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PHYSICS LAB I 

 

Course Introduction 

 

"When you can measure what you are speaking about and express it in 

numbers, you know something about it; when you cannot express it in 

numbers, your knowledge is of a meagre and unsatisfactory kind." 

- Lord Kelvin 

 

Scientific truths are based on experimental observations. Scientific 

knowledge is not perfect and complete without experimentation. So to be 

acquainted with science, its truth and conclusions are to be verified by 

actual experiments in a laboratory. 

 

The objectives of this Physics Laboratory Course are to enable you to (a) 

gain experience in the scientific method and learn the process of scientific 

enquiry which includes taking unbiased observation; interpreting and 

analysing data and deriving conclusions, (L) acquire basic skills and 

confidence in handling instruments and materials as well as the ability to 

overcome difficulty when an experimental arrangement does not work, and 

(c) develop scientific attitudes and interests viz. curiosity, not accepting 

anything at face value, questioning, ascertaining and then accepting. 

 

Physics Laboratory I envisages two types of experiments: (a) preset 

experiments and (b) investigatory or open-ended experiments. In preset 

experiments emphasis is on measurement of physical quantities on a set 

pattern while in open-ended experiments, different students can try 

different approaches. 

 

Study Guide 

 

You are expected to go through all the write-ups before coming for 

laboratory work. For successful completion of an experiment, you should 

master skills of making measurements with a given instrument, analyses 

data, learn to make error analysis, and quote results with correct number of 

significant figures. For this purpose you are expected to master the units on 

'Measurement' and "Error analysis'. In particular, you should be very clear 

about the use of graph paper in a physics experiment. In these units we 

have given some Self Assessment Questions (SAQs). By answering these 

questions yourself, you will grasp the ideas better. If you are stuck up with 

any SAQ, you may look up the solution given at the end. 
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Before performing an experiment, you should familiarise yourself with the 

apparatus you are likely to use in the laboratory.  

 

When you go to the laboratory to perform an experiment, you should have a 

clear idea as to what you have to do and how you are to do it. You are 

advised to read each write-up carefully. If you wish to go deeper into some 

aspects, you should refer to other books on physics practicals available in 

the library at your study centre. If feasible, some part(s) of an experiment 

may be tried out at your home. You are expected to record your 

observations and draw your inferences. These may be verified after 

performing that particular experiment in the laboratory. 

 

On an average, you will work for about six hours in the laboratory for each 

experiment. While working in the laboratory if an experimental 

arrangement is not working, you should try again. If you still fail, consult 

your counsellor. We hope that everyone will complete the work in this 

time. As far as possible, you should work independently since your 

laboratory work will be continuously evaluated by your counsellor. You 

must complete your work everyday. Lest you lose grade! 

 

We hope that you will enjoy working in the laboratory. We wish you 

success. 
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UNIT 1 

 

INTRODUCTION TO LABORATORY-I: MEASUREMENT 

 

Structure 
 

1.1     Introduction 

1.2 Objectives 

1.3     Errors: Expressing the Results of Measurements 

Possible Error and Precision  

Relative Error and Accuracy 

1.4     Scientific Notation 

1.5     Significant Digits 

1.6     Computations with Approximate Numbers 

Multiplication and Division  

Addition and Subtraction 

1.7     Summary 

1.8 Answers 

 

1.1    Introduction 
 

In our Foundation Course in Science and Technology, we have studied the nature 

of scientific investigation. We know that scientists use devices to measure and 

thereby quantify physical quantities. But even the best of devices yield inexact 

measurements. We express these measurements as approximate numbers. We 

distinguish between numbers such as 3.2 cm and 3.20 cm. These are the results of 

measurements using different devices. While doing computations with these 

numbers special care is required. You may have wondered why the ratio of two 

measurements such as 32.1/12 is expressed as 2.7 not as 2.68 or 2.675. The 

number of digits used in a measurement have some significance regarding the 

quality of measuring instruments. In this unit we will learn about the meaning and 

usage of approximate numbers. We will also learn about the techniques of 

computations with these numbers. These techniques are of basic importance in 

calculating the results of experiments that we will do later. The mastery of these 

techniques is, therefore, essential at this stage. In the next unit we will study errors 

which arise due to defects in measuring instruments, fluctuations in the quantity to 

be measured and several other reasons. We will also learn how these errors are 

propagated and how the final results of an experiment are expressed.  
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1.2 Objectives 

 

By the end of  this unit you should be able to: 

 

 appreciate that all measurements are inexact and are expressed in numbers 

resulting from approximations or approximate numbers 

 distinguish between precision and accuracy 

 express a measurement in scientific notation 

 add, subtract, multiply and divide approximate numbers. 

 

1.3    Errors: Expressing the Results of Measurements 

 

We are familiar with at least two reasons why all measurements are inexact. 

Firstly, error is caused by the measuring instrument itself, such as the zero error. 

Secondly, error can be due to limitations of human judgment and perception, such 

as in aligning the end of a rod to be measured with the zero of the centimetre scale. 

To better appreciate the inexact nature of measurement let us reflect on the process 

of measurement of length. Let us obtain a 'perfect' centimetre scale which has 

clear and equal marking of millimetres. We desire to measure the length of three 

arrows A, B and C (Fig. 1). Let us suppose that we are able to perfectly align the 

tails of the arrows with zero marking on the scale. Of course, this is impossible to 

achieve in practice, but let us assume it to gain an insight into the process of 

measurement. 

 

 
 

Fig. 1: The length of all the three unequal arrows A, B and C is reported as 4.3 cm. 

The shaded portion on the scale represents the range of error in this measurement. 

(The scale is highly magnified.) 

 

In order to measure the length of these three arrows we look at the arrow heads. 

The head of arrow A is closer to the 4.3 cm mark than to the 4.2 cm mark. We will 

report the length of arrow A as 4.3 cm to the nearest millimetre. Let us now 

measure the length of arrow B. The head of arrow B is closer to 4.3 cm mark than 

to 4.4 cm mark. Therefore, we will also report its length as 4.3 cm to the nearest 

millimetre or simply 4.3 cm. Similarly the length of arrow C would be reported as 

4.3 cm. Thus the lengths of all arrows whose tails are aligned with zero marking, 

and whose heads lie in the range 1R  and 2R , would be reported as 4.3 cm. We can 
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conclude that a measurement which is reported as 4.3 cm (which is in the middle 

of 21RR ) might possibly be in error by 0.05 cm (or one-half of the unit of measure 

which is 0.l cm) or less. Thus in the measurement 4.3 cm the last digit 3 is in error. 

We will, therefore, report measurements in such a manner that only the last digit 

will have error. 

 

1.2.1     Possible Error and Precision 
 

We have seen that the maximum possible error, barring any mistake in measuring, 

in a measurement is 1/2 of the unit of measurement. The possible error is thus due 

to inherent imprecision in measuring devices. The measurements having less 

possible error are more precise. Since possible error is proportional to the unit of 

measure the instruments having smaller units of measure will give more precise 

measurement. A measurement reported to one hundredth of a centimetre, such as 

5.32 cm is more precise than a measurement reported to one tenth of a centimetre, 

such as 5.3 cm.  

 

 

 

 

SAQ   1 

Consider the following pairs of measurement. Indicate which measurement in each 

pair is more precise. 

a.  17.9 cm or 19.87 cm 

b.  16.5 s or 3.21 s 

c.  20.56 °C or 32.22 °C 

 

1.2.2     Relative Error and Accuracy 
 

So far we have considered measurement of nearly equal lengths with emphasis on 

precision. Let us now consider measurement of much different lengths. Suppose, 

two measurements yield 3.2 cm and 98.6 cm using the same metre stick. The 

possible error in both of these measurements is equal to 0.05 cm but the 

measurement 98.6 cm is much bigger than measurement 3.2 cm. Would you say 

that the 98.6 cm is more accurate ? How would you compare the accuracy of 

measurement such as 7.4 s and 98 s? In order to compare such measurements we 

define relative error as the ratio of possible error to the total measurement. In the 

Table below we have computed the relative error in some measurement. (The 

exact method of expressing the relative error will be discussed in section 1.5.) 

The possible error = 1/2 of the unit of measurement. 
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Measuremen

t 

 

Unit of 

measure 

Possible 

error 

Relative 

error 

3.2 cm 

 

0.1 cm 

 

0.05 cm 

 

.02 

 98.6 cm 

 

0.1 cm 

 

0.05 cm 

 

.0005 

 7.4 s 

 

0.1 s 

 

0.05 s 

 

.007 

 98s 

 

1 s 

 

0.5 s 

 

.005 

  

Let us compare measurements 3.2 cm and 98.6 cm. Both have equal unit of 

measure and are therefore equally precise. But the measurement 98.6 cm has less 

relative error (.0005 compared to 0.02) and is therefore more accurate. 

 

Comparison of measurements 7.4 s and 98 s is more revealing. The measurement 

7.4 s is more precise than the measurement 98 s (possible errors 0.05 s and 0.5 s 

respectively) but less accurate (relative error 0.007 as compared to 0.005). 

 

 

 

 

You will therefore appreciate that a smaller measurement needs to be more precise 

for the same accuracy. This is why when measuring the dimensions of a room, 

metre is used as unit of measure while in measuring inter-city distances the unit 

kilometre is used for the same accuracy. 

 

SAQ  2 

Consider the following pairs of measurements. Indicate which measurement in 

each pair is more accurate. 

a.     40.0 cm or 8.0 cm  b.    0.85 m or 0.05 m 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

1.3    Scientific Notation 
 

In the system of measurement that we use (SI-system) a measurement is expressed 

in decimal numerals. While measuring interatomic distances, we use very small 

numbers. On the other hand, while measuring interstellar distances we use very 

large numbers. In scientific notation these numbers are written as a number 

between one and ten multiplied by an integral power of ten. For example, the 

diameter of the sun is 1,390,000,000 metres and the diameter of hydrogen atom is 

Relative error is the ratio of possible error to the total measurement. 
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only 0.000000000106 metres. In scientific notation we write the diameter of the 

sun as 91039.1  m and the diameter of the hydrogen atom as 101006.1  m. 

 

SAQ  3 

The mass of a water molecule is 0.000 000 000 000 000 000 000 03g. Express this 

in scientific notation. 

 

You have probably guessed that writing numbers in scientific notation will make 

computations easier. This is because we can apply the laws of exponents readily. 

 

1.4    Significant Digits 

 

We have seen in section 1.2.1 that a measurement reported as 5.32 cm is more 

precise than 5.3 cm. The number of digits in these measurements are three and 

two, respectively. This suggests that the number of digits used in reporting a 

measurement have some significance. All non-zero digits are significant. 

However, in measurements such as 0.05 m or 0.005 m, none of the zeros is 

significant. The zeros to the left of the decimal are merely flags pointing to the 

decimal. The other zeros are placed to help locate the decimal point. Let us 

investigate this by calculating the possible error and relative error as in the Table 

below: 

 

Measurement 

 

Unit of 

measurement 

 

Possible error 

 

Relative error 

 

.5m 

 

.1 m 

 

.05m 

 

.1 

 

.05m 

 

.01 m 

 

.005m 

 

.1 

 

.005 m 

 

.001 m 

 

.0005m 

 

.1 

 

.00005m 

 

.00001 m 

 

.000005m 

 

.1 

 

 

We can see from this table that the unit of measure and the possible error in all the 

cases are different. But the relative error is the same. Therefore, we can assert that 

these zeros are not significant because they do not affect the relative error. We can 

thus conclude that a digit is significant if and only if it affects the relative error. 

 

 

 

 

A digit is significant if and only if it affects the relative 

error. 
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SAQ 4 

Complete the following Table 

 

S. No. Measurement Possible 

error 

Relative 

error 

1. .2m .05m 

2.

05.
= .25 

2. 

 

.20 m 

 

  

3. 

 

.2000m 

 

  

4. 

 

25 m 

 

  

5. 

 

250m 

 

  

6. 

 

25000 m 

 

  

7. 

 

102 m 

 

  

8. 

 

1002m 

 

  

 

(a)    What can you conclude regarding the significance of 'trailing' zeros in the 

first three measurements ? 

 

(b)   What can you conclude about zeros in the fifth and sixth measurements ? 

 

(c)    What can you conclude regarding the significance of zeros between non-

zero digits in the seventh and eighth measurements ? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

SAQ  5 

From the above discussion justify that a measurement possessing greater number 

of significant digits has greater relative accuracy. 
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__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

Sometimes we take a sequence of whole number measurements such as 32, 30, 28, 

26. All these measurements have two significant digits except the measurement 

30. In such special cases zero can be taken as significant without any ambiguity. 

 

SAQ  6 

Comment on the following: 

 

"The distance to the sun from the roof of a house (height 20 m) is 150 million 

kilometres. Therefore the distance to the sun from the ground is 15 million 

kilometres plus 20 m." 

 

1.5    Computations with Approximate Numbers 
 

In section 1.2 we have seen that the reported measurements have error in the last 

digit. For example, a measurement reported as 2.3 3.2, has error in the digit 2, 

which is indicated by placing a bar (-) over this digit. In computing values of 

physical quantities from observed experimental data we have to do computations. 

We will now establish some rules for expressing the results of basic operations 

with approximate numbers. 

 

1.5.1     Multiplication and Division 
 

Let us consider multiplication first. We want to multiply 32.1 by 3.2 . At each step 

of the computational process we will put a bar (-) over a significant digit which 

arises from computation with a digit containing error, as below: 

 

 1 . 2 3  

   2 . 3 

 . 3  6  9  

2  . 4  6    

2  . 8  2  9  

 

We see that the product contains three digits which contain errors. Since we report 

the result in a number having only one digit containing error, we should round off 

the product to 2.8. Thus the product has two significant digits. 
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This is also equal to the number of significant digits contained in a factor having 

the least number of significant digits, namely 3.2 . Therefore, we formulate the 

following rule: 

 

RULE: The product (or quotient) of two measurements should be rounded off to 

contain as many significant digits as the measurement having fewer number of 

significant digits. 

 

SAQ  7 

Divide 2.1 by 1.54. Round off the result according to the above rule. 

 

Let us consider the multiplication of the following numbers which have already 

been rounded off to significant digits. 

 

5.2865 3.8 19.62  

 

= 20.0887 19.62  

 

= 394.14029 

 

which must be rounded off to 2109.3  . We could have obtained the same result by 

rounding off these numbers first as shown below. 

 

5.29 3.8 19.6  

 

= 20.1 19.6 

 

= 393.9 which rounds off to 3.9 x 10
2
. 

 

Here we have rounded off 20.102 (the product of 5.29 and 3.8) to 20.1 before 

multiplying it with 19.6. We can generalise this as a labour saving rule. 

 

Labour Saving Rule: Before multiplying (or dividing), round off the numbers to 

one more significant digit than (the number of significant digits) in the least 

precise factor. 

 

SAQ  8 

Divide 9.5362 by 3.2 

 

__________________________________________________________________ 
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1.5.2     Addition and Subtraction 

 

Let us study the process of addition given below: 

 

2 . 1 3 5  

2 . 5 3   

1 . 0 2   

5 . 6 8  5  

 

 

The sum has two error-containing digits. We, therefore, round off the sum to 5.69 

so that it contains only one digit containing error. Rounding off is necessary 

because the sum cannot be more precise than individual measurements. We note 

that the sum 5.69 has the same unit of measure as the least precise addend. Thus 

we formulate the following rule. 

 

Rule: While adding (or subtracting) approximate numbers, round off the sum (or 

difference) to the same unit of measure as the least precise measurement. 

 

SAQ  9 

Subtract 2.11 from 2.1546. 

 

SAQ   10 

Compute the sum of 2.1546 m, 2.11 m and 2.125m. 

 

Hint: In such cases we can use the following labour saving rule. 

 

Labour Saving Rule: Before adding (or subtracting) round off the numbers so 

that they contain one more digit of precision than the number of precision digits in 

the least precise. 

Thus the addends become 2.155m, 2.11m and 2.125m. 

 

1.6     Summary 

 

1.    Exact measurement is impossible. The result of every measurement is 

expressed in numbers resulting from approximation such that only the last 

digit contains error. In scientific notation a measurement is expressed as a 

decimal number between one and ten multiplied by powers of ten. 

 

2.    Possible error is one-half the unit of measurement. Precision is a function 

of possible error only. 
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3.     Relative error is the ratio of possible error to total measurement. Accuracy 

is related to relative error. A digit is significant if and only if it affects the 

relative error. 

 

4.     Rule for multiplication (or division) 

The product (or quotient) of two measurements should be rounded off to 

contain as many significant digits as the measurement having the least 

number of significant digits. 

 

5.    Rule for addition (or subtraction) 

While adding (or subtracting) approximate numbers, round off the sum (or 

difference) to the same unit of measure as the least precise measurement. 

 

 

1.7    Answers 

 

SAQ   1 

(a) 19.87cm 

 

(b)   3.21 s 

 

(c)   Equally precise 

 

SAQ  2 

 

The relative errors are: 

 

 
800

1

4000

5

40

05.
  

 

 
160

1

800

5

8

05.
  

 

Therefore, the measurement 40.0 cm is more accurate 

 

(b)   0.85 m 

 

SAQ  3 

 

 23103  g 

 

SAQ 4 

 



PHY 291                          LABORATORY PHYSICS I 

 

11 

 

S. No. Measurement Possible 

error 

Relative error 

1. .2m .05m 

2.

05.
= .25 

2. 

 

.20 m 

 

.005 m 
20.

005.
= 0.25 

3. 

 

.2000m 

 

.00005 m 
2000.

00005.
= .00025 

4, 

 

25 m 

 

.5 m 
25

5.
= .02 

5. 

 

250m 

 

.5 m 
250

5.
= .002 

6. 

 

25000 m 

 

.5 m 
25000

5.
= .00002 

7. 

 

102 m 

 

.5 m 
102

5.
= .0049 

8. 

 

1002m 

 

.5 m 
1002

5.
= .000499 

 

(a)    They are significant. 

(b)   They are also significant. The zeros are significant only if they come from a 

measurement. But if fifth and sixth measurements are expressed in 

centimetres as 2500 cm and 2500000 cm respectively, the last two zeros 

should not be counted as significant as these have come as a result of 

multiplication by the factor 100 and not from measurement. 

 

(c)    Significant 

 

SAQ  7 

1.4 

 

SAQ 8 

3.0 

 

SAQ 9 

0.04 

 

SAQ   10 
6.39 
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UNIT 2 

 

INTRODUCTION TO LABORATORY-I: ERROR ANALYSIS 

 

Structure 

 

2.1      Introduction Objectives 

2.2     Types of Errors Systematic Errors Random Errors 

2.3     Determining the Size of Error 

2.4     Propagation of Error 

Error Propagation in Addition and Subtraction  

Error Propagation in Multiplication and Division  

Error Propagation in Other Mathematical Operations  

Error Propagation in Graphing 

2.5     Use of   

2.6 Answers 

 

2.1    Introduction 

 

In the last unit we studied about errors in measurements due to imprecision of 

measuring devices. The results of measurements were expressed as approximate 

numbers. We also learnt about performing basic operations of addition, 

subtraction, multiplication and division of approximate numbers and expressing 

results using correct number of significant digits. We assumed that the measuring 

instruments as well as the observers were perfect. However, as you are aware, 

there can be defects in measuring instruments and also humans are not perfect. If 

the environment is not perfectly controlled its changes will affect the object to be 

measured thereby introducing errors in measurements. In this unit we will 

familiarise ourselves with these and other sources of errors. We will also learn 

how to estimate and possibly eliminate or account for such errors. In most of the 

physics experiments our objective is to determine relationship among physical 

quantities. Therefore, we will estimate the errors in the measurement of various 

physical quantities and make efforts to determine valid relationships as mentioned 

above. In the next couple of experimental write-ups we will apply our knowledge 

of errors and its propagation to actual measurements and deduce relationships. We 

will first concentrate on the measurements of fundamental quantities such as mass, 

length and time, and then do experiments involving two or more of these 

quantities. 

 



PHY 291                          LABORATORY PHYSICS I 

 

13 

 

2.2 Objectives 
 

By the end of this unit you should be able to: 

 

 distinguish between random errors and systematic errors 

 eliminate to some extent the systematic errors 

 compute errors in the measurement of various physical quantities 

 analyse data by calculation and by plotting graphs to determine functional 

relationship 

 interpret the slope of a graph and to determine the value of certain physical 

quantities from the slope of a straight line graph. 

 

2.2    Types of Errors 
 

Every measuring instrument has a limitation in that it cannot measure physical 

quantities smaller than a certain value known as the least count of instrument. For 

example, a metre scale can measure only up to 1mm (smallest division of the 

scale). A vernier callipers can generally measure up to 0.l mm whereas a 

spherometer and screw gauge can measure lengths up to 0.01mm. Similarly a 

thermometer usually has the least count of half a degree. In addition to these 

limitations which are inherent in a measuring device, there are other sources of 

error. These arise due to changes in environment, faults in observational 

techniques, malfunctioning of measuring devices etc. The errors in any 

measurements can be classified into two broad headings namely -  Systematic 

Errors and Random Errors. 

 

Let us now study the causes of such errors, and see how they are eliminated or 

minimised, 

 

2.2.1      Systematic Errors 
 

The systematic errors, also called determinant errors, are due to causes which can 

be identified. Therefore, these errors, in principle, can be eliminated. Errors of this 

type result in measured values which are consistently too high or consistently too 

low. Let us discuss these errors one by one. 

 

(i)     Zero Error 

In the case of vernier callipers, for example, when the jaws are in contact, the zero 

of the vernier may not coincide with the zero of the main scale. The magnitude 

and sign of the 'zero error' can be determined for the scale readings. We can easily 

eliminate this error from the measurement by subtracting or adding the zero error. 

 



PHY 291                          LABORATORY PHYSICS I 

 

14 

 

(ii)    Back Lash Error 

While measuring a physical quantity there may be an error due to wear and tear in 

the instruments like screw gauge or spherometer due to defective fittings. Such an 

error is called back lash error and can be minimised in a particular set of 

measurements by rotating the screw head in only one direction. 

 

(iii)  End Correction 

Sometimes the zero marking of the metre scale may be worn out. Unless we are 

careful, this will lead to incorrect measurements. We must therefore compensate 

for this by shifting our reference point. 

 

(iv)  Errors due to Changes in the Instrument Parameters 

Usually, in experiments involving electrical quantities, the value of the electrical 

quantities change during the course of the experiment due to heating or other 

causes. For example, the value of the resistance of a wire will increase because of 

current passing through it. This will lead to errors which are generally difficult to 

calculate and compensate for. To some extent this can be avoided by not allowing 

current to flow through the circuit while observations are not being taken. 

 

(v)    Defective Calibration  

Occasionally instruments may not be properly calibrated leading to errors in the 

results of measurement. This type of error is not easily detected and compensated 

for. This is a manufacturer's defect and if possible the instrument should be 

calibrated against a standard equipment. 

 

(vi)    Faulty Observation 

This could be due to causes like parallax in reading a metre scale. These errors are 

eliminable by using proper techniques. 

 

2.2.2      Random Errors 

 

You must have noticed that many times repeated measurements of the same 

quantity do not yield the same value. The readings obtained show a scatter of 

values. Some of those values are high while others are low. This fluctuation is due 

to random errors whose possible sources are: 

 

(i)     Observational 

These arise due to errors in judgement of an observer when reading a scale to the 

smallest division. 

 

(ii)    Environmental 

These arise due to causes like unpredictable fluctuations in line voltage, variation 

in temperature etc. They could also be due to mechanical vibrations and wear and 
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tear of the systems. There could also be a random spread of readings due to 

friction say, wear and tear of mechanical parts of a system.  

 

SAQ  1 

Which of the figures 1 (a) or (b) show random errors only. 

 

 
 

 

Fig. 1. Set of measurements. Each point indicates the result of a measurement 

 

Unlike systematic errors, random errors can be quantified by statistical analysis. 

Let us now learn to determine the size of such error. 

 

2.3    Determining the Size of Error 

 

When we measure a quantity it is important to take several readings. It may be 

preferable that readings are taken by independent observer. This has the advantage 

that bias of a single observer is eliminated. The value obtained will indicate 

whether the data is scale limited or random. An error analysis can be made to 

determine the size of error from these readings. A typical set of values of a 

measurement are given below in Table 1. The quantity lo be measured as a "true" 

value is independent of our measuring process. But the imperfection of our 

measuring process prevents us from obtaining that value every time. Which one of 

the values listed in Table 1 would be "true" value ? It is impossible to tell that 

from the measurements because of this spread. Under the circumstances the 

average A value can be quoted. To get the average value we simply add up all the 

measurements and divide the sum by the total number of measurements. As you 

can see from the Table I the average is 3.68. Also notice that most of the data in 

Table 1 deviates from the average. Therefore, a measure of spread of values would 

be the average deviation. To obtain average d we first take the difference of each 

data from the average to get   individual deviations d. These deviations are then 

added and their sum is divided by the number of observations to obtain d. As you 

can see from Table 1 the average deviation in this case is 0.009. 
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Table 1 

 

S. No. Data 

 

Deviation (d) 

 1. 

 

3.69 

 

0.01 

 2. 

 

3.67 

 

0.01 

 3. 

 

3.68 

 

0.0 

 4. 

 

3.69 

 

0.01 

 5. 

 

3.68 

 

0.0 

 6. 

 

3.69 

 

0.01 

 7. 

 

3.66 

 

0.02 

 8. 

 

3.67 

 

0.01 

  

 

A = 3.68 

 

d = 0.009 

  

As you are aware, repeated measurement of the same quantity yield results with 

better precision. A measure of this is the precision index S whose definition 

(without proof) is 

 

 
n

d
S   

 

where d  is the average deviation and n is the number of observations. The 

precision index S is a measure of uncertainty of average. Using the data of Table 

1, the precision index is 

 

 
8

009.0


n

d
S = 0.003 

 

Thus the final result can be expressed as SA  . In this case the result of random 

data analysis gives 3.68 ± 0.003. We can see that this error is much less than the 

possible error which is ± 0.005. Thus in such cases we will consider the possible 

error only. 

 

SAQ  2 

The measurement of the length of a table yields the following data. 

 

1l  =  135.0cm  2l  =  136.5cm     3l  =    134.0cm   

 4l  =  134.5cm 

 

Calculate (a) the average value and (b) precision index. How does the precision 

index compare with possible error? How will you express the final result? 
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2.4     Propagation of Error 
 

We have so far learnt how to determine the error in the measurement of a quantity 

which can be measured directly. In actual practice, however, we determine values 

of a quantity from the measurements of two or more independent quantities. In 

such cases the error in the value of the quantity to be determined will depend on 

the errors in other independent quantities. In other words the error will 'propagate'. 

The actual analysis of propagation of error is beyond the scope of this course. We 

shall, therefore, quote some rules which can be used in our laboratory. 

 

2.4.1     Error Propagation in Addition and Subtraction 

 

What will be the error, in quantity E defined by zyxE  ? Let us take the 

differential of this quantity, we get dzdydxdE  . If the error is small compared 

to the measurement we can replace the differential by 'delta' to get 

 
zyxE    

 

which is simply the sum of errors in x, y and z. It, therefore, is the maximum error 

in E. Statistical analysis shows that a better approximation is 

 222 )()()( zyxE    

 

We only consider the magnitude of errors in the above calculation. Therefore, the 

error in the quantity ( zyx  ) will also be the same. 

 

SOLVED EXAMPLES: Let the measured value of two lengths be 

 

 010.0746.111  LL  m 

 

 010.0507.122  LL  m 

 

The error in the quantity 

 

 21 LLL   will be 22 )010.0()010.0( mmL  = 0.014 m 

 

Error Propagation in Multiplication and Division 

If a quantity BAE  and the result of measurement of A & B is AA   and BB  , 

then what will be the error E in E ? Here if we take differentials we get 

 

 AdBBdAdE   
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Dividing by E = AB and changing differentials by 'deltas' we get 

 

 
B

B

A

A

E

E 
  

 

SAQ 3 

Take logarithm of E = AB and then differentiate to show that 
B

B

A

A

E

E 
  

which is generally known as the logarithmic error. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

The statistical analysis, however, gives the following better result of the fractional 

error in E. 

 
22




















B

B

A

A

E

E 
 

 

RULE 1: When independent measurements are multiplied or divided the 

fractional error in the result is the square root of the sum of squares of fractional 

errors in individual quantities. 

 

SOLVED EXAMPLE: In an experiment we calculate velocity from measurement 

of distance and time. If the distance is 02.063.0  SS   m 

 

 
S

S
= 0.03 

 

and time is TT  = 1.71 ± 0.10 

 

 
T

T
= 0.06 

 

Then the velocity (V) 

 

 
T

S
V  = 0.368 m/s 

The fractional error in V is given by 
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22




















T

T

S

S

V

V 
= 0.07 

 

 V = 0.368 m/s 07.0 = 0.02 m/s 

 

Thus the final result becomes VV  = 0.37 ± 0.02 m/s. 

 

2.4.3     Error Propagation in Other Mathematical Operations 

 

Errors in exponential quantity: Let us first consider a special case where a quantity 

appears with an exponent. For example S = A
2
 = AA. Here the two numbers 

multiplied together are identical and hence not independent. The rule mentioned 

above does not apply. Detailed analysis shows that logarithmic error gives a good 

estimate. Taking the logarithm of above equation we get 

 
 AS log2log   

on differentiation and changing differentials to 'deltas' we get 

 

 
A

A

S

S 
2  

 

Therefore, the fractional error in A
2
 would be twice the error in A, the fractional 

error in A
3
 

will be 3 times the fractional error in A, and the fractional error in A  will be 1/2 

the fractional error in A. 

 

RULE: The fractional error in the quantity nA is given by n times the fractional 

error in A. 

 

EXAMPLE: Suppose two measurements of mass are 11 MM  = 0.743 ± 0.005 kg 

and 22 MM   = 0.384 ± 0.005 kg. Determine the value of 21 52 MMM   along 

with M . 

 

What will be the error in 2
21 )( MM   and 3

21 )( MM .
 
 

 

Hint: The error in 12M  is 12 M and in 25M  is 5 2M . 

 

 

Thus error in 21 52 MMM   is 2
2

2
1 )5()2( MMM   . 

 

Error in 2
21 )( MM   = 2

2
2

1 )()(2 MM   ;  
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Error in 3
21 )( MM = 2

2
2

1 )()(3 MM    

 

Similarly in other mathematical operations and deducing results from graphs 

(about this you will learn in the next subsection) the following rule is used. 

 

RULE: The error in the result is found by determining how much change occurs 

in the result when the maximum error occurs in the data. 

 

EXAMPLE: Let us compute the error in the sine of 30° ± 0.5°. Using the 

logarithmic tables we get: 

 

sin 30° = 0.5, sin 30.5
0
 = 0.508 sin 29.5

0  
= 0.492 

 

The difference between sin 30° and sin 30.5° is 0.008, and the difference between 

sin 30° and sin 29.5' is also 0.008. Thus the error in sin 30° would be ± 0.008. 

 

SAQ 4 

Determine the error in the sine of 90°, when the error in the angle is 0.5°. Compare 

your result with that of the example above. 

 

2.4.4    Error Propagation in Graphing 

 

Very often we can better visualise the functional relationship between two 

physical quantities by plotting a graph between them. This is another useful way 

of handling experimental data because the values of some quantities can be 

obtained from the slope. While plotting a graph we will use the following 

guidelines: 

 

1.    A brief title may be given at the top. 

 

2.    Label the axes with the names of the physical quantities being presented 

along with units. It is customary to plot the independent variable (the 

quantity which is varied during the experiment at one's will) on the x-axis 

and the dependent variable, on the y-axis (the dependent variable is the one 

that varies as a result of change in the independent variable). We would 

write the name of the variable represented on each axis along with units in 

which they are measured. 

 

3.    We should choose the range of the scales on the axis so that the points are 

suitably spread out on the graph paper and not cramped into one corner. 

Check for the minimum and maximum values of the data that has to be 

plotted. We may then round off these two numbers to slightly less than the 
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minimum and a slightly more than the maximum. Their difference may be 

divided by the number of divisions on the graph paper. For example, if we 

are to plot 5.2 and 17.7 it would be convenient to allow the scale to run 

from 5 to 20 rather than from 0 to 18. 

 

Each set of data points is indicated by a point within a circle on the graph paper 

and the error is shown by using bars above and below this point as shown in Fig. 

2. The graphed data show that velocity V is the linear function of time T. We 

recall that the general equation of a straight line is y = mx + c where m is the slope 

of line and c the vertical intercept in the value of y when x = 0. From the graph we 

can thus write V = aT + V0. By comparing the above equation we can conclude 

that the slope of the graph gives the acceleration and the intercept gives the 

velocity V0 at T = 0. From the graph V9 = 0.32 m/s. To determine the slope we 

consider two points on the straight line which are well separated. Then 

 

 
)(5.00.10

)/(40.035.2

s

sm

T

V
Slopea




  

 

 
 

Fig. 2:  Graph between velocity and time 

 

In the above example, we have plotted the variable V which is a linear function of 

T in a linear graph paper, In some experiments we may get data where the 

relationship between the measured variables is not linear. Suppose a man gets 

salary of N200 on the 1st of every month and he decides that each day he will 

spend half the money he has with him on that day. Then the amount of money, 
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which the man will have over a period of first seven days of any month, will be 

given as in the Table 2. 

 

Table 2 
 

Day of any month Money left with the man (M) 

(N) 

1
st
 200.00 

2
nd

  100.00 

3
rd

  50.00 

4
th

  25.00 

5
th

  12.50 

6
th

  6.25 

7
th

  3.12 

8
th

  1.56 

 

 

Let us plot these data on a linear graph paper. The graph will be of type shown in 

Fig. 3. Look at the graph carefully. You will find that seven of the ten 

experimental points are clustered together near the bottom right-hand corner of the 

graph. The shape of the curve we have drawn also involves a bit of guesswork. 

Therefore, we have to find some method so that these data can be plotted in a 

better way. 

 

Try to recollect what you used to do in school when you used to come across data 

like this which range over a few orders of magnitude or having big gaps between 

the points. We will tell you. in such cases you used to take the logarithm of the 

data and then plot those data in a linear graph paper. When you did this, you must 

have found that the result was a straight line. So, let us take the logarithm of the 

data of Table 2 and tabulate them as shown in Table 3. 

 

 

Table 3 

 

Day of any month log M 
1st 

 

2.301 

 2nd 

 

2.000 

 3id 

 

1.699 

 4ih 

 

1.397 

 5th 

 

1.097 

 6th 

 

0.796 

 7th 

 

0.494 

 8ih 

 

0.193 
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Now plot log M against days as shown in Fig. 4. You obtain a graph in which 

points are more clearly spaced evenly and hence you can more easily draw a 

straight line through the points. 

 

 
 

Fig. 3: Graphical representation of Table 2 
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Fig. 4: Graphical representation of Table 3 

 

You might have realised that working out the log values for each data is tedious 

and it also introduces another step, which may introduce error between the data 

and the graph. Therefore, to plot such data we use a graph paper called semi-

logarithmic or log-linear graph paper where the lines on one axis have been drawn 

in a logarithmic fashion. On a semi-log paper (see the graph paper of Fig. 5) the 

horizontal scale is an ordinary one, in which the large divisions are divided into 
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tenths and each division has the same size. The vertical scale is a logarithmic scale 

(it automatically takes logarithms of data plotted), in which each power of ten or 

decade (also called frequency) corresponds to the same length of scale. In each 

decade, the divisions becomes progressively compressed towards the upper end. 

Now in the semi-log graph paper we plot the data of Table 1. We obtain a straight 

line as shown in Fig. 5. If you compare Figs. 4 and 5 you will see that the points 

plotted on semi-log paper are distributed in just the same way as the logarithms of 

the corresponding datum would be distributed on a linear graph paper. A question 

may strike in your mind that how to calculate the slope of the straight line of Fig. 

5? Also what is the equation of the straight line? Let log M be represented by y 

and day by t , then we have a straight line graph of y against t. Let the equation be 

represented as 
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Fig. 5: Representation of Table 5 graphically on a semi-log paper 

 

Where b is the intercept of the line on the y-axis, and k the slope of the line. We 

can find the values of b and k from the graph as follows. When t = 0, M = 200 

then log M = log 200 = 2.30 = y 

 

2.30 =  b+ 0 or   b = 2.30  

 
     y  = 2.30 + kt 
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when t = 7th day, M = 1.56 and log M = log 1.56 = 0.193 = y  

 

Putting these values in Eq. (l) we get  

 

0.193 = 2.30 + 7k 

 

 The slope k = 3.0
7

1.2
   

 

and the equation of the straight line is 

 
ty 3.03.2   

 

From the graph of Fig. 5 or in other words from the Eq. (2) can you find the 

equation of the curve plotted in Fig. 3? 

 

Let the value of M at t  = 0 be denoted as M0 then Eq. (2) becomes 

 
 ktMM  0loglog  

or ktMM  0loglog  

 

or  kt
M

M


0

log  

 

or kt

M

M
10

0

  

 

or ktMM 100  

 

or tM 3.010200   

 

This is the equation of the curve plotted in Fig. 3. It tells us that the money is 

decreasing logarithmically (also called exponentially) with each day. 

 

In science you will come across many logarithmic or exponential relations of the 

form of Eq. (3). In such cases it would be convenient to plot the data on semi -

logarithmic graph paper because the graph will be a straight line if the relationship 

is logarithmic. Also the slope of the line (which may give you the value of any 

physical constant) can be read simply and directly from the graph. 

Sometimes we find that we wish to plot a graph where both variables range over 

several powers of ten. For example, you know that according to Kepler's law, the 
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semi-major axis of the orbit of a planet (R) is related to its period (time for one 

revolution around the sun) T by the following power-law relation: 

 
23 kTR           (4) 

 
where k is another constant. 

 

If you consider the experimental data which show how the quantity T depends on 

quantity R you will observe that R varies by two orders of magnitude and T varies 

by three orders of magnitude. In other words the experimental data follows the Eq. 

(4). For a moment, suppose you do not know the exact relationship between the 

variables T and R. Then you can suppose that 

 
nkTR           (5) 

 
 
where n is another constant. 

 

Using the conventional method to find the value of «, you will take logarithm of 

Eq. (5) as follows: 

 

log R = log k + n log T 

 

Now you will plot log R vs. log T on a linear graph paper. The slope of straight 

line obtained will give the value of exponent n. But again, as mentioned above, 

taking logarithm of each experimental data is rather tedious so it would be 

convenient to plot both the variables T and R on a logarithmic scale where the 

lines on both the axes are drawn in a logarithmic fashion. A log-log graph is 

shown in Fig. 6. The points lie upon a straight line. The slope of the straight line 

will give the exponent (n) of the power-law relation and hence the exact 

relationship between R and T will be found out. 

 

To determine the error in the value of the slope of the straight line drawn in any 

graph paper (linear or semi-log or log-log) we draw two dashed lines representing 

the greatest and least possible slopes which reasonably fit the data as shown in 

Fig. 2. Thus the error in the slope is defined as 

 

 error in slope = 
2

slope minimum - slope maximum
 

 

Thus from the graph we get the error in the slope as 

 

 
2

19.023.0 
a = 0.02 m/s

2
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Thus the experimental value of acceleration from the graph is aa  = 0.20 ± 0.02 

m/s
2
. 

 

Similarly the error in intercept = 

2

slope maximum ofintercept  - line slope minimum ofintercept 
 

  
2

17.045.0
0


V = 0.14m/s 

Thus the velocity V0 = 0.32 ± 0.14 m/s 

 

 
 

 

2.5    USE OF   

 

It appears that most of our students are under the impression that the value of n is 

equal to 22/7 exactly. Unfortunately many book writers also have contributed to 

perpetuate and establish this false idea by setting many numerical problems with 

data so cooked up that using   = 22/7, the factor 7 always happily cancels out and 

the simplification becomes very easy. However, in the real world the values of 

actual physical quantities are not such as to facilitate cancellation with 7. Also, we 

may as well acknowledge that the value of  cannot be expressed exactly in terms 

of any whole number. The value of  = 22/7 is one of the many approximations 
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that can be used. In fact, a better approximation is 355/113 = 3.1415928. Compare 

this with the calculator value  = 3.141592654 and 22/7 = 3.14286. It may be 

noted that the value of 22/7 deviates from the more accurate value from the 

calculator in the third decimal place; if we round it off to 5-digit accuracy,  = 

3.1415 (from calculator), whereas the approximations 355/113 = 3.1416 and 22/7 

= 3.1429. For practical purposes at the undergraduate level, the most convenient 

and comparatively more accurate thing to do will be to remember 

 

 = 3.142; log  = 0.4972;  

 
2 = 9.870 ; log 2 = 0 .9943 

 

Wherever the value of it is to be used in our calculations, the above values may 

prove fruitful.  

 

 

2.6    ANSWERS 

SAQ 1 
 

1 (a) 

 

SAQ 2 

 

(a)     135.0cm 

 

(b)    0.375cm 

 

Possible error, which is ± 0.05, is much less than the precision index. Final 

result is  

 

135.0 ±0.375 cm. 

 

SAQ 3 

 

Taking logarithm on both sides 

 

log E = log A + log B  

 

Differentiating partially 

 

 
B

B

A

A

E

E 
  
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SAQ 4 

 

(i)    sin 90° = 1.000, sin 90.5° = cos 0.5° = 1.000 

 

sin 89.5°= 1.000 

 

In this case error in sin 90° is zero. 

 

 



PHY 291                          LABORATORY PHYSICS I 

 

32 

 

(For Counsellor's use only)   
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EXPERIMENT 1 

TO INVESTIGATE THE DEPENDENCE OF THE PERIOD OF A 

PENDULUM ON LENGTH, AMPLITUDE AND MASS 

 

Structure 

 

1.1     Introduction 

Objectives 

1.2     Investigations with a Simple Pendulum 

Dependence of the Period on the Length  

Dependence of the Period on the Amplitude of Swing  

Effect of Mass of the Bob on the Period  

Damping and Relaxation Time 

1.3     Investigations with a Bar Pendulum 

Variation of the Period with Length  

The Radius of Gyration 

 

1.1    Introduction 
 

In your school you must have worked with a simple pendulum. A simple 

pendulum essentially consists of a heavy metallic bob suspended from a rigid 

support by means of a weightless and inextensible string. It can freely oscillate to 

and fro about the point of suspension. The maximum displacement of the bob on 

either side of its equilibrium position is called the amplitude of oscillation. The 

time taken by the pendulum to complete one oscillation is called the period. As we 

examine the motion of a simple pendulum, some questions that immediately come 

to our mind are: 

 

1.  How do the material, shape and size of the bob affect the period of the 

pendulum? 

 

2.  How does the period change with amplitude of the swing? 

 

3.  Does the length or thickness of the string change the period? 

 

4.  How does the air dragged by the bob influence the period of the pendulum? 
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We will investigate some of these questions here. You may think that this 

experiment is far too simple to perform at your level. But our purpose of having a 

simple and familiar arrangement is to help your understanding of simple harmonic 

motion and also to give you experience of planning an experiment, taking 

measurements and analysing results. That is, we intend to give you training in 

scientific method of learning and develop your investigative skills. 

 

Such a system was first envisaged by Galileo on observing the vibrations of a 

chandelier at a banquet. He calculated its period by his pulse rate. (You can make 

a simple pendulum by tying a piece of stone to a 70 to 100 cm long thread.) A 

modification of this arrangement is used in wall clocks. You may also be knowing 

that nowadays most precise time measurements are done by atomic clocks, where 

caesium atoms act like a pendulum. 

 

You may now think that a simple pendulum is an ideal arrangement for time 

measurements. But it is not so; a simple pendulum has some inherent drawbacks. 

For example, the bob drags air, the string is not strictly inextensible, motion about 

the point of suspension may have rotational component, etc. Some of these can be 

eliminated by using a compound pendulum. A compound pendulum is a rigid 

body capable of oscillating freely about a horizontal axis passing through it. In 

your laboratory, you will find it in the form of a metallic bar having a series of 

holes. These holes allow us to make the pendulum oscillate freely when suspended 

from a knife-edge. The pendulum executes simple harmonic motion. 
 

Oscillatory motion is a universal phenomenon. Like simple and compound 

pendulums, a spring-mass system also executes simple harmonic motion and may 

be used to determine the spring constant. You will learn to do it in the next 

experiment. 
 

1.2 Objectives 

 

By the end of  this experiment, you should be able to 
 

 determine whether two parameters are related by a power law 

 establish the relation between the period and the length of a simple 

pendulum 

 discover the dependence of the period on the amplitude of swing and the 

mass of the bob 

 compute relaxation time 

 compare the values of acceleration due to gravity using a simple and a bar 

pendulum 

 compute the radius of gyration. 
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1.3    Investigations with A Simple Pendulum 

 

 
 

Fig. 1.1: A simple pendulum 

 

In the first pan of the investigations with a simple pendulum you are required to 

investigate the dependence of the period of the simple pendulum on its length, the 

amplitude of swing and mass of the bob. Since we are interested to know the way 

in which three different parameters affect the period, it makes sense to vary only 

one parameter at a time, keeping the other two constant. Then any change in 

period can be attributed to the change in the parameter that has been altered. (If all 

three parameters were changed simultaneously, we would have no way of 

knowing how much of the change in period is due to one particular parameter.) 

Therefore, we shall like you to make investigations in three steps. The apparatus 

with which you will work is listed below. 

 

 

 

 

 

 

 

Take a long piece of string nearly 2m long, and tie it to the pendulum bob. Fix the 

top of the string between cork pads placed in the jaws of the clamp as shown in 

Fig. 1.1. Displace the bob to one side and then release it. It begins to oscillate. You 

should ensure that the bob neither spins nor experiences jerks. That is, the 

pendulum executes free oscillations. Now your set-up is ready and you can begin 

your investigations. 

 

Apparatus 
 

Three identical bobs of different materials, protractor, strings of varying lengths, stop 

watch, metre rod, clamp stand, cork pads, vernier callipers. 
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But before proceeding, we would like you to spend a few minutes trying to predict 

how changes in three parameters can change the period of oscillation. Record your 

predictions and verify them after completing your investigations. 

 

Predictions for the dependence of time period on length of pendulum, mass of bob 

and amplitude of swing. 

1. ____________________________________________________________ 

 

2. ____________________________________________________________ 

 

3. ____________________________________________________________ 

 

1.2.1  Dependence of the Period on the Length 

 

Make a reference mark, using a pointer at the equilibrium position of the bob as 

well as at the maximum displacement of oscillation. You should keep the 

amplitude constant in each observation and it should be such that at no time the 

small angle approximation is violated ( 010 ). That is, the motion is simple 

harmonic. This may be ensured by using a protractor. (If a protractor is not 

available, you can make your own on a cardboard. It may be fixed by using 

drawing pins on the edge of the table on which you are working so that 0° line 

coincides with the equilibrium position of the pendulum.) Otherwise, the motion 

will not be simple harmonic. Note the least count of the stopwatch and record it in 

Observation Table 1.1. Now set the bob in motion by displacing it slightly aside. 

To count the number of oscillations you can choose your reference point in two 

ways, as shown in Fig. 1.2. We prefer the second option (Fig. 1.2b) because in this 

case the reference point does not change. 

 

 
Fig. 1.2: Two  different  ways of counting the  number  of oscillations 

 

 

 

 

 

 

If two students are working together, then one can count while the other keeps time. 

The 'counter' should begin countdown two, one, "go", one, two ... and so on. This 

gives the timekeeper a warning about the 'Go' signal. The end of counting may be 
indicated by saying 'stop'. 
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Begin your counting through the equilibrium position of the bob. It is important to 

simultaneously start the stopwatch. Usually, there is time lag between the 

starting/stopping the watch and the oscillation count. This is called reaction time 

and is, on an average, 0.3s. This can introduce some error in the value of time 

period (T). An important point to consider here is to know the degree of accuracy 

that is necessary. Another point is to measure a time interval in which the 

amplitude of swing does not diminish significantly. To see this you can note time 

for 1,10, 20, 30, 50, 70, 100 oscillations and record your readings in Observation 

Table 1.1. Calculate the period of oscillation. To decide on the optimum number, 

observe the variation in the value of T. When the difference between two 

successive values of T is less than 0.1 per cent, it is acceptable. We expect the  

optimum number of oscillations to be 50. 

 

 

 

 

 

 

 

 

 

 

Observation Table 1.1:  Determination  of optimum  number  of oscillations 
 

Least count of stopwatch = ..................... s 

 

S.No. 
 

No. of 

oscillation 

 

Time 
 

T 
  

 

 

 
(s) 

 
(s) 

  

 

 

 
(i) 
 

(ii) 
 

(iii) 
 

(mean

) 

 

 

 1. 
 

1 
 

 

 

 

 

 

 

 

 

 

 2. 
 

10 
 

 

 

 

 

 

 

 

 
- 
 3. 

 
20 

 

 

 

 

 

 

 

 

 

 

 4. 
 

30 
 

 

 

 

 

 

 

 

 

 

 5. 
 

50 
 

 

 

 

 

 

 

 

 

 

 6. 
 

70 
 

 

 

 

 

 

 

 

 

 

 7. 
 

100 
 

 

 

 

 

 

 

 

 

 

  

Conclusion:  The optimum number of oscillations is   _________ 

 

You have now decided on the number of oscillations (N) to be counted. Measure 

the diameter of the bob using vernier callipers. Record your readings in 

The reaction time is the time interval between the input stimulus and its response. 

 
An ordinary stopwatch has a least count of 0.1 s. So whenever we have to 

measure time of the order of one second or so, we use a more accurate automatic 
switching device, such as digital timer. 
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Observation Table 1.2 (a). Take observations in different directions. Calculate the 

radius. The length of the string plus the radius of the bob defines the length of the 

pendulum. 

 

Note the time for N complete oscillations. Repeat this observation at least three 

times. Measure the length of the string from the point of suspension to the point of 

attachment to the bob using a metre scale. Enter your data in Observation Table 

1.2(b). 

 

Change the length of the pendulum by about 25cm and repeat the experiment, 

keeping the amplitude of swing constant. That is, you should not change the 

position of the reference mark at the maximum displacement. Record the length of 

the pendulum and the time for the same number of complete oscillations. What do 

you observe in respect of the time period as length changes? 

 

Repeat the procedure at least five times by varying the length of the string. What 

do you conclude? 

  

Observation  Table   1.2 
 

Least count of the stopwatch   = _______________ s 

 

Least count of metre scale   = _______________ s 

 

Least count of vernier callipers   = _______________ s 

 

No of complete oscillations   (N)  = _______________ s 

 

a.    Diameter of bob 
 

S. No. Diameter 

(cm) 

Radius 

(cm) 

1. 

 

2. 

 

3. 

  

 

Mean radius =  ____________  

cm. 
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b.    Effect of length on the period of the simple pendulum 

 

S.No. 

 

Length of 

 

Time for N Complete 

 

Time period 

  

 

Pendulum 

 

Oscillations (s) 

 

(s) 

  

 

(m) 

 

 

 

 

  

 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(Mean) 

 

 

 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Conclusion: The period of the pendulum __________________  as length 

increases. 

 

To investigate the exact relation between the time period and the length of the 

pendulum, you find out whether T increases or decreases as length increases. (An 

increase in time period suggests that T is directly proportional to the length and 

vice versa.) A variation in T suggests its connection with the length of the 

pendulum. That is, T  l . From your observations you can't directly quantify this 

proportionality. To know the exact dependence of T on l , we write 

 
nAlT           (1.1) 

 

where A is constant of proportionality and n is some constant. 

 

On taking logarithm to the base e, we get 

 

In T = n ln l  + ln A                        

 (1.1a) 

 

This is the equation of a straight line. 

 

Now you may plot In T versus In l . The slope of the curve will give you the value 

of n. Theory predicts that n should be ½. Compare the two values and discuss 

reasons for the difference, if any. 

 

 

 

 

Thus we can write  

 
2/1AlT           (1.2) 

The equation of a straight line is cmxy   
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You can also arrive at this relation by plotting T 
2
 vs l , T vs 2/1l , T

2
 vs l  and so on 

till you get a straight line. 

 

Theoretically, the slope of the straight line obtained on plotting T
2
 vs l  should be 

g/4 2 . Therefore, by computing the slope from your graph, you can easily 

calculate acceleration due to gravity. Compare your value of g with the standard 

value at your place and compute the percentage error in your result. 

 

SAQ 1 

(i)     In your observations, you are required to record time with respect to the, 

reference mark at the equilibrium position of the bob. Why is it necessary ? 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

(ii)    Why is it necessary to add the radius of the bob to the length of the string to 

know the length of the pendulum ? 

 ____________________________________________________________ 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 ____________________________________________________________ 

 

(iii)  Can we use a metre scale or a micrometer screw to measure the radius of 

the bob? Justify your answer. 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

(iv)   Read time periods from your graph for lengths of 100cm and 125cm. 

Calculate the ratio of time periods. 

 ____________________________________________________________ 

 

 ____________________________________________________________ 
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(v)     Relate g to the y - intercept in In T vs l graph. 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

1.2.2     Dependence of the Period on the Amplitude of Swing 

 

To study the effect of amplitude on the period of the pendulum, we have to keep 

the length of the string and the mass of the bob constant. You may work with a 

length of about 1.5 m and in the beginning take angular amplitude in the range 2-

10°. This ensures SHM. Fix a protractor, as shown in Fig. 1.3. Note time for AT 

oscillations and record it in Observation Table 1.3. 

 

 
 

Fig. 1.3: Dependence of the period on amplitude of swing 

 

Compute the period of oscillation and compare your observations. Are they 

different? Next take larger angular amplitudes of say, 30°, 40°, 50° and 60° and 

note the time period in each case. Is it different from that in the small angle 

approximation? If so, quantify the difference by calculating the relative change. 

What do you infer about the motion of the pendulum? 

 

Observation Table 1.3: Variation of time period with angular amplitude 

 

No. of complete oscillations counted each time (N)  = _________  

 

Length of the pendulum     = _________ m 
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S. No. 

 

Angular 

Amplitude 

(degree) 

 

Time for N Oscillations (s) 

 

Time period 

(s) 

 
(i) 

 

(ii) 

 

(iii) 

 

(Mean) 

 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 6. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Conclusion: 1. For small angular amplitudes the period of the simple pendulum is 

2. For large  

 

angular amplitude, the motion of the pendulum is  ________________________ 

 

1.2.3     Effect of Mass of the Bob on the Period 
 

To determine whether or not the period of pendulum depends upon the mass of the 

bob, we take three bobs of different materials. These should be identical (in shape 

and size) so that (i) the air-drag experienced by every bob is the same and (ii) the 

length of the pendulum is same in all cases. Can you suggest any alternative 

arrangement to study this effect? Is it possible to work with a plastic table tennis 

ball? Yes, we can. Different amount of sand may be poured in the ball to vary its 

mass. Comment on your observations. Note that we have to ensure constant length 

of pendulum and the amplitude of swing. 

 

Note the time for 30 complete oscillations. Repeat the procedure for at least two 

other bobs of same size but different materials. Record your readings in 

Observation Table 1.4. Compute the period. Is it influenced by the mass of the 

bob? If yes, how much? To quantify this change, calculate the difference between 

the values of time period for bobs of minimum and maximum masses. 

Theoretically, we do not expect any change in the time period as the mass of the 

bob is varied. Discuss it with your counsellor and point out the possible reasons. 
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Observation Table 1.4:  Variation of time period with mass of the bob 

 

Length of the pendulum     = _________ m 

 

No. of complete oscillations counted each time (N)  = _________  

 

S. No. 

 

Mass of bob 

 

Time for N 

 

Period 

  

 

(g) 

 

Oscillations (s) 

 

(s) 

  

 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(Mean) 

 

 

 I. 

 

 

 

 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Conclusion: The period of pendulum within experimental error limits is 

____________ s 

 

1.2.4      Damping and Relaxation Time 
 

You must have observed that the amplitude of oscillations of the pendulum bob 

does not remain constant with time. It gradually becomes smaller and smaller. 

This is because the pendulum loses energy due to air resistance. Such a motion is 

said to be damped. In practice, every oscillating system experiences damping to a 

varying extent. We can know the amount of damping once relaxation time is 

known. So in the second part of the investigations with a simple pendulum you are 

required to calculate this quantity. 

 

A systematic way of introducing damping in case of a simple pendulum is to put a 

fan on and let the pendulum oscillate. We assume that frictional force Fd is small 

and take it to be linearly proportional to velocity. That is, we write Fd =  v. 

 

If )(tx  is the displacement at any time t , then the motion of a damped oscillator is 

described by the equation (Ref. Eq. (3.3) of Unit 3, Waves and Oscillators course.) 

 

02 2
02

2

 x
dt

dx
b

dt

xd
         (1.3) 

 

where lg /0   is the angular frequency of undamped oscillations and mb 2/ is 

a measure of damping experienced by a bob of mass m . It has dimensions of 
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frequency. The inverse of this quantity, 


m
b

21  =   is called the relaxation time. 

So values of  will be less for a heavily damped system. 

 

When damping is small, the solution of Eq. (1.3) is 

 

 )cos()/exp()( 0   ttatx d      (1.4) 

 

where 22
0 bd    is the angular frequency of damped oscillations and   is the 

initial phase. )/exp(0 ta  is the amplitude of oscillation in the presence of 

damping. ( 0a  is amplitude of oscillation in the absence of damping). Note that Eq. 

(1.4) represents a periodic motion but it is not simple harmonic. After n 

oscillations, the amplitude will be  

 
)/exp(0 dn nTaa   

 

where Td is the period of damped oscillations. Taking logarithms, we get 

 

 n
T

aa d
n 











0lnln         (1.5) 

 

This equation shows that if we measure an and we plot a graph between ln (an) 

versus n, the curve will be a straight line. Its intercept on the y-axis gives ln a0. 

The slope of the straight line gives /dT . This means that the relaxation time can 

readily be calculated once Td is known for a given length of the pendulum. 

 

To measure an you should fix a scale on the table. Displace the bob to one side and 

release it. Note the amplitude after 10, 20, 30, .... oscillations and record it in 

Observation Table 1.5. (In case it is not convenient to do so in one go, you can do 

it in steps. But in each case the initial amplitude of swing should be kept the 

same.) 
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Observation Table 1.5: Variation  of amplitude with  number of oscillations 
 

Length of the pendulum = ....................................... m 

 

Period of the pendulum  = ....................................... s 

 

Mass of the bob  = ....................................... g 

 

S. 

No. 

n  
na (cm) naln  

1. 10   

2. 20   

3. 30   

4. 40   

5. ―   

 ―   

 ―   

 ―   

    

10. ―   

 

 

Result: The relaxation time of the given pendulum vibrating in a viscous medium 

(air) is  

 

...........................s. 

 

SAQ 2 
Name a physical system where linear damping model holds. 

 

1.3    Investigations with a Bar Pendulum 
 

We know that a simple pendulum suffers from the drawback that some air is 

always dragged by the bob. Similarly, the string may not be perfectly inextensible 

leading to non-planar oscillations. These sources of error sometime lead to a 

variation in the value of T. Can you suggest a way to overcome these problems? 

The remedy lies in the use of a compound pendulum. A compound pendulum is a 

rigid body capable of oscillating freely about a horizontal axis. In the physics 

laboratory, it is in the form of a bar of length nearly one metre and width about 2 

cm. A series of circular holes 5-6 mm in diameter are drilled symmetrically about 

its centre of gravity (C.G), i.e. along the length of the bar. (You can make a bar 

pendulum by taking a metre scale and drilling equidistant holes in it, as shown in 
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Fig. 1.4.) The centres of any two consecutive holes are at equal distances of about 

2 cm. These holes allow the bar to be suspended from a knife-edge. Usually, two 

movable knife-edges are provided with the bar pendulum. These can be fitted 

successively in various holes, one on each side of C.G and at equal distances from 

it (Fig. 1.4). 

 

 
 

Fig. 1.4:  A bar pendulum 

 

As the bar pendulum is made to oscillate about a horizontal axis, its motion is 

simple harmonic and the time period is given by 

 

gl

lk
T r

22

2


          (1.6) 

 

where l  is the distance between the point of suspension and C.G and rk  is the 

radius of gyration of the body about an axis passing through the C.G and parallel 

to the axis of rotation. The radius of gyration is defined as the distance between 

the axis of rotation and the point at which the whole mass of the body could be 

considered to be placed without any change in its moment of inertia about that 

axis. 

 

We define 

 

 l
l

k
L r 

2

 

 

and call it the length of an equivalent simple pendulum. Combining this result with 

Eq. (1.6), we get 

 

gLT /2           (1.7) 
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In this part of the experiment, you are required to investigate how the period of 

oscillation varies with the distance between the point of suspension and C.G of the 

bar pendulum. The apparatus with which you will work is listed below. 

 

 

 

 

1.3.1     Variation of the Period with Length 

 

Fix one knife-edge in -the hole nearest to one end of the pendulum. The other 

knife-edge is fixed in the hole nearest to the other end so that the two knife-edges 

are equidistant from the C.G of the bar. Now suspend the pendulum vertically by 

resting it on one of the knife-edges on a horizontal rigid support. As before, put a 

reference mark to denote the mean position of the pendulum. Displace the bar 

slightly aside and let it oscillate. You should ensure free oscillations in the vertical 

plane. Now you are ready to perform the experiment. 

 

Measure the distance between the point of suspension and the C.G of the bar 

(centre of the hole). This gives us l . Now measure the time for N (=30) complete 

oscillations. Record your readings in Observation Table 1.6. Invert the pendulum 

and note the time for the same number of oscillations. Now insert the knife-edges 

in the adjacent holes so that they are symmetrical about C.G, as before. You will 

note that now the length of the pendulum has changed. So you will find that the 

time for N oscillations is different from the preceding value. Repeat observations 

by inserting the knife-edges in different holes. At all times, the knife-edges should 

be symmetrical about C.G. What happens as you approach the centre of the bar? 

You will observe that the time for N oscillations first decreases, takes a minimum 

value and then increases. As you near the C.G of the bar, it becomes very large. 

Can you measure the period by putting the knife-edge at the central hole? It is not 

possible to do so because the bar will not oscillate; it just gets stuck up on one 

side. 

 

Plot a graph between T and l . You will get two curves which are symmetrical 

about the C.G of the bar (Fig. 1.5). Now you draw a line parallel to the ^-axis. At 

how many points it cuts these curves ? The number of points should be four, say 

at, J.KM and N, as shown in Fig. 1.5. 

 

Apparatus: Bar pendulum, stop watch, metre scale. 
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Observation Table 1.6: Variation of time period with distance of hole from 

C.G. 

 

Least count of the stopwatch       =          ............... s 

 

No. of complete oscillations counted each time =  .………..  

 

No. of hole 

from one end 

Distance of the 

point of 

suspension from 

C.G, l  

(cm) 

Time for N 

Oscillations 

(s) 

 

T 

(s) 

 
2lT  

(cm s
2
) 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Result: The plot of T versus l  is  ……........ 

 

At all these points, the period of the pendulum is the same. Measure distances JM 

and KN. How do you interpret these? Each of these distances represents the length 

of an equivalent simple pendulum, L. Using Eq. (1.7), you can compute the 

acceleration due to gravity. 
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Fig. 1.5: Plot of time period with distance of hole from C.G.       

 

1.3.2     The Radius of Gyration 

 

How will you calculate the radius of gyration? To answer this question, we rewrite 

Eq. (1.6) 

 

 22

2

2

4
rklT

g
l 


 

 

This equation suggests that if you plot 2l versus 2lT , you will obtain a straight line, 

which on extrapolation will meet the y-axis. The intercept on the y-axis gives 2
rk . 

How do you interpret the slope of the curve? It is 24/ g . Hence, you can calculate 

the value of g also from this graph. Compare this value with that obtained using a 

simple pendulum. Which one is more accurate? 

 

Result:  

(i)  The radius of gyration of the bar pendulum about-an axis passing through 

C.G and parallel to the axis of rotation is .............. m 

 

(ii)    The acceleration due to gravity is ...............m/s
2
 

 

SAQ 3 

(i)      Why is it necessary to keep the knife-edges symmetrically about C.G? 
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 ____________________________________________________________

_____ 

   

 

(ii)     Is your bar pendulum oscillating about a horizontal axis or a vertical axis? 

 

 ____________________________________________________________ 

 

(iii)   Name two sources of error in your experiment. 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 
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(For Counsellor's use only)   

Grade..............................    Name  

..................……………….. 

 

Evaluated by………………………….    Enrolment Number 

……………… 

 

 

EXPERIMENT 2 

 

OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL 

PENDULUM 

 

Structure 

 

2.1     Introduction Objectives 

2.2     Determination of Spring Constant Using a Spring-Mass System 

Static Method  

Dynamical Method 

2.3     Determination of Torsional Rigidity of a Wire using a Torsional Pendulum 

 

2.1   Introduction 
 

We know that spiral springs find various uses. In a transistor set and a pocket 

calculator, springs hold dry cells in proper position. Springs are used as shock 

absorbers in automobiles and railway wagons. You may have also used yourself a 

bull-worker or seen body-builders using it. Do you know that it essentially 

consists of springs? In ammeters, voltmeters and a wristwatch, springs control 

oscillations of the system. In all these cases, the basic difference in the springs 

being used is in their spring constants. So to decide upon the type of a spring for a 

particular purpose, we must know its spring constant. In a physics laboratory we 

can determine the value of spring constant in two different ways:  

 

(i)  by knowing extension in the spring for a given load (static method), and  

 

(ii)    by determining the period of harmonic oscillations of the spring-mass 

system (dynamical method). 

 

We come across many instruments in the physics laboratory which involve 

torsional oscillations. The most familiar of these are the torsional pendulum (used 

to calculate modulus of rigidity), inertia table (used to determine moment of 

inertia) and the moving coil galvanometer (used to measure charge and current). 

When wire in such a torsional system is twisted, due to elasticity a restoring torque 
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is set up within the wire (fibre). It tends to oppose twisting of the wire. The 

restoring couple per unit radian is known as torsional rigidity or torsional 

constant. While choosing the suspension wire (fibre) for a specific purpose we 

should have a prior knowledge of torsional rigidity. In this experiment you will 

learn to measure torsional rigidity by a simple experiment. 

 

2.2 Objectives 

 

After doing experiments with a spring-mass system and a torsional oscillator, you 

will be able to: 

 acquire skills of measuring small thickness with precision using a 

micrometer screw 

 measure extension of the spring for a given load and calculate the spring 

constant (k) for the given spring (static method) 

 measure the period of oscillation of a spring-mass system for different 

loads and calculate k (dynamical method) 

 compare the accuracies of static and dynamical methods 

 compute torsional rigidity ( tk ) and modulus of rigidity of the given wire 

 predict the material of the wire. 

 

2.3    Determination of Spring Constant Using a Spring-Mass System 
 

In the preceding experiment you investigated the question: What determines the 

value of T for a simple and a bar pendulum? You may now ask: Can we make 

similar investigations for a spring-mass system? It makes sense and you can do so 

along lines outlined in Experiment 1. But now we intend to calculate the spring 

constant of a spring in two different ways: (i) by knowing extension for a given 

load, and (ii) by measuring the period of harmonic oscillations of a spring-mass 

system. The apparatus required for this purpose is listed below:  

 

Apparatus 

 

A spiral spring, slotted weights in multiples of 100g, stop watch, a laboratory stand and a 50 
cm scale. 
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Fig. 2.1:  A Spring-mass system 

 

Suspend a spring and a metre scale in the stand side by side, as shown in Fig. 2.1. 

Fix a sharp-tipped pointer (needle) at the lower end of the spring. (In case you do 

not get a needle, you can make a pointer of cardboard by cutting it in the shape of 

an isosceles/equilateral triangle. Then you have to attach its base to the straight 

end of the spring so that its vertex moves in contact with the scale. This helps in 

minimising parallax error also.) Suspend a hanger (which itself is a known weight 

equal to any other slotted weight) in the hook of the spring. (Alternatively, you can 

tie a pan to the lower end of the spring and put weights.) Normally, it is advisable 

to put an initial load on the hook as it will take care of the kinks and other such 

inhomogeneities in the spring. This implies that the choice of the initial position 

really does not matter. Stretch the spring by pulling the hanger downwards 

through a small distance and then let it go. The spring-mass system will execute 

vertical oscillations. Ensure that the pointer does not stick anywhere and the 

oscillations are free. Now your apparatus is ready and you can start your 

experiment. But before you do this, do spend a few minutes making qualitative 

observations as to how extension/period changes when the mass is changed within 

elastic limits. This limit will be different for different springs. So you better 

consult your counsellor before putting a load on the spring. 
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2.2.1      Static Method 

 

Load the spring by putting a weight. Due to elasticity, a restoring force is set up in 

the spring. It tends to oppose the applied force and bring the system back to its 

original state. If extension is small compared to the original length of the spring, 

the magnitude of restoring force exerted by the stretched spring on the mass is 

given by 

 

 kxF           (2.1) 

 

where x is extension in the spring and k is spring constant. 

 

From Eq. (2.1) it is clear that once you know extension as a function of load, k can 

easily be calculated. It is with this purpose that we attach a pointer to the lower 

end of the spring. This method of determining k is known as static method. 

 

Note the new equilibrium position of the pointer on the scale and regard it as 

initial observation. Record your reading in Observation Table 2.1. Now increase 

the load in steps by adding equal weights each time. For each load, record the 

position of (he pointer. Before taking a reading, you should wait for some time so 

that the pointer comes to rest. Take at least six observations. 

 

When a body is subjected to an external force, it tries to maintain its shape and size. As 

applied force is removed, it tends to recover its original configuration. This property is 
known as elasticity. The magnitude of applied force up to which a specimen retains its 

elastic property defines the elastic limit. Beyond the elastic limit the applied force produces 

plastic (permanent) deformations, i.e. the body will not recover its original shape and size 
even if the applied force is withdrawn. 
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Observation Table 2.1: Measurement or extension of the spring:  Static 

Method 

 

Least count of metre scale       =     .............cm 

 

S. No. 

 

Load on the spring 

(g) 

 

Reading of pointer on the metre scale 

(cm) 

 

 

 

 

Load 

increasing 

Load 

decreasing 

Mean 

 

1. 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 6. 

 

 

 

 

 

 

 

 

  

To ensure that you are working within the permissible elastic limit, you may 

record the position of the pointer by unloading the spring in steps. Tabulate your 

observations. Do these readings differ from those recorded while loading the 

spring? If observations for a given weight are nearly the same, both while loading 

and unloading, you can be sure that you are certainly working within the elastic 

limit. Calculate the mean extension for a given load.  

 

 
 

Fig. 2.2: Best fit curve through observed points 

 



PHY 291                          LABORATORY PHYSICS I 

 

55 

 

Now you should plot a graph between load and the corresponding extension. 

Conventionally, we plot the independent variable along the x -axis and the 

dependent variable along y-axis. Which physical quantity will you plot for this 

experiment along x-axis? Draw the best fit through observed points as shown in 

Fig. 2.2. (For a good steel spring, we expect the graph to be linear.) Does your 

straight line pass through the origin? The inverse of the slope of the straight line is 

a measure of the spring constant. To calculate the slope, you should use two 

widely separated points on the straight line. Use g = 9.8 m/s
2
 and express your 

result in SI units. 

 

Error   Analysis 
Find the change in slope of the straight line caused by drawing lines of maximum 

and minimum slopes. This gives maximum error in the slope. Using g = 9.8 m/s
2
, 

calculate the error in k in SI units. 

 

Conclusion: The spring constant of the given spring = ........................ ± 

.......................   N/m. 

 

SAQ   1 

(i)      Name the factor(s) on which k depends. 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

(ii)     From your graph, note extension for a load of 2N. 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

2.2.2      Dynamical Method 
 

In the preceding section you learnt a method of measuring extension of spring as a 

function of load. This information was used to compute the spring constant. You 

may now ask: Is there some other method also for determining k? Yes, there is. 

We can use the so-called dynamical method. It is based on observing the period of 

harmonic oscillations of the spring-mass system. 

 

On seeing a spring-mass system oscillating, you may like to know: Is this motion 

different from that of a simple pendulum? Though these two systems are 

physically different, both execute SHM, provided the extension is not large. 

Another question that comes to our mind immediately is: Does gravity affect the 

frequency of oscillations? Gravity has no effect on the frequency of oscillations. 

The period of oscillation is given by 
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 kmT /2          (2.2) 

 

This relation shows that we can compute k by knowing the period of oscillations 

for a given mass. In case you get to know the standard value of k (from your 

counsellor or a book) for the material of spring, you can judge whether the 

dynamical method is more accurate than the static method or not. So you will be 

required to measure the period of simple harmonic oscillations. You must ensure 

that oscillations of the system hanging vertically are longitudinal. That is, there 

should not be any lateral oscillations. Otherwise, the motion will not be simple 

harmonic. 

 

Put a load on the hanger and take the position of the pointer on the scale as the 

equilibrium position. Now stretch the spring by pulling the hanger downward and 

then release it. For small displacement, the system will execute SHM. 

 

Note the least count of the stopwatch and record it in Observation Table 2.2. Now 

set the spring-mass system into oscillations. Allow the first few oscillations to pass 

so that there is no anharmonic component. Begin your counting through the 

equilibrium position and simultaneously start the stopwatch. Note the time for N, 

say 30 complete oscillations. To minimise error in T, it is desirable to take 50 or 

more oscillations. However you must ensure that the amplitude of swing does not 

decay significantly. Draw your Observation Table and enter your readings. Add 

more weights in the hanger and repeat the procedure at least five times. Tabulate 

your observations. How does the time period change? 

 

As before, the procedure may be repeated by decreasing the load in steps. 

Calculate the mean period for each load. 

 

Plot 2T  versus m. Which variable will you plot along y-axis and why? Draw the 

best possible straight line as shown in Fig. 2.3. Does it pass through the origin? 

From the slope of the straight line, you can easily compute k. Check if this value 

agrees with that obtained by the static method. The two values should be same or 

nearly equal. 
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Observation Table 2.2: Measurement of Time  Period:  Dynamical  Method 

 

 Least count of stop watch    = ………….. s 

 

 No. of complete oscillations counted each time  = ………….  

 

S. No. 

 

 

 

 

 

 

 

1. 

 

 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 

 

 6. 

 

 

 

 

 

 

 

•   - 

 

 

  

Result: The spring constant of the given spring = ……....................... ± 

.......................   Nm 

 

As before, you can compute error in k by drawing lines of maximum and 

minimum slopes. What is the relative change in the value of k? 

 

 
 

Fig. 2.3:  Expected plot of T
2
 versus m 
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SAQ 2 

(i)     Extrapolate the graph between T
2
 and m backward till it meets the m-axis. 

Interpret the intercept on m-axis. 

____________________________________________________________ 

 

 (ii)    Use your graph to determine T for a load of 3N. 

____________________________________________________________ 

 

2.3 Determination of torsional rigidity of a wire using a  

Torsional pendulum 
 

As mentioned before, you are required to use a torsional pendulum shown in Fig. 

2.4 to measure torsional rigidity. All necessary apparatus required for this purpose 

is listed below: 

 

In a torsional pendulum one end of a long and thin metallic wire is clamped to a 

rigid support. The other end of the wire is fixed to the centre of a projection 

coming out of the central portion of the circular disc. Normally, this disc is made 

of aluminium or brass. You can observe concentric circles on the upper face of the 

disc and a groove near the circumference. The concentric circles facilitate 

symmetrical loading. The concentric groove helps in setting the disc horizontal by 

placing balancing weights. The iron table below the disc is provided with three 

levelling screws. 

 

 
 

Fig. 2.4: A torsional pendulum 

 

Apparatus 

 
Torsional pendulum (inertia table), stopwatch, rigid circular cylinder, vernier callipers, 

micrometer screw, spirit level, physical balance and a weight box. 
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Think of what happens when a cylindrical wire (rod) is clamped at one end and the 

other end  is twisted in a plane perpendicular to its length. Due to elasticity, an 

equal and opposite torque is developed in the wire. The restoring torque per unit 

radian, tk , is given by 

 

l

nr
kt

2

4
          (2.3) 

 

when n is the modulus of rigidity and r is radius of the wire of length l . (In many 

textbooks, the restoring torque per unit radian is denoted by the symbol C.) In the 

apparatus given to you, if you rotate the disc in a horizontal plane (keeping the 

wire vertical) and then release it, the system executes torsional oscillations in the 

horizontal plane. These torsional oscillations are simple harmonic. The period of 

oscillations is given by 

 

tk

I
T 0

0 2          (2.4) 

where 0I  is the moment of inertia about the axis of rotation. 

 

If an auxiliary body of known moment of inertia I  is placed on the disc such that 

its centre coincides with the centre of the disc, the period of oscillations changes. 

Do you know why? 

 

It is because of the redistribution of mass about the axis of rotation. If we denote 

the period of the system now by T , we can write 

 

tk

II
T


 02          (2.5) 

 

Now square Eqs. (2.4) and (2.5) and subtract the former from the latter. This gives 

an elegant expression for torsional rigidity: 

 

2
0

2

24

TT

I
kt





         (2.6) 

 

On combining this result with Eq. (2.3) we get an expression for the modulus of 

rigidity  

 

42
0

2 )(

8

rTT

lI
n





        (2.7) 
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Eqs. (2.6) and (2.7) show that we can readily calculate k, and n once T, 0T , I , 

l and r are known. Let us now determine T and 0T . To do so, you should first level 

the iron table by the levelling screws. You should test this using a spirit level. 

Next you should adjust the balancing weights in the groove of the disc so that the 

disc is horizontal. To ensure this, you should again use a spirit level. You should 

also make sure that the suspension wire is free from kinks. Now place a vertical 

pointer in front of the disc and just put a mark on the disc when the latter is at rest. 

This denotes the equilibrium position and reference for counting the number of 

oscillations. Next, rotate the disc slightly in a horizontal plane so that the wire is 

twisted and then release it. The system begins to oscillate. How are these 

oscillations different from those of the simple pendulum? Let the first few, say 5, 

oscillations to pass. Begin your counting through the equilibrium position and 

simultaneously start the stopwatch. Note the time for N (20 or 30) oscillations. 

Record your readings in Observation Table 2.3. Repeat the observations at least 

five times. Calculate the mean period. This gives 0T . 

Observation Table 2.3:  Determination of T0 and T 
 

Least count of stop watch    =         ...........     s. 

 

No. of oscillations counted each time (N )  =   ......…. 

 

S. No. 

 

Time for /V oscillations 

(s) 

 

Time period 

(s) 

 

No cylinder 

 

With cylinder 

 
0T  

 

T 

 2. 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

  

Now place a right circular cylinder at the centre of the disc such that its axis 

coincides with the axis of suspension of the wire. Do you know why is it necessary 

to place the cylinder like this? 

 

Now record the time for the same N number of oscillations at least five times. 

Calculate the period of oscillations. This gives us T. 

 

From Eq. (2.6) we note that to calculate tk , we must know I  also. The moment of 

inertia of a right circular cylinder of mass M and radius K about an axis passing 

through its centre is given by 
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2

2MR
I   

 

This shows that I  can be calculated if we know M and R . The mass may be 

known by weighing the cylinder in a physical balance. 

 

Measure its diameter using vernier callipers. Record your readings in Observation 

Table 2.4. Take at least five readings. Calculate the mean value. 

 

Table 2.4:  Radius of Cylinder 

 

Least count of vernier callipers =   ................ cm 

 

S. 

No. 

Diameter of the cylinder (cm) Radius (cm) 

1. 

 

2. 

 

3. 

 

4. 

 

5. 

 

6. 

  

Mean radius of cylinder    = ……………… cm 

 

Mass of right circular cylinder   = ……………… kg 

 

Moment of inertia of right circular cylinder = ……………… kgm
2
 

 

 

Result:  The torsional rigidity of the material of the given wire is ........... Nm. 

 

Once tk  is known, n may be computed if you measure the length of the wire and 

its radius. To find r, use a micrometer screw. Take readings at several points along 

the length of the wire and record these in Observation 

Table 2.5. By doing so you can account for any non-

uniformity in the diameter of the wire. For greater 

accuracy, measure the diameter of the wire in two 

mutually perpendicular directions. From measured value 
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of n you should be able to predict the material of the wire by consulting some 

practical physics textbook. 

 

Table 2.5: Diameter of Wire 

 

Least count of micrometer screw = .......... cm. 

 

S. No. 

 

Diameter of the Wire 

(cm) 

 

Radius 

(cm) 

 

 

AB 

 

CD 

 

Mean 

 

 

 1. 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

  

Mean radius of the wire =  ............ m. 

 

Length of the wire = ............ m. 

 

Compute log error following the procedure outlined in Unit 2 on error analysis. Do 

your results differ from standard values of k and n within these error limits only? 

If not, then you should discuss the reasons of deviation with your counsellor, 

 

If time permits, you can investigate the relation between it, and the radius of the 

wire by choosing another wire of the same material. Similarly, you may study 

dependence of tk  on the material of wire, For this you should take another wire of 

different material but having the same radius. 

 

SAQ 3 

(i)     Name at least two sources of error in this experiment. 

 

(ii)    Why is it necessary to coincide the centre of the circular cylinder with the 

axis of the suspension wire? 

 

(iii)  Can you determine the M.I. of an irregular body with this apparatus. If yes, 

how? 
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(For Counsellor's use only)   

Grade..............................    Name  

..................……………….. 

 

Evaluated by………………………….    Enrolment Number 

……………… 

 

EXPERIMENT 3 

 

A STUDY OF ENERGY AND MOMENTUM CONSERVATION 

PRINCIPLES 
 

Structure 

 

3.1 Introduction  

Objectives 

3.2 Verification of the Principle of Conservation of Mechanical Energy  

Description of Apparatus  

Procedure 

3.3     Verification of the Principle of Conservation of Linear Momentum 

Description of Apparatus  

Procedure 

 

3.1    Introduction  
 

In the preceding experiments you worked with systems executing simple harmonic 

motion (SHM). An important characteristic of the system executing SHM is that in 

the absence of dissipative forces, the energy of the system remains constant, i.e. it 

is conserved. Recall the oscillations of the bob of a simple pendulum. When the 

bob is displaced from its equilibrium position, it gains potential energy. At the 

extreme position, all its energy is potential in form. On being released, its potential 

energy gradually changes to kinetic energy. At the mean position, its energy is 

wholly kinetic. As the bob crosses the mean position, its kinetic energy begins to 

transform to potential form. But at anytime the total mechanical energy, which is 

the sum of the kinetic and potential energies, remains constant. This is known as 

the principle of conservation of mechanical energy. This principle is also valid for 

other forms of energy such as chemical, thermal, electrical, and nuclear. This 

analogy suggests that we can state a general principle of conservation of energy. 

 

This principle is perhaps the most fundamental and elegant principle of physics. It 

is observed in all natural processes from radioactive decay to the motion of planets 

around the sun. Do you know of any situation where this law is violated? Probably 
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there is not a single exception to it so far, though it has been challenged many 

times. 

 

The principle of conservation of energy does not provide satisfactory solutions to 

problems where details of interactions between different bodies are not known. 

For such situations we require a conservation principle involving a vector quantity 

like linear momentum. This principle finds wide applications ranging from nuclear 

reactions to rocket propulsion. There are many other conservation principles in 

physics. But in this experiment you will learn to verify the principles of 

conservation of mechanical energy and linear momentum using simple 

arrangements. 

 

In general, the conservation principles help us in discovering new phenomena as 

well as clarifying the less understood ones. You may recall from your school 

science course how the principles of conservation of momentum and energy led 

Pauli to predict the existence of the neutrino. Many a time, these principles 

forewarn us of the non-occurrence of some phenomenon.  

 

3.3 Objectives 

 

By the end of this experiment you should be able to: 

 acquire skill of removing parallax 

 use a plumb line 

 translate a vector parallel to itself 

 verify the principle of conservation of mechanical energy 

 verify the principle of conservation of linear momentum. 

 

3.2     Verification of The Principle of Conservation of Mechanical Energy 
 

The principle of conservation of energy is stated as follows: 

 

Its verification demands that we must be able to measure energy very precisely. 

Since it is most convenient to measure mechanical energy, we will verify the 

principle of conservation of energy with particular reference to conservation of 

mechanical energy. 

 

Energy can neither be created nor destroyed. It may be transformed from one form to 

another; the total energy in a system remaining constant. 
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Fig. 3.1: Oscillations of a simple  pendulum 

 

Consider the oscillations of a simple pendulum (Fig. 3.1). Referring to this figure 

we note that at A, the maximum of the swing, the energy of the bob will be wholly 

potential (kinetic energy zero). But at the mean position O, the energy of the bob 

will be wholly kinetic. Therefore, to verify that mechanical energy is conserved, 

we must show that at any point between A and B, the sum of potential energy and 

kinetic energy of the bob remains constant. Since it is more convenient to measure 

potential than kinetic energy, we intend to measure the energy of the bob at A. The 

maximum value of potential energy (U ) is given by 

 
2

max )2/1( mglU          (3.1) 

 

where m is the mass of the bob, l  is the length of pendulum,   is the maximum 

angular displacement and g  is the acceleration due to gravity. 

 

If   is small, we can write 

 

l

x
            

 

where x is the amplitude of oscillation. 

 

Using this result in Eq. (3.1), we get 

 

 2
max

2
x

l

mg
U           (3.2) 

 

This equation tells us that the maximum potential energy of a bob is directly 

proportional to the square of the amplitude of oscillation and inversely 
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proportional to the length of the pendulum. So, to verify the principle of 

conservation of mechanical energy, we must show that at A or at B, 

 

K
l

x


2

         (3.3) 

 

where K is constant. 

 

Let us pause for a minute and ask: What is implied by Eq. (3.3)? It tells us that for 

a given length of a simple pendulum ( l fixed), the amplitude of swing, on either 

side of the mean position, should remain constant for the principle of conservation 

of mechanical energy to hold. You can check this by releasing the bob and 

measuring x on either side of the mean position. (Alternatively, you can measure 

the vertical heights by which the bob rises above the equilibrium position.) 

However a more convincing way to verify Eq. (3.3) will be to have l  and x in such 

a way that they are different at the extremities of the same oscillation. You will 

realise that in a simple pendulum it is not possible to vary both x and l  

simultaneously. So to achieve this we have designed a special pendulum, which 

we call two-in-one pendulum. It is a modified form of simple pendulum and is 

similar to that used by Galileo to study the principle of conservation of energy. 

(His experiment is known as pin and pendulum experiment.) We will describe the 

two-in-one pendulum in the paragraphs that follow. But we first list all the 

apparatus with which you will work. 

 

3.2.1      Description of Apparatus 

 

The two-in-one pendulum consists of a specially designed stand fixed on a flat 

base, which carries a mirror strip fitted with a scale, as shown in Fig. 3.2. The 

mirror strip helps us in avoiding parallax while taking readings of the 

displacements of the bob. The bob is tied to a string and suspended from clamp A, 

which is fixed so that AX is about 1.5m. Clamp B is movable and can be made to 

slide vertically in a graduated groove. This clamp must be smooth and have a 

sharp end, like a pin so that it slightly interrupts the swing when the bob reaches 

its mean position. What will happen if the end is not sharp? In such a situation, 

appreciable energy loss may occur. 

 

Apparatus 

 

Two-in-one pendulum, a heavy bob with a pointer, inextensible weightless string. 
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Fig. 3.2: A two-in-one  pendulum  apparatus 

 

3.2.2     Procedure 
 

Note the least count of vernier callipers and record it in Observation Table 3.1 (a). 

Now measure the diameter of the bob in different directions. Take at least five 

readings. Calculate the mean radius, r. 

 

Observation Table  3.1  

 

a. Diameter of bob 

 

Least count of vernier callipers  = ................. cm 

 

Zero error (if any)   = ............…. cm 

 

S. No. 

 

Diameter (cm) 

 

Radius (cm) 

 1. 

 

 

 

 

 2. 

 

 

 

 

 3, 

 

 

 

 

 4. 

 

 

 

 

 5. 

 

 

 

 

  

Mean radius (r) = ................... cm 

 

Now, take a thread of length ( l ) about 1.5 m and firmly tie its one end to the bob 

carrying a pointer. The distance between the point of suspension of the pendulum 

and centre of gravity (C.G) of the bob defines the length of the pendulum ( 1l ) = 

rl  . Record it in Observation Table 3.1(b). Now displace the pendulum to one 



PHY 291                          LABORATORY PHYSICS I 

 

68 

 

side fixing 1x  (Fig. 3.3). While doing this you must make sure that the angular 

amplitude is small. This means that 
l

x 2
1  is now fixed. 

 

 

 
 

Fig. 3.3: Schematic Depiction of two-in-one pendulum 

 

b.     Verification of the  Principle of Conservation of Mechanical  Energy 
 

Least count of metre scale      = ......................  cm 

 

S. 

No. 

rll 1  

(cm) 
1x  

(cm) 
2

2
2

l

x
 

(cm) 

all  12  

(cm) 
2x   

(cm) 
2

2
1

l

x
 

(cm) (i) (ii) (iii) (mean) 

1          

      

      

2          

      

      

3          

      

      

4          

      

      

5          
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Now you release the bob. As the Clamp B obstructs the swing, you get another 

pendulum two-in-one pendulum of smaller length BQ, with B as the point of 

suspension. This is illustrated in Fig. 3.3. 

 

Note the extreme point of swing on the right-hand side of the mean position. This 

gives us x2. Record your reading in Observation Table 3.1(b). Repeat the 

procedure at least three times. Do you get the same value every time? Now 

calculate the average value. Compute 2
2
2 lx  , where all  12 ; a being the distance 

between clamps A and B. Does Eq. (3.3) hold? If not, then you should look for 

energy dissipative mechanisms.  

 

Next, you vary 2l  by sliding the clamp B in the groove. Take at least three values 

of 2l  for one value of 1l . You should make sure that 2l  be never less than 0.5m. 

For otherwise, the assumption  sin may not hold. 

 

Next, you should change 1I  by about 20 cm and repeat the above-said steps. Is 

energy conserved? Comment on your findings. 

 

SAQ   1 

(i)      At which position in the two-in-one pendulum can energy loss occur ? 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

(ii)     Do your results show a departure from conservation of energy as 2l is 

reduced? If so, calculate the maximum deviation. 

 

(iii)  List at least two sources of error in your experiment. 

 

3.3     Verification of The Principle of Conservation of Linear Momentum 

 

Let us consider as to what happens when a bullet is fired from a gun. The principle 

of conservation of energy tells us that the kinetic energies of the bullet and the 

recoiling gun, along with the heat and sound energies will be equal to the chemical 

energy of the detonated explosive. However, it does not tell us how this total 

energy is distributed amongst the bullet, the gun and the surrounding environment. 

Moreover, since energy is a scalar quantity, its conservation does not even suggest 

that the gun will recoil. In fact, the law of conservation of energy does not rule out 
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the reverse process – recoiling of the bullet – which we know never occurs. So it is 

obvious that in such situations we require a conservation principle involving a 

vector quantity such as linear momentum. This principle may be stated as follows: 

 

We know that momentum is a vector quantity. Its conservation demands that it 

should be conserved both in magnitude and direction. When a bullet is fired by a 

gun the momentum is conserved in one dimension. Can you give an example 

where two bodies go off in different directions after collision? In a three 

dimensional space this principle should hold for all three components. But an 

experiment in two dimensions, rather than three, will be easy to perform and 

enough to demonstrate the vector nature of the principle of conservation of 

momentum. This demands that we should know the momenta of the colliding 

bodies before and after the collision in two dimensions (2-D). 

 

We know that momentum is a product of mass and velocity. Of these, mass of a 

body can be accurately determined using a physical balance. But to measure 

velocities of the colliding bodies, we have specially designed a 2-D collision 

apparatus. We will describe this apparatus in the paragraphs that follow. 

 

 

3.3.1     Description of Apparatus 
 

The two-dimensional collision apparatus consists of a curved channel ABC, which 

may be held with the help of a stand or clamps (Fig. 3.4), The right end of the 

channel is horizontal. When a steel ball 1B  is released from some point in the 

channel, it shoots off with zero vertical component of velocity. S is an adjustable 

support with a flat tip, where another steel ball B2 may be placed. The support can 

be moved horizontally so that the two balls can be placed at any desired distance. 

Moreover, we can adjust this support so that the centres of 1B  and B2 lie in one 

horizontal plane, called the collision plane. 

 

Apparatus 

 
2-D Collision apparatus, steel balls, sheet of paper, carbon paper, drawing-board and 

board pins, plumb line, ruler, protractor and physical balance. 

 

When there is no external force acting on a system of particles, the total linear momentum 

of the system is conserved. 
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Fig. 3.4: A two dimensional collision apparatus 

 

 

The floor level forms our observation plane. A sheet of paper is laid on the floor 

with a carbon paper – carbon side down over it. When the ball falls, it will leave a 

mark on the paper. However, an important point here is to ensure that the floor is 

smooth. In case the floor is not smooth you should place the white sheet and the 

carbon paper on a drawing board. 

 

3.3.2      Procedure 
 

Choose two identical balls 1B  and B2. Weigh them carefully in a physical balance. 

Set the apparatus as shown in Fig. 3.4. Mark the point 1O , on the floor directly 

below the edge (point C) using a plumb line. Release 1B  from a particular position 

marked as X on the channel ABC. The ball will fall on the paper, say at 0
1P . Our 

knowledge of projectile motion tells us that 0
11PO  is a  

 

 

 

measure of velocity of ball 1B . Repeat this observation ten or fifteen times and 

encircle the distribution of points on the paper. To what degree is the velocity 

always the same? Mark the point which is most reproducible. 

 

Collisions between particles of equal masses find most important application in the design 
of nuclear reactors. We find that neutron energy is most efficiently reduced in collisions 

with hydrogen nuclei. That is why water is used as moderator. 
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Fig. 3.5: Vectorial representation of a 2-D Collision 

 

Now put ball B2 on support S. Adjust its position so that the line joining the 

centres of 1B  and B2 is a little inclined to the initial line of motion of 1B . This 

ensures that the collision is two-dimensional. (A head-on collision is essentially 

one-dimensional.) For such a collision, the distance between the edge C and the 

centre of the target ball may be kept at about 2.5 radii. Mark the vertical 

projections 1O  and O2 of balls 1B  and B2. Now release 1B  from the same position 

X. The balls 1B  and B2 collide and fall on the paper at '
1P  and '

2P  .You must ensure 

that 1B  has a smooth trajectory after the collision and its motion is not hampered 

due to the support holding B2. Now remove the carbon paper and draw vectors 
0

11PO , '
11PO  and '

22PO  as shown in Fig. 3.5. Then '
11PO  and '

22PO  are measures of 

velocities of 1B  and B2 after the collision, whereas 0
11PO  is a measure of velocity 

of 1B  before collision. Since the masses of the balls are equal, the velocity vectors 

represent the momenta of the balls. 

 

 

 

 

 

To know the total momentum of colliding balls after the collision, we should add 

vectors '
11PO  and '

22PO . We know that translation of a vector parallel to itself does 

not alter it. So you may choose O as the reference point and generate the vector 

diagram for the momenta following the procedure outlined below: 

 

A projectile motion is characterised by (i) a constant horizontal velocity component, and (ii) a 

constant downward acceleration, which is the same as that of a freely falling body. The 
horizontal distance travelled by a projectile is proportional to the horizontal velocity 

component. 

 

When two bodies moving along the same line but in opposite directions collide, the 

collision is said to be head-on. For a head-on collision the distance between the edge of 

the channel and centre of stationary ball ( 2B ) should be three radii. 
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Shift '
11PO  parallel to itself so that '

11||' POOA . Similarly, shift '
22PO  so that 

'
22||'' POBA  as shown in Fig. 3.6. You should also ensure that the tail of A'B' should 

fall on the head of OA'. Next draw OB° parallel to 0
11PO . The triangle law of 

vectors tells us that OB' denotes the vector sum of OA' and A' B'. According to the 

principle of conservation of momentum, OB' and OB° should coincide. Comment 

on your findings on the relationship between OB' and OB° as regards its 

magnitude and the direction. Compute the error, if any. 

 

 
 

Fig. 3.6: Computation of resultant vector using the triangle taw 

 

Repeat the above procedure by releasing 1B  from other positions. Take at least 

three observations by varying the position X. Record your findings in Observations 

Table 3.2. 
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Observation Table 3.2:  Conservation of Linear Momentum 

Mass of ball 1B  = .............. g 

Mass of ball 2B = ...……… g 

 

S. 

No. 

 

Position 

on the 

channel 

from 

where 

the ball 

1B  is 

released 

(cm) 

Before 

Collision 

After Collision 

 

Difference 

between 

OB' and 

OB° 

Comments 

 

 

 

 

 

Measure 

of 

momentu

m of Ball 

1B  

(OB
0
) 

Measur

e of 

moment

um of 

Ball 1B  

(OA') 

Measure 

of 

momentu

m of ball 

2B  

(A'B') 

Measur

e of 

total 

moment

um 

(OB') 

 

 

 

 

 

 

 

 

 

(cm) (cm) (cm) 

 

(cm)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Repeat the experiment using balls of unequal mass but of the same size. Which 

one should you use as incident ball? The lighter ball should be the target. Make 

your own observation table. Is momentum conserved? What do you conclude 

about the principle of conservation of momentum? 

 

SAQ 2 

(i)     Do balls 1B  and B2 fall through the same height? 

 ____________________________________________________________ 

(ii)    Can we verify this principle by taking 1B  to be lighter than 2B ? If not, why? 

 ____________________________________________________________ 

 

 ____________________________________________________________ 
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(iii)  Can we use parallelogram law to compute-the resultant of '
11PO  and '

22PO ? 

If yes, how? 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

(iv)   A shell lies on the ground at rest when it explodes into two equal 

fragments. How will the fragments move? 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

(v)    Does the friction in the channel play any role in momentum conservation? 

If so, what? 

 ____________________________________________________________ 

 ____________________________________________________________ 

 

 (vi)  List chief sources of error in the second part of your experiment. 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 ____________________________________________________________ 

 ____________________________________________________________ 

 

For each collision involving balls of equal masses, calculate the square of the 

velocities before and after the collision. How do they compare? Does this suggest 

that something else is conserved? Make the same calculation for balls of unequal 

masses. Is the square of velocities conserved now? Multiply the squares of 

velocities in the later case by the respective masses and compare your values. 

What else do you think is conserved besides the momentum? Is it kinetic energy? 

Comment on the nature of collisions. 

 

Conclusion: The collisions are elastic/inelastic. 
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EXPERIMENT 4 

 

A STUDY OF COUPLED OSCILLATIONS 

 

Structure 

 

4.1     Introduction 

Objectives 

4.2     Measurement of the Period of Normal Modes 

4.3 Frequency of Energy Transfer 

 

4.1    Introduction 
 

In Experiments 1 and 2 you made measurements with isolated (single) oscillating 

systems such as a pendulum (simple or compound), a spring-mass system and a 

torsional oscillator. In nature we come across many examples of coupled 

oscillators. For example, atoms in a solid are coupled by inter-atomic forces. In 

molecules, say the water molecule, two hydrogen atoms are coupled to an oxygen 

atom while in a oxygen molecule, two oxygen atoms are coupled to one another. 

Although we cannot quantify the coupling in atoms, yet it is important to realise 

that coupling influences oscillations of individual atoms in a molecule or a solid. 

In a continuous medium, coupling leads to the phenomenon of wave motion. In 

the next experiment, you will establish a relation between frequency and 

wavelength of a wave. 

 

When two (identical or different) atoms are coupled together, the coupled system 

executes oscillations which are different from the oscillations of independent 

atoms. In radio and TV transmission, we use coupled electrical circuits. It is 

therefore important to study oscillations of a coupled system. In general, 

individual oscillators of a coupled system may or may not all be identical. But in 

this experiment you will work with two identical mechanical oscillators in the 

form of metallic strips (Hacksaw blades), which may be coupled by a rubber band, 

a spring or a pair of bar magnets. 

 

You must have watched the video entitled "Coupled Oscillations" prepared for 

PHE-02 Course: Oscillations and Waves. If you have not watched it, do so now. 
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You will observe that the oscillations of the coupled system are no longer simple 

harmonic. But there are two modes in which motion is simple harmonic and each 

has a definite frequency. These are called normal modes. In this experiment you 

will learn to measure the period of normal modes. Moreover you will observe that 

individual oscillators exchange energy repeatedly back and forth. What is the rate 

of energy exchange? You will discover answer to this question also here. In fact, 

after doing this experiment you will realise that you can understand all good 

physics involved in the study of a coupled system through a very simple 

equipment. 

 

4.2 Objectives 
 

After performing this experiment, you should be able to: 

 demonstrate the effect of coupling in the behaviour of individual oscillators 

 measure the period of normal modes 

 plot a graph between angular frequency and position of rubber-band from 

the fixed end of oscillators 

 compute the frequency of energy transfer. 

 

4.2     Measurement of The Period of Normal Modes  
 

We know that an isolated system vibrates with its natural frequency. What 

happens when two such isolated systems are coupled together? The presence of 

coupling affects its amplitude and frequency of oscillation. We expect that the 

motion may not remain simple harmonic. Does this mean that for a coupled 

system we cannot define the period of oscillation? To answer this and other related 

questions we consider a system of two identical coupled oscillators. The apparatus 

needed for this purpose is listed below: 

 

Apparatus 

 

Two identical hacksaw blades (1/2" or 1" width and 12" length), two vices, rubber 
bands/soft springs/a pair of strong bar magnets, and a stopwatch. 
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Fig. 4.1: A coupled oscillator system 

 

Set the apparatus as show n in Fig. 4.1. For the success of this experiment you 

should note that both oscillators (in this case hacksaw blades) should be in the 

same plane and act as identical oscillators. That is, the time periods for both these 

oscillators should be the same. To ensure this, you should use a stopwatch with 

good accuracy. Note the least count of the stop watch and record it in Observation 

Table 4.1. Next displace one of them from its respective mean position and then 

release it. It begins to oscillate. You should ensure that the oscillations are free. To 

begin with, you should count time for 10 oscillations. Enter your data in 

Observation Table 4.1. Calculate its time period by dividing the measured time by 

N, the total number of oscillations counted. 
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Observation Table 4.1: Time Period of Isolated Oscillators 

 

Least count of stopwatch  = .................. s 

 

S. 

No. 

 

No. of 

Oscillations 

(N) 

 

Time for N Oscillations 

(s) 

 

Time Period (s) 

 

Ist 

Oscillator 

 

IInd 

Oscillator 

 

Ist 

Oscillator 

 

IInd 

Oscillator 

 

1 

 

10 

 

 

 

 

 

 

 

 

 

2 

 

20 

 

 

 

 

 

 

 

 

 

3 

 

30 

 

 

 

 

 

 

 

 

 

4 

 

40 

 

 

 

 

 

 

 

 

 

5 

 

50 

 

 

 

 

 

 

 

 

 

 

Repeat the same procedure for the other hacksaw blade. Compare their time 

periods. Are they same? We expect these to be same. If not, then load the blade 

with larger time period with wax. Alternatively you can file the blade which has 

smaller time period. You will require considerable experimental skill of measuring 

time and practice to achieve exactly same values of time periods. You should 

repeat this process till you get identical time periods. In case you fail to do so 

repeat the procedure till the difference between these periods is not more than 0.1 

%. Next you should measure time for 20 oscillations and repeat the above-said 

procedure. To get more precise results you can work with 30,40, 50 or more 

oscillations. Let us denote the time period by 0T . 

 

Now couple these two oscillators by putting a rubber band or a spring near the 

fixed end. In this way you obtain a mechanically coupled system. Alternatively 

you can use a pair of strong bar magnets. Is there any difference between these 

two types of couplings? We expect that the system will display similar behaviour 

in both cases. You can, therefore, use either of these arrangements for this 

experiment. 

 

From Unit 5 of the course Oscillations and Waves, you will recall that the motion 

of a coupled system is not simple harmonic.   However it can be analysed in terms 

of normal modes. For two coupled simple pendulums two normal modes are 

shown in Fig. 4.2. Consider the transverse motion and first excite the in-phase 
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normal mode by equally displacing the two oscillators (hacksaw blades) in the 

same direction (Fig.4.2a). You should ensure that the two oscillators always 

oscillate in phase. As such, this is somewhat tricky and you will need some 

practice. When you are finally convinced, measure time for 30 oscillations and 

calculate the period. Let us denote it by 1T . It is important that the amplitude of 

oscillations be small. 

 

 
 

Fig. 4.2: (a) In-phase, and (b) out of phase normal modes 

 

Now you make the system to vibrate in the out of phase normal mode without 

changing the position of the coupling system (spring/magnet/rubber-band). This 

can be done in two ways, as shown in Fig 4.2(b). You can choose to work with the 

case in which two oscillators are drawn closer. Repeat the above procedure and 

determine the time period for this case. Let it be T2. Are 0T , 1T and T2 the same? 

We expect them to be different. What do you conclude from this? This only means 

that coupling is effective. 

 

Next, you move the coupling arrangement away from the fixed end by 1 cm. This 

will bring about a change in the coupling. Another way of changing the coupling 

strength will be to change the quality of rubber band or take springs of different 

spring constants. Repeat the above procedure and record your data in Observation 

Table 4.2. 
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Table 4.2: Effect of Coupling on the Period of Normal Modes 

 

Least count of stop watch  = ...............s 

 

No. of oscillations (N)   = ................. 

 

S. 

No. 

 

Distance of rubber 

band from the 

fixed end (cm) 

 

Time for N Oscillations 

(s) 

 

1T  

(s) 

 

2T  

(s) 

 
Ist Normal 

Mode 

IInd Normal  

Mode 

1. 

 

 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 

 

 6. 

 

 

 

 

 

 

 

 

 

 

  

Are time periods influenced by changing the position of the rubber-band? 

 

Repeat the experiment for other positions of the rubber band and enter your 

readings in Observation Table 4.2. 

 

Calculate the corresponding angular frequencies using the relation T/2  . (The 

difference in the frequencies of two normal modes is known as frequency splitting. 

We denote it by the symbol v  and it is given by  2/)( 12  ). Do these 

frequencies vary as position of the rubber band is changed? A variation in their 

values suggests that coupling has an influence on the motion of the system. To 

clarify this further, you can plot angular frequency as a function of the distance of 

the rubber band from the fixed end. Is the relation linear? Discover the functional 

dependence between the two quantities by following the procedure outlined in 

Experiment 1. Discuss your results with your counsellor. 

 

Conclusion: The angular frequency varies.............   with the distance of the 

rubber band from the fixed end. 

 

SAQ 1 

Is there any damping in the system? How will you account for it? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
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SAQ 2 

Choose two widely separated points on your angular frequency versus distance of 

rubber-band graph and correlate frequency splitting to the coupling constant. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

4.3    Frequency of Energy Transfer 
 

So far you have seen that for a coupled system angular frequencies of normal 

modes differ due to the presence of coupling. Another manifestation of coupling is 

exchange of energy. In this part of the experiment you will study how frequently 

energy transfers from one oscillator to another. Keep the rubber band (or spring) 

nearest to the clamped point so that the coupling is minimum. Then displace one 

of the oscillators without disturbing the other. Observe the change that occurs in 

the second oscillator. You will note that the second oscillator starts oscillating and 

gradually gains displacement. What happens to the first oscillator? It begins to 

lose amplitude and ultimately comes to a stop momentarily. But soon you will 

observe that it begins to gain displacement. Do you know the reason for these 

periodic changes? This is brought about by the presence of coupling and implies 

that total energy flows back and forth between the two oscillators. 

 

To measure the periodicity of energy exchange, again displace the oscillator from 

its mean equilibrium position. Measure the time in which one cycle is completed. 

If it happens very rapidly, then measure time for 5 or 10 cycles of energy transfer. 

Make your own Observation Table and record your readings in it. Calculate the 

lime period. Repeat the procedure for several positions of the rubber band along 

the hacksaw blades i.e., for different values of coupling: 

 

Do you get the same time period for every position? We expect it to be different. 

The inverse of time period gives the frequency of energy transfer. 
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Observation Table 4.3: Frequency of Energy Transfer 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion: The frequency of energy transfer depends on 

 

SAQ 3 

Does air damping affect the frequency of energy transfer? Justify your answer. 
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EXPERIMENT 5 

 

RELATION BETWEEN WAVELENGTH AND FREQUENCY OF 

STATIONARY WAVES 

 

Structure 
 

5.1      Introduction Objectives 

5.2     To Set up Stationary Waves in a Stretched Wire 

5.3     Variation of Wavelength with Tension 

5.4     Variation of Wavelength with Mass per Unit Length 

5.5 Relation between Wavelength and Frequency 

 

5.1    Introduction 
 

You all must have enjoyed the pleasing music produced by stringed instruments 

like guitar, violin, etc. at a concert or on a radio or a television. Do you know how 

stringed instruments produce music? When the string of such an instrument is 

plucked, bowed or struck, it begins to vibrate and produces sound. The quality of 

sound thus produced depends upon the frequency of vibration of the stretched 

string. Now the question arises: What factors determine the frequency of vibration 

of the string? How are these factors related to frequency? In this experiment you 

would discover answer to these questions. 

 

You may have observed that in an orchestra a violinist ties up or loosens the pegs 

of his instrument while tuning with other musicians. (As the peg is tied or 

loosened, a portion of the string is either wound or unwound round the peg.) As a 

result, tension in the string changes. This means that the frequency produced by 

the string of the violin depends on the • tension in it. Can you think of other 

parameters which may influence the frequency of vibration of the string ? What 

happens if you take strings of different thicknesses or strings of different materials 

but same thickness? Well, we expect that the frequency of vibration of the string 

in each case will differ. This means that the mass per unit length of the string also 

influences its frequency of vibration. That is why the strings of guitars and pianos 

are wrapped with a metal winding. 
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You may have seen a harp or veena. In these instruments, strings of unequal 

lengths are tied between two fixed ends. You may have also seen that once a 

musician has tuned his instrument, he moves his fingers along its string to produce 

music. In this way he varies the vibrating length in order to produce different 

notes. This suggests that the frequency of vibration of the string depends on its 

vibrating length as well. Since the length of the vibrating segment of the string is 

related to the wavelength of the stationary wave set up in it, we expect that there 

exists a definite relationship between the wavelength and frequency. 

 

The aim of this experiment is to know how frequency of vibration of a stretched 

string depends on tension, mass per unit length and its vibrating length. You 

would recall from your investigations with a simple pendulum (Experiment 1) that 

when a physical quantity depends on more than one parameter it makes sense to 

vary only one parameter at a time. So in this case any change in the frequency can 

be attributed to the change in that particular parameter. It is possible to set up 

waves of known wavelength in a wire. But it is easier to make a wire vibrate with 

a known frequency. So we would discover the effect of tension and mass per unit 

length of the wire on the wavelength, keeping the frequency constant. Therefore, 

we would like you to do this experiment in three parts. In the first part you will 

investigate as to how wavelength changes with tension in the wire while the 

frequency of vibration of the wire and its mass per unit length are kept fixed. In 

the second part you will investigate how the wavelength varies when wires of 

different thickness (but same material) or different materials (but same thickness) 

are used. That is, you will learn how the wavelength varies with mass per unit 

length of the wire when tension in the wire and frequency are held constant. In the 

third part you will establish the relation between frequency and wavelength. 

 

5.2 Objectives 
 

After doing this experiment you should be able to: 

 

 set up stationary waves in a stretched string 

 investigate the dependence of wavelength of stationary waves on the 

tension in a string and its mass per unit length 

 establish the relationship between wavelength and frequency 

 discover the expression for velocity of transverse stationary waves on a 

string. 

 

5.3    To Set Up Stationary Waves in A Stretched Wire 

 

The measurement of tension (T) and mass per unit length (\i) is a rather easy 

exercise. But to make a precise determination of wavelength, we set up stationary 

waves. Stationary waves are formed by superposition of two identical progressive  
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waves moving in opposite directions. These waves do not move with time in either 

direction. (For this reason, they are also sometimes referred to as standing waves.) 

Stationary waves can be produced in air columns as well as stretched strings. Here 

we intend to set up stationary waves in a sonometer wire.  

 

A sonometer consists of a hollow wooden box with a peg at one end and a pulley 

on the other. One end of a wire is fixed to the peg and the other end, passing over 

a smooth pulley, carries a hanger. (In place of hanger you can also use a pan). By 

placing weights on the hanger, the string can be stretched. The wire is made to  

 

 

pass over two bridges 1B  and 2B  as shown in Fig. 5.1. While performing 

experiments with a sonometer, the string is made to vibrate in unison with the 

source of sound, which may be a tuning fork or an electromagnet. To achieve this, 

the vibrating length 21BB  of the wire is adjusted by sliding the bridges between the 

peg and the pulley. This condition (of unison) is ensured when a V-shaped paper 

rider placed in the middle of the wire between the bridges falls down. 

 

 
Fig. 5.1: A Sonometer 

 

A wave which transports energy as it propagates in space is said to be progressive. In a 
stationary wave no energy is transported. 

 

The sonometer wire is said to vibrate in unison with the source of sound when the natural 

frequency of the wire is equal to the frequency of the source. 

 

The vibrations are said to be forced vibrations when a body vibrates with the frequency of the 
applied periodic force. In this condition the energy fed from outside equals the energy lost by 

the body. 
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When a vibrating tuning fork is placed on the sounding board of the sonometer, 

the wire executes forced vibrations and transverse waves are set up in it. In the 

region 21BB , these waves are reflected at the fixed points 1B  and 2B . As a result we 

obtain a set of incident and reflected waves travelling in opposite directions, which 

give rise to transverse stationary waves. The wire between the bridges then 

vibrates in one or more well-defined segments as shown in Fig. 5.2. You will 

observe that there are some points at which the wire remains motionless at all 

times. On the other hand, at some other points, the waves reinforce strongly and 

the wire vibrates vigorously. The points corresponding to zero amplitude of 

vibration are called nodes (N) whereas points with maximum amplitude are called 

antinodes (A). In the fundamental mode, the wire within fixed ends vibrates in 

one loop. The fixed points act as nodes with an antinode in the middle. 

 

 
 

Fig. 5.2:  Stationary waves set up in the wire fixed at both ends 

 

The apparatus required for this experiment is listed below: 

 

 

5.3    Variation of Wavelength with Tension 
 

You now know that in this part of the experiment you have to keep mass per unit 

length of the wire and its frequency of vibration constant. The former of these can 

be accomplished by working with a wire of known material. To achieve the latter 

you can use either a tuning fork or an electromagnet. Of these two, an 

electromagnet is preferred because with its help the wire can be made to execute 

sustained vibrations. 

 

Apparatus 

 
4 iron wires of different thicknesses (Alternatively 4 wires of different magnetic materials, 

sonometer, hanger, slotted weights, an electromagnet with a 6 volt A.C. transformer, six 

tuning forks of known frequencies, rubber pad, metre scale, screw gauge or a chemical 
balance with weight box. 
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Fig. 5.3: Experimental arrangement for setting up transverse stationary 

waves in a  sonometer wire 
 

The experimental arrangement is shown in Fig. 5.3. Connect the electromagnet to 

a 6 V transformer and place the electromagnet near the middle of the wire. When 

an alternating current (ac) is sent through the electromagnet, in each cycle the core 

is magnetised twice with opposite polarities. As a result, the sonometer wire is 

attracted by the electromagnet twice in each cycle and it begins to vibrate. Since 

the frequency of ac is 50 Hz, the wire will vibrate with a fixed frequency of 100 

Hz. 

 

SAQ 1 

Suppose that the electromagnet is connected to a source of direct current. Will the 

wire vibrate? If yes, what will be its frequency of vibration? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

Stretch the wire by putting weight of 0.5 kg in the hanger. (If a weight of M kg is 

used for stretching the wire then the tension in the wire will be mgT  newton 

where g is acceleration due to gravity. You can use g = 10 m/s
2
.) Keep the bridges 

of the sonometer at a distance of about 25 cm. As soon as the current is switched 

on, the electromagnet is energised and you will observe that the wire begins to 

vibrate. This means that the apparatus is in working order and you can begin your 

investigations. When the sonometer wire vibrates in the fundamental mode, the 

distance between the two nodes is equal to half the wavelength of the stationary 

wave in the wire. The vibrating length of the wire will therefore be a measure of 

the wavelength of stationary waves set up in the wire. That is why we are 

interested in determining that length of the wire which vibrates in the fundamental 
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mode with a frequency of 100 Hz. First of all, make the wire vibrate in one single 

loop. Then to achieve unison, you first place a rider on the wire. Fix one of the 

bridges, say 1B  and move the other bridge 2B  towards it. What do you observe? 

Does the amplitude of vibration of the wire decrease? If so, then move the bridge 

2B  away from 1B . Continue to move it away from 1B  till the amplitude becomes 

maximum. In this position, the rider will fall down. Measure the distance between 

the bridges accurately and record it in Observation Table 5.1. Next, you repeat the 

above procedure by keeping the bridges closer, separated by 10 cm. Move bridge 

B2 away from the bridge 1B  and note the length of the wire between the bridges at 

which the rider is again thrown off. Enter your reading in Observation Table 5.1, 

 

Observation Table 5.1: Dependence  of Wavelength  on  Tension 

 

Frequency of Vibration of the wire = 100 Hz  

 

Least count of metre scale   =   ................cm. 

 

S. 

No. 

 

Weight 

placed 

on the 

hanger 

(kg) 

 

Tensi

on 

T=M

g (N) 

 

Length ( l ) of the wire 

between two bridges in 

unison with electromagnet 

(cm) 

 

Mea

n 

l  

(cm) 

 

Wave

length 

l2  

(m) 

 

ln T 

 

ln   

 

 

 

 

 

 

 

load 

increasing 

 

load 

decreasing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when 

bridge

s are 

far 

apart 

when 

bridge

s are 

closer 

when 

bridge

s are 

far 

apart 

when 

bridge

s are 

closer 

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Now you change the tension in the wire by adding weights on the hanger in equal 

steps of, say, 0.5 kg and measure the resonating lengths of the wire in each case. 

Enter your data in Observation Table 5.1. You should not load the wire beyond its 

elastic limit. 
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To check that you are working within the permissible range, you should repeat the 

above — said procedure by unloading the wire in equal steps. Tabulate your 

observations in each case. Do these lengths differ from those measured while 

loading the wire? We expect these to be almost the same. If they differ 

significantly, you should discuss with your Counsellor. Calculate the mean length 

for a given tension. 

 

From the table you will observe that   changes with T. The variation in   

suggests that it is related to tension. Mathematically, we can write 

 

 T  

 

Can you give an exact relation between these variables by looking at your 

observations? Probably you cannot. To discover the exact relationship between   

and T, you can proceed along the lines suggested in the experiment on simple 

pendulum. That is, you may plot   vs 2/1T ,   vs T ,   vs 2T  and soon. One of 

these plots will be a straight line. For example, if   vs 2/1T  plot is a straight line 

passing through the origin and the slope of the line is 1k , the exact relation 

between   and T is given by 2/1
1Tk . Alternatively you can arrive at this relation 

as follows: Let  T , 

 

or  aTk1                                                                                      

 (5.1)  

 

where 1k  is the constant of proportionality and a is another constant. Taking 

logarithms to the base e on both sides, we get 

 

 Tak lnlnln 1          (5.2) 

 

So if you plot ln  along the y-axis and ln T  along the x-axis, the graph will be a 

straight line.  

 

On comparing Eq. (5.2) with the equation of a straight line namely 

 

y = mx + c 

 

we find that the intercept on the y-axis gives 1ln k , while the slope gives the value 

of a. Calculate the slope by using two well separated points on the straight line. 

We expect the value of a to be 1/2. What is your result? Calculate the error in the 

slope by drawing lines of maximum and minimum slope. 

 

Then the relation between   and T is: 
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Tk1           (5.3) 

 

SAQ 2 

Plot a graph between   and 2/1T . For 1T = 64 N and 2T = 324 N, calculate the ratio 

of 

wavelengths from your graph. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

5.4     Variation of Wavelength with Mass Per Unit Length 
 

To investigate the dependence of wavelength on mass per unit length of the wire, 

we take four wires of different thicknesses but of the same material. If it is not 

possible to get wires of different cross-sections, you can take wires of same cross-

section but different materials. For each wire, you first determine the mass per unit 

length (  ). To do so you have to measure their diameters. For this you should use 

a screw gauge. Note its least count and observe whether there is any zero error. 

Measure the diameter at several places. In this way you can account for the 

inhomogeneities, if any, in the wire. Record your readings in Observation Table 

5.2(a). 

 

 

Observation Table 5.2 (a):  Determination or Mass per unit Length of the 

Wire 

 

Sample 

wire 

 

Diameter 

d(cm) 

 

Mean 

diamete

r (m) 

 

Density 
  

(kg/m
3
) 

 

Mass per unit 

length of wire 

 (kg/m) 

 (i) (ii) (iii) 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 B 

 

 

 

 

 

 

 

 

 

 

 

 

 C 

 

 

 

 

 

 

 

 

 

 

 

 

 D 

 

 

 

 

 

 

 

 

 

 

 

 

  

If you know the density (  ) of the material of the wire from a text on physical 

data, you can 

easily compute mass per unit length for any wire using the relation 
4

2


d
 . 

Alternatively, you can determine  , for a wire by weighing a known length of it. 
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In this part of the experiment, you should keep the tension constant, say 20N (i.e. 

M = 2 kg). As soon as the current is switched on, the electromagnet is activated 

and the wire begins to vibrate with a frequency of 100 Hz. Keep the bridges at a 

distance of, say, 25 cm. As mentioned earlier, you should adjust the distance 

between bridges so that the wire vibrates in one single loop with maximum 

amplitude. As before, this should be tested by placing a paper rider. Measure the 

distance between the bridges accurately and record it in Observation Table 5.2(b). 

Repeat the process by putting the bridges closer, say, at a distance of 10 cm and 

moving one of these bridges away from the other. Record the resonating length in 

Observation Table 5.2 (b). Calculate the mean length. 

 

Repeat this procedure for other wires, keeping the tension in the wire constant. 

Tabulate your observations in Observation Table 5.2 (b). 

 

Observation Table 5.2 (b): Dependence of Wavelength on Mass per unit 

Length 

 

Frequency      = .................. Hz 

 

Tension in the Wire       =  .................. N 

 

S. 

No. 

 

Mass per 

unit 

length   

(kg/m) 

Length ( l ) of the wire between 

two bridges in unison with the 

electromagnet  

(cm) 

 

Mean 

length 

l (cm) 

 

Wavelen

gth  = 

l2  

(m) 

 

In   

 

ln   

 

 

 

 

 

(i) 

 

(ii) 

 

 

 

 

 

 

 

 

  

 

 

 

when the 

bridges are far 

apart 

when the 

bridges are 

closer 

 

 

 

 

 

 

 

 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Does the wavelength vary with  ? Does   decrease or increase as   increases? A 

decrease in the value of   suggests inverse dependence on  . To quantify this 

dependence we write 

 



PHY 291                          LABORATORY PHYSICS I 

 

93 

 

 bk  2  

 

where 2k  is a constant of proportionality and b is another constant. Taking 

logarithms to the base e on both sides, we get  

 
  lnlnln 2 bk   

 

If you plot ln  versus ln , you will obtain a straight line. Is the slope of the 

straight line negative? Of course it should be. This signifies that as   increases,   

decreases. The slope of the straight line gives us the exponent b. We expect  b = - 

0.5. What is your value of b? Calculate the maximum error by taking lines of 

maximum and minimum slopes. Thus we can write 

 

  /1          (5.4) 

 

On combining the results of the two investigations done so far, you can write 

 

 



T

  

or 




T
k          (5.5) 

 

where k is a constant of proportionality. 

 

SAQ 3 

(i)      What will happen if the wire stretched on the sonometer is hollow? 

  

 ____________________________________________________________ 

 

 ____________________________________________________________ 

 

 

(ii)    Suppose you have adjusted the length of the string (of iron) in unison with a 

tuning fork. Now you replace the string with a similar one of nickel. Will 

the same length of the string be in unison with the fork? 

  

____________________________________________________________ 

 

 ____________________________________________________________ 
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5.5     Relation Between Wavelength and Frequency 
 

To establish the relation between wavelength and frequency for a given wire, the 

tension in the wire is kept fixed. To vary the frequency, you would require a set of 

tuning forks of different frequencies. (Electromagnet will not do because it makes 

the wire to vibrate with only one single frequency.) Stretch the wire with a 

constant tension of 20N (M = 2kg). 

 

Put the bridges 1B  and 2B  at a distance of about 25cm. As before, place a V-

shaped paper rider in the middle of the portion 21BB . Strike one of the prongs of a 

tuning fork with rubber pad. The tuning fork should be struck gently on the rubber 

pad. This will ensure that vibration will correspond to only the fundamental mode. 

Press the stem of the tuning fork on the sounding board. You should not touch the 

tuning fork anywhere on its U part. (If you do so, the vibrations will become 

damped). The vibrations of the tuning fork are transmitted to the wire, which in 

turn begins to vibrate and stationary waves are set up in it. Now slowly move the 

bridge 62 towards the bridge Bl until the paper rider falls off. This means that the 

wire and the tuning fork are in unison. Measure this length of the wire carefully 

and record it in Observation Table 5.3. 

 

Observation Table 5.3:  Dependence of Wavelength on Frequency 

 

Tension in the string  = ................ N 

 

S.No

. 

 

Frequency ( f ) of 

the tuning fork 

(Hz) 

 

Length of the wire 

between two bridges in 

unison with tuning fork 

(m) 

 

Mean 

length 

l (m) 

 

Wavelength 

 = l2 (m) 

 

 

 

 

 

when bridges 

are far apart 

when 

bridges are 

closer 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 

 

 2 

 

 

 

 

 

 

 

 

 

 

 3 

 

 

 

 

 

 

 

 

 

 

 4 

 

 

 

 

 

 

 

 

 

 

 5 

 

 

 

 

 

 

 

 

 

 

  

Now place the bridges 1B  and 2B  at about 10cm and repeat the above procedure by 

moving one of the bridges away from the other. As before measure the length 

which resonates with the tuning fork. Enter your readings in Observation Table 

5.3. Calculate the mean length. 



PHY 291                          LABORATORY PHYSICS I 

 

95 

 

Keeping the tension fixed, repeat the procedure for other tuning forks. Measure the 

length each time and record it in Observation Table 5.3. 

 

How does frequency influence the wavelength? We expect it to decrease. 

Mathematically, we express it as 

 

c
kf



1
3           (5.6) 

 

Here 3k  is a constant of proportionality and c is some other constant. Plot f  vs 
2/1 , f vs 1 , f vs 2 , and so on. We expect that the plot of f  vs 1  will be a 

straight line. The slope of 

this straight line gives you the value of 3k . Compare this value of 3k  with the ratio 

/T  for this wire. Are the two values the same? Theoretically they should be. It 

implies that frequency and wavelength of stationary waves on a string are 

connected by the relation 

 



T
f

1
          (5.7) 

 

The dimensions of the product f  are those of the velocity. This means that the 

velocity of transverse stationary waves on stretched strings is controlled by its 

mass per unit length and tension in the wire. 

 

SAQ 4 

What will be the change in frequency if the length of the string between the 

bridges is doubled? 

 

__________________________________________________________________ 

__________________________________________________________________ 
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(For Counsellor's use only)   

Grade..............................   Name  ..................……………….. 

 

Evaluated by…………………………. Enrolment Number ……………… 

 

EXPERIMENT 6 

 

YOUNG'S MODULUS FOR A MATERIAL BY BENDING OF BEAMS 

 

Structure 

 

6.1     Introduction 

Objectives 

6.2     Depression of a Beam Supported at the Ends and Loaded at the Centre 

Cantilever 

Bending Moment 

Depression at Free End of a Cantilever 

6.3  Measurement of Depression in a Beam using a Microscope 

6.4  Measurement of Depression in a Beam using a Telescope and an Optical 

Lever 

6.5 Comparison of Accuracies of above Methods by Determining Young's 

Modulus 

 

6.1     Introduction 
 

As a child, while playing you may have pressed a rubber ball or a piece of sponge 

and observed that the shape of the ball/sponge undergoes a change. Now if you 

stop pressing it, you will observe that the ball regains its original shape. In fact, all 

bodies can, more or less, be deformed by a suitably applied force and when the 

deforming force is removed, the bodies tend to recover their original state. The 

simplest case of deformation can be observed in a wire which is fixed at its upper 

end with a weight suspended at its lower end. The weight at its lower end brings 

about a change in its length. When the suspended weight is removed from the 

wire, it tends to come back to its original length. This property of the wire is called 

elasticity. It is by virtue of this property that a body opposes any change being 

produced in its shape and/or size by an external force and tends to regain its 

original shape and/or size after the removal of the external force. The greater the 

force necessary to produce deformation in the body, the more elastic it is. 

 

Whenever a body is subjected to a deforming force, a force of reaction comes into 

play within it. This internal force is termed as restoring force. It tends to resist the 

applied force and restores the original shape and/or size of the body. In 

equilibrium state, the restoring force is equal to the applied external force. The  
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restoring force per unit area set up inside the body is called stress. The fractional 

change in its length, volume or shape relative to original state of the body is 

termed as strain. For example, when a wire is stretched by applying a force along 

its length, i.e. normal to its cross-sectional area, the change occurs in its length. 

Then restoring force developed per unit cros;,-sectional area of the wire is known 

as  longitudinal stress. The change in length per unit original length of the wire is 

called longitudinal strain. The ratio of longitudinal stress to longitudinal strain, 

within the elastic limit, is called Young's modulus. Its value depends on the 

nature of the material and not on the dimensions of the sample. 

 

Knowledge of Young's modulus is of great importance in bridge design. Its value 

is one of the pieces of information which must be known to calculate accurately 

the deformation (depression) that will occur in a loaded structure and its parts. 

When a beam bends, the surface is compressed and the other is stretched as in Fig. 

6.1, so that Young's modulus is involved. Similarly, Young's modulus enables us 

to calculate the stress which a given body, say the connecting rod or piston of a 

steam engine or a girder, can bear. You must have observed that the girders and 

beams used in bridges and steel frame buildings are manufactured with their cross-

sections in the form of the letter I. Also that in a beam of rectangular cross-section, 

the longer side is used as depth. In fact, 'beam theory' – one of the foundation 

stones of structural engineering – gives us all the above mentioned information. In 

this experiment you will learn to determine Young's modulus of a material by the 

method of bending of beams. 

 

A beam is a bar of uniform cross-section (circular or rectangular) of a 

homogeneous, isotropic (which have the same properties at all points and in all 

directions) elastic material. 

 

 
 

The maximum stress a material can sustain without undergoing permanent deformation is 

termed as elastic   limit. 

 



PHY 291                          LABORATORY PHYSICS I 

 

98 

 

Fig. 6.1: A railway engine (of early days) moving over the iron railway bridge 

causes the beam to depress so that one of its surface is compressed while the 

other is stretched. 

 

6.2 Objectives 
 

After doing this experiment, you should be able to: 

 

 focus a microscope and a telescope on a given object 

 remove parallax error 

 measure small depressions 

 compare accuracies of the methods used for the measurement of the 

depression of the beam using (i) microscope and (it) telescope and optical 

lever arrangement 

 compute Young's modulus of elasticity. 

 

6.3  Depression of A Beam Supported at The Ends and Loaded at the 

Centre 

 

When a beam is supported near its two ends and loaded at the centre, it shows 

maximum depression at the loaded point. Usually, the depression produced is very 

small. Suppose a. beam is supported on two knife-edges at A and B near its two 

ends, as shown in Fig. 6.2. 

 

 
 

Fig. 6.2 Depression of the beam supported at the two ends and loaded at the 

centre with a  weight W 

 

Let it be loaded in the middle at C with a weight W. The reaction of each knife 

edge will 

clearly be 
2

W
in the upward direction. In this position, the beam may be considered 

as equivalent to two inverted cantilevers, fixed at C. The bending in these two 

cantilevers will be produced by the load – acting upwards at A and B. Therefore, it 

is important for us to know how the bending is produced in a cantilever and on 

what factors the bending does depend. 
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6.3.1 Cantilever 

 

Consider the cantilever shown in Fig. 6.3. Let us put a weight 1W , at the free end. 

As soon as the beam is loaded, it bends. 

 

 
 

Fig. 6.3: When a beam ABCD is fixed at the end AD it forms a cantilever. 

When loaded at  the free end it bends 

 

Dc» you know why? To answer it let us consider the section 21BCPP of the beam. 

Since the load 1W  is applied at the free end of the beam, the force of reaction, 

which is of the same magnitude as 1W  must act vertically upwards along 12 PP . 

These two forces, being equal and opposite, will form a couple. You will recall 

that the tendency of a couple acting on a body is to rotate it. Do you expect the 

cantilever to rotate? It will not rotate because its one end is fixed. Therefore, in 

this case the tendency of the couple is to bend the beam in the clockwise direction. 

(This is indicated by the dashed arrow.) For this reason, this couple is called 

bending couple and the moment of this couple is called bending moment. 

 

Now you may wonder that a couple acts on the beam, yet the beam is in 

equilibrium. It can happen only if a balancing couple is also acting on the beam. 

To understand how this balancing couple is formed, let us see what happens in the 

interior of the beam when its free end is loaded. For this purpose you can imagine 

the beam to be made up of a large number of small elements placed one above the 

other. Let us call these small elements as filaments. When the beam is loaded the 

filaments in the upper half of the beam get stretched and the filaments in the lower 

half are compressed. However, there is a surface (or filament) in the middle which 

neither extends nor contracts. This surface is known as neutral surface. These 

features are illustrated in Fig. 6.4. 

 

A Cantilever is a beam fixed horizontally at one end. 
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Fig. 6.4: When the beam gets bent under the action of the couple due to the load 

applied, the upper surface of beam gets stretched and the lower surface gets 

compressed. EF represents the neutral surface. The lengths of the arrows indicate, 

in rough proportion, the extent of extensions and contractions of the filaments in 

the upper and the lower halves of the beam respectively. 

 

As the filaments above the neutral surface are extended, restoring forces are 

developed in the filaments as shown in Fig. 6.5. These forces act towards the fixed 

end of the beam and tend to oppose extensions. 

 

 
 

Fig. 6.5: When the beam is bent then in the upper half, the restoring forces 

opposing extensions in the filaments act inwards towards the fixed end. While, in 

the lower half, the restoring forces opposing contractions act outwards. The 

moments of these two sets of forces about the neutral axis are directed in the 

anticlockwise (indicated by dotted arrows) direction and thus oppose the bending 

of the beam. 

 

On the other hand, because of filament contractions below the neutral surface, 

restoring forces developed in the lower-half act towards the loaded end and oppose 

further contractions. You will note that these two sets of forces act in opposite 

directions. Yet their moments about the neutral surface are directed in the same i.e. 

anticlockwise direction (indicated by dashed arrows). This direction is opposite to 

that in which the beam has been bent due to the bending couple acting on it. Hence 

the above-said set of forces tend to restore the beam to its original condition. This 

set of forces constitutes a couple called the balancing couple or restoring couple. 

The moment of the couple is referred to as the moment of the resistance to 

bending. When the beam is in equilibrium, the moment i-f the resistance to 
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bending is equal to the bending moment. You may now like to know the factors on 

which the bending moment or the moment of the restoring couple depends. 

 

6.3.2 Bending Moment 

 

Let us consider a small portion of the beam shown in Fig. 6.6(a). It is bent in the 

form of an arc subtending an angle 9 at the centre of curvature O. Let R be the 

radius of curvature of the part ab of the neutral surface. Then the length of portion 

a'b' of a filament which is at a distance z from the neutral surface (filament), will 

be given by 

 

a'b' =  (R + z)  

 

 
 

Fig. 6.6: (a) In the strained condition of the beam, a small portion of it is 

considered to be bent in  the form of a circular arc subtending an angle   at 

the centre O. (b) LMNT is a cross-section of the beam which is perpendicular 

to the length and the plane of bending of the beam 

 

When the beam was not bent, the length of this filament was equal to the length of 

the neutral filament. Since the length of the neutral filament does not change even 

after the bending of the beam, the original length of a'b'= length of ab = R . 

 
 increase in length of a'b' = a'b' -  ab 

 

 =  zRzR  )(         (6.1) 

 

Since the original length of a'b' = R , we have 

 

 Longitudinal strain = 
R

z

R

z






length original

lengthin  increase
    (6.2) 
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Let us consider a cross-section LMNT of the beam, which is perpendicular to its 

length and the plane of bending as shown in fig. 6.6(b). In this cross-section 

LMNT, if we consider a small area a, which is at a distance z from the neutral 

surface, then the strain produced in the filament passing through this area will be 

R

z
. 

 

As explained in the previous sub-section, whenever the length of a filament 

increases, a force acts on the filament towards the fixed end of the beam. You can 

calculate this force by noting that 

 

 
strain allongitudin

stress
Y  

 

or  stress= Y longitudinal strain 

 

where Y is the Young's modulus for the material of the beam. This shows that 

stress at this area,  

 

R

z
Ya           (6.3) 

 

And, therefore,  

force on area a = 
R

z
aY        

 (6.4) 

 

The moment of this force about the neutral surface 

 

 = z
R

z
Ya  

 = 
R

z
Ya

2

         (6.5) 

 

Since the moments of the forces acting on both upper and lower halves of the 

cross-section are in the same direction, the total moment of the forces acting on all 

the filaments in the section LMNT (or in the beam) is given by: 

 

    gI
R

Y
az

R

Y

R

Yaz 2
2

       (6.6) 
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where  2azI g  is the geometrical moment of inertia of the beam. Thus, the 

bending moment of the beam (or moment of the restoring couple) = gI
R

Y
. 

 

You will now like to know how the moment of the restoring couple is related to 

the depression at the free end of the cantilever. 

 

6.3.3 Depression at the Free End of a Cantilever 

 

Consider a cantilever of length l . Let us choose x-axis along its length and y-axis 

vertically downwards, as shown in Fig. 6.7. When the free end of the cantilever is 

loaded with a load 1W , the maximum depression occurs at the free end. Consider a 

section P of the beam at a distance x from the end A. Due to the load, 1W , the 

bending moment acting on this section is given by )(11 xlWPBW  . Since the 

beam is in equilibrium, this must be equal to 

 

 
R

YI
xlW

g
 )(1         (6.7) 

 

 

 2az is the geometrical moment of inertia of the section of the beam about the neutral 

surface. Therefore, it is equal to Ak
2
, where A is the whole area of the surface LMNT of the 

beam and k its radius of gyration about the neutral surface. For a rectangular cross-section, 

 dbA   and 
12

2
2 d

k   

where b is the length and d the width of the rectangular portion. 

  2azI g = 
12

3bd
 

For a circular cross-section, A = 2r and 
4

2
2 r

k  , where r  is its radius.  

 
4

4
2 r

akI g


  
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Fig. 6.7: Cantilever loaded at the free end. AB represents the neutral axis of a 

cantilever of length l . When loaded at B the neutral axis takes up the position AB' 

and the end B is depressed by  . 

 

Since the neutral surface remains flat, the radius of curvature (R) of the neutral 

surface at any given point is given by the relation 
2

2
1

dx

yd

R
 . 

 

Substituting for R in Eq.(6.7), we have 

 

 
2

2

1 )(
dx

yd
YIxlW g  

or )(1

2

2

xl
YI

W

dx

yd

g

         (6.8) 

 

Integrating Eq. (6.8) twice with respect to x we get the depression (  ) at the free 

end as:  

 

 
gYI

lW

3

3
1          (6.9) 
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SAQ    1 
By looking at Eq. (6.9), name the factors on which depression of the free end of 

the cantilever depends. 

 

Refer to any elementary book on differential calculus for the complete expression: 
 

 
2/32

22

1

)/(1
























dx

dy

dxyd

R
 

 

Since 1
dx

dy
 due to small bending,  

 

 
2

2
1

dx

yd

R
  

 

Integrating Eq. (6.8) with respect to x , we get 

 

 1
21 )( Cxlx

YI

W

dx

dy

g

  

 

where 1C  is a constant of integration. 

 

When x = 0, 
dx

dy
= 0. Hence, 1C  = 0.  

 

 









2

2
1 x

lx
YI

W

dx

dy

g

 

 

Again integrating, we have 

 

 









62

32
1 xlx

YI

W
Y

g

 

 

At the free end of the beam, lx  = (length of the beam), y  (depression). Hence, 

  

 









62

33
1 ll

YI

W

g

  

or 

 
gYI

lW

3

3
1  
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__________________________________________________________________ 

__________________________________________________________________ 

 

Let us look back at Fig, 6.2. If the length of the beam AB be L, then the length of 

each cantilever AC or BC will be 2/L . Since the reaction at each knife-edge is 
2

W
, 

we can regard that each cantilever (AC or BC) is loaded at the free end by a load 

2

W
. Then Eq. (6.9) can be used to compute the elevation of A or B above C by 

substituting W, = W/2 and 2/Ll  . This gives 

 

elevation of A or B above C  = 
gYI

LW

3

22

3










 

 

    = 
gYI

WL

48

3

 

 

The elevation of A or B above C is the same as the depression of C below A and B. 

 

Therefore, depression ( ) at the centre of the beam is 
gYI

WL

48

3

 and 
gI

WL




48

3

 . 

 

If the beam is of rectangular cross-section of width b and depth d, we can write 

WL
3
 

 

3

3

4 bd

WL
Y


           (6.10) 

 

To determine Young's modulus of the material of a beam using Eq. (6.10) you 

have to measure the depression at its centre when loaded with a known weight. 

This depression, being very small, has to be measured very accurately. For this 

purpose the most suitable instrument is travelling microscope. What will you do if 

you are given a telescope instead of a microscope? Can you still measure 

depression in the beam with the same accuracy? Of course, by using the optical 

lever method you can measure depression. But to discover an answer to the second 

question, you have to measure depression in the beam using (i) a microscope and 

(ii) a telescope with an optical lever arrangement. 
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The apparatus required for this purpose are the following. 

 

6.4     Measurement of Depression in a Beam Using a Microscope 
 

Place the given beam horizontally on the knife-edges, as shown in Fig. 6.8. See 

that equal (but small) portions of the beam project beyond the knife-edges and the 

smaller side of its cross-section is vertical. Suspend a hanger (either a hook or a 

stirrup with the hook) for loading the beam, exactly at the centre, between the two 

knife-edges. Attach a small pin (vertically) at the centre of the beam with wax for 

reading the position of the beam. Focus the microscope on the pin and coincide its 

horizontal cross-wire with the tip of the pin. If you are not able to focus the 

microscope on the pin you should seek the help of the counsellor. Before you start 

taking observations, you should calculate the least count of the microscope. For 

this purpose find the value of the smallest division of the main scale of the 

microscope. Next find the value of a division of the vernier scale. The difference 

between the value of one smallest division of the main scale and value of one 

division of vernier scale will give its least count. Suppose, 10 divisions of the 

vernier coincide with 9 smallest divisions of the main scale, each of which is 1 

mm. Then, we can write 

 

10 vernier divisions  = 9 mm 

or 1 vernier division  = 
10

9
mm  

 

 
 

Fig. 6.8: Experimental arrangement for measuring the depression of the 

beam using a   Microscope 

 

Apparatus 

 
Rectangular beam, two knife-edges, a hook (or a stirrup) for hanging weights at the centre 

of the beam, a travelling microscope, a pin, an optical lever, a telescope, metre scale, a 

hanger, a set of half-kilogram weights, vernier callipers and a screw gauge. 
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least count  = 1 main scale div. - 1 vernier div. 

   

= 









10

9
1 mm = 

10

1
mm 

  

    = 
100

1
cm 

     

    = 0.01 cm 

 

SAQ 2 

Suppose in a vernier there are 50 divisions equal to 49 mm on the main scale. Find 

out the least count of this scale. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

Now read the main scale and the vernier scale readings. This is the reading when 

no load is placed in the hanger. Record it in Observation Table 6.1. Next, without 

disturbing anything at all, place a weight of half-a-kilogram in the hanger. Is the 

tip of the pin visible in the field of view of the microscope? If so, does the tip of 

the pin coincide with the horizontal cross wire? We expect that it will not because 

the beam has been depressed. You will observe that a gap appears between the tip 

of the pin and the horizontal cross wire. Slightly move the microscope vertically 

downward so that the tip of the pin again coincides with the cross wire of the 

microscope. Again note the main scale and the vernier scale readings, Record this 

in Observation Table 6.1. 

 

Increase the load in equal steps of half-a-kilogram. Note the position of the pin by 

coinciding it with the horizontal cross-wire in each case. Now remove the weights 

gently in the same steps and note the microscope readings. This is to be repeated 

till there is no weight on the hanger. The weight should be placed or removed 

from the hanger very gently. 
 

Observation Table 6.1: Measurement of depression using a microscope  

 

Value of 1 small division of the main scale of the microscope = ..………. cm  

 

Value of 1 vernier scale division  = ..………. cm  
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Least count of the Microscope   = ..………. cm 

 

S. 

No. 

 

Load (W ) placed 

on the hanger 

(g) 

 

Microscope reading when the tip of the 

pin coincides with the horizontal cross-

wire 

 

Depression ( ) 

(cm) 

 

 

 

 

 

with load 

increasing 

(cm) 

 

with load 

decreasing 

(cm) 

 

Mean 

 

(cm) 

 

 

 

1 

 

0 

 

 

 

 

 

 

 

 

 2 

 

500 

 

 

 

 

 

 

 

 

 3 

 

1,000 

 

 

 

 

 

 

 

 

 4 

 

1,500 

 

 

 

 

 

 

 

 

 5 

 

2,000 

 

 

 

 

 

 

 

 

 6 

 

2,500 

 

 

 

 

 

 

 

 

 7 

 

3.000 

 

 

 

 

 

 

 

 

 8 

 

3,500 

 

 

 

 

 

 

 

 

  

SAQ 3 

Why is it necessary to take reading with decreasing load as well? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

This will give you two readings for each load – one when the load was increasing 

and the other when the load was decreasing. Compute the mean of these two 

readings for a given, load. Calculate the depression produced in the beam for each 

load by subtracting the initial mean reading from the mean reading for that 

particular load. 

 

Plot a graph between the load (along the x -axis) and depression (along the y-axis). 

Draw a smooth best straight line passing as closely as possible through the points, 

as shown in Fig. 6.9. Calculate the slope of the straight line by choosing two 

widely separated points. The slope will give you the value of W/ . 
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Fig. 6.9: Graph of load (W ) vs. depression ( ) 

 

6.4     Measurement of Depression in a Beam Using a Telescope and an 

Optical Lever 
 

To measure the depression of the beam using a telescope you will require an 

optical lever and a lamp and scale arrangement. (An optical lever consists of a 

plane mirror mounted on a tripod stand.) First place the beam as in the previous 

part of this experiment. Remove the vertical pin and replace it by an optical lever 

such that the two legs supporting the mirror 'M' rest on the fixed horizontal base F 

behind the beam and the third leg L rests on the beam at its centre C, as shown in 

Fig. 6.10. What will happen if you place the two legs supporting the mirror on the 

beam and the third leg on a base? If you do so the depression will not correspond 

to the one at the centre. It is important to adjust the mirror so that it is vertical and 

parallel to the length of the beam. 

 

 
Fig. 6.10: Experimental arrangement for measuring the depression of the 

beam using a telescope and optical lever 

 

When a load is placed on the hanger, depression is produced in the beam. As a 

result, the leg of the optical lever, touching the centre of the beam, goes down. 
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This tilts the mirror, forward. So, once you measure the angle through which the 

mirror tilts, you will be able to find out the depression. This requires the use of a 

telescope and scale. Let us see how. 

 

Fix a vertical scale in front of the mirror at a distance of about one metre on a rigid 

stand. Place the telescope close to the scale and at the same height as the mirror. 

Focus the eyepiece so that the horizontal cross wire of the telescope is distinctly 

visible. Now focus the telescope on the image of the scale in the mirror. For this 

focussing you may have to turn the mirror slightly about its horizontal axis. If you 

are not able to focus the image of the scale clearly, you should not waste time. 

You can consult your counsellor. Note the position of the horizontal cross-wire on 

the image of the scale and record it in Observation Table 6.2. 

 

What does the position of the horizontal cross-wire signify? Let us observe Fig. 

6.11. Here M\ is the position of the plane mirror. Division A of the scale is seen in 

the telescope after reflection from plane mirror. This means that what you have 

recorded in fact, is division A of the scale. 

 

 
 

Fig. 6.11: Illustrating the principle underlying the use of optical lever 

 

Now gently place a load of 500 gm on the hanger. This would depress the beam 

slightly. As a result of this the mirror will tilt forward through an angle, say,  . 

We know that when a beam of light falls on a plane mirror, which is turned 

through an angle   about a vertical axis in its plane then, the reflected ray turns 

through angle 2 . Hence now instead of division A of the scale the division B (see 

Fig. 6.11) is seen in the telescope after reflection from the plane mirror. Record it 

in Observation Table 6.2. 

 

Observation Table 6.2: Measurement of depression using a telescope and an 

optical lever  

 

Distance D of scale from mirror    =  ..………. cm 
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Distance x of the front foot of the optical        

lever from the line joining the other two  = ..………. cm 

 

S. 

No. 

 

Load (W) 

placed on 

the hanger 

(g) 

 

Position of the horizontal 

cross-wire of the telescope 

 

d (cm) 

 D

xd

2
  

(cm) 

 with load 

increasing 

 

with load 

decreasing 

 

Mean 

(cm) 

 

1. 

 

0 

 

 

 

 

 

 

 

 

 

 

 2. 

 

500 

 

 

 

 

 

 

 

 

 

 

 3. 

 

1,000 

 

 

 

 

 

 

 

 

 

 

 4. 

 

1,500 

 

 

 

 

 

 

 

 

 

 

 5. 

 

2.000 

 

 

 

 

 

 

 

 

 

 

 6. 

 

2,500 

 

 

 

 

 

 

 

 

 

 

 7. 

 

3,000 

 

 

 

 

 

 

 

 

 

 

 8. 

 

3,500 

 

 

 

 

 

 

 

 

 

 

  

If the distance between the two divisions A and B on the scale is represented as d 

and if D is the distance between the mirror and scale then 

 

 
D

d
2  

 

If the third leg is at a distance of x from the hind legs P and Q, then the depression, 

 , of the beam is given by 

 

  = x  

 = 
D

xd

2
         (6.11) 

      

From this relation we find that once x, d and D are known,   can be readily 

computed. Measure the distance D between the mirror and the scale. To measure 

x, place the optical lever on a sheet of paper and by pressing it lightly produce 

impressions of its feet on it. From these impressions determine the perpendicular 

distance of the front foot of the optical lever from the line joining the two hind 

legs. It will give x. Using Eq. (6.11) find out the depression of the beam for load of 

500 gm. Increase the load on the hanger by equal steps of half-a-kilogramme. Note 

down the position of the horizontal cross-wire of the telescope on the image of the 

scale after each addition of load. 
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Next, decrease the load on the hanger by the same stages. Note down the position 

of the cross-wire on the image of the scale in the mirror after the removal of each 

load. Record it in Observation Table 6.2. For each load, find out the mean of the 

two readings – one taken while increasing the load and other while decreasing the 

load – of the cross-wire thus obtained. Calculate d, for each load, by subtracting 

the initial mean reading from the mean reading for that particular load. Using Eq. 

(6.11) find out the depression of the beam for each load and record it in 

Observation Table 6.2. Plot a graph between load (W) along the x -axis and 

depression ( ) along y-axis. Calculate the slope of the straight line thus obtained. 

 

6.5 Comparison of Accuracies of Above Methods by Determining 

Young'smodulus 
 

To know Young's modulus your must measure the thickness and width of the 

beam and its length between the knife edges. To measure the length of the beam 

between the knife edges, you can use a metre-scale. Using different parts of the 

scale, repeat the measurement several times and get the mean value. Record your 

reading in Observation Table 6.3(a). 

 

Observation Table 6.3: Length (L) of the beam between the knife-edges A and 

B 

 

S. No 

 

Scale reading for 

the knife-edge A 

x (cm) 

 

Scale reading for 

the knife-edge B 

y (cm) 

 

Length 

(y~x) (cm) 

 

Mean 

length 

L (cm) 

 

1. 

 

 

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 4. 

. 

. 

. 

. 

. 

 

 

 

 

 

 

 

 

 

SAQ 4 

Instead of measuring total length of the beam you are measuring the length of the 

beam between the two knife edges. Why? 

__________________________________________________________________ 

 

__________________________________________________________________ 
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Use a screw gauge to measure the thickness of the beam at several places along its 

length. Make your own Observation Table 6.3 (b) and calculate the mean 

thickness. Similarly take a number of readings to measure the width of the beam 

with vernier callipers at several places. Record the readings in Observation Table 

6.3 (c). Calculate the mean value. 

 

Observation Table 6.3(b): Measurement of thickness (d) 

 

Least count of the screw gauge   = ............   cm 

 

Zero error (if any)    = ............. cm 

 

Zero correction (if there is zero error)  = ............. cm 

 

    

    

 

Mean Value     = ……………… cm 

 

Corrected value (if zero correction is made) = ……………… cm 

 

Observation Table 6.3 (c): Measurement of width (b) 

 

Least count of the screw gauge   = ............   cm 

 

Zero error (if any)    = ............. cm 

 

Zero correction (if there is zero error)  = ............. cm 

 

    

    

 

Mean Value     = ……………… cm 

 

Corrected value (if zero correction is made) = ……………… cm 
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Knowing L, h, d and the slope of the straight line obtained in the Section 6.3, you 

can easily calculate Young's modulus of the material of the beam using the Eq. 

(6.10) as follows: 

 

 
slope

1

4 3

3


bd

L
Y  

 

Result: Young's modulus of the material of the given beam using microscope 

 

= .......... Nm-2 

 

Next, using the slope of the straight line obtained in the Section 6.4 in the relation  

 

 
slope

1

4 3

3


bd

L
Y  find the value of Young’s modulus 

 

Result: Young's modulus of the material of the given beam using telescope and 

optical lever  

 

= ...... N/m
2
 

The accuracy to which the depression is measured using a microscope is equal to 

the least count (L.C.) of the microscope. 

 

Suppose, L.C. of microscope = 0.001cm. 

 

In the case of optical lever arrangement, the least count of vertical scale is, 

suppose, 0.1 cm. 

This is multiplied by the factor Dx / (see observation Table 6.2). If D  = 1m = 100 

cm and 

x = 3 cm, then 
100

3


D

x
= 0.03. 

 

Hence the least count of measurement of depression by the optical-lever-

arrangement = 0.1   0.03 = 0.003 cm. 

 

 Ratio = 
3

1

003.0

001.0

lever) (optical L.C.

e)(microscop L.C.
  

 

This shows that measurement of depression and hence of Y is about three times 

more accurate with microscope than with an optical-lever arrangement. But an 

optical lever method can also give better results than microscope method. For this 



PHY 291                          LABORATORY PHYSICS I 

 

116 

 

you have to think of ways to improve upon the least count of the measurement of 

depression by optical-lever arrangement. You may, for instance, use a half-

millimetre scale instead of metre scale. The least count of the measurement of 

depression with the optical-lever arrangement depends on (i) x, the length of tilting 

arm of the optical lever and on (ii) D, the distance between the mirror and the 

scale. Try to adjust these factors so that the optical-lever method is more accurate 

than the microscope method. 
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(For Counsellor's use only)   

Grade..............................   Name  ..................……………….. 

 

Evaluated by………………………….  Enrolment Number ……………… 

 

EXPERIMENT 7 

 

MEASUREMENT OF LOW RESISTANCE USING CAREY FOSTER'S 

BRIDGE 

 

Structure 

 

7.1     Introduction Objectives 

7.2     Wheatstone's Bridge Carey Foster's Bridge 

7.3     Setting Apparatus 

7.4     Procedure 

Determination of Resistance per Unit Length  

Determination of Unknown Resistance 

 

7.1     Introduction 

 

You must have handled electrical appliances like electric heater, electric iron, and 

geyser at your home. Have you ever thought as to how electric current flows 

through these appliances? Which material is used in the heating element and why? 

We know that every material offers some resistance to the flow of current. How 

does this resistance arise and what factors determine it? Is it the same for all 

materials? You must have learnt answers to these questions in your school physics 

course. 

 

Suppose we wish to regulate the flow of current in an electric circuit. All we need 

to know is the resistance of the circuit. Similarly, to produce the desired heating 

effect we should know the resistance of the heating element. Depending on our 

requirement we have to design resistors of different values from several million 

ohms to a fraction of an ohm. One metre of copper wire, normally used in electric 

connections in a physics laboratory, has a resistance of about 0.02 . When a very 

delicate electrical instrument like ballistic galvanometer is used in an electric 

circuit, a shunt in the form of wire of low resistance (~ 0.1  or less) is used. In 

power transmission also, it is desirable to use cables having low resistance so that 

power loss is less. On the other hand, when we wish to regulate current in a 

circuit, a variable or a constant high resistance is used. In commercially produced 

resistors, resistance is provided by a thin layer of carbon. These are commonly 

used in radio and T.V. circuits. This raises a very important question. How to 
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measure resistance over the entire range from 610   down to 310  ? To be able to 

answer this question, you should first know to measure resistance. 

 

The resistances of the order of a few ohms (1-100 ) can be measured by methods 

which depend on the direct application of the ohm's law. You must have used this 

law in your earlier classes to measure resistance. For a low resistance, these 

methods are not reliable. So we have to look for alternative methods. Usually we 

measure a low resistance using methods based on the principle of Wheatstone's 

bridge. These include a post office box, a meter bridge and a Carey Foster's 

bridge. In this experiment you will learn to use a Carey Fosters bridge. Now you 

may logically ask: Why do we prefer it? You will be able to answer this and other 

related questions after doing this experiment. In fact our basic purpose of asking 

you to perform this experiment is (i) to reinforce your knowledge of the concepts 

involved in resistance measurements, (ii) to make you familiar with the 

instruments used in electrical circuits in a physics laboratory, and (iii) to develop 

in you the skills and confidence required in making measurements with electrical 

equipments. 

 

7.2 Objectives 
 

After doing this experiment you should be able to: 

 

 make electrical connections on the basis of circuit diagrams 

 acquire the skills of making measurements using null (no deflection) 

methods 

 appreciate the role of contact resistances (or loose connections) in electrical 

circuits measure a low unknown resistance. 

 

7.3     Wheatstone's Bridge 
 

A Wheatstone's bridge circuit diagram is shown in Fig. 7.1. Here P, Q, R and S  

are resistances in the arms AB, BC, AD, and CD respectively, and G, connected 

between B and D, is a galvanometer. You will note that a galvanometer has no 

positive and negative terminals marked on it. It shows deflection on both sides of 

the zero mark, which is in the centre of the scale. 

 

Ohm's law states that current flowing through a conductor is directly proportional to the 

potential difference across it, provided temperature and other physical conditions like 

pressure, shape and size remain the same. 
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Fig. 7.1: Circuit diagram of Wheatstone's bridge 

 

When junctions B and D are at the same potential, no current will flow through the 

galvanometer. This is evidenced by zero deflection in the galvanometer. The 

bridge is then said to be balanced. For a balanced bridge, the following condition 

holds good: 

 

S

R

Q

P
            (7.1) 

 

From this equation it is clear that an unknown resistance can be found if we know 

the other three. However, for maximum sensitivity it is important to ensure that all 

four resistances are preferably of the same order of magnitude. This means mat if 

the unknown resistance is low, the bridge will be most sensitive when other 

resistances are also low. 

 

The principle of Wheatstone's bridge forms the basis of many 

experiments/instruments in a physics laboratory. The more familiar of these 

instruments are the Post Office Box, the slide-wire bridge (also called the metre 

bridge), the Carey Foster's bridge and the potentiometer. In your physics 

laboratory, you will get an opportunity to work with the last two. 

 

Let us now pause for a minute and ask: Why do we use Wheatstone's bridge to 

measure low resistance? This is essentially because it is a null method. This means 

that when the bridge is balanced, the detector, a galvanometer in this case, 

registers no current. That is, there is no deflection in the galvanometer and the 

pointer remains stationary at zero. 
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Check Your Progress 1 
(1)   Write True or False against the following statements 

(a)      The key 1k , in Fig. 7.1 should always be kept inserted in the circuit 

……….. 

(b)       If we know the values of resistances in any three arms of a 

Wheatstone's bridge, the fourth one can always be found irrespective 

of whether the bridge is balanced or unbalanced. .......................... 

(c)       For maximum accuracy, P, Q, R and S should preferably be of the 

same order of magnitude. ............................ 

 

7.3.1 Carey Foster's Bridge 
 

The Carey Foster's bridge works on the principle of the Wheatstone's bridge. The 

Carey Foster's bridge along with its electrical connections is shown in Fig. 7.2. It 

has four gaps in the copper strip. Two known resistances P and Q (preferably 

equal and small) are inserted in the inner gaps at x and y. A galvanometer is 

attached between the terminal B and the sliding tapping key (or the jockey) at D. 

One known (preferably a standard) resistance R and an unknown (low) resistance 

S  are introduced in the outer gaps at m and n, respectively. A battery, a key and a 

rheostat are inserted between the terminals A and C. A one metre long uniform 

resistance wire EF is mounted alongside a metre rod, and is soldered to the two 

ends of the copper strip. 

 

 
 

Fig. 7.2: Carey Foster's Bridge 

 

You may note that point D is variable. It can be anywhere between E and F. It 

marks the position at which there is no deflection in the galvanometer. It is located 

by moving the tapping key over the wire. 
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Since the wire EF is uniform, we can assume that it has a constant resistance per 

unit length. Let us assume this to be r. Then resistance between E and D is equal 

to 1l r where 1l  is the length of the wire ED measured from E. Similarly, the 

resistance between D and F is equal to (100 1l )r. 

 

The points A, B, C and D here correspond exactly to those of the Wheatstone's 

bridge shown in Fig. 7.1. The Carey Foster's bridge is thus effectively a 

Wheatstone's bridge. Then we may write the condition of balance as 

 

 
rlS

rlR

Q

P

)100( 1

1









       (7.2) 

 

where   and   are the end-corrections at the left and the right ends. 

 

Next resistances R and S are interchanged, i.e., the resistance in gap m is put in gap 

n, and vice versa. Let us assume that the balance point is obtained at a distance 2l  

from E. You will note that the errors at the ends E and F stay the same, 

irrespective of the resistances in the gaps m and n.  

 

Then the condition of balance can be written as 

 

rlS

rlR

Q

P

)100( 2

2









        (7.3) 

 

Equating Eqs. (7.2) and (7.3), we get 

  

 
rlS

rlR

)100( 1

1








= 

rlS

rlR

)100( 2

2








 

 

Adding one on both sides and simplifying the terms, we obtain 

 

rlR

rSR

rlS

rSR

)100(

100

)100(

100

21 















      (7.4) 

 

When the contact between the two wires (or between a screw and a wire) is not good, the 

area of cross section at the contact becomes very small. This introduces a significant 

resistance in the circuit which we call the contact resistance. In the slide wire and Carey 
Foster's bridge, the contact resistances are usually referred to as end-resistances or end-

errors. Usually, these are low, of the order of a milli-ohm. The contact resistances assume 

importance only in low resistance measurements. It is for this reason that (i) you should 
clean the heads of all connecting wires with sand paper and (ii) the connection must be tight. 

 



PHY 291                          LABORATORY PHYSICS I 

 

122 

 

You will note that in this equation the numerators are equal. So the denominators 

must also be equal. Therefore, we can write 

 
 rlRrlS )100()100( 21    

 

giving 

 

rllSR )( 12           (7.5) 

 

Let us pause for some time and ask: How does this relation enable us to determine 

the value of a low resistance accurately? It shows that the difference between the 

known and the unknown resistance is equal to the resistance of the bridge wire 

between the two balance points. Once we know )( 12 ll  , r and R, the unknown 

resistance can easily be determined. Now you may like to know: Is there any 

limitation of this method? Yes, there is one. The difference between the known 

and the unknown resistance cannot be more than the total resistance of the bridge 

wire. When this condition is not satisfied, the method fails. 

 

Check Your Progress 2 
(1)   Write True or False against the following statements 

(a)  To find the balance point (D) on the Carey Foster's bridge, we slide 

the tapping key along the bridge wire, tap it gently at different 

points, and look for the position at which deflection in the 

galvanometer becomes zero. ................... 

 

(b)  The bridge wire may or may not be uniform. ........................... 

 

(c)  If the soldering of the bridge wire with the copper strip is weak, the 

contact resistance is large................. 

 

(d)  The Wheatstone's bridge is more sensitive when the resistances in 

the four arms are nearly equal................. 

 

 (2)   Write the reason for your answer for l(b) 

 

 ____________________________________________________________ 

 

 ____________________________________________________________ 
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Before we describe the procedure to determine the value of low resistance, let us 

list the apparatus with which you will work. 

 

7.4     Setting Apparatus 

 

1.     Place Carey Foster's bridge apparatus on the table and keep it in such a way 

that the gaps in copper strip are away from you. 

 

2.     Clean the ends of the connecting wires with sand paper. 

 

3.     Identify and mark the various terminals of the Carey Foster’s bridge by 

comparing them with Fig. 7.2. 

 

4.    Connect the galvanometer between B and the sliding key at D. 

 

5.     Connect the given resistance coils (or the resistance boxes) in gaps x and y.     

j 

 

6.    Connect the standard resistance (or the fraction resistance box), and the 

unknown low resistance in gaps m and n. 

 

7.     Connect a battery, a one-way key and a "rheostat between A and C. For 

connecting the rheostat, you should use one of its lower terminals and an 

upper one. 

 

8.     Check that connections (and keys in resistance boxes, if used) are tight. 

 

9.     Move the slider of the rheostat towards its lower terminal which is 

connected to the key and the battery. 

 

10.  If resistance boxes are used, lake out resistances of, say, 2  each from the 

boxes in the inner gaps at x and y. 

 

11.  If fractional resistance box is used, take out a resistance of, say, 0.1  from 

this box. 

 

Apparatus 
 

Carey Foster's bridge, two resistors; each of about 2  (or two resistance boxes), thick 

copper strips, standard low resistances (or a fractional resistance box), a battery, a one-way 

key, a rheostat, a sensitive galvanometer, and an unknown low resistance 
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12.  Insert the key in the battery circuit. Gently tap the jockey near the end E. 

The galvanometer will show deflection on one side of the zero mark. Now 

move the sliding key to the other end (F) and again tap it. The 

galvanometer should show deflection on the other side of the zero mark. 

Only when you have ensured this, can you be sure that your circuit 

connections are correct and you can begin to take observations. If you do 

not get deflection on both sides, you should check your connections again 

and repeat the above procedure. If you succeed, fine. Otherwise, you should 

take help of your counsellor without spending any further time. (Only 

when you are fully convinced, should you proceed further.) 

 

7.5     Procedure 
 

This experiment is to be done in two parts. In the first part, you have to find r, the 

resistance of the bridge wire per unit length. In the second part, you determine the 

lengths 1l , and 2l . These two measurements then give us the unknown low 

resistance. 

 

7.4.1 Determination of Resistance per Unit Length 

 

1.    Connect a fractional resistance box (or the standard resistance coil) in the 

right outer gap n and a thick copper strip in the left outer gap m. (If a 

fractional resistance box is used, you take out a resistance of 0.1 .) Let us 

denote it as R  . 

 

2.    Locate the balance point by moving the sliding key over the bridge wire 

and tapping it gently at different points. The deflection will become zero at 

some point on the wire. (At the balance point, the galvanometer needle 

should not move at all.) 

 

3. Note the position of the balance point (with the help of the metre scale 

mounted along the bridge wire) and record your observations in 

Observation Table 7.1. This gives us '
1l . 

 

4. Now, interchange the positions of the copper strip and the fractional 

resistance box (or the standard resistance coil) and again obtain the balance 

point. Record it again. This gives us '
2l . Calculate resistance per unit length 

of the wire using the relation  

 

)/( '
1

'
2 llRr   
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5.     Repeat the procedure at least four times by taking out different values of the 

resistance from the fractional resistance box (or by using different standard 

resistance coils). Compute the mean value of r. 

 

Observation Table 7.1: Determination of Resistance per unit. Length of the 

Wire 

 

s. No. 

 

Fractional 

Resistance 
)(R  

Balancing lengths 

when R is in gap  

(cm) 

 

Difference 

in 

balancing 

lengths 

12 ll   

(cm) 

 

'
1

'
2 ll

R
r


  

( /cm) 

 

 

 

 

 

 

 

 

 

 

n 

 

m 

 
'
1l  

(cm) 

 

'
2l  

(cm) 

 

1. 

 

  

 

 

 

 

 

 

 2. 

 

 

 

 

 

 

 

 

 

 

 3. 

 

 

 

 

 

 

 

 

 

 

 4. 

 

 

 

 

 

 

 

 

 

 

 5. 

. 

. 

. 

. 

 

 

 

 

 

 

 

 

 

 

 

Mean value of r = ............... /cm. 

 

7.4.2 Determination of Unknown Resistance 

 

1.    First remove the copper strip and insert the unknown resistance in one of 

the outer gaps. 

 

2.    Repeat the entire sequence of steps given in Subsection 7.4.1. Make your 

own Observation Table and record the data. Compute R using Eq. (7.5). 
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You are bound to face difficulty in locating the balance point if the difference in 

the known and unknown resistances is more than the resistance of the bridge wire. 

In such a situation, you should change the known resistance in small steps. 

 

Observation Table 7.2 

 

     

 

     

   

  

      

       

       

       

   

 

 

 

 

 

 

 

 

 

 

Mean value of R = ………………   

 

Do you get consistent values of R in each case? We expect so. Estimate the 

instrumental error. 

 

Result: The low resistance determined by using a Carey Foster's bridge = 

.................  

 

We now want you to think and answer the following questions: 

 

SAQ  1 

Can you determine r by plotting a graph with the measurements recorded in Table 

7.1? If yes, plot this graph. If not, say why? If you have plotted the graph, what is 

the shape of the curve obtained and how does your graphical value compare with 

the one found above? Does Eq. (7.5) indicate anything about the nature of this 

curve? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
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SAQ 2 

Imagine that the values marked on standard resistances are not correct. What 

possible errors do you expect in your result? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

SAQ 3 

Suppose that the total resistance of the bridge wire is 0.2  . You have two 

standard resistance coils of 0.3   and 0.4  , respectively. You are asked to make 

an unknown resistance using these two coils and perform the experiment. How 

would you do that? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 



PHY 291                          LABORATORY PHYSICS I 

 

128 

 

(For Counsellor's use only)   

Grade..............................   Name  ..................……………….. 

 

Evaluated by………………………….  Enrolment Number ……………… 

 

EXPERIMENT 8 

 

VARIATION OF THERMO-E.M.F. WITH TEMPERATURE 
 

Structure 

 

8.1     Introduction 

Objectives  

8.2     Potentiometer 

8.3     Fabrication of Thermocouple 

8.4     Measurement of Thermo-e.m.f. of a Thermocouple and its variation with 

Temperature Procedure 

 

8.1     Introduction   

 

You all must be familiar with the principle of conservation of energy. 

Conservation of energy implies that energy can neither be created nor destroyed. 

Only the form of the energy changes from one to another. For example, in an 

electric cell the chemical energy is converted into electrical energy; and in an 

electric heater, the electrical energy is converted into heat energy. Is it possible to 

convert heat energy back into electrical energy? Yes. 

 

In 1821, T. J. Seebeck found that if wires of two different metals, such as copper 

and iron, are joined together to form a closed loop and if one junction is kept at a 

different temperature from the other, an electric current will flow in the closed 

loop. This phenomenon is called thermo-electric effect or Seebeck effect. The two 

metals comprising the circuit are referred to as a thermo-couple. The existence of a 

current implies that there is an e.m.f. (electromotive force) acting in the circuit. 

This e.m.f. is known as thermo-electric-e.m.f and the electric current produced in 

this way is called thermo-electric current. The direction of the current and 

magnitude of the e.m.f depend upon the kind of materials used and the difference 

of temperature between the two junctions. 

 

The conversion of heat into electricity by metal thermo-couples is not a very 

efficient process because the e.m.f. produced is very small. But its efficiency is 

improved by employing better thermo couples, now available, based on alloys and 

semiconductors. On account of their reliability, long life and low cost, these are 

suitable as small power supply units in space satellites, weather ships etc. Thermo-
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couples are extensively used as the thermometers particularly for measuring 

varying temperature. 

 

In this experiment you will learn to use a thermocouple as a thermometer. In other 

words you will investigate how the thermo-e.m.f. varies with temperature. 

 

8.2 Objectives 
 

After doing the experiment, you will be able to: 

 appreciate that a small potential difference of the order of micro volt can be 

measured with the help of potentiometer with some modification 

 fabricate thermo-couple 

 make the necessary experimental set up for the measurement of thermo- 

e.m.f. 

 plot the graph between thermo-e.m.f. and the temperature.                                                                                     

 

8.3     Potentiometer 
 

You all know that for the accurate measurement of e.m.f. of a cell or potential 

difference between any two points of a circuit the most suitable instrument is 

potentiometer. Yet for your convenience we will briefly discuss how the 

potentiometer works. 

 

It is a device which is used to measure an unknown e.m.f. or potential difference 

by comparing it with a variable known potential difference. In its simplest form it 

consists of a long piece of uniform wire of fairly high resistance (usually 

manganin or constantan wires are used) stretched over a scale of equal divisions. 

The ends of the wire are connected to a battery or an accumulator so as to maintain 

a perfectly steady e.m.f. between the ends of the wire. The e.m.f. of the battery 

must always be greater than the e.m.f. or potential difference to be measured. If 

the battery in the potentiometer circuit is not of greater e.m.f., the potential 

difference between the ends of the potentiometer wire will be less than the e.m.f. 

to be measured and consequently null point will not be detected. The potential 

difference per unit length of the wire produced in this way is called potential 

gradient and can be calculated by dividing the e.m.f of the battery by the total 

length of the wire. 

 

To understand the principle of working of a potentiometer let us consider the flow 

of an electric current along a conductor AB shown in Fig. 8.la as a result of a 

potential difference between A and B, the potential at A being higher. If at any two 

points C and D between the ends of the conductor, a branch conductor CPD is 

connected to the conductor AB, then the current flowing along AC will divide at C 

into two portions: one along CD and the other along the new path CPD. The 
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greater the distance between C and D the greater will be the potential difference 

tending to urge the current along the branch conductor. Now let us suppose that a 

cell of constant e.m.f. is inserted in the branch CPD as shown in Fig. 8.1b. Let P 

be the positive pole of the cell. Since the potential at P is higher than at N, the 

current will flow through the branch conductor due to potential difference between 

P and N in the direction PCD. 

 

 
 

Fig. 8.1: Illustrating the principle of working of a potentiometer 

 

If the potential difference between P and N is smaller than that between C and D, 

the current in the branch conductor will flow in the direction CPD. When the 

potential difference between P and N is greater than that between C and D the 

current will flow in the opposite direction i.e. PCD. But if there is no flow of 

current through the branch conductor CPD, then the tendency for the current to 

flow in the direction CPD is neutralised by the tendency for the current to flow in 

the direction PCD. This means that the potential difference between C and D, 

which urges the current to flow in the direction CPD, is exactly balanced by (or 

equal to) the potential difference between P and N which urges the current in the 

opposite direction. The absence of the current in the branch conductor can be 

shown by a galvanometer inserted in the branch CPD. 

 

Suppose you are asked to measure the e.m.f. of a given cell 1E  with the help of a 

potentiometer. For this purpose, connect a battery E of higher e.m.f. e across the 

uniform resistance wire AB of length L as shown in Fig. 8.2. Then a potential 

gradient 
L

e
 will be developed on the wire. Let the e.m.f. of the given cell 1E  be 1e , 

then it may be balanced with the potential difference across a certain length AC of 

the wire. For balancing it, the cell 1E  is connected through a galvanometer G such 

that the positive terminals of both the cells meet at a common point A and the 
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negative terminal of the cell 1E  has a variable contact at the point C on the wire 

AB. Two electric currents, one due to the cell 1E  and the other due to the potential 

difference between A and C, will flow in opposite directions through the 

galvanometer. Under the condition when no current flows through the 

galvanometer i.e. at null point, the e.m.f. of the cell 1E , will be equal to the 

potential difference across the portion AC of length l  of the potentiometer wire. 

 

 e.m.f. of the cell 1E = potential gradient   length of AC 

 

or,  kll
L

e
e 1          (8.1) 

 

where k is the potential gradient on the wire. 

 

 
 

Fig 8.2: Illustrating the principle of determination of e.m.f. of a cell by means 

of a potentiometer 

 

8.4    Fabrication of a Thermocouple 

 

When wires of two different materials are either twisted together or welded at their 

ends so as to form a closed circuit, then, on heating one of the junctions, a current 

flows round the circuit as shown in Fig. 8.3. The pair of materials combined in this 

way is called thermocouple. In physics laboratory, usually, you may be given a 

thermocouple but even if you are asked to fabricate a thermocouple, there is no 

need to worry. You can easily fabricate a thermocouple. Which two different 

material you will choose? In the laboratory you can find plenty of connecting 

wires, which are actually copper wires. The wire in sonometer is made of iron. 

Hence by using copper and iron wires you can easily fabricate a thermocouple by 

following the method given below. 

 

Pass one end of the iron wire down a thin glass tube G as shown in Fig. 8.4 and 

join it to a copper wire AJ at J. This will ensure that the wires are in contact at the 

junction only. Now to ensure good contact at J, place the combination in a test 
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tube containing a small amount of mercury and dip the junction J into the 

mercury. 

 

 
 

Fig. 8.3: Thermocouple 

 

 
 

Fig. 8.4: Fabrication of copper iron thermocouple 

 

Similarly, pass the other end of the iron wire down another thin glass tube G and 

prepare another junction J of iron and copper. While doing the experiment, keep 

one of the junctions in ice contained in a beaker and the other junction in a beaker 

containing water so that it may be heated to different temperatures. 

 

8.4 Measurement of thermo-e.m.f. Of a thermocouple and its  

Variation with temperature 
 

As the magnitude of thermo-e.m.f. is very small generally of the order of a few 

milli-volts, it cannot be measured with the help of potentiometer in the usual way. 

However, with certain modification, the ordinary potentiometer may be used for 

measuring thermo-e.m.f. This modification is such that it enables production of a 

potential gradient of the order of microvolt on the potentiometer wire. The 

apparatus required for this experiment is as follows. 
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SAQ 1 

Can you use a voltmeter to read the thermo-e.m.f. developed in your thermo-

couple directly? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

In order to measure thermo-e.m.f. make a circuit as shown in Fig. 8.5. Connect a 

high resistance R (of the order of 1000 ohm) in series with the potentiometer wire 

AB and then connect this combination to a battery 1S  of steady e.m.f. with a 

rheostat Rh. The current enters the combination of R and potentiometer wire at M 

and leaves at B. Let a current I  flow through them from the battery 1S . Next, join 

the positive terminal of the standard cadmium cell S to the higher potential 

terminal M of the resistance R . The low potential terminal i.e. point D of the Cu -

Fe thermocouple is connected to the jockey so that the hot junction of the thermo-

couple is towards the jockey. The negative pole of the standard cadmium cell and 

the higher potential terminal i.e. point C of the thermo-couple is connected to two 

similar terminals of the two way key 3K . The third terminal of the two way key is 

connected to one terminal of the galvanometer G. The other terminal of which is 

joined to the lower potential N of the resistance R. Now if the standard cell circuit 

be closed by means of the two-way key and after closing the one way key 1K , the 

rheostat Rh so adjusted that there is no deflection in the galvanometer, then the 

potential difference across the resistance R will be balanced by e.m.f. E of the 

standard cadmium cell. We have 

 

IRE            (8.2) 

 

Apparatus: A potentiometer, a battery of steady e.m.f., a standard cadmium cell, a rheostat, a 

resistance box, a high resistance of 1.5,000 ohms, copper (Cu) - Iron (Fe) thermocouple, a 
sensitive galvanometer, two single-way plug keys, a two-way key, thermometer, ice, beaker, 

tripod, gauge, bunsen burner, multimeter and connecting wires. 
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Fig. 8.5: Experimental arrangement for the measurement of thermo-e.m.f. 

 

Now let the standard cell circuit be broken and the cold junction of the theromo-

couple be connected to the galvanometer. Then if J is the position of the null point 

on the potentiometer wire, the thermo-e.m.f. of the copper-iron thermo couple is 

equal to the potential difference between A and J. If e is the thermoelectric e.m.f. 

and r is the resistance of the portion of the wire between A and J, then 

 

 Ire   

or, lIe            (8.3) 

 

where   is the resistance per unit length of the potentiometer wire and l  is its 

length between A and J. Using Eqs. (8.2) and (8.3), 

 

 l
R

E
e


          (8.4) 

 

Knowing (i) the e.m.f. E of the standard cell, (ii) resistance per unit length of 

potentiometer wire, (iii) high resistance from resistance box required to produce 

the null point with the standard cell and (iv) length of the potentiometer wire at the 

null point with the thermocouple, we can determine the thermo-e.m.f. with the 

help of Eq. (8.4). If the temperature of the hot junction of the thermocouple is 

changed, the theromo-e.m.f. is also changed. By measuring thermo-e.m.f's at 

various temperatures (T) of the hot junction, you can draw a graph between e and 

T. Thus you can observe the variation of thermo-e.m.f. with temperature by 

following the procedure given below. 

 

8.4.1 Procedure 
(1)   Measure the resistance and the length of the potentiometer wire using a 

multimeter and a metre scale respectively. Calculate its resistance per unit 

length (  ). Record it in Observation Table 8.1. 
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(2)   Make the electrical connection as shown in Fig. 8.6 and as described above. 

The ends of the connecting wires should be clean and the connections 

should be firmly made. Here the positive terminal of standard cadmium 

cell S is connected to the higher potential terminal M of the resistance box 

R through a high resistance R, of about 15,000 ohms. This is done to protect 

the standard cell because this will prevent large currents from being taken 

from the cell. Connect a plug key 2K  across 1R . 

 

 
 

Fig. 8.6: Circuit diagram for studying the variation of thermo-e.m.f. with 

temperature 

 

SAQ 2 

Will the resistance 1R  affect the position of balance while measuring thermo-

electric e.m.f? 

 

(3)   To investigate how the thermo-e.m.f. varies with temperature, you have to 

keep one junction of the thermocouple at constant temperature whereas the 

other junction should be heated to different temperatures. Insert one 

junction of the thermo-couple into the pieces of ice kept in a beaker. Its 

temperature is 0
0
C (cold). Dip the other junction into a large beaker 

containing water. When the beaker is heated by a burner, the junction of the 

thermo-couple is heated to different temperatures (hot). Insert a sensitive 

thermometer into the water kept in the beaker. See that the bulb of the 

thermometer is very near the hot junction. 

 

(4)  If the cold junction of copper-iron thermocouple is at 0 
0
C and the hot 

junction at 100 
0
C, then the thermo-e.m.f. developed will be about 1300 

microvolt. To measure it, a potential difference of 1000 microvolt has to 

produced between the points A and B of the potentiometer wire. In other 

words a potential difference of 1 microvolt per centimeter of the wire has to 

be produced. For this purpose, a suitable resistance is to be put in box R so 
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that the potential difference per cm. of the wire is 1  V. Adjust the 

resistance in the box R to about a thousand ohms, preferably to 1018.3 

ohms. Record it in Observation Table 8.1. Shunt the galvanometer. Close 

1K  but keep 2K  open and then connect the negative terminal of the standard 

cell to the galvanometer by closing the key K3 (towards the standard cell 

side). Adjust the rheostat Rh until there is practically no deflection in the 

galvanometer. Then remove the shunt from the galvanometer, close 2K  and 

adjust the rheostat Rh finally until there is no deflection in the 

galvanometer. This exactly balances the potential difference across R  by 

the e.m.f. of the standard cell. This means that the potential difference 

across R is equal to the e.m.f. of the standard cell. You know e.m.f. of the 

standard cell is 1.0183 volts. Therefore, the current flowing through R is 

1mA   (Current = 
3.1018

0183.1
= 1mA). This means that the current through the 

potentiometer wire is also 1mA (R and potentiometer wire being in series). 

If the resistance of the potentiometer wire is exactly one ohm then the 

potential difference across the wire will be 1 mV since the current flowing 

in the wire is 1mA. As there are 1000 divisions on the measuring scale the 

potential gradient will be exactly equal to one microvolt as desired. 

 

SAQ 3 

A shunt is connected across the galvanometer. But while determining the exact 

position of the null point it is removed from the galvanometer. Why? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

(5)  Check whether the positive end of the thermocouple is joined to the end A 

of the potentiometer wire. To do this, make R = 0, allow the jockey to touch 

the beginning of the wire and note the galvanometer deflection. Now bring 

the jockey in contact with the end of the wire. If the deflection is opposite 

to the first, the positive end of the thermocouple has been joined to the end 

A of the potentiometer wire. If the deflection is not opposite, then reverse 

the connection of the thermo-couple i.e. the terminal connected to the 

jockey be now joined to the end A and vice versa. Then put resistance in the 

box R as was done in step (4) and proceed for making observations. 
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SAQ 4 

What is the direction of current in your copper iron thermo-couple? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

(6)   Now the hot junction is immersed in water at room temperature. Note this 

temperature and record it in Observation Table 8.1. Since one junction of 

the thermocouple is at  0 
0
C and the other is at room temperature, a thermo-

e.m.f. will develop. If you can find the length l  of the potentiometer wire 

across which the potential difference exactly balances the thermo-e.m.f. 

then, using Eq. (8.4) you can easily calculate the themo-e.m.f. at room 

temperature. For this purpose open 2K  and shunt the galvanometer again. 

Close the two-way key 3K  on the thermo-couple side so that the cold 

junction of the thermocouple is connected to the galvanometer. Obtain an 

approximate position of the null point (i.e., the point where the 

galvanometer shows no deflection) on the wire by sliding the jockey on the 

wire. Jockey should be pressed momentarily and it should not be slided 

over the potentiometer wire. Now remove the shunt from the 

galvanometer and determine the exact position of the null point of the 

potentiometer wire. Note down the number of full wires and the length of 

the potentiometer wire between the point A and the jockey in the 

Observation Table 8.1. Find the equivalent length of the potentiometer 

wire. Then calculate the value of thermo-e.m.f. from Eq. (8.4). It will give 

the value of thermo-e.m.f. at room temperature. 

 

(7)  Heat the water containing the hot junction of the thermo-couple to a high 

temperature (i.e. close to the boiling point of water) by means of burner. 

After heating, allow it to cool. As it cools, measure the thermo-e.m.f. after 

an interval of temperature of about 10 
0
C until the temperature of the hot 

junction has fallen to about room temperature. For different temperatures of 

the hot junction, observe and record the position of the null point in the 

Observation Table 8.1. Remember that reading of length should be 

taken first and then that of temperature. During experiment, the cold 

junction of the couple should always remain at 0 °C. For this purpose it is 

necessary that the mass of ice should be poked from time to time. For each 

observation calculate the value of thermo-e.m.f. and record it in 

Observation Table 8.1. 
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Observation Table 8.1: Variation of thermo-e.m.f. with temperature  

 

E.M.F. of the standard cell, E       = 

........... volt 

 

Resistance per unit length of the potentiometer wire,     

=........... /cm  

 

High resistance R       = ...........  

 

S. 

No. 

 

Temperature of 

hot 

junction (T) 

(
0
C) 

Length of the potentiometer 

wire balanced by the thermo- 

couple 

Thermo-e.m.f. in 

microvolt 

)( l
R

E
e


  

 

 

 

 

No. of full 

wires 

 

Position of 

the null 

point  

(cm) 

 

Total 

length 

(cm) 

 

 

1 

 

(room 

temperature) 

 

 

 

 

 

 

 

 

 2 

 

 

 

 

 

 

 

 

 

 

 3 

 

 

 

 

 

 

 

 

 

 

 4 

. 

. 

. 

. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Draw a graph between the temperatures of the hot junction of the thermo-couple 

and the thermo-e.m.f. developed. Plot temperature along the x-axis and the 

thermo-e.m.f. along the y-axis. The graph, in general, should be a parabola as 

shown in Fig. 8.7a. But within a short range of temperature as in the present case 

(0 °C – 0 °C or 100 °C), the graph will be a straight line as shown in Fig. 8.7b. 

The straight line actually is the straight portion of the parabola. This graph can be 

used to determine any unknown temperature (within this range). 
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Fig. 8.7: Variation of thermo-e.m.f. with temperature (a) expected (b) 

experimentally  

  observed 
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EXPERIMENT 9 

 

FREQUENCY RESPONSE OF A.C. SERIES CIRCUITS 

 

Structure 

 

9.1    Introduction 

9.2 Objective 

9.3  To Study the Frequency Response of a Resistor, an Inductor and a  

 Capacitor 

9.4  To Study the Frequency Response of RL and RC Series Circuits 

9.5  To Study the Frequency Response of LCR-series Circuit 

9.6 To Determine the Quality Factor (Q) of a LCR-series Circuit 

 

9.1    Introduction 

 

The three important components of an alternating current circuit are a resistor, a 

coil and a capacitor. These are denoted by 

 

resistor:  by its opposition ( R ) to current 

 

coil:   by its co-efficient of self inductance (L) 

 

capacitor:  by its charge storing capacity (C) 

 

All these components are an integral part of the modern electronic devices like 

radio, TV etc. which we use in our home. Though these components find some use 

in direct current circuits, their uses in A.C. circuits are enormous. They find 

application in almost any electronic circuit and telecommunication system. 

 

To acquaint you with these components, we would like you to investigate their 

frequency response, which is of help during fabrication and designing of various 

electronic circuits. 

 

If a coil and a resistor appear in a series in a circuit, it is called an RL -series 

circuit. If on .the other hand, L and C appear in n series, it is called a LC -series 

circuit. If, however, all the three components appear in a series, it is called an 

LCR-series circuit. 
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You already know how these components affect the flow of current in an A.C. 

circuit. The opposition offered to the flow of current by a resistor (R) is 

independent of the frequency of the current. This opposition is, however, 

dependent on the frequency in an inductor (L) and a capacitor (C). 

 

In an inductor, the opposition to the flow of current is usually referred to as 

inductive reactance LX  which is equal to L . Here   is the angular frequency of 

the alternating current. It implies that if   increases, the opposition increases, in a 

capacitor, this opposition is referred to as capacitive reactance cX  is equal C/1 . 

If   increases, the opposition decreases. 

 

We are sure that you also know that when R , L and C are connected across an 

A.C., the voltage across and the current through them have certain phase 

relationships. In R , the voltage and current remain in phase with each other (Ref. 

to Fig. 9.1). In L, the voltage becomes ahead of the current by a phase angle of 

2/ . In C, the voltage goes behind the current by the same phase angle, i.e., 2/ . 

If for example, we have an RC-series circuit, the voltage VR in R becomes ahead of 

the voltage CV  across the capacitor by a phase angle of 2/ . The resultant voltage 

is then given by the vectorial addition of the two. Using the Pythagoras theorem, 

the resultant voltage 22
CR VVV  . Similarly, for an LR -series circuit, 

22
LR VVV  . However, if instead we have an LCR series circuit, the voltage LV  

and CV  get out of phase by an angle of  . Furthermore, both LV  and CV  are also 

out of phase from RV  by 2/ . In such a case the resultant voltage V is given by 

 

 22 )( CLR VVVV   

 

The voltage across R is in phase with the circuit current, since current and voltage are in 

phase in pure resistive circuits. 

 

The voltage across L leads 2/ radians since current lags the voltage by 2/  degrees in 

purely inductive circuits. 
 

The voltage across C lags the circuit current by 2/  degrees since the current lead by 

2/  degrees in purely capacitive circuit 
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Fig 9.1: RLC-Series circuit showing phase relationship in individual 

component 

 

If the total voltage V in an A.C. series circuit is divided by the total current in the 

circuit, we get the opposition offered to the current in the circuit. This opposition 

is usually referred to as impedance and is denoted by Z. For various series circuits, 

the following are the 

impedances: 

 

LR circuit: 22 )( LR   

 

RC circuit: 222 /1 CR   

 

LCR circuit: 22 )/1(  CLR   

 

In this experiment you will observe yourself as to how the three components L, C 

and R behave individually or in combination when the frequency of the applied 

current is varied with the help of an oscillator. When the current frequencies are 

plotted against the voltages across these components, the voltages are found to 

depend on the frequencies of the applied currents. These curves are called the 

frequency response curves. 
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To obtain frequency response curves you will make combinations of different 

components and apply currents of different frequencies to them. The resulting 

voltages will be measured with the help of an A.C. voltmeter. You will plot the 

resulting data, viz., voltages against frequencies and see the behaviour of the 

various curves. You will then make your own conclusions. 

 

In an LCR series circuit, at lower frequencies, the capacitive reactance is large and 

the inductive reactance is small. Most of the voltage drop is then across the 

capacitor. At high frequencies, the inductive reactance is large and the capacitive 

reactance is low. Most of the voltage drop is then across the inductance. In 

between these two extremes, there is a frequency called the resonant frequency rf , 

at which the capacitive and inductive reactances are exactly equal and neutralise 

each other. In this case, there is only the resistance R in the circuit to oppose the 

flow of current. The current at resonant frequency is equal to the applied voltage 

divided by the circuit resistance, and is thus very large if the resistance is low. 

 

At resonance the current is maximum. Locate the points on your graph where the 

current is .707 times that of the maximum current. These two points on either side 

of rf  may be called the half power points. The frequency difference f  between 

these points is known as the band width of the resonance curve. In terms of rf  and 

the band width f , we can define a new term Q , known as the quality factor. This 

is equal to ff r / . The Q is usually used in designing electronic circuits and the 

communication engineering. 

 

In the introductory part of your laboratory manual, we have demonstrated the use 

of semi-log graph paper. In this experiment we expect you to use such a graph 

paper. This will help you in appreciating its use. 

 

9.2 Objectives 
 

After performing this experiment you will be able to: 

 

 show the frequency response of a resistor, an inductor and a capacitor 

 

 select the scale and plot experimentally the data using semi-log and log-log 

graph paper. 

 

 calculate the quality factor (Q) from the resonance curve of a LCR~ series 

APPARATUS 

 

Oscillator (10-100KHz, 20V), resistors (5 , 10 , 15  and 20 -2W), inductors (5mH, 
lOmH, 15mH and 20mH), capacitors (100pF, 200pF, 500pF, 100mf- 20V), carbon 

resistances (500 , 1k , 5k - 1/4W and 1/2 W), digital multimeter or digital 

microvoltmeter or a.c. voltmeter (0-1V, 0-5V, 0-10V and 0-20V etc.) and a.c. ammeter (0-

1mA, 0-10mA, 0-50mA etc.) and connecting wires. 
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circuit. 

 

9.3 To study the frequency response of a resistor, an inductor  

And a capacitor 

 

Procedure: You arrange the circuit connections shown in Fig. 9.2. Connect the 

main lead of the oscillator to the A.C. mains. Connect the resistor R along with the 

external resistance Ks and A.C. ammeter across the output terminals of the 

oscillator. The resistance R serves the purpose of limiting the value of current in 

the circuit. Hence its value is of the order of a few hundred ohms. Connect the 

A.C. voltmeter across the resistor R. 

 

 
Fig. 9.2: A.C. series circuit containing only resistance (a) Actual diagram (b) 

Circuit  diagram  

 

Switch on the oscillator at least half an hour before performing the experiment so 

that it gives you a stable output. Keep the output of the oscillator at 10V with the 

help of output varying knob marked as 1K  in Fig. 9.2. You can change the 

frequency of the oscillator with the help of two knobs 2K  and 3K . The knob 2K  is 

known as range selector, and knob 3K  as frequency selector. Select the frequency 

of the oscillator, say at 100 Hz, and measure the potential drop VR across the 

resistor R. For the measurement of accurate voltage select the proper range of 



PHY 291                          LABORATORY PHYSICS I 

 

145 

 

voltmeter. For difference readings change the frequency with the help of knobs K2 

and K3 and measure the voltages across the resistor R. Record your data in 

Observation Table 9.1. Repeat the above procedure for different values of the 

resistance. 

 

Observation Table 9.1 Frequency response of a resistor 

 

Current across the Resistor  .................mA 

 

S. No. 

 

Frequency 

f (Hz) 

 

Voltage across the 

resistor (.……. ) 

in volts 

 

Voltage across the 

resistor (.……. ) 

in volts 

 

 

 

 

 

 

 

 

 

 

Now, plot a graph between VR and f  for each value of R on a semi-log graph 

paper. Semi-log graph paper is being used to accommodate a large frequency 

range along the x -axis. 

A graph between VR and f  

 

With the help of these graphs explain your results i.e., the frequency dependence 

of a resistor in the space provided below. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

Now replace the resistor R with a capacitor of 100pF and repeat the same 

procedure. Record your data in Observation Table 9.2 for different values of 

capacitors. 
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Observation Table 9.2 Frequency response of a capacitor 

 

   Current across the capacitor = ………. mA 

 

S. No. 

 

Frequency 

f (Hz) 

 

Voltage across the 

capacitor (.…..pf) 

in volts 

 

Voltage across the 

capacitor (.…..pf) 

in volts 

 

 

 

 

 

 

 

 

 

 

Now, you plot a graph of CV  vs frequency f  on a log-log graph paper. (If you 

face any difficulty in the use of log-log graph paper, consult your counsellor 

present in the laboratory.) 

 

 

A graph between CV  and f  

With the help of your graphs outline your results in the space provided below: 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

Now you replace your capacitor with an inductor of 5mH. Repeat the above 

procedures and record your data in the Observation Table 9.3 for different values 

of the inductor. 

 

Observation Table 9.3 Frequency response of an inductor 

 

Current across the Inductor = ......... mA 

 

S. No. 

 

Frequency 

f (Hz) 

Voltage across the 

inductor (.…… 

Vo'iage across the 

inductor (.…… 
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 mH) in Volts 

 

mH) in volts 

 

 

 

 

 

 

 

 

 

 

Now, plot a graph between VL and frequency f  on a log-log graph paper. 

 

 

A graph between LV  and frequency f  

 

Discuss your results on the basis of above graphs in the following space. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

SAQ 1 
Calculate the inductive and capacitive reactance of any inductor or capacitor, 

which you have used in the above experiment for a frequency of 1 KHz. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

SAQ 2 
What is the value of XL as the frequency approaches zero or infinity. What will 

happen when such inductors are used in A.C. Circuit? 

__________________________________________________________________ 

 

__________________________________________________________________ 
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__________________________________________________________________ 

 

SAQ 3 
Can you use a D.C. voltmeter instead of an A.C. voltmeter in your experiment? If 

not, why? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

9.3   To Study The Frequency Response Of Rl  And Rc Series Circuits 

 

 
 

Fig 9.3: RL -Series circuit (a) Actual diagram; (b) Circuit diagram 

 

Now connect a resistor and an inductor in a series between the source points where 

you had earlier connected the three components individually. This is shown in Fig. 

9.3. Repeal the same procedure again and record your data in the following Table 

9.4. 
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Observation Table 9.4 Frequency response of a RL-circuit 

 

S. No. Frequency f (Hz) Total Voltage V across RL-series 

circuit 

   

 

 

 

 

 

 

 

 

 

 

Now plot a graph between voltage V and frequency f . 

 

 

A graph between voltage V and frequency f  

 

Record your conclusions in the space provided below. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

Now, you replace the inductor by a capacitor and record your data in the 

Observation Table 9.5. 

 

Observation Table 9.5 Frequency response of a RC-Circuit 

 

S. No. Frequency f (Hz) Total Voltage V across RC-series 

circuit 
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Plot a graph between voltage V and frequency f  on a semi-log graph paper. 

 

A graph between voltage V  and frequency f  

 

Record your results in the space given below: 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

__________________________________________________________________ 

 

SAQ 4 

Calculate the impedance of an RL-series circuit. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

SAQ 5 

On the basis of your results, what do you think is the difference between RL series 

and RC series circuits? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
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9.4   To Study the Frequency Response of an LCR-Series Circuit 

 

 
 

Fig 9.4: RLC-Series circuit (a) Actual diagram (b) Circuit diagram 

 

Procedure: In the last part you had connected a resistor and a capacitor in series. 

Now, in between the same end points, you add an inductor as well to make an LCR 

series circuit as shown in Fig. 9.4. Following the same procedure record your data 

in the Observation Table 9.6. 
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Observation Table 9.6: Frequency response of a RLC series circuit 

 

S. No. Frequency f (Hz) Total Voltage V across LCR-series 

circuit 

   

 

 

 

 

 

 

 

 

 

 

Now, plot a graph between voltage V and frequency f  

 

Graph between voltage V and frequency f  

 

Do you observe that this graph is quite different from the previous graphs? Do you 

know why? Give your reasons in the lines below. If you are unable to answer the 

above, consult the last part of the introduction for this experiment. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

9.5  To Determine the Quality Factor (Q) Of an LCR-Series C1rcuit 
Procedure: Now, you repeat the above-experiment and measure the current in a 

LCR-series circuit with the help of an A.C. ammeter for different values of the 

frequency. Record your data in the Observation Table 9.7. 
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Observation Table 9.7: Frequency response of a LCR circuit 

 

S. No. Frequency f (Hz) Current I  in the LCR-series circuit 

   

 

 

 

 

 

 

 

 

 

 

From above data, plot a graph between Current I  and frequency f . 

 

 

A graph between current I and frequency f  

 

Explain your result on the basis of the above your graph in the following lines. 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

The curve obtained above by you is known as the resonance curve. The frequency 

at which the current is maximum is known as the resonant frequency rf . The 

points on the graph where the current reduces to .707 times that of the maximum 

value are known as the half power point. The frequency difference between these 

two points denoted by f is called the band width. Now, with the half rf  and f , 

calculate the value of the quality factor, Q . 

 

SAQ 6 

Explain the difference between voltage vs frequency and current vs frequency 

curves in a LCR series circuit which you have plotted in the above experiment. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
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EXPERIMENT 10 

 

ZENER DIODE CHARACTERISTICS AND ZENER AS A VOLTAGE 

REGULATOR 

 

Structure 

 

10.1     Introduction 

Objectives 

10.2     Introductory Information 

Electronic Configuration of Germanium and Silicon 

Crystal Lattice of Germanium and Silicon 

N-Type Semi-conductor 

P-Type Semi-conductor 

Current through Semi-conductor 

p-n Junction 

p-n Junction in Forward-Bias 

p-n Junction in Reverse-Bias 

Zener Diode 

Testing of a p-n Junction 

10.3    Voltage-Current Characteristics of a Zener Diode 

10.4    Zener Diode as a Voltage Regulator 

 

10.1   Introduction 

 

On the basis of their resistivity values, materials can be broadly classified into – 

metal, insulator and semi-conductor. The resistivity of a metal is of the order, of 
810 ohm-cm and an insulator is of the order of 10

22
 ohm-cm. The resistivity of a 

semi-conductor lies in between those of a metal and an insulator. Germanium and 

silicon are the most commonly used semiconductors. At absolute zero, i.e., -

273°C, the semi-conductor would be a near perfect insulator. As the temperature 

increases, the conductivity of the semi-conductor increases. This change in the. 

conductivity with an increase in the temperature varies for different semi-

conducting materials. For example, with an increase in the temperature by 10 
0
C, 

the conductivity increases twice in germanium and thrice in silicon. 
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A semi-conductor has limited device-possibilities. For instance, it is used in photo-

cell and temperature-sensitive resistor etc. In order to increase the device 

applicability of the semiconductors, impurities are added to the semi-conductors to 

make them p-type and n-type. In p-type materials the impurity is of the acceptor 

type whereas in n-type the impurity is donor type. When p and n semi-conductors 

are fused and the thickness between them is 10
-4

 cm, a p-n junction is formed. In 

practice, a p-n junction may be formed from a pure semiconductor by doping part 

of it with acceptor impurities and the remainder with the donor. 

 

A p-n junction performs essentially the same jobs that an electron tube (vacuum 

diode) does in the electronic equipment. The p-n junction becomes very important 

in electronics because of their many advantages over electron tubes. It is smaller in 

size and lighter in weight. This makes the equipment small in size and lighter in 

weight. The equipments which were heavy, bulky and permanently mounted now 

can become portable and miniaturised. Another advantage of p-n junction is that it 

need not be heated as in the case of electron tubes. In this way the power supply 

equipment and the circuit components can be made smaller and cheaper. It has 

become all the more important because many other solid-state devices contain 

several such junctions. If the mechanism of current flow in a simple p-n junction is 

understood. Then it becomes easier to understand the mechanism of the operation 

of the more elaborate structures.  

 

Zener diode is a special kind of p-n junction diode. The voltage-current 

characteristics of a zener diode are the same as those of a p-n junction. But in 

zener diode, there is a small change in the current when the voltage across the 

zener is increased. In this way a zener diode differs from a   p-n junction. This is a 

very important property of the zener diode, which enables us to use it as a voltage 

regulator in power supplies and voltage reference standards. 

 

Here in the first part of the experiment, we will plot the voltage-current 

characteristics of a zener diode in the forward-bias which are similar to the 

characteristics of a p-n junction. In the second part of the experiment, we will plot 

voltage-current characteristics in the revere direction. In the third part of the 

experiment we will show how a zener diode is used as a voltage regulator. 

 

In the next unit we will perform experiments on transistor characteristics. A 

transistor is regarded as a combination of the two p-n junction diodes in different 

ways. 
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10.2 Objectives 

 

After doing this experiment, you should be able to: 

 

 draw the voltage-current characteristic curves of a given zener diode in 

forward and reverse biases 

 

 determine whether zener diode is made up of silicon and / or germanium 

from its voltage-ampere characteristic curves 

 

 measure the effects of line and load change on the output of a zener diode 

 

 construct a zener voltage regulator and experimentally determine the range 

over which the zener maintains a constant output voltage. 

 

Apparatus 
Zener diode BZ-146, BZ-147, CZ-6, IN-753, IN-3020 or any other zener diode (1 

W, 10 V -20 V), a variable regulated a.c./d.c. power supply (0-30 V), transformer 

(12-0-12 Volt), capacitor (0-100  F-25 Volt), ammeter (0-10  A, 0-50  A, 0-

100  A, 0-30 mA, 0-50 mA, 0-100 mA), voltmeter (0-10 V, 0-25 V, 0-50 V), 

resistances (0-1 KO, 0-10 K , 0- 25 K , 0-100 K      ½ W and 1 W), 

multimeter and connecting wires, soldering wire, soldering paste and solder (20 

W) etc. 

 

10.3     Introductory Information 
 

You have read about semi-conductors in your school science courses. You have 

also read about p-type and n-type semi-conductors. Let us now recapitulate what 

we know about semiconductors. If you have read about semiconductors and p-n 

junction in your earlier classes then skip Sections 10.3.1 to 10.3.8. Let us now 

recapitulate what we know about semi-conductors. 

 

A semi-conductor is a material whose electrical conductivity lies between that of a 

metal and an insulator. Germanium and silicon are the most commonly used semi-

conductors. A pure semi-conductor is also known as intrinsic semi-conductor. 

They have crystalline structure. 

 

The conductivity of a pure-semiconductor can be increased by adding minute 

quantities (1 part in 10
8
) of certain impurities to the semi-conducting crystal. This 

process of adding controlled quantities of certain impurities to the pure crystals of 

germanium and silicon is known as doping. 
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10.3.1   Electronic Configuration of Germanium and Silicon 

 

A pure atom of germanium has 32 electrons. Out of 32 electrons, 28 are tightly 

bound to the nucleus, whereas the remaining four revolve in the outermost orbit. 

The electrons in the outermost orbit are called valance electrons. The electronic 

configuration is shown in Fig. 10.la. 

 

 
 

Fig. 10.1. (a) Electronic configuration of germanium 

 

Silicon has 14 electrons. The electronic configuration of silicon is shown in Fig. 

10.1(b) 

 
 

Fig. 10.l(b) Electronic configuration of silicon 

 

10.3.2    Crystal Lattice of Silicon (or Germanium) 
 

In a crystal lattice, each atom shares its outermost or valence electrons with those 

of the neighbouring atom forming what are known as an electron-pairs or covalent 

bonds between atoms as shown in Fig. 10.2. 
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Fig. 10.2 Crystal lattice of silicon (or germanium) 

 

10.3.3    n-Type Semi-conductor 
 

When silicon (or germanium) in its pure form is doped with a pentavalent (five 

electrons in the outermost orbit) atom like arsenic or antimony, four out of its five 

valence electrons form covalent bonds with the valence electrons of four silicon 

atoms, but the fifth valence electron of arsenic remains unattached and becomes a 

free electron. It is shown in Fig. 10.3. 
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Fig. 10.3 N-Type Semiconductor 

 

Thus, when a silicon (or germanium) crystal is doped with arsenic (or antimony) it 

develops an excess of free electron and is called an n-type semi-conductor. Such 

types of impurities are known as donor impurities. 

 

10.2.4     p-Type Semi-conductor 

 

If silicon (or germanium) is doped with a trivalent (three electrons in the 

outermost shell) atom like indium or aluminium etc., the three valence electrons of 

impurity atom, form covalent bonds with the valence electrons of three silicon 

atoms, There is a deficiency of one electron or an electron vacancy exists in the 

crystal lattice of silicon. This deficiency or absence of an electron is called a hole. 

It is shown in Fig. 10.4. 

 

 
 

Fig. 10.4 p-Type Semi-conductor 

 

The semi-conductor so formed has a deficiency of electrons or an excess of holes 

and is called a P-type semi -conductor. Such types of impurities are known as 

acceptor impurities because they can accept an electron from silicon atoms. 

 

10.2.5     Current through Semi-conductor 

 

You have learnt that an n-type semi-conductor has an excess of free electrons. 

These free electrons act as current carriers when an electric field or a voltage 

difference is applied across an arsenic doped silicon crystal. 

 

In the case of p-type semi-conductors, the holes indicate the absence of electrons. 

These holes behave like positively charged particles when an electric field is 
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applied across the crystal, Under the influence of the field, an electron from a 

neighbouring electron pair bond breaks loose and falls into a hole towards the 

positive pole of the battery. This creates a new hole that can accept another 

electron which has broken loose from its electron pair-bond. This process 

continues and constitutes a movement of electrons towards the positive pole of the 

battery and the movement of holes towards the negative terminal of the battery. As 

the holes reach the negative terminal, electrons from this terminal enter the crystal 

and neutralise these holes. At the same time, the loosely held electrons that filled 

the holes are pulled away from the positive terminal thereby creating new holes. 

This movement of holes in one direction and the movement of electrons in the 

opposite direction, constitute a current flow in the same direction. Thus in a semi-

conductor, the current conduction is the result of the movement of holes inside the 

crystal and the movement of electrons through the External circuit and the battery. 

The current flow in pure, n-type and p-type semi-conductors (silicon) is shown in 

Fig. 10.5. 

 

• Electrons 
 

• Hole (Dangling bond) 

 

• A hole that has captured an electron 
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Fig. 10.5 Current through a Semi-conductor 
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10.3.6   p-n  Junction 

 

A p-n Junction diode is formed by combining a p-type semi-conductor with an n-

type semiconductor. The p-n junction so formed exhibits the interesting and useful 

property of offering a low resistance to current flow in one direction. The p-n 

junction has the same rectifying characteristics as a vacuum diode. A p-n junction 

cannot be formed by simply putting together a p-type and an n-type semi-

conductor. The construction of a p-n junction diode can be done as follows. Take a 

dot of indium and fuse it on a germanium wafer of, n type at a suitably high 

temperature. This produces a p-type germanium immediately below the surface 

resulting in the formation of a p-n type junction between the p-region and the body 

of the n-type germanium. It is shown in Fig. 10.6a. The junction is formed because 

of the concentration gradient. Then holes from the p-side diffuse into the n-side 

and recombine with free electrons. Similarly, the electrons from the n-type diffuse 

to the p-side and recombine with the holes. Such an exchange of mobile carriers 

occurs mainly in a narrow region around the junction. This region is called the 

depletion layer or space-charge layer, as it becomes depleted of the free charge 

carriers. It leaves behind the unneutralised space charge due to positive ions on the 

n-side and negative ions on the p-side as shown in Fig. 10.6b. Such a space charge 

causes an electric field in the depletion region and a potential difference called the 

junction barrier potential develops across the p-n junction, making the p-side 

negative with respect to n -side. This barrier potential cannot be measured by a 

voltmeter. The barrier potential opposes further migration of electron across the 

junction so that a state of equilibrium is reached. In this state, the region near the 

junction is relatively clear of holes and free electrons as a result of the initial 

migration. This is called a depletion layer and is typically less than one micron 

wide. 
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Fig. 10.6a: A p-n Junction 

 

Fig. I0.6.b: Depletion layer in a p-n Junction 

 

10.2.7     p-n Junction in Forward Bias 

A p-n Junction is said to be forward biased if an external battery is connected 

across the junction so that the polarity of the external battery is opposite to the 

barrier potential. It is shown in Fig. 10.7. This lowers the barrier potential and 

allows an easy flow of current through the diode explained as follows: 
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Fig. 10.7 A p-n Junction in Forward Bias 

 

Free electrons from the negative terminal of the battery repel the free electrons in 

the n-type material. These free electrons move towards the p-n junction. The holes 

in the p-type material are also repelled by the positive terminal of the battery and 

move towards the junction. At the junction the free electrons and holes combine 

and are lost in the process. However, the current carriers lost in these 

combinations are replenished by new current carriers, resulting from the 

separation of electron hole pairs. The free electrons produced in the p-type 

material are attracted by the positive terminal of the battery and flow in the 

external circuit as shown in Fig. 10.7. This is a continuous process and constitutes 

a current flow by electrons in the external circuit but inside the junction, both 

holes and electrons carry currents. 

 

10.3.8     p-n Junction in Reverse Bias 
 

A p-n junction is said to be reverse biased when the external voltage or battery 

connected across it aids the barrier potential as shown in Fig. 10.8. Since the 

barrier potential is actually raised by the reverse-bias, there is practically no flow 

of current through the diodes. 

 

 
 

Fig. 10.8 Reverse-Bias 

 

The free electrons in the n-type material are attracted away from the p-n junction 

and the hole in the p-type material are similarly attracted away from p-n junction 

by the negative terminal of the battery and there are practically no holes or 

electron carriers left in the neighbourhood of the p-n junction. In this case the 

current flow stops completely. 
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10.3.9      Zener Diode 

 

Zener diode is a special type of a p-n junction diode which operates in the reverse-

bias condition. It is manufactured by careful adjustment of the concentration of 

acceptor and donor impurity atoms near the junction. Unique reverse-bias current 

and voltage characteristics provide completely different applications from those of 

the crystal diode. When the diode is forward- biased, it acts like a closed switch 

and forward current increases with an increase in applied voltage. Forward current 

is then limited by the parameter in the circuit. When the zener diode is reverse 

biased, and a small reverse current zI  flows in the circuit. It is called the saturation 

current. It is relatively constant despite an increase in reverse bias, until the zener 

breakdown voltage zV  reached. After zener breakdown voltage zV  reverse current 

starts rising rapidly. A zener for this reason is used as a voltage regulator at a 

predetermined value. This value depends on the choice of material conductivity. In 

zener diode, breakdown occurs at reverse bias from about three volt to several 

hundred volts. But higher value zener diodes are rare because they are very 

expensive. 

 

SAQ 1 

Explain why an ordinary diode cannot be used as a Zener diode? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

In zener diode which are operated below 6 Volt, the breakdown of the junction is 

due to zener effect. In this mechanism, the breakdown is initiated through a direct 

rupture of covalent bonds owing to the existence of strong electric field. In the 

diodes which are operated between several volts to a few hundred volts, the 

breakdown is due to both the zener effect and the avalanche breakdown. 

 

SAQ 2 

What do you mean by zener breakdown voltage? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

In avalanche breakdown, the minority charge carriers (holes in n-type and 

electrons in p-type) acquire sufficient energy from the applied reverse voltage to 

produce new carriers by removing valence electrons from the covalent bonds. The 
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new carriers in turn produce additional carriers and the process   multiplies to give 

a large reverse current. The diode is then said to be in the region of avalanche 

breakdown. However, in general, all semi-conductor diodes, which are operated 

in the breakdown region of their reverse characteristics – whether zener 

breakdown or avalanche breakdown are known as zener diodes. The circuit 

symbol of a zener diode is shown in Fig. 10.9. The symbol is similar to that of an 

ordinary diode with the change that the bar is replaced by the letter Z. 

 

 
 

Fig. 10.9  Symbol of a zener diode 

SAQ 3 
How many breakdowns are there in a zener diode? What are they? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

The breakdown voltage of a zener diode is limited by an external circuit to a 

suitable value such that the power dissipation across the junction is within its 

power handling capacity. Zener breakdown need not result in the destruction of 

the diode. As long as current through the diode is limited by the external circuit to 

a level within its power-handling capabilities, the diode functions normally. 

Moreover by reducing reverse bias below the zener voltage, the diode can be 

brought out of its breakdown level and restored to the saturation current level. This 

process of switching the diode between its zener and non zener current states can 

be repeated again and again without damaging it. If the limit of power-handling 

capacity is exceeded, then a large current may cause damage to the diode. 

 

Zener diodes are used as voltage regulators and as voltage reference standards. 
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10.3.10     Testing of a p-n Junction 

 

The property of a junction is that it represents a low resistance in forward bias and 

a high resistance in reverse bias. This property can be used to test a junction with 

the help of a multimeter. When a diode is tested with a multimeter then it should 

be kept in the range of 10k . When a multimeter is used as an ohm-meter, then it 

has a battery connected inside the meter. When a diode is connected across the 

testing lead of the multimeter, then it is conducting either in forward direction or 

reverse direction, depending upon the negative or the positive terminal connected 

to the cathode lead of the junction. Now reverse the connection of the junction. 

Check whether junction is conducting in reverse or forward direction. On 

changing the direction (i.e., the terminal of the diode), if the conduction changes 

from reverse to forward or forward to reverse, then you can say that the diode is in 

proper working condition. It is shown in Fig. 10.10. 

 

 

 
 

Fig. 10.10 Testing of a diode 

 

If the multimeter shows direct continuity or conduction of the junction, does not 

change by changing the polarity of the terminals. Then the junction is said to be 

defective. So, with the help of this, we can detect whether a p-n junction diode is 

in proper working condition or not. The testing is shown in Fig. 10.11. 
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Fig. 10.11 Testing of a p-n   Junction 

This procedure can also be used to identify the leads of an unmarked junction 

diode or when markings on the diode are not clearly visible. For this the polarity 

of the multimeter is marked on it or it can be checked with a d.c. voltmeter or 

another multimeter. Then the lead of the diode which shows low resistance when 

connected to the negative lead of the meter is cathode lead, and the other one is 

anode lead. It is shown in Fig. 10.12. 
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Fig. 10.12 Identification of anode and cathode in a diode 

 

It is found that in some multimeters the terminal marked negative (-) on the meter 

is actually connected to the positive terminal of the battery inside. That is why you 

are instructed to know the polarity of multimeter with the help of a voltmeter. 

 

10.4  Voltage-Current Characteristics of a Zener Diode 

 

 
 

Fig. 10.13 Zener diode in forward and reverse direction 

 

Procedure: Test whether the zener diode is defective or in proper working 

condition with the above mentioned procedure in Section 10.3.10. 

 

Solder two connecting leads on each terminal of the zener diode and again test it. 

Sometimes the diode bums due to overheating when soldering the connecting lead. 

Now make the circuit connection as shown in Fig. 10.13. Connect the cathode of 

the zener diode to negative terminal of the battery and anode to the positive 

terminal of the battery. Now the circuit is ready for forward bias. 
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In this circuit, the power supply is of the range of 0-30 V. Here Visa voltmeter of 

range 0-IOOmV or 0-20 V and A is a milliammeter of range 0-50 mA or 0-100mA 

depending on the requirement. R is a decade resistance, whose value is calculated 

as follows: 

 

Calculation of the value of R. 

 

The value of R depends on zener and the requirement of the circuit. Consider that a 

constant 10 V (± 0.7) output outV  is required for a load whose current LI  may vary 

from 5 to 30 mA. Power is supplied to the circuit from a constant 30 V dc source. 

It is required to design a regulating circuit which will achieve this. 

 

Let us consider that Fig. 10.13 will meet the specification of the problem. We can 

select a zener diode whose zV =10 V. Assume that such a diode is available which 

will pass a regulating current zI  such that the total circuit current TI  remains 

constant at 30 mA over the range of the load current variation in our problem. 

Applying Kirchhoff’s voltage law, we can write 

 
 outTAA VRIV   

and 

T

outAA

I

VV
R


 R = - 

Substituting the value of VAA = 30 V, outV  = 10 V and 31030 TI A, we get 

 

 
33 1030

20

1030

1030
 





R  

 

     = 666   

 

To determine the wattage of R, note that there is a 10-V drop across it. Therefore, 

 

 Wattage = 
666

1022


R

V

6

1
 W 

 

Increase the voltage in step of 0.1 V and measure the diode current. Remember not 

to exceed the maximum allowed forward current in the diode. 

 

Record the reading Observation Table 10.1. 
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Observation Table 10.1 Forward - direction (bias) 

 

S. No. 

 

Voltmeter 

Reading in 

Volts (V) 

 

 

Current Reading in milliampere 

Forward 

resistance 

in ohms 

 

 

 

 

 

when 

increasing 

 

when 

decreasing 

 

Mean 

 

 

 

-1. 

 

0.0 

 

 

 

 

 

 

 

 

 

2. 

 

0.1 

 

 

 

 

 

 

 

 

 

3. 

 

0.2 

 

 

 

 

 

 

 

 

 

4. 

 

 

 

 

 

 

 

 

 

 

 

5. 

. 

. 

. 

. 

. 

 

 

 

 

 

 

 

 

 

 

 

Now plot the data on a graph paper. 

 

Now change the direction of the current with the help of reversing key as 

shown in Fig. 10.13. After changing the direction of current, the zener 

diode is in reverse direction of current, (i.e., the zener diode is in reverse 

bias). Now change the voltmeter of range (0-2 V) to a voltmeter of range 

(0-30V) and milliammeter to micro-ammeter of range (0-100  A). Increase 

the voltage in steps of .5 V and measure the current. Record the data in 

observation table 10.2. 
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Observation Table 10.2 Reverse Bias 

 

S. No. 

 

Voltmeter 

Reading in 

Volts (V) 

 

 

Current Reading in milliampere 

Forward 

resistance 

in ohms 

 

 

 

 

 

when 

increasing 

 

when 

decreasing 

 

Mean 

 

 

 

-1. 

 

0.0 

 

 

 

 

 

 

 

 

 

2. 

 

0.1 

 

 

 

 

 

 

 

 

 

3. 

 

0.2 

 

 

 

 

 

 

 

 

 

4. 

 

 

 

 

 

 

 

 

 

 

 

5. 

. 

. 

. 

. 

. 

 

 

 

 

 

 

 

 

 

 

 

Now plot the data on a graph paper. 

 

Discuss your results on the basis of the above graphs in the space given below: 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

 

SAQ 4 

In the circuit of Fig. (10.13), the following parameters are given 

 

E = 12.5V   V2 = 5.6V,   RL = 500, and RS = 100  

 

Calculate 

(i)      What is the current through Rs? 

 

(ii) What is the current through the Zener diode? 
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(iii)    What power is dissipated in the diode and RL ? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

SAQ 5 

Observe the forward-characteristic curve of the diode carefully. You will find that 

the current starts flowing in the diode only when the applied voltage is more than 

0.6 V in the case of silicon diode and 0.25 volt in case of germanium diode. 

Explain the reason? 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
 

You may wonder how the above voltage can be used to find whether the diode is 

made of germanium or of silicon. 

 

10.5  Zener Diode asa Voltage Regulator 

 

Procedure: 
For voltage regulation, the zener diode is used in the reverse bias. The circuit 

arrangements are shown in Fig, 10.14, RL is the load across which the voltage is to 

be stabilised. The voltmeter 1V  measures the supply voltage and the voltmeter 2V  

measures the voltage across the load RL. 
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Fig. 10.14 Zener diode as a voltage regulator 

 

Now set the input voltage such that it is in the neighbourhood of 10% of the 

breakdown voltage. Close the switch S and measure the voltage across the load 

resistance RL. 

 

Slowly increase the input voltage in steps of 0.2 Volt and measure the voltage 

across the load resistance. Record your data in Observation Table 10.3.a. 

 

Observation Table 10.3a: Zener as Voltage Regulator 

 

S. No. 

 

Input Voltage ( 1V ) 

 

Load Voltage ( 2V ) 

 

Remarks if any 

 

1. 

 

 

 

 

 

 

 

2. 

 

 

 

 

 

 

 

3. 

 

 

 

 

 

 

 

4. 

 

 

 

 

 

 

 

5. 

 

 

 

 

 

 

 

6. 

 

 

 

 

 

 

 

7. 

. 

. 

. 

. 

 

 

 

 

 

 

 

Now plot a graph between input voltage and the voltage across the load resistance. 
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In the second part of this experiment, change the value of load resistance and 

measure the, corresponding voltage across the load resistance. Record your data in 

Observation Table No. 10.3.b. 

 

Observation Table 10.3.b: Zener as Voltage Regulator 

 

S. NO. 

 

Load Resistance 

 

Output Voltage 

 

Remarks if any 

 

1 

 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

5 

 

 

 

 

 

 

 

6    

 

7 

 

 . 

 . 

 . 

 

 

 

 

 

 

 

 

Now, plot a graph between load resistance and output voltage. 

 

Explain your results on the basis of your data.  

 

Results: 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
 

If you have enough time, then remove the zener diode from the circuit and repeat 

experiment No. 10.5. 
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Now compare the result of experiment No. 10.5 with and without zener diode on a 

separate graph paper. Draw conclusions on the basis of the data of these two 

experiments. 

 

Conclusion: 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
 

SAQ 6 
When the load resistance is changed from 100 ohm to 1 kilo-ohm, the load voltage 

changes only slightly. Explain why this is important in a voltage regulation. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
 

SAQ  7 
When the line voltage was changed from 15 V to 25 V, the load voltage changed 

by a much 

smaller amount. Explain the importance. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
 

SAQ 8 

Explain the operation of the regulator circuit of Fig. 10.14. 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
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EXPERIMENT 11 

 

A STUDY OF TRANSISTOR CHARACTERISTICS 

 

Structure 

 

11.1     Introduction 

11.2 Objectives 

11.3     A Junction Transistor Revisited 

11.4 Transistor Characteristics in CE Configuration  

Input Characteristics  

Output Characteristics  

Transfer Characteristics 

 

11.1   Introduction 

 

In the preceding experiment, you plotted the characteristics of a p-n diode. A 

diode permits current to pass through it in only one direction. That is why its 

applications are limited mostly to rectification and detection. A more useful 

semiconductor device is a junction transistor. It can be looked upon as two diodes 

connected back to back. Transistors find so many and so varied uses in our daily 

life—ranging from gas lighter and toys to amplifiers, radio-sets and TV-video 

games. In fact, their use is consistently increasing. In the form of switching device, 

these are used to regulate vehicular traffic on our roads. They form the key 

elements in computers, space vehicles, satellites, communication and power 

systems. In a sense, transistors have brought about a technological revolution. It is 

therefore important to know how a transistor works. 

 

The practical use of a semiconductor device in electronic circuits depends on the 

current and voltage (I-V) relationship. Such a relationship depicted graphically 

constitutes what we call I-V characteristics. These characteristics give vital 

information to a circuit designer as well as a technician. Therefore, the first thing 

of interest is: How does a transistor respond to voltage applied to it? Is the 

response linear? In your school you may have learnt that for a resistor, the 

characteristic curve (I-V plot) is a straight line passing through the origin. This is 

manifestation of ohm's law. Do you get a similar curve for p-n junction or zener 

diode? In this experiment, you wilt plot characteristic curves for a transistor in the 
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common-emitter mode and compute current gain, input resistance and output 

admittance. 

 

11.2 Objectives 
 

After performing this experiment, you will be able to: 

 

 study the variation of the base current with potential difference between the 

base and the emitter (input characteristics) 

 study the variation of collector current with potential difference between 

the collector and the emitter (output characteristics) 

 examine the relationship between the collector current and the base current 

in the common-emitter configuration (transfer characteristics) 

 compute current gain, input resistance and output admittance. 

 

11.3  A Junction Transistor Revisited 
 

The junction transistor is a three terminal device. These terminals are connected to 

layers which are in the p-n-p or in the n-p-n configuration (Fig. 11.1). The first 

letter designates the emitter (E), the middle letter designates the base (B) and the 

last letter designates collector (C). You will note that (i) the base is sandwiched 

between the emitter and the collector, (ii) the emitter and the collector are of the 

same type ((p or n) of material, and (iii) the base and the emitter (or collector) are 

of different materials. Does this mean that we can interchange the collector and the 

emitter at will? We cannot do so because the collector and the emitter differ in 

their levels of doping apart from geometry. (The doping level in the emitter is 

more than that in the collector.) 

 

 
Fig. 11.1: n-p-n and p-n-p transistors 

 

You may now ask: How is a transistor symbolised in a circuit? The circuit 

symbols for p-n-p and n-p-n transistors are shown in Fig. 11.2. The element with 

the arrow is the emitter and its symmetrical counterpart is the collector. 
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In the p-n-p transistor, the emitter arrow points to the base whereas in the n-p-n 

transistor the arrow points away from the base. The arrow mark signifies the 

direction of the conventional current when the emitter junction is forward biased. 

 

 
 

Fig. 11.2 :(a) Circuit symbol for a p-n-p transistor (b) Circuit symbol for an n-

p-n transistor 

 

 

Now you may like to know: How to connect a transistor in a circuit? A transistor 

can be connected in a circuit in one of the three ways: 

 

(i)  when emitter is common to both input and output circuits – CE 

configuration 

 

(ii)  when base is common to both input and output circuits – CB configuration 

 

(iii)  when collector is common to both input and output circuits – CC 

configuration. 

When the tail of the arrow is connected to the positive terminal of the battery, the emitter 

base junction is said to be forward biased. 

Semiconductor diodes in general and transistors in particular are designated two letters 
followed by a serial number. The first letter gives an indication of the material: A is used for 

devices using material with a band gap of 0.6 eV to 1.0 eV such as germanium. B is used for 

devices using material with a band gap of 1.0 eV and 1.3 eV such as silicon. The second 

letter indicates the main application: A is for detection diodes, B for variable capacitance 
diodes, C for transistors for audio frequency applications, D for power transistors, E for 

tunnel diodes, F for transistors for radio frequency applications, Y for rectifying diodes, and 

Z to denote voltage reference or Zener diode. The serial number consists of digits. For 
example, AC125 represents germanium transistor for AF application and BC107 represents 

silicon transistor for AF application. How will you interpret AD149, BY127 and BZ148? The 

first of these is a germanium power transistor, the second a silicon rectifier diode and the 
last one is a silicon Zener diode. 
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In each of these configurations, the transistor characteristics are unique. The CE 

configuration is used most widely because it provides voltage, current and power 

gain. In the CB configuration, the transistor can be used as a constant current 

source while the – CC configuration is frequently used in impedance matching. 

Does this mean that the CE configuration is superior? 

 

For each configuration, we can plot three different characteristics. These are: (a) 

characteristic between input quantities called the input characteristics, (b) 

characteristic between output quantities called the output characteristic and (c) 

characteristic between an input quantity and an output quantity called the transfer 

characteristic. Table 11.1 gives various quantities related to each of these 

characteristics in all the three configurations and the transistor constants of 

interest. 

 

Table 11.1: Related quantities in the characteristics of a transistor 

 

 
 

As mentioned earlier, here we wish you to work in the CE configuration. The 

apparatus required for this purpose is listed below. 

 

Apparatus 

 

Two low range variable dc power supply (0-15V), a multirange microammeter, two 
multirange milliammeters, two multirange voltmeters, a multimeter, a BC107 npn 

transistor (or any other given transistor) with a socket, two 2.5 K /2W potentiometers, 

and leads (or a transistor characteristics kit with these provisions.) 
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11.3 Transistor Characteristics in Ce Configuration 
 

First of all you should identify the base, emitter and collector. Then you should 

check that your transistor is in working order. To do so you can measure the 

resistance between the emitter and base, and the collector and base using a 

multimeter following the steps given in Appendix-A. Having tested your 

transistor, you should use the following procedure to be able to plot transistor 

characteristics of interest. 

 

11.3.1   Input Characteristics 

 

 
 

Fig. 11.3: Circuit diagram for investigating CE characteristics 

 

(1)    Make the connections as shown in Fig. 11.3. BBV  and CCV  are the base and 

collector supply batteries (0-15V). 1R  and 2R  are 2.5 k /2W 

potentiometers, 1V  and V2 are multirange voltmeters, 1A , and A2 are 

multirange micro and milliammeter, respectively and R is a variable 

resistance. 

 

In case a (Moraj) transistor kit is given to you, you should ensure that the 

basic circuit given in Fig. 11.3 is in operation. If you are given an n-p-n 

transistor, you should reverse the polarities of batteries and various meters. 

By means of potentiometers 1R  and R2 you can adjust the base current and 

the collector current, respectively. 

 

(2)     Keep collector to emitter voltage (VCE) at zero volt. 

 

(3)    Choose the range 0-1 V for base to emitter voltage (VBE). 

 

(4)     Adjust the base current to a low value say 20  A. Vary it in steps of 20 

 A up to 200  A. We expect that VBE will also change. In each case, 

measure the base to emitter voltage. Record your readings in Observation 
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Table 11.1. In case the base to emitter voltage does not change, check the 

circuit again. If you cannot locate the fault, seek help from your counsellor. 

You may be having a faulty component or transistor kit. 

 

Observation Table 11.1: Input characteristics 

 

Least count of microammeter  =  ....…  A 

 

Least count of voltmeter  =  ...…..V 

 

S. No. 

 
IB(  A) 

 

Base to emitter voltage VBE (V) 

 

VCE = 0.0 V VCE =2.0V 

1. 

 

20 

 

 

 

 

 2. 

 

40 

 

 

 

 

 3. 

 

60 

 

 

 

 

 4. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

.. 

200 

 

 

 

 

 

(5)    Now, you can set VCE = 2V and repeat steps 3 and 4. How does VBE change 

now? Very frequently you will observe that while changing ranges on 

current-meters, readings may not coincide. This discrepancy arises because 

of the difference in meter resistance when ranges are changed. Therefore, 

while changing ranges, it may be necessary to-readjust the controls in the 

affected circuit to offset changes in meter-resistance. Another factor that 

you should consider is the coupling between the collector and the base 

circuits. It may be necessary to readjust the base current control when 

voltage is varied to hold IB at a fixed value. 

 

Plot IB along the x-axis and VBE along the y-axis for each value of VCE. Draw best-

fit curves. These are referred to as input characteristics. Select a suitable point in 

the linear portion of the curve and compute the slope at that point. This will give 

you the input resistance defined as 
B

BE
ie

I

V
h




 , where BEV  and BI  denote small 

changes in base to emitter voltage and base current, respectively. 

 

Result: The input resistance ieh  for the given transistor is ................. Q 
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SAQ 1 

Plot BI  along the y-axis and VBE along the x-axis. What is the nature of the graph? 

 

11.3.2   Output Characteristics 

 

1.    Fix the base current BI  at 20  A by adjusting 1R  and R . 

2.    Vary the collector to emitter voltage VCE by varying R2 from 0 to 10 V in 

steps of 0.5 V. 

3.  Note the collector current CI  in each case and record it in Observation  

 

Table 11.2. 

4.  Repeat steps 2 and 3 for BI = 40  A, 60  A, 80  A and 100  A. 

5.  Plot VCE versus CI  for different values of BI . Which Quantity will you plot 

along the x-axis? Draw smooth curves for each BI . These are referred to as 

output characteristics. 

Compute output admittance )( oeh  using the relation 
CE

C
oe

V

I
h




 . 

 

Observation Table 11.2: Output characteristics 

 

Least count of voltmeter  = ......…. V 

 

Least count of milliammeter  = ...........  A 

 

S. No. 

 

VCE(V) 

 
Collector current CI  (mA) 

 

BI 20  A BI 20  A BI 20  A BI 20  A BI 20  A 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result: The output admittance for the given transistor is = ……….. 
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11.3.3   Transfer Characteristics 
 

1.    Set VCE at 5.0V 

2.     Set the base current BI  at 20  A by adjusting 1R  and R . Measure the 

collector current CI . Enter your reading in Observation Table 11 .3. 

3.     Change the base current to 40  A. Do you observe any change in CEV ? If 

yes, then you should adjust R2 to restore VCE at 5.0V. Again note the 

collector current. 

4.   Repeat your observations for BI = 60  A, 50  A and 100  A, keeping CEV  

constant at 5.0 V. Record your readings in Observation Table 11. 3. 

 

5.    Next fix CEV  at 6.0V and repeat steps 2 - 4. 

6.    If you have time, you may repeat the above procedure by keeping CEV  at 

4.0V. 

7.    Now plot BI  along the x-axis and CI  along the y-axis for all values of CEV . 

 

Observation Table 11.3: Transfer characteristics 

 

Least count of micrometer  = ............... uA 

 

Least count of voltmeter  = ..........…. V 

 

S. No. 

 
BI (  A) 

 

Collector current CI  (mA) 

 

CEV = 5.0 V CEV = 6.0 V 

1 

 

20 

 

 

 

 

 2 

 

40 

 

 

 

 

 3 

.. 

.. 

.. 

.. 

.. 

60 

.. 

.. 

.. 

.. 

.. 

 

 

 

 

.. 

 

200 

 

 

 

 

 

 

 

Draw a smooth best fit curve through the observed points. This curve is referred to 

as transfer characteristic curve. Compute current amplification factor   using the 

relation 
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B

C

I

I




  

 

Result: The current amplification factor for the given transistor is = ………….. 

 

SAQ 2 

 

What other equipment would you require to demonstrate the use of a transistor as 

amplifier? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 

 

SAQ 3 

Draw a circuit diagram to show amplifier/switching action of a transistor. 
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APPENDIX-A 
 

1.     Measurement of resistance by a multimeter 
Insert the black and red cords in the sockets marked 'common' and (  V 

A') respectively. Place the selector in the position for measurement of 

resistance. This is normally available in three scales (   10), (  100) and (  

1000). Now keep the test ends of the cord apart- In this position, the 

resistance placed across it is infinite. The pointer must indicate   in the 

topmost scale (i.e. the ohm-scale). If it does not indicate so, bring the 

pointer to the  -mark by turning the infinity adjustment knob. (If your 

multimeter does not have the infinity adjuster, the infinity-error, when 

present, cannot be corrected.) Now make the zero-adjustment, which is very 

vital. For this, make the test ends of the cord to touch. The pointer should 

indicate zero for the selector in each scale. If it does not do so, bring the 

pointer to zero-mark by turning the zero-adjustment knob. The multimeter 

is now ready for the measurement of resistance. 

 

Now place the selector in the position (   1). Connect the test ends of the 

cords across the terminals of the resistance to be measured. Note the 

reading of the position of the pointer corresponding to the ohm-scale. If the 

pointer stops at 50, the resistance is 50 . If the pointer overshoots the 

scale, place the selector at (   10) and repeat the above procedure. If even 

now the pointer overshoots the scale, you should place the selector at (   

100) or (   1000) marks. In these cases you will have to multiply the 

observed reading by 10 or 100 or 1000, depending on the position of the 

selector. 

 

2. Identifying emitter, base and collector 
Turn the transistor upside down. The three terminals are accommodated 

GMAIL.COMroughly within a semi-circle (Fig. A.1). The emitter (E) and 

the collector (C) are diametrically opposite. The collector is near the notch 

(N). The third junction is obviously the base. 

 

 
 

The emitter-base and collector-base are two separate p-n junctions. So you can 

determine their types by measuring the resistance between the ends of these diodes 

using a multimeter. For this, the multimeter has to be kept in the resistance 
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measurement mode. In this mode, a battery placed inside the multimeter is 

operative. The 'common' terminal is the positive end of the battery, whereas the 

(VA) terminal is its negative end. Now let us indicate the two ends of the diode 

by '1' and '2'. Measure the resistance between these ends by connecting 1 with the 

black cord and 2 with the red cord. Repeat the measurement by interchanging 1 

and 2. The measured resistance will not be same. The arrangement for which the 

resistance is smaller will be the case of connecting the diode in forward bias. 

Corresponding to that, the end connected to the black cord will be the p-side. 
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