (1.2b) 

and EJ             (1.2c) 
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where  ,   and   respectively denote the (dielectric) permittivity, 

magnetic permeability and the electrical conductivity of the medium. 

For simplicity, we consider the field equations in vacuum so that  = 0 

and J = 0. Then, if we use connecting relations [Eqs. (1.2a-c)], Eq. (l.la-

d) reduce to 

 

 0 E        (1.3a) 

 0 H        (1.3b) 

 
t




H
E 0       (1.3c) 

and 
t




E
H 0       (1.3d)  

 

where 0  and 0  are the magnetic permeability and permittivity of free 

space. Taking the curl of Eq. (1.3c), we get 

 

 E  = )/(0 t H  

   = 
0

( x H)
t


 


    (1.4) 

 

since 
t


 is independent of   operation. 

To simplify the left hand side of this equation, we use the vector identity 

 

 EEE
2)(   

 

Since E = 0 in view of Eq. ( 1. 3a ), we find that Eq. (1.4) reduces to 

 

 )(0

2
HE 






t
  

 

 

 

On substituting the value of H from Eq. (1.3d), we get 

 

The 3-D wave equation has the form 

 

2

2

2

2 1

tv 





  

 

where   is a physical quantity which propagates wavelike with speed v . 
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2

2

00

2

t




E
E               (1.5) 

 

You can similarly show that 

 

 
2

2

00

2

t




H
H               (1.6) 

 

SELF ASSESSMENT EXERCISE 2 
 

Prove Eq. (1.6). 

 

Do you recognise Eqs.(1.5) and (1.6)? These are identical in form to the 

3-D wave equation derived in the course Oscillations and Waves. This 

means that each component of E and H satisfies a wavelike equation. 

The speed of propagation of an electromagnetic wave in free space is 

given by 

 

 
00

1


v                (1.7) 

 

This remarkably simple result shows that the speed of an 

electromagnetic wave depends only on 0  and 0 . This suggests that all 

e.m. waves should, irrespective of frequency or amplitude, share this 

speed while propagating in free space. We can easily calculate the 

magnitude of v  by noting that for free space 

 

 211212

0 108542.8  mNC  

and 

 227

0 104  CNs  

 

Thus, 

 v  = 
2/122721212 )]104()108542.8[(

1
  CNsmNC

 

 

  = 2.99794 1810  ms  

 

This is precisely the speed of light! It is worthwhile to mention here that 

using the then best known value of 0 , Maxwell found that 

electromagnetic waves should travel at a speed of 3.1074108 ms'1. 

This, to his amusement, was very close to the speed of light measured by 

Fizeau (3.14858108 1ms ). Based on these numbers, Maxwell proposed 

the electromagnetic theory of light. In his own words, 
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"This velocity is so nearly that of light, that it seems we 

have strong reason to believe that light itself is an 

electromagnetic disturbance in the form of waves 

propagated through the electromagnetic field according to 

electromagnetic laws." 

 

We cannot help but wonder at such pure gold having come out of his 

research on electric and magnetic phenomena. It was a rare moment of 

unveiled exuberance - a classic example of the unification of knowledge 

towards which science is ever striving. With this one calculation, 

Maxwell brought the entire science of optics under the umbrella of 

electromagnetism. Its significance is profound because it identifies light 

with structures consisting of electric and magnetic fields travelling 

freely through free space. 

 

The direct experimental evidence for electromagnetic waves came 

through a series of brilliant experiments by Hertz. He found that he 

could detect the effect of electromagnetic induction at considerable 

distances from his apparatus. His apparatus is shown in Fig. 1.1. By 

measuring the wavelength and frequency of electromagnetic waves, 

Hertz calculated their speed. He found it to be precisely equal to the 

speed of light. He also demonstrated properties like reflection, 

refraction, interference, etc., and demonstrated conclusively that light is 

an electromagnetic wave. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 Hertz's apparatus for the generation and detection of 

electromagnetic waves 

 

You now know that electromagnetic waves are generated by time 

varying electric and magnetic fields. So these are described by the 

amplitudes and phases of these fields. The simplest electromagnetic 

wave is the plane wave. You may recall that in a plane wave the phases 

of all points on a plane normal to the direction of propagation are same. 

And for a plane electromagnetic wave propagating along the z - 

direction, the phase is )( tkz  , where k is the wave number and   is 
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the angular frequency of electromagnetic plane wave. And the scalar 

electric and magnetic fields can be expressed as 

 

 )](exp[0 tkziE E  

 )](exp[0 tkziH H  

 

where 0E  and 0H  are the amplitudes of E and H. 

 

For a wave propagating along the z -direction, the field vectors E and 

H are independent of x and y. Then, Eqs. (1.3a) and (1.3b) reduce to 

 

 
z

E z




= 0             (1.8a) 

 

and 

 

 
z

H z




= 0            (1.8b)

  

By the same argument you will find that the time variation of zE  and 

zH  can be expressed as 

 

 
t

E z




= 0            (1.9a) 

 

and 

 

 
z

H z




= 0           (1.9b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

What do these equations convey? Physically, these imply that the 

components of E and H along the direction of propagation of an 

To arrive at Eqs. (1.9a,b), we write the z - component of Eqs. (1.3c) and 

(1.3d) as 

 
t

H

y

E

x

E
zxy














0  

and 
t

E

y

H

x

H
zxy














0  

since E and H are independent of x  and y , the LHS will be identically 

equal to zero. 
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electromagnetic wave ( z -direction in this case) does not depend upon 

time and the space coordinate z . So we must have 

 

 zz HE  0        (1.10) 

 

You should convince yourself why any other constant value of zE  and 

yH  would not represent a wave. We can now draw the following 

conclusions: 

 

Plane electromagnetic waves have no longitudinal component. That is, 

they are transverse. This implies that if electric field is along the x- axis, 

the magnetic field will be along the y-axis so that we may write 

 

 )(

0
ˆ tkzieE  xE   

and )(

0
ˆ tkzieH  yH              (1.11)

  

You may now ask: Are 0E and 0H  connected? If so, what is the relation 

between them? To discover answer to this question you have to solve 

TQ2: 

 

 0

0

0 E
k

H


  

 

2.    Since 
0

k
is a real number, the electric and magnetic vectors 

should be in phase. Thus if E becomes zero (maximum) at some instant, 

H must also necessarily be zero (maximum) and so on. This also shows 

that neither electric nor magnetic wave can exist without the other. An 

electric field varying in time sets up a space-time varying magnetic 

field, which, in turn, produces an electric field varying in space and 

time, and so on. You cannot separate them. This mutually supporting 

role results in the generation of electromagnetic waves. The pictorial 

representation of fields of a plane electromagnetic waves (propagating 

along the + z- direction) is shown in Fig. 1.2. You will note that electric 

and magnetic fields are oriented at right angles to one another and to the 

direction of wave motion. Moreover, the variation in the spacing of the 

field lines and their reversal from one region of densely spaced lines to 

another reflect the spatial sinusoidal dependence of the wave fields. 
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Fig.1.2 The electric and magnetic fields associated with a plane 

electromagnetic wave 

 

 

3.3.1  Energy Transfer: The Poynting Vector 
 

A general characteristic of wave motion is: Wave carries energy, not 

matter. Is it true even for electromagnetic waves? To know the answer, 

you should again consider the two field vectors (E and H) and calculate 

the divergence of their cross product. You can express it as 

 

 )()()( HEEHHE     (1.12) 

 

 

 

If you now substitute for the cross products on the right-hand side from 

Maxwell's third and fourth equations respectively for free space, you 

will get 

 
tt 









E
E

H
HHE 00)(   

 

The time derivatives on the right-hand side can be written as 

 

 )(
2

1
000 HH

H
H

H
H 
















ttt
  

and  

).(
2

1
EE

tt

E
E oo









     

so that   
o o

1
.(E x H) ( E.E H.H)

t 2

     
    


                   (1.13) 

 

Do you recognise Eq. (1.13)? If so, can you identify it with some known 

equation in physics? This equation resembles the equation of continuity 

in hydrostatics. To discover the physical significance of Eq. (1.13), you 

should integrate it over volume bound by the surface S  and use Gauss' 

theorem. This yields 

 
 

Since )()()( BAABBA   
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  





VV
dV

t
dV )(

2

1
)( 00 HHEEHE   

or 

  





VS
dV

t
d )(

2

1
)( 00 HHEEAHE   

 

 

 

 

 

 

 

 

 

The integrand on the right hand side refers to the time rate of flow of 

electromagnetic energy in free space. You will note that both E and H 

contribute to it equally. The vector 

 

 HES         (1.14) 

 

is called the Poynting Vector. It is obvious that S, E and H are mutually 

orthogonal. Physically it implies that S points in the direction of 

propagation of the wave since electromagnetic waves are transverse. 

This is illustrated in Fig. 1.3. 

 

You may now like to know the time-average of energy carried by 

electromagnetic waves (light) per unit area. If you substitute for E and H 

in Eq. (1.14) and average over time, you will obtain 

 

 

2

0

02
ˆ E

k


zS           (1.15) 

 

 
 

Fig. 1.3 The Poynting Vector 

 

Before you proceed, you should convince yourself about the validity of 

this result. To ensure this we wish you to solve SAE 3. 

 

Gauss' divergence theorem relates the surface integral of a vector 

function to the volume integral of the divergence of this same 

function: 
 

 
VS

dVd DAD  

 

The surface integral is taken over the closed surface, S bounding 

the volume, V. 
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SELF ASSESSMENT EXERCISE 3 
 

Prove Eq. (1.15). 

 

3.3.2  The Electromagnetic Spectrum 
 

Soon after Hertz demonstrated the existence of electromagnetic waves in 

1888, intense interest and activity got generated. In 1895, J.C. Bose, 

working at Calcutta, India produced electromagnetic waves of 

wavelengths in the range 25 mm to 5 m. (In 1901, Marconi succeeded in 

transmitting electromagnetic waves across the Atlantic Ocean. This 

created public sensation. In fact, this pioneering work marked the 

beginning of the era of communication using electromagnetic waves.) 

X-rays, discovered in 1898 by Roentgen, were shown in 1906 to be e.m. 

waves of wavelength much smaller than the wavelength of light waves. 

Our knowledge of e.m. waves of various wavelengths has grown 

continuously since then. The e.m. spectrum, as we know it today, is 

shown in Fig. 1.4. 

 

 
Fig. 1.4 The electromagnetic spectrum 

 

The range of wavelengths (and their applications in modern 

technologies) is very wide. However, the boundaries of various regions 

are not sharply defined. The visible light is confined to a very limited 

portion of the spectrum from about 4000 
o

A to 7000 
o

A . As you know, 

different wavelengths correspond to different colours. The red is at the 

long wavelength-end of visible region and the violet at the short 

wavelength-end. For centuries our only information about the universe 

beyond earth has come from visible light. All electromagnetic waves 

from 1 m to 10 6 m are referred to as radiowaves. These are used in the 

transmission of radio and television signals. The ordinary AM radio 

corresponds to waves with  = 100m, whereas FM radio corresponds to 
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1m. The microwaves are used for radar and satellite communications ( 

 ~ 0.5m - 310 m). 

 

Between radio waves and visible light lies the infrared region. Beyond 

the visible region we encounter the ultraviolet rays, X-rays and gamma 

rays. You must convince yourself that all phenomena from radio waves 

to gamma rays are essentially the same; they are all electromagnetic 

waves which differ only in wavelength (or frequency). You may now be 

tempted to enquire: Why do we attribute different nomenclature to 

different portions of the electromagnetic spectrum? The distinction is a 

mere convenience while identifying their practical applications. 

 

 
Fig. 1.5 The solar spectrum received on the earth 

 

In our solar system, the sun is the major source of e.m. waves. If you 

closely examine the solar spectrum received on the earth, you will 

observe broad continuous spectrum crossed by Fraunhofer dark 

absorption lines (Fig. 1.5). 

 

Let us now sum up what you have learnt in this unit. 

 

4.0 CONCLUSION 

 
In this unit you have learnt that light is a transverse electromagnetic 

wave.  According to corpuscular model, light consists of minute 

invisible stream of particles called corpuscles.  The wave equations for 

E


and B


are derived from Maxwell’s field equations.  An electric field 

varying in time sets up a spaced-time varying magnetic field, which in 

turn, produces an electric field varying in space and time, and so on. 

 

An expression for pointing vector S


= E


x H


 is obtained. S


 defines the 

direction of propagation of an electromagnetic wave.  At the end of the 

unit, the electromagnetic spectrum of the waves is discussed.  The 

visible light is confined to a very limited portion of the spectrum from 

about 4000 
o

A  to 7000 
o

A . 
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5.0 SUMMARY 
 

 Light is an electromagnetic wave. 

 The electric and magnetic fields constituting an electromagnetic 

wave satisfy the 

 equations 
 

  
2

2

00

2

t




E
E        

 and 

2

2

00

2

t




H
H    

  

 For a plane electromagnetic wave propagating along the z- 

direction, the electric and magnetic fields can be expressed as 

 

  )(

0
ˆ tkzieE  xE   

 and  

  )(

0
ˆ tkzieH  yH      

 

 The electromagnetic waves are transverse. 

 The poynting vector HES   defines the direction of 

propagation of an electromagnetic wave. 

 

 The visible light is confined to a very limited portion (4000 Å - 

7000 Å) of the electromagnetic spectrum. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 
 

1. According to the corpuscular model, light travels in straight lines. 

As a result, the size of the shadow should be equal to the size of 

the object. Grimaldi's observation - the size of the shadow is 

smaller than the size of the obstacle – indicates that light bends 

around edges, contradicting corpuscular model. 
 

2. Taking the curl of Eq. (1.3d), we get 

 

  H  = 
t




E
0  

    = )(0 E




t
  

 

Using the vector identity 
 

curl H = grad div H H2  

we have 
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  


















tt

H
HH 00

2)(   

 

Since 0 H , we get 

 

  
200

2

t




H
H   

 

3. From Eq. (1.14), we have for Poynting vector 

 

HES    

 

Taking only the real part of Eq. (1.11), the electric and magnetic 

field vectors can be represented as 

 

  E  = )cos(ˆ
0 tkzE x  

  H = )cos(ˆ
0 tkzH y  

   = )cos(ˆ
0

0

tkzE
k




y  ( 0

0

0 E
k

H


 ) 

So,  

  )(cos)ˆˆ( 2

0

0

tkzE
k




 yxHE  

 or   

  2 2

0

0

k
ˆS z E cos (kz t) 
 

 

 

This gives the amount of energy crossing a unit area 

perpendicular to the z-axis per unit time. Typical frequency for an 

optical beam is of the order of 1015 1s  and the cosine term will 

fluctuate rapidly. Therefore, any measuring device placed in the 

path would record only an average value. The time average of the 

cosine term, as you know, is 1/2. Hence 
 

 
02

ˆ
k

zS 
2

0
E  

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

1.      Derive the wave equation for the propagation of electromagnetic 

waves in a conducting medium. 

2.      Starting from Eqs. (1.3c) and (1.3d) show that 

 

 0

0

0 E
k

H


  
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3.     The energy radiated by the sun per second is approximately 

26100.4   J
1

s


 . Assuming the sun to be a sphere of radius 
8107 m, calculate the value of the Poynting vector at its surface. 

How much of it is incident on the earth? The average distance 

between the sun and earth is 1.5 1011 m. 
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1.0 INTRODUCTION 
 

In the previous unit you have learnt that light is an electromagnetic 

wave. It is made up of mutually supporting electric and magnetic fields, 

which vary continuously in space and time. An interesting question 

related to e.m. waves is: What happens to these fields when such a wave 

is incident on the boundary separating two optically different media? 

You may recall from previous courses that when a wave passes from air 

to water or air to glass, we get a reflected wave and a refracted wave. 

Reflection of light from a silvered surface, a looking mirror say, is the 

most common optical effect. Reflection of e.m. waves govern the 

working of a radar. Reflection of radio waves by the ionosphere makes 

signal transmission possible and is so crucial in the area of 

communication. 

 

In your earlier school years, you have learnt that refraction explains the 

working of lenses and is responsible for seeing: our contact with 

surroundings. Even the grand spectacle of sunset or a rainbow can be 

explained in terms of refraction of light. Refraction of e. m. waves forms 

the basis of one of the greatest technological applications in signal 

transmission. In fact, electro-optics has seen tremendous growth via 

optical fibres for a variety of applications. 

 

In Unit 7 of the course Oscillations and Waves, you learnt to explain 

reflection and refraction of waves on the basis of Huygen’s wave model. 

Now the question arises: Can we extend this analysis to electromagnetic 

waves, which include visible light, radiowaves, microwaves and X-rays? 
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In Sec. 3.1 you will learn to derive the equations for reflected and 

transmitted fields (E and B) when an e.m. wave is incident normally as 

well as obliquely on the boundary of two media. 

 

You are aware that many physical systems behave according to 

optimisation principle. When several fluids at different temperatures are 

mixed, the heat exchange takes place so that the total entropy of the 

system is maximum. A ball rolling on an undulating surface comes to 

rest at the lowest point. The profoundness of such situations and 

scientific laws governing them led Fermat to speculate: Does light also 

obey some optimization principle? And he concluded: A ray of light 

chooses a path of extremum between two points. This is known as 

Fermat's principle. Implicit in it are the assumptions: 

 

(i)     Light travels at a finite speed, and 

 

(ii)    The speed of light is lower in a denser medium. 

 

In Sec. 3.3 you will learn about Fermat's principle. We have shown that 

all laws of geometrical optics are contained in it. 

 

2.0 OBJECTIVES 

 
At the end of this unit, you should be able to: 

 

 explain reflection and refraction of e.m. waves incident normally 

and obliquely on the interface separating two optically different 

media 

 apply Fermat's principle to explain the reflection and refraction of 

light 

 solve problems based on reflection and refraction of e.m. waves. 

 

3.0 MAIN CONTENT 
 

3.1    Electromagnetic Waves at the Interface Separating Two 

Media 
 

Consider a plane electromagnetic wave that is incident on a boundary 

between two linear media. That is, D and H are proportional to E and B, 

respectively, and the constants of proportionality are independent of 

position and direction. You can visualise it as light passing from air 

(medium 1) to glass (medium 2). Let us assume that there are no free 

charges or currents in the materials.  
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Fig. 2.1 shows a plane boundary between two media having different 

permittivities and permeabilities: 1 , 1  for medium 1 and 2 , 2 for 

medium 2. A uniform plane wave travelling to the right in medium 1 is 

incident on the interface normal to the boundary. As in the case of 

waves on a string, we expect a reflected wave propagating back into the 

medium and a transmitted (or refracted) wave travelling in the second 

medium. We wish (i) to derive expressions for the fields associated with 

reflected and refracted waves in terms of the field associated with the 

incident wave and (ii) know the fraction of the incident energy that is 

reflected and transmitted. To do so we need to know the boundary 

conditions satisfied by these waves at the interface separating the two 

media. We obtain these conditions by stipulating that Maxwell's 

equations must be satisfied at the boundary between these media. We 

first state the appropriate conditions. Their proof is given in the 

appendix to this Unit. 

 

 
Fig.2.1 A uniform plane wave is incident normally on a plane 

boundary. The reflected and refracted (transmitted) waves 

are also shown. The angle of incidence is   and the angle of 

refraction is   

 

Boundary Conditions 
 

The integral form of Maxwell's equations for a medium free of charges 

and currents is: 

 0S dSE        (2.1a) 

 0S dSB        (2.1b) 

   
C

S
d

dt

d
d SBlE       (2.1c) 

and 
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  
S

C

d
dt

d
d SElB 



1
     (2.1d) 

where S is a surface bound by the closed loop C. 

 

The electric field can oscillate either parallel or normal to the plane of 

incidence. The magnetic field B will then be normal or parallel to the 

plane of incidence. We will denote these with subscripts || (parallel) and 

  (normal). The boundary conditions for normal and parallel 

components of electric and magnetic fields take the form (Appendix A). 

 

 02211   EE        (2.2a) 

 

 021   BB        (2.2b) 

 

 0| |2| |1  EE        (2.2c) 

and 

 0
11

| |2

2

| |1

1

 BB


      (2.2d) 

 

We shall now use the boundary conditions expressed by Eqs. (2.2a- d) to 

study reflection and refraction (transmission) at normal as well as 

oblique incidence. 

 

 
Flg.2.2 A sinusoidal plane e.m. wave incident normally at the 

boundary of two optically transparent media 

 

3.1.1  Normal Incidence 
 

Refer to Fig. 2.2. The yz -plane )0( x  forms the interface of two 

optically transparent (non-absorbing) media (refractive indices 1n  and 

2n ). A sinusoidal plane wave of frequency   travelling in the x -

direction is incident from the left. From Unit 7 of the Oscillations and 

Waves course you will recall that progressive waves are partially 
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reflected and partially refracted at the boundary separating two 

physically different media. However, the energy of the reflected or 

transmitted e.m. waves depends upon their refractive indices. 

 

The appropriate magnetic fields to be associated with electric fields are 

obtained from the equation 

 

 
t




B
E  

 

Let us suppose that the electric field is along the y -direction. Then the 

electric and magnetic fields associated with the incident wave are given 

by 

 

 )(exp[ˆ),( 0 txkiEtx II  jEI     (2.3a) 

and 

 )(exp[ˆ),(
1

0 txki
v

E
tx I

I  kB I     (2.3b) 

 

The reflected wave propagates back into the first medium and can be 

represented by the following fields: 

 

 )(exp[ˆ),( 0 txkiEtx IR  jER     (2.4a) 

and 

 0R

R I

1

E ˆB (x, t) k exp[ i(k x t)
v

       (2.4b) 

 

The minus sign in the exponents in Eqs. (2.4a,b) indicates that 

propagation of the wave is in the -x direction. But the negative sign with 

the amplitude in Eq. (2.4b) arises because of the transverse nature of 

e.m. waves and that the electric and magnetic field vectors should obey 

the relation 

 

  )ˆ(
1

1

RIR EkB 
v

 

 

where 
Ik̂  is unit vector along the direction of incidence. 

 

If you visualise Eqs. (2.3) and (2.4) diagramatically, you will note that 

the electric vectors have been kept fixed in the same direction but the 

magnetic field vectors have been oriented. The orientation of the 

magnetic field vector ensures that the flow of energy is always along the 

direction of propagation of the wave (Poynting theorem). 
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The electric and magnetic fields of the transmitted wave, which travels 

to the right in medium 2, are given by 

 

 )](exp[ˆ),( 0 xktiEtx TTT  jET     (2.5a) 

and 

 )],(ˆ[
1

),(
2

tx
v

tx TTT EkB       (2.5b) 

 

The phenomenon of reflection and refraction is usually analysed in two 

parts: 

 

(i)     To determine the relations between the field vectors of the 

reflected and refracted waves in terms of that of the incident 

wave. These relations determine the reflection and the 

transmission coefficients. In this derivation, we match the E and 

B fields in the two media at the interface with the help of 

appropriate boundary conditions there. 

 

(ii)   To establish relations between the angle of incidence and the 

angles of reflection and refraction we may emphasize that so far 

as the laws of reflection and refraction are concerned, explicit use 

of any boundary condition is not required. 

 

Fresnel’s Amplitude Relations 
 

To derive expressions for the amplitudes of the reflected and the 

refracted waves in terms of the amplitude of the incident wave, we apply 

boundary conditions given by Eq. (2.2a-d) at every point on the 

interface at all times. At x = 0, the combined field to the left ( RI EE  

and IB  and RB ) must join the fields to the right (
T

E  and 
T

B ). For 

normal incidence, there are no normal field components (perpendicular 

to the interface). But why? This is because neither E nor B field is in the 

x -direction. This means that Eqs. (2.2a,b) are trivial and only tangential 

components of the electric and magnetic fields should be matched at the 

plane x = 0. Thus 

 

 TRI EEE 000              (2.6a) 

and 
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which, on simplification yields 

 

 TRI EEE 000              (2.6b) 

 

where  

 

 
12

21

22

11

22

11

n

n

v

v












                      (2.6c) 

 

Solving Eqs. (2.6a) and (2.6b) for the reflected and transmitted electric 

field amplitudes in terms of the incident amplitude, you will find that 

 

 
IR EE 00

1

1

















          (2.7a) 

and 

 IT EE 00
1

2


          (2.7b) 

 

For most optical media, the permeabilities are close to their values in 

vacuum 
1 2 o

( )     . In such cases 
2

1

v

v
  and we have 

 
IR E

vv

vv
E 0

12

12
0 




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






  

and  2

12

22
ooI EE






          (2.8) 

 

This suggests that when 12 vv  , the reflected wave will be in phase with 

the incident wave and for 12 vv  , the reflected and incident waves will 

be out of phase. This is illustrated in Fig. 2.3. 
 

 
Fig.2.3 The phase relationship between reflected wave and the 

incident wave 
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In terms of the index of refraction 









v

c
n , we can rewrite Eq. (2.8) as 

 IR E
nn

nn
E 0

21

21
0




  

and 

 IT E
nn

n
E 0

21

1
0

2


       (2.9) 

 

When an e.m. wave passes from a rarer medium to a denser medium 

)( 21 nn  , the ratio 
I

R

E

E

0

0  will be negative. Physically, it means that the 

reflected wave is 180o out of phase with the incident wave. You have 

already learnt it in the case of reflection of sound waves in the course on 

Oscillations and Waves. When an e.m. wave is incident from a denser 

medium on the interface separating it from a rarer medium, (n1> n2) the 

ratio 
I

R

E

E

0

0  is positive and no such phase change occurs. 

 

We can now easily calculate the reflection and the transmission 

coefficients, which respectively measure the fraction of incident energy 

that is reflected and transmitted. The first step in this calculation is to 

recall that 

 

 
I

R

I

I
R   

and 

I

T

I

I
T   

 

where RI , TI  and II  respectively denote the reflected, transmitted and 

incident wave intensity. Intensity is defined as the average power per 

unit area, 2)2/1( vE . So you can readily show that 
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nn
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n

I

I
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You can convince yourself that 1TR . For air )1( 1 n - glass ( 2n  = 

1.5) interface, the R  and T  coefficients have the values R = 0.04 and T 
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= 0.96. There is no energy stored (or absorbed) at the interface and you 

can now realise why most of the light is transmitted.  

 

We will now repeat this exercise for the case of oblique incidence.  

 

3.1.2  Oblique Incidence 
 

Refer to Fig. 2.4. A plane electromagnetic wave is incident at an angle 

I . Let the angles of reflection and refraction be R  and T . We can 

represent the fields associated with these three plane electromagnetic 

waves as 

 

Incident Wave 

)](exp[0 rkEI  III tiE   

  )ˆ(
1

1

III EkB 
v

      (2.11a) 

 

Reflected Wave 

)](exp[0 rkER  RRR tiE   

  )ˆ(
1

1

RRR EkB 
v

      (2.11b) 

 

Transmitted Wave 

 

)](exp[0 rkET  TTT tiE   

  )ˆ(
1

2

TTT EkB 
v

      (2.11c) 

 

You may recall that the boundary conditions must hold at every point on 

the interface at all times. If the boundary conditions hold at a point and 

at some time, they will hold at all points in space for all subsequent 

times only if the exponential parts in above expressions for each wave 

are the same, i.e.,  

 

 rkrkrk TRI  ttt TRI   

 

at the interface. This implies that for equality of phases at all times we 

must have 

 

   TRI  (say)     (2.12a) 

 

That is, the frequency of an e.m. wave does not change when it 

undergoes reflection and refraction: all waves have the same frequency. 
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Since the fields must satisfy Maxwell's equations, we must have for the 

wave vectors 

 

 1122

2
1





c

k I       (2.13a) 

 

 2222

2
1





c

kT        

 (2.13b) 

 

 1122

2
1





c

kR       (2.13c) 

 

Further, let xIk , yIk  and zIk  represent the x , y and z components of Ik . 

We can use similar notation for Tk  and Rk . For the continuity 

conditions to be satisfied at all points on the interface, we must have 

 

 yRyTyI kkk        (2.14a) 

 

and 

 zRzTzI kkk        (2.14b) 

 

  

 
Fig. 2.4 The reflection of a plane wave with its electric vector 

parallel to the plane of incidence 

 

Let us choose the y-axis such that 

 

 0yIk  
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(i.e., we assume 
Ik  to lie in the x-z plane - see Fig. 2.4). Consequently 

  

0 yRyT kk         (2.14c) 

 

This result implies that the vectors Ik , 
Tk  and 

Rk  will lie in the same 

plane. Further, from Eq. (2.14b) we get 

 

 RRTTII kkk  sinsinsin      (2.15) 

 

Since || Ik = || Rk  (see Eq. 2.13a and c), we must have  

 

 RI          (2.16) 

 

That is, the angle of incidence is equal to the angle of reflection, which 

is the law of reflection. Further,  

 

 
11

22

sin

sin








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I

T

T

I
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or 

 
11

22

sin

sin










T

I       (2.17) 

 

If we denote the speeds of propagation of the waves in media 1 and 2 by  

 















11

1

1


v  and 
















22

2

1


v , we find that Eq. (2.17) can be 

rewritten as 

 

 
1

2

2

1

sin

sin

n

n

v

v

T

I 



      (2.18) 

 

where
1

1
v

c
n  = 11c  and 22

2

2 c
v

c
n   represent the refractive 

indices of media 1 and 2 respectively. Do you recognise Eq. (2.18)? It is 

the well known Snell's law. 

 

Eqs. (2.16) and (2.18) constitute the laws of reflection and refraction 

in optics. 

 

You can now derive Fresnel's amplitude relations following the 

procedure outlined for the case of normal incidence. For brevity, we just 

quote the results without going into details. (You will not be examined 

for the same in the term-end examination.) When E oscillates parallel to 

the plane of incidence, we have 
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)tan(

)tan(

| |

| |

TI

TI

I

R

E

E








       (2.19a) 
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E

E
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
     (2.19b) 

 

When E oscillates normal to the plane of incidence, we have 

 

)sin(

)sin(

TI

TI

I

R

E

E











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)sin(

cossin2

TI

IT

I

T

E

E










       (2.20b) 

 

You can easily verify that for normal incidence these equations reduce 

to Eq. (2.9). 

 

The corresponding expressions for reflections and transmission 

coefficients for normal and parallel oscillations of E when a plane wave 

is incident obliquely are 

 

 
)(tan

)(tan
2

2

| |

TI

TIR

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


       (2.21a) 

 

 
)(cos)(sin

2sin2sin
22| |

TITI
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     (2.21b) 

 

 
)(sin
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2

2

TI

TIR

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


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      (2.21c) 

and 

 
)(sin

2sin2sin
2

TI

TIT





       (2.21d) 

 

As before, you can easily show that for normal incidence these 

equations reduce to Eq.(2.10a,b). 

 

3.2 Idealization of Waves as Light Rays 
 

So far you have learnt to explain reflection and refraction of plane 

electromagnetic waves at a plane interface. This signifies a relatively 

simple situation where the solutions of Maxwell's equations give the 

laws of propagation of light. It is not true in general, and we invariably 

seek approximations to describe a phenomenon well. One such 
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approximation makes use of the smallness of the wavelength of light. 

You know that the wavelength of light is very small (~ 710 m). It is 

orders of magnitude less than the dimensions of optical instruments such 

as telescopes and microscopes. In such cases, the passage of light is 

most easily shown by geometrical rays. A ray is the path of propagation 

of energy in the zero wavelength limit ( 0 ). The way in which rays 

may represent the propagation of wavefronts for some familiar situations 

is shown in Fig. 2.5. You will note that a plane wavefront corresponds to 

parallel rays and spherical wavefronts correspond to rays diverging from 

a point or converging to a point. You will agree that all parts of the 

wavefront take the same time to travel from the source. 

 

 

 
Fig.2.5: Ray representation of a plane, diverging spherical and 

converging spherical wavefronts moving from left to right 

 

 

The laws of geometrical optics are incorporated in Fermat's principle. 

We will now discuss it in detail. 

 

3.3 Fermat's Principle 
 

In its original form, Fermat's principle may be stated as follows: 

 

Any light ray travels between two end points along a line requiring 

the minimum transit time. 

 

If v  is the speed of light at a given point in a medium, the time taken to 

cover the distance dl is 

 

 
v

dl
dt         (2.22) 

 

In your earlier years you have learnt that the refractive index of a 

medium is defined as the ratio of the speed of light in vacuum to its 

speed in the medium, i.e. 

v

c
n   
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Using this relation in Eq. (2.22), we get 

 

 dln
c

dt
1

  

 

 

Hence, the time taken by light in covering the distance from point A to B 

is 

 

 
B

A
dln

c

1
  

 

The quantity 

 


B

A
dlnL        (2.23) 

 

has the dimensions of length and is called the optical distance or 

optical path length between two given points. You must realise that 

optical distance is different from the physical (geometrical) distance 

 
B

A
dl . However, in a homogeneous medium, the optical distance is 

equal to the product of the geometrical length and the refractive index of 

the medium. Thus, we can write 

 

 
c

L
  

 

This is Format's principle of least time. Let us pause for a moment and 

ask: Is there any exception to this law? Yes, there are cases where the 

optical path corresponds to maximum time or it is neither a maximum 

nor a minimum, i.e. stationary. To incorporate such situations, this 

principle is modified as follows: 

 

Out of many paths connecting two given points, the light ray follows 

that path for which the time required is an extremum. In other 

words, the optical path length between any two points is a 

maximum, minimum, or stationary. 

 

The essential point involved in Fermat's principle is that slight variation 

in the actual path causes a second-order variation in the actual path. Let 

us consider that light propagates from point A in the medium 

Huygens proposed that light propagates as a wavefront (a surface of constant 

phase) progresses in a medium perpendicular to itself with the speed of light. 

The zero wavelength approximation of wave optics is known as geometrical 

optics. 
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characterised by the refractive index n to the point B as shown in Fig. 

2.6. According to this principle, 

 

 0),,( 
B

A
dlzyxn       (2.24) 

 
Fig. 2.6 

 

For a homogeneous medium, the rays are straight lines, since the 

shortest optical path between two points is along a straight line. 

 

In effect, Fermat's principle prohibits the consideration of an isolated ray 

of-light. It tells us that a path is real only when we extend our 

examination to the paths in immediate neighbourhood of the rays. To 

understand the meaning of this statement, let us consider the case of 

finding the path of a ray from a point A to a point B when both of them 

lie on the same side of a mirror M (Fig. 2.7). It can be seen that the ray 

can go directly from A to B without suffering any reflection. 

 

 

 
Fig. 2.7 Reflection of rays at a plane interface 

 

 

Alternatively, it can go along the path APB after suffering a single 

reflection from the mirror. If Fermat's principle had asked for, say, an 

absolute minimum, then the path APB would be prohibited; but that is 

not the actual case. The path APB is also minimum in the 

neighbourhood involving paths like AQB. The phrase "immediate 
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neighbourhood of path" would mean those paths that lie near the path 

under consideration and are similar to it. For example, the path AQB lies 

near APB and is similar to it; along both paths the ray suffers one 

reflection at the mirror. Thus Fermat's principle requires an extremum in 

the immediate neighbourhood of the actual path, and in general, there 

may be more than one ray path connecting two points. 

 

All the laws of geometrical optics are incorporated in Fermat's principle. 

We now illustrate Fermat's principle by applying it to the reflection of 

light. 

 

Example 1 
 

Using Fermat's principle, derive the laws of reflection.  

 

Solution 
 

Let us first consider the case of reflection. Refer to Fig. 2.8. Light from 

a point A is reflected at a mirror MM towards a point B. A ray APB 

connects A and B. I  and R  are the angles of incidence and reflection, 

respectively. We have denoted the vertical distances of A and B from the 

mirror MM by a and b. From the construction in Fig. 2.8 and 

Pythagoras’ theorem, we find that the total path length l  of this ray from 

A to MM to B is 

 
2222 )( xdbxal                   (2.25) 

 

 

 
Fig. 2.8 Derivation of the laws of reflection using Fermat’s principle 
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where x is the distance between the foot of the perpendicular from A and 

the point P at which the ray touches the mirror. 

 

According to Fermat’s principle, P will have a position such that the 

time of travel of light must be a minimum (a maximum or stationary). 

Expressed in another way, the total length l  of the ray must be a 

minimum or maximum or stationary. In other words, for Fermat's 

principle to hold, the derivative of l  with respect to x must be zero, i.e. 

dxdl / = 0. Hence, on differentiating Eq. (2.25) with respect to x, we get 

 

0)1)((2])([
2

1
)2()(

2

1 2/1222/122   xdxdbxxa
dx

dl
       (2.26) 

 

which can be rewritten as 

 

 
2/1222/122 ])([)( xdb
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





         (2.27) 

  

By examining Fig. (2.8) you will note that this gives 

 

 RI  sinsin   

or 

 RI    

 

which is (part of) the law of reflection. You will also note that the 

incident ray, the reflected ray and the normal to MM lie in the same 

incidence plane. 

 

In the above example the time required or the optical path length can be 

seen to be minimum by calculating the second derivative and finding its 

value at x for which dxdI / = 0. The 2nd derivative turns out to be 

positive, showing it to be minimum. You can convince yourself by 

carrying out this simple calculation. 

 

We now conclude what you have learnt in this unit. 

 

4.0 CONCLUSION  
 

Reflection and refraction of electromagnetic waves incident normally 

and obliquely on the interface separating two optically different media 

are explained in this unit.  The appropriate boundary conditions satisfied 

by these waves at the interface separating the two media are stated.  The 

reflection and transmission coefficients are calculated which 

respectively measure the fraction of incident energy that is reflected and 

transmitted.  It is shown that all laws of geometric optics are contained 
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in Fermat’s principle.  According to this principle, any light ray travels 

between two end points along a line requiring the minimum transit time. 

 

5.0 SUMMARY 

 

 When an e.m. wave is incident normally on the interface 

separating two optically different media, the reflected and 

transmitted electric field amplitudes are given by 

 

  IR EE 00
1

1








  

and 

  IT EE 00
1

2


  

 

where 2211 /    and IE0  is the amplitude of the incident 

electric field. 

 

 The frequency of an e.m. wave is not affected when it undergoes 

reflection or refraction. 

 

 Fermat's principle states that a ray of light travels between two 

given points along that path for which the time required is an 

extremum: 

 

0),,( 
B

A
dlzyxn  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1.      Derive Snell's law from Fermat's principle. 

2.      A collimated beam is incident parallel to the axis of a concave 

mirror. It is reflected into a converging beam. Using Fermat's 

principle show that the mirror is parabolic. 
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APPENDIX – A 
 

Boundary Conditions 

 

Let us first consider the components of E and B fields that are normal to 

the boundary. We construct a thin Gaussian pillbox - extending just a 

little bit (hair-like) on either side of the boundary of the media, as shown 

in Fig. A. 1. 

 

 
 

Fig A.1 The positive direction of S and E is from medium 2 towards 

medium 1 

 

Eq. (2. la) implies that 

 

 02211   SESESE ddd   

or 

 SESE  2211  = 0 

 

In the limit thickness of the wafer goes to zero, the edges of the wafer do 

not contribute. Thus, the components of the electric fields perpendicular 

to the interface satisfy the condition 

 

   2211 EE  = 0      (A.1) 

 

That is, the normal component of electric displacement is continuous 

across the boundary. 

 

By a similar argument for normal components of magnetic fields we 

obtain the following boundary condition from Eq. (2.1b): 

 

 021   BB        (A.2) 

 

It may be emphasized here that only the normal components of D and B 

are equal on both sides of the boundary. Their total magnitudes may not 

be equal and their directions need not be the same. In fact, these fields 

may well be reflected or refracted and may also change directions. 
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We now consider the components of two fields parallel to the boundary 

and apply Eq. (2.1c) to a thin Amperian loop across the surface. This 

yields 

 

 
dt

d
d

dt

d B

S


  SBIEIE 21  

 

where B is the magnetic flux. As the width of the loop goes to zero, the 

magnetic flux vanishes. Therefore,  

 

 0)( 21  IEE   

 

which implies that 

 

0| |2| |1  EE        (A.3) 

 

That is, the components of E parallel to the interface are continuous 

across the boundary. 

 

In the same way, from Eq. (2.1d) we find that the parallel components of 

the magnetic field are equal and continuous. Mathematically we write 
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1.0 INTRODUCTION 
 

The sense of vision is one of our most prized possessions. It enables us 

to enjoy the splendours of nature, stimulates our thinking and enriches 

our lives in many ways. We become aware of the infinite variety of 

objects around us, especially their shapes, colours, textures and motion, 

etc., only due to our ability to see them. But have you ever thought: 

What makes us to see? It all begins with eyes but also depends on what 

happens behind the eye. Every object viewed is seen with light. The eye 

responds to illumination. We all know that all living species - from one 

celled amoeba to the great bald eagle - have developed special 

mechanisms for responding to light.  

 

 

Human perception of light, i.e., vision, is a more developed process. It 

takes place almost spontaneously without anyone, other than the 

perceiver, knowing what is happening. Perception of light involves the 

formation of sharp images (in the visual apparatus) and their 

interpretation. Vision begins in the eye, but light is sensed by the brain. 

In fact, what we see is the world created by our visual apparatus inside 

our head. So we can say that vision involves a mix of physical and 

physiological phenomena. In this unit we will develop on what you 

The amoeba reacts only to extreme changes in light intensity such as light and 

darkness. The earthworms react to light through light sensitive cells present on 

their skin. This ability to sense only general level of light intensity is termed 

photosensitivity. 
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already know. In Sec. 3.1 you will get an opportunity to review the 

internal eye structure and know how light is sensed. Sec. 3.2 is devoted 

to colour vision where you will learn about dimensions of colour, the 

trichromatic and opponent-colour theories. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the functions of different parts of the eye 

 list common eye defects and suggest remedial measures 

 describe how the human eye responds to colour 

 explain trichromatic and opponent-colour theories of colour 

vision. 

 

3.0 MAIN CONTENT 
 

3.1    Human Vision 
 

Vision involves a mix of physical phenomena and physiological 

processes. We can understand how the image of an object is formed 

within the eye purely in terms of physical principles and processes. But 

from image formation to its perception by the brain, the process is 

physiological.  

 

In this section our emphasis will be on the physics of vision. We shall 

also discuss very briefly the physiology of vision. Let us begin our study 

of human vision with the eyes - our windows to the external world.  

 

Our eyes are very versatile. They possess a staggering degree of 

adaptability and precision. They are capable of extremely rapid 

movement. That is why we can instantaneously shift the focus from a 

book in hand to a distant star, adapt to bright or dim light, distinguish 

colours, scan space, estimate distance, size and direction of movement. 

You may now ask: How does vision begin in the eye? What is the 

internal structure of the eye? How does the brain interpret images? The 

Human vision also has a rich relationship with other senses. In fact, all our five 

senses cooperate and augment each other. 

 

In medicine, the study of structure, functions and diseases of the eye is called 

opthalmology.  Human eyes are very versatile and highly accurate. Their overall 

visual horizon is broad. But they are less acute than a hawk's eyes and less wide-

seeing than those of a deer. Moreover, human eyes are not ideally suited for seeing 

underwater, nor are they very efficient at night. Even in twilight, eyes lose all 

perceptions. 
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answers to such questions have fascinated man for thousands of years. 

Physiologists say that the human eye is an image-making device. (In a 

way, the human eye has striking similarities to a camera of automatic 

intensity and focal control.) To know the details of the mechanism of 

vision, some knowledge of the visual apparatus is necessary. You will 

now learn about the structure of eye and how it works as an optical 

instrument. 

 

3.1.1  Viewing Apparatus: The Eye 
 

Our eyes, as you know, are located in the bony sockets and are 

cushioned in fatty connective tissue. The adult human eye measures 

about 1.5 cm in diameter. Now refer to Fig. 3.1. It shows a labelled 

diagram of human eye. 

 

The sclera or 'white' of the eyeball is an opaque, fibro-elastic capsule. It 

is fairly tough and gives shape to the eyeball, protects its inner parts and 

withstands the intraocular pressure in the eye. The muscle fibres which 

control eyeball movement are inserted on the sclera. The cornea is a 

tough curved front membrane that covers the iris, the coloured circular 

curtain in the eye. The cornea acts as transparent window to the eye and 

is the major converging element. 

 

The cornea is followed by a chamber filled with a transparent watery 

liquid, the aqueous humor, which is produced continuously in the eye. 

It is mainly responsible for the maintenance of intraocular pressure. 

Besides this, aqueous humor is the only link between the circulatory 

system and the eye-lens or cornea. (Neither the lens nor the cornea has 

blood vessels.) The intraocular pressure maintains the shape of the eye, 

helps to keep the retina smoothly applied to the choroid and form clear 

images. Near the rear of this chamber is the iris. The iris is opaque but 

has a small central hole (aperture), called pupil. In our common 

observation, the pupil appears more like a black solid screen. Why? This 

is because behind the opening is the dark interior of the eye. The size of 

the pupil in normal eye is about 2 mm. The light enters the eyeball 

through this area. The iris is suspended between the cornea and the lens. 

The principal function of the iris is to regulate the intensity of light 

entering the eyeball. When the light is bright, the iris contracts and the 

size of the pupil decreases and vice versa. 
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Fig.3.1: A schematic labelled diagram of human eye 

 

 

Thread-like suspensory ligaments hold the biconvex crystalline eye-lens, 

which is just behind the pupil and iris. The muscle responsible for 

changes in the shape of the lens for near as well as far vision is called 

the ciliary muscle. The eye-lens is an elastic structure made of protein 

fibres arranged like the layers of an onion. It is perfectly transparent and 

its focal length is about 3 cm. 

 

The crystalline lens is followed by a dark chamber, which is filled with 

vitreous humor. It is a transparent jelly-like substance. It augments the 

functions of aqueous humor and helps the eye hold its shape. The rear 

boundary of this chamber is the retina, where the image of the object is 

formed. The microscopic structure of the retina is shown in Fig. 3.2(a). 

It consists of a nervous layer and a pigmented layer. Apart from sensing 

the shape and the movement of an object, the retina also senses its 

colour. The retina consists of five types of neuronal cells: the 

photoreceptors, bipolar, horizontal, amacrine and ganglion neurons. A 

magnified view of the arrangement of neuronal cells in the retina is 

shown in Fig. 3.2(b). 
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Fig.3.2: (a) Microscopic structure of retina (b) A Magnified 

view of arrangement of neuronal cells in the retina 

 

The photoreceptor neurons are of two types: rods and cones. (This 

nomenclature is due to their geometrical shapes.) It is estimated that 

about 130 million rods and cones are found lining the retina. Of these, 

about six million are cones and about twenty times as many are rods. 

The light sensitive pigments of photoreceptors are formed from vitamin 

A. 

 

 
Fig. 3.3 Distribution of rods and cones in the retina of the human 

eye 

 

At the very centre of the retina is a small yellowish depression, called 

fovea. This small valley (of about 5mm diameter) contains a large 

number (110,000 ) of cones and no rods. The distribution of rods and 

cones across the human retina is shown in Fig. 3.3. The horizontal axis 

shows the distances in degrees of visual angle from the fovea located at 

0°. 
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Rods are highly specialized for vision in dim light. They enable us to 

discriminate between different shades of dark and light, see shapes and 

movements. That is, rods provide a high sensitivity. Cones contain light 

sensitive pigments which make colour vision and sharpness of vision 

(high visual acuity) possible. 

 

When light is absorbed by photoreceptor cells, the light sensitive 

pigments are broken up by specific wavelengths of light. The bipolar 

nerve cells carry nerve impulses generated by rods and cones to the 

ganglion cells. The axons of the ganglion cells converge on a small area 

of the retina. It is lateral to the fovea and is free from rods and cones. 

Can you say anything about its ability for vision? Since this area 

contains only nerve fibres, no image is formed on it. That is, it is devoid 

of vision. For this reason, it is called the blind spot. You may be 

tempted to ask: Is there a spot in the eye for maximum vision? Certainly 

yes, the fovea is the valley of the sharpest vision. This remarkable 

perceptive ability is provided by the cones. Muscles for moving the eye 

spring from the sclera. The conjunctiva - a supple protective membrane - 

joins the front of the eye to the inside of the eyelids. 

 

3.1.2 Image Formation 
 

Before stimulating rods and/or cones, light passes through the cornea, 

aqueous humor, pupil, eye-lens and vitreous humor. For clear vision, the 

image formed on the retina should be sharp. Image formation on the 

retina involves the refraction of light, accommodation of the eye-lens, 

constriction of the pupil, and convergence of the eyes. We will now 

discuss these. 

 

Refraction and Accommodation 
 

The light entering the eye through the transparent window - cornea - 

undergoes refraction four times. This is because the eye has four 

optically different media: cornea (n = 1.38), aqueous humor (n = 1.33), 

eye-lens (n = 1.40), and vitreous humor (n = 1.34). Most of the 

refraction occurs at the air-cornea interface. Can you say why? This is 

because the cornea has a considerably larger refractive index than air (n 

= 1.0). Moreover, due to the curved shape, the cornea bends the light 

towards the retina. Additional bending is provided by the eye-lens, 

which is surrounded on both sides by eye-fluids (Fig. 3.1). However, the 

power of the lens to refract light is less than that of the cornea. So the 

main function of the lens is to make fine adjustments in focussing. The 

focussing power of eye lens depends on the tension in the ciliary muscle. 

When the ciliary muscle is relaxed, the lens is stretched and thinned. 

When a visual object is 6m or more away from the eye, the cornea 

receives almost parallel light rays. When the eye is focussing an object 
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nearer than 6m, the ciliary muscles contract. As a result, the lens 

shortens, thickens and bulges and its focussing power increases. These 

features are illustrated in Fig. 3.4. The great value of the lens lies in its 

unique ability to automatically change its focal control. This ability is 

called accommodation. Since accommodation means work for the 

muscles attached to the eye lens, viewing an object nearer than 6m for a 

long time can cause eye-strain. 

 

         
 

 
Use this diagram for question 1-4 

 

Fig. 3.4: Far and near accommodation (a) In the diagram on the 

left, the ciliary muscle Is relaxed. This causes the eye-lens to curve 

less. In the other diagram, the ciliary muscle Is contracted. This 

causes the lens to curve more, (b) Accommodation for far vision (6m 

or more away), (c) Accommodation for near vision 

While a healthy cornea is transparent, disease or injury may result in blindness. But 

eye surgeons have now acquired competence in replacing damaged cornea with 

clear one from human donors. Any imperfection in the shape of the cornea may 

cause distortion in visual images. 

 

The eye-lens of elderly people tends to be less flexible and loses ability to 

accommodate. This condition is called prestyopia. For extra focussing power, they 

use glasses (spectacles or contact lens). 
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Constriction of the Pupil 
 

Constriction of the pupil means the narrowing down of the diameter of 

the hole through which light enters the eye. This action occurs 

simultaneously with accommodation of the eye-lens and prevents the 

entry of light rays through the periphery of eye-lens, which can result in 

blurred vision. The pupil also constricts in bright light to protect the 

retina from sudden or intense stimulation. (When the level of 

illumination is low, the pupil dilates so that the retina can receive 

enough light.) 

 

Convergence 
 

Human beings have single binocular vision. This signifies that both eyes 

focus on only one set of objects. When we stare straight ahead at a 

distant object, the incoming light rays are directed at both pupils, get 

refracted and are focussed at identical spots on the two retinas. Suppose 

that we move close to the object and keep our attention on the same 

stationary object. Our common sense suggests that even now images 

should form on the same points (in both retinas). It really does happen 

and our eyes automatically make adjustments by radial movement of 

two eyeballs. This is referred to as convergence. 

 

Refer to Fig. 3.4 again. You will note that the images formed on the 

retina are inverted laterally as well as up-side-down. But in reality we do 

not see a topsy-turvy world. You may now ask: How does this happen? 

The solution to this apparent riddle lies in the capacity of the brain 

which automatically processes visual images. This suggests that though 

vision begins in the eye, perception takes place in our brain. Its proof 

lies in that severe brain injury can blind a person completely and 

permanently, even though the eyes continue to function perfectly. 

 

You may now like to reflect on what you have read. So you should 

answer the following SAE before you proceed. 

 

SELF ASSESSMENT EXERCISE 1 
 

Human beings are unable to see under water. Discuss why? 

 

By now you must be convinced that mechanically speaking, the human 

eye is an optical instrument resembling a camera. (A better analogy 

exists between the eye and a closed-circuit colour TV system.) The 

eyeball has a light focussing system (cornea and lens), aperture (iris) and 

a photographic screen (retina). This is shown in Fig. 3.5. There are of 

course very important differences between our eye and a camera. The 
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engineering sophistication of human eye is yet to be achieved even in 

the costliest camera. The cameraman has to move his camera lens for 

change of focus, whereas the eye-lens has automatic intensity and focal 

control. (The brain constantly analyses and perceives visual images. 

This is analogous to the development of a photograph.) The image on 

the retina is not permanent but fades away after l/20th of a second and 

overlaps with the next image. This gives the impression of continuity. 

There is of course no film in the eye that records the images 

permanently as a photo film does. 
 

 
Fig.3.5 The similarity between the eye and the camera 

 

3.1.3 Information Processing 
 
As soon as light impulses impinge on the retina (and an image is 

formed), these are absorbed by rods and cones, which contain four kinds 

of photosensitive substances. These visual pigment molecules undergo 

structural (chemical) changes. It is believed that each rod cell contains 

about seventy million molecules of a purple-coloured photosensitive 

pigment, rhodopsin. Like rods, cones contain violet - coloured 

photosensitive pigment, iodopsin. 

Rhodopsin has a molecular weight of about 4 x 104 dalton. It consists of the 

scotopsin protein and the chromophore retinene, a derivative of vitamin A in the 

form called cis-retinene. Any deficiency of vitamin A causes night-blindness. Fig. 

3.6 shows the absorption curve of rhodopsin. 

 

 
 

Fig. 3.6 The absorption curve of rhodopsin 
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Each pigment molecule consists of two components: a colourless 

protein, opsin, and a coloured chromophore, retinene. Opsin is different 

for each of the four visual pigments and determines the frequency of 

light to which each pigment responds. 

 

Let us now understand as to what happens to rhodopsin in rods. (The 

same basic changes occur in the visual pigments in cones.) Refer to Fig. 

3.7, which depicts the rhodopsin cycle. The first step in this process is 

the absorption of photon by rhodopsin, which then undergoes a chemical 

change. Its cis-retinene portion changes to all-trans-retinene. On 

referring to Fig. 3.8 you will note the rotation that occurs around the 

carbon numbered 12. This change triggers decomposition of rhodopsin 

(into scotopsin and all-trans-retinene) by a multi-stage process known as 

bleaching action. The pigment loses colour and the visual excitory event 

is believed to occur. Then rhodopsin is resynthesized in the presence of 

vitamin A. In this process, an enzyme, retinene isomerase, plays the 

most vital role. 

 

 
Fig. 3.7 The rhodopin cycle: Bleaching action 
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Fig.3.8 Structures of cis-retinence and all-trans- retinence 

 

The rods respond even to poor illumination such as twilight. Rhodopsin 

is highly sensitive to even small amounts of light. Their responses to 

light generate colourless images and objects are seen only in shades of 

grey. It is for this reason that you see a red flower black in the evening. 

On the other hand, the pigments of the cones are much less sensitive to 

light and require bright illumination to initiate decomposition of 

chromophore. Visual acuity or ability to see clearly and to distinguish 

two points close together is very high and their responses produce 

coloured images. 

 

The information received in terms of light is converted into electrical 

signals in the retina. The potential of the cell membranes of the 

photoreceptor cells undergoes a change even on brief illumination. This 

occurs through a complex chemical process involving a flow of calcium 

ions and sodium ions across the membrane. The change in membrane 

potential, Vm, is governed by the following equations in time and 

space: 
 

 )1()( /t

mm eRItV       (3.1) 

and 

 Lx

m eVxV /

0)(        (3.2) 

 

where mI  is the membrane current, R  the membrane resistance,  is the 

membrane time constant. 0V  is the change in the membrane potential at 

x = 0 (x being the distance away from the site of current injection) and L 
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is the length constant. As can be seen, the spread of 
m

V  in space is 

governed by L (whose values fall in the range of about 0.1 to 1 mm). It 

is important to note that while slow potentials are generated in most 

cells, action potentials are produced only in the ganglion cells. The 

signals generated in the retina are further transmitted to the higher 

centres in the visual pathway of the brain such as lateral geniculate 

nucleus and visual cortex. In this way, precise information about the 

image projected on the retina is conducted accurately to the brain. The 

transfer of visual information in a typical retinal circuit is shown (Fig. 

3.9). 

 

 
Fig.3.9 Retinal circuit showing the electrical links between cells of 

the retina: Action potential 
 

 

We hope that now you have a reasonable idea of how we perceive the 

world around us. You may now like to know the factors that hamper 

vision. 

 

3.1.4   Defects of Vision 
 

Sometimes the eye loses its power of accommodation. When this 

happens, we are unable to see objects clearly and vision becomes 

blurred. These are corrected by using contact lenses or spectacles. 
 

In one kind of such a defect, human beings can see nearby objects 

clearly but it is difficult to see objects at long distances, in such a 

(defective) eye, the image of distant objects is formed in front of the 

retina (Fig. 3.10a) rather than on the retina. This defect of the eye is 



PHY 206                                                                                                                 OPTICS I 

50 

known as short-sightedness or myopia. It is frequently observed in 

children. In short-sightedness, the eyeball gets elongated. It can be 

corrected by using a concave (divergent) lens (Fig. 3.10b) of appropriate 

focal length which moves the image on to the retina. 

 
 

                     
 

Fig. 3.10 (a) Short sightedness (b) its correction 
 

In another eye defect, eyeball gets shortened. Though distant objects are 

seen clearly, nearby objects look blurred. In this case the image is 

formed behind the retina (Fig. 3.11a). This defect is known as long-

sightedness or hypermetropia. It is normally observed in elderly 

people. It can be corrected by using a convex (convergent) lens of 

appropriate focal length (Fig. 3.lib). 
 

Sometimes a person may suffer from both myopia and hypermetropia. 

Such people often use bifocal lenses, in which one part of the lens acts 

as a concave lens and the other part as a-convex lens. The third type of 

defect of vision is called astigmatism, wherein distorted images are 

formed. The corrective lenses are used to restore proper vision. 
 

  
 

 Fig. 3.11 (a) Long sightedness (b) its correction 
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3.2   Colour Vision 
 

You all know that human beings have remarkable sense to adore the 

varied creations of nature. This is particularly because colour is an 

automatic part of our perception. In fact, the phenomenon of colour 

vision has added real charm to life. Can you now realize what vision is 

like without colour? You will learn that the colour is a perceptual 

experience; a creation of the eye and the mind. 

 

One of the earliest observations about colour perception was made in 

1825 by Purkinje. He observed that at twilight, blue blossoms on 

flowers in his garden appeared more brilliant than the red. To 

understand this, you must know the mechanism of colour vision. The 

process of colour perception is influenced by the physiology of the eye 

and the psychology of the person. Before we plunge into these details, it 

is important to know the dimensions of colour, i.e., the parameters with 

which colour may be defined. 

 

3.2.1 The Dimensions of Colour 
 

The most important physical dimension of colour is the wavelength of 

light. For most light sources, what we perceive is the dominant colour, 

which we call the hue. It is hue to which we give the names like red, 

blue or greenish yellow. In fact, the terms colour and hue are frequently 

used interchangeably. You may therefore conclude that hue is the 

perceptual correlate for variations in wavelength. 

 

The second dimension relevant to colour vision is illuminance, which 

refers to the amount of light reaching the eye directly from the source. 

Illuminance, therefore, characterizes the perceived brightness of a 

coloured light. This relationship (between illuminance and brightness) is 

fairly complex because perceptual sensitivity varies with the wavelength 

of light. Every individual with normal eye possesses maximum 

sensitivity to light between the green and yellow parts of the spectrum 

(500nm - 600 nm). And the sensitivity to predominantly blue light (400 

- 500 nm) is rather low. 

 

Another physical dimension associated with colour is the degree of 

purity of spectral composition. That is, purity characterises the extent to 

which a colour (hue) appears to be mixed with white light. This is 

responsible for variations in the perceived saturations of the colour. For 

example, when we add white light in a spectrally pure blue, the light 

Intensity is defined as the amount of energy reaching a receiver of given cross-

sectional area every second. 
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begins to look sky-blue. On progressive addition of white light, you may 

eventually observe it as white. 

 

We may therefore conclude that 

 

Thinking logically, you may now ask: Is there any other alternative 

expression for the dimensions of colour? The answer to this question is: 

Yes, there is. It is based on the observation that colour depends on the 

intensity of light. Let us now learn about it in some detail. 

 

Trichromacy 
 

You must have realised sometimes that when the intensity of light is 

low, we see no colours. You also know that by varying the wavelengths 

and/or intensities of lights of different colours, it is possible to produce 

light of a desired colour. In your school you must have learnt that all the 

colours of the visible spectrum can be produced by mixing lights of just 

three different wavelengths: red, green and blue. These are known as the 

primary colours. The explanation for this trichromacy lies in the 

mechanism for colour vision. You will learn about it in the next sub- 

section. 

 

Another important phenomenon associated with colour vision is 

complementarity of colours, i.e., pairs of colours, when mixed, seem to 

annihilate one another. For example, when we mix suitable proportions 

of a monochromatic blue light ( ~ 470 mm) with a monochromatic 

yellow light ( ~ 575 nm), we obtain a colourless grey. 

 

Reflecting on this observation, Hering suggested that complementary 

pairing is an indicator for pairing in the mechanisms responsible for 

signalling colour in the visual system. The complementary relationships 

among pairs of colours can be well represented as shown in Fig. 3.12. 

To locate the complementary colour in this figure all that you have to do 

is to choose any point and draw a line passing through the centre of the 

circle. A suitably adjusted mixture of two complementary colours will 

appear grey. 

 

Colour, as a perceptual phenomenon, is three-dimensional and is characterised by 

hue, saturation and brightness. 
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Fig. 3.12 The complementary colour circle 

 

Before you proceed further, we want you to pause for a while and 

answer the following SAE. 

 

SELF ASSESSMENT EXERCISE 2 
 

How would you indicate brightness and saturation in Fig. 3.12? 

 

Note the presence of 'purple' hues. You may recall that dispersion of 

white light by a prism does not reveal this hue. Then the question arises: 

What is their significance in the colour circle? The complementary 

circle will remain incomplete without them. 

 

You may also note that though colour circle represents colours as a 

continuum, primary colours are perceptually quite distinct. The 

phenomena of primary colours and trichromacy led Young to propose 

three different types of receptors (cones) for colour vision. You will 

learn the details as you proceed. 

 

Colour Blindness 
 

You now know that a single monochromatic light can be produced by 

combining two primary colours. The measurements made to know the 

amounts of these colours required to match a given monochromatic 

colour gave fairly standard results. That is, when we ask a group of 

people to match a test colour, experience tells that they mix the same 
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proportions of primary colours. But colour-mixing requirements for 

some individual may be anomalous. In fact, some individuals’ may need 

only two, rather than three, primary colours to match all the 

monochromatic hues. These anomalies are indicative of varying degrees 

of colour blindness. People who show anomalous colour-matching 

requirement do not see the same colours as individuals having normal 

vision. The most common defect is in the proportions of red and green 

lights required to match a monochromatic yellow. The manifestation of 

this in everyday life is a limited ability to distinguish between red and 

green. 

 

3.2.2   Colour Receptors 
 

In the above paragraphs you have learnt that trichromatic theory led 

Young to propose that the eye possesses three types of cones, each 

containing a different pigment. And three types of pigments in the cones 

correspond to three primary colours (three-dimensional colour vision). 

The absorption curves for these pigments are shown in Fig. 3.13. You 

will note that the curves show substantial overlap. Moreover, the blue 

mechanism is markedly less sensitive than the other two. 

 

The argument leading to this conclusion is rather subtle and needs closer 

analysis. To understand this, let us ask: How do humans distinguish 

such a large number of colours? Do we need a different type of receptor 

to discriminate each colour? Since the colours are numerous, the number 

of receptors available for a particular colour will be a small fraction of 

the total number of colour receptors. When monochromatic light reaches 

our eye, only the corresponding class of receptors will respond. And 

since the total number of responding receptors is comparatively small, 

the ability to see a monochromatic light will be much less than the 

ability to see white light. But in practice, this is not true. This led Young 

to conclude that only a few different types of receptors are present, 

which by working in combination give rise to all the different colours 

we perceive. His experience with colour mixing led him to conclude that 

the number of receptor types is only three. 
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Fig. 3.13 Spectral absorption curves for three different cone 

pigments 

 

This theory was proposed even before very little was known about the 

physiology of the visual system. The outputs from the three types of 

receptors are transmitted separately to the brain which combines the 

information and constructs certain abstractions to which we give names 

like hue, saturation, yellow, blue etc. 

 

We all know that yellow gives a sensation independent of red, blue and 

green, i.e. it seems as much of a primary colour. But no coding system is 

postulated for yellow in the trichromatic theory. Such feelings, though 

subjective, led Hering to propose an alternative theory of colour based 

on four colours: red, yellow, green and blue. This is known as 

opponent-colour theory. These colours are associated in pairs: red-

green and blue-yellow. The members of a, pair are thought to act in 

opposition adding up to white. Hering also specified a third pair of black 

and white to represent the varying brightness and saturation of colours. 

(The perception of brightness of the colour also depends on the mood of 

the perceiver.) You must appreciate that the most important difference 

between this theory and the trichromatic theory lies not in the number of 

postulated receptor types, but in the way their outputs are signalled to 

the brain. Fig. 3.14 depicts a simple version of the opponent-process 

theory. Three basic receptor types are indicated by X, Y and Z. A 

mixture of Y and Z is perceived as yellow. White is obtained by mixing 

X, Y and Z. 
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Fig.3.14 Opponent-process theory based on Bering's 

postulate: X, Y and Z denote basic receptor types 

 

According to the model shown in Fig. 3.14, three different receptor 

types are each sensitive to a range of wavelengths. The mode of 

operation is such that the activity level increases in response to a 

predominant input about one colour. You may ask: What happens in 

response to the input about the complementary colour? We expect it to 

decrease. To illustrate it, let us consider that the input to the blue-yellow 

system is predominantly in the yellow region of the spectrum. Then, 

there is an increase in activity (over a spontaneous level) about yellow 

colour. On the other hand, if the input is predominantly blue, there is a 

decrease in activity. Activity in the black-white mechanism is based on 

outputs from all three receptor types. 

 

Even though trichromatic theory and the opponent-process theories 

appear conflicting, recent studies show evidences that they are 

compatible. Research at the Johns Hopkins University (US) provides 

evidence in favour of the trichromatic theory. However, the cones do not 

send 'color signals' directly to the brain. Cone signals pass through a 

series of neurons which are colour specific. 

 

Vision is an endlessly fascinating area. We here conclude saying: The 

eye is not merely an instrument for survival; it is a means for enrichment 

of life. 

 

We will now like you to answer the following SAE. 
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SELF ASSESSMENT EXERCISE 3 

 

Name the regions of the retina specialised for (a) colour and detailed 

vision at high levels of illumination and (b) non-colour vision at low 

levels of illumination. 

 

4.0 CONCLUSION 
 

In this unit, the internal human eye structure and the function of each 

part of the eye is discussed in detail.  It is mentioned that human eyes 

are image making devices. The image of an object is formed at the 

retina. 

 

The eyes have striking similarities to a camera. There are however 

differences in detail.  The distribution of rods and cones in the retina of 

human eye are explained.  The image formation of the retina involves 

refraction of light, accommodation of eye-lens, constriction of pupil and 

convergence of the eyes.  The two types of defects of the eye are 

Myopia (short-sightedness) and hypermetropia (long-sightedness) which 

can be corrected by using a concave and convex lens respectively. 

 

The mechanism of colour vision is also discussed in this unit. The 

process of colour, as a perceptual by the physiology of the eye and the 

psychology of the person.  Colour, as a perceptual phenomenon, is three 

dimensional (3-D) and is characterised by hue, saturation and brightness. 

 

5.0 SUMMARY 

 

 The perception of light involves the formation of sharp images in 

the eye and their interpretation in the brain. That is, vision 

involves a mix of physical and physiological phenomena. 

 Human eyes are image-making devices. They have striking 

similarities to a camera of automatic intensity and focal control. 

There are however differences in details. 

 The cornea is the major converging element in the eye. 

 The image of an object is formed on the retina. It consists of five 

types of neuronal cells: photoreceptors, bipolar, horizontal, acrine 

and ganglion neurons. 

 The photoreceptor neurons are of two types: rods and cones. 

Rods are specially suited for vision in dim light and provide high-

sensitivity. Colour vision and sharpness are possible due to cones. 

 Image formation on the retina involves refraction of light, 

accommodation of eye-lens, constriction of pupil and 

convergence of the eyes. 

 Information processing involves structural changes in 

photosensitive pigment rhodopsin by bleaching action. 
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 Two common defects of the eye are myopia (short sightedness) 

and hypermetropia (long sightedness). These are corrected by 

using a concave and a convex lens respectively. 

 Colour, as a perceptual phenomenon, is three-dimensional: hue, 

illuminance and purity. 

 According to Young's trichromacy theory, colour vision requires 

three types of receptors (cones) for three primary colours. 

 According to Bering's opponent-colour theory, colours are 

associated in pairs: red-green, blue-yellow and add up to white. 

The brightness and saturation are determined by a black-white 

pair. 

 

ANSWER TO SELF ASSESSMENT EXERCISE  

 

1.     The refractive indices of water and cornea are 1.33 and 1.38, 

respectively. Due to small difference in these values, the cornea 

is unable to bend light towards the retina. This is why humans are 

unable to see under water. 

 

2.     An arrow originating at the centre and directed towards the 

circumference would indicate increasing colour saturation. 

Brightness does not depend on hue and saturation. So a line 

drawn normally out of the page (towards you) would represent 

increasing brightness. 

 

3.     The first description applies to the fovea whereas the second 

description applies to the peripheral regions. 

 

6.0 TUTOR-MARKED ASSIGNMENT  
 

1.     List the differences between the human visual system and a 

camera. 

2.      When we enter a dark room, we feel blinded. Gradually we 

become dark-adapted. The dark adaptation curve shown here 

shows a kink. Can you suggest an explanation in terms of rod and 

cone-adaptation? 
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UNIT 4    POLARISATION OF LIGHT 
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1.0 INTRODUCTION 
 

In Unit 1 of this course, you learnt that light is a transverse 

electromagnetic wave. In your school physics curriculum, you have 

learnt that while every wave exhibit interference and diffraction, 

polarisation is peculiar only to transverse waves. You may even be 

familiar with the basics of polarisation in your PHY 124 like: What 

distinguishes the polarised light from unpolarised light? Is light from an 

ordinary (or natural) source polarised? How do we get polarised light? 

And so on. In this unit we propose to build upon this preliminary 

knowledge. 

 

You must have seen people using antiglare goggles and also antiglare 

windshields for their cars. Do you know that polarisation of light has 

something to do with these? Polarisation of light also plays a vital role 

in designing sky light filters for cameras and numerous optical 

instruments, including the polarising microscope and the polarimeter.  

 

In Sec. 3.1 we have discussed as to what is polarisation. In Sec. 3.2, you 

will learn about simple states of polarised light. Sec. 3.3 is devoted to 

ideal polarisers and Malus' law. In this section you will also learn about 

double refraction or optical birefringence - a property of materials 
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helpful in producing polarised light. In Sec. 3.4, you will learn some 

techniques of producing circularly and elliptically polarised light. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain what is linearly, circularly or elliptically polarised state of 

light 

 describe how can light be polarised by reflection 

 solve simple problems based on Malus' law and Brewster's law 

 explain how optical birefringence helps in production of 

polarised light 

 explain the production of linearly polarised light by dichroism. 

 

3.0 MAIN CONTENT 
 

3.1 What is Polarisation? 
 

What is polarisation? Why light, not sound, waves are known to 

polarise? These are some of the basic questions to which we must 

address ourselves. Polarisation is related to the orientation (oscillations) 

of associated fields (particles). Refer to Fig. 4.1, which depicts a 

mechanical wave (travelling along a string). From Fig. 4.1(a) you will 

note that the string vibrates only in the vertical plane. And vibrations of 

medium particles are confined to just one single plane. Such a wave is 

said to be (plane) polarised. How would you classify waves shown in 

Fig. 4.1(b) and (c)? The wave shown in Fig. 4.1(b) is plane polarised 

since vibrations are confined to the horizontal plane. But the wave in 

Fig. 4.1(c) is unpolarised because simultaneous vibrations in more than 

one plane are present. However, it can be polarised by placing a slit in 

its path as in Fig. 4.1(d). When the first slit is oriented vertically, 

horizontal vibrations are cut off. This means that only vertical vibrations 

are allowed to pass so that the wave is linearly polarised. What happens 

when a horizontal slit is placed beyond the vertical slit in the path of 

propagation of the wave? Horizontal as well as vertical components (of 

the incident wave) will be blocked. And the wave amplitude will reduce 

to zero. 

 

Let us now consider visible light. The light from a source (bulb) is made 

to pass through a polaroid (P), which is just like slit one in Fig. 4.1. The 

intensity of light is seen to come down to about 50%. Rotating P in its 

own plane introduces no further change in light intensity. Now if a 

second identical Polaroid (A) is introduced in the path of light so that it 

is parallel to P, the intensity of light from the bulb remains unaffected. 
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But rotating A in its own plane has a dramatic effect! For 900 rotations, 

the light is nearly cut-off. 

 

 

 
Fig. 4.1:(a) A vertically plane polarised wave on a string (b) A 

horizontally plane polarised wave (c) an unpolarised wave, 

(d) The wave in (c) becomes plane polarised after passing 

through slit one; the wave amplitude reduces to zero if 

another slit oriented perpendicular to slit one is introduced. 

 

 

 
Fig. 4.2 Schematics of the apparatus for observing the polarisation 

of light 
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You can analyse this result in terms of electromagnetic theory, which 

demands complete description of associated electric vector and the way 

it oscillates with respect to the direction of propagation. For the 

arrangement shown in Fig. 4.2, the electric field vector at the source has 

all orientations in the yz - plane. The wave propagates as such till it 

reaches the polaroid P, which allows essentially unhindered passage of 

electric vector oriented parallel to its transmission axis. If the 

transmission axis is along y -axis, the electric field along y -direction 

)( yE  passes through it unaffected. In addition, the y -components of 

electric field vectors inclined to the y -axis can also pass through P. 

Thus, after passing through the polaroid P, the electric vectors oriented 

only along the y -axis will be present. When electric vector oscillates 

along a straight line in a plane perpendicular to the direction of 

propagation, the light is said to be plane polarised. The plane 

polarised wave further travels to the polaroid A, which is identical to P. 

When A is at 90 with respect to P, it can allow only the z -components 

of E to pass. Since only y -components of E are present in the wave 

incident on A, no light is transmitted by A. 
 

We may now conclude that 
 

1.     No polarisation of longitudinal waves occurs as the vibrations are 

along the line of transmission only. 

2.     The transverse nature of light is responsible for their polarisation. 
 

An important manifestation of this result arises in TV reception. You 

may have seen that the TV antenna on your roof tops are fixed in 

horizontal position. Have you ever thought about it? This is because the 

TV signal transmission in our country is through horizontally oriented 

transmitting antenna. The explanation for this lies in the observation that 

the pick up by the receiving antenna is maximum when it is oriented 

parallel to the transmitting antenna. This is illustrated in Fig. 4.3 for a 

vertical (dipole) transmitting antenna. 

 

 
 Fig. 4.3: Polarisation of an electromagnetic wave. The 

antenna responds to the vertical electric field strength of the wave. 

Reception is maximum in Position 1 and minimum in Position 2. 
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You may now like to know: Do natural (or ordinary) light sources emit 

polarised light? Answer to this question is 'yes' as well as 'no'! Is this 

answer not funny? You know that emission of light involves a large 

number of randomly oriented atomic (or molecular) emitters. Every 

individual excited atom radiates polarised waves for about 810 s. These 

waves form a resultant wave of given polarisation which persists for the 

lifetime of the excited atom. At the same time, other atoms (molecules) 

also emit waves, whose resultant states of polarisation may be quite 

different. Because of this randomness, every orientation of electric 

vector in space is equally probable. That is, electric vectors associated 

with light waves from a source are oriented in all directions in space and 

thus there is a completely unpredictable change in the overall 

polarisation. Moreover, due to such rapid changes, individual resultant 

polarisation states become almost indiscernible. The light is then said to 

be unpolarised. 

 

In practice, visible light does not correspond to either of these extremes. 

The oscillations of electric field vectors are neither completely regular 

nor completely irregular. That is, light from any source is partially 

polarised. We ascribe a degree of polarisation to partially polarised light. 

The degree of polarisation is one for completely polarised light and zero 

for unpolarised light. 

The next logical step perhaps would be to know various types of 

polarised light. Let us learn about this aspect now. 

 

3.2 Simple States of Polarised Light 
 

You now know that in e.m. theory, light propagation is depicted as 

evolution of electric field vector in a plane perpendicular to the direction 

of transmission. For unpolarised light, spatial variation of electric field 

at any given time is more or less irregular. For plane polarised light, the 

tip of electric vector oscillates up and down in a straight line in the same 

plane. The space variation of E for linearly polarised wave is shown in 

Fig, 4.4 (a). The diagram on the left shows the path followed by the tip 

of the electric vector as time passes. You will know that the tip of E 

executes one full cycle as one full wavelength passes through a 

reference plane. There are two other states of polarisation: circular 

polarisation and elliptical polarisation. The path followed by the tip of E, 

as the time passes, for this is shown in Fig. 4.4 (b) and (c), respectively. 
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Fig. 4.4: Spatial variation of electric field vector for (a) linearly 

polarised light. The diagram on the left show the path taken by the 

tip of the electric vector as time varies. (b) and (c) show the path 

taken by the tip of the electric vector for circularly and elliptically 

polarised light 

 

Let us now mathematically analyse how the superposition of two plane 

polarised light waves of the same frequency moving in the same 

direction gives rise to linearly, circularly or elliptically polarised light. 

 

3.2.1  Linear Polarisation 
 

Suppose that two light waves are moving along the z -direction. Let 

their electric field vectors be mutually perpendicular, i.e., we choose 

these along the x and y axes and can represent them respectively in the 

form 
 

 )cos(ˆ),( 011 tkzEtz x  eE      (4.1) 

and 

 )cos(ˆ),( 022   tkzEtz yeE     (4.2) 

 

 

In a right handed coordinate system if a right handed screw is turned so that it 

rotates the x -axis towards the y -axis, the direction of advance of the screw 

represents the positive z -axis. 

The yz -plane (or x = 0 plane) in Fig. 4.4 is the plane of polarisation of the wave. 

We can identify other states of polarisation by looking at the trajectories of the 

tip of the electric field vector as the wave passes through the reference plane. 

You should always look at the reference plane from the side away from the 

source (looking back at the source) for the definitions to be unique. 

 

),(2 tzE  lags ),(1 tzE  for 0  and vice versa. 
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Here xê  and yê  are unit vectors along the x and y-axes respectively. 

(These are also called polarisation vectors.)   is the phase difference 

between the two waves. 

 

We expect that the nature of the resultant wave will be determined by 

the phase difference between them and the value of the ratio 0102 / EE . 

Mathematically, we can write the vector sum of these as 

 

 ),(),(),( 21 tztztz EEE   

  = )cos(ˆ)cos(ˆ
0201   tkzEtkzE yx ee  (4.3) 

 

Let us first take the simplest case where   is zero or an integral multiple 

of 2 . That is, when in-phase waves are superposed, Eq. (4.3) takes 

the form 

 

 )cos()ˆˆ(),( 0201 tkzEEtz yx  eeE    (4.4) 

 

The amplitude 2

02

2

01 EE  and the electric field oscillations in the 

reference frame make an angle )/(tan 0102

1 EE with the x -axis. 

For the special case of in-phase waves of equal amplitude 

)( 00201 EEE  , the resultant wave has amplitude 02E  and the 

associated electric vector is oriented at 45 with the x- axis. So we may 

conclude that when two in-phase linearly polarised light waves are 

superposed, the resultant wave has fixed orientation as well as 

amplitude. That is, it is also linearly polarised, as depicted in Fig. 4.5 

(a). In the plane of observation, you will see a single resultant E 

oscillating cosinusoidally in time along an inclined line (Fig. 4.5 (b)). 

The E - field progresses through one complete cycle as the wave 

advances along the z-axis through one wavelength. 

 

If we reverse this process, we can say that any linearly polarised light 

can be visualised as a combination of two linearly polarised lights 

with planes of polarisation parallel to x = 0 and y = 0 planes. (This is 

similar to resolving a vector in a plane along two mutually perpendicular 

directions.) In the subsequent sections, you will use this result 

frequently. 

 

If the phase difference between two plane polarised light waves is an 

odd integral multiple of ± , the resultant wave will again be linearly 

polarised: 

 

 )cos()ˆˆ(),( 0201 tkzEEtz yx  eeE    (4.5) 
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What is the orientation of the resultant electric vector in the reference 

plane? To know the answer of this question, work out the following 

SAE. 

 

SELF ASSESSMENT EXERCISE 1 

 

Depict the orientation of the electric vector defined by Eq. (4.5) in the 

reference (observation) plane. 

 

 
Fig. 4.5 Schematic representation of a plane polarised light wave 

 

3.2.2  Circular Polarisation 
 

We now investigate the nature of the resultant wave arising due to 

superposition of two plane polarised waves whose amplitudes are equal 

)( 00201 EEE   but phases differ by 2/ , i.e. their relative phase 

difference 
2

)12(


  n , n = 0, ± 1, ± 2,... For n = 0, we can rewrite 

Eqs. (4.1) and (4.2) as 

 

 )cos(ˆ),( 01 tkzEtz x  eE      (4.6a) 

 

 )sin(ˆ),( 02 tkzEtz y  eE      (4.6b) 
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The resultant wave is given by 

 

 )]sin(ˆ)cos(ˆ[),( 0 tkztkzEtz yx   eeE   (4.7) 

 

You may note that the scalar amplitude of E is constant )( 0E but its 

orientation varies with time. To determine the trajectory along which the 

tip of E moves, we can readily combine Eqs.(4.6a) and (4.6b) to yield 

 

1

2

0

2

2

0
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
















E

E

E

E
      (4.8) 

 

which is the equation of a circle. That is, the orientation of the resultant 

electric field vector changes continuously and its tip moves along a 

circle as the wave propagates (time passes). This means that E is not 

restricted to a single plane. The question now arises: What is the 

direction of rotation? Obviously there are two possibilities; Clockwise 

and counter-clockwise. To know which of these is relevant here, you 

should tabulate E at different space points at a given time, t = 0 say: 

 

 

 

These are depicted in Fig. 4.6. If you position yourself in the reference 

plane and observe the evolution of E from z to 0z  (backward 

towards source), you will find that the tip of E rotates clockwise. Such a 

light wave is said to be right circular wave. The electric field makes 

one complete rotation as the wave advances through one wavelength. 

In case the phase difference 
2

)12(


  n , n = 0, ± 1, ± 2, ..., Eq. (4.7) is 

modified to 

)]sin(ˆ)cos(ˆ[),( 0 tkztkzEtz yx   eeE            (4.7) 

  

Alternatively, we may fix an arbitrary point 0zz  and observe the 

evolution of E as time passes. The figure below depicts what is 

happening at some arbitrary point 0z  on the axis. 

Location 

In space 
0z  

8


z  

4


z  

8

3
z  z

2


  

8

5
z  

4

3
z  

8

7
z  

z  

Electric  

field 

 

0
ˆ Exe  

0
2

ˆˆ
E

yx ee   0
ˆ Eye  

0
2

ˆˆ
E

yx ee 
 0

ˆ Exe  
0

2

ˆˆ
E

yx ee 
  0

ˆ Eye  x y

0

ˆ ˆe e
E

2




 0
ˆ Exe  



PHY 206                                                                                                                 OPTICS I 

68 

 
Fig. 4.6: Rotation of the electric vector in a right-circular 

wave. For consistency, we have used a  

 right handed system 

 

It shows that the E-vector rotates counter-clockwise in the reference 

frame. (Before proceeding further you should convince yourself by 

tabulating the values of E at t = 0 for different space point.) Such a 

wave is referred to as left-circular wave. 

Can you now guess as to what will happen if two oppositely polarised 

circular waves of equal amplitude are superposed? Mathematically, you 

should add Eqs. (4.8) and (4.9). Then you will find that 

 

)cos(ˆ2 0 tkzE x  eE      (4.10) 

 

This equation is similar to Eq. (4.1) which represents a linearly polarised 

light wave. Thus, we may conclude that the superposition of two 

oppositely polarised circular waves (of same amplitude) results in a 

linearly or plane polarised light wave. 
 

3.2.3  Elliptical Polarisation 
 

Let us now consider the most general case where two orthogonal 

linearly polarised light waves of unequal amplitudes and having an 

arbitrary phase difference   are superposed. Physically we expect that 

beside its rotation, even the magnitude of resultant electric field vector 

will change. This means that the tip of E should trace out an ellipse in 

the reference plane as the wave propagates. To analyse this 

mathematically, we write the scalar part of Eq. (4.2) in expanded form: 

 

  sin)sin(cos)cos(
02

2 tkztkz
E

E
  
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On combining it with Eq. (4.1) we find that  

 

  sin)sin(cos
01

1

02

2 tkz
E

E

E

E
  

or 

 

  sin)sin(cos
01

1

02

2 tkz
E

E

E

E
      (4.11) 

 

It follows from Eq.(4.1) that 

 

 2/12

011 ])/(1[)sin( EEtkz   

 

so that Eq. (4.11) can be written as 

 

  sin])/(1[cos 2/12

011

01

1

02

2 EE
E

E

E

E
  

 

 
Fig 4.7 Schematics of elliptically polarised light 

 

On squaring both sides and re-arranging terms, we have 
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  (4.12) 

 

Do you recognise this equation? It defines an ellipse whose principal 

axis is inclined with the ),( 21 EE  coordinate system (Fig. 4.7). The angle 

of inclination, say  , is given by 

 

 
2
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2
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0201 cos2
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


      (4.13) 

 

For  = 0 or equivalently 2/  , 2/3 , …, Eq. (4.12) reduces to 
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which defines an ellipse whose principal axes are aligned with the 

coordinate axes. We would now like you to solve an SAE. 

 

SELF ASSESSMENT EXERCISE 2 
 

Starting from Eq. (4.12) show that linear and circular polarisation states 

are special cases of elliptical polarisation. 

 

Now that you understand what polarised light is, the next logical step is 

to know techniques used to get polarised light. You will learn some of 

these now. 

 

3.3  Principles of Producing Linearly Polarised Light 

 
The most important optical device in any polarised light producing 

arrangement is a polariser. It changes (the input) natural light to some 

form of polarised light (output). Polarisers are available in several 

configurations. An ideal polariser is one which reduces the intensity of 

an incident unpolarised light beam by exactly 50 percent. When 

unpolarised light is incident on an ideal polariser, the outgoing light is in 

a definite polarisation state (P-state) with an orientation parallel to the 

transmission axis of the polariser. That is, the polariser somehow 

discards all except one particular polarisation state. How do we 

determine whether or not a device is a linear polariser? The law which 

provides us with the necessary tool is Malus’ law.  

 

 
Fig. 4.8 A linear polariser 

 

3.3.1 Ideal Polariser: Malus' Law 

 
Refer to Fig. 4.8. Unpolarised light is incident on an ideal polariser, 

whose transmission axis makes an angle   with the y -axis. For this 

arrangement, only a P-state parallel to the transmission axis of the 

polariser will be transmitted. This light is incident on an identical ideal 
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polariser, called analyser, whose transmission axis is vertical. Suppose 

that there is no absorption of light. Then, if E is the electric field 

transmitted by the polariser, only its component cosE  parallel to the 

transmission axis of the analyser would pass through. The intensity of 

the polarised light reaching the detector is given by 
 

  2cos)0()( II        (4.15) 
 

where   is the angle between the transmission axes of the polariser and 

the analyser. The maximum intensity )0(I  occurs when the transmission 

axis of the polariser and the analyser are parallel. 

 

Eq. (4.15) constitutes what is known as Malus' law. To use it to check 

whether an optical device is an ideal linear polariser or not, you may like 

to solve an SAE. 
 

SELF ASSESSMENT EXERCISE 3 

 

Unpolarised light falls on two polarising sheets placed one over another. 

What must be the angle between their transmission axes if the intensity 

of light transmitted finally is one-third the intensity of the incident light? 

Assume that each polarising sheet acts as an ideal polariser. 

 

So far we have confined ourselves to a linear ideal polariser. Polarisers 

are available in several configurations. (We can have circular or 

elliptical polarisers as well.) They are based on one of the following 

physical mechanisms: reflection, birefringence or double refraction, 

scattering and dichroism or selective absorption. You will now learn 

about some of these in detail. 

 

3.3.2  Polarisation by Reflection: Brewster's Law 
 

Reflection of light from a dielectric like plastic or glass is one of the 

most common methods of obtaining polarised light. You may have 

noticed the glare across a windowpane or the sheen on the surface of a 

billiard ball or book jacket. It is due to reflection at the surface and the 

light is partially polarised. To understand its theoretical basis we will 

consider laboratory situations. 

 

Suppose that an unpolarised light wave is incident on an interface 

between two different media at an angle i  as shown in Fig. 4.9. 

 

This effect was studied by Malus. One evening he was examining a calcite crystal 

while standing at the window of his house. The image of the Sun was reflected 

towards him from the windows of Luxembourg Palace. When he looked at the 

image through the calcite crystal, he was amused at the disappearance of one of the 

double images as he rotated the crystal. 
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The reflection coefficients when the electric vector of the incident wave 

is perpendicular to the plane of incidence or when it lies in the plane of 

incidence are given by Fresnel's equations (Eqs. (2.2la) and (2.21c)): 

 

 
2

i r
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i r

tan ( )
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
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      (4.16a) 

and 
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
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      (4.16b) 

  

 
Fig. 4.9: (a) Polarisation by reflection: the unpolarised light beam 

has been represented as     which indicate two electric field 

vibrations. ''  indicates electric field vibration perpendicular to the 

page )( P  and ‘ ’ indicates electric field vibration in the plane of 

the paper )( | |P . (b) At Brewster's angle, the reflected light is plane 

polarised 
 

 
 

Fig. 4.10 Variation of reflectance with angle of Incidence 
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where r  is the angle of refraction. These equations show that whereas 

R  can never be zero, 
| |R  will become zero when 

2


  ri . (The case 

ri    is trivial as it implies continuity of optically identical media.) 

That is, there will be no reflected light beam with E parallel to the plane 

of incidence. The angle of incidence for which light is completely 

transmitted is called Brewster's angle. Let us denote it by B . A plot of 

R  and | |R  versus B  is shown in Fig. 4.10 for the particular case of an 

air-glass interface. 

 

We can represent an incoming unpolarised light as made up of two 

orthogonal, equal amplitude P-states with the electric field vector 

parallel and perpendicular to the plane of incidence. Therefore, when the 

unpolarised wave is incident on an interface and the angle of incidence 

is equal to the Brewster's angle, the reflected wave will be linearly 

polarised with E normal to the incident plane. This provides us with one 

of the most convenient methods of producing polarised light. To 

elaborate, we recall from Snell's law that 

 

 rB nn  sinsin 21   

 

where 1n  and 2n  are the refractive indices of the media at whose 

interface light undergoes reflection. Since Br 


 
2

, it readily follows 

that 

BB nn  cossin 21    

or 

1

2tan
n

n
B         (14.17) 

 

That is, the tangent of Brewster’s angle is equal to the ratio of the 

refractive indices of the media at whose interface incident light is 

reflected. When the incident beam is in air ( 1n = 1) and the transmitting 

medium is glass ( 2n = 1.5), the Brewster angle is nearly 56°. Similarly, 

B  for an air-water interface, like the surface of a pond or a lake is 53°. 

This means that when the sun is 37° above the horizontal, the light 

reflected by a calm pond or lake should be completely linearly polarised. 

 

We, however, encounter some problems in utilizing this phenomenon to 

construct an effective polariser on account of two reasons: 

 

(i)     The reflected beam, although completely polarised, is weak. 

(ii)    The transmitted beam, although strong, is only partially polarised. 
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These shortcomings are overcome using a pile of plate polarisers. You 

can fabricate such a device with glass plates for the visible, silver 

chloride plates for the infrared, and quartz for the ultraviolet region. It is 

an easy matter to construct a crude arrangement of this sort with a dozen 

or so microscope slides (Fig. 4.11). The beautiful colours that appear 

when the slides are in contact is due to interference. 

 

 
Fig. 4.11 Polarisation of light by a pile of plates 

 

You may now like to solve an SAE. 

 

SELF ASSESSMENT EXERCISE 4 

 

A plate of flint glass is immersed in water. Calculate the Brewster angles 

for internal as well as external reflection at an interface. 

 

Having studied as to how reflection of light can be used to produce 

polarised light, you may be tempted to know whether or not the 

phenomenon of refraction can also be used for the same? Refraction of 

light in isotropic crystals like NaCl or non-crystalline substances like 

glass, water or air does not lead to polarisation of light. However, 

refraction in crystalline substances like calcite or cellophane is optically 

anisotropic because it leads to what is known as double refraction or 

birefringence. This is because anisotropic crystals display two distinct 

principal indices of refraction, which correspond to the E-oscillations 

parallel and perpendicular to the optic axis. Let us now learn how 

birefringence can be used to produce polarised light.  

 

3.3.3  Polarisation by Double Refraction 
 

Mark a black dot on a piece of paper and observe it through a glass 

plate. You will see only one dot. Now use a calcite crystal. You will be 

surprised at the remarkable observation: instead of one, two grey dots 

appear, as shown in Fig. 4.12. Further rotation of the crystal will cause 

one of the dots to remain stationary while the other appears to move in a 

circle about it. Similarly, if you place a calcite crystal on your book, you 

will see two images of each letter. It is because the calcite crystal splits 
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the incident light beam into two beams. This phenomenon of splitting of 

a light beam into two is known as double refraction or birefringence. 

Materials exhibiting this property are said to be birefringent. We bring 

you the excitement of Bartholinus, who discovered birefringence, in his 

words: 
 

Greatly prized by all men is the diamond, and many are 

the joys which similar treasures bring, such as precious 

stones and pearls ... but he, who, on the other hand, prefers 

the knowledge of unusual phenomena to these delights, he 

will, I hope, have no less joy in a new sort of body, 

namely, a transparent crystal, recently brought to us from 

Iceland, which perhaps is one of the greatest wonders that 

nature has produced. As my investigation of this crystal 

proceeded there showed itself a wonderful and 

extraordinary phenomenon: objects which are looked at 

through the crystal do not show, as in the case of other 

transparent bodies, a single refracted image, but they 

appear double. 

 

 

 
Fig. 4.12 Double refraction of a light beam by calcite crystal 

 

 
 

 

 

 
 

 

In some of the textbooks, you may find that ordinary and extraordinary rays are 

being denoted by bold letters O and E. We have used small letters (o-and e-) to 

avoid confusion with the notation for the electric field. 
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Fig. 4.13 A Calcite crystal. The line AA' shows the direction of the 

optic axis. For the calcite crystal, the direction of the optic axis is 

determined by joining the two blunt corners of the crystal 

 

 

Before we discuss polarisation of light by double refraction in detail, 

you should familiarise yourself with some of the concepts related to this 

phenomenon. The two refracted beams into which incident light splits 

have different angles of refraction. The distinguishing feature of these 

two refracted light beams is that one of these obeys the Snell's law. It is 

called the ordinary ray (o-ray) in accordance with the nomenclature 

given by Bartholinus. The other beam does not obey Snell's law and is 

called the extraordinary ray (e-ray). That is, a birefringent crystal 

displays two distinct indices of refraction. Another important concept is 

that of the optic axis, which signifies some special direction in a 

birefringent crystal along which two refractive indices are equal (i. e. 

both o-and e-rays traval in the same direction with the same velocity). 

When unpolarised light is incident perpendicular to these special 

directions, both the o-and the e-rays travel in the same direction with 

different velocities. You may now like to know: Does optic axis refer to 

any particular line through the crystal? The answer to this question is: It 

refers to a direction. This means that for any given point in the crystal, 

an optic axis may be drawn which will be parallel to that for any other 

point. For example, AA' and broken lines parallel to AA' show the optic 

axis for a calcite crystal as shown in Fig. 4.13. 

 

Birefringent crystals which posses only one optic axis are called uniaxial 

crystals. Similarly, crystals having two optic axes are called biaxial 

crystals. Calcite, quartz and ice are examples of uniaxial crystals and 

mica is a biaxial crystal. Most of the polarisation devices are made of 

uniaxial crystals. Further, the uniaxial crystal for which the refractive 

index o-ray )( on  is more than the refractive index for the e-ray )( en  is 

called negative uniaxial crystal. On the other hand, if oe nn  , we have a 

positive uniaxial crystal. Values of n0 and en  for some of the 
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birefringent crystals are given in Table 4.1. The difference 0nnn e   

is a measure of birefringence.  

 

Table 4.1: Refractive indices of some uniaxial birefringent crystals 

for light of wavelength  5893 Å 

 

Crystal 

 
on  

 

en  

 

Tourmaline 

 

1.669 

 

1.638 

 
Calcite 

 

1.6584 

 

1.4864 

 
Quartz 

 

1.5443 

 

1.5534 

 
Sodium Nitrate 

 

1.5854 

 

1.3368 

 
Ice 

 

1.309 

 

1.313 

 
 

Let us now enquire how unpolarised light incident on a uniaxial crystal 

gets polarised? We know that when unpolarised light beam enters a 

calcite crystal, it splits into the o-and the e-rays. The electric field vector 

of e-ray vibrates in the plane containing the optic axis and the electric 

field vector of o-ray vibrates perpendicular to it, as shown in Fig. 4.14. 

We may, therefore, conclude that due to double refraction, the 

unpolarised light beam splits into two components which are plane 

polarised. 

 
 

 
Fig. 4.14: (a) ABCD is one of the principal sections of the calcite 

crystal; it contains the optic axis and is normal to the cleavage faces 

BECF and AHDG. (b) Unpolarised light beam passing through a 

principal section of the calcite crystal. 
 

 

Huygens explained many aspects of double refraction in calcite on the 

basis of the wave theory. Since the o-ray obeys Snell's law, it propagates 

with uniform velocity in all directions in the crystal. As a result, the 

wave surfaces are spherical. However, the e-ray propagates with 
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different velocities in different directions in the crystal and hence the 

resulting wave surface is an ellipsoid of revolution, i.e., a spheroid. 

Further, to reconcile with the fact that both the o-and e-rays travel with 

the same velocity along the optic axis, both the wave surfaces were 

assumed to touch each other at the two extremities of the optic axis. 

These features are depicted in Fig. 4.15. You may now like to know the 

nature of wave surfaces for o-and e-waves in positive uniaxial crystals.  

 

This is subject matter of TQ 1. 

 

 

 
Fig. 4.15 o-and e-wave surfaces in negative uniaxial crystal (calcite) 

 

From the above discussion it follows that in double refraction, an 

unpolarised light wave splits into o-and e-components with their E-

vibrations perpendicular to each other. By selective absorption of one of 

the P-states, we can produce linearly polarised light. This is readily done 

by a device, called Nicol prism, by removing the o-ray through total 

internal reflection. It was designed by William Nicol in 1828. You will 

learn about it now. 
 

Nicol prism 
 

The Nicol prism is made from a naturally occurring crystal of calcite. 

The length of the crystal is three times its width and the smaller faces 

PQ and RS and ground from 71° to a more acute angle of 68° (Fig. 
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4.16). The crystal is then cut along PS by a plane passing through P and 

S and perpendicular to the principal section PQSR. The cut surfaces are 

polished to optical flatness and then cemented together with a layer of 

(nonrefringent material) Canada balsam. 

 

 

 
Fig. 4.16 Nicol Prism 

 

Can you guess why Canada balsam is used as cementing material? Well, 

for sodium light, the refractive index of Canada balsam is 1.552, which 

is midway between the refractive indices for o-ray ( on  = 1.658) and the 

e-ray en( = 1.486) in calcite. Thus, it is an optically rarer medium with 

respect to an ordinary ray and denser for an extraordinary ray. The 

critical angle for total internal reflection of o-ray is 01 69
658.1

552.1
sin  . So, 

when incident unpolarised light splits into two rays inside the crystal, 

the o-ray gets totally reflected at the Canada balsam surface when it is 

incident on it at an angle of 69°. (It is for this reason that the end faces 

of the crystal are ground so as to make the angles 68° from 71°.) The 

emergent light will, therefore, be made up only of plane polarised e-

component. 

 

Some of the limitations of Nicol prism as polariser are: 

 

i.     It can be used for polarisation of visible light only. 

ii.      e-ray also can get totally reflected by the Canada balsam surface 

if it is travelling along the optic axis. Why? It is so because in this 

situation the refractive index for e-ray will be same as for o-ray 

(i.e., greater than the refractive index for Canada balsam). 

 

With time, a number of modifications have been incorporated in the 

basic design of the Nicol prism to overcome some of these limitations. 

However, we will not go into these details. 

 

So far you have studied about the production of linearly polarised light 

by reflection and double refraction. Other methods employed to produce 

linearly polarised light are selective absorption (or dichroism) and 

scattering. We will here discuss only dichroism and that too in brief. 
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3.3.4  Selective Absorption: Dichroism 

 
As you know, unpolarised light wave can be regarded as made up of two 

orthogonal, linearly polarised waves. Many naturally occurring and man 

made materials have the property of selective absorption of one of these; 

the other passes through without much attenuation. This property is 

known as dichroism. Materials exhibiting this property are said to be 

dichroic materials. The net result of passing an unpolarised light 

through dichroic material is the production of linearly polarised light 

beam. A particularly simple dichroic device is the so-called Wire-Grid 

polariser. You will learn about it now. 

 

The Wire-Grid Polariser 
 

The wire-grid polariser constists of a grid of parallel conducting wires, 

as shown in Fig. 4.17. Suppose that unpolarised light is incident on the 

grid from the right. It can be thought as made up of two orthogonal P-

states; xP  and yP  in the reference plane zR . The y-component of the 

electric field drives the electrons of each wire and generates a current. It 

produces (Joule) heating of the wire. The net result is that energy is 

transferred from the field to the wire grid. In addition, electrons 

accelerating along the y -direction radiate in the forward as well as 

backward directions. The incident wave tends to be cancelled by the 

wave re-radiated in the forward direction. As a result, transmission of 

the y-component of field is almost blocked. However, the x -component 

of the field is essentially unaltered as it propagates through the grid and 

the light coming out of the wire-grid is linearly polarised. The wire-grid 

polariser almost completely attenuates the yP  component when the 

spacing between the wires is less than or equal to the wavelength of the 

incident wave. You must realise that this restriction is rather stringent 

for the fabrication of a wire-grid polariser for visible light 

( ~ 7105  m).  

 

 

 
Fig. 4.17 The Wire-grid Polarizer 
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An easy way out of this difficulty in the fabrication of the grid polariser 

is to employ lone chain polymer molecules made up of atoms which 

provide high electrical conductivity along the length of the chain. These 

chains of polymer molecules behave similar to the wires in the wire-grid 

polariser. The alignments of these chains are almost parallel to each 

other. Because of high electrical conductivity, the electric vector of 

unpolarised light parallel to the chain gets absorbed. And the P-state 

perpendicular to these chains passes through. These chemically 

synthesized polarisers are fabricated in the form of plastic sheets and are 

known as polaroids. Since the spacing between these molecular chains 

in a polaroid is small compared to the optical wavelength, such 

polaroids are extremely effective in producing linearly polarised light. 

 

Dichroic Crystals 

 

Some naturally occurring crystalline materials are inherently dichroic 

due to anisotropy in their structure. One of the best known dichroic 

materials is tourmaline, a precious stone often used in jewellery. 

Tourmalines are essentially boron silicates of differing chemical 

composition .The component of E perpendicular to the principal axis is 

strongly absorbed by the sample. The thicker the crystal, the more 

complete will be the absorption. A plate cut from a tourmaline crystal 

parallel to its optic axis acts as a linear polariser. This is illustrated in 

Fig. 4.18. 

 

 
Fig. 4.18 Tourmaline crystal polariser 

 

We shall now consider a class of optical elements known as wave plates 

which serve to change the polarisation of the incident wave. A wave 

plate introduces a phase lag between the two P-states by a predetermined 

amount. That is, the relative phase of the two emerging components is 

different from its initial value. This concept can be used to convert a 

given polarisation state into any other and in so doing it is possible even 

to produce circular or elliptic polarisation as well. This is the subject 

matter of the next section. 
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3.4 Wave Plates: Circular and Elliptic Polarisers  
 

Consider a plane wave incident on a calcite crystal. It splits into o-and e- 

waves. Since calcite is a negative uniaxial crystal, eo nn   and 
| |v  

(velocity of e-wave)  v  (velocity of o-wave) implying that the e-ray 

travels faster than the o-ray. After traversing the calcite crystal of 

thickness d , the path difference between them is given by 

 

 )( eo nnd   

and the relative phase difference between o- and e-rays is 

 

dnn eo )(
22









      (4.18) 

 

though while entering, both the components were in phase. 

 

The state of polarisation of the emerging light depends on  , apart 

from the amplitudes of incoming orthogonal field components. Let us 

now consider some specific cases: 

 

(i) When the phase difference,  m2 , where m is an integer, the 

relative path difference is m . A device which induces a path 

difference between the two orthogonal field vibrations in integral 

multiples of   is called the full wave plate. It introduces no 

observable effect on the polarisation of the incident beam. That is, 

the field vibrations of the emergent light will-be identical with the 

field vibrations of the incident light. 

 

(ii)   When  )12(  m , the relative path difference will be 











2

1
m . Such crystals are called half-wave plates. 

 

(iii)   When  = 
2

)12(


m , the relative path difference will be 

22

1 








m . Such a birefringent sheet is called quarter-wave 

plate. When linearly polarised light traverses a quarter-wave 

plate, the emergent light will, in general, be elliptical and the axes 

of the ellipse will coincide with the privileged directions of the 

thin plate. However, half-wave or full-wave plate leave the state 

of polarisation unchanged. 

In case of positive uniaxial crystals, oe nn   and hence the path difference will be 

)( oe nnd  . In fact the general expression for the path difference is )( oe nnd  . 
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Thus, we may conclude that the path difference between the o- and e-

waves in a birefringent device depends on its thickness. 

 

You should now solve the following SAE. 

 

SELF ASSESSMENT EXERCISE 5 
 

Calculate the thickness of a quarter wave-plate for light of wavelength 

5890 Å. The refractive indices for o - and e -rays are 1.55 and 1.50 

respectively. 

 

We now conclude what you have learnt in this unit. 

 

4.0 CONCLUSION 
 

Polarisation is related to the orientation of associated fields.  When 

electric vector oscillates to the direction of propagation, the light is said 

to be plane polarised.  There is no polarisation of longitudinal waves 

occurs as the vibrations are along the line of transmission only.  Hence, 

the transverse nature of light is responsible for their polarisation.  It is 

also mathematically analyse how superposition of two plane polarised 

light waves of same frequency moving in the same direction gives rise 

to linearly circularly or elliptically polarised light.  According to Malu’s 

law 

 

  I ( )  = I(o) cos2  

 

Where   is the angle between the transmission axes of the polariser and 

the analyser. 

 

The maximum intensity I(o) occurs when the transmission axis of the 

polariser and the analyser are parallel.  The angle of incidence for which 

light is completely transmitted is called Brewster’s angle B. 

 

  tan B = 2

1

n

n
 

The tangent of Brewster angle is equal to the ratio of the refractive 

indices of the media at whose interface incident light is reflected.  Light 

propagation in anisotropic crystals and phenomenon of birefringence are 

also discussed.  The technique of producing circularly and elliptically 

polarised light are also mentioned. 
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5.0  SUMMARY 

 

 Visible light can be linearly, circularly or elliptically polarised. 

All these polarisation states arise on superposition of two linearly 

(or plane) polarised light waves characterised by different 

amplitudes and phases. 

 The electric field vectors of two linearly polarised light beams 

propagating along z-axis can be represented as 

 

)cos(ˆ),( 011 tkzEtz x  eE  

)cos(ˆ),( 022 tkzEtz y  eE  

 

where 01E  and 02E  are the amplitudes of the two waves and   is 

the phase difference between them. Superposition of these two 

polarised waves will result in  

 

Linearly polarised light if  = 0 or an integral multiple of ± 2 . 

Circularly polarised light if 2/   and 0201 EE   

Elliptically polarised light if 2/   and 0201 EE   

 According to Malus, when the transmission axes of polariser and 

the analyser are at an angle  , the intensity of the polarised light 

reaching the detector is given by  2cos)0()( II  , where )0(I  is 

the intensity of the polarised light when   = 0. 

 When natural light strikes an interface at Brewster's angle 

)/(tan 12

1 nnB

 , where 1n  and 2n  are the refractive indices of 

medium of incidence and transmission, the reflected light is 

linearly polarised. 

 When light falls on a calcite crystal, it splits into two. The 

phenomenon is known as double refraction or birefringence. 

These two refracted beams are known as o- and e-rays. Snell's 

law holds for o-rays (ordinary rays). 

 In a birefringent material, the o- and the e-rays travel in the same 

direction with same velocity along the optic axis. However, in a 

direction perpendicular to the optic axis, they travels with 

different velocities. The electric field vibrations for o- and the e-

rays are mutually perpendicular. 

 The phenomenon of double refraction produces linearly polarised 

light. Nicol prism works on this principle. In the Nicol prism, the 

o-ray undergoes total internal reflection at the interface and the 

transmitted beam consists of only electric field vibrations 

corresponding to e-ray and hence the transmitted beam is linearly 

polarised. 

 Selective absorption (or dichroism) of the electric field 

component with particular orientations by material can also be 
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used for producing linearly polarised light. Tourmaline is an 

example of dichroic material. 

 For a calcite crystal of thickness d the path difference between o- 

and e- rays is given by = 
o e

d( n n ) . 

 

The corresponding phase difference  

 

  )(
22

eo nnd 







  

 

When the phase difference  m2 , where m is an integer, the 

relative path difference between the o- and e-rays will be m . 

Such crystals are called full-wave plates. When  )12(  m , the 

path difference will be 2/  and such a crystal acts as a full-wave 

plate. And when 2/)12(   m , the path difference will be 4/  

(for m = 0) and such a crystal is called a quarter-wave plate. 

 
ANSWER TO SELF ASSESSMENT EXERCISE 

 

1.      The plane of vibration of the electric vector defined by Eq. (4.5) 

is rotated with respect to that shown in the Fig. 4.5. This is 

signified by the negative sign before yê  in the parentheses and is 

depicted below. 

 

 
 

2.      We know from Eq. (4.12) that 

 2

01

1

02

2

2

01

1

2

02

2 sincos2 


































E

E

E

E

E

E

E

E
  (i)

   

If we choose    = in (i), we get 

  02
01

1

02

2

2

01

1

2

02

2 





























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



E

E

E

E

E

E

E

E
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which can be written in a compact form: 

  0

2

01

1

02

2 









E

E

E

E
 

 or 

  1

01

02

2 E
E

E
E   

 

This defines a straight line )( mxy   with slope 0102 / EE . In other words, 

elliptically polarised light reduces to linearly polarised light for   = 

n (n = 0, ± 1, 2, ...). 

 

When 2/   and 00201 EEE  , Eq. (4.12) reduces to 

 

  1

2

0

1

2

0

2 

















E

E

E

E
  

 

which defines a circle )( 222 ayx   of radius 0E . 

 

3.      Since both polarising sheets are ideal, the intensity of the incident 

unpolarised beam, I , will reduce to half after passing through one 

of them as shown in the Fig.4.19. After passing through the 

second polarising sheet, we are told that the intensity reduces to 

one third of original value. 

 

 
 

Fig. 4.19 Unpolarised light beam of intensity I  passing through two 

polarisers 

 

From Malus’ Law we know that 

 

   2cos)0()( II   

 

Here, 3/)( II   and 2/1)0( I . 

 

 Therefore, )3/2(cos2  = 0.666 
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or 2/11 )666.0(cos  

      = 35.30 

 

That is, the angle between the transmission axes of two polarisers is 

about 350. 

 

4. For external reflection 

  
33.1

67.1
tan

1

2 
n

n
iB  

  







 

33.1

67.1
tan 1

Bi  

or 047.51Bi  

 

For internal reflection 

 

  
67.1

33.1
tan

2

1 
n

n
iB  

 053.38Bi  

 

5.     The path difference produced between the o- and e- rays of 

birefringent crystal of thickness d is 

 

  )( eo nnd   

 

And the corresponding relative phase difference is given by 

 

  





2
  

 

      = )(
2

eo nnd 



 

 

The phase difference produced by a quarter-wave plate 

 

  2/   
 

On comparing the above expressions for the phase difference, we have 
 

  )(
4

eo nnd 


 

      = )50.155.1(
4

105890 10


 

 

      = 73.63 Å 

      

    = 74 Å 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1.      In sub-section 4.4.3, you studied the propagation of o- and e- 

waves in a negative uniaxial crystal (calcite). Draw a diagram and 

describe the propagation of o- and e-waves in a positive uniaxial 

crystal (quartz) for normal incidence. 

 

2.      For a certain crystal, on = 1.5442 and en = 1.5533 for light of 

wavelength 7106  m. Calculate the least thickness of a quarter-

wave plate made from the crystal for use with light of this 

wavelength. 
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Video Link 1 

 

Video Link 2 

 

Video Link 3 

https://www.youtube.com/watch?v=6_C8KyU67RU
https://www.youtube.com/watch?v=HH58VmUbOKM
https://www.youtube.com/watch?v=U8FanZu4X1I
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