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1.0  INTRODUCTION 
 

Thermodynamics is a branch of physics that deals with heat and flow of 

energy. The basic idea is that objects are made up of atoms and 

molecules, which are in ceaseless motion. The faster the motion the 

hotter the object. However, thermodynamics deals only with the large-

scale response of a system, i.e. response that can be observed and 

measured, to heat flow. This unit examines the basic concepts of 

thermodynamics as a way of introducing the course.  
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2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 explain what thermodynamics is 

 mention all thermodynamic coordinates and explain change of 

state 

 describe all thermodynamics processes 

 write equation of state and its usefulness 

 differentiate between a system and its surrounding. 

 

3.0  MAIN CONTENT 
  

3.1  Definition of Thermodynamics 
 

Thermodynamics is the study of the effects of work, heat, and energy on 

a system. It deals only with the large-scale response of a system, which 

can be observed and measured in an experiment, of heat and work. 

Small-scale gas interactions are described by the kinetic theory of gases.   

 

3.2  Idea of a System and its Surrounding    
 

System is a restricted region of space or a finite portion of matter one 

has chosen to study. Or the part of the universe, with well-defined 

boundaries, one has chosen to study.  

 

Surrounding is the rest of the universe outside the region of interest 

(i.e. the rest of space outside the system).  

 

Boundary or Wall is the surface that divides the system from the 

surroundings.  

This wall or boundary may or may not allow interaction between the 

system and the surroundings.  

 

3.3 Thermodynamic Properties/Coordinates    
 

These are macroscopic coordinates or properties used to describe or 

characterize a system. Because they are macroscopic properties or 

coordinates, they can be observed and measured. Some examples are 

Temperature (T), Pressure (P), Volume (V), density (  ), mass (m), 

specific heat capacity at constant volume ( VC ), specific heat capacity at 

constant pressure ( PC ), thermal conductivity ( k ), thermal diffusivity 

( ), and chemical potential (  ).  
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3.4 Thermodynamic System    
 

This is a system that could be described in terms of thermodynamic 

coordinates or properties. Thermodynamic Systems can be categorised 

into the followings depending on the type of boundary: 

 

Open System: This is a system that its boundary allows transfer of mass 

and energy into or out of the system. In other words, the boundary 

allows exchange of mass and energy between the system and the 

surrounding. 

 

Closed System: This is a system that its boundary allows exchange of 

energy alone (in form of heat) between the system and its surrounding 

(i.e. the boundary allows exchange of energy alone). This type of 

boundary that allows exchange of heat is called diathermal boundary.  

 

Isolated System: This is a system that its boundary allows neither mass 

nor energy between it and the surrounding. In other words, the boundary 

does not allow exchange of mass nor energy.  

 

3.5 Thermodynamic Processes   
 

A system undergoes a thermodynamic process when there is some sort 

of energetic change within the system, generally associated with 

changes in pressure, volume, internal energy, temperature, or any sort of 

heat transfer. 

 

There are several specific types of thermodynamic processes that happen 

frequently enough (and in practical situations) that they are commonly 

treated in the study of thermodynamics. Each has a unique trait that 

identifies it, and which is useful in analyzing the energy and work 

change related to the process. 

 

Adiabatic process: This is a thermodynamic process in which there is 

no heat transfer into or out of the system. For this process, change in 

quantity of heat is zero (i.e. 0Q  during this process) 

 

Isochoric process: This is a thermodynamic process that occurs at 

constant volume (i.e. 0V  during this process). This implies that 

during this process no work is done on or by the system. 

  

Isobaric process: This is a thermodynamic process that occurs at 

constant pressure (i.e. 0p  during this process). 

 

Isothermal process: This is a thermodynamic process that takes place at 

constant temperature (i.e. 0T  during this process) 
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It is possible to have multiple processes within a single process. A good 

example would be a case where volume and pressure change during a 

process, resulting in no change in temperature and no heat transfer. This 

kind of a process would be both adiabatic and isothermal. 

 

Cyclic Processes: These are series of processes in which after certain 

interchanges of heat and work, the system is restored to its initial state.   

 

For a cyclic process 0U , and if this is put into the first law (unit 5) 

            WQ   

This implies that the net work done during this process must be exactly 

equal to the net amount of energy transferred as heat; the store of 

internal energy of the system remains unchanged.  

 

Reversible Process: A reversible process can be defined as one which 

direction can be reversed by an infinitesimal change in some properties 

of the system.  

 

Irreversible Process: An irreversible process can be defined as one 

which direction cannot be reversed by an infinitesimal change in some 

properties of the system 

 

Quasi-static Process: This is a process that is carried out in such a way 

that at every instant, the system departs only infinitesimal from an 

equilibrium state (i.e. almost static). Thus a quasi-static process closely 

approximates a succession of equilibrium states.  

 

Non-quasi-static Process: This is a process that is carried out in such a 

way that at every instant, there is finite departure of the system from an 

equilibrium state.  

 

SELF ASSESSMENT EXERCISE 1 

 

Explain the following: 

 

i. open system 

ii. isolated system 

iii. isochoric process 

iv. isobaric process 

v. quasi-static process 

 

3.6 Thermodynamic Equilibrium   
 

Generally, a system is said to be in equilibrium when its properties do 

not change appreciably with time over the interval of interest (i.e. 

observation time).  
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A system is said to be in thermodynamic equilibrium with its 

surrounding or with another system if and only if the system is in 

thermal equilibrium, in chemical equilibrium and in mechanical 

equilibrium with the surrounding or with another system. If any one of 

the above conditions is not fulfilled, the system is not in thermodynamic 

equilibrium. 

 

3.6.1 Mechanical Equilibrium    
 

A system attains mechanical equilibrium with its surrounding or with 

another system when there is no unbalance or net force in the interior of 

the system and also none between the system and its surroundings or 

another system. Suppose two systems are separated by a movable 

boundary that does not allow exchange of mass or heat as shown in 

figure 1.1. If 1P  is greater than 2P , the partition will continue to move 

toward system 2 until 1P  is equal to 2P . When this occurs, the two 

systems are said to be in mechanical equilibrium.   

 

3.6.2 Chemical Equilibrium    
 
A system attains chemical equilibrium when there are no chemical 
reactions going on within the system or there is no transfer of 
matter from one part of the system to the other due to diffusion. 
Two systems are said to be in chemical equilibrium with each other 
when their chemical potentials are the same. 
 

3.6.3 Thermal Equilibrium    
 

This occurs when two systems in thermal contact or a system that is in 

thermal contact with the surrounding attains the same temperature. For 

example if system 1 with temperature T1 and system 2 with temperature 

T2 are in thermal contact, there will be exchange of heat between the 

two systems if there is a temperature gradient (i.e. when 21 TT  ). This 

process of heat exchange will continue until thermal equilibrium is 

attained (i.e. 21 TT  ).  

 

 

 

 

 

 

 

 

 

Fig. 1.1: Two Systems Separated by a Movable Partition 

System 1 

P1 

V1 

T1 

System 2 

P2 

V2 

T2 

 

movable partition 
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SELF ASSESSMENT EXERCISE 2 

 

Explain what is meant by thermodynamic equilibrium. 

 

3.7 State of a System 
 

This is a specific situation in which macroscopic properties 

(thermodynamic properties) of a system have certain values (e.g. P=10 

Pa, V=100 cm3, and T=300 K would be a state of a gas). It is important 

to note that the state of a pure substance or a system can be defined or 

specified by any two of its properties.  

 

Change of state occurs when there is change in one, two or all the 

properties of the system. Using figure 1.1 above as example, suppose 1P  

is greater than 2P  the partition will continue to move towards system 2 

until 1P  is equal to 2P . When this happens, the system 1 and 2 have a 

new set of coordinates in which Temperature remain constant for the 

two systems but pressure and volume changed. Then we say that the 

state of system 1 and system 2 has changed.  

 

Note: Change of state is not exactly the same thing as change of phase 

(Phase change). Change of phase or phase transition is a special case of 

change of state and it will be treated fully in module 4, unit 1.   

 

3.8 Equation of State   
 

This is the known relationship between the thermodynamic variables or 

properties. It is an equation which provides a mathematical relationship 

between two or more state functions associated with matter such as its 

temperature, pressure, volume, or internal energy.  

 

From the above descriptions, Boyle’s law, Charles’ law, Dalton’s law of 

partial pressures are examples of equation of state. Some other examples 

of equation of state are:   

 

3.8.1 The Ideal Gas  
 

The equation of state for ideal gas is 

 
                        nRTPV    

 

where P is the pressure, V is the volume, R is the molar gas constant 

(R=8.314 JK-1mol-1), T is temperature in Kelvin, and n is the number of 

mole of gas. 
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3.8.2  Van der Waals Equation of State 
 

The equation of state for real gas also known as Van der Waals Equation 

is 

 

                      RTbV
V

a
P m

m

 ))((  

 

 where quantities a  and b  are constants for a particular gas but differ 

for different gases.   

 

There are many more equations of state besides these two given above.  

 

3.9  Extensive and Intensive Properties 
 

Thermodynamic properties of a system can be categorised into two 

namely: 

 

Extensive properties: These are properties of system that depend on the 

mass of the system (e.g. n, V and total energy U) 

 

Intensive properties: These are properties of system that are independent 

of the mass of the system (e.g. T, P and ρ). 

 

 

 

 

 

 

 

 

 

Specific Value of an extensive property (for example Volume, V) is 

defined as the ratio of the volume of the property to the mass of the 

system, or as volume per unit mass.  

Specific volume sV  is  

                   
m

V
Vs   

Note that the specific volume is evidently the reciprocal of the density ρ, 

defined as the mass per unit volume:  

                  
sVV

m 1
  

 

Block 1 

As an illustration of these two categories of thermodynamic properties, assuming 

you cut into two equal parts a hot bar of metal of uniform temperature T. Each half 

will still have almost the same temperature T. This clearly shows that temperature is 

independent of mass of the ‘system’ (i.e. metal bar). But what about the volume of 

each part, are they going to be the same as the original volume? This indicates that 

volume of a system is dependent of mass (volume is extensive property).       
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Molar Value of an extensive property (for example Volume, V) is 

defined as the ratio of the volume of the property to the number of moles 

of the system, or as volume per unit mole.   

Molar volume mV  is  

 

n

V
Vm   

 

SELF ASSESSMENT EXERCISE 3 

 

Differentiate between extensive and in-extensive properties of a system. 

 

4.0   CONCLUSION 
 

You have learnt in this unit, as way of introducing the course, the basic 

concepts of thermodynamics. This of course will help you in 

understanding the succeeding topics.   

 

5.0  SUMMARY 
 

In this unit, you have leant that: 

 

 thermodynamics is a branch of physics that deals with heat and 

flow of energy 

 thermodynamic coordinates are used to characterize the state of a 

system and that a change in any or all of these coordinates brings 

about a change of state 

 base on the type of constraint imposed on a system, the system 

can undergo thermodynamics processes like adiabatic, isochoric 

and isothermal processes 

 equations of state are the known relation between the 

thermodynamic coordinate of a system 

 a system is a restricted region of space one has chosen to study 

while the rest of the universe is its surroundings. And that the 

system and its surrounding constitute the universe.  

 

6.0    TUTOR-MARKED ASSIGNMENT 
 

i. Explain the followings: 

a. thermodynamic coordinate 

b. thermodynamic system 

c. cyclic process 

d. isobaric process 

e. extensive and inextensive properties of a system 
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ii. The equation for ideal gas is nRTPV  , suppose an ideal gas is in 

equilibrium at initial state with temperature T = 187 ºC, pressure 

P = 0.75 x 107 Nm-2, and volume V = 0.75 m3. If there is a 

change of state in which the gas undergoes an isothermal process 

to a final state of equilibrium during which its volume doubled, 

calculate the temperature and pressure of the gas at this final 

state.     

 

7.0  REFERENCES/FURTHER READING 
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1.0      INTRODUCTION 
 

One of the useful mathematical topics in thermodynamics is partial 

derivative. This unit gives a brief summary of some of the most useful 

formulas involving partial derivatives that we are likely to use in 

subsequent units and modules of this course. 

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 explain what partial derivatives are 

 explain what exact differentials are 

 derive partial derivative of a given function 

 solve some problems on partial derivatives 

 state some rules of partial derivatives.  

 

3.0   MAIN CONTENT 
 

3.1 Partial Derivatives   
 

A partial derivative of a function of several variables is its derivative 

with respect to one of those variable with the others held constant. 

                       ),( yzxx                                                                         2.1 
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From equation 2.1, x  a dependent variable is a function of two 

independent variables z  and y . Partial derivative of x  with respect to 

y  with z  held constant is z
y

x
)(




.  

For example, if  

                        
2

zyx                                                                           2.2 

 

then, the partial derivative of x  with respect to y  with z  held constant 

is 

                       zy
y

x
z 2




)(                                                                       2.3 

Similarly, the partial derivative of x  with respect to z  with y  held 

constant is  

    

                      2
y

z

x
y 




)(                                                                        2.4 

 

3.2 Exact Differential  
 

Suppose that there exists a relation among the three coordinates x , y , 

and z  in such a way that x  is a function of y  and z  (i.e. ),( yzx ); thus 

                        0),,( zyxf                                                                  2.5                                    

 

The exact differential of x  ( )dx is 

 

                   dz
z

x
dy

y

x
dx yz )()(









                                                     2.6 

 

Generally for any three variables x , y , and z  we have relation of the 

form 

 

                  dzzyNdyzyMdx ),(),(                                                    2.7 

 

If the differential dx is exact, then  

 

                  z
y

N
y

z

M
)()(









                                                                  2.8 

 

3.3 Implicit Differential  
 

Consider an equation of the form 

                    22 yxxy                                                                           2.9 
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One can differentiate the two sides of the equation 2.9 using equation 

2.6 (i.e differentiating both the left and right hands side with respect to 

x  while y  is held constant and with respect to y  while x  is held 

constant). 

  

         dy
y

yx
dx

x

yx
dy

y

xy
dx

x

xy
xyxy )

)(
()

)(
()

)(
()

)(
(


















 2222

     2.10 

 

Equation 2.10 gives 

  

              ydyxdxxyxdyydx 22 22                                                 2.11 

Collecting like term and then factorize to have  

                  
yxx

yxy

dx

dy

2

2

2

2




                                                                   2.12 

Another way to obtain expression for 
dx

dy
 is to consider equation 2.9 as 

22 yxxyf   (i.e. moving the expression in the right side of equation 

2.9 to the left side and then equate the result to f ). Then                  

                 
y

f

x

f

dx

dy








                                                                    2.13 

 

3.4 Product of Three Partial Derivatives   
 

Suppose that there exists a relation among the three coordinates x , y , 

and z ; thus 

                      0),,( zyxf                                                                   2.14 

Then x  can be imagined as a function of y  and z  

                   dz
z

x
dy

y

x
dx yz )()(









                                                      2.15 

Also, y  can be imagined as a function of x  and z , and 

                  dz
z

y
dx

x

y
dy xz )()(









                                                       2.16       

                

Insert equation 2.16 in 2.15 

 

                 dz
z

x
dz

z

y
dx

x

y

y

x
dx yxzz )(])()[()(


















     

 

Rearrange to get 

 

                  dz
z

x

z

y

y

x
dx

x

y

y

x
dx yxzzz ])()()[()()(






















                 2.17 
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If 0dz  and 0dx , it follows that 

 

                 1







zz

x

y

y

x
)()(  

 

                
z

z
xyy

x

)(
)(






 1
                                                                  2.18                     

 

Take note of the z  in the expression on both sides of the equation 2.18, 

indicating that the derivatives in equation 2.18 are at constant z . 

 

 

 

 

 

 

 

 

 

 

Also from equation 2.17, if 0dx  and 0dz , it follows that 

 

                      0












yxz

z

x

z

y

y

x
)()()(  

Move y
z

x
)(




 to the other side of equation to get 

  

                    yxz
z

x

z

y

y

x
)()()(













                                                      2.19 

 

Then divide both sides of the equation 2.19 by y
x

z
)(




 

 

                  1











yxz

x

z

z

y

y

x
)()()(                                                       2.20 

 

This is called minus-one product rule. 

 

3.5 Chain Rule of Partial Derivatives  
 

Another useful relation is called chain rule of partial derivatives. 

Suppose T is a function of V and P, and that each of V and P is a 

function of Z, then 

 

Block 1 
Suppose that there exists a relation among the three coordinates x , y , and 

z ; thus 0),,( zyxf . Going by equation 2.18, then the following hold 

       

z
z

xyy

x

)(
)(






 1
 , 

y
y

zxx

z

)(
)(






 1
, and 

xyz
x

z

y

)(
)(






 1
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                   PPP
V

Z

Z

T

V

T
)()()(













                                                     2.21 

 

Equation 2.21 is the chain rule of partial derivative. Going by 1.2.21, the 

following can as well be written: 

 

                  TTT
P

V

V

S

P

S
)()()(













                                                    2.22a 

 

                  PPP
V

T

T

U

V

U
)()()(













                                                  2.22b 

 

Equations 2.21 and 2.22 are called chain rule of partial derivatives. 

 

3.6 Second Derivatives or Second Order Derivatives  
 

Let ),( yxf be a function with continuous order derivatives, then we can 

calculate first derivatives to be z
x

f
)(




 and x

z

f
)(




. One can further 

calculate the second derivatives 
2

2

x

f




, 

2

2

z

f




, 

yx

f



 2

, and 
xy

f



 2

. Take 

note of these two second order derivates i.e. 
yx

f



 2

 and 
xy

f



 2

, they are 

called mixed second derivatives. It can be shown that the mixed second 

derivatives are equal, i.e. it does not matter the order will perform the 

differentiation.  

                          
xy

f

yx

f








 22

                                                               2.23 

 

SELF ASSESSMENT EXERCISE 

i. For 22 yxxy , by using equation 1.2.13 show 
yxx

yxy

dx

dy

2

2

2

2




 .   

ii. Given that yxu ln2  show that 
y

x

xy

u

yx

u 2
22










.  

 

3.7 Functions of More than Two Variables   
 

Suppose that ),,( zyxf , the derivative of f  with respect to one of the 

variables with the other two constant (e.g. derivative of f  x  with y  

and z  constant) can be written as   

          yz
x

f
)(




 , xz

y

f
)(




, and xy

z

f
)(




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4.0  CONCLUSION 
 

You have learnt in this unit some rules in partial derivatives that you are 

likely to apply in this course.  

 

5.0 SUMMARY 
 

In this unit you have learnt that: 

 

 the partial derivates for three variables xyz , if
2

zyx , the partial 

derivative of x  with respect to y  with z  held constant is 

zy
y

x
z 2




)(   

 for ),( yzx ); thus 0),,( zyxf , the exact differential of x  (i.e. 

)dx is dy
z

x
dy

y

x
dx yz )()(









  

 for any three variables xyz , 1











yxz

x

z

z

y

y

x
)()()( . 

this is called minus-one product rule 

 

 for T a function of V and P, and that each of V and P is a 

function of Z, then PPP
V

Z

Z

T

V

T
)()()(













 

 for any ),( yxf , 
xy

f

yx

f








 22

. 

 

                     
yxx

yxy

dx

dy

2

2

2

2




  

 

6.0      TUTOR-MARKED ASSIGNMENT 
 

i. If 23
4 yxz  , show that 

xy

z

yx

z








 22
 

ii. If 22
yxu   and xyv 4 , determine 

     
u

x




, 

v

x




, 

u

y




, 

v

y




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7.0 References/Further Reading 

 

1.0      INTRODUCTION 
 

Temperature is one of the seven SI base quantities and it is measured in 

Kelvin (K). Temperature measurement has its basis in the Zeroth law of 

thermodynamics. This unit deals with temperature measurements and 

different thermometers.  

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 explain the concept of heat and temperature 

 state the zeroth law of thermodynamics 

 define thermometric property and mention different 

thermometers 

 do some calculations on temperature scales.  
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3.0   MAIN CONTENT 
 

3.1 Definition 
 

Temperature (T) is defines as the degree of hotness or coldness of a 

body. Temperature is one of the seven SI base quantities and it is 

measure in Kelvin (K). Temperature of a body has no upper limit but it 

has lower limit (absolute zero or zero Kelvin)  

 

Heat (Q ) is a form of energy that is transferred from one part of a 

substance to another, or from one body to another by virtue of a 

difference in temperature (i.e. temperature gradient). The unit of heat is 

in Joules (J). 

 

Sign of heat (Q ) 

 

Q  is positive when there is a flow of heat into the system 

Q  is negative when there is a flow of heat out of the system  

 

3.2 Temperature and Heat 
 

Temperature is the degree of hotness or coldness of a body. Heat, on the 

other hand, is a form of energy that flows from a body of higher 

temperature to a body of lower temperature. From the definition of heat, 

it is clear that temperature gradient gives the direction of heat flow (i.e. 

from a body of higher temperature to a body of lower temperature).  The 

process of heat flow is called heat exchange. For two bodies in thermal 

contact, this process of heat exchange will continue until the two bodies 

attained thermal equilibrium (i.e. equal temperature) 

 

For example, in figure 3.1 (a) the temperature of the system is greater 

than that of the surroundings, so heat flows out of the system ( Q ). In 

(b) the temperature of the system Ts is less than that of the surrounding, 

so heat flow into the system ( Q ). In (d) the temperature of the system 

and that of the surrounding Te are equal (i.e. they are in thermal 

equilibrium), hence no flow of heat ( 0Q ). 
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Fig. 3.1: Heat Flow 

 

3.3 Zeroth Law of Thermodynamics   
 

From the concept of heat and temperature discussed above in section 

3.2, it is now clear that if two bodies are in thermal contact there will be 

heat exchange (provided they are not at the same temperature). This 

process of heat transfer will continued until the two bodies attained the 

same temperature. Then it is said that thermal equilibrium is reached. 

Supposed one of the two bodies is in thermal contact with third body, 

after some time thermal equilibrium will be reached between these two 

bodies. Using figure 3.2 as an illustration, suppose body B is in thermal 

contact with bodies A and C but bodies A and C are not in thermal 

contact. If B is in thermal equilibrium with each of A and C, then A and 

C are in thermal equilibrium.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: A Body in Thermal Contact with Two Separated Bodies 

 

Zeroth Law of thermodynamics states that if bodies A and C are 

each in thermal equilibrium with a third body B, then they are in 

thermal equilibrium with each other. 

System 
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3.4 Temperature Scales 
 

Available temperature scales are; the Celsius scale (also known as the 

Centigrade scale), the Fahrenheit scale, the Kelvin scale, the Rankine 

scale, and the international thermodynamic temperature scale 

 

3.4.1  Triple Point of Water 
 

In setting up a temperature scale, there is need to pick some reproducible 

thermal phenomenon and, quite arbitrarily, assign a certain Kelvin 

temperature to its environment; that is, we select a standard fixed point 

and give it a standard fixed-point temperature. Triple point of water is 

the temperature at which solid ice, liquid water, and water vapour 

coexist in thermal equilibrium at the same temperature and pressure. By 

international convention, the triple point of water is 273.16 K and this 

value is a standard fixed-point temperature ( 3T ) for the calibration of 

thermometers.  

 

                       KT 162733 .                                                                  3.1 

 

Other fixed-point temperatures besides 3T  are boiling point of water, 

and absolute zero temperature. The boiling point of water is 100 ºC 

while the absolute zero temperature (0 K) is the all gases have zero 

volume.  

  

3.4.2  Conversion between Temperature Scales 
 

There is possibility of changing from one temperature scale to another. 

The conversion formulas are listed below.    

 

Kelvin Scale to Celsius Temperature Scale 

The relation between Kelvin scale and Celsius scale is   

 

                        CTTc
).( 15273 ,                                                    3.2 

 

where cT  is the temperature in degree centigrade, and T  is the 

temperature in Kelvin. 

 

Kelvin Temperature scale 

The relation between Celsius scale and Kelvin scale is  

 

                      KTT c ).( 15273 ,                                                         3.3 
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where cT  is the temperature in degree centigrade, and T  is the 

temperature in Kelvin. 

 

Fahrenheit Temperature scale 

The relation between Celsius scale and Fahrenheit scale is  

 

                          32
5

9  cF TT ,                                                           3.4 

 

where cT  is the temperature in degree centigrade, and FT  is the 

temperature in Fahrenheit. 

 

3.5  Thermometers 
 

Thermometers are instruments used to measure the temperature of a 

body or a system.  

 

3.5.1  Thermometric Properties 
 

It has been observed experimentally that the properties of many bodies 

or objects change with temperature. Examples of such properties are 

volume of liquid, length of metal rod, and electrical resistance of a wire. 

These properties of material can be used as the basis of an instrument to 

measure temperature and they are called Thermometric Properties.  

 

3.5.2  Calibration 
 

Generally, calibration is the process of comparing the output value an 

instrument is given with that of a standard instrument (i.e. the one that 

its output is known to be true or correct value). From this process, 

adjustment can then be made to the instrument to be calibrated to give a 

correct output. When this is done, the instrument is said to be calibrated.  

 

The method being employed in calibrating thermometers is to use the 

device to measure the easily reproducible temperatures like triple point 

of water and boiling point of water. If the thermometric property being 

used is recorded at these two temperatures, a linear graph can be plotted 

using these two set of variables. From this graph, a linear relationship 

can be obtained between temperature and the thermometric property.  

 

In another way, one can measure the thermometric property, say X , 

when the thermometer is placed in contact with the system or body 

which temperature is to be measured. Then we have 

 

                           aXXT )( ,                                                                 3.5 
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where XT  is the temperature of the body to be measured, a  is a 

constant, and X  is the value of the thermometric property at XT . 

Equation 3.5 is also applies when the thermometer is placed in contact 

with easily reproducible temperature.  The triple point of water is mostly 

used. Then we have 

                           33 16273 aXKT  . , 

 

so we obtain   

                             
3

16273

X

K
a

.
 .                                                           3.6 

Insert equation 3.6 into equation 3.5  

 

                          
3

16273
X

X
KXT ).()(                                                  3.7 

Equation 3.7 is generally applicable to all thermometers. 

 

SELF ASSESSMENT EXERCISE 1 

 

i. Explain what is meant by triple point of water  

ii. State zeroth law of thermodynamics 

 

3.6  Types of Thermometers 
 

Thermometer is named after the thermometric property used for the 

construction. For example, thermometric property of the mercury-in-

glass thermometer is the length of mercury column, while in the 

constant-volume gas thermometer the thermometric property is the 

pressure of the gas. Examples of thermometer are thermocouple 

thermometer, resistance thermometer, liquid in gas thermometer (e.g. 

mercury in glass thermometer), and gas thermometer (e.g. constant 

volume gas thermometer) among others. Three types of thermometer are 

discussed below.    

 

3.6.1  Thermocouple Thermometer 
 

It has been observed that when two dissimilar metals are joined together 

to make two junctions, an electromotive force (emf) will flow in the 

circuit. This emf can be measured using a voltmeter and its value 

depends on the temperature difference between the junctions. The 

arrangement is called thermocouple and the observation is known as 

Seebeck effect. Thermocouple thermometer is based on the Seebeck 

effect.  

 

Thermometric property: emf generated when two junctions made from 

two different metals are maintained at different temperature.  
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Fig. 3.3: Thermocouple Thermometer   

 

The diagram for Figure 3.3 shows the arrangement for the copper-

constantan thermocouple thermometer. The test junction is placed on the 

body or inside the system whose temperature is to be measured, while 

the reference junction is maintained at constant temperature at 0 ºC. The 

potentiometer is connected to the terminals to the voltmeter. The 

relationship between the emf  and temperature is     

                       

                        32 dTcTbTaemf                                             3.8 

 

Where a, b, c, and d are constant and they are different for each 

thermocouple.  

 

Using equation 3.7, we can write 

                        
3

16273
emf

emf
KemfT ).()(                                             3.9          

 

The range of measurement of thermocouple thermometer depends on the 

choice of metals used. For example, a platinum-10 % rhodium/platinum 

thermocouple has temperature range of 0 to 1600 ºC.  

 

Thermocouple thermometer is used extensively in scientific laboratories.  

 

3.6.2  Resistance Thermometer  
 

Electrical conductivity of a metal depends on the movement of electrons 

through its crystal lattice. The electrical resistance of a conductor, due to 

thermal excitation, varies with temperature. This forms the basic 

principle of operation of resistance thermometer Resistance thermometer 

Test 

Junction 

Reference Junction 

at constant Temp. 

0 ºC 

Terminals to 

 Voltmeter 

Copper 

Copper 
Constantan 
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therefore, uses the variation in electrical conductivity of a conductor to 

indicate temperature.    

 

Figure 3.4 shows a generalized form of a resistance thermometer. In the 

diagram, RT is the resistance element which could be any conductor 

(e.g. platinum). This is usually wound round a frame constructed so as 

to avoid excessive strains when the wire contracts upon cooling. S is the 

power supply and the purpose is to maintain a known constant current in 

the thermometer while measuring the potential difference with the aid of 

a bridge output (usually a sensitive potentiometer).  

 

Fig. 3.4 : Resistance Thermometer 

 

The relationship between the temperature and the electrical resistance is 

usually non-linear and described by a higher order polynomial: 

 

                       ......)()(  32
1 CTBTATRTR o                        3.10 

 

Where T is the Celsius temperature, Ro is the nominal resistance at a 

specified temperature, and A, B, C are constants. The number of higher 

order terms considered is a function of the required accuracy of 

measurement. The constants (i.e. A, B and C etc.) depend on the 

conductor material used and basically define the temperature-resistance 

relationship. The value oR  is referred to as nominal value or nominal 

resistance and is the resistance at 0°C. Material most commonly used for 

resistance thermometers are Platinum, Copper and Nickel. However, 

Platinum is the most dominant material internationally. 

 

The calibration of this instrument requires the measurement of )(TR  at 

various known temperatures and from these the constants in equation 

3.10 can be obtained. However, equation 3.7 can be used to obtained    

 

                      
3

16273
R

R
KRT ).()(                                                      3.11 
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Where )(RT  is the temperature of the body or system to be measured, 

R  is the resistance at that temperature, and 3R  is the resistance at triple 

point of water?  

 

The range of measurement of resistance thermometer depends on the 

choice of conductor used. Platinum resistance has a very accurate 

measurement within -253 to 1200 ºC.  

 

3.6.3  Constant-Volume Gas Thermometer 
 

Constant-Volume gas thermometer is normally referred to as the 

standard thermometer and is mostly used to calibrate other 

thermometers. The working principle is based on the pressure of a gas in 

a fixed volume. Figure 3.5 shows an example of a constant-volume gas 

thermometer. It consists of a gas-filled bulb connected by a tube to a 

mercury manometer. By raising and lowering reservoir R, the mercury 

level on the left can always be brought to the zero of the scale to keep 

the gas volume constant (Note that variation in the gas volume can 

affect temperature measurement).   

The basic equation is  

 

                               ghPP o  ,                                                      3.12 

 

where oP  is the atmospheric pressure,   is the density of the mercury in 

the manometer, g is the acceleration due to gravity, and h  is the 

measured difference between the mercury level in the two arms of the 

tube.  

 

The difference in height h  between the two arms of the manometer can 

be measured when the gas filled bulb is surrounded by the system which 

temperature is to be measured, and when it is surrounded with water at 

triple point. Using equation 3.7, the relationship between temperature 

and the pressure of the gas is 

                           











3

16273
P

P
KPT .)(                                               3.13   

 

Where )(PT  is the temperature of the system which temperature is to be 

measured, P  is the pressure of the gas at that temperature, and 3P  is the 

pressure at triple point of water.  
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Fig. 3.5: Schematic of Constant-Volume Gas Thermometer (after 

Halliday et al., 2001) 

 

SELF ASSESSMENT EXERCISE 2 

 

i. Name four types of thermometer and their thermometric 

properties 

ii. A certain resistance thermometer at triple point of water has 

resistance 152.0  . What is the temperature (T ) of a system in 

degree centigrade if the resistance of the thermometer is 230.51 

  when inserted into the system? 

 

4.0  CONCLUSION 
 

The zeroth law of thermodynamics establishes the existence of thermal 

equilibrium and allows temperature to be measured using a 

thermometer.. Thermometers are the instruments used to measure the 

temperature of a body or a system. The basis for the working of 

thermometer is the variations in physical properties of materials with 

temperature. Those properties being used for the construction of 

thermometers are called thermometric properties and thermometers are 

named after these properties.   
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5.0 SUMMARY 
 

In this unit ,you have learnt that: 

 

 that heat is a form of energy that flows from one point of the 

system to another or from one system to another; while 

temperature is the degree of hotness or coldness of a body or 

system 

 thermal equilibrium is reach when systems in contact, directly or 

indirectly, attain the same temperature-statement of zeroth law 

 thermometric properties are the physical properties of materials 

that change linearly with temperature; and these properties are 

used for the construction or thermometers 

 difference temperature scales exist and one can convert from one 

temperature scale to another.    

 

6.0      TUTOR-MARKED ASSIGNMENT 
 

i. Differential between temperature and heat 

ii. Discuss the process of calibrating a thermometer 

iii. With a well labeled diagram, describe a resistance thermometer 
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1.0 INTRODUCTION 
 

Heat is a form of energy which transferred from one part of the body to 

another or from one body to another. As discussed in unit 3 the 

temperature gradient determines the direction of heat flow. The transfer 

of heat energy is important in many aspects of our lives. This unit is 

therefore examined the three fundamental processes of heat transfer and 

their useful applications in our daily lives.    

 

2.0 OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 define heat 

 mention and discuss the three (3) methods / processes of heat 

transfer 

 write the useful equations for the heat transfer 

 state Newton’s law of cooling 

 mention useful applications of heat transfer. 
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3.0 MAIN CONTENT 
 

3.1 Heat Energy  
 

Heat (Q ) is a form of energy that is transferred from one part of a 

system to another or to another system by virtue of a difference in 

temperature. As earlier discussed in unit 3, temperature gradient 

determines the direction of heat flow. 

  

3.2 Methods of Heat Transfer 
 

The transfer of heat from one part of a system to another or to another 

system by virtue of a temperature difference can only be by one or more 

of the three processes namely; conduction, convection, and radiation. 

Each of these mechanisms or processes is discussed in the preceding 

sections. 

 

3.3 Conduction 
 

This is the process of heat transfer whereby heat energy is transferred 

directly through a material without any bulk movement of the material.  

 

3.3.1  Conductors and Insulators 
 

Materials can be divided into two groups based on their ability to 

conduct thermal energy namely; thermal conductor and thermal 

insulator.  

 

Conductors 

 

Materials that conduct heat well are called thermal conductors. 

Examples of thermal conductors are metals (most metals are conductors) 

like aluminum, copper, silver, and gold.  

 

Why do conductors conduct? The behaviour of conductors in terms of 

thermal conductivity can be explained with two mechanisms namely; 

collision mechanism and free electrons in metals. 

 

Molecular collision: Atoms and molecules in a hot part of the material 

vibrate or move with greater velocity (i.e. higher kinetic energy) than 

those at the colder part. By means of collisions, the more energetic 

molecules pass on a portion of their energy to their less energetic 

neighbours. As the more energetic molecules collide with their less 

energetic neighbours they transfer some of their energy to the 

neighbours. The collision mechanism does not depend on bulk 

movement of the material.  
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Free electrons in metals: Good conductors of thermal energy, like 

metals, have pool of electrons that are more or less free to wander 

through the volume of the metal. These free electrons are capable of 

transporting energy round the whole volume of conductors. Free 

electrons are also responsible for the excellent electrical conductivity in 

metals. 

 

Insulators 

 

Materials that conduct heat poorly are called thermal insulators. 

Examples of thermal insulators are wood, glass, and most plastics. These 

materials poorly conduct heat energy because the two above discussed 

mechanisms for conduction are not possible with these materials (i.e. the 

molecules of these materials are not free to move and or the material 

don’t contain free electrons).  

 

3.3.2  Conduction of Heat through a Material 
 

Consider a bar of material of area A and thickness L, heat Q transfer 

through the material by conduction is 

  

                      
L

TtkA
Q


                                                                        4.1 

 

where T  is the temperature difference between the ends of the bar and 

k is the thermal conductivity of the material. Unit of k is J/(s.m.Cº) 

 

3.3.3 Thermal Resistance to Conduction (R-Value) 

 

There is a term similar to the electrical resistance R used for thermal 

resistance to conduction called R-value. To differentiate this from R that 

we are familiar with, tR is used here for thermal resistance to 

conduction.  

    

Thermal resistance tR  of a slab of thickness L is defined as    

  

                   
k

L
Rt                                                                                  4.2 

 

High value of tR  indicates a bad thermal conduction or a good thermal 

insulation.  

 

Note: tR  is a property attributed to a slab of a specified thickness, and 

not to a material.  
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3.3.4  Conduction of Heat through a Composite Material 
 

Consider two materials of thickness 1L  and 2L  with different thermal 

conductivities 1k  and 2k  respectively as shown in figure 4.1. The outer 

surfaces of the slab are in thermal contact with hot reservoir at 

temperature HT  and cold reservoir at temperature CT . Assuming that 

the heat transfer through the slabs is a steady rate process i.e. the 

temperature everywhere in the slab and the rate of energy transfer do not 

change with time. Then, the conduction rate through the two slabs must 

be equal. Using equation 4.1, the conduction rate condP  is  

 

                        
L

TkA

t

Q
condP


                                                       4.3 

 

Let XT  be the temperature of the interface between the two materials, so  

    

                     
1

1

2

2

L

TTAk

L

TTAk
P CXXH

cond

)()( 



                          4.4 

 

Solving for XT  in equation 4.4 gives 

 

                    
1221

1221

LkLk

TLkTLk
T HC

X



                                                    4.5 

Insert equation 4.5 in equation 4.4 to obtain 

    

                     

2
2

1
1

k
L

k
L

XH
cond

TTA
P






)(
                                                        4.6 

If we apply this to any number n of materials, equation 4.6 becomes 

            

                   

 




n

ik
iL

XH
cond

TTA
P

2

)(
for ni :2                                         4.7 
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Fig. 4.1 : Heat Transfer through a Composite Slab  

 

3.4 Convection 
 

Convection is the process in which heat energy is transferred from place 

to place by the bulk movement of a fluid. A good example of this 

process is convection current in liquid.  

 

This bulk movement of a fluid can be explained in terms of buoyant 

force. When a portion of a liquid, such as water, is warmed the volume 

of the liquid or fluid expands, and density decreases (
V

m
 ). From 

Archimedes’ principle, the surrounding cooler and denser fluid exerts a 

buoyant force on the warmer fluid and thus pushes the warmer fluid 

upward. As the warmer fluid is pushed upward, the surrounding cooler 

fluid moved downward to replace the warmer fluid. The cooler fluid, in 

turn, is warmer and pushes upward. This cycle is continuously repeated 

and this is called convection current. This phenomenon is called natural 

convection. 

 

The phenomenon described above is called natural convection. Forced 

convection occurs if the fluid is made to move in a similar way as 

natural convection by the action of a pump or a fan. 

 

Consider a fluid in contact with a flat or curved wall which temperature 

is higher than that of the main body of the fluid, the rate of heat transfer 

due to both conduction through the film and convection in fluid is  

 

                            ThA
t

Q
                                                                  4.8 

where h  is the convection coefficient and it includes the combined 

effect of conduction through the film and the convection in the fluid, A 

k2 k1 

Q  

 

XT   

Hot reservoir at 

   HT  

Cold reservoir at 

   CT  

L2 L1 
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is the area of the wall, and T  is the temperature difference between the 

surface of the wall and the main body of the fluid. 

                          

Finding the value of h  that is appropriate for a particular arrangement is 

problematic because h  depends on the following factors:  

 

 whether the wall is flat or curved 

 whether the wall is horizontal or vertical 

 whether the fluid in contact with the wall is a gas or a liquid 

 the density, viscosity, specific heat, and thermal conductivity of 

the fluid 

 whether the velocity of the fluid is small enough to give rise to 

laminar flow or large enough to cause turbulent flow 

 whether evaporation, condensation, or formation of scale takes 

place. 

 

3.5 Radiation 
 

This is a process in which energy is transferred by means of 

electromagnetic waves. A good example of this is the solar radiation 

from the sun traveling in all directions in space. Part of this radiation is 

reaching the earth on daily basis and in actual sense; the bulk of energy 

on earth is from the sun. All bodies, hot or cold, continuously radiate 

energy in form of electromagnetic waves. But the amount of this 

radiation is proportional to the temperature of the body and the nature of 

its surface.  

 

3.5.1  Absorption and Emission of Radiant Energy 
 

The surface of an object is very important in the determination of the 

amount of radiant energy a body or object can absorb or emit. An 

experiment set-up to justify this is shown in figure 4.2. Figure 4.2 

consists of two identical blocks, one coated in black and the other coated 

with silver. If a thermometer is inserted on each of the blocks and they 

are exposed to direct sunlight as shown in the diagram. It will be 

observed that the temperature of the block coated in black will rise faster 

than that of the one coated with silver. The reason for this is that the 

block coated in black absorbed larger percentage of the solar radiation 

falling on it and thus rapid rise in temperature due to large heat energy 

input.  

 

Perfect Blackbody: This is a body that absorbs all the electromagnetic 

waves falling on it.  

 

Generally, all objects can emit and also absorb electromagnetic waves. 

So when an object is in thermal equilibrium with its surroundings, it 
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implies that the amount of radiant energy the object absorbs balances 

with the amount the object emits. However, if the absorption is greater 

than the emission, the object will experience a net gain of radiant energy 

and thus the temperature will rise. If the emission is greater than the 

absorption, the object will experience a net loss of radiant energy and 

the temperature will fall. A good absorber is also a good emitter while a 

poor absorber is also a poor emitter. Hence, a perfect black body is a 

perfect absorber and also a perfect emitter of radiant energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 :   (After Cutnell and Johnson, 1989)  

      

3.5.2  Stefan-Boltzmann Law of Radiation 
 

All matter constantly radiates energy in form of electromagnetic waves.  

 

                             4
TA

t

Q
                                                               4.9 

 

where   is the Stefan-Boltzmann constant,   is emissivity and it has 

value between 0 and 1. For a perfect reflector,  =0 and for a black body 

 =1.  

 

Equation 4.9 is known as the Stefan-Boltzmann law of radiation, and the 

law stated that the radiant energy, emitted in a time t by an object that 

has a Kelvin temperature of T, a surface area A, and an emissivity e, is 

given by AtTQ 4 .  
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Emissivity   of an Object: This is the ratio of radiant energy emitted 

by an object to the one it would have emitted if it were to be a perfect 

black body.  

 

Assuming that the radiation a body would emit if it were to be a perfect 

body is represented by pbbRad , then   

 

                         
pbbRad

emittedradiation
                                                  

4.10 

 

3.6  Newton’s Law of Cooling 
 

Energy is lost to the surroundings by conduction, convection, and 

radiation. The rate at which an object loses energy to the surrounding is 

determined by the temperature difference between the object ( oT ) and 

the surrounding ( sT ). 

 

By conduction energy loss rate = lTTkA os /)(    

 

By convection, energy loss rate depends on whether the air is forced to 

flow (e.g. by a fan) or moves by natural convection. Energy loss rate = 

)( oTsThA   

By radiation, energy loss rate = )( 44
so TTA   

 

The total effect of these three processes is to give a rate of energy loss 

per second that is proportional to the temperature difference between the 

object and its surroundings. This is known as Newton’s law of cooling.  

 

SELF ASSESSMENT EXERCISE 1 

 

i. State the Stefan-Boltzmann Law of Radiation 

ii. In a light bulb, the tungsten filament has a temperature of 3.0 x 

103 ºC and radiates 60 W of power. Assuming the emissivity of 

the filament is 0.36, estimate the surface area of the filament. 

)..(. 428
10675 KmsJ
  

 

4.0 CONCLUSION 
 

The three (3) mechanisms of heat transfer are conduction, convection 

and radiation. Heat can be transferred in or out of a system by one or 

more of these three mechanisms.  
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5.0 SUMMARY 
 

In this unit you have learnt that: 

 

 heat is a form of energy that can be transferred from one body to 

another 

 heat can be transferred by three (3) main mechanisms 

 the rate of heat loss by conduction is lTTkA os /)(  , by 

convection is ThA , and by radiation is )( 44
so TTA   

 the Newton’s law of cooling gives the rate at which energy is lost 

to the surrounding by the three mechanisms. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Name the three main methods of heat transfer and write the 

expression for the rate of heat transfer for each method.  

ii. A perfect blackbody has a temperature of 605 ºC. An identically 

shaped object whose emissivity is 0.400 emits the same radiant 

power as the blackbody. What is the Celsius temperature of this 

second body?     

iii. The amount of radiant power produced by the sun is 

approximately 3.9 x 1026 W. assuming that the sun is a perfect 

blackbody sphere with a radius of 6.96 x 108 m, find its surface 

temperature. 
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1.0  INTRODUCTION 
 

This unit focuses on heat and work as the only means by which the 

internal energy U of a system can change.   

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 write expression for work for different systems 

 explain heat transfer Q  into or out of a system 

 state first law of thermodynamics 
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 write modified equation of the first law under different known 

processes. 

 

3.0  MAIN CONTENT 
  

3.1  Work   
 

Imagine a hydrostatic system contained in a cylinder with a movable 

piston like the one shown in figure 5.1 below. From the diagram, 

suppose an external force F acted in the direction showed moving the 

piston from initial point 1 to final point 2 through a distance dx . Suppose 

that the cylinder has a cross section area A, that the pressure exerted on 

the system at the piston face is P, and that the force is PA. The system 

also exerts an opposing force on the piston. The work done dW on the 

system in the process described above is  

 

                               PAdxdW                                                               5.1 

 

  but                       dVAdx   

 

Therefore              

                              PdVdW                                                               5.2 

 

The negative sign in the last equation indicate negative change in 

volume (i.e. a decrease in volume).  

  

 

 

 

 

 

 

 

 

 

 

 

Fig.5.1: The Work Done on a System Compressed by External 

Force 

 

In a finite quasi-static process in which the volume changes from iV  to 

fV , the work done is  

                           
fV

iV

PdVW                                                               5.3 

Point  1 
Point  2 

Force F 

dx  
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Note the sign convention, work done on a system is positive work, and 

work done by system is negative work.  

 

3.1.1  Different Forms of Work   
 

 

     System 

 

       Force Displacement 

 

Work 

Wire Tension (F) Length (L) FΔL 

Film Surface Tension (S) Area (A) SΔA 

Fluid Pressure (P) Volume (V) PΔV 

Magnet Magnetic Field (H) Magnetization 

(M) 

HΔM  

Dielectric Electric Field (E) Polarization (P) EΔP 

Chemical 

reaction 

Chemical Potential (µ) Particle number 

(N) 

µΔN 

 

3.1.2 Work in Quasi-Static Process  
 

For a quasi-static isothermal expansion or compression of an ideal gas 

       

                             
fV

iV

PdVW                                                             5.4 

But an ideal gas is the one which equation of state is nRTPV  , where 

n and R are constant. Replace P with 
V

nRT
 in equation 5.4 

 

                            
fV

iV

dV
V

nRT
W  

and since T is constant for isothermal process,  

 

                          
fV

iV V

dV
nRTW  

Integration gives 

                       
i

f

V

V
nRTW ln                                                              5.5 
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3.1.3 Work and Internal Energy    
 

When an adiabatic work ( addW ) is done on or by the system, the 

internal energy of the system changes. The change in internal energy 

( U ) is equal to the adiabatic work done. 

 

                     addWdU                                                                          5.6 

 

If a system changes from state 1 to state 2 by doing adiabatic work, and 

if the states are differed by a finite amount, then 

                    
2

1

2

1
12 adad

U

U
WdWUUdU                                 5.7 

 

Suppose the work done is mechanical work (i.e. mechanical adiabatic 

work), then 

                    
2

112 PdVUU                                                            5.8 

 

3.2 Heat    
 

Heat (Q ) is a form of energy that is transferred from one part of a 

system to another or to another system by virtue of a difference in 

temperature. As earlier discussed in unit 3, temperature gradient 

determines the direction of heat flow. When heat flows in or out of a 

system from its surroundings, the temperature of the system increases or 

decreases. And the internal energy of the system changes from initial 

state ( iU ) to final state ( fU ). This change in internal energy U  must 

be equal to the heat flow i.e.  

                    

                       QUUU if                                                           5.9 

  

Sign of Q  

Q  is positive when there is a flow of heat into the system 

Q  is negative when there is a flow of heat from the system  

 

Heat bath or heat reservoir: This is a body that is so large that its 

temperature does not change appreciably when heat flows in or out of it. 

 

Heat sink: Just like heat bath, this is a body that is so large that its 

temperature does not change appreciably when heat flows in or out of it. 

The temperature of heat sink is lower compare to that of the heat bath.  
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3.3 First Law of Thermodynamics   
 

From the previous discussions in this unit, we have learnt that the 

internal energy of a system can change only if: 

 

a. there is flow of heat into the system or out of the system 

b. work is done on the system or by the system.  

Hence, the change in internal U of a system is  

 

                           WQUUU if  ,                                          5.10 

 

where Q  is the heat and W  is work. Equation 5.10 is the first law of 

thermodynamic.            

The differential for of first law of thermodynamics is 

  

                             PdVdQdU                                                         5.11                      

 

The Statement of First Law of Thermodynamics 

 

The internal energy of a system tends to increase if energy is added as 

heat Q  and tends to decrease if energy is lost as work W  done by the 

system.  

 

3.4 Response Functions   
 

When heat is added or withdrawn from a system, there is change in one, 

two or all its properties. This change in the measurable 

property/properties (macroscopic behaviour) is/are the basis of 

thermometer as we have discussed in unit 3. We can characterise the 

macroscopic behaviour of a system response’s functions. These 

functions can be measured experimentally from changes in the 

thermodynamic coordinates by the use of external probes. Examples of 

response functions are Heat Capacities, force constant (e.g. isothermal 

compressibility), and thermal response (e.g. expansivity of a gas). 

 

3.4.1 Heat Capacities    
 

When heat is added to a system, its temperature will change. Heat 

capacities are obtained from change in temperature of a system upon 

addition of heat to the system.  

 

From the equation of the first law, PdVdUdQ   

Heat capacity at constant volume  

                                   VV
T

Q
C )(




                                                      5.12 
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Heat capacity at constant pressure  

 

                                  PP
T

Q
C )(




                                                       5.13 

 

Heat capacities can be measured experimentally. 

 

3.4.2 Force Constant   
 

Force constants measure the (infinitesimal) ratio of displacement to 

force and are generalisation of the spring constant. Examples include 

isothermal compressibility of a gas  

                               TT
P

V

V
k )(






1
,                                                   5.14                

  

and the susceptibility of a magnet   

                             TT
B

M

V
)(






1
 .                                                      5.15 

 It can be shown using equation of state for an ideal gas ( TPV  ) that 

P
kT

1
 .   

 

3.4.3 Thermal Response 
 

This probes the change in thermodynamic coordinate with temperature. 

Example, the coefficient of volume expansion (expansivity of a gas) is 

given by  

  

                               P
T

V

V
)(






1
                                                         5.16 

  

And this is equal to 
T

1
for ideal gas.     

 

3.5 Special Cases of First Law of Thermodynamics   
 

Here we consider four different thermodynamic processes in which 

certain restriction is imposed on the system and the corresponding 

implication when apply to the first law. 

 

Adiabatic process, 0dQ , and equation of first law reduces to 

 

                              PdVdWdU                                                      5.17 

 

Isochoric process, 0dV , and the equation of the first law becomes 
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                             dTCdQdU V                                                     5.18 

Cyclic Process, 0dU , and the equation of the first law becomes 

 

                       WQ                           5.19 

                                                                                   

Free expansion, 0WQ , and the equation of the first law becomes 

 

                        0dU                     5.19        

SELF ASSESSMENT EXERCISE 1 
 

i.  Write the equation for work for the following system 

a. Film 

b. Wire 

c. Magnet 

ii.  State first law of thermodynamics. 

iii.  If there are 2 mole of gas kept at a constant temperature of 20 ºC and if 

this gas is compressed from a volume of 4 m3 to 2 m3, calculate the 

work done on the gas. (R=8.31J/mol.K) 

iv.  Consider that 200 J of work is done on a system and 293.3 J is 

extracted from the system as heat. In the sense of the first law of 

thermodynamics, what is the value of U ? 

 

4.0   CONCLUSION 
 

The first law of thermodynamics gives an insight to the internal energy of a 

system i.e. work and heat as the only means by which the internal energy of a 

system can change. The expression for work done a mechanical system is 

PdV  and similar expression can be derived for work done under different 

systems. The differential form of first law is PdVdQdU  . In the next 

unit, we are going to be looking at some consequences of the first law of 

thermodynamics. 

 

5.0  SUMMARY 
 

In this unit, you have leant that: 

 

 the expression for mechanical work done on or by a system is PdV  

 heat and work are the only way by which the internal energy of a 

system can change 

 the differential for the first law of thermodynamics is PdVdQdU   

 the modified form of the first law can be obtained for each of the 

known thermodynamic processes. 
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6.0    TUTOR-MARKED ASSIGNMENT 
 

i. Derive the corresponding equation of the first law of 

thermodynamics under the following processes 

(a) adiabatic process, (b) isochoric process, and (c) cyclic process 

ii. The equation of state of a gas is )(
V

B
nRTPV  1 , where R is a 

constant and B is a function of temperature alone. Show that the 

work done by 1 mole of this gas during a quasi-static, isothermal 

expansion from initial volume iV  to a final volume fV  is  

                         





























iV

B

fV

B

iV

fV
RT ln  
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1.0      INTRODUCTION 
 

The focus of the unit will be to derive important relations from the first 

law of thermodynamics. 

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 explain what is meant by energy equations 

 derive expression for VC  in terms of derivative of U 

 derive expression for PC  in terms of derivative of H 

 explain Gay-Lussac-Joule and Joule-Thomson experiment 

 write the expressions for Joule coefficient  and Joule-Thomson 

coefficient  .  

 

3.0   MAIN CONTENT 
 

3.1 Energy Equation 
 

Energy equations are the equations which express the internal energy of 

a system as a function of the variables defining the state of the system. 

The energy equations, like equation of state, are different for different 

systems or substances. Equation of state and the energy equation 

together completely determine all the properties of a substance or 
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system. Energy equations are derived independently, but not from 

equation of state.     

 

We are going to consider systems which state can be described by the 

properties P, V. and T.       

 

3.2 T and V Independent   
 

Consider internal energy U as a function of T and V, U(T,V), then the 

change in internal engergy dU  between two equilibrium states in which 

temperature and volume  differ by dT  and dV  is 

 

                   dV
V

U
dT

T

U
dU TV )()(









                                               6.1  

 

V
T

U
)(




 is the slope of isochoric line and T

V

U
)(




 is the slope isothermal 

line in which U  is plotted as a function of T  and V . V
T

U
)(




 can be 

measured experimentally and it has physical  significant.  

The first law  

                  PdVdUdQ  ,                                                                 6.2 

 

put 6.2 in 6.1 

 

                 PdVdV
V

U
dT

T

U
dQ TV 









 )()(                                    6.3 

 

Rearranging 

      

                    dVP
V

U
dT

T

U
dQ TV ])[()( 









                                  6.4 

 

For a process at constant volume, 0dV  and dTCdQ V , then 6.4 

becomes 

 

                   dT
T

U
dTC VV )(




  

 

So, 

                VV C
T

U





)(                                                                     6.5 
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The specific heat capacity at constant volume VC is the slope of 

isochoric line on U-T-V surface and its experimental measurement 

determines this slope at any point. 

 

Equation 6.4 can be written for any reversible process as 

 

                    dVP
V

U
dTCdQ TV ])[( 




                                          6.6 

 

For a process at constant pressure, dTCdQ P , so 6.6 becomes 

 

                   dVP
V

U
dTCdTC TVP ])[( 




        

 

Dividing through by dT  and replacing 
dT

dV
 by P

T

V
)(




, we obtain 

 

                   PTVP
T

V
P

V

U
CC )]()[(









                                        6.7 

 

Equation 6.7 holds for a system in any one equilibrium state, but does 

not refer to a process between two equilibrium states. 

 

3.3 T and P Independent   
 

The enthalpy H of a system, like the internal energy U, is a property of 

the system that depends on the state only and can be expressed as a 

function of any two variables P, V, and T. Each of these relations 

defines an enthalpy surface in a rectangular coordinate system in which 

H is plotted along one axis while the other two axes are P and V, P and 

T, or T and V.  

 

Consider enthalpy as function of T and P i.e. ),( PTH , 

   

                      dP
P

H
dT

T

H
dH TP )()(









                                        6.8 

 

From the definition of enthalpy (to be discussed in module 3 unit 2) for 

a PVT system: 

 

                      PVUH                                                                    6.9 

 

Differential of H, dH is  

 

                     VdPPdVdUdH                                                     6.10 
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Combining 6.10 with the first law (i.e. replace dU in 6.10 with 

PdVdQ   and make dQ  the subject) gives 

 

                         VdPdHdQ                                                             6.11 

 

insert 6.8 in 6.11, to obtain 

 

                    dPV
P

H
dT

T

H
dQ TP ])[()( 









                                     6.12 

 

For an isobaric process ( 0dP ), dTCdQ P . Hence  

 

                    PP C
T

H





)(                                                                     6.13 

Equation 6.13 means that the specific heat capacity at constant pressure 

PC  is equal to the slope of an isobaric line on the PTH   surface.   

Equation 6.12 can be written for any reversible process as   

 

                   dPV
P

H
dTCdQ TP ])[( 




                                            6.14 

In a process at constant volume, dTCdQ V  and 

 

                  VTVp
T

P
V

P

H
CC )]()[(









                                         6.15 

If the temperature is constant, equation 6.14 becomes 

                  dPV
P

H
dQ T ])[( 




                                                           6.16 

In an adiabatic process, 0dQ , then equation 6.14 becomes 

 

                   ])[()( V
P

H

P

T
C TP 









                                                  6.17 

  

3.4 P and V Independent   
 

Consider U as a function of P and V, U(P,V), then the change in internal 

energy dU  between two equilibrium states is 

       

                    dV
V

U
dP

P

U
dU PV )()(









                                            6.18 

 

Consider also U(T,V) 

                     

dV
V

U
dT

T

U
dU TV )()(









                                           6.19a 

and T(P,V) gives 
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 dV
V

T
dP

P

T
dT PV )()(









                                                        6.19b 

 

Eliminating dT  in equation 6.19a (i.e. put 6.19b in 6.19a) we have 

                   

   dV
V

U

V

T

T

U
dP

P

T

T

U
dU TPVVV ])()()[(])()[(






















                6.20 

 

By comparing equation 6.20 with 6.18, it implies that 

 

 VVV
P

T

T

U

P

U
)()()(













                                                                   6.21 

 

and  

     

TPVp
V

U

V

T

T

U

V

U
)()()()(


















                                                     6.22 

 

Generally, for any property w , and any three variables zyx ,,  the form 

of equations 6.21 and 6.22 are 

 

     yyy
x

z

z

w

x

w
)()()(













                                                                    6.23 

 

and  

  zxyx
y

w

y

z

z

w

y

w
)()()()(


















                                                         6.24 

 

Note that equation 6.23 is the chain rule of partial derivatives.   

 

Therefore for ),,( TVPH  we have 

               

   PP
V

T

T

H
p

V

H
)()()(













                                                                   6.25 

 

and  

       

TVPV
P

H

P

T

T

H

P

H
)()()()(


















                                                      6.26 

 

 

 

From equation 6.21, using 6.5 we obtain 
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VVV
P

T
C

P

U
)()(









                                                                         6.27 

 

Also from equation 6.25, using equation 6.13 we have 

   

PPP
V

T
C

V

H
)()(









                                                                         6.28 

 

We can as well show that  

 

                 dP
P

T
CdV

V

T
CdQ VVPP )()(









                                 6.29 

and  

 

                TPSV
V

P
C

V

P
C )()(









                                                   6.30 

                       

3.5 Gay-Lussac-Joule Experiment  
 

The partial derivative T
V

U
)(




 describe the way in which the internal 

energy of a given system varies with volume at constant temperature. 

Similarly, T
P

H
)(




 describe the way in which enthalpy of a given system 

varies with pressure at constant temperature. These two derivatives can 

be calculated from equation of state of the system (see free expansion of 

gas for the partial derivative of U in module 4, unit 2).  

Using  

                        1











VUT

U

T

T

V

V

U
)()()(  

 

then  

 

                         UVT
V

T
C

V

U
)()(









                                                  6.31 

 

Also, 

                         1











PHT

H

T

T

P

P

H
)()()(  

 

 

 

 

then  
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                         HPT
P

T
C

P

H
)()(









                                               6.32 

 

From equation 6.31, measurement of the rate of change of temperature 

with volume in a process at constant internal energy gives the desired 

derivatives (i.e. T
V

U
)(




).   

      

Similarly, from equation 6.32, measurement of the rate of change of 

temperature with pressure in a process at constant enthalpy gives the 

desired derivatives (i.e. T
P

H
)(




).        

 

 
 

Fig. 6.1: Gay-Lussac-Joule Experiment (After Sear and 

Salinger 1975) 

 

Gay-Lussac and Joule made an attempt to measure the dependence of 

the internal energy U of a gas on its volume. The experimental set-up 

used by Gay-Lussac and Joule is shown in figure 6.1. Vessel A contains 

a sample of the gas for the investigation and is connected to an 

evacuated vessel B by a tube in which there is a stopcock that is initially 

closed. The whole arrangement is immersed in a water tank of known 

mass which temperature can be measure by a thermometer.  

 

The whole set-up is allowed to attain thermal equilibrium and the 

temperature is measured and recorded. Then the stopcock is opened and 

the gas is allowed to undergo a free expansion into the evacuated vessel. 

The work done W during free expansion process is zero (see free 

expansion in module 4, unit 2). The system will eventually come to a 

new equilibrium state if pressure is the same in both vessels. If 

temperature of the gas changes during this process (i.e. free expansion), 

there will be heat flow between the gas and the water bath and the final 

temperature will be different from the initial one already measured and 

recorded.  
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Gay-Lussac and Joule found that the temperature change of the water 

bath, if it changes at all, was too small to be detected. The reason is that 

the heat capacity of the bath is so large that a small heat flow in or out of 

it produces only a very small change in temperature. Similar 

experiments have been performed, using other technique, and the results 

showed that the temperature change of the gas during free expansion is 

not large.  

 

Hence the postulate as an additional property of an ideal gas is that 

temperature change during a free expansion is zero. The first law of 

thermodynamics (i.e. WQUUU if  ), since both Q  and W  are 

zero, becomes 

 

                     0U                                                                             6.33 

 

Therefore the internal energy is constant, and for an ideal gas, 

                        

                   0



U

V

T
)(  (ideal gas)                                                6.34 

 

The partial derivative in equation 6.34 is called the Joule coefficient and 

is represented by   

 

                    U
V

T
)(




                                                                      6.35 

 

Note that   is equal to zero for ideal gas but it is not zero for real gas.  

 

From equation 6.31, since VC  is finite, then for ideal gas 

                    0



T

V

U
)(                                                             6.36 

 

The implication of equation 6.36 is that the internal energy U, for an 

ideal gas, is a function of temperature only. That is for an ideal gas, the 

partial derivative V
T

U
)(




 is a total derivative and  

 

                     
dT

dU
CV  , dTCdU V                                                    6.37 

 

Integrating equation 6.37 from reference level ( oU , oT ) to ( TU , ), and if 

VC  is constant that is  
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                    
T

oTVo

U

oU
dTCUUdU  

 

which gives 

                      )( oVo TTCUU                                                     6.38 

 

Equation 6.38 is the energy equation of an ideal gas.  

 

3.6 Joule-Thompson Experiment    
 

Joule and Thomson made an attempt to measure the dependence of the 

enthalpy of a gas on its pressure (i.e. equation 6.30). The experimental 

set-up used by Joule and Thomson is shown in figure 6.2. The gas in 

compartment 1 (with T1, P1, and V1) was allowed to expand freely 

through a porous plug. The gas expands from pressure P1 to P2 by the 

throttling action of the porous plug. The entire system is insulated so 

that the expansion occurs adiabatically (i.e. 0Q ). 

 

   
   

Fig. 6.2: Joule-Thomson Experiment (After Sear and Salinger 1975) 

 

The Gas is allowed to flow continuously through the porous plug, and 

when steady state condition have been reached the temperatures of the 

gas before and after expansion, 

 

T1 and T2, are measured directly with sensitive thermocouple 

thermometers. The total work done during the expansion can be written 

as   

                       221121 VPVPWWW                                          6.39 

 

The overall change in internal energy of the gas during the adiabatic 

expansion is then 

    

                      WWWQU  0                                            6.40 

 

Porous plug 
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                      122211 UUVPVPU          

    

rearranging gives 

                     111222 VPUVPU       6.41       

 

But          

           

                   PVUH  , 

 

then, equation 6.41 becomes 

 

                   21 HH                                                                             6.42 

                         

This is therefore an ISOENTHALPIC expansion and the experiment 

measures directly the change in temperature of a gas with pressure at 

constant enthalpy. The Joule-Thomson coefficient   is,  

 

                      H
P

T
)(




                                                                      6.43 

 

For an ideal gas,  

 

                     0



T

P

H
)(   (ideal gas)                                                   6.44 

 

The implication of equation 6.44 is that the enthalpy H, for an ideal gas, 

is a function of temperature only. That is for an ideal gas, the partial 

derivative T
P

H
)(




 is a total derivative and  

 

                    
dT

dH
C P  , dTCdH P                                                     6.45 

 

Integrating equation 6.45 from reference level ( oH , oT ) to ( TH , ) , and 

if PC  is constant that is  

 

                    
T

oTPo

H

oH
dTCHHdH  

 

gives 

                   )( oPo TTCHH                                                        6.46 

Equation 6.46 is the enthalpy equation for an ideal gas and is analogue 

of equation                       6.38.  
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Therefore for ideal gas, from 6.36 and 6.44 

 

                     0








TT

P

H

V

U
)()(                                                        6.47 

 

Then equations 6.7 and 6.17 become 

 

  nR
T

P
V

T

V
PCC VPVP 









 )()(  

 

And from equation of state of ideal gas, nRTPV   

 

                   nR
T

P
V

T

V
P VP 









)()(  

 

Hence for ideal gas, 

                     nRCC VP                                                                      6.48 

 

3.7 Reversible Adiabatic Process   
 

From equation 6.30, for any substance in a reversible adiabatic process, 

 

                    T
V

P
S

V

P

C

C

V

P
)()(









                                                        6.49 

 

For an ideal gas, 

 

                    
V

P

V

P
T 




)(                                                                    6.50 

 

Check block 1 for how equation 6.50 could be derived 

 

If we representing the ratio VP CC  by  , 

 

That is, 

                      
V

p

C

C
                                                                         6.51 

 

 

 

 

and inserting 6.50 and 6.51 in 6.49, and omitting subscript S for 

simplicity then, 
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                     0
V

dV

P

dP
                                                              6.52 

 

Integrating equation 6.52 
                 KVP lnlnln    

or 

                    KPV                                                                           6.53 

 

where K in equation 6.53 is a constant of integration.  

 

From equation 6.53, eliminating V gives 

 

                  tconsTP tan/)(  1 ,                                                      6.54 

 

and eliminating P gives 

 

                 tconsTV tan1 .                                                             6.55 

 

Equation 6.54 and 6.55 are based on the fact that the gas obeys its 

equation of state in any reversible process.  

 

  

 

 

 

 

 

 

 

 

 

 

 

SELF ASSESSMENT EXERCISE 1 

 

i. What is energy equation? 

ii. Obtain equation 6.54 and 6.55 from 6.53. 

iii. The internal energy of a van der Waals gas is given by    

 

           tcons
V

a
TCU V tan    

 

          shows that for a van der Waals gas 

 

Block 1 

Ideal gas equation is 

nRTPV   

 

nRdTVdPPdV   

at constant T (i.e. dT=0) 

PdVVdP   

V

P

V

P
T 




)(  
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3

22
1

1

nRTV

bVa
nRCC VP

)( 


  

 

4.0  CONCLUSION 
 

Some of the consequences of the first law of thermodynamics were 

discussed in this unit.  From the first law, with partial derivatives as 

tools, we have derived the expressions for specific heat capacities. Also 

discussed were the experiments by Gay-Lussac-Joule and Joule-

Thomson which established that, for an ideal gas, the internal energy 

(U ) and the enthalpy ( H ) are functions of temperature only.  
 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 energy equations are the equations which expresses the internal 

energy of a system as a function of the variables defining the 

state of the system 

 the specific heat capacity at constant volume is V
T

U
VC )(




  

 the difference between the  specific heat capacities 

PTVP
T

V
P

V

U
CC )]()[(









  

 for adiabatic reversible process, KPV  . 

 

6.0      TUTOR-MARKED ASSIGNMENT 
 

i. Show that VPC
T

U
PP 




)(  

ii. For an ideal gas show that (a) 0



T

P

U
)( . 
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1.0      INTRODUCTION 
 

One of the statements of the second law of thermodynamics is that the 

change in entropy of a system cannot be negative (i.e. it is either zero or 

positive). This unit focuses on entropy, its value during reversible and 

irreversible processes, and the second law of thermodynamics.    

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 define entropy 

 write the equation for change in entropy during reversible and 

irreversible processes 

 state the second law of thermodynamics 

 describe the Carnot cycle / engine 

 calculate the efficiency of Carnot engine. 
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3.0   MAIN CONTENT 
 

3.1     Entropy of a System  

 

In unit 1 we defined a system as a restricted region of space one has 

chosen to study. Also, we mentioned that the properties or coordinates 

used to describe thermodynamic system are the thermodynamic 

properties or coordinates. One of such properties is entropy. Entropy, S, 

is the degree of disorderliness of a system. Unlike energy, entropy of a 

system does not always obey a conservation law.  

 

3.2 Change in Entropy  
 

The change in entropy S of a system during a process that takes the 

system from initial state i  to a final state f  is defined as    

 

                       
f

iif
T

dQ
SSS                                                7.1 

 

Equation 7.1 implies that change in entropy depends on both the energy  

 

transfer as heat during the process and the temperature of the system. 

The S.I unit of entropy and change in entropy is Joule per Kelvin (JK-1). 

 

3.2.1 Reversible Process  

 

For a reversible process that occurs in a closed system, the entropy 

always remains constant. That is, the change in entropy for a reversible 

process is zero ( 0S ). This statement can be explained using a Carnot 

cycle (See section 3.5.3 of this unit).  
 

3.2.2  Irreversible Process 

 

 

 
 

An irreversible process can be defined as one which direction cannot be 

reversed by an infinitesimal change in some property of the system. A 

good example of irreversible process is illustrated in figure 7.1. Figure 

7.1 shows a hot reservoir at temperature HT  in thermal contact through 

a conductor with a cold reservoir at temperature CT . Suppose the 

arrangement is isolated from the surrounding (i.e. no heat flows in or out 

of the arrangement), heat flows from hot reservoir to cold reservoir and 

not in reversed direction.  This process is an irreversible process. 

Suppose heat Q  flows from the hot reservoir to the cold reservoir, we 
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can then write the equation for the total entropy change S  during the 

process.  

 

 

The change in entropy for the cold reservoir CS , using equation 7.1 is  

                        
C

C
T

Q
S                                                                                7.2 

 

CS  is positive because heat Q  flows into the cold reservoir and is 

positive Q . Similarly the change in entropy of the hot reservoir HS , 

using equation 7.1 is 

 

                        
H

H
T

Q
S                                                                  7.3 

 

HS  is negative because heat Q  flows out of the hot  reservoir (i.e. 

Q ). 

The total entropy is 

 

                        CH SSS    

 

which gives 

 

                        0
CH T

Q

T

Q
S                                                      7.4 

The total entropy S  is greater than zero because HT  is greater 

than CT .  

We can then say that 0S  for irreversible process.  

 

 

 

 

 

 

 

Fig. 7.1: Heat Q  Flows from Hot Reservoir to Cold Reservoir 

 

3.2.3  Change in Entropy during Adiabatic and Isothermal 

Processes 

 

Change in entropy is given by equation 7.1 and it is a function of Q  and 

T .  

 

Conductor Q  

Hot reservoir 

        TH 

Cold reservoir 

        TC 
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Reversible adiabatic process: during adiabatic process, 0dQ , and 

this implies that during reversible adiabatic process rdQ =0. Then, going 

by equation 7.1 

                            0dS                                                                     7.5 

Reversible isothermal process: An example of reversible isothermal 

process is phase change and this occurs at constant pressure during 

which the temperature also remains constant.  

 

                         
T

Q
dQ

TT

dQ
SS

f

i r

f

i

r
if  

1
                            7.6 

 

where Q  is the latent heat or latent heat of transformation. 

 

3.3 Entropy as a State Function   
 

Entropy, like pressure, energy, and temperature, is a property of the state 

of a system and is independent of how that state is reached.  

 

The above statement can be justify from the equation of the first law of 

thermodynamics 

 
                       dWdQdU     

 

For a reversible isobaric process,  

   

                       dTPnCPdVdQ                                                         7.7 

 

Using the equation for the ideal gas, P in equation 7.7 can be replaced 

with 
V

nRT
. Then dividing through by T, gives 

 

                       
T

dT
PnC

V

dV
nR

T

dQ
                                          7.8 

Suppose each term of equation 7.8 is integrated between an arbitrary 

initial state i  and an arbitrary final state f  we get 

    

T

dTf

i
PnC

f

i V

dV
nR

f

i T

dQ
   

 

But change in entropy S  is already given to be 
T

dQ
 in equation 7.1, so 

 

                        
iT

fT

PnC
iV

fV
nRiSfSS lnln                          7.9 
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Equation 7.9 thus implies that the change in entropy S between the 

initial state and final state of an ideal gas depends only on properties of 

the initial and properties of final state (i.e. S does not depend on how 

the gas changes between the two states).  

 

3.4 The Second Law of Thermodynamics 
 

The change in entropy S , as discussed in section 3.2, for a process 

occurring in a closed system is zero for reversible process and greater 

than zero for irreversible process. This is one of the statements of the 

second law of thermodynamics.    

 

The second law of thermodynamics gives the direction in which the 

natural process will take place.  

 

Statement of the Second law of thermodynamics 

If a process occurs in a closed system, the entropy of the system 

increases for irreversible processes and remains constant for reversible 

processes. Entropy of a system never decreases.  

 

Mathematical statement of the Second law of thermodynamics 
  

                                0S                                                                            7.10  

     

3.5  Carnot Engine 
 

Carnot engine is the most efficient kind of heat engine and because of 

this it is sometime referred to as an ideal heat engine. Ideal in the sense 

that all processes in the cycle are reversible and no wasteful energy 

transfer occur due to friction and turbulence. This engine is after a 

French scientist and engineer N.L. Sadi Carnot. The P-V diagram of the 

Carnot cycle is shown in figure 7.2 and the arrow on the plot indicate the 

direction of the cycle (i.e. clockwise). During each cycle, the engine (i.e. 

the working substance) absorbs energy HQ  as heat from a thermal 

reservior at constant temperature HT  and ejects energy CQ  as heat to a 

second reservoir at a constant lower temperature CT .  

 

Description of the Processes 

 

 Process de is an isothermal process during which heat HQ  is 

transferred at temperature HT  to the working from the hot 

reservoir. This causes the gas to undergo isothermal expansion 

from volume dV  to eV .  



PHY 207                                                 THERMODYNAMICS 

64 

 Process ef is an adiabatic expansion i.e no heat is added as the 

working substance expands from volume  eV  to fV . Temperature 

decreases during the process from HT  to CT  

 Process fg is an isothermal process during which heat CQ  is 

transfered at temperature CT  from the working to cold reservior. 

This causes the gas to undergo isothermal compression from 

volume fV  to gV .   

 Processes gd is an adiabatic compression i.e. no heat is transfreed 

as the working substance compresses from volume gV  to dV .  

Temperatures increases during the process from CT  and HT .   

 

    Heat engine is discussed in more detail in the next unit (i.e. Module 2, 

unit 4) 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2: PV Plot for the Carnot Cycle 

 

Work: 

From the first law of thermodynamics ( WQU  ), the total work 

done during a cycle or cyclic process can be calculated. For a cyclic 

process 0U , the total heat transfer per cycle CH QQQ  , and the 

total work done is W . Then, the first law of thermodynamic for the 

Carnot cycle is  

 

                        CH QQW                                                              7.11 
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TH 
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3.5.1  Efficiency of a Carnot Engine 
 

The efficiency of a heat engine is 

     
inheat

outputwork

Q

W

H

  (in one cycle)                                          7.12 

Using equation 7.11, equation 7.12 becomes 

 

                        
H

C

H

CH

Q

Q

Q

QQ



 1                                               7.13 

 

But the ratio of the rejected heat CQ to the input heat HQ  for a 

reversible process can be written as  

 

                         
H

C

H

C

T

T

Q

Q
                                                       7.14  

 

where temperature CT  and HT  are temperatures in Kelvin.  

Rearranging 7.14 gives 

 

                     
C

C

H

H

T

Q

T

Q
                                                                    7.15 

 

Insert equation 7.14 in equation 7.13 to obtain 

 

                    
H

C

T

T
 1                                                                        7.16 

 

Equation 7.16 is the efficiency of a Carnot engine operating between 

two heat reservoirs in which heat is taking in at temperature HT  and 

heat is ejecting at temperature CT . Temperatures HT  and CT  must be in 

Kelvin. The relation in equation 7.16 gives the maximum possible 

efficiency for a heat engine operating between two Kelvin temperatures 

HT and CT .    

 

3.5.2  Another Statement of Second Law of Thermodynamics 
 

The efficiency of an ideal heat engine is given by equation 7.16. The 

implication of this is that no heat engine can have efficiency greater than 

that of a Carnot engine. It is clear from equations 7.13 and 7.16 that the 

efficiency of a Carnot engine is less that 100 %. This of course is 

another statement of the second law of thermodynamics. That is, the 

efficiency of heat engine is always less than 100 %. This statement is 

called Kelvin’s statement 
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Kelvin’s Statement: No process is possible whose sole result is the 

complete conversion of heat into work.  
 

 

 

3.5.3  Entropy Change of a Reversible Process 
 

A good example of a reversible thermodynamic process is Carnot cycle.  

In a Carnot engine, there are only two reversible energy transfers as heat 

(i.e. entropy change at HT  and at CT ). The net entropy change per cycle 

is 

                         
C

C

H

H
CH

T

Q

T

Q
SSS                                    7.17 

 

where HS  is the positive entropy because energy HQ  is added to the 

working substance (i.e. increase in entropy) and CS   is negative 

entropy because energy  CQ  is removed from the working substance as 

heat (i.e. decrease in entropy).   Using equation 7.15, then equation 7.17 

becomes 

                       0
C

C

H

H
CH

T

Q

T

Q
SSS                                 7.18 

 

Therefore the entropy for a reversible process S  is zero (i.e. 0S ).  

 

SELF ASSESSMENT EXERCISE 1 
 

i. Define entropy. 

ii. How much heat is required for a reversible isothermal expansion 

of an ideal gas at 132 ºC if the entropy of the gas increases by 

46.0 J/K? 

iii. A Carnot engine does 20,900 J of work and rejects 7330 J of heat 

into the hot reservoir at 25 ºC. What is the Kelvin temperature of 

the hot reservoir? 

iv. State the second law of thermodynamics in relation to entropy 

 

4.0  CONCLUSION 
 

Entropy of a system is the degree of disorderliness of a system. The 

change in entropy of a reversible process is zero while that of an 

irreversible process is greater than zero. This is the statement of the 

second law of thermodynamics and mathematically it is 0S . Carnot 

engine is the most efficient heat engine and no real engine operating 

between two temperatures as that of Carnot engine has efficiency as 

high as that of Carnot engine.   
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5.0 SUMMARY 
 

In this unit you have learnt that: 

 

 entropy of a reversible process is constant and that of an 

irreversible process increases 

 the second law of thermodynamics is 0S  

 Carnot engine is the most efficient heat engine 

 the efficiency of Carnot engine operating between two 

temperatures HT  and CT  is 
H

C

T

T
 1 . 

 

6.0      TUTOR-MARKED ASSIGNMENT 
 

i A 2.50 mole sample of ideal gas expands reversibly and 

isothermally at 360 K until its volume is doubled. What is the 

increase in entropy of the gas? 

ii A lump of steel weighing 30 kg at a temperature of 427 ºC is 

dropped in 150 kg of oil at 27 ºC. The specific heats of the steel 

and oil are 0.47 KJ/kgK and 2.5 KJ/kgK respectively. Estimate 

the entropy change of the steel, the oil and the system consisting 

of oil and the lump of steel. 

iii A Carnot engine operates between reservoirs which temperatures 

are 700 K and 400 K. To improve the efficiency of the engine, it 

is decided to either raise the temperature of the hot reservoir by 

30 K or to lower the temperature of the cold reservoir by 30 K. 

Which of these options gives the greater improvement? Justify 

your answer by calculating the efficiency in each case.   
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1.0 INTRODUCTION 
 

As discussed in the last unit, Carnot engine is an ideal heat engine and 

no real heat engine has efficiency as high as that of a Carnot engine. 

This unit discusses some of the available real engines. 

 

2.0 OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 name some of the available heat engines and draw the P-V 

diagram for each of them 

 explain the processes involve in the cycle of a particular heat 

engine 

 derive expression for efficiency for each of these heat engines. 

 

3.0 MAIN CONTENT 
 

3.1 Heat Energy  
 

A heat engine is a device used to convert thermal energy (i.e. heat) into 

mechanical work and then exhausts the heat which cannot be used to do 

work. 
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1.1.1 Basic Operation of Heat Engine 
 

The working body absorbed heat from the hot reservoir at relatively high 

temperature. Part of the absorbed heat is used by the working body to do 

mechanical work. The unused energy is then ejected as heat at lower 

temperature. The process of converting thermal energy to mechanical 

work by heat engine is shown in figure 8.1. 
 

 

 

 

 

 

 

 

 

 

   
Fig. 8.1:  Heat Engine 

  

 

Heat engine as shown in the figure 8.1 above comprises of two heat 

reservoirs, one hot at HT  and the other cold at CT . The interaction 

between these two reservoirs and the working body leads to the 

conversion of heat energy to mechanical work. Another explanation is 

that the working body absorbs heat HQ  at temperature HT , uses part of 

it do mechanical work, and then ejected the unused heat energy ( CQ ) at 

temperature CT  through the cold reservoir. 

 

3.2  Thermodynamic Efficiency   of Real Engines 
 

The efficiency of a heat engine is 

 

      
inheat

outputwork

HQ

W
E   (in one cycle)                                            8.1 

 

The efficiency E  measures the fraction of heat pumped into the working 

body that is converted to mechanical work by the working body. The 

efficiency of real heat engines is always less than unity.  

 

The Changes in energy of the working body are related to the changes in 

the thermodynamic properties. Using the combined first and second 

laws of thermodynamics, 

 

                      dWdQPdVTdSdU                                              8.2 

 

working 

  body 

         TH 

hot reservoir 

TC 

cold reservoir 
HQ  CQ  

                W   

            work done 
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 where dQ  is the heat into the working body and dW  is the mechanical 

work (i.e. work output). But the working body operates in a cycle (i.e. 

cyclic process), returning the system back to its initial state. We can 

integrate 8.2 over a complete cycle. 

 

                       

cyclecyclecycle

PdVTdSdU0                                           8.3 

 

where 0 initialfinal

cycle

UUdU  since the system returns to its initial 

state. 

 

cycle

WPdV is the work done in a cycle 

QQQdQ CH

cycle

  the total heat transfer to the working body in a 

cycle.  So equation 8.3 becomes 

 

                       WQQ CH 0                                                            8.4 

Rearrange to have 

 

                       CH QQW                                                                   8.5 

 

Insert equation 8.5 in equation 8.1 

                       
HQ

CQ

HQ

CQHQ
E 


 1                                                8.6 

Therefore, 

                      
absorbedheat

releasedheat

HQ

CQ
E  11                                      8.7 

 

Equation 8.7 is the generalized form of efficiency for heat engine.   

 

Some examples of real engines are Otto engine, Stirling engine, and 

steam engine. We are going to treat here only Otto engine and Stirling 

engine.  

 

3.3 Otto Cycle / Engine 
 

Otto cycle consists of two adiabatic processes and two constant volume 

(isochoric) processes or strokes. The PV diagram of Otto cycle is shown 

in figure 8.2 and as indicated in the PV diagram, heat is absorbed during 

one of the isochoric processes and heat is rejected during the other 

isochoric process.  
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Fig.8.2: PV Diagram for Otto Cycle  

 

3.3.1 Description of the Processes  
 

 Process de is an adiabatic compression i.e no heat is added as the 

volume of the working substance decreases from volume  dV  to 

eV . The temperature rises from dT  to eT  according to equation 

11 
 

eedd VTVT  

 Process ef is an isochoric process during which heat HQ  is added 

as the temperature of the working substance changes from eT  to 

fT  and pressure also increases from eP  to fP .  

 Process fg is adiabatic expansion i.e. no heat is added as the 

volume of the working substance increases from volume eV  to 

dV . The temperature decreases from fT  to gT  according to 

equation 11  

dgef VTVT  

 Processes gd is an isochoric process during which heat CQ  is 

ejected as temperature changes from gT  to dT . 

 

3.3.2 Efficiency of Otto Engine 
 

Generally, the efficiency of heat engine is given in equation 8.6 as  

                    
HQ

CQ
E  1  

CQ  

HQ  

d 

g 

f 

e Adiabatic 

Adiabatic 

eV  dV  

P 

V 
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Heat is added during isochoric process ef and the temperature increases 

from eT  to fT  and pressure increase also from eP  to fP . Heat added 

HQ  is 

                  
fT

eT efVVH TTCdTCQ )(                                         8.8 

 

Heat is ejected during isochoric process gd and the temperature 

decreases from gT  to dT  and pressure increase also from gP  to dP . 

Heat added CQ  is 

 

                  
gT

dT gdVVC TTCdTCQ )(                                             8.9 

 

Equation 8.9 is because heat ejected is negative Q , otherwise 

)( gd TT  would be )( dg TT  .  

 

Put equations 8.9 and 8.8 in equation 8.6 to have 

                  
)(

)(

eTfTVC

gTdTVC

HQ

CQ
E




 11                                         8.10       

                   
)(

)(

eTfT

gTdT
E




 1                                                              8.11 

Two adiabatic processes where involved in the cycle and these give 

 

                   11 
 

efdg VTVT                                                          8.12a 

and             

                    11 
 

eedd VTVT                                                          8.12b 

 

Subtracting equation 8.12b from equation 8.12a gives 

              11 
 

eefddg VTTVTT )()(  

 

Rearrange to have 

                 1



)(

d

e

ef

dg

V

V

TT

TT
,                                                           8.13 

 

And insert equation 8.13 in equation 8.11 to have  

                  1
1

 )(
dV

eV
E  

But 
V

P

C

C
 , 

Therefore the efficiency of Otto cycle is 
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                    V

VP

C

CC

dV

eV
E



 )(1                                                       8.14 

 

where VC and PC  are the specific heat at constant volume and pressure 

respectively 

 

3.4  Stirling Engine  
 

The PV diagram for an ideal Stirling heat engine is shown in figure 8.4 

below. The cycle consists of two isochoric processes and two isothermal 

processes. Three important components of Stirling engine are: 

 

Heat Exchangers: As the name implies, these transfer heat between the 

working gas and the outside of the system.  

 

Displacer Mechanism: The purpose of this is to move the working gas 

between the hot and cold ends of the machine through the regenerator. 

 

Regenerator: This is a device normally placed between hot and cold 

portions of the machine that is in contact with the hot and cold reservoirs 

respectively. It consists of packing of steel wool or a series of metal 

baffles of low thermal conductivity. The purpose of this device is to act 

as thermal barrier and also as thermal store for the cycle.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.3: PV Diagram for Stirling Engine 
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3.4.1 Description of the Processes 
 

 Process fg is an isothermal (constant temperature) expansion 

during which heat HQ  is absorbed at temperature HT . Due to 

expansion, work is done during the process (i.e. high pressure the 

working gas absorbs heat from the heat absorbing heat-exchanger 

and expands isothermally, thus work is done).   

 Process gd is an isochoric (constant volume) process. The 

displacer transfers all the working gas isochorically through the 

regenerator to the cold end of the machine. Heat is absorbed from 

the gas as it passes through the regenerator, thus the temperature 

decreases from HT  to CT  and pressure also decreae from gP  to 

dP  

 Process de is an isothermal compression. During this process, 

work is done on the gas and this compresses the gas isothermally 

at temperature CT , then heat CQ  is ejected to the cold reservoir 

through the heat rejecting heat exchanger.  

 Process ef is an isochoric process. During this process, the 

displacer transfers all the working gas isochorically through the 

regenerator to the hot end of the machine. Heat is added to the 

gas as it passes through the regenerator, thus raising the 

temperature of the gas from CT  to HT  and pressure also 

increases from eP  to fP .   

 

3.4.2  Efficiency of Stirling Engine 
 

Generally, the efficiency E  is  

 

                   
inheat

outputwork

HQ

W
E                                                      8.15 

 

The total work done in Stirling-cycle engine is 

                   PdVW                                                                        8.16 

 

The integral in the equation 8.16 is over a closed loop. From the PV 

diagram, two isochoric processes occurs during the cycle at HT  and CT  

(i.e. work is done only during isothermal expansion and compression 

processes). No work is done during isochoric processes in the cycle.  

 

Therefore total work done W is 

 

                   







 

e

d

g

f
PdVPdVW                                                   8.17 
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Suppose the equation of state is nRTPV  , and since T is constant for 

the isothermal process, then work done during isothermal process is 

 

                   
1

22

1

2

1

2

1 V

V
nRTVnRT

V

dV
nRTPdV

V

V

V

V

V

V
lnln          8.18 

Substitute equation 8.18 into 8.17 

 

                 













d

e
C

f

g
H

V

V
nRT

V

V
nRTW lnln                                     8.19 

 We can further simplify equation 8.19 since we know that ef VV   and 

dg VV   and also know that 
e

g

g

e

V

V

V

V
lnln  , so that we have 

                  )(ln CH
e

g
TT

V

V
nRW                                                   8.20 

The work done represents energy out of the system, and so has a 

negative value according to the sign convention we have been using.  

 

Heat Flow into an Ideal Stirling Engine 

The heat flowing into and out of a Stirling-cycle engine can be evaluated 

by considering the integral of temperature with respect to entropy: 

                   TdSQ                                                                           8.21 

For this cycle, heat is transfer into and out of the system only during the 

two isothermal processes.  During closed cycle isothermal expansion 

process fg we have 

                    
gS

fS
HH dSTQ                                                              8.22 

This integral can be most easily evaluated by considering the first law of 

thermodynamics 

 

                   dWdUdQ                                                                    8.23 

 

But we know that TdSdQ   and PdVdW  , so 8.23 becomes 

 

                   PdVdUTdS   

 

Therefore 8.22 now is 

 

                    
g

f

g

f

V

V
PdV

U

U
dUHQ                                               8.24 
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Suppose the equation of state is nRTPV  , so that 
V

nRT
P  and since 

T is constant for the isothermal process, then 8.24 becomes 

 

                   
gV

fV

gV

fVHH

gU

fU
H VnRT

V

dV
nRTdUQ ln0  

 

But ef VV   so we have 

                 
e

g
HH

V

V
nRTQ ln                                                               8.25 

Similarly we can show that 

 

              
e

g
CC

V

V
nRTQ ln                                                                 8.26 

 

The ratio 
f

d

e

g

V

V

V

V
  is called the expansion ratio of the working gas. The 

inverse of this is called the compression ratio. 

  

The efficiency of an ideal Stirling engine is therefore 

                     

eV

gV

HnRT

CTHT
eV

gV
nR

E

ln

)(ln 

  

And it gives 

                     
HT

CTHT
E


                                                               8.27 

Recall that the efficiency of the Carnot engine is 
HT

CTHT
E


 . This 

implies that the efficiency of the Carnot engine is equal to that of an 

ideal Stirling engine. Hence the Stirling-cycle engine has the maximum 

efficiency possible under the Second Law of Thermodynamics. 

However, the efficiency of a real Stirling engine is less than that of 

Carnot engine.  

                

Note that no real engine can have an efficiency greater than that of a 

Carnot engine when both engines work between the same two 

temperatures.   
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SELF ASSESSMENT EXERCISE 1 
 

i. Draw the PV diagram for Otto engine and describe all the 

processes in the cycle. 

ii. Show that the work done W  by the ideal Stirling heat engine is 

)(ln CH TT
V

V
nRW 

1

2  where 1V  and 2V  are the two volumes 

at which the isochoric processes occur on the PV diagram and 

that 12 VV   

 

4.0 CONCLUSION 
 

Heat engines are devices used to convert heat energy to mechanical 

work. Real heat engines always have efficiency less than that of Carnot 

engine when they operate between the same two temperatures. 

Examples of real engines are Otto engine and Stirling engine. In the next 

unit, you will learn about a reverse cycle of heat engine i.e. refrigeration 

cycle.  

 

5.0 SUMMARY 
 

In this unit you have learnt that: 

 

 heat engines are devices used to convert heat to mechanical work 

 the efficiency of heat engine is 
inheat

outputwork

HQ

W
E   

 the efficiency of Otto engine is  V

VP

C

CC

dV

eV
E



 )(1  

 the work done by an ideal Stirling engine 

)(ln CH
e

g
TT

V

V
nRW  , and its efficiency is 

HT

CTHT
E


 . 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

An ideal Stirling engine operates between 325 K and 460 K. If the 

expansion ratio of the working gas is 2.5, calculate the amount of heat 

ejected by the engine at cold reservoir and the efficiency of the engine (n 

= 2mol and R = 8.3 JK-1Mol-1). 
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1.0 INTRODUCTION 
 

Refrigerator is necessary household equipment used for preservation of 

foods and drinks and also for laboratory uses. This unit focuses on the 

principles of operation of refrigerators    

 

2.0 OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 describe refrigeration cycles 

 distinguish between refrigerator and heat pump 

 explain what is meant by coefficient of performance of 

refrigerator 

 derive expression for coefficient of performance for each of the 

refrigeration cycle. 
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3.0 MAIN CONTENT 
 

3.1 Refrigerator 
 

This is a device that uses work to transfer energy from a low 

temperature reservoir to a high temperature reservoir as is continuously 

repeats a set series of thermodynamic processes. Refrigerator operates in 

a direction opposite to that of the heat engine. The system that 

undergoes this reverse cycle of heat engine is called refrigerant. Air 

conditioners, heat pumps are also example of refrigerators.    

 

Carnot engine is capable of being reversed and when it is reversed it is 

called a Carnot refrigerator. Just like Carnot engine, Carnot refrigerator 

is an ideal refrigerator. The Stirling cycle is also capable of being 

reversed and is the most useful type of refrigerator. This reversed cycle 

is called Stirling refrigeration cycle.   

 

 

 

 

 

 

 

 

 

 

 

  Fig. 9.1:  Refrigerator 

 

Figure 9.1 shows the refrigeration process. Comparing this with figure 

8.1 in the last unit (module 2, unit 4) and observe the directions of heat 

and work in the two diagrams. For refrigeration process (figure 9.1) 

work is done on the working body (i.e. on the refrigerant) and this work 

is supplied by an electric motor or by other means. The work supplied is 

used to remove heat CQ  from the cold reservoir and deposit heat HQ  

into the hot reservoir. These processes are reversed of the one in heat 

engine.  

 

The interior of a refrigerator (i.e. the space inside where we put things 

like food, fruits and drinks) is the cold reservoir, while the exterior is the 

hot reservoir. You should have noticed that the outside surfaces (usually 

the sides and back) of most refrigerators are warm to touch while they 

are operating. The reason for this is because they are the hot reservoir.   

 

Energy conservation holds also for refrigeration process (i.e. 

CH QWQ  ).  

working 

  body 

         TC 

cold reservoir 

TH 

hot reservoir 
CQ  HQ  

                W   

            work done 
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Equation 
H

C

H

C

T

T

Q

Q
  also holds for ideal refrigerators. 

 

Heat Pumps: Heat pumps work on the same principle as refrigerator. 

The only difference is that for the heat pumps, the cold reservoir is the 

outdoor while the hot reservoir is the inside of the house. Another name 

for the heat pump is electric heating system. The electric heating system 

is normally used to warm the house during winter or cold weather.   

 

Air conditioners: For the air conditioners, the cold reservoir is the 

inside of the house while the hot reservoir is the outside of the house.  

 

Refrigerators, air conditioners, and heat pumps are similar devices and 

their principles of operation are similar.  

 

3.1.1  Coefficient of Performance of Refrigerators 
 

A term similar to the efficiency of the heat engine used to measure the 

performance of a refrigerator is the coefficient of performance  . The 

Coefficient of performance is defined as the ratio of heat extracted from 

the cold reservoir CQ  to the work done W on refrigerant  

  

                
trefrigeranondonework

reservoircoldfromextractedHeat
     

 

Therefore              

               
CH

CC

QQ

Q

W

Q


                                                                 9.1 

 

3.1.2  Coefficient of Performance of Heat Pumps 
 

Coefficient of performance of heat pumps   is defined as the ratio of 

heat delivered to the house HQ  to the work done W required to deliver 

it.  

  

                         
requiredondonework

deliveredHeat
     

Therefore              

                          
W

QH                                                                        9.2 

 

Two examples of the refrigeration cycles (i.e. Carnot-cycle refrigeration 

and Stirling-cycle refrigeration) are discussed here.  
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3.2  Carnot Refrigerator 
 

Carnot refrigeration is a reversed of Carnot cycle. Carnot-cycle 

refrigerator is identical to Carnot-cycle engine except that the heat-

absorbing end of the machine now becomes the cold region, while the 

heat rejecting end of the machine becomes the hot region. The PV 

diagram of the Carnot-cycle refrigerator is shown if figure 9.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.2: PV Diagram for Carnot-Cycle Refrigerator 

  

3.2.1  Description of the Processes in the Carnot-Cycle 

Refrigerator 
 

The processes in Carnot-cycle refrigerator as shown in figure 9.2 are 

described below. 

 

 Process gf is an isothermal expansion. During this process, heat 

CQ  is absorbed from the cold reservoir at temperature CT  and 

the working substance undergoes isothermal expansion from 

volume gV  to fV .  

 Process fe is an adiabatic compression i.e no heat is added as the 

working substance compresses from volume  fV  to eV . 

Temperature increases during the process from CT  to HT .   

  

 Process ed is an isothermal compression. During this process, 

heat HQ  is ejected to the hot reservoir at temperature HT .  

V 0 

P 

TH 

TC 

d 

e 

g f 

HQ  

CQ  

W  
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 Process dg is an adiabatic expansion i.e. no heat is transfered as 

the working substance expands from volume dV  to gV .  

Temperatures decreases during the process from HT  to CT .   

 

3.2.2  Coefficient of Performance of Carnot-Cycle Refrigerator  
 

The purpose of any refrigerator is to extract as much heat as possible 

from a cold reservoir with the expenditure of as little work as possible. 

The output is the heat extracted from the cold reservoir and the input is 

work. 

 

Using equation 9.1, coefficient of performance   is 

  

                 
CH

CC

QQ

Q

W

Q


  

 

For a Carnot cycle, it has be established that  

 

                  
C

C

H

H

T

Q

T

Q
    

Then  

                 

CTH

C

T

T



                                                                          9.3 

  may be considerably larger than unity. 

 

 

3.3  Ideal Stirling-Cycle Refrigerator 
 

An ideal Stirling-cycle refrigerator is a reverse of an ideal Stirling-cycle 

engine. The cycle consists of two isochoric processes and two 

isothermal processes. The PV diagram of an ideal Stirling-cycle 

refrigerator is shown in figure 9.3 below.  
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Fig. 9.3:    PV Diagram of an Ideal Stirling-Cycle Refrigerator 

 

3.3.1  Description of the Processes in the Ideal Stirling-Cycle 

Refrigerator 
 

The processes in the ideal Stirling-cycle refrigerator as shown in figure 

9.3 are described below. 

 

Process ed is an isothermal expansion during which heat CQ  is 

absorbed from the cold reservoir at temperature CT .  

 

Process dg is an isochoric process. The temperature of the working 

substance increases from HT  to CT  and pressure also increases from 

dP  to gP . 

 

Process gf is an isothermal compression during which heat HQ  is 

ejected to the hot reservoir at temperature HT .  

 

Process fe is an isochoric process. The temperature of the working 

substance decreases from CT  to HT  and pressure also decreases from 

fP  to eP . 

 

 

 

 

 

V 

CQ  

HQ  

d 

g 

f 

e 

HT  

CT  

HT  

CT  

P 

0 
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3.3.2  Coefficient of Performance an Ideal Stirling-Cycle 

Engine 
 

Coefficient of performance of refrigerator  is  

 

               
W

QC  

 

From Stirling engine, the expression for work W  has been obtained to 

be 

                  )(ln CH
e

g
TT

V

V
nRW     (i.e. from equation 8.20) 

 

And heat CQ  as 

                  
e

g
CC

V

V
nRTQ ln                 (i.e. from equation 8.26) 

Therefore  

                   
CH

C

CH
e

g

e

g
C

TT

T

TT
V

V
nR

V

V
nRT








)(ln

ln

                                    9.4 

 

Equation 9.4 is the coefficient of performance for ideal Stirling-cycle 

refrigerator and is equal to that of Carnot-cycle refrigerator. But the 

efficiency of the real Stirling-cycle refrigerator (i.e. the practical 

Stirling-cycle refrigerator) is always less than that of Carnot-cycle 

refrigerator operating between the same temperatures CT  and HT .   

 

3.4  Clausius Statement of the Second Law 
 

No process is possible whose sole results is the transfer of heat from a 

cooler body to a hotter body.  

 

SELF ASSESSMENT EXERCISE 1 

 

i. A Carnot heat pump is used to heat a house to a temperature of 

294 K. How much work must be done by the pump to deliver 

3350 J of heat into the house when the outdoor temperature is 

260 K.  

ii. Draw the PV diagram of the Stirling-cycle refrigerator and 

describe all the processes. 

 

 

 



PHY 207                                                                                                                    MODULE 2 

87 

4.0 CONCLUSION 
 

Refrigeration cycle is a reverse of heat engine cycle. Refrigeration is the 

process of withdrawing heat from a cold system and ejecting it into a hot 

reservoir while the mechanical work is done on the system.  The 

Clausius statement of the Second Law of thermodynamics states that no 

process is possible whose sole results is the transfer of heat from a 

cooler body to a hotter body.   

 

5.0 SUMMARY 
 

In this unit ,you have learnt that: 

 

 refrigeration cycles is a reverse of heat engine cycle 

 heat pumps, air conditioner and refrigerators similar devices and 

their principles of operation are similar 

 the coefficient of performance of the Carnot cycle refrigeration is 

CTH

C

T

T



  

 the coefficient of performance of the ideal Stirling cycle 

refrigeration is 

CTH

C

T

T



  

 the coefficient of performance of real Stirling cycle refrigeration 

is always less than that of Carnot cycle refrigeration when both 

operate between the same temperatures. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. A Carnot air conditioner uses 25, 500 J of electrical energy, and 

the temperatures indoors and outdoors are 27 ºC and 39 ºC 

respectively. Calculate the amount of heat deposited outdoors.  

ii. Draw the PV diagram of a Carnot-cycle refrigerator and describe 

all the processes involve.  
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UNIT 1 COMBINED FIRST AND SECOND LAWS 
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3.2 T and V Independent  

3.3 T and P Independent  

3.4 P and V Independent  

4.0 Conclusion 

5.0 Summary  

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0  INTRODUCTION 
 

The first and second laws of thermodynamics can be combined to obtain 

very important thermodynamics relations. 

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 write the equation for combined first and second laws of 

thermodynamics 

 derive some useful thermodynamics relations from the combine 

first and second laws. 

 

3.0  MAIN CONTENT 
  

3.1  Combined First and Second Laws of Thermodynamics 
 

The first law of Thermodynamics is 

 

                         dWdUdQ                                                                10.1 
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And the second law of thermodynamics is 

 

                         TdSdQ                          10.2                                                                                 

 

but differential work  

                          

PdVdW                     10.3                                                                                   

 

The combination of these three equations in any infinitesimal reversible 

process, for a PVT system gives 

 

                         PdVdUTdS                   10.4                                                                               

 

Equation 10.4 is the combined form of the first and second laws of 

thermodynamics for a PVT system. Some useful thermodynamics 

relations can be derived from equation 10.4 by selecting T and V, T and 

P, P and V as independent variables. It is important to note that the state 

of a pure substance (Module 1 Unit 1) can be defined or specified by 

any two of its properties. 

 

3.2 T and V Independent    
 

From equation 10.4  

                         )( PdVdU
T

dS 
1

                                10.5                                                                  

 

Consider the internal energy U as a function of T and V, i.e. U(T,V), 

then the derivative of U is 

 

                        dV
V

U
dT

T

U
dU TV )()(









                    10.6                                                       

 

Put equation 10.6 in 10.5 

                   

                       dVP
V

U

T
dT

T

U

T
dS TV ])[()( 











11
                          10 .7                                 

 

Also consider entropy S as function of two independent variables T and 

V, i.e. S(T,V), then the derivative of S  is 

 

                       dV
V

S
dT

T

S
dS TV )()(









                             10.8                                              

 

By comparing equation 10.7 with 10.8 (or equate 10.7 and 10.8), we 

obtain 



PHY 207                                                                                                                    MODULE 3 

91 

 

                       VV
T

S

T

U

T
)()(








1
                       10.9                                                                   

and  

                       TT
V

S
P

V

U

T
)(])[(








1
                        10.10                                                     

 

If we differentiate equation 10.9 partially with respect to V at constant T 

and differentiate 10.10 partially with respect to T and constant V, 

equating the mixed second-order partial derivatives of S gives 

 

                        P
T

P
T

V

U
VT 









)()(                                             10.11                                         

 

It can be shown that (check SEA1 in module 3, unit 4)
kT

P
V







)( , 

 

 therefore, equation 10.11 becomes 

 

                       P
k

T

V

U
T 



 
)(                                 10.12                                                       

 

Equations 10.11 and 10.12 show the dependence of the internal energy 

of a system on volume, at constant temperature and this can be 

calculated from the equation of state (i.e. using equation 10.11), or from 

the values of β, κ, T and P (i.e. using equation 10.12). 

 

Recall from module 2, unit 2 under consequences of the first law of 

thermodynamics that  

 

            PTVP
T

V
P

V

U
CC )]()[(









  (i.e. equation 6.7) 

 

By making use of equation 10.11, we have  

               

                      
k

TV

T

V

T

P
TCC PVVP

2









 )()(                           10.13 

 

Thus the difference ( VP CC  ) can be calculated for any substance, 

from equation of state or from values of T, V, β and κ.    
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SELF ASSESSMENT EXERCISE 1 

 

i. Derive equation 10.11 from equation 10.9 and 10.10 

ii. Find VP CC   for a certain gas whose equation of 

state nRTVbP  )( .  

 

iii. We know that VV C
T

U





)( , put this and equation 10.11 in 10.6 

to obtain 

                                 dVP
T

P
TdTCdU VV ])([ 




                10.13                                        

 

3.3 T and P Independent 
 

In terms of enthalpy PVUH  , equation 10.4 can be rewritten as 

                            )( VdPdH
T

dS 
1

                 10.14 

Check block 1 for how we arrived at 10.14 

 

Consider the enthalpy H as a function of T and P, i.e. H(T,P), then the 

derivative of H is 

                          

 dT
P

H
dT

T

H
dH TP )()(









                                                              10.15                                          

 

Put equation 10.15 in 10.14, then  

 

                        dPV
P

H

T
dT

T

H

T
dS TP ])[()( 











11
                        10.16                                    

      

Also consider entropy S as function of two independent variables T and 

P, i.e. S(T,P), then the derivative of S is 

 

                        dP
P

S
dT

T

S
dS TP )()(









                                         10.17                                               

 

By comparing equation 10.16 with 10.17, we obtain  

                    

                        pP
T

H

TT

S
)()(








 1
,                      10.18                                                                 

 

and 

 

                         ])[()( V
P

H

TP

S
TT 








 1
.                                         10.19                                                            
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If we differential equation 10.18 partially with respect to P at constant T 

and differentiate 10.19 partially with respect to T and constant P, 

equating the mixed second-order partial derivatives of S gives 

 

                      V
T

V
T

P

H
PT 









)()(                                               10.20                                            

 

From using equation 5.13, V
T

V
P 




)( , then 

 

                     VVT
P

H
T 




)(                                                       10.21                                           

 

Equation 10.21 is similar to equation 10.12.  It shows the dependence of 

enthalpy on pressure, at constant temperature and this can be calculated 

from the equation of state (i.e. from equation 10.20), or from the values 

of β, T and V (i.e. from equation 10.21). 

Also since we know that PCP
T

H





)( , put this and equation 10.20 in 

equation 10.15 to have 

                         dPV
T

V
TdTCdH PP ])([ 




                                 10.22                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 P and V Independent 
  

Consider entropy S as a function of P and V, i.e. S(P,V), derivative of S 

is  

   

                     dV
V

S
dP

P

S
dS PV )()(









                     10.23                                                  

Block 1 

Enthalpy PVUH   

Derivative of H gives 

 VdPPdVdUdH   

make dU subject of the expression  

 VdPPdVdHdU                    * 

but )( PdVdU
T

dS 
1

                   ** 

put equation (*) in (**) gives 

  )( PdVVdPPdVdH
T

dS 
1

 

Then,  

    )( VdPdH
T

dS 
1
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Also consider internal energy U as a function of P and V, i.e. U(P,V), 

the derivative of U is  

 

                      dV
V

U
dP

P

U
dU PV )()(









                           10.24                                           

 

Put equation 10.23 in 10.5 

 

                     ))()(( PdVdV
V

U
dP

P

U

T
dS PV 











1
  

 

Rearrange to get  

 

                      dV
T

P

V

U

T
dP

P

U

T
dS PV ])([)( 











11
                          10.25                         

 

By comparing equation 10.23 with 10.25, we obtain 

 

                       VV
P

U

TP

S
)()(








 1
                            10.26                                                          

and  

                      
T

P

V

U

TV

S
PP 









)()(

1
                         10.27                                                     

 

V
P

U
)(




can be written as VV

P

T

T

U
)()(








 (i.e. chain rule of partial 

derivatives) then equation 10.26 becomes 

 

                        VVV
P

T

T

U

TP

S
)()()(












 1
                             10.28                                             

 

But         

                       













VVV

P

T
andC

T

U
)(,)(                             10.29                                         

 

Put equation 10.29 in 10.28 to give 

 

                        




T

C

P

S V
V 




)(                                    10.30                                                                    

 

Equation 10.30 gives the change in entropy with respect to pressure at 

constant volume V
P

S
)(




in terms of measurable quantities VC , k ,  , and 

T.  
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4.0   CONCLUSION 
 

We have derived in this unit, some useful relations from the combined 

first and second laws of thermodynamics.  
 

5.0  SUMMARY 
 

In this unit, you have learnt that: 

 

 the combined first and second laws of thermodynamics is 
PdVdUTdS   

 the variation in enthalpy with respect to pressure at constant 

temperature is VVT
P

H
T 




)(  

 the difference between the specific heat capacities from combine 

first and second law is 
k

TV

T

V

T

P
TCC PVVP

2









 )()(  

 the variation in entropy with pressure at constant volume is 





T

C

P

S V
V 




)( . 

 

6.0    TUTOR-MARKED ASSIGNMENT 
 

Derive equation 10.20 from equations 10.18 and 10.19. 
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1.0      INTRODUCTION 
 

Energy functions of thermodynamic systems, also known as 

thermodynamic potentials, are discussed in this unit. They are useful in 

explaining many of the physical processes in thermodynamics 

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 name all the thermodynamics potentials 

 define each of the thermodynamic potentials 

 derive differential forms of the thermodynamic potentials 

 mention the process that each of these thermodynamic potentials 

can be used to describe. 

 

3.0    MAIN CONTENT 
 

3.1  Thermodynamic Potentials 
 

The four (4) thermodynamic potentials are; 

 

 internal energy U 

 enthalpy H 

 Helmholtz free energy A 

 Gibbs free energy G. 

 



PHY 207                                                                                                                    MODULE 3 

97 

Depending on the thermodynamic constraints on a system, it is always 

convenient to use a particular thermodynamic potential to describe a 

system. For example, Helmholtz free energy A can be used to describe a 

system in which temperature and volume are held constant. The 

equilibrium condition for this system is 0dA . Gibbs free energy G can 

be used to describe equilibrium between phases (since the two phases 

share the same pressure and temperature).  

 

3.2  Internal Energy U 
 

The internal energy U of a system is a state function i.e. it depends on 

the state of a system. The first law of thermodynamics (Module 2, unit 

1) gives an insight into the internal energy of a system. Change in 

internal energy U of a system U, according to the first law of 

thermodynamics is 

 
                               WQU   

 

 And the differential form is  

 

                                dWdQdU                                                      11.1 

 

The work done on a system may comprise of an irreversible component 

IdW  (such as stirring with a paddle, or forcing an electric current 

through a resistor) and some reversible components RdW . The 

irreversible component of work is dissipated as heat and is identical to 

adding heat to the system. So we can write 
T

dWdQ
dS I

  and this 

gives IdWTdSdQ  .  The reversible component of the work may 

consist of work done in compressing the system ( PdV ), but there may 

also be other kinds of work, such as the ones listed in section 3.1.1 in 

module 2, unit 1. In general the expression for each of these forms of 

reversible work is of the form XdY , where X is an intensive state 

variable and Y is an extensive state variable. All of these forms of non-

dissipative work can collectively be called configuration work. 

Therefore, the total work done on the system is of the form 
 

                    XdYPdVdWdW I                                11.2 

 

so, the first law of thermodynamics takes the form 

 

                   XdYPdVdWdQdU I                                          11.3 
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Equation 11.3 is a sort of ‘complete form’ of the first law taking into 

consideration all possible forms of work. Using equation 11.3, if a 

particular system is held at constant volume, then no PdV  work of 

expansion or compression is done. And if no other sort of work is done 

(either non- PdV  reversible work or irreversible work IdW ), then the 

increase in internal energy of this system is just equal to the heat added 

to the system.        
 

Therefore, internal energy U can be used to describe a system in which 

heat is transferred (either in or out) and / or work is done on or by the 

system. 

 

3.2  Internal Energy U 
 

The internal energy U of a system is a state function i.e. it depends on 

the state of a system. The first law of thermodynamics (Module 2, unit 

1) gives an insight into the internal energy of a system. Change in 

internal energy U of a system U, according to the first law of 

thermodynamics is 
 

                               WQU   

 

 And the differential form is  

 

                                dWdQdU                                                      11.1 

 

The work done on a system may comprise of an irreversible component 

IdW  (such as stirring with a paddle, or forcing an electric current 

through a resistor) and some reversible components RdW . The 

irreversible component of work is dissipated as heat and is identical to 

adding heat to the system. So we can write 
T

dWdQ
dS I

  and this 

gives IdWTdSdQ  .  The reversible component of the work may 

consist of work done in compressing the system ( PdV ), but there may 

also be other kinds of work, such as the ones listed in section 3.1.1 in 

module 2, unit 1. In general the expression for each of these forms of 

reversible work is of the form XdY , where X is an intensive state 

variable and Y is an extensive state variable. All of these forms of non-

dissipative work can collectively be called configuration work. 

Therefore, the total work done on the system is of the form 

 

                    XdYPdVdWdW I                                              11.2 

 

so, the first law of thermodynamics takes the form 
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                   XdYPdVdWdQdU I                                      11.3 

 

Equation 11.3 is a sort of ‘complete form’ of the first law taking into 

consideration all possible forms of work. Using equation 11.3, if a 

particular system is held at constant volume, then no PdV  work of 

expansion or compression is done. And if no other sort of work is done 

(either non- PdV  reversible work or irreversible work IdW ), then the 

increase in internal energy of this system is just equal to the heat added 

to the system.        
 

Therefore, internal energy U can be used to describe a system in which 

heat is transferred (either in or out) and / or work is done on or by the 

system. 

 

3.4 Helmholtz Free Energy A 
 

The Helmholtz free energy A is defined as  

 

                           TSUA                        11.7 

 

Its differential form is  

 

                            SdTTdSdUdA                       11.8 

 

But  XdYPdVdWdQdU I , so equation 11.8 becomes 

 

                           XdYPdVSdTdA                               11.9 

 

Equation 11.9 tells us that in an isothermal process (i.e. when dT  = 0), 

the increase in the 

 

Helmholtz function of a system is equal to all the reversible work 

(  XdYPdV ) 

 

done on the system. On the other hand, if a machine does any reversible 

work at constant temperature, the Helmholtz function decreases, and the 

decrease in the Helmholtz function is equal (if temperature is constant) 

to the reversible work (of all types) done by the system.  
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3.5  Gibbs Free Energy G  
 

The Gibbs function is define as  

 

                             PVTSUG                                                11.10 

 

It can also be defined as  

 

                             TSHG                                                        11.11 

and as  

                             PVAG                                                       11.12 

           

Its differential from equation 11.11 is  

 

                              SdTTdSdHdG  ,                                   11.13 

 

and from 11.12 is 

 

                             VdPPdVdAdG                                       11.14 

 

But from equation 11.6 (  XdYVdPTdSdH ) or from equation 

11.9 (  XdYPdVSdTdA ) equation 11.13 or 11.14 becomes 

 

                           XdYVdPSdTdG                             11.15 

 

Equation 11.15 can be used to describe a system that undergoes constant 

temperature and constant pressure processes. Example of a process of 

this kind is the phase change of a pure substance that usually takes place 

at constant temperature and pressure. Hence, the Gibbs free function is 

very useful in describing a process that involves change of phase.  

 

3.6  Differential Form of Thermodynamic Potential 
 

The differential forms of the thermodynamic potentials are: 
 

                          XdYPdVdWdQdU I                          11.16 

                          XdYVdPTdSdH                                   11.17 

                         XdYPdVSdTdA                                 11.18 

                           XdYVdPSdTdG                               11.19 

 

 



PHY 207                                                                                                                    MODULE 3 

101 

The more familiar forms of thermodynamic potentials are: 
 

                        PdVTdSdU                                                             11.20 

                      VdPTdSdH                                                              11.21 

                     PdVSdTdA                      11.22 

                     VdPSdTdG                                                            11.23 

 

Equations 11.20 to 11.23 are for condition under which only reversible 

work done on or by a system is PdV  work of expansion or of 

compression. 

 

SELF ASSESSMENT EXERCISE 1 

 
i. Define each of the four thermodynamic potentials 

ii. Derive the differential forms of the four thermodynamic 

potentials 

 

4.0  CONCLUSION 
 

Thermodynamics potentials are treated in the unit. Emphasis was on 

their definition, their differential forms, and their usefulness. Besides 

using these thermodynamic potentials in describing thermodynamic 

processes, useful relations can also be derived from each of these 

thermodynamic potentials. This will be the focus of the next unit.    
 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 there are four (4) thermodynamic potentials are namely; entropy 

U, enthalpy H, Helmholtz free energy A and Gibbs free energy G  

 their differential forms can be obtained from their definitions  

 depending on the constraints imposed on a system, it is always 

convenient to use a particular thermodynamic potential to 

describe a system. 
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UNIT3 THE MAXWELL RELATIONS OF 

THERMODYNAMICS 
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5.0 Summary  

6.0 Tutor-Marked Assignment 
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1.0      INTRODUCTION 
 

Useful relations can be derived from each of the four thermodynamic 

potentials discussed in the last unit. These relations are called Maxwell’s 

relations of thermodynamics. This unit therefore focuses on derivation 

of Maxwell’s relations.     

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 derive each of the four Maxwell’s relations from the differential 

of the thermodynamics potentials 

 state the importance of these relations. 

 

3.0   MAIN CONTENT 
 

3.1     Definition  

 

The differential forms of the thermodynamic potentials are: 

 

                         PdVTdSdU                                 12.1                                           

 

                         VdPTdSdH                                                   12.2                         
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                         PdVSdTdA                           12.3                                                       

 

                         VdPSdTdG                        12.4                                                           

 

The four Maxwell relations are derived from each of these four 

thermodynamic potentials. 

 

3.2  1st Relation   
 

The differential form of internal energy U is  

 

                         PdVTdSdU   

Differentiating this with respect to S while V is kept constant gives 

 

                       T
S

U
V 




)(                    12.5a 

                                                                  

 and with respect to V while S is kept constant gives 

 

         PS
V

U





)(                                              12.5b                                                 

 

Also differentiating 12.5a with respect to V at constant S and 12.5b with 

respect to S at constant V will give 

                             S
V

T

SV

U
)(








 2

                                   12.6a                                                

and        

                              V
S

P

VS

U
)(








 2

                                          12.6b                                     

The mixed second order derivatives of U, which implies that 

 

                              VS
S

P

V

T
)()(









                                           12.7                                      

 

Equation 12.7 is one of the four Maxwell relations.  

 

3.3 2nd Relation   
 

From differential form of Enthalpy H (i.e. VdPTdSdH  )  

 

                             T
S

H
P 




)(                         12.8a                                                                 

and 

                             P
P

H
S 




)(                 12.8b                                                                        
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Second derivative gives 

 

                            S
P

T

SP

H
)(








 2

                                        12.9a                                             

and  

                            p
S

P

PS

H
)(








 2

                                               12.9b                                      

 

The mixed second order derivatives of H are equal, so 

 

                             PS
S

P

P

T
)()(









                                      12.10                                          

 

Equation 12.10 is one of the four Maxwell’s relations. 

 

3.4 3rd Relation 
 

From the differential of Helmholtz free energy A (i.e. PdVSdTdA  ) 

 

                                S
T

A
V 




)(                    12.11a                                                             

and              

                               p
V

A
T 




)(                                               12.11b                                 

 

Second derivative gives 

 

                             T
V

S

TV

A
)(








 2

                                                 12.12a                        

and   

                            V
T

P

VT

A
)(








 2

                                                  12.12b                      

 

The mixed second derivatives of A in equation 12.12 are equal, 

therefore 

                           VT
T

P

V

S
)()(









  

i.e.                           

                             VT
T

P

V

S
)()(









                          12.13                                                    

V
T

P
)(




 in equation 12.13 can be obtained from equation of state. This 

implies that the variation of entropy S with respect to volume V at 
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constant temperature T for a system can be obtained from equation of 

state for the system.    
     

3.5  4th Relation 
 

From differential of Gibb’s free energy G (i.e. VdPSdTdG  ), 

partial derivative gives  

                              S
T

G
P 




)(                                12.14a                                              

and 

                              V
P

G
T 




)(                                                   12.14b                            

Differentiating 12.14a with respect to P at constant T, and 12.14b with 

respect to T at constant P give 

                            T
P

S

TP

G
)(








2

,                                              12.15a                        

and      

                              p
T

V

PT

G
)(








 2

,                                               12.15b                          

respectively.  

 

The mixed second derivatives of G in equation 12.15 are equal, 

therefore  

 

                                  PT
T

V

P

S
)()(









                                           12.16                                        

 

P
T

V
)(




 in equation 12.16 can be obtained from equation of state. 

 

3.6 Maxwell Relations 
 

The four (4) Maxwell Relations of thermodynamics are:  

 

                                 VS
S

P

V

T
)()(









                     12.17                                                   

 

                                 PS
S

P

P

T
)()(









                              12.18                                            

 

                                  VT
T

P

V

S
)()(









                                           12.19                              

 

                                  PT
T

V

P

S
)()(









                             12.20                                          
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3.7 Usefulness 
 

These relations (i.e. Maxwell relations) are useful in thermodynamics 

calculations. For example, one can replace a derivative of entropy with a 

derivative of a simple thermodynamic variation such as temperature. 

 

Equation 13 and 16 give the derivative of entropy in terms of 

temperature T, volume V and pressure P.   

 

                                 VT
T

P

V

S
)()(









 and PT

T

V

P

S
)()(









 

 

For an ideal gas, nRTPV   

                                  
T

P

V

nR

T

P
V 




)(                                      12.21                                     

and  

                                   
T

V

P

nR

T

V
P 




)(                                             12.22                                   

 

For an ideal gas, using equations 12.21 and 12.22, equations 12.13 and 

12.20 respectively become 

                                  
T

P
T

V

S





)(                                       12.23   

                                            

                                    
T

V
T

P

S





)(                                                12.24                           

 

SELF ASSESSMENT EXERCISE  

 

i. Derive the four Maxwell equations. 

ii. For an ideal gas, show that 
T

P
T

V

S





)(  and 

T

V
T

P

S





)( .  

 

4.0  CONCLUSION 
 

We have derived, in this unit, the four (4) Maxwell relations and we also 

mentioned the usefulness of these relations. In the next unit, we will be 

using these relations in deriving the TdS equations.  
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5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 each of the four Maxwell’s relations is derived from each of the 

four thermodynamics potentials 

 Maxwell relations are useful in thermodynamics calculations e.g. 

a derivative of entropy can be replace with a simple 

thermodynamic variation such as temperature. 

 

6.0      TUTOR-MARKED ASSIGNMENT 
 

i. For the differential of x  given as 

         dzzyNdyzyMdx ),(),(      (Equation 2.7)  

dx is exact when  

            z
y

N
y

z

M
)()(









       (Equation 2.8) 

ii. It is known that the differentials of the thermodynamic potentials 

are exact; hence derive the four Maxwell’s relations using 

equations 2.7 and 2.8. 
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1.0 INTRODUCTION 
 

Another useful set of equations in thermodynamics is the TdS equations. 

They, among other things, enable us to calculate the change in entropy 

during various reversible processes in terms of directly measurable 

quantities such as the coefficient of expansion and the bulk modulus.  

 

2.0 OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 derive the three TdS equations 

 write change in entropy for different reversible processes in term 

of directly measurable quantities. 

 

3.0 MAIN CONTENT 
 

3.1 First TdS Equation 
 

Entropy (S) can be express in terms of any two of P, V, and T. Let us 

express entropy S as a function of V and T, i.e. S(V,T). The derivative 

of entropy S is  

 

                          dT
T

S
dV

V

S
dS VT )()(









                               13.1                                   
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Multiply equation 13.1 by T to obtain 

 

                        dT
T

S
TdV

V

S
TTdS VT )()(









                    13.2                                      

 

From Maxwell’s relation (i.e. 12.19), VT
T

P

V

S
)()(









 and also at 

constant volume VVV C
T

U

T

S
T 









)()( , therefore 13.2 becomes 

     

                         dTCdV
T

P
TTdS VV 




 )(                            13.3                                          

 

Equation 13.3 is the first TdS equation. 

  

3.2  Second TdS 
 

Let us express entropy S in terms P and T i.e. S(P,T), its derivative is 

 

                           dT
T

S
dP

P

S
dS PT )()(









                                   13.4                       

 

Multiplying 13.4 by T gives 

 

                          dT
T

S
TdP

P

S
TTdS PT )()(









                             13.5                       

From Maxwell’s relation (equation 12.20), PT
T

V

P

S
)()(









, and also 

at constant pressure PPP C
T

H

T

S
T 









)()( . Thus 13.5 becomes 

                            

dTCdP
T

V
TTdS PP 




 )(                                                             13.6 

 

Equation 13.6 is the second TdS equation 

 

3.3 Third TdS 
 

Then the last option is to express entropy S as a function of P and V, i.e. 

S(P,V), we have 

 

                          dV
V

S
dP

P

S
dS PV )()(









                                         13.7                                  
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Multiplying 13.7 by T to obtain 

              

                         dV
V

S
TdP

P

S
TTdS PV )()(









                                 13.8                                            

 

In a constant volume process, it can be proved that 

VVV
P

T
C

P

S
T )()(









. 

 

And also in a constant pressure process, it can be proved that 

PPP
V

T
C

V

S
T )()(









. 

 

Therefore 13.8 becomes  

                             dV
V

T
CdP

P

T
CTdS PPVV )()(









                        13.9                                

 

Equation 13.9 is the third of the TdS equations. 

 

 

 

 

 

 

 

 

 

 

 

These equations enable one to calculate heat flow (TdS ) in a reversible 

process. Also, change in entropy between two states of a system can be 

calculated from these equations provided that the equations of state are 

known. This is because all the partial derivatives in these equations can 

be obtained from equation of state 

 

3.4  Expansion, Compression and TdS Equations 
 

3.4.1 Compression  
 

The way the volume of a material decreases with pressure at constant 

temperature is described by isothermal compressibility k  

 

                          T
P

V

V
k )(






1
                                                        13.13              

 

Therefore the three Tds equations are 

dTCdV
T

P
TTdS VV 




 )(                             13.10           

dTCdP
T

V
TTdS PP 




 )(                          13.11 

dV
V

T
CdP

P

T
CTdS PPVV )()(









             13.12 
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Isothermal compressibility is different from another parameter called 

adiabatic compressibility adk .  

 

                          sad
P

V

V
k )(






1
                                                      13.14                     

 

The reciprocal of k (i.e. 
k

1
) is called isothermal bulk modulus or 

isothermal incompressibility.  

 

3.4.2 Expansion 
 

The way the volume of a material increases with temperature at constant 

pressure is described by coefficient of volume expansion or expansivity 
  

 

                         P
T

V

V
)(






1
                                            13.15                                          

 

The unit of expansivity is K-1 

 

Using equations 13.13 and 13.15, one can show that  

 

                       
kT

P
V







)(         and   V

T

V
P 




)(                          13.16                            

 

 and the reciprocal of 13.16 gives  

               


k

P

T
V 




)(        and     

VV

T
P



1





)(    respectively          13.17                    

 

SELF ASSESSMENT EXERCISE 1 
 

i. Using equation 13.13 and 13.15, show that 
kT

P
V







)(  

ii. Determine the heat transferred during a reversible isothermal 

change in pressure. 

iii. Calculate the temperature change of a substance which undergoes 

a reversible adiabatic change of pressure.   

 

3.5 The TdS equations in terms of k  and   

 

Replacing the partial derivatives with these, the three TdS  equations 

become 
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                      dT
T

C
dV

k
dS V


                                      13.18                                      

 

                     dT
T

C
VdPdS P                                                   13.19                 

 

                     dV
VT

C
dP

T

kC
dS PV


                                              13.20                  

 

Equations 13.18 to 13.20 give the change in entropy between two states 

in terms of P, V, T, k ,   and heat capacities as a function of 

temperature and pressure of specific volume. The implication of these 

equations is that one do not even need equation of state to calculate the 

change in entropy.  

 

4.0 CONCLUSION 
 

The three TdS  equations are useful set of equation in thermodynamics. 

They are used to calculate heat flow in any reversible process.  

 

5.0 SUMMARY 
 

In this unit, you have learnt: 

 

 how to derive the three TdS equations 

 that these equations can be used to calculate heat flow (TdS ) in a 

reversible process. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

Using the TdS equations 13.18 and 13.19 show that


 2
TV

VCPC  . 
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MODULE 4 
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1.0  INTRODUCTION 
 

In module 1 unit 1, we discussed change of state and it was mentioned 

that change of phase or phase transition is a special case of change of 

state. Phase transition is the transformation of a thermodynamic system 

from one phase of matter to another. This unit is devoted to phase 

transition. An important thing to note during phase change is that 

addition or withdrawal of heat to or from a substance does not result in 

change of temperature. When matter changes from one phase to another, 

energy is involved.   
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2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 define phase transition 

 give conditions under which phase transition occurs 

 differentiate between phase transition and change of state 

 derive Clapeyron’s equation 

 explain the three types of phase transitions. 

 

3.0  MAIN CONTENT 
  

3.1  Phases of Matter 
 

Matter or substance can exist in three (3) familiar phases namely; solid 

phase, liquid phase, gaseous phase. Matter of some substances can also 

exist in two (2) less familiar phases namely; super fluid phase, and 

plasma phase.  

 

Solid Phase: Molecules are arranged in a closely packed form called 

crystal. These molecules can only vibrate about their lattice point.   

 

Liquid Phase: Molecules are close together and they take the shape of 

the container. Molecules of liquid, within its volume, can move from 

place to place, rotate and vibrate.  

 

Gaseous Phase: Molecules are widely separated and free to move 

around freely.  

 

Super fluid: A supercritical (or critical) fluid is a liquid/gas under 

extreme pressure.  

 

Plasma: Plasma is a gas that is composed of free-floating ions and free 

electrons.   

 

3.1.1 Phase Diagram 
 

Figure 14.1 shows the phase diagram for water. The three regions for the 

three phases are shown in the diagram. The solid curves or lines 

represent boundary between two phases e.g. fusion curve is the 

boundary between solid phase and liquid phase. These lines are called 

equilibrium lines. The implication of this is that under specific 

conditions of temperature and pressure, a substance can exist in 

equilibrium in more than one phase at the same time. 
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Triple Point: This is the point where the three equilibrium lines meet as 

indicated in the phase diagram 14.1 below.  At the triple point, solid, 

liquid, and vapour phases of a pure substance coexist in equilibrium. 

The triple point values for common materials are given in table 14.1.   

 

NOTE: All substances have triple point except Helium. 

  

Triple Point Temperature: this is the temperature at which solid, 

liquid, and vapour phases coexist in equilibrium.  

 

Triple Point Pressure: This is the pressure at which solid, liquid, and 

vapour phases coexist in equilibrium.  

 

Critical Point: This specifies the conditions of temperature and pressure 

beyond which it is no longer possible to distinguish a liquid from a gas. 

The point is indicated in the phase diagram in figure 14.1 and the region 

beyond the critical point is known as fluid region.  

 

The values of triple point and critical point temperature and pressure for 

some materials are given in table 14.1  

 

 

Fig. 14.1: Phase Diagram for Water (After Cutnell and Johnson) 
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Table 14.1: Triple Point and Critical Point Conditions for some 

Common Materials 

             Triple Point              Critical Point 

Substance Temperature 

(ºC) 

Pressure 

(Pa) 

Temperature 

(ºC) 

Pressure 

(Pa) 

Ammonia -77.8 6.05  × 103 132.4 11.30 × 106 

Carbon 

dioxide 

-56.6 5.18 × 105 31.1 7.38 × 106 

Hydrogen -259.3 7.04 × 103 -239.9 1.30 × 106 

Nitrogen -210.0 1.25 × 104 -146.9 3.40 × 106 

Oxygen -218.8 1.52 × 102 118.4 5.08 × 106 

Sulfur 

dioxide 

75.5 1.67 × 103 157.6 7.88 × 106 

 

Water 0.01 6.10 × 102 374.3 22.10 × 106 

 

Source:  Physics by John D. Cutnell and Kenneth W. Johnson 

 

3.1.2 Co-exist Phases 
 

This is when more than one phase of a substance (e.g. liquid-solid) exist 

side-by-side in equilibrium at the same time. For example, solid water 

and liquid water can coexist at 0 ºC along the process of fusion or 

melting. The Gibbs energy (G) for two coexisting phases α and β of a 

pure substance are equal.                               

                               


GG                                                                14.1                          

 

Using the phase diagram 14.1 for water as example, coexistence of 

phases occurs only along the equilibrium lines. 

 

3.2 Phase Transitions  
 
Phase transition occurs when matter changes from one of the phases of matter 

to another. The process always involves withdrawal or addition of heat 

energy from or to the matter. Using figure 14.1 as an illustration, phase 

transition occurs whenever any one of the curves in the phase diagram is 

crossed.  

 

Phase transition for a pure substance occurs at constant temperature and 

pressure. The implication of this statement is that, for a pure substance 

0dPdT  during a phase change. However, the extensive 

thermodynamic coordinates or properties (e.g. Volume) change abruptly 

as a result of a phase transition. Internal energy (U), enthalpy (H), and 

entropy (S) may also change during a phase transition. 
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Figure 14.2 shows the three most common phases of matter and the 

name given to each of the phase transitions.  

 

 

 

 

 

Fig. 14.2: Phase Transitions  

 

3.2.1 Latent Heat, L, during Phase Transition 
 

Latent heat L is the amount of heat energy per mole that must be added 

or removed when a substance changes from one phase to another. If the 

phase transition takes place reversibly, the heat transfer (i.e. latent heat) 

per mole for transition from initial phase α to a final phase β is given by 

 

              )( 
SSTL                                                                     14.2 

 

3.3 Types of Phase Transition 
 

The three types of phase transitions are: first order, second order and 

lambda phase transitions.    

 

3.3.1  First Order Phase Transition 
 

The phase transitions that we are familiar with i.e. sublimation, 

vaporization and fusion are called first order phase transition. They are 

called first order because the first order derivatives of the Gibbs function 

are finite. 

  

Therefore, for a first order phase transition: 

 

 there are changes in entropy and volume, and 

 the first-order derivatives of the Gibbs function change 

discontinuously. 

 

The characteristics of the first order phase transition are shown in figure 

14.3. The specific heat capacity at constant pressure is infinite, this is 

because temperature is constant during phase change (
PT

S
TpC



 ). 

 

 

 

 

 

Solid Liquid Gas 

Melting Vapourization 

Condensation Fusion 

Sublimation 
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3.3.2  Second Order Phase Transition 
 

This is a phase transition in which the second derivates of Gibbs are 

finite.  

 

For order phase transition,  

 

 T, P, G, S, and V (also H, U, and F) remain unchanged  

 PC , β, and κ (i.e. from second derivatives of G) are finite 

 

The only example of second order phase transition is the transition for 

the superconductor from superconducting to the normal state in zero 

magnetic fields.  

   

3.3.3  Lambda phase transition 
 

For the lambda phase transition: 

 

 T, P, and G remain constant,  

 S and V (also U, H, and F) remain constant, and  

 PC , β, and κ are infinite 

 

The most interesting example of lambda transition is the transition from 

ordinary liquid helium to super fluid helium at a temperature and 

corresponding pressure known as a lambda point.    

 

Figure 14.4 shows the variation of PC  with temperature for each of the 

three phase transitions.  

 



PHY 207                                                                                                                    MODULE 4 

121 

 

Fig. 14.3:  Characteristics of First Order Phase Transition (After 

Zemansky and Dittman) 

 

Fig. 14.4:  The Three Types of Phase Transitions (After 

Zemansky and Dittman) 
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3.4 Gibbs Function during Phase Transition 
  

The Gibbs function G does not change during phase transition. 

For coexisting phases,  

 

                              0
PT

dG
,

                            14.3                                                         

i.e. change in Gibbs at constant temperature and pressure is zero.  

 

As mention earlier, two phases (e.g. liquid-gas) can coexist in 

equilibrium. For coexisting phases α and β of a pure substance 

 

                           
dGdGGG                      14.4                                 

 

The Gibbs function G is given by equation 14.5 below. For your 

reference check block 1 

 

                           VdPSdTdG                                               14.5                                      

 

 

 

 

 

 

 

 

 

 

If equation 14.5 is put in equation 14.4, we obtain 

 

                      dPVdTSdPVdTS
                       14.6                           

 

Rearranging (14.6) to obtain 

 

                     




VV

SS

dT

dP




                                                        14.7                                

 

From equation 14.2  

 

                        
T

L
SS                                         14.8                                                  

 

 

 

 

Block 1 
 

PVSTUG   

Differentiating G gives 

VdPPdVTdSSdTdUdG   

but PdVTdSdU  , then  
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Then, put equation 14.8 in equation 14.7 to obtain 

 

                       
)( 

VVT

L

dT

dp


                                    14.9                                                

 

Equation 14.9 is known as the Clapeyron’s equation. 

 

If solid phase is labeled 1, liquid 2, and gas or vapour phase 3, equation 

14.9 can be written as follows: 

For solid – vapour phase transition, we have  

 

                         
)(

)(
13

13
13

VVT

L

dT

dP


 ,                                          14.10                               

where 13L  is the latent heat of sublimation. 

 

And for solid - liquid phase transition, we have   

                  

                       
)(

)(
12

12
12

VVT

L

dT

dP


 ,                                14.11                                         

where 12L  is the latent heat of fusion, 

  

SELF ASSESSMENT EXERCISE 1 

 

i. Explain the following: 

(a) Phase transition (b) Triple point (c) Triple point temperature 

(d) Critical point.  

ii. Derive Clapeyron’s equation. 

iii. The vapour pressure of a particular solid and a liquid of the same 

material are given by 
T

P
6

040  .ln  and 
T

P
4

030  .ln  

respectively, where P is given in atmospheres. Find the 

temperature and pressure of the triple point of this material.  

 

3.5 Usefulness of Clapeyron’s Equation 
 

Equation 14.9 can be integrated to obtain an expression for pressure as a 

function of temperature. If the following assumptions holds i.e. if the 

variation in latent heat can be negligible, and if one of the phases is a 

vapour, and if the vapour is assumed to be an ideal gas, and if the 

specific volume of the liquid or solid is neglected in comparison with 

that of the vapour, the integration can be readily carried out. 

 

                         
)(

)(
PRTT

L

dT

dP 23
23                                                   14.12                          
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                          
2

23

T

dT

R

L

P

dP
                                                    14.13                        

Then, 

                          tcons
RT

L
P tanlnln  23                                        14.14                   

 

4.0   CONCLUSION 
 

Matter can exist in three well-known phases i.e. solid, liquid and 

gaseous phases. Phase transition occurs when changes from one phase to 

another. During the phase change, the heat added does not bring about a 

change in temperature. This type of heat is called latent heat of 

transformation (L). Gibbs free energy is a useful thermodynamic 

potential in describing phase transition. 
 

5.0  SUMMARY 
 

In this unit you have leant that: 

 

 matter can exist in three main phases namely; solid, liquid and 

gas phases  

 two phases of matter can coexist in equilibrium 

 phase transition occurs when matter changes from one of the 

phases of matter to another 

 phase transition for a pure substance occurs at constant 

temperature and pressure 

 there are three types of phase transition namely; first order, 

second order and lambda phase transitions 

 the heat transfer (i.e. latent heat) per mole for transition from 

initial phase α to a final phase β is )( 
SSTL                                                           

 the Clapeyron’s equation for the first order transition is 

)( 
VVT

L

dT

dp


 .  

 

6.0    TUTOR-MARKED ASSIGNMENT 
 

i. Name and describe the three types of phase transition. 

ii. Differentiate between a change of state and phase transition.  
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1.0      INTRODUCTION 
 

You were told in module 3, unit 2 that thermodynamic potentials are 

used to describe physical processes. In this unit, we are going to use the 

enthalpy H to describe throttling process and the internal energy U to 

describes free expansion of a gas  

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 explain throttling process 

 show that the initial and final enthalpies during a throttling 

process are equal 

 explain free expansion of a gas 

 show that for free expansion of ideal gas at constant temperature, 

0



T

P

U
)( . 

 

3.0    MAIN CONTENT 
 

3.1  Throttling Process 
 

Throttling Process is an irreversible steady flow expansion process in 

which a perfect gas is expanded through an orifice of minute dimensions 

such as a narrow throat of a slightly opened valve. During the process, 

the fluid passes through a narrow opening (a needle valve) from a region 
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of constant high pressure to a region of constantly lower pressure 

adiabatically. Throttling is also known as Joule-Kelvin expansion.  

 

 

 

 

 

 

 

 

 

 

Fig. 15.1: A Throttling Process 

 

Consider a cylinder that is thermally insulated and equipped with two 

non-conducting pistols on the opposite sides of a porous wall as shown 

in figure 15.1. As indicated in figure 15.1 (a), the left hand side of the 

porous plug is filled with gas at iP  and iV  while the right hand side is 

empty. Suppose the two pistons are moved simultaneously to the right in 

such a way that a constant pressure iP  is maintained on the right hand 

side of the wall while a constant lower pressure fP is maintained on the 

right hand side. After all the gas has seeped through the porous wall, the 

final equilibrium state of the system is shown in figure 15.1 (b).  This 

kind of process is known as throttling process.  

 

A throttling process is an irreversible process. This is because the gas 

passes through non-equilibrium states on its way from initial 

equilibrium state to its final equilibrium state. As you know, non-

equilibriums states cannot be described by thermodynamic coordinates 

i.e. the non-equilibrium states between the initial and final equilibrium 

states during a throttling process cannot be described using 

thermodynamic coordinates. But we can make an interesting conclusion 

from the initial and final equilibrium states.  

 

3.1.1  Enthalpy during throttling process 
 

One of the most interesting properties of the enthalpy function ( H ) is in 

connection with a throttling process. 

 

The equation of the first law of thermodynamics is 

 

                               WdUdQ                       15.1                                                                 

 

 

 

iViP ,

 

fVfP ,

 

(a) (b) 

Porous wall 



PHY 207                                                                            THERMODYNAMICS 

128 

but throttling process occurs adiabatically,   

 

                              0dQ                 (adiabatic process)                  15.2                        

 

Then, the first law of thermodynamics becomes 

 

                              WdU                                                               15.3                       

  and work   

 

                             
0

0 iV
i

fV

f dVPdVPW                                      15.4                     

 

Since both pressures ( iP  and fP ) remain constant, equation 15.3 

becomes 

 

                            )( iiff VPVPW                                             15.5                    

 

Now, put equation 15.5 in 15.3 to obtain 

 

                            iViPfVfPiUfU   

Rearranging gives 

 

                           fffiii VPUVPU                                            15.6          

 

But enthalpy PVUH  , so 15.6 becomes 

 

                           fi HH                                                                15.7                           

In a throttling process, therefore, the initial and final enthalpies are 

equal. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  15.2:  Apparatus for Performing a Continuous Throttling 

Process   

High  

Pressure 
Low  

Pressure 
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pressure 
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pressure 
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Throttling process is very useful in refrigeration. A continuous throttling 

process can be achieved using the apparatus shown in figure 15.2. 

 

SELF ASSESSMENT EXERCISE 1 

 

i. What is a throttling process 

ii. For a throttling process, show that initial enthalpy iH  is equal to 

final enthalpy fH . 

 

3.2  Free Expansion of a Gas 
 

The concept of work done by or on a system has been treated in module 

2, unit 1 under the first law of thermodynamics. The work done by or on 

a gas in a cylinder with a moveable piston was derived to be 

 

                                   PdVdW                                                       15.8                           

 

Equation 15.8 above is as a result of expansion or compression of a gas 

in a cylinder. That is, in the case of expansion, the molecules move 

faster and push the piston (exerted a force on the piston) and move the 

piston through a distance.  

Now consider, for example, a composite system consisting of a 

hydrostatic fluid in the compartments 1 and 2 with (P1, V2) and (P2, V2) 

respectively as shown in figure 15.3 below.   

 

 

 

 

 

 

 

 

 

 

Fig. 15.3: A Composite System   

 

Each compartment or both compartments can undergo an adiabatic work 

by interacting with the surroundings. This may be done by moving one 

or both of the pistons in or out, either slowly (a quasi-static process) so 

that the work done  PdVW , with pressure P being equal to the 

equilibrium value (i.e. for a quasi-static process the system is in 

equilibrium at every instant). Also the piston can be moved very rapidly 

(a non-quasi-static process) so that the pressure at the face is less that the 

equilibrium value. For these two examples, work is done on the piston 

due to expansion of the fluid. 

P1, V1 P2, V2
 

Partition 

Piston 2 Piston 1 
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However, if either or both of the pistons is or are pulled out at a faster 

rate than the velocity of the molecules of the fluid, the fluid will do no 

work on the piston at all. This type of process is called a free expansion 

of a gas. Another good example of this process is described below. 

 

Suppose the system in figure 15.3 is thermally insulated and that 

compartment 1 contains a gas while the other compartment is empty. If 

the partition is removed, the gas will undergo what is known as a free 

expansion in which no work is done and no heat is transferred. From the 

first law of thermodynamics, since both Q  and W  are zero, it follows 

that the internal energy remains unchanged during a free expansion.  

 

For free expansion of gas, work is zero ( 0W ) and no heat is transfer 

( 0Q ). The equation of the first law of thermodynamic reduces to 

 

                                      0dU                   15.9                                                            

 

3.2.1  Temperature Change during Free Expansion  
 

The value of temperature change U
V

T
)(




 during free expansion process 

has engaged the attention of physicists for over 100 years. Joule in 1843, 

and many others attempted to measure either the quantity U
V

T
)(




, which 

may be called the Joule Coefficient, or related quantities that are all a 

measure of the effect of a free expansion-often called the Joule effect. 

The results of their experiments showed that 0



U

V

T
)(  for ideal gas, 

but not for real gas (already discussed in module 2, unit 2). 

 

3.2.2  Internal Energy U during Free Expansion 
 

The internal energy U of a gas, like any state function, is a function of 

any two of the coordinates P, V, and T. 

Now consider U as a function of T and V i.e. U(T,V), then the 

derivative of U is 

                             dV
V

U
dT

T

U
dU TV )()(









                                  15.10                   

If the temperature change is equal to zero (i.e. 0dT ), and for free 

expansion ( 0dU ), then equation 15.10 becomes 

 

                            0



T

V

U
)(                                                              15.11                             

Equation (15.11) implies that U does not depend on V. 
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Also consider U as a function of T and P i.e. U(T,P)), the derivative of 

U is 

                            dP
P

U
dT

T

U
dU TP )()(









                                    15.12                          

 

If the temperature change is equal to zero (i.e. 0dT ) and for free 

expansion ( 0dU ), then equation 15.12 becomes 

          

                            0



T

P

U
)(                                                             15.13                      

 

Equation 15.13 implies that U does not depend on P. 

 

These (i.e. equation 15.11 and 15.13) follows that if no temperature 

change takes place in a free expansion process, U is independent of V 

and P, and therefore U is a function of T only. This result, of course, has 

been obtained in Module 2, unit 2, under Gay-Lussac-Joule experiment.  

 

SELF ASSESSMENT EXERCISE 2 

 

i. Explain free expansion of gas. 

ii. One mole of an ideal gas undergoes a throttling process from 

pressure of 4.052 x 105 Nm-2 to 1.013 x 105 Nm-2. The initial 

temperature of the gas is 50 ˚C. (a) How much work could have 

been done by the ideal gas has it undergone a reversible process 

to the same final state at constant temperature? (b) How much 

does the entropy of the universe increase as a result of the 

throttling process? (R=8.3 JK-1mol-1) 

 

4.0  CONCLUSION 
 

Throttling process can be described using the enthalpy H of the system. 

During a throttling process, the enthalpy H is constant. This process is 

useful in refrigeration. Free expansion of a gas can be described using 

the internal energy of the system.  
 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 during the process, the fluid passes through a narrow opening (a 

needle valve) from a region of constant high pressure to a region 

of constantly lower pressure adiabatically 

 the enthalpy H can be used to describe a throttling process 
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 for a throttling process, the initial enthalpy is equal to the final 

enthalpy (i.e. fi HH  ) 

 throttling process is very useful in refrigeration 

 free expansion of a gas that occurs adiabatically, work is zero 

( 0W ) and no heat is transfer ( 0Q ), hence from the first law 

0dU  

 for free expansion process for an ideal gas, the internal energy U 

is a function of temperature alone i.e. 0



T

P

U
)( . 

 

6.0 TUTOR-MARKED ASSIGNMENT  
 

i. Explain what is meant by free expansion of a gas 

ii. 1 mol of an ideal gas for which 1225.VC and 4433.PC J/mol 

K expands adiabatically from an initial state at 340 K and 500 Pa 

to a final state where it volume has doubled. Find the final 

temperature of the gas, the work done, and the entropy change of 

the gas, for (a) a reversible expansion and (b) a free expansion of 

the gas into an evaporated space (Joule expansion). (1 Pa = 

1.013x105 Nm-2) 
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UNIT 3 PRODUCTION OF LOW TEMPERATURE 
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P

T
)(




  

   3.1.2 Adiabatic Demagnetisation S
B

T
)(




 

3.4 Entropy and Temperature  

4.0 Conclusion 

5.0 Summary  

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0      INTRODUCTION 
 

We discussed in module 2, unit 5, the device used in lowering the 

temperature of a body or system i.e. refrigerator. We will discuss in this 

unit, the cooling method that is being used to obtain extremely low 

temperature i.e. cooling by adiabatic demagnetisation.  

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 discuss the process of cooling 

 mention different methods being used to achieve low temperature  

 discuss the process of cooling by adiabatic demagnetisation 

 derive the expression for change in temperature with respect to 

field B at constant entropy i.e. S
B

T
)(




. 

 

3.0   MAIN CONTENT 
 

3.1     Cooling Process  
 

Generally, two processes are involved in cooling a gas namely; 

isothermal process followed by adiabatic process. For example, to cool a 
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gas by adiabatic decompression, the gas is first compressed isothermally 

i.e. at constant temperature. This is done by compressing the gas in a 

vessel that is not insulated and wait long enough for the gas to lose any 

heat that is generated due to compression. In this way, a constant 

temperature is maintained. The heat that is generated can be explained in 

terms of the law tcons
T

PV
tan . Then, the vessel containing the gas is 

insulated and the gas is allowed to expand adiabatically (i.e. no heat 

transfer is allowed between the vessel and the surrounding). This kind of 

expansion brings about reduction in temperature. The expression for 

change in temperature with respect to pressure at constant 

entropy S
P

T
)(




 can be derived. The process can be repeated until the 

desired temperature is reached. This method is called cooling by 

adiabatic decompression.  

 

3.1.1 Methods of Cooling   
 

Some of the methods being used for low temperature cooling are: 

 

 laser cooling 

 evaporative cooling (e.g. evaporation of 3He) 

 cooling by liquefaction 

 cooling by adiabatic demagnetisation 

 

The process of cooling by adiabatic demagnetisation has been used to 

obtain extremely low temperature. Cooling by adiabatic demagnetisation 

is therefore discussed below.  

 

3.2  Cooling by Adiabatic Demagnetisation 
 

Different methods have been employed to obtain very low temperature. 

The method of adiabatic demagnetisation has been used to obtain 

extremely low temperature. Figure16.1 shows the S-T diagram for 

adiabatic demagnetisation. Magnetic field B is zero along the curve 

labeled 0B  while magnetic field is B along the curve labeled B. In 

process ab, a sample of paramagnetic salt (e.g. cerium magnesium 

nitrate) already cooled to low temperature by other means (e.g. by 

contact with a bath of liquid helium), is magnetized isothermally. The 

sample is often suspended in an atmosphere of helium, which can 

conduct away any heat that is produced, and hence keeps the process 

isothermal. Hence, process ab is isothermal magnetization.  Then, in 

process bc (i.e. adiabatic demagnetisation), the paramagnetic salt is 

insulated (by pumping out the helium) and then demagnetized 

adiabatically. This process of isothermal magnetization followed by an 

adiabatic demagnetisation can be repeated over and over again until the 
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desired temperature is reached. Temperature close to 0 K have been 

reached in this manner.  

 

Note that one could actually reach a temperature of absolute zero if one 

did this an infinite number of time- but not for any fewer (statement of 

third law of thermodynamics). 

 

 

Fig. 16.1: The Temperature Dependence of the Entropy of a 

Magnetic System 

 

3.3 Theory of Adiabatic Demagnetisation 
 

Magnetic dipole moment P of a sample is the maximum torque it 

experiences in unit field B. Torque is given by BP . The 

magnetization M of a specimen is defined by )( MHHB o   . 

The magnetization is also equal to the magnetic moment per unit 

volume. The differential form of work for a magnetic system is BdM  

(Module 1, unit 5, section 3.1.1).  

 

                                 BdMdW                                                          16.1                                      

 

BdM  is the work done per unit volume on an isotropic sample in 

increasing its magnetization from M  to dMM  .  

 

If we add heat to a magnetisable sample, and do work per unit volume 

on it by putting it in a magnetic field B and thereby increase its 



PHY 207                                                                            THERMODYNAMICS 

136 

magnetization by dM, then, provided there is no change in volume, the 

increase in its internal energy per unit volume is given by  

 

                            BdMTdSdU                                                      16.2                  

 

In this magnetic context, we can define state functions H, A, and G per 

unit volume by 

 

                         BMUH                                                                16.3            

 

                        TSUA                                                                    16.4             

 

                        BMATSHG                                                  16.5           

 

And the differential forms as,  

 

                      MdBTdSdH                                                           16.6                                                

 

                     BdMSdTdA                                                          16.7                 

 

                    MdBSdTdG                                                           16.8                

 

M is the dipole moment per unit volume, in NmT-1m-3, which is the 

same as the magnetization in Am-1 

 

We can derive an expression for the lowering of the temperature in an 

adiabatic decompression S
P

T
)(




. Also using the same argument, step-

by-step, for the lowering of the temperature in an adiabatic 

demagnetisation S
B

T
)(




. 

 

3.3.1  Adiabatic Decompression S
P

T
)(




 

Considering entropy as a function of temperature and pressure (i.e. 

S(T,P)), 

 

                      1











TSP

S

P

P

T

T

S
)()()(                                               16.9                            

 

In a reversible process 
T

dQ
dS  , and in an isobaric process,  

                        dTCdQ P  

 i.e.                 dTPCTdS                           16.10                                                                             
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From equation 16.10, partial derivative of S with respect to T at constant 

pressure gives      

                               

                       
T

C

T

S P
P 




)(                                                               16.11                             

 

Also from a Maxwell relation,  

 

                       PT
T

V

P

S
)()(









                                                        16.12                        

 

From equation 16.9  

                       T
P

S
P

S

T
S

P

T
)()()(













                                             16.13                   

 

Put equations 16.11 and 16.12 in 16.13 to obtain 

  

                      P
P

S
T

V

C

T

P

T
)()(









                                                     16.14                        

 

If the gas is an ideal gas, the equation of state is nRTPV  , so that 

 

                      
T

V

P

nR

T

V
P 




)(                                                         16.15                      

 

Put equation 16.15 in 16.14  

                      
P

S
C

V

P

T





)(                                                               16.15                    

 

3.3.2  Adiabatic Demagnetisation S
B

T
)(




 

 

The same argument as above can be used for adiabatic demagnetisation 

S
B

T
)(




. 

 

We can consider the entropy as a function of temperature and magnetic 

field i.e. ),( BTS , we have 

             1











TSB

S

B

B

T

T

S
)()()(                                             16.16                              

Then 

                        T
B

S
B

S

T
S

B

T
)()()(













                                           16.17                       
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 In a reversible process
T

dQ
dS  , and in a constant magnetic field, 

dTCdQ B , BC  is the heat capacity per unit volume (i.e. the heat 

required to raise the temperature of a unit volume by one degree) 

 

In a constant magnetic field 

                        
T

C

T

S B
B 




)(                                                              16.18                                         

 

Also from a Maxwell relation corresponding to PT
T

V

P

S
)()(









, that is                           

                       BT
T

M

B

S
)()(









                                                       16.19                       

 

Now for a paramagnetic material, the magnetization, for a given filed is 

proportional to B  and it falls off inversely as the temperature (that’s the 

equation of state). 

 

That is 
T

aB
M   

 

Therefore,  

                        
T

M

T

aB

T

M
B 





2
)(                                               16.20                                

 

Put 16.20 in 16.19 

                        
T

M
T

B

S





)(                                                                16.21                    

 

Now put equations 16.18 and 16.21 in 16.17, to obtain 

 

                        
B

S
C

M

B

T





)(                                                              16.22                

Equation 16.22 gives the cooling effect, i.e. the variation of temperature 

with magnetic field at constant entropy, in terms of magnetization M 

and heat capacity BC .   

 

The cooling effect is particularly effective at low temperature when BC  

is small.  

 

3.4 Entropy and Temperature 
 

Cooling by adiabatic demagnetisation involves successive isothermal 

magnetizations followed by adiabatic demagnetisations, and this 

suggests that some insight into the process might be obtained by 
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following it on an entropy-temperature (ST) diagram. Using figure 16.1 

above, the cooling effect S
B

T
)(




 is shown in the process bc as well as 

other subsequent processes indicated by the horizontal lines linking the 

two curves.   

 

A complete cooling is indicated in processes ab and bc, which can be 

repeated until the desired temperature is achieved.    
                             

SELF ASSESSMENT EXERCISE  

 

i. Give four methods of achieving low temperature and the 

minimum temperature attainable with each method. 

ii. Describe the process of cooling by adiabatic decompression. 

 

4.0  CONCLUSION 
 

We have discussed in this unit a method of cooling being used to 

achieving extremely low temperature i.e. cooling by adiabatic 

demagnetisation. The refrigerator that does this is called adiabatic 

demagnetisation refrigerator. In the next unit, we are going to be looking 

at the phenomena at extremely low temperature, and then round up the 

course by stating the third law of thermodynamics i.e. the un-

attainability of absolute zero.  

 

5.0 SUMMARY 
 

In this unit, you have learnt: 

 

 about the process of cooling 

 about methods being used for low temperature cooling 

 about processes and relevant equations involve in cooling by 

adiabatic demagnetisation 

 that the expression for change in temperature with respect to field 

B at constant entropy i.e. S
B

T
)(




.  

 

6.0      TUTOR-MARKED ASSIGNMENT 
 

i. Write the differential form of thermodynamic potential for a 

magnetic system. 

ii. Using an entropy-temperature (ST) diagram, describe the process 

of cooling by adiabatic demagnetisation. 
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1.0 INTRODUCTION 
 

Why do we need to cool material to extremely low temperature? The 

reason is that the properties of metals, semiconductors, and alloys 

change dramatically at low temperature. In the last unit, we discussed 

method of achieving low or extremely low temperature. The focus of 

this unit will be on the behaviours of materials at low temperature and 

then we round up our discussion by stating the third law of 

thermodynamics.    
 

2.0 OBJECTIVES 
 

By the end of this unit, you should be able to: 
 

 explain the meaning of low temperature physics 

 explain some phenomenon at low temperature 

 mention useful applications of low temperature phenomenon 

 state Nernst heat theorem 

 state third law of thermodynamics. 
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3.0 MAIN CONTENT 
 

3.1 Low Temperature Physics 
 

Low temperature physics is a specialised area of physics that deals with 

the behaviour of materials at low or extremely low temperature. Now, 

the big question is this. How low is low? Low temperature, in this 

context, is the temperature low enough to observe the phenomena such 

as superconductivity and super-fluidity. Here, we are going to 

concentrate only on the meanings of these phenomena and their 

applications. The theory and the detail description of these two 

phenomena are beyond the scope of this unit.   

 

3.1.1  Liquefaction of Gases 
 

Liquefaction of gases is the process by which substances in their 

gaseous state are converted to the liquid state. 

 

Liquefaction of gases can be achieved:  

 

 by compressing the gas at temperatures less than its critical 

temperature; 

 by making the gas do some kind of work against an external 

force, thereby causing the gas to lose energy and change to the 

liquid state; and 

 by making the gas do work against its own internal forces, this 

also causing it to lose energy and liquefy. 

 

When gases are liquefied, they can then be stored and transported in 

much more compact form than in the gaseous state. One kind of 

liquefied gas that we are familiar with is Liquefied Natural Gas (LNG). 

In principle, any gas can be liquefied, so their compactness and ease of 

transportation has made them popular for a number of other 

applications. 

 

Applications of Liquefaction 

 

Liquefied gases are used in the following application: 

 

 Fuel for rocket engines e.g. liquefied oxygen and hydrogen; 

 For welding operation e.g. liquid oxygen and acetylene; 

 Aqualung devices e.g. combination of liquid oxygen and liquid 

nitrogen; 

 For research application (cryogenics) e.g. liquid helium is widely 

used for the study of behaviour of matter at temperatures close to 

absolute zero. 
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 Liquid nitrogen for low temperature refrigeration. 

  

3.1.2  Maintenance of Low Temperature 
 

The method on maintaining low temperature is by using liquefied gases 

as heat sink. For example, some gases liquefy at quite low temperatures 

(e.g. nitrogen liquefied at 77 K, hydrogen at 20 K, helium at 4.2 K). If 

such gases are liquefied, the liquid can be used as bath to maintain 

experiment at these temperatures. 

 

3.1.3  Measurement of Low Temperature 
 

Conventional thermometers may be used at quite low temperatures. 

Table 17.1 gives the lowest temperature for some convectional 

thermometers.  

 

Table 17.1: Lowest Temperature for some Conventional 

Thermometers 

 

     Conventional Thermometer 

 

       Lowest Temperature 

Platinum resistance thermometer about 20 K 

Indium resistance thermometer about 4 K 

Helium gas thermometer about 3 K 

Carbon resistors as thermometer From 4 K to 0.1 K 

 

3.2  Phenomena at Low Temperature 
 

Two known phenomena at low temperature are superconductivity and 

superfluidity. 

 

3.2.1  Superconductivity in Metals 
 

At a temperature low enough, most metals as well as many alloys and 

compounds enters a state at which their resistant to flow of current 

disappears (i.e. they become a superconductor). This state is called 

superconductivity in metals. Most metals in the periodic table, many 

alloys and compounds show this behaviour. The implication of 

superconductivity is that if a superconductor is a wire loop and a current 

is generated in that loop, then it flows for years with no significant 

decay. 

 

3.2.2  Superfluidity 
 

At a temperature low enough, materials enter a state whereby they 

become fluid that flows with no viscosity. Superfluidity can only be 
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observed at much lower temperatures than the temperature at which 

superconductivity is observed. For example, helium-4 does not display 

superfluid-behaviour until it reaches a temperature below 2 K. Note that 

materials that become solid at low temperatures cannot become 

superfluids.   

 

When a material becomes a superfluid, the following will be observed: 

 

 Because superfluids have no internal viscosity, a vortex formed 

within a superfluid persists forever.  

 A superfluid has zero thermodynamic entropy and infinite 

thermal conductivity, meaning that no temperature differential 

can exist between two superfluids or two parts of the same 

superfluid.  

 A superfluid can also climb up and out of a container in a one-

atom-thick layer if the container is not sealed. 

 A conventional molecule embedded within a superfluid can move 

with full rotational freedom, behaving like a gas. 

 

3.3  Application of Low Temperature Phenomena 
 

Applications of low temperature phenomena are listed below: 

 

3.3.1 Applications of Superconductivity 
 

Superconductivity promises a whole lot of applications but the 

limitation to this is how to maintain this temperature because the whole 

of these applications are at room temperature in everyday world.  

 

Most significant real application of low temperature physics is the 

super-conducting magnet. This is being used for magnetic resonance 

imaging (MRI) and particle accelerators. Other applications are in; 

 

 Supersensor, 

 Quantum computing, 

 Loss less power transmission line. We know that energy loss on a 

transmission line is RI
2 . Imagining using super conduction as 

transmission cable, meaning that R = 0 i.e. RI
2  = 0. 

 

3.3.2  Applications of Superfluidity 
 

Superfluidity does not have a wide range of application as 

superconductivity. The two areas of applications are in dilution 

refrigerators and spectroscopy. 
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3.4  Nernst Heat Theorem 
 

Third law of thermodynamics explains the behaviour of systems, which 

are in internal equilibrium, as the temperature approaches absolute zero 

(i.e. 0 K).   

 

Consider a chemical reaction taking place in a container at constant 

pressure, and that the container makes a contact with a heat reservoir at 

a temperature T. If the temperature of the system increases as a result of 

the reaction (i.e. if the reaction is exothermic) there will be a heat flow 

to the reservoir until the temperature of the system reduced to its 

original value T. Don’t forget that a heat bath or reservoir is so large that 

its temperature does not change appreciably when heat flow in or out of 

it.  

 

For a process at constant pressure the heat gain or lost is an increase or 

decrease in enthalpy. Then 

 

                          QHHH if                                                 17.1                   

 

Minus sign in the right hand side of equation 17.1 indicates that heat 

flows out of the system.  The heat of reaction is usually given as H . 

H  is positive for an endothermic reaction and negative for exothermic 

reaction.   

 

Change in the Gibbs function and change in enthalpy are related as  

                        P
if

ifif
T

GG
THHGG )

)(
(




                    17.2                              

written as 

                         P
T

G
THG )

)(
(







                                              17.3                                                                               

This implies that change in enthalpy and change in Gibbs function are 

equal only when P
T

G
T )(




 approaches zero. Nernst proposed that, in 

the limit, as the temperature approaches zero, the changes in enthalpy 

and Gibbs function are equal. Since   

 

                       S
T

G
P 







)(                                                             17.4                                          

So that 

                       021 



)(lim SS

oT

                                                      17.5                           

 

This implies that chemical reactions at a temperature of absolute zero 

take place with no change in entropy. 
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Planck later extended this to suppose that, not only does HG   , but 

that, as 0T , the enthalpy and the Gibbs function of the system 

approach each other asymptotically in such a manner that, in the limit, 

as 0T , HG   and 0



P

T

G
)( .  

i.e.                          

                      0

0




S

T
lim                                                 17.6                                                   

 

3.5 Third Law of Thermodynamics 
 

Nernst’s heat theorem and Planck’s extension of it, though derived from 

observing the behaviour of chemical reactions in solids and liquids, is 

now believed to apply quite generally to any process. Equation 17.6 is 

known as the third law of thermodynamics.  

 

3.5.1  The Statement of the Third Law of Thermodynamics 
 

The third of thermodynamics states that it is impossible to reduce the 

temperature of a material body to the absolute zero of temperature in a 

finite number of operations.  

 

This is the third law of thermodynamics, and it is an inevitable 

consequence of Planck’s extension of Nernst’s heat theorem. The third 

law is sometimes called the unattainability statement of the third law.   

 

SELF ASSESSMENT EXERCISE 1 

 

i. What is low temperature physics? 

ii. Name the two phenomena at low temperature and explain each of 

them. 

iii. Derive equation 17.3 from the definitions of Enthalpy and Gibb’s 

free energy. 

iv. State Nernst’s heat theorem. 

 

4.0 CONCLUSION 
 

The quest by scientists to cool a body or a system to extremely low 

temperature (about 0 K) brought about discoveries, along the way, of 

two important phenomena of materials at extremely low temperature 

(i.e. superconductivity and superfluidity). These phenomena have a wide 

range of applications but the limitation is that these applications are 

relevant to our every day activity at room temperature. The process of 

cooling a body by gradual withdrawal of heat becomes more and more 

difficult as the absolute temperature is approach. This is the statement of 

the third law of thermodynamic i.e. it is impossible to reduce the 
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temperature of a material body to the absolute zero of temperature in a 

finite number of operations. 

 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 the properties of materials change dramatically at low 

temperature 

 the phenomena at low temperature are superconductivity and 

superfluidity 

 these phenomena have a wide range of applications but there is 

limitation i.e. the usage temperature of these applications 

 the statement of the third law of thermodynamics is that bodies or 

systems can be cooled to absolute temperature by infinite number 

of operations.  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Explain the limitation of the range of applications of 

superconductivity 

ii. Give five applications of low temperature phenomena. 
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