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INTRODUCTION 
 
Solid state physics is a very wide field, with many branches. It is concerned 
with the physical properties of solids, particularly the special properties 
exhibited by atoms and molecules because of their association in the solid 
phase. The existence of powerful theoretical methods and concepts applicable 
to a wide range of problems has been an important unifying influence in the 
field 
 
Learning solid state physics requires a certain degree of maturity, since it 
involves tying together diverse concepts from many areas of physics. The 
objective is to understand, in a basic way, how solid materials behave. To do 
this, requires a good physical and mathematical background. One definition of 
solid state physics is that it is the study of the physical (e.g. the electrical, 
dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic 
physical laws. In one sense, solid-state physics is more like chemistry than 
some other branches of physics because it focuses on common properties of 
large classes of materials. It is typical that solid-state physics emphasises how 
physical properties link to the electronic structure. The rapid rise of interest in 
solid state physics in recent years has suddenly presented universities with the 
problem of offering adequate instruction in the subject. For this reason, there 
should be an introductory or survey course followed by, as a minimum 
program for graduate students intending to do research in the field, a course in 
x-ray crystallography and a course in the quantum theory of solids. These two 
subjects are large, important, and well-developed; it is not possible to deal 
with them adequately in an introductory course. 
 
COURSE AIMS 
 
The course aims is to provide an understanding of solid state physics.  
 
COURSE OBJECTIVES 
 
To achieve the aim set out, the course has a set of objectives. Each unit has 
specific objectives which are included at the beginning of the unit. You should read 
these objectives before you study the unit. Below are the comprehensive objectives 
of the course as a whole. By meeting these objectives, you should have achieved 
the aim of the course as a whole. After going through the course, you should be 
able to: 
 
 Explain crystal structure of solids 
 Explain crystal binding 
 Explain X-ray diffraction in crystals 
 Explain thermal properties of the crystal lattice 
 Explain elastic properties of crystals 
 Explain lattice vibration 
 Explain the concept of free-electron theory of metals 
 Understand energy bands in crystals 
 Understand  semiconductors 
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 Understand superconductors 
 
WHAT YOU WILL LEARN IN THIS COURSE 
 
The course consists of 21 units and a course guide. This course guide tells you briefly 
what the course is about, what course materials you will be using and how you can 
work your' with these, materials. In addition, it advocates some general guidelines for 
the amount of time you are likely to spend on each unit of the course in order to 
complete it successfully. 
 
It gives you guidance in respect of your Tutor-Marked Assignment which will 
be made available in the assignment file. There will be regular tutorial classes 
that are related to the course. It is advisable for, you to attend these tutorial sessions. 
The course will prepare you for the challenges you will meet in the field of solid state 
physics. 
 
COURSE MATERIALS 
 
The main components of the course are: 
 
1. The Course Guide 
2. Study Units 
3. References/Further Reading 
4. Assignments 
5. Presentation Schedule 
 
STUDY UNITS 
 
The study units in this course are as follows: 
 
Module 1 Property Of Crystal 
 
Unit 1  Crystal Geometry 
Unit 2  Crystal Classification 
Unit 3  Simple Lattices 
Unit 4  Crystal Diffraction (I) 
Unit 5  Crystal Diffraction (II)  
Unit 6  Experimental Crystal Structure Determination 
 
  
Module 2 Crystal Elastic Constants And Vibrations 
 
Unit 1  Elastic Constants of Crystals (I) 
Unit 2  Elastic Constants of Crystals (II) 
Unit 3  Crystals Binding 
Unit 4  Lattice Vibration 
Unit 5  Thermal Properties 
 



 

 vi

Module 3 Free Electron Fermi Gas 
 
Unit 1  Free Electron Theory of Metals 
Unit 2  Electronic Transfer 
Unit 3  Energy Band Theory  
Unit 4  Electron Dynamics 
Unit 5  Fermi Surfaces 
 
Module 4 Semiconductors and Superconductors 
 
Unit 1  Structure and Bonding in Semiconductors 
Unit 2  Semiconductor Statistics 
Unit 3  Electrical Conductivity and Real Semiconductors 
Unit 4  Super Conductivity (I): The Basic Phenomenon 
Unit 5  Superconductivity (II): Experiments and Theories   
 
Module 1 which consists of six units, deals with crystal structures and their 
determination. Module 2 (five units) is devoted to the fundamental 
determination of elastic constants of crystal. The free electron which discusses 
the physical basis of the formation of bands, the most important concept in the 
band – Fermi surfaces were treated in five units which constitute module 3. 
Module 4, in five units, provides discussions on the properties of 
semiconductors as well as discussions on basic phenomenon of 
superconductors.  
  
Each unit consists of either one or two weeks’ work and includes an 
introduction, objectives, definition, conclusion, summary, Tutor-Marked 
Assignments (TMA) and references. The TMA will help you to achieve the 
stated learning objectives of the individual units and the course as a whole. 
 
PRESENTATION SCHEDULE  
 
Students are encouraged to complete and submit on time, their TMAs and to 
guard against falling behind in attending tutorials.  
 
ASSESSMENT 
 
There are three aspects to the assessment of the course. These are the self 
assessment exercises, Tutor-Marked Assignments and the written 
examination/end of course examination. The assignments must be dealt with 
by applying the knowledge and techniques gathered during the course and 
must be submitted to your facilitator for formal assessment in accordance with 
the deadlines stated in the presentation schedule. The assessment will account 
for 40% of the total course work while the examination will count for the 
remaining 60%. 
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TUTOR-MARKED ASSIGNMENT (TMA) 
 
The TMA is a continuous assessment component of the course work. It 
accounts for 40% of the total score. You will be given six (6) TMAs to answer 
out of which four must be answered before a student is allowed to sit for the 
end of the course examination. Students are not allowed to present other 
people’s work as their own (including copying another student's work). Make 
sure that each assignment reaches your facilitator on or before the deadline 
given. Extension will not be granted after the due date unless in exceptional 
cases. 
 
FINAL EXAMINATION AND GRADING 
 
The end of course examination for solid state physics will be for three (3) 
hours and it has a value of 60% of the total course work. All areas of the 
course will be assessed. 
 
COURSE MARKING SCHEME  
 
Assignment Marks 
Assignment 1-6 Six assignments, best four marks at 10% 

each totaling 40% of the course marks 
End of course examination 60% of overall course marks 
Total 100% of course materials 
 
FACILITATORS/TUTORS AND TUTORIALS 
 
There will be tutorials provided in support of this course at the end of each 
unit. Students will be notified of the dates, times and location of these tutorials 
as well as the name and phone number of your facilitator. Your facilitator will 
mark and comment on your assignments and return them to you as soon as 
possible. 
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MODULE 1  PROPERTY OF CRYSTAL 
 
Unit 1  Crystal Geometry 
Unit 2  Crystal Classification 
Unit 3  Simple Lattices 
Unit 4  Crystal Diffraction (I 
Unit 5  Crystal Diffraction (II) 
Unit 6  Experimental Crystal Structure Determination 
 
UNIT1 CRYSTAL GEOMETRY      
  
CONTENTS          
  
1.0 Introduction   
2.0 Objectives   
3.0 Definition  

3.1 Translational symmetry  
3.2 Lattice and Unit cell    
3.3 Primitive and Non-primitive cells  
3.4 Bravais Lattice   
3.5 Basis and crystal structure  

4.0 Conclusion   
5.0 Summary   
6.0 Tutor Marked Assignment   
7.0 Further Reading/References  
 
1.0 Introduction 
 
The physical definition of a solid has several ingredients. We start by defining a solid 
as a large collection of atoms that attract one another so as to confine the atoms to a 
definite volume of space. Additionally, in this unit, the term solid will mostly be 
restricted to crystalline solids. A crystalline solid is a material whose atoms have a 
regular arrangement that exhibits translational symmetry. When we say that the atoms 
have a regular arrangement, what we mean is that the equilibrium positions of the 
atoms have a regular arrangement. At any given temperature, the atoms may vibrate 
with small amplitudes about fixed equilibrium positions. Elements form solids 
because for some range of temperature and pressure, a solid has less free energy than 
other states of matter. It is generally supposed that at low enough temperature and 
with suitable external pressure everything becomes a solid. The study of crystal and 
electrons in crystal is a division of physics known as solid state physics. The solid 
state physics is an extension of atomic physics following the discovery of X-ray 
diffractions of crystalline properties. 
 
2.0 Objectives 
 
The candidates should be able to: 
  
 Define  crystals 
 Explain the crystal structure  
 Classify crystals 
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3.0 Definition of crystal 
 
Crystal may defined on the macroscopic scale as homogeneous solids, in which some 
of the physical properties are function of direction. Microspically, a crystal may be 
defined as a solid having an arrangement of atoms (or molecules) in which the atoms 
are arranged in some repetitive pattern in three dimensions. 
 
3.1 Translational Symmetry 
 
A solid is said to be a crystal if atoms are arranged in such a way that their positions 
are exactly periodic. This concept is illustrated in Fig.1.1 using a two-dimensional 
(2D) structure. A perfect crystal maintains this periodicity in both the x and y 
directions from -  to + . As follows from this periodicity, the atoms A, B, C, etc. are 
equivalent. In other words, for an observer located at any of these atomic sites, the 
crystal appears exactly the same. The same idea can be expressed by saying that a 
crystal possesses a translational symmetry. The translational symmetry means that if 
the crystal is translated by any vector joining two atoms, say T in    Fig.1.1, the crystal 
appears exactly the same as it did before the translation. In other words the crystal 
remains invariant under any such translation. 
 

 
 Fig.1.1: Periodicity and concept of symmetry. 
 
 
3.2 Lattice and Unit cell 
 
The structure of all crystals can be described in terms of a lattice. A lattice can be 
defined as a regular periodic array of points in space (Fig.1.2).Every lattice point can 
be located as; ��� � � � � � �             
(1.1) 
 
Or in three dimensional case  ���� � 	 � � � � � � 
           
(1.2)  
 �ℎ
�
 �, �, 
 are called Lattice vectors and l, m and n are integers. 
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 The network of lattice lines divide the space into identical parts called unit cells. 
Hence, because of inherent periodicity of space lattice; it can thus be represented by a 
unit cell. A unit cell is a conveniently chosen fundamental block by repeating the 
entire space lattice which is generated. The unit cell may be in form of a 
parallelogram (2D) or a parallelepiped (3D) with lattice points at their corners. The 
size and shape of the unit cell are described by three lattice vectors a, b, c, originating 
from one corner of the unit cell. The axial lengths a, b, c and the inter axial angles α, β 
and γ are lattice parameters of the unit cell. Fig.1.3 shows the unit cell with the axes 
lengths and inter axial angles while Fig.1.4 shows the lattice and unit cells in 2-
dimension. 
 

 
  Fig.1.2: Lattice point and Lattice vectors 
 
 
 

 
  Fig.1.3: Unit cell showing axes lengths and inter axial angles. 
The convention for drawing the lattice parameters is as follows: 
a    parallel to x-axis 
b    parallel to y-axis 
c    parallel to z-axis 
α    angle between y and z 
β   angle between z and x  
   angle between x and y 
 
  

a 

b 
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3.3  Primitive and Non-Primitive cells 
 
The cell is said to be primitive if the lattice points  are at the corners of the cell (Fig. 
1.5) and if there are lattice points in the cell other than the corners, the cell is said to 
be nonprimitive (Fig.1.5) 
 

 
 Fig.1.4: Lattice and unit cells in 2-Dimension(After Kittel,1979) 
 
 

 
 
Fig.1.5: Primitive and Non-primitive cells (After Sihv K Gupta, 
 www.4shared.com)  
 

http://www.4shared.com)
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For a single atom, the single atom is placed on the lattice site and is known as Bravais 
lattice. On the other hand, if there are several atoms per unit cell, we have a lattice 
with a basis.  
  
3.4  Bravais Lattice 
 
There are many ways in which an actual crystal may be built, thus possible crystal 
structures are unlimited. However, the possible schemes of space lattices are highly 
restricted. Each space lattice has some convenient set of axes which need not be 
necessarily orthogonal and chosen length along the three axes may not be equal. 
Bravais in 1848 proved that there are only fourteen space lattices in total which are 
required to describe all possible arrangement of points in space subject to the 
condition that each lattice point has exactly identical environment. The fourteen space 
environments are called Bravais Lattices. The Bravais lattices are the distinct lattice 
types which when repeated can fill the whole space. The lattice can therefore be 
generated by three unit vectors, a, b and c and a set of integers k, l and m so that each 
lattice point, identified by a vector r , can be obtained from:  
 
r  = k a + l b + m c             
(1.3) 
  
Bravais showed that in two dimensions there are five distinct Bravais lattices, while in 
three dimensions there exist no more than fourteen space lattices. 
 
3.5  Basis and Crystal structure. 
The arrangement of atoms in a solid is termed crystal structure. In order to convert the 
geometrical array of points in space (lattice) into a crystal structure, we must locate 
atoms or molecules on the lattice points. The repeating unit assembly of atoms or 
molecules that are located at each lattice point is called the basis. The basis must be 
identical in composition, arrangement and orientation such that the crystal appears 
exactly the same at one point as it does not at other equivalent points. No basis 
contains fewer atoms than a primitive basis contains. 
The crystal structure is thus given by two specifications: 
 

I.the lattice, and 
II.The assembly that repeat itself. 

Hence, the logical relation is 
  Space lattice + basis   = crystal structure        
(1.4) 
Equation (1.4) is illustrated in Fig.1.6 
 
 
 
 
 
 
 
 
 
 

O  X 

O  X 
O  X 

O  X 

O  X O  X 

O  X 

O  X 

O  X 

a1 

a2 

b a 
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 Fig.1.6: Two-dimensional lattices. (a) Bravais lattice; a1 and a2  are basis   
vectors; (b) Lattice with a basis of three atoms; 
 (After Kachhava, 1992) 
 
4.0 Conclusion 
 
 The fundamental feature of a crystal is the periodicity of the structure. 
 
5.0 Summary 
 
 The size and shape of the unit cell are described by three lattice vectors a, b, c, 
 originating from one corner of the unit cell. The axial lengths a, b, c and the 
 inter  axial angles α, β and γ are lattice parameters of the unit cell. 
 A cell is said to be primitive if the lattice points  are at the corners of the cell 
 and  if there are lattice point in the cell other than the corners, the cell is 
 said to be  nonprimitive 
 A lattice is any array of points related by the translational operator 
            �� = n1a +n2b+n3c        
 The Bravais lattices are the distinct lattice types which when repeated   can fill 
 the  whole space   generated by three unit vectors, a, b and c and a set of 
 integers k, l  and m 
 
6.0 Tutor marked Assignment 
Q1.  A group is represented by three matrices 
 

                          � =  �1 0
0 1�                   � =  � � �

−� �	                      
 =  �� −�� � 	 
 
                       Where  � = sin 30� and  � =cos 30�.  
           (a) Determine the multiplication table for this group. 
 (b) Give an example of a 2-D crystal with these point group symmetries. 
  
Q2. (a) Filled circles in the tetragonal crystal in the figure below represent 
 copper  oxide atoms and the copper oxide layers are stacked with  spacing c. 
 assume that  there are no other atoms in the crystal, sketch the Bravais lattice 
 and  indicate a possible set of primitive vectors for this crystal. 
 

 
 (b)  Define the following terms 

  (i)  Unit cell and  

  , 0, X   
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  (ii) Basis 

7.0 Further reading/References 
 
Ashcroft, N.W., Mermin, D. N.(1976). Solid state physics, Saunders College  
 Publishing. 
 
Denna, S. S. (2022). Solid State Physics. Department of Materials Science and  
 Engineering.  https://www.materialvetenskap.uu.se/solid-state-physics%20/ 
 Hunklinger, S. (2022). Solid State Physics.   

     https://www.degruyter.com/document/doi/10.1515/9783110666502/html?lang=en 

Kachhava, C.M. (1992). Solid State physics, Tata McGraw-Hill Publishing 
 Company Limited, New Delhi.  
 
Kittel, C. (2005). Introduction to solid state physics, Wiley Eastern Limited. 
 
Sharon, A. H. (2021).  Understanding Solid State Physics. 2nd Edition.   
 ISBN 9780367249854 
 
https://www.youtube.com/watch?v=UWW_fPB2E5k 

https://www.toppr.com/guides/physics/mechanical-properties-of-solids/solid-state-
physics/ 

 

https://www.vedantu.com/physics/solid-state-physics 

https://testbook.com/physics/solid-state-physics 

 https://www-
thphys.physics.ox.ac.uk/people/SteveSimon/condmat2012/LectureNotes2012.
pdf 

https://www.vedantu.com/physics/solid-state-physics 

https://www.sciencedirect.com/topics/materials-science/solid-state-physics 

 
  

https://www.materialvetenskap.uu.se/solid-state-physics%20/
https://www.degruyter.com/document/doi/10.1515/9783110666502/html?lang=en
https://www.youtube.com/watch?v=UWW_fPB2E5k
https://www.toppr.com/guides/physics/mechanical-properties-of-solids/solid-state-
https://www.vedantu.com/physics/solid-state-physics
https://testbook.com/physics/solid-state-physics
https://www.vedantu.com/physics/solid-state-physics
https://www.sciencedirect.com/topics/materials-science/solid-state-physics
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UNIT 2  CRYSTAL CLASSIFICATION    
 
CONTENTS 
                     
1.0  Introduction   
2.0 Objectives   
3.0 Definition  

3.1 Fundamental types of lattice 
3.2 Direction indices  
3.3 Miller indices   
3.4 Determination of miller indices 
3.5 Some general principles of miller indices  

4.0 Conclusion   
5.0 Summary   
6.0 Tutor Marked Assignment   
7.0 Further Reading/References   
 
1.0 Introduction 
 
Crystal lattices are classified according to their symmetry properties, such as 
inversion, reflection and rotation. Also, it is sometimes more convenient to deal with 
non-primitive or conventional cells, which have additional lattice sites either inside 
the cell or on its surface. In three dimensions there are 14 different Bravais crystal 
lattices which belong to 7 crystal systems. These systems are triclinic, monoclinic, 
orthorhombic, tetragonal, cubic, hexagonal and trigonal. 
 
2.0 Objectives 
 
 To revise the classification of crystal lattices 
 To  understand direction indices 
 To understand miller indices 
 
3.0 Definition of Crystal Lattice 
 
Crystal lattice classification is the regular geometric arrangement of points in the atom 
of a crystal 
 
3.1  Fundamental types of lattices 
 
The most obvious feature of a crystal is its regularity or symmetry. The basis of 
classification of crystal is the symmetry exhibited by them. In a well defined crystal, 
the various symmetry elements (rotation, reflection, inversion etc.) intersect at a point. 
Each set of symmetry elements intersecting at a point (the centre of unit cell) is called 
a point-group. Since there are 32 point groups, there are equal numbers of crystal 
classes, which can be grouped together into seven groups known as crystal systems. 
Table 1.1, consists of the list describing the various systems. Fig 2.1 shows how seven 
crystal systems can be obtained by successive distortion of a cube. 
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Table 1.1: Seven Crystal Systems 
 
Crystal System 
 

Axial Lengths and 
angles 
 

Unit cell 
 

Number of 
Lattices 

Cubic 
 

a = b = c, α = β = γ = 
900 
 

a cube 3 
 
 

Tetragonal 
 

a = b ≠c , α = β = γ = 
900 

a squared-based right 
prism 
 
 

2 

Orthorhombic 
 

a ≠ b ≠ c,  α = β = γ = 
900 

a rectangular-based 
right prism  
 
 

4 

Rhombohedra 
 

a = b = c,  α = β = γ ≠ 
900  
 

a rhombohedron 1 
 
 

Hexagonal 
 

a = b ≠c , α = β = 900, γ=1200 
a rhombus-based right 
angles 
 
 

1 

Monoclinic 
 

a ≠ b ≠ c, α = γ = 900 ≠ β  
 

A parallelepiped-based 
right prism 
 
 

2 

Triclinic 
 

a ≠ b ≠ c, α ≠ β ≠ γ ≠ 
900  
 

a parallelepiped 
 
 

1 

 
3.2  Direction indices 
 
To find the direction indices, the following rules are used: 
 
I. Find any vector in the desired direction. 
II.  Express this vector in terms of the basis (a, b, c). 
III.  Divide the coefficient of (a, b, c) by their greatest common divisor. 
 
The resultant set of three integers u, v, w usually included in parentheses [uvw] 

defines a direction. uvw  means that all vectors are equivalent to [uvw]. Negative 

sign in any of the numbers are indicated by placing a bar over the number (u). Let a = 
2, b = 3, c = 4 units and the vector be 
 
   
r = 6 i +12 j  +10 k 
 
 
Then   r = 3(2) i +4(3) j + 2.5(4) k 
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Thus, the coefficients of (a, b, c) are 3, 4, 2.5. The relevant greatest common divisor 
is 0.5. Thus, the three numbers 6, 8, 5 are found. Hence, for the example considered 
the indices of direction are [685].  
 
In the cubic system, u, v, w are proportional to the direction cosines of the chosen 
vector. The cube edge a would be denoted by [100], that of direction b by [010], and c 
by [001].The negative direction of a would be [100]. When we speak of [200] plane, 
we mean a plane parallel to [100] but cutting a axis at  1 2� �. Fig 2.1 shows the indices 
of some important planes and directions in crystals. Note that: 
 
 

I. All parallel rows of atoms have the same [uvw]. 
II.  The angle θ between two crystallographic direction[u1v1w1] and [u2v2w2] in a 

cubic system is given by 
 

 

cos� = ���������������������������� �⁄ �������������� �⁄                    

(2.1)     
   
 
3.3  Miller indices  
 
Miller indices are the most commonly used notation for specifying points, directions, 
and planes in crystal lattice systems.  Not only do they simplify the description of 
locations and directions within the lattice, but they also allow vector operations like 
dot and cross products. Miller Indices  are a symbolic vector representation for the 
orientation of an atomic plane in a crystal lattice and are defined as the reciprocals of 
the fractional intercepts which the plane makes with the crystallographic axes. Before 
Miller indices can be used, a coordinate system for the crystal structure must first be 
selected.  The right-hand Cartesian coordinate system is the usual choice for this 
(Fig.2.2). Points within the coordinate system are specified by Miller indices as h, k, l, 
where h, k, and l are fractions of the lattice parameters a, b, and c.  Recall that a, b, 
and c are the lengths of the edges of the crystal's unit cell in the x, y, and z directions.   
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 Fig.2.1: seven crystals in three dimensions  
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A plane oriented with respect to the rectangular coordinate system, which intercepts 
the x-,y-and z-coordinates at distance a, b and c respectively is represented by the 

equation 
 �� + �� + �� = 1             (2.2)  

 

Denoting the reciprocal of axial intercepts as 
�� = ℎ, �

  � �  and
�
 � = �,   

Eq. (2.2) becomes 
 
ℎ� + �
 + �� = 1            (2.3)  
 

 
 Fig.2.2: Construction for description of a plane. This plane intercepts the a, b, 
c  axes at 3a, 2b, 2c. (After Kittel, 1979) 
 
3.4  Determination of Miller Indices 
 
The Rules for Miller Indices are: 

 Determine the intercepts of the plane along the three crystallographic axes, in 
terms of unit cell dimensions. Coordinates of the points of interception are 
expressed as integral multiples of the axial lengths in the respective directions. 
The integers p, q and r are the multiples of axial lengths a, b and c respectively  

 Take the reciprocals of the integers p, q and r 
 The reciprocals are reduced to the smallest set of integers h, k and l by taking 

LCM 
 The integers are written as (hkl) by enclosing in parenthesis 

For example, if the x-, y-, and z- intercepts are 2, 1, and 3, the Miller indices are 
calculated as: 

 The integers are 2, 1, 3 
 Take reciprocals: 1/2, 1/1, 1/3 
 Clear fractions (multiply by 6): 3, 6, 2 
 Reduce to lowest terms (already there) 

Thus, the Miller indices are 3, 6, 2. If a plane is parallel to an axis, its intercept is at 
infinity and its Miller index is zero. A generic Miller index is denoted by (hkl). If a 
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plane has negative intercept, the negative number is denoted by a bar above the 
number. Never alter negative numbers. For example, do not divide -1, -1, -1 by -1 to 
get 1, 1, 1. This implies symmetry that the crystal may not have! 

3.5  General Principles of Miller Indices 

 If a Miller index is zero, the plane is parallel to that axis. 
 The smaller a Miller index, the more nearly parallel the plane is to the 
 axis. 
 The larger a Miller index, the more nearly perpendicular a plane is to that 
 axis. 
 Multiplying or dividing a Miller index by a constant has no effect on the 
 orientation of the plane 
 Miller indices are almost always small. 

Fig.2.3 shows some planes for cubic lattices with their Miller notations.  

 
 Fig.2.3: Some of the prominent planes for cubic lattices with their Miller 
 indices  (After Kachhava, 1992) 
 Note that: 
  Miller indices are proportional to the direction cosines of the normal to the 
 corresponding plane. Direction cosines are given as  

             cos � = ℎ�� , cos � = ��� = cos � = ���  

 The normal to the plane with index numbers �ℎ��� is the direction�ℎ��� 
 The purpose of taking reciprocals is to bring all the planes inside a single unit 
 cell 

 Assume ���� represent the distance between two adjacent parallel planes 
 having  miller indices�ℎ���, then 
   

 ���	 = 
√������	�                        (2.4)  

Where ����    =  distance between planes 
a = lattice constant (edge of unit cell) 
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h, k,l = Miller indices of planes being considered 
 
Figure 2.4 shows inter planer spacing in terms of the cube edge, a. 

 
 
  Fig.2.4: inter planer spacing (After Kachhava, 1992) 
 
4.0 Conclusion 
 
Miller indices are the most commonly used notation for specifying points, directions, 
and planes in crystal lattice systems.  Not only do they simplify the description of 
locations and directions within the lattice, but they also allow vector operations like 
dot and cross products.  
 
5.0  Summary 
 
 In a well defined crystal, the various symmetry elements (rotation, reflection, 
 inversion etc.) intersect at a point. 
 Each set of symmetry elements intersecting at a point (the centre of unit cell) 
 is  called a point-group.  
 The Miller indices are defined as the reciprocals of the fractional intercepts 
 which  the plane makes with the crystallographic axes. 
 The angle θ between two crystallographic direction[u1v1w1] and [u2v2w2] in a 
 cubic system is given by  

      2/12
2

2
2

2
2

212
1

2
1

2
1

212121cos
wvuwvu

wwvvuu






 
 
 The distance ���� between neighboring planes of the family(ℎ��), is given in 
 terms of the cube edge  a as 
 

                                2/1222 lkh

a
dhkl



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6.0. Tutor marked Assignment 
 
Q1  (a).  Show that the perpendicular distance between two adjacent planes of a set 
 (ℎ��) in a cubic lattice of lattice constant a is 
 

  2/1222 lkh

a
dhkl




 
 (b). The Bragg angle corresponding to the first order reflection from plane   

  (111) in a crystal is 300 when X-rays of wavelength 1.75Ǻ are used.  

 Calculate the interatomic spacing  
Q2. If x, y and z axes intercept 3, 4, and 2, calculate the Miller indices  
 
7.0  Further reading/References 
 
Ashcroft, N.W., Mermin, D. N.(1976). Solid state physics, Saunders College  
 Publishing. 
 
Denna, S. S. (2022). Solid State Physics. Department of Materials Science and  
 Engineering.  https://www.materialvetenskap.uu.se/solid-state-physics%20/ 
 Hunklinger, S. (2022). Solid State Physics.   

     https://www.degruyter.com/document/doi/10.1515/9783110666502/html?lang=en 

Kachhava, C.M. (1992). Solid State physics, Tata McGraw-Hill Publishing 
 Company Limited, New Delhi.  
 
Kittel, C. (2005). Introduction to solid state physics, Wiley Eastern Limited. 
 
Sharon, A. H. (2021).  Understanding Solid State Physics. 2nd Edition.   
 ISBN 9780367249854 
 https://www.youtube.com/watch?v=UWW_fPB2E5k 

https://www.toppr.com/guides/physics/mechanical-properties-of-solids/solid-state-
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https://www.sciencedirect.com/topics/materials-science/solid-state-physics 
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https://www.youtube.com/watch?v=UWW_fPB2E5k
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UNIT 3 SIMPLE LATTICES                                        
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1.0 Introduction 
 
The most highly symmetrical lattices which occur naturally are cubic structure. These 
are, therefore, of some practical interest and also provide useful simple examples 
which help in visualizing the more general cases. About 90% of metallic crystal 
structures crystallize into 3 densely packed crystal structures vis-a-vis Body-Centered 
Cubic cell (BCC), Face-Centered Cubic cell (FCC) and Hexagonal Close-Packed 
(HCP). 
 
2.0 Objectives 
 
The objectives are to understand metallic crystal structure such as: 
 
 Simple cubic 
 Body centered cubic 
 Face centered cubic 
 Hexagonal Close packed 
 
3.0 Definition of Simple lattices 
 
Simple lattices are crystalline solids that consist of a small group of atoms (unit cells) 
that contains unique features.  
 
3.1 Simple lattices 
 
The simple lattices have the following elementary properties: 
 
I. Effective no of atoms/ unit cell, Z, which defines the number of atom per 

primitive cell 
II.  Atomic radius, R usually defines in terms of lattice constant (length of a side 

of unit cell), a. 
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III.  Nearest neighbor distance which defines the nearest distance between atomic 
centers. 

IV.  Coordinate number which defines the number of nearest neighbor of an atom.  
V. Atomic Packing Fraction (APF) defined as the fraction of volume in a crystal 

structure that is occupied by atoms. 
 

3.2 The simple cubic lattice. 
 
The simple cubic lattice has basis vectors   �� = ��,       �� = ��,         �� = ��                            (3.1) 
 
and the unit cell is a simple cube. The simplest crystal based on this lattice has single 
atoms at the lattice points, Fig. 3.1. Each atom has six identical nearest neighbors. 
 

   
  Fig.3.1: Simple cubic lattice (After Kachhava, 1992) 
 
3.2 Body-Centered cubic Lattice 
 
The body-centered cubic (bcc) lattice may be regarded as two interpenetrating simple 
cubic lattices with atoms at the centre of each cube as well as at the corners. The 
space lattice may be taken with the basis vectors 
 

 �� = ��	
��
��� ,        �� = ��	�

��� ,       �� = ��	��

��             

(3.2) 
 
Where a is the side of the cube and i, j, k are orthogonal unit vectors parallel to the 
cube edges. The primitive cell of the bcc lattice has a volume one-half that of the unit 
cube. By elementary vector analysis the volume is given by 
 
     V = │a1.a2 x a3│      
(3.3)  
 
3.3      Face- Centered Cubic Lattice 
 
The face centered cubic lattice can be considered as four interpenetrating simple cubic 
lattices giving  a cubic unit cell with extra lattice points at the centers of the faces of 
the fundamental cube. Each point has 12 nearest neighbours. The full translational 
symmetry has basis vectors. 
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�� � ������ 	  , �
 � ������	  , �� � 

����	                                      (3.4) 

 
The primitive cell of the ��� lattice is shown in Fig.3.4 and is a rhombohedron of 
volume one quarter that of the unit cube. The translation vectors a1, a2 and a3 connect 
the lattice point at the origin with the lattice points at the face centers. The angles 
between the axes are 600 . 
 

 
  Fig.3.2: Face- centered cubic lattice  
 
3.4 Hexagonal Close-Packed (HCP) 
 
In the hexagonal closed packed �ℎ��� structure, Fig 3.5 the unit cell is a rhombic and 
the basis vectors are �� � ��,              �
 � 

������� ,         �� � �                               (3.5) 

 

 
 Fig.3.3: Hexagonal Close-packed structure (After Kittel, 1979) 
 
In this structure, there are two atoms per unit cell separated by the vector 
 

 � � �
� ��� � �

√� � � ���       (3.6) 

 
Here, as in ��� structure, each atom has twelve neighbours, but the arrangement is 
slightly different. 
 

i 

j  

k 
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3.5 Closed-packed Structures 
 
If the atoms are considered as hard spheres, then the most efficient packing in one 
plane is the closed–packed arrangement shown in Fig 3.6.There are two simple ways 
in which such planes can be laid on top of one another to form a three-dimensional 
structures. One leads to the face-centered cubic (cubic close-packed) structure, while 
the other has hexagonal symmetry and is called the hexagonal closed packed (ℎ��) 
structure (Fig3.7). The fraction of the total volume filled by the spheres is 0.74 for 
both the ��� and hcp structures. 

 
 Fig.3.4: A closed- packed layer of spheres (After Kittel, 1979) 

 
 Fig.3.6: The Hexagonal closed packed structures (After Kittel, 1979) 
 
Spheres may be arranged in a single closest-packed layer by placing each sphere in 
contact with six others. Such a layer can either be the basal plane of a ℎ�� structure or 
the (111) plane of ��� structure. A second similar layer is added by placing each 
sphere in contact with three spheres of the bottom layer as in Fig.3.6. A third layer 
can be added in two ways: in the ��� structure the spheres in the third layer are placed 
over the holes in the first layer not occupied by the second layer; in the hexagonal 
structure the spheres in the third layer are placed directly over the spheres in the first 
layer. We say that the packing in the ��� structure is ABCABC. ….. , whereas in the 
ℎ�� structure the packing is ABABAB….. The ℎ�� structure has a hexagonal 
primitive cell; the basis contains two atoms. The ��� primitive cell contains one atom. 
The c/a ratio for hexagonal closest-packing of spheres is (8/3)1/2 = 1.633. We refer to 
crystals as ℎ�� even if the actual c/a ratio departs somewhat from the theoretical 
value. Thus zinc with c/a = 1.86 is referred to commonly as ℎ��. Magnesium with c/a 
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= 1.623 is close to ideal ℎ��. Many metals transform easily at appropriate 
temperatures between ��� and ℎ��. The coordination number, defined as the number 
of nearest-neighbor atoms, is 12.  
A quantitative measure of the closeness of packing in a crystal structure is provided 
by the packing fraction, f, defined as 
 

� � ������ ����	
�� �
 ���������� �	������������ �� ��� ��
� ���� �� ��� ��������
           (3.5) 

 
The theoretical calculations of f requires the knowledge of number of atoms, N, per 
unit cell and atomic radius, Ra, in terms of a, the length of a side of a cubic lattice. 
Table 3.1 as reported by (Kachhava, 1992) displayed the values of N, Ra and f along 
with number (Nn) of nearest neighbors and that (Nnn) for next nearest neighbors for 
simple cubic (sc), body centered cubic (���), face-centered cubic����� and hexagonal 
close-packed(ℎ��) structures. 
 
Table 3.1 Data for common structures (modified after Kachhava, 1992) 
 
  
                           �

                    !

                         "
# 
N 1 2 4 2 
Nn 6 8 12 12 
Nnn 12 6 6 6 
Ra �$ 

�$√$ √&  �' 
�$ 

f π/6 = 0.52 √$ 	

= 0.74 √&  	� = 0.68 0.74 (ideal) 

 
4.0 Conclusion 
 
The ideal crystal of classical structures is formed by the repetition of identical units in 
space. The most highly symmetrical lattices which occur naturally are cubic structures 
which help in visualizing the more general case. 
 
5.0 Summary 
 
 The simple cubic lattice has basis vectors   
                   ��  = a�    �
 � (�  ��= ak 
 Important simple structures are the bcc, ��� and ℎ�� 
 The structures differ in the stacking sequence of the planes 
 ��� have the sequence ABCABC… 
 ℎ�� have the sequence ABABAB… 
 

6.0      Tutor Marked Assignment 
 
Q1. Use elementary vector analysis to find the value of the angle between the body 
 diagonals of a cube shown in the Figure Q1 
Q2 Show that the c/a ratio for an ideal hexagonal closed-packed structure is  
  (8/3)1/2 = 1.633. 
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Q3. Sodium transform from bcc to ℎ�� at about T= 23K. Assuming that the 
 density remain fixed, and the c/a ratio is ideal, calculate the ℎ�� lattice 
 spacing a given that the cubic lattice spacing a′ = 4.23 .What is the difference 
 in the cubic phase 
 

 
     Fig.Q1 
 
7.0  Further reading/References 
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UNIT 4 CRYSTAL DIFFRACTION (I)      
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1.0 Introduction 
 
In order to explore the structure of crystals we require waves which interact with 
atoms and which have a wavelength comparable with the inter atomic spacing in 
crystals; that is, we require a wavelength of the order of 1 A�= 10	
 ���. The 
interaction should be weak enough so that the wave can penetrate in a coherent 
fashion into the crystal for a distance of the order of perhaps 1000 lattice constants. 
The most convenient waves suitable for our purpose are those associated with x-rays, 
while the waves associated with neutrons and electrons have found important special 
applications. When an atom is exposed to electromagnetic radiation, the atomic 
electrons are accelerated, and they radiate at the frequency of the incident radiation. 
The superposition of the waves scattered by individual atoms in a crystal results in the 
ordinary optical refraction. If the wavelength of the radiation is comparable with or 
smaller than the lattice constant, we will also under certain conditions have diffraction 
of the incident beam.  
 
2.0 Objectives 
 
 To study the use of X-ray as a tool for investigating the structure of crystals.  
 
3.0. Definition 
 
When a monochromatic beam of x-rays is shone upon a regular crystalline material 
then the beam will be scattered from the material at definite angles. This produced an 
interference effect called diffraction between the X-rays from different layers within 
the crystal. 
 
3.1 Bragg formulation of diffraction by a crystal 
 
W. L. Bragg (1913) found that one could account for the position of the diffracted 
beams produced by a crystal in an x-ray beam by a very simple model according to 
which x-rays are reflected from various planes of atoms in the crystal. The diffracted 
beams are found for situations in which the reflections from parallel planes of atoms 
interfere constructively. The derivation of the Bragg law is indicated in Fig. 4.1. We 
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consider in the crystal a series of atomic planes which are partly reflecting for 
radiation of wavelength X and which are spaced equal distances d apart. The radiation 
is incident in the plane of the paper. The path difference for rays reflected from 
adjacent planes is 2�� !". Reinforcement of the radiation reflected from successive 
planes will occur when the path difference is an integral number n of wavelengths. 
The condition for constructive reflection is that 
 
 2� � !" = !#                  (4.1) 
     
Equation (4.1) represents the Bragg law. The integer n represents the order of 
corresponding reflection. It should be emphasized that the Bragg equation results 
from the periodicity of the structure, without reference to the composition of the unit 
of repetition. 
 

 
Fig. 4.1: Derivation of the Bragg equation 2� � !" = !# ; here d is the spacing of 
 parallel atomic planes (After Ashcroft and Mermin, 1976). 
 
Worked example: 
 
(a) State Bragg’s law of diffraction and give two geometrical facts that are 

necessary for the derivation of the law. 
(b) An X-ray Diffractometer recorder chat for an element, which has a cubic 

crystal structure, shows diffraction peaks at the following 2":40, 58, 73, 86.8, 
100.4 and 114.7. The wavelength of the incoming X-rays used was1.540 Å. 

(i) determine the type of the cubic structure possessed by the element 
(ii)  Determine the lattice constant of the element. 
 
Solution: 
 
(a) Bragg’s law of diffraction states that the path difference between two X-rays 
 which are reflected from adjacent planes is an integral multiple of its 
 wavelength  i.e., 
2� sin " = !#  
Where; " = Bragg’s angle 
  d= interatomic plane spacing 
  # = Wavelength of the X-rays 
                  n = order of diffraction 
 



PHL 307          SOLID STATE PHYSICS 1 
 

25 

The two geometrical facts are: 
 
(i) The incident beam, the normal to the diffraction plane and the diffracted beam 

are  always coplanar. 
(ii)  The angle between the diffracted beam is always 2". this is known as the 

diffraction angle. 
(b) (i).The values of the angles given are2". Therefore, " is equal to the half the 

2" values. The ratio of the square of the sine of the 1st two planes gives the 
true structure of the element, i.e., 

(c)  ������������ = Structure type 

 If the ratio is 0.5, the structure is $��. 
 If the ratio is 0.75, it is ��� 
 
The 1st two planes have " values being 20, and 29 and the sines of these angles are 
0.3420 and 0.4848 respectively, therefore,  � !�"�� !�"� = 0.117

0.235 ≃ 0.5 

 
Hence, the crystal structure is bcc. 
 
(ii).  The relationship between Miller indices�ℎ��� of the Bragg plane and the 
 Bragg  angle is given by  � !�" = #�

4�� �ℎ� + �� + ��� 
Where; a is the lattice constant.  
For a bcc lattice, the sum ℎ + � + � must be even, hence the 1st set of principal 
diffraction plane for the bcc structure is %110& and the corresponding value for � !�" 
is 0.117, then, 
 � =

�
2
�ℎ� + �� + �������  

 

This implies,  � = �.�
� ��� '��������.��� = 0.318 nm 

∴ � = 3.18Å 
 
3.2 Von Laue formulation of diffraction by a crystal 
 
Considering the nature of the x-ray diffraction pattern produced by identical atoms 
located at the corners (lattice points) of primitive cells of a space lattice to investigate 
scattering from any two lattice points, P1 and P2 (Fig. 4.2) separated by the vector r.  
The unit incident wave normal is �� and the unit scattered wave normal is s. let us 
examine at a point a long distance away the difference in phase of the radiation 
scattered by P1 and P2. If P1B and P2A are the projections of r  on the incident and 
scattered wave directions, the path difference between the two scattered waves is 
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)�* + )�, � � ∙  + � ∙  �� � ∙ � +  ��                                            (4.2) 
 

 
 Fig.4.2: Calculation of the Phase difference of the waves scattered from two 
 lattice points (After Kittel, 1979) 
 
The vector  +  � = S has a simple interpretation (Fig. 4.3) as the direction of the 
normal to a plane that would reflect the incident direction into the scattering direction. 
This plane is a useful mathematical construction and this is called the reflecting plane. 
If 2/ is the angle s makes with �, then / is the angle of incidence, and from the figure 
(4.3), we see that |1| � 2�2�/ , as s and s0 are unit vectors.  
 

 
 Fig.4.3: Construction of the normal the reflecting plane (After Kittel, 1979)
  
 

The phase difference 3 2� 24 56   times the path difference. We have  
 

  3 � �24 56 ��� ∙  �                                                                             (4.3)  

 
The amplitude of the scattered wave is a maximum in a direction such that the 
contributions from each lattice point differ in phase only by integral multiplies of24. 
This is satisfied if the phase difference between adjacent lattice points is an integral 
multiple of 24 . If a, b, c are the basis vectors, we must have for the diffraction 
maxima 
             3�� �24 56 ��� ∙  � � 24ℎ;  
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 (�� )2* #+ ,�- ∙ .� = 2*�;                                

(4.4) 

 (�� )2* #+ ,�/ ∙ .� = 2*�; 
where h, k; l are integers. 
 
If �, �, � are the direction cosines of S with respect to a, b, c, we have 
 
    � ∙ . = 2�� � !" = ℎ# 
             - ∙ . = 2$� � !" = �#                (4.5) 
             / ∙ . = 2�� � !" = �# 
 
Equations (4.4 & 4.5) are the Laue equations. They have solutions only for special 
values of " and the Wavelength #. The Laue equations (4.5) have a simple 
geometrical interpretation. The Laue equations state that in a diffraction direction the 
direction cosines are proportional to h/a, k/b,  l/c, respectively and the adjacent 
lattice planes(ℎ��) intersect the axes at  intervals a/h, b/k, c/l so that by 
elementary plane geometry  the direction cosines of the normal to (ℎ��) are 
proportional to h/a, k/b, l/c respectively Therefore the lattice planes (ℎ��) must be 
parallel to the  reflecting plane. If �(ℎ��) is the spacing between two adjacent planes 
of a set (ℎ��), we have by projection 
 

         ��ℎ��� = �� ℎ+  = $� �+ =  �� �+                    (4.6) 
Then, from (4.5), we have  
 
2��ℎ��� � !" =  #          (4.7) 
 
We may interpret (4.7) by giving an extended meaning to the spacing d(ℎ��) when h, 
k, l have a common factor n: the diffracted wave actually arises from the nth order 
reflection from the true lattice planes, but we may as a mathematical device think of 
the diffracted wave as a first order reflection from a set of planes parallel to the true 
lattice planes but with a spacing d(ℎ��) equal to l/n of the true spacing. 
 
3.3 Diffraction of crystals by electrons 
de Broglie in 1924 predicted that the wavelength associated with a particle of 
momentum p= mv is given by 
 # =  ℎ �+             (4.8) 
 
where h is plank’s constant. One of the most direct pieces of evidence of the wave 
aspect of particles was provided by the electron diffraction experiments of Davisson 
and Germer in 1972. They concluded that if one associates a wavelength with the 
electrons given by (4.9), the diffraction pattern obtained can be interpreted in exactly 
the same way as the X-ray diffraction patterns. As long as the velocity of the electrons 
is small compared with the velocity of light, the wavelength of the electrons may be 
expressed in terms of the accelerating voltage V as follows 

eVmv 
2

2
1        Or    2/12meV

h            2/1150
V                   (4.9)  
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  # is obtained in Angstroms if V is expressed in volts. Note that only 150 volts are 
required to produce electrons of a wavelength of 1 compared with X-rays, which 
require approximately 12,000 volts for 1. Electrons are scattered by the nucleus as 
well as by the electrons in the atoms. For spherical charge distribution one can show 
that the scattering factor is given by  
 ��"� =  �0� 2ℎ�+ �1 −  ��� �������                                                         (4.10) 
 
Here �� is the scattering factor for X-rays, Z is the nuclear charge, and " is the Bragg 
angle. As for X-rays the scattering factor decreases with increasing values of ". 
However, there is a considerable difference between X-rays and electrons in that, 
electrons are scattered much more efficiently by atoms than are X-rays. In fact, atoms 
scattered electrons more strongly by several powers of ten for the energy involved. At 
normal incidence an electron of about 50 keV has a penetration depth for elastic 
scattering of only about 500 Å, while for the small angles of incidence used in 
reflection techniques this may be about 50 Å measured perpendicularly to the surface. 
It is evident, therefore, that electron diffraction is particularly useful in investigating 
the structure of thin surface layers such as oxide on metals. Such layers would not be 
detected by X-rays diffraction because the patterns obtained are characteristics for the 
bulk material. 
 
3.4 Diffraction of crystals by neutrons 
 
The mass of a neutron is about 2000 as large as that of an electron, so that according 
to Eqn.(4.8) the wavelength associated with a neutron is about 1/2000 that for an 
electron of the same velocity. Thus the energy of a neutron required to give 1 Å is of 
order of only 0.1eV. Such neutrons can be obtained from a chain-reacting pile, and 
diffraction from crystals may be observed. Neutrons are scattered essentially by the 
nuclei of the atoms, except when they are magnetic. The radius of an atomic nuclei is 
of the order of 10-13cm, and as a consequence, the atomic scattering factor is nearly 
independent of the scattering angle, because # ≫ 10	����. Also, the scattering 
power does not vary in a regular manner with the atomic number, so that light 
elements such as hydrogen and carbon still produce relatively strong scattering. The 
scattering of X-rays by light element is in contrast, of course, relatively weak. Thus 
the positions of such atoms in crystalline solids may be determined from neutron 
diffraction experiments. Another important aspect of neutron diffraction is the fact 
that scattering from neighboring elements in the periodic system may differ 
appreciably. For example, neutron diffraction allows one to detect with relative ease 
ordered phases of an alloy such as FeCo, whereas their detection by X-rays is 
difficult. A particularly important aspect of neutron diffraction is their use in 
investigating the magnetic structure of solids. This is a result of the interaction 
between the magnetic moment of the neutron and that of the atoms concerned. In a 
paramagnetic substance, in which the magnetic moments are randomly oriented in 
space, this leads to incoherent scattering, resulting in a diffuse background. This 
diffuse background of magnetic scattering is then superimposed on the lines produced 
by the nuclear scattering mentioned above. In a ferromagnetic substance in which the 
magnetic moments within a domain are lined up in parallel, this diffuse background is 
absent. In an antiferromagnetic solid, the magnetic moments of particular pairs of 
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atoms are aligned antiparallel and hence, from the point of view of the neutron, such 
atoms would appear to be different.  
  
4.0         Conclusions 
 
From the discussions of the application of scattering diffraction techniques to the 
study of the structure of solid crystals that given  X-rays of 1 Å it requires energy of 
the order of 104 eV, for electrons of 1 Å it needs  102 eV while the energy of a neutron 
required to give 1 Å is of the order of 0.l eV. Thus the diffraction technique is a useful 
tool in the investigation of the structure of solid crystal from surface thin layers to 
bulky materials. 
 
5.0     Summary 
 
  Bragg  condition for crystal diffraction is given by 29 �2�/ � �5  
  Laue condition for diffraction is given by                                       3�� �24 56 ��� ∙  � � 24ℎ;  

   3�� �24 56 ��� ∙  � � 24:;                  

              3�� �24 56 ��
 ∙  � � 24	; and 

                         � ∙  � 2�; �2�/ � ℎ5 
                      � ∙  � 2�< �2�/ � :5     
 ∙  � 2�= �2�/ � 	5 
 de Broglie Wavelength equation is given by  5 �  ℎ �6  

 wavelength of electron associated with accelerating velocity is given by 

 � � 	150V �� �⁄
 

 Scattering factor of electron by neutron  is obtained by  
 

 >�/� �  �
� 2ℎ�6 �? + ��� ��
����� 

 
6.0. Tutor Marked Assignment 
 
Q1.  (a) Discuss the major experimental differences between x-ray, electron, and 
 neutron diffraction from the standpoint of the observed diffraction  patterns  
        (b) Show that the Laue equations for the incident beam parallel to the z cube 
 edge of a simple cubic crystal give diffracted rays in the yz plane when 
 

 5 �6  = 2	�	� � :��        and      <��      �	� + :�� �	� � :��@  

 Where l and k are integers and <� is the direction cosine of the diffracted  ray 
 relative to the z axis. 
 
Q2.  While sitting in front of a color TV with a 25Kv picture tube potential, you 
 have an  excellent chance of being irradiated with X-rays. 
(a) Calculate the shortest wavelength (maximum energy) X-ray. (ℎ � 6.6 C10���F�,  
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 � = 3 × 10
 � �,⁄ 1 03 = 1.6 × 10	��4, 
(b) For a rock salt(5�6�) crystal placed in front of the tube, calculate the Bragg 

angle for a first order reflection maximum at # = 0.5 Å. �7���� =
2.165 8 ���⁄ � 
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UNIT 5  CRYSTAL DIFFRACTION (II)       
  
CONTENTS 
                                                     
1.0       Introduction  
2.0       Objectives   
3.0       Definition   
 3.1 Reciprocal Lattice   
 3.2 Ewald’s Construction     
 3.3 Brillouin Zones  
4.0 Conclusion    
5.0 Summary  
6.0 Tutor Marked Assignment    
7.0      Further Reading/References   
 
1.0 Introduction 
 
To explain the theory of X-ray diffraction by crystal planes, Ewald introduced the 
concept of reciprocal lattice. According to this concept, the description of 
interpenetrating planes inside a crystal could be obtained in space by means of a set of 
points. Thus the properties of planes and points are interchangeable. The space 
constructed from these points is called reciprocal lattice. 
 
2.0 Objective 
 
The objectives of this unit is to explain 
 
 Reciprocal lattice 
 Ewald’s construction 
 Brillouin zones 
 
3.0       Definition 
 
The reciprocal space lattice is a set of imaginary points constructed in such a way that 
the direction of a vector from one point to another coincides with the direction of a 
normal to the real space planes and the separation of those points (absolute value of 
the vector) is equal to the reciprocal of the real inter planar distance 
 
3.1 Reciprocal Lattice  
 
For a perfect single crystal, the reciprocal lattice is an infinite periodic three-
dimensional array of points whose spacing is inversely proportional to the distances 
between the planes in the direct lattice. The axis vectors of the reciprocal lattice is 
given by Eqn. (5.1) 
 

  9 = :; �   !"∙�  !;       < = :; !   ""∙�  !;  = = :; "   �"∙�  !;                            (5.1) 
 
If a, b, c are primitive vectors of the crystal lattice, then A, B, C are primitive vectors 
of the reciprocal lattice. Each vector is orthogonal to two of the axis vectors of the 
crystal lattice. Thus A, B, C has property: 
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                       9 ∙ � = :;,       < ∙ � = >,   = ∙ � = >; 
                    9 ∙ - = >,                    < ∙ - = :;,                                C∙ - = >,           
(5.2)           
                    9 ∙ / = > ,                   < ∙ / = ?,                                   = ∙ / = :;, 
              
Any arbitrary set of primitive vectors a, b, c of a given crystal lattice leads to the 
same set of reciprocal lattice points. 
G = hA + kB+ lC,  (h, k, l are integers)        (5.3) 
 
Any vector G of the form in Eq. (5.3) is called a reciprocal lattice vector. Every 
crystal structure has two lattices associated with it, the crystal lattice and the 
reciprocal lattice. A diffraction pattern of a crystal is a map of the reciprocal lattice of 
the crystal; a microscopic image, if it could be resolved on a fine scale, represents a 
map of the crystal structure in real space. When we rotate a lattice crystal, we rotate 
both the direct lattice and the reciprocal lattice. Vectors in the crystal lattice have the 
dimensions of [length]; vectors in the reciprocal lattice have the dimensions of 
[length]-1. In dealing with wave properties of crystals, it is convenient to define the 
reciprocal lattice vector G as  
 
   G = :;�ℎ9 + �< + �=�                                                                  (5.4) 
 
  This in conjunction with equation (1.1) yields 
 
                          GRn=2*�ℎ!� + �!� + �!��=2* ×  !@080A                      (5.5) 
 
Thus every vector of the equation (5.3) satisfies the condition 
 
   0����B ∙ ��� = 1                                                                              (5.6)  
  
    Some of the elementary properties of the reciprocal lattice are as follows: 
 
I. The unit cell of the reciprocal lattice need not be a parallelepiped. 
II.  Simple cubic lattice is its own reciprocal, so is the hcp. On the other      hand, 

bcc and fcc are reciprocal of each other. 
III.  The volume of a unit cell of the reciprocal lattice is inversely proportional to      

the volume of a unit cell of the direct lattice. 
IV.  If A is the matrix of the components of A1, B1, C1  and B for those of  A2, B2, 

C2 then B =A-1 
                   
The properties of the reciprocal lattice that make it of importance in the   diffraction 
theory are: 
 

i. The vector G (hkl) from the origin to the point (h, k, l) of reciprocal lattice is    
normal to the (hkl) plane of the crystal lattice. 

ii.  The length of the vector G(hkl) is equal to the reciprocal of the spacing of the   
planes(hkl) of the crystal lattice 

 
Worked example: 
Prove that the reciprocal lattice vectors as defined in equation (5.1) satisfy: 
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9. < × = = 8*��. - × / 

Solution: 
 
To solve the problem, we need to use the vector identities: �. - × / = -. / × � = /. � × -   
and               � × �- × /� = ��. /�- − ��. -�/ 
From Eq. (5.1) 9. < × = = 9 ∙ �2*��|�. - × /|� D�-. / × ��� − ��. / × ��-E 

 

= 9 ∙ �:;��|�. - × /|� D�-. / × ��� − >E 

 

= 9 ∙ �:;�#|�. - × /|# ��. - × /���. - × /� 
 

Then,       9. < × = = 
$�".�×! 
 
3.2          Ewald’s Construction in the reciprocal lattice 
 
 For simplicity, we draw the Ewald construction in two dimensions. Ewald put the 
information about the wavelength and direction for the incident X-ray beam into 
reciprocal lattice as follows (Fig.5.1). Draw a vector AO in the incident direction of 
length 1 #+  terminating at the origin O. Construct a circle of radius 1 #+ (a sphere, 

called reflex sphere, of radius 1 #+  in three dimensions) with centre at A. Two 
possibilities arise: 
 
1.  The circle does not pass through any reciprocal point. This implies that the 

particular wavelength in question would not be diffracted by that crystal in the 
orientation. Further, if the magnitude of the vector|F9| < 1 2�+  where a is the 
lattice constant), the circle would not pass through any point, showing that X-
ray diffraction cannot occur if # > 2�. It may also be noticed that the longer 
the vector AO (the shorter the wavelength), the greater is the likelihood of the 
circle’s intersecting a point, and hence of diffraction. 

2.  The circle passes through any point B of the reciprocal lattice. Join A and O to 
B.   Thus, OB is a reciprocal lattice vector, G and is normal to some set of 
lattice planes, e.g., AE. Hence,OB = |G| = 1 �+  , d is the interplanar for the 
set. 
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Fig.5.1: Ewald’s construction in the reciprocal lattice (After Ashcroft & Mermin, 
 (1976) 
 
Let k = OA and k′ = AB respectively be the incident wave vector and the reflected 
wave vector. Thus, 
  k′ = k + G       (5.7) 
 
which shows that (i) scattering changes only the diffraction of k and (ii) the scattered 
wave differs from the incident wave by a reciprocal lattice vector G. for  diffraction, it 
is necessary that the vector k′, that is the vector AB, equal in magnitude to the vector 
k: 
  
 G�
 � �G � H�2 = k2                                         (5.8)           2k∙G + G2 = 0                                                       (5.9) 
 (k + G/2)∙G = 0                                                     (5.10) 
 
Equation (5.10) is Bragg’s law in vector form.  Its scalar form can be obtained by 
noting that AE = k + G/2) is perpendicular to OB. Thus OB = 2OE = (2 sin θ)/ 5 . 
Also OB =1 96 . Hence,  

 (2 sin θ)/ 5 = 1 96   

 2d sin θ = 5  
This shows that the Bragg equation has a simple geometrical significance in the 
reciprocal lattice. 
             
3.3       Brillouin Zones 
 
For solid state physics the most important statement of the diffraction condition was 
given by Brillouin. Fig. 5.1 shows that incident wave and reflected wave make an 
equal angle with the lattice plane AE, which is, therefore, a reflecting plane. The 
reciprocal lattice vector G = OB is perpendicular to the reflecting plane AE. Thus, 
corresponding to G = OB, the reflecting plane is AE (produced). From the relation k′ 
= k + G, we see that (AO +OE) OB = 0. That is AE OB = 0. Thus, AE is 

k 

k′ 
E 
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perpendicular to OB and also bisects it, since E is the midpoint of OB by construction. 
Hence, for a given reciprocal lattice vector, its right bisector is the reflecting plane. 
One can extend the procedure for finding the reflecting planes corresponding to 
reciprocal lattice vectors connecting the reciprocal lattice point O (origin) with its 
neighbours in reciprocal space. The volume bounded by these planes is referred to as 
the geometrical definition of the first Brillouin zone (BZ). 
 
Figure 5.2 gives a portion of reciprocal space for a two dimensional oblique lattice 
showing the lines bisecting some reciprocal lattice from O. The six shortest of these 
vectors can be right bisected to produce the first BZ centered on the reciprocal point 
O. 

 
                     Fig.5.2: Construction of first BZ for a two-dimensional oblique lattice              
(After     Kittel.1979). 
                     
Mathematically the reflecting planes and hence the Brillouin zones could be 
calculated from equation (5.9). For the simple square lattice (of lattice constant a), the 
reciprocal lattice vectors are 

G = 
�$� �!�� +  !���       (5.11) 

 
The wave vector for an X-ray measured from the origin of the reciprocal lattice is 
     � =  �%� + �&�       (5.12) 
  
Use of Eq. (5.11) and Eq. (5.12) in Eq.(5.9) gives 
   !��% + !��& =   �!�� +  !��� $�                                     (5.13)    
 
By assigning different value to !�, !�, we can obtain various reflection lines. So all �-
vectors originating at the origin and ending on these lines, will produce Bragg 
reflection. 
     
4.0  Conclusion  
 
The reciprocal lattice explains the theory of X-ray diffraction by crystal planes while 
the Brillouin zone gives a vivid interpretation of the diffraction condition. 
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5.0     Summary 
 
 A wavelength of the order of 1  (1 Å =10	
  cm) is  require to explore the 
 structure of crystals 
 The concept of reciprocal lattice explained the theory of X-ray diffraction by 
 crystal planes 
 The reciprocal lattice is an infinite periodic three-dimensional array of points 
 whose spacing is inversely proportional to the distance between the planes in 
 the  direct lattice. 
 Brillouin zone gives a vivid interpretation of the diffraction condition. 
 
6.0 Tutor marked assignment 
 
Q1.  Prove that the volume of the unit cell of the reciprocal lattice is proportional to 
 that  of the corresponding direct lattice. 
 
Q2.  The primitive translational vectors of the hexagonal space lattice may taken as  

 9 = )3'��( � 2+ , � + D� 2+ E�  ;     < = − )3'��( � 2+ , � + D� 2+ E� ; = = �� 

(a) Show that the volume of the primitive cell is )3'��( � 2+ , �� c  

(b) Show that the primitive translations of the reciprocal lattice are  

 9 = )2* 3�/�+ , � +  D2* �+ E�;  < = − )2* 3�/�+ , � + D2* �+ E� ; = = D2* �+ E� 

 So that the lattice is its own reciprocal, but with a rotation axes. 
 
Q3.   Show that the volume of the first Brillouin zone is given by	2
�� ��
 . Where 3� the  volume is is of a crystal primitive cell    
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UNIT 6 EXPERIMENTAL CRYSTAL STRUCTURE DETERMINATION   
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1.0 Introduction 
 
In practice, to satisfy Bragg’s law for X-ray diffraction, it is necessary to vary either 
the angle of inclination of the specimen to the beam or the wavelength of radiation. 
The three standard methods of X-ray crystallography to be discussed are the Laue 
method, the Rotating crystal technique and the Powder method.   
 
2.0 Objective 
 
To explain experimental crystal structure determination according to: 
 
 Laue method 
 Rotating crystal technique 
 Powder method 
 
3.0 Definition 
 
Experimental crystal structure determination is an experimental method to study 
scattering of crystal based on Ewald’s simple geometric construction. 
 
3.1 Laue method 
 
In the Laue method (Fig 6.1), a single crystal is mounted on a gonimeter, which 
enables the crystal to be rotated through known angles in two perpendicular planes, 
and maintained stationary in a beam of X-rays ranging in wavelength from about 0.1 
to 2.0 A. The crystal selects out and diffracts those values of # for which planes exits, 
of spacing d and glancing angle θ , satisfying the Bragg equation. A flat photographic 
film is placed to receive either the transmitted diffracted beam or the reflected 
diffracted beam. 
 
As shown in the figure (6.1), the resulting Laue pattern consists of a series of spots. 
Sharp well-defined spots on the film are good evidence of a perfect crystal structure, 
whereas diffuse, broken or extended spots indicate lattice distortion, defects or other 
departures from the perfect crystal lattice. The Laue pattern reveals the symmetry of 
the crystal structure in the orientation used; for example, if a cubic crystal is oriented 
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with a cube edge, i.e., a [100] axis, parallel the incident beam, the Laue pattern will 
show the four fold symmetry appropriate to this axis. 
 

 
 Fig.6.1: Schematic representation of Laue technique (after Kacchava, 1990) 
 
3.2  Rotating Crystal Technique 
 
A small single crystal (1 mm dimension) is mounted on a goniometer which, in turn, 
is rigidly fixed to a spindle so that the crystal can be rotated about a fixed axis in a 
beam of monochromatic radiation. The specimen is usually oriented with one of the 
crystallographic axes parallel to the axis of rotation. The resulting variation in θ 
brings different lattice planes into position for reflection and diffracted images are 
recorded on a photographic film placed cylindrically, coaxial with the rotating spindle 
(Fig.6.2). 

 
 Fig.6.2: Rotating crystal technique (after Kachhava, 1992) 
 
To explain the general nature of the diffraction, consider a crystal mounted so that one 
of the axes (e.g. 6) is parallel to the axis of rotation, then diffraction cannot occur 
from the planes of atoms parallel to this axis unless 
 6 cos ϕ) =  !#                                                             (6.1) 
 
where n is an integer [Fig.6.2 (a)]. The diffracted beam will, therefore, be along the 
surface of a family of cones whose vertices are at the crystal, and whose semi-vertical 
angles are given by the above equation [Fig.6.2 (b)]. 
  



PHL 307          SOLID STATE PHYSICS 1 
 

40 

 
 

 
 
 Fig.6.2: Diffraction pattern in rotating crystal technique 
 (a)Diffraction condition (b) Cones of diffraction (After Kachhava, 1992) 
 
The diffracted beams will only occur along those specific directions lying on the 
cones for which the correct phase relationship also holds for planes parallel to the 
other two coordinate axes. When the film is flattened out after development, these 
diffraction images will lie on a series of lines called layer lines, as illustrated in 
Fig.6.3. All the images on the zero layer line come from planes parallel to the axis of 
rotation, i.e., planes with l = 0, and the other layer lines arise from planes with l 
± 1, ±2, . . . . ., etc. diffraction images from planes with the same values of h and k 
but different values of l, all lie on one of a series of curves known as row lines which 
are transverse to the layer lines and in the particular case when the A and B axes are 
perpendicular  to C,  they intersect with the zero layer line at right angles. 
 

 
Fig.6.3: Typical Rotation photograph (After Kachhava, 1992) 
 
If H� is the separation of these layer lines and R is the radius of the camera, then from 
Fig.6.2 (b),  
 �� = � �����        (6.2)  
 
From equation (6.1) and equation (6.2) 
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�� =  
�� �� �
��� 
�� �� ��R                

(6.3) 
 

 � =  ��	� 	�
 −  ��

�/
        (6.4) 

 
By subsequent orientation of the crystal with A and B axes parallel to the axis of 
rotation, the other unit cell parameters may be determined. 
 
3.3: Powder method 
 
 In this technique, a monochromatic X-ray beam is allowed to irradiate a small 
specimen of the substance grinded to a fine powder and contained in a thin-walled 
glass capillary tube. Since the orientation of the minute crystal fragments is 
completely random, a certain number of them will lie with any set of lattice planes 
making exactly the correct angle with the incident beam for reflection to occur. 
Further, these planes in the different crystallites are randomly distributed about the 
axis of the incident beam so that the corresponding reflections from all the crystallites 
in the specimen lie on a cone coaxial with the axis and with a semi-apex angle of 
twice the Bragg angle (i.e.2θ). The specimen is surrounded by a cylindrical film and 
two small portions of each cone are recorded as lines on the film (Fig.6.3). If the grain 
size is fairly large (> 10-6 m), there is insufficient room within the irradiated volume 
for enough crystallites to be in all possible orientations and the resultant powder lines 
will be rather ‘spotty’. This spottiness can be eliminated by rotating the specimen 
during exposure this considerably increases the number of crystallites which can 
contribute to each powder line. 
 

 
 

Fig.6.3: Schematic of powder method (a) experimental arrangement 
 (b)Diffraction geometry (c) Developed films (After Kachhava, 1992) 
 
The Bragg angle θ of the various reflections can be calculated by measuring the 
separation of the pairs of lines since, from the geometry of Fig.6.2 (b) 
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��������� = �����       

 (6.5) 
   
where R is the radius of the camera. The reflections can be indexed and the unit cell 
parameters evaluated. 
 
4.0 Conclusion 
 
This unit showed that the three methods discussed are tools for better understanding 
of diffraction phenomena in crystalline samples. 
 
5.0 Summary 
 
 Variation of the angle of inclination of the specimen to the beam or the 

wavelength of radiation allows better understanding of Bragg’s law. 
 In the Laue technique , a single stationary crystal is irradiated by a range of X-

ray  wavelengths 
 in the Rotational crystal method, a single crystal specimen is rotated in a beam 

of  monochromatic x-rays wavelength 
 in the Powder technique, a polycrystalline powder specimen is kept stationary 

in a  beam of monochromatic radiation. 
 
6.0 Tutor marked Assignment 
 
Q1. Find the Bragg angles and the indices of diffraction for the three lowest angle 

lines on the powder photographs of ��� crystal: a = 6.0  and # = 1.54Å 
Q2. Cobalt has two forms: α-Co, with ℎ�� structure (lattice spacing of �= 2.15  ) 

and  �-Co, with ��� structure (lattice spacing of ��*���= 3.55 Å). Assume 
that the ℎ��  structure has an ideal � �⁄  ration. Calculate and compare the 
position of the first  five X-ray powder diffraction peaks. The quantity I =
 4* # sin "+  can be used to  characterize the peak positions (here # is the 

wavelength of the X-ray radiation  and 2 " is the scattering angle) 
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MODULE 2  CRYSTAL ELASTIC CONSTANTS AND VIBRATIONS 
 
Unit 1  Elastic Constants of Crystals (I) 
Unit 2  Elastic Constants of Crystals (II) 
Unit 3  Crystals Binding 
Unit 4  Lattice Vibration 
Unit 5  Thermal Properties 
 

UNIT 1 ELASTIC CONSTANTS OF CRYSTALS    
 
CONTENTS 
 
1.0       Introduction    
2.0       Objectives   
3.0       Definition   
 3.1 Analysis of elastic strains and stresses  
  3.2 Dilation  
 3.3 Shearing strain  
 3.4 Stress components   
 3.5 Elastic compliance and stiffness constants   
 3.6 Energy density 
 3.7 Cubic crystals   
4.0 Conclusion   
5.0 Summary  
7.0 Tutor Marked Assignment   
7.0  Further Reading/References    
 
1.0 Introduction 
 
The study of the elastic behavior of solids is very important in the fundamental and 
technical researches.  In technology, it would tell us about the strength of the 
materials. In fundamental research, it is of interest because of the insight it provides in 
to the nature of binding forces in solids. They are also of importance for the thermal 
properties of solids.  
 
2.0 Objective 
 
 To explain elastic constant in solids 
 To explain  strength of solid materials 
 To understand fully the binding forces in solids 
 
3.0 Definition 
 
Elasticity is the study of the ability of crystals to incorporate changes or adapt to new 
circumstances easily 
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3.1 Analysis of elastic strains and stresses 
 
The local elastic strain of a body may be specified by six numbers. If ;, <, = are the 
angles between the unit cell axes a, b, c, the strain may be specified by the changes Δ;, Δ<, Δ=;  Δ�, Δ�, Δ� resulting from the deformation. This is a good physical 
specification of strain, but for non-orthogonal axes it leads to mathematical 
complications. The strain may be specified in terms of the six 
components 
��., 
�� ,
��, 
�� , 
��,
��  which are defined below. We imagine that 
three orthogonal axes f, g, h of unit length are embedded securely in the unstrained 
solid, as shown in Fig. 1.1(a). We suppose that after a small uniform deformation has 
taken place the axes, which we now label, !′, K′, "′, are distorted in orientation and in 
length, so that with the same atom as origin we may write. 
 
 
  !′ � �1 � L���! � L��K� L��"; 
            K′ �  L��! � M1 � L��NK � L��";          (1.1) 
            "′ �  L��! � L��K� �1 � L���"   
 
The fractional changes of length of the f, g, and h. axes are   L�� , L�� , L�� respectively, 
to the first order. We define the strain components  ���., ��� ,
��    by the relations 
 
 ��� � ���   ;            ��� � ���  ;         ��� � ��� ;         (1.2) 
 
The strain components 
�� , 
��,   
��   may be defined as the changes in angle 
between the axes, so that to the first order 
   
�� � !′ ∙ K′ � O!"+O"! ; 
   
�� � K′ ∙ "′ � O#!+O!# ;        (1.3) 
   
�� � "′ ∙ !′ � O#"+O"# ; 
 
This completes the definition of the six strain components. A deformation is uniform 
if the values of the strain components are independent of the choice of origin. 
 

 



PHL 307          SOLID STATE PHYSICS 1 
 

46 

Fig.1.1 Coordinate axes for the description of the state of strain; the orthogonal unit 
axes in the unstrained state (a) are deformed in the strained state (b). 
 
We note that merely rotating the axes does not change the angle between them, so for 
a pure rotation ��� = −��� ;  ��� = ��� ;  ��� = −���. If we exclude pure 

rotations, we may without further loss of generality take ��� = ��� ;  ��� =��� ;  ��� = ���. so that in terms of the strain components we have 

 �′ − � =  ��� + �� ���� + �� ���� ; 

           �� − � =  �� ��
� + ���� + �� ����;                    (1.4) 

           �′ − � =  �� ���� + �� ���� + ���� ;  

 
We consider under a deformation which is substantially uniform near the origin a 
particle originally at the position 
  J = �K + 
L + �M           (1.5) 
  
After deformation the particle is at 
  J′ = �K′ + 
L′ + �M′          (1.6)  
 
so that the displacement is given by 
  N = J+ − J = ��K+ − K� + 
 �L+ − L� + ��M+ − M�      (1.7) 
 
If we write the displacement as 
        N = OK + PL + QM                                                                         (1.8) 

 
we have from Eq.(1.4) and Eq.(1.7) the following expressions for the strain 
components: 
   

 ��� =   ! " ;       �## =   $R
 ;      ��� =   ����  ;                      (1.9) 

 ��� =  ���� +  ! �� ;      �#% =   ����  + ���� ;        �%" =   !�� +  &��  

                                    
We have written derivatives for application to non-uniform strain. The expressions 
(1.9) are frequently used in the literature to define the strain components. 

Occasionally definitions of ���, �#%, and �%" are given which differ by a factor ½ 

from those given here. For a uniform deformation the displacement N  has the 
components 
    

  u    =  ���� + �
 ���
 + �
 ���� ; 

 

             v    =  1
2 ��
�+ �


+ 1

2�
��;                  (1.10) 

            � =  �
 ���� + �
 ���
 + ���� ;  
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3.2 Dilation  
 
The fractional increment of volume caused by a deformation is called the dilation. 
The unit cube of edges f, g, and h. after deformation has a volume 
 
 3+ =  K+ ∙ L+S M+  ≅ 1 +  �"" + �## + �%%                                      (1.11) 
 
where squares and products of strain components are neglected. Thus the dilation is 
   

 � = 
���� =  �"" + �## + �%%         (1.12) 

  
 3.3  Shearing strain 
We may interpret the strain components of the type 
 

   ��� =  ���� +  ! �� 
 
as made up of two simple shears. In one of the shears, planes of the material normal to 
the x axis slide in the y direction; in the other shear, planes normal to y slide in the x 
direction. 
 
3.4     Stress Components 
 
The force acting on a unit area in the solid is defined as the stress. There are nine 
stress components: Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Zz. The capital letter indicates the 
direction of the force, and the subscript indicates the normal to the plane to which the 
force is applied. Thus the stress component Xx represents a force applied in the x 
direction to a unit area of a plane whose normal lies in the x direction; the stress 
component Xy represents a force applied in the x direction to a unit area of a plane 
whose normal lies in the y direction. The number of independent stress components is 
reduced to six by applying to an elementary cube as in Fig. 1.2 the condition that the 
angular acceleration vanish, and hence that the total torque must be zero. It follows 
that 
 
   Yz  = Zy ,  Zx = Xz,, Xy = Yx 
 and the independent stress components may be taken as Xx, Yy, Zz, Yz, Zx, Xy The 
stress components have the dimensions of force per unit area or energy per unit 
volume, which the strain components are dimensionless 
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Fig. 1.2: Demonstration that number of independent stress components Yx = Xy order 
that the body may be in equilibrium. 
 
3.5 Elastic Compliance and Stiffness Constants 
Hooke's law states that for small deformations the strain is proportional to the stress, 
so that the strain components are linear functions of the stress components: 
 P"" �  ��Q" �  �
R! �  ��S# �  �$R# �  �%S" �  �
Q!; 
       P!! �  
�Q" �  

R! �  
�S# �  
$R# �  
%S" �  

Q!; 
      P## �  ��Q" �  �
R! �  ��S# �  �$R# �  �%S" �  �
Q! ; (1.13) 
        P!# �  $�Q" �  $
R! �  $�S# �  $$R# �  $%S" �  $
Q!; 
 P#" �  %�Q" �  %
R! �  %�S# �  %$R# �  %%S" �  %
Q!; 
 P"! �  
�Q" �  

R! �  
�S# �  
$R# �  
%S" �  

Q! 
 
Conversely, the stress components are linear functions of the strain components: 
 Q" � 
��P"" � 
�
P!! � 
��P## � 
�$P!# � 
�%P#" � 
�
P"!; 
       R! � 

�P"" �  

P!! � 

�P## � 

$P!# � 

%P#" � 


P"!; 
      S# � 
��P"" � 
�
P!! � 
��P## � 
�$P!# � 
�%P#" � 
�
P"! ;   
        R# � 
$�P"" � 
$
P!! � 
$�P## � 
$$P!# � 
$%P#" � 
$
P"!; 
 S" � 
%�P"" � 
%
P!! � 
%�P## � 
%$P!# � 
%%P#" � 
%
P"!;   (1.14) 
 Q! � 

�P"" � 


P!! � 

�P## � 

$P!# � 

%P#" � 


P"! 
  
The quantities  ��  … . .  �
 are called the elastic constants or elastic compliance 
constants; the quantities 
��  …… . . 
�� are called the elastic stiffness constants or 
moduli of elasticity. Other names are also current. The S’s and C’s have the dimension 
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of area per unit force or volume per unit energy and force per unit area or energy per 
unit volume respectively 
   
3.6 Energy Density 
We calculate the increment of work TU done by the stress system in straining a small 
cube of side L, with the origin at one corner of the cube and the coordinate axes 
parallel to the cube edges. We have   
 TU = V ∙ WN                                                                            (1.15)       
                                
where F is the applied force and  
 TN = KTO + LTP + MTQ                  (1.16)    
 is the displacement. If X, Y, Z denote the components of F per unit area, then TU =  X��YTO + ZTP + 1TQ�                    (1.17) 
  
We note that the displacement of the three cube faces containing the origin is zero, so 
that the forces all act at a distance L from the origin. Now by definition of the strain 
components 
 TO = X )T0%% + �� T0%& +  �� T0,%,                      (1.18) etc., so that 
  TU =  X�DY%T0%% +  Z&T0&& +  1,,T0,, + Z,T0&, +  1,%T0,% +  Y&T0%&E (1.19)                     
 

The increment TU of elastic energy per unit volume is 
 T[ = Y%T0%% + Z&T0&& + 1,T0,, + Z,T0&, + 1%T0,% + Y&T0%&     (1.20) 
 

 We have  T[ T0%%+  = Y%   and  T[ T0&&+  = Z& and on further differentiation 

  
 

   TY%  T0&&\  =     
TZ&  T0%%\  

This leads from Eq. (1.14) to the relation 
   /��  =   /��  
 
and in general we have 
 /-. �  /.-                   (1.21) 
 
giving fifteen relations among the thirty non-diagonal terms of the matrix of the Cs. 
The thirty-six elastic stiffness constants are in this way reduced to twenty-one 
coefficients. Similar relations hold among the elastic compliances. The matrix of the 
Cs or S's is therefore symmetrical.  
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3.7 Cubic crystal 
 
The number of independent elastic stiffness constants is usually reduced if the crystal 
possesses symmetry elements, and in the important case of cubic crystals there are 
only three independent stiffness constants, as we now show. We suppose that the 
coordinate axes are chosen parallel to the cube edges. In Eq. (1.14) we must have 
 
 ��� =  ��
 =  ��/ =  ��� =  ��
 =  ��/ =  ��� =  ��
 =  ��/ = 0 
 
Since the stress must not be altered by reversing the direction of one of the other 
coordinate axes. As the axes are equivalent, we also have  
  ��� =  ��� =   ���, 
 and ��� =  ��� =  ��� =  ��� =   ��� =  ���, 
 
so that the first three lines of  Eq.(1.14) are described by the two independent 
constants ��� and ���. The last three lines of Eq.(1.14) are described by the 
independent constant ���, as 
 
    ��� =  ��
 =  �// 
 
by equivalence of the axes, and the other constants all vanish because of their 
behavior on reversing the direction of one or other axis. The array of values of the 
elastic stiffness constant is therefore reduced for a cubic crystal to the matrix below: 
 

   ]��0] =  ^̂
Y% 6�� 6�� 6�� 0 0 0Z& 6�� 6�� 6�� 0 0 01, 6�� 6�� 6�� 0 0 0Z, 0 0 0 6�� 0 01% 0 0 0 0 6�� 0Y& 0 0 0 0 0 6��^̂  

 (1.22) 
 
It is readily seen that for a cubic crystal 
 [ =  1 2+ 6��D0%%� + 0&&� +  0,,� E +  6��D0&&0,, +  0,,0%% +  0%%0&&E 

                                + 1 2+ 6��D0&,� +  0,%� + 0%&� E                                (1.23)     
                                  
satisfies the Eq.(1.19); for the elastic energy density function. 
 

For example,    R[ R0&&+ =  6��0&& + 6��0,, +  6��0%% =  Z&, 

 Using Eq. (1.22). 
For cubic crystals the compliance and stiffness constants are related by 
 

 ��� =  �  ��� ��	 ��
 ���	 ���� ���	; 
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   ��� =  � 
 ��	 ��
 ���	 ��
� ����	 ;                                 

(1.24)   
 
   6�� =  1 H��+  

   
A general review of elastic constant data and of relationships among various 
coefficients for the crystal classes has been given by Hearmon (1946). 
 
4.0 Conclusion 
 
The elastic properties of a crystal considered as homogeneous continuous medium 
rather than a periodic array of atoms is obtained by Hook’s law and Newton second 
law. 
 
5.0 Summary 
 
 The local elastic strain of a body is  specified by six  component numbers: 
             0%%., 0&& ,0,,, 0%& , 0&,,0,% 
 There are nine stress components: Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Zz 
 A deformation is uniform if the values of the strain components are 
 independent  of the choice of origin 
 The fractional increment of volume caused by a deformation is called the 
 dilation 
 Cubic crystals have only three independent stiffness constants. 
 
6.0 Tutor marked assignment 
 
Q1.  Show that the shear constant 

�� �6�� −  6��� in a cubic crystals defined by 

 setting 0%% = − 0&& =  �� 0 and all other strains equal to zero. 

 
Q2. Prove that in a cubical, the effective elastic constant for a shear across the 
 (110) plane in the �11_0� direction is equal �6�� −  6���/2.  
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UNIT 2  ELASTIC CONSTANTS OF CRYSTALS (II)  
  
CONTENT 
 
1.0       Introduction   
2.0       Objectives   
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 3.1 Elastic waves in cubic crystals   
 3.2 Elastic isotropy   
 3.3 Cauchy relations   
4.0 Conclusion    
5.0 Summary  
6.0 Tutor Marked Assignment    
7.0        Further Reading/References   
 
1.0 Introduction 
 
The elastic properties of a homogeneous crystal are generally anisotropic. Even in a 
cubic crystal, the relationship between stress and strain depends on the orientation of 
the crystal axes relative to stress. In general, the number of elastic constants 
characterizing a body is large. However, this number is considerably reduced due to 
the symmetric nature of both strain and stress tensors. 
 
2.0 Objective 
 
The objectives of this unit are to describe: 
 
 Elastic waves in cubic crystals 
 Elastic isotropy 
 Cauchy relations 
 Lattice theory of elastic coefficients 
 
3.0 Definition 
 
Same as in unit 1 
 
3.1 Experimental determination of elastic constants. 
 
The classic methods for the measurement of the elastic constants of crystals are 
described in the review by Hearmon (1964).  In this method, quartz transducer is 
transmitted through the test crystal and reflected from the rear surface of the crystal 
back to the transducer. The elapsed time between initiation and receipt of the pulse is 
measured by standard electronic methods. The velocity is obtained by dividing the 
round trip distance by the elapsed time. In a representative arrangement the 
experimental frequency may be 15 s-1, and the pulse length 1 µsec. The wavelength is 
of the order of 3 x 10-4 cm. The crystal specimen may be of the order of 1 cm in 
length.  The elastic stiffness constants 6�� , 6��,; 6��  of a cubic crystal may be 
determined from the velocities of three waves. A longitudinal wave propagates along 

a cube axis with velocity���� �� ��/�
, where  7 is the density. A shear wave propagates 
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along a cube axis with Velocity )�44 �+ ,1/2
, while a shear wave with particle motion 

along a 11_0 direction propagates along a 110 direction with velocity�	����  ���� 2�� ��/�
. 

 
3.2 Elastic waves in cubic crystals 
 
By considering the forces acting on an element of volume in the crystal we find for 
the equation of motion in the x direction 
 

 �� � =  `a!`b  +  
`a"`c +  `a#`d       

 (2.1) 
 
With similar equations for the y and z directions; � is the density and u is the 

displacement and Oe  is  1�*12� . From Eq. (1.21) in unit 1, it follows, taking the cube edges 

as the x, y, z directions, that 
 

 �� � =  �11
������  +  �12 �������  +  ������ � +  �44 �'(��')  +  '(��'* �  

 
  This reduces, using Eq. (1.9) of unit 1, to �� 	 =  �11

�2���2 +  �44 ��2���2 +
�2���2  � +  
�12 + �44� � �2����� +  

�2	�����    (2.2) 

 
Here u, v and w are components of displacement 
One solution is given by a longitudinal wave, 
   

 � =  ������	
��
 
 
moving along the x cube edge; from (2.2) 
  

 −�
� =  −�
��� 
Here � = �$�   where # is wave vector and f = 2*P is the angular frequency 

So that the velocity is 
 P =  f �+ =  )6�� 7+ ,�/�

                     (2.3) 
Another solution is given by a transverse or shear wave moving along the y cube edge 
with the particle motion in the x direction: 
 

  � =  �������	
��
� 
  
which gives, on substitution in Eq. (1.2) 
 

  −�
� =  −�
��� 
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so that; 
 

 P =  )6�� 7+ ,�/�
                                                                                    (2.4) 

 
There is also a solution given by a shear wave moving in the z direction with particle 
motion in the x direction. In general there are three types of wave motion for a given 
direction of propagation in the crystal, but only for a few special directions can the 
waves be classified as pure longitudinal or pure transverse. 
 
3.3 Elastic isotropy 
 
By minor manipulations we may rewrite Eq. (2.2) as g3Oe =  �6�� −  6�� −  26���e 4�*4%� +  6��∇�O + �6�� +  6��� 44% � P N                          
(2.5) 
 
where the displacement h = O� + P� + Q� is not to be confused with density now 
written as g3. if   
 6�� −  6�� =  26��                      (2.6) 
 
the first term on the right in (2.5) drops out, and we can write on summing with the 
equations for the y and z motions: 
 Ne =  6�� ∇�N +  �6�� +  6��� 8A��  � P N                                            (2.7) 
 
This equation has the important property that it is invariant under rotations of the 
reference axes, as each term in the equation is an invariant. Thus the relation (1.6) is 
the condition that the crystal should be elastically isotropic; that is, that waves should 
propagate in all directions with equal velocities. However, the longitudinal wave 
velocity is not necessarily equal to the transverse wave velocity. 
The anisotropy factor A in a cubic crystal is defined as  
 � =  26�� �6�� −  6���+                                                                           (2.8) 

and is unity for elastic isotropy. 
 
3.4 Cauchy relation 
 
There are among the elastic stiffness constants certain relations first obtained by 
Cauchy. The relations reduce to 
 
  6�� =  6�� 
 
in a crystal of cubic symmetry. If this is satisfied, the isotropy condition (2.6) 
becomes 6�� =  36��. If then a cubic crystal were elastically isotropic and the Cauchy relation 
is satisfied, the velocity of the transverse waves would be equal to the velocity of the 
longitudinal waves. 
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The conditions for the validity of the Cauchy relations are: 
 

I. All forces must be central, i.e., act along lines joining the centers of the atoms. 
This is not generally true of covalent binding forces, nor of metallic binding 
forces. 

II.  Every atom must be at a center of symmetry; that is, replacing every inter 
atomic vector should not change the structure. 

III.  The crystal should be initially under no stress. In metallic lattices the nature of 
the binding is not such that we would expect the Cauchy relation to work out 
well. In ionic crystals the electrostatic interaction of the ions is the principal 
interaction and is central in nature. It is not surprising that the Cauchy relation 
is moderately well satisfied in the alkali halides 

 
Worked example: 
 
Show that the velocity of a longitudinal wave in the�111� direction of a cubic crystal 

is given by P� = ��� �6�� + 26�� + 46��� 7⁄ �� �⁄
.  

 
Solution: 
 
For a longitudinal phonon in the �111�direction, u = v = w.   

Let O = O�0��6%�&�,7 √�⁄ 0	�92 
 

Where � = �$�   is the wave number and f = 2*i is angular frequency. From Eq. 

(2.2), f�7 = �6�� + 26�� + �6��6���� �� 3⁄  

Thus, the velocity f �⁄  of the longitudinal wave in the �111� direction is given by P� = f � = ��6�� + 26�� + 46�� 37⁄ ��� �⁄⁄  

4.0 Conclusion 
 
The existence of the centre of symmetry of a cubic crystal stable under the central 
inters atomic forces leads to the well known Cauchy relation, 6�� =  6��. This reduces 
the number of independent elastic constants of a cubic crystal to two only. 
 
5.0 Summary 
 
 The  longitudinal wave velocity along the x cube edge is given by  

 � =  � �� =  ��

 	� 

/�
 

 The transverse  wave velocity along the y cube edge with the particle motion 
 in  the x direction  is given by  

 � =  � �� =  ���� 	� 

/�
 

 
 The Cauchy relation is  6�� =  6�� 
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 Cauchy relation does not work well for metallic lattices while it is moderately 
 well satisfied in the alkali halides. 
 
6.0 Tutor marked assignment 
 
Q1. Show that the velocity of a longitudinal wave in the �111� direction of a cubic 
 crystal is given by 
  

  P =  ��� �6�� −  26�� +  46���/7��/�
 

 

Q2. Show that the velocity of a transverse wave in the �111� direction of a cubic 
 crystal is given by  
 

                P =  ��� �6�� −  6�� +  6���/7��/�
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1.0 Introduction 
 
The attractive electrostatic interaction between the negative charges of the electrons and 
the positive charges of the nuclei is entirely responsible for the cohesion of solid. As the 
atoms come close together their closed electron shells will start to overlap. The Pauli 
principle states that each electron state can be occupied by only one electron. In order to 
have overlap of closed shells, electrons have to be excited to higher states. This costs 
energy and leads to a repulsive interaction between the atoms. The repulsive interaction 
dominates for short distances between atoms, while the attractive interaction dominates at 
large distances. The actual atomic spacing in a crystal is defined by the equilibrium where 
the potential energy exhibits a minimum.  
 
2.0 Objective 
 
To explain: 
 
 Inter atomic forces 
 Vander Waals bonding 
 Ionic bonding 
 Covalent bonding 
 Metallic bonding 
 
3.0 Definition 
 
Crystal binding is the attractive inter atomic force that hold atom together in a crystal. 
 
3.1 Inter atomic forces 
 
Solids are stable structures, and therefore there exist interactions holding atoms in a 
crystal together. For example a crystal of sodium chloride is more stable than a 
collection of free Na and Cl atoms. This implies that the Na and Cl atoms attract each 
other, i.e. there exist an attractive inter atomic force, which holds the atoms together. 
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This also implies that the energy of the crystal is lower than the energy of the free 
atoms. The amount of energy which is required to pull the crystal apart into a set of 
free atoms is called the cohesive energy of the crystal. 
 
Cohesive energy = energy of free atoms – crystal energy 
 
Magnitude of the cohesive energy varies for different solids from 1 to 10 eV/atom, 
except inert gases in which the cohesive energy is of the order of 0.1eV/atom. The 
cohesive energy controls the melting temperature. A typical curve for the potential 
energy (binding energy) representing the interaction between two atoms is shown in 
Fig.1.1 It has a minimum at some distance R=R0. For R>R0 the potential increases 
gradually, approaching 0 as R, while for R<R0 the potential increases very rapidly, 
tending to infinity at R=0. Since the system tends to have the lowest possible energy, 
it is most stable at R=R0, which is the equilibrium inter atomic distance. The 
corresponding energy U0 is the cohesive energy. A typical value of the equilibrium 
distance is of the order of a few angstroms (e.g. 2-3Å), so that the forces under 
consideration are short range. The inter atomic force is determined by the gradient of 
the potential energy, so that 
 

���� �  � ����                                                                                 (3.1) 

 
If we apply this to the curve in Fig.3.1, we see that F(R) <0 for R>R0. This means that 
for large separations the force is attractive, tending to pull the atoms together. On the 
other, hand F(R)>0 for R<R0, i.e. the force becomes repulsive at small separations of 
the atoms, and tends to push the atoms apart. The repulsive and attractive forces 
cancel each other exactly at the point R0, which is the point of equilibrium. The 
attractive inter atomic forces reflect the presence of bonds between atoms in solids, 
which are responsible for the stability of the crystal. There are several types of 
bonding, depending on the physical origin and nature of the bonding force involved. 
 

 
Fig.3.1. A typical curve for the potential energy (binding energy) representing the 
interaction between two atoms (After Kittel.1979) 
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Although the nature of the attractive energy is different in different solids, the origin 
of the repulsive energy is similar in all solids and it is mainly due to the Pauli 
Exclusion Principle. The elementary statement of this principle is that two electrons 
cannot occupy the same orbital. As ions approach each other close enough, the orbits 
of the electrons begin to overlap, i.e. some electrons attempt to occupy orbits already 
occupied by others. This is, however, forbidden by the Pauli Exclusion Principle. As a 
result, electrons are excited to unoccupied higher energy states of the atoms. Thus, the 
electron overlap increases the total energy of the system and gives repulsive 
contribution to the interaction. The repulsive interaction is not easy to treat 
analytically from first principles.  In order to make some quantitative estimates it is 
often assumed that this interaction can be described by a central field repulsive 
potential of the form exp (r /), where and are some constants or of the 
form 
/j
, where n is sufficiently large and B is some constant. 
   
3.2 Vander Waals (Inter atomic) bonding 
 
This type of binding is exhibited by solid noble gas crystals. The outermost electron shell 
is completely filled and the electron distribution is spherically symmetric. Each atom is 
neutral and has no permanent dipole moment. The attractive forces between the atoms 
arise from fluctuations in the electron distribution. These give an instantaneous 
fluctuating dipole moment in the atom. Its interaction with induced dipole moments in the 
neighboring atom leads to a weak interaction. The electron distribution in inert gases is 
very close to that in free atoms. The noble gases such as neon (Ne), argon (�A), 
krypton (Kr) and xenon (Y0) are characterized by filled electron shells and a spherical 
distribution of electronic clouds in the free atoms. In the crystal the inert gas atoms 
pack together within the cubic ��� structure. Consider two inert gas atoms (1 and 2) 
separated by distance R. The average charge distribution in a single atom is 
spherically symmetric, which implies that the average dipole moment of atom 1 is 
zero: 〈l1〉 =0. Here the brackets denote the time average of the dipole moment. 
However, at any moment of time there may be a non-zero dipole moment caused by 
fluctuations of the electronic charge distribution. We denote this dipole moment by 
d1.  From electrostatics consideration, this dipole moment produces an electric field, 
which induces a dipole moment on atom 2. This dipole moment is proportional to the 
electric field which is in its turn proportional to the d1/R3 so that 
 ��  ∝  � ∝ +���                      (3.2) 

 
The dipole moments of the two atoms interact with each other. The energy is 
therefore reduced due to this interaction. The energy of the interaction is proportional 
to the product of the dipole moments and inversely proportional to the cube of the 
distance between the atoms, so that 
 

 −
�����
    ∝ − 

�����                                     (3.3) 

 
and that the coupling between the two dipoles, one caused by a fluctuation, and the 
other induced by the electric field produced by the first, results in the attractive force, 
which is called the Van der Waals force. The time averaged potential is determined by 
the average value of 〈���〉 which is not vanish, even though 〈l1〉is zero. 
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� ∝ � 〈���〉��                                            (3.4) 

  
The respective potential decreases as U& reduces with the separation between the 
atoms. Van der Waals bonding is relatively weak; the respective cohesive energy is of 
the order of 0.1eV/atom.  This attractive interaction described by Eq. (3.4) holds only 
for a relatively large separation between atoms. At small separations a very strong 
repulsive forces cause by the overlap of the inner electronic shells start to dominate. It 
appears that for inert gases this repulsive interaction can be fitted quite well by the 
potential of the form * U��6  where B is a positive constant. Combining this with Eq. 

(3.4) we obtain the total potential energy of two atoms at separation R which can be 
represented as  
 � � 4� ������� � �����
                                         (3.5) 

 
where 4���

 A and 4����B. This potential is known as Lennard-Jones potential. 
 
3.3 Ionic bonding 
 
The ionic bond results from the electrostatic interaction of oppositely charged ions. 
Let us take sodium chloride as an example. In the crystalline state, each Na atom loses 
its single valence electron to a neighboring Cl atom, producing Na+ and V	�ions 
which have filled electronic shells. As a result an ionic crystal is formed containing 
positive and negative ions coupled by a strong electrostatic interaction.  
 
 W� � 5.1
Y�Z[�2\��2[� 
�
�]^� → W�'
� 
� �  V	 →  V	� �  3.6
Y�
	
���[� ���2�2�^� 
   W�' � V	� → W�V	 � 7.9
Y�
	
���[����2� 
�
�]^�    
 
The cohesive energy with respect to neutral atoms can be calculated as 7.9eV - 5.1eV 
+ 3.6eV, i.e. Na + Cl W�V	 + 6.4 eV (cohesive energy). The structure of W�V	 is 
two interpenetrating fcc lattices of Na+

 and V	�
ions as shown in Fig.3.2 

 
                       Fig 3.2 structure of W�V	(After Kachhava, 1992) 
 
Thus each Na+ ion is surrounded by 6 V	�

ions and vice versa. This structure suggests 
that there is a strong attractive Coulombic force between nearest-neighbors ions, 
which is responsible for the ionic bonding. To calculate binding energy we need to 
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include Coulomb interactions with all atoms in the solid. Also we need to take into 
account the repulsive energy, which we assume to be exponential. Thus the 
interaction between two atoms i and j in a lattice is given by 
 

 ��� �  ������� �� �  � �� ����                                  (3.6)   

Here ��(  is the distance between the two atoms, q is the electric charge on the atom, 
the (+) sign is taken for the like charges and the (–) sign for the unlike charges. The 
total energy of the crystal is the sum over i and j so that   
 

   c � �
� ∑c�( � W∑ e5
)�*�� +⁄ - f g� ��(6 h(                                        (3.7)                     

 
In this formula ½ is due to the fact that each pair of interactions should be counted 
only once. The second equality results from the fact in the W��	 structure the sum 
over j does not depend on whether the reference ion i  is positive or negative, which 
gives the total number of atoms. The latter divided by two gives the number of 
molecules N, composed of a positive and a negative ion. We assume for simplicity 
that the repulsive interaction is non-zero only for the nearest neighbors (because it 
drops down very quickly with the distance between atoms). In this case we obtain  
  c � W e?5
�. +⁄ + ; g� U6 h                                                (3.8)        

 
  Here R is the distance between the nearest neighbors; z is the number of the nearest      
neighbors, and is the Madelung constant: 
 

  
where ��( is defined by��( � ��(U .The value of the Madelung constant plays an 
important role in the theory of ionic crystals. In general it is not possible to compute 
the Madelung constant analytically. A powerful method for calculation of lattice sums 
was developed by Ewald, which is called Ewald summation. This method can be used 
for the numerical evaluation of the Madelung constants in solids. Example considers a 
one-dimensional lattice of ions of alternating sign as shown in Fig.3.3 below. 
 

 
  Fig.3.3: 1-D lattice of ions of alternating sign. 
 
In this case ;U � 2 i1U + 12U � 13U + 14U � + +k 
 
Or  

; � l�f1���((/�
 

(3.9) 
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 = 2 �1 − �� + �� − �$ + − −	                                                                  (3.10) 

 
The factor 2 occurs because there are two ions, one to the right and one to the left at 
equal distances A0. 
we sum this series by the expansion  
   

ln�1 + �� =  n�−1��	�:
���

 Y�!  

 
Thus the Madelung constant for 1-dimensional chain is � = 2 ln2. 
In three dimensions calculation of the series is much more difficult and cannot be 
performed so easy. The values of the Madelung constants for various solids are 
calculated, tabulated and can be found in literature (e.g.Kittel, 1996). 
 
3.4 Covalent bonding 
The covalent bond is another important type of bond which exits in many solids. The 
covalent bond between two atoms is usually formed by two electrons, one from each 
atom participating in the bond. The electrons forming the bond tend to be partly 
localized in the region between the two atoms joined by the bond. Normally the 
covalent bond is strong: for example, it is the bond, which couples carbon atoms in 
diamond. The covalent bond is also responsible for the binding of silicon and 
germanium crystals. In a two-atomic molecule (one electron per atom) the energy levels 
are split into a binding and an antibinding one. The two electrons are shared between the 
two atoms and fill the lowest, binding, molecular orbital. In a solid the energy levels are 
no longer discrete but the binding and antibinding levels become broad energy bands.  
The structure of covalent crystals is determined by the direction of the bonds, they have 
often fewer nearest neighbor atoms (lower coordination number).  
 
Compounds where the atoms have different number of valence electrons exhibit a mixture 
of ionic and covalent binding. Ex: ,-./. ,- has 3 valence electrons and ./ has 5. On the 
average we have 4 electrons per atom which can be shared in tetrahedral bonds with 
neighboring atoms. However if the bonds are to be symmetrical the ,- will be negatively 
charged and ./ positively charged. Hence partial ionic binding cannot be avoided in this 
and similar cases. 
 
3.5 Metallic bonding 
 
Metals are characterized by a high electrical conductivity, which implies that a large 
number of electrons in a metal are free to move. The electrons capable to move 
throughout the crystal are called the conductions electrons. Normally the valence 
electrons in atoms become the conduction electrons in solids. The main feature of the 
metallic bond is the lowering of the energy of the valence electrons in metal as 
compared to the free atoms. Below, some qualitative arguments are given to explain 
this fact. According to the Heisenberg uncertainty principle the indefiniteness in 
coordinate and in the momentum are related to each other so that ∆�∆� =  ℏ . In a 
free atom the valence electrons are restricted by a relatively small volume. Therefore, 
p is relatively large which makes the kinetic energy of the valence electrons in a free 
atom large. On the other hand in the crystalline state the electrons are free to move 
throughout the whole crystal, the volume of which is large. Therefore the kinetic 
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energy of the electrons is greatly reduced, which leads to diminishing the total energy 
of the system in the solid. This mechanism is the source of the metallic bonding. 
Figuratively speaking, the negatively charged free electrons in a metal serve as glue 
that holds positively charged ions together. The metallic bond is somewhat weaker 
than the ionic and covalent bond. For instance the melting temperature of metallic 
sodium is about 4000

 which is smaller than 11000
 in 5�6� and about 4000 in diamond. 

Nevertheless, this type of bond should be regarded as strong. In transition metals like 
Fe, Ni, Ti, Co the mechanism of metallic bonding is more complex. This is due to the 
fact that in addition to s electrons which behave like free electrons we have 3d 
electrons which are more localized. Hence the d electrons tend to create covalent 
bonds with nearest neighbors. The d electrons are normally strongly hybridized with s 
electrons making the picture of bonding much more complicated. 
 
4.0 Conclusion 
 
Solids are stable structures, and therefore there exist interactions holding atoms in a 
crystal together.  Depending on the distribution of the outer electrons with respect to the 
ions, different binding types can occur. 
 
5.0 Summary 
 
 The cohesive energy is the energy that must be added to the crystal to separate it 

to neutral free atoms at rest, at infinite separation. 
 Crystals of inert gas atoms are bound by Vander Waals interaction. 
 Ionic crystals are bound by electrostatic attraction of charged ions of separate 

signs. 
 A covalent bound is characterized by the overlap of charge distributions of 

antiparallel spin. 
 Metals are bound by reduction in kinetic energy of the valence electrons in the 

metal as compared with the free atom. 
 
6.0 Tutor marked assignment 
 
Q1.  Repulsive potential between two atoms is represented by � j�+ , where 
 constants A and n are phenomenological parameters. 
(a) Show that the equilibrium inter atomic distance is given by  j� = o6!��p�q ��	�

 

 
(b) Demonstrate that the cohesive energy per molecule at equilibrium is  [� = − �p�j� o1 − 1!q 

 
(c)  Calculate the constant n for 5�6�, taking into account that the lattice constant 
 is a=5.63Å, α=1.75, q=e and the measured binding energy per molecule for 
 this crystal is −7.94 eV. 

Q2.  Using the Lennard-Jones potential with e=1.04ÿ10
-2

eV and s=3.40Å and 
 taking into account only nearest-neighbor atoms, calculate the lattice 
 parameter and the cohesive energy of the fcc crystal of Ar. 
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1.0 Introduction 
 
An important aspect of the study of solid state physics is the lattice dynamics, which 
concerns itself with the vibrations of atoms about their equilibrium sites in a solid. 
These vibrations occur at any temperature, even at absolute zero. They are responsible 
for the thermal properties - heat capacity, thermal conductivity, thermal expansion, 
etc. of insulators and contribute the greater part of the heat capacity of metals. 
 
2.0 Objective 
 
To describe: 
 
 One-dimensional monatomic lattice. 
 One-dimensional diatomic lattice 
 Three- dimensional lattice. 
 
3.0 Definition 
 
Lattice vibration is a continuing periodic oscillation relative to a fixed reference point, 
or a single complete oscillation. 
 
3.1 One-dimensional monatomic lattice 
 
Consider one-dimensional crystal lattice and assume that the forces between the 
atoms in this lattice are proportional to relative displacements from the equilibrium 
positions. This is known as the harmonic approximation, which holds well provided 
that the displacements are small. One might think about the atoms in the lattice as 
interconnected by elastic springs (Fig.4.1).  
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Fig.4.1: Lattice vibration of monatomic lattice 
 (After www.pa.uk.edu/kwng/phy/525/lec) 
   
Therefore, the force exerted on nth atom in the lattice is given by 
 �� � 	
���� � ��� �  	
���� � ���                     (4.1) 
 
where C is the interatomic force (elastic) constant. Applying Newton’s second law to 
the motion of the � + �ℎ atom we obtain 
 m 0�1�

02�   �  n� � 	��	
1 � �	��  	��	�1 � �	� � �	�2�	 � �	
1 � �	�1�(4.2) 
 
where M is the mass of an atom. Note that we neglected here the interaction of the � + �ℎ atom with all but its nearest neighbors. A similar equation should be written 
for each atom in the lattice, resulting in N coupled differential equations, which 
should be solved simultaneously (N is the total number of atoms in the lattice). In 
addition the boundary conditions applied to the end atom in the lattice should be taken 
into account. 
 
Now let us attempt a solution of the form 
 

	� � 
�
����� ���                                                      (4.3) 
 
where o� is the equilibrium position of the � + �ℎ atom so that o� � ��. This 
equation represents a traveling wave, in which all the atoms oscillate with the same 

frequency � and the same amplitude A and have wave vector q. Note that a solution 
of the form Eq. (4.3) is only possible because of the transnational symmetry of the 
lattice. Now substituting Eq. (4.3) into Eq.(4.2) and canceling the  common quantities 
(the amplitude and the time-dependent factor) we obtain 
 ���
���	
�� � ���2�	
�� � �	

����� � �	

������          (4.4)     
 
This equation can be further simplified by canceling the common factor �����  which 
leads to  
 
  mp� � VM2 + ����������N � 2V�1 + cos g�� � 4V�2�� 3�

�                   (4.5) 
 
We find therefore the dispersion relation for the frequency 
 

http://www.pa.uk.edu/kwng/phy/525/lec)
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    � � �
�
� ���� ��

� �                                                                                         (4.6) 

   
which is the relationship between the frequency of vibrations and the wave vector q. 
This dispersion relation has a number of important properties. 
 
(i)  Reducing to the first Brillouin zone. The frequency (4.6) and the displacement 
 of the atoms (5.3) do not change when we change q by q+2/a. This means 
 that these solutions are physically identical. This   allows us to set the range of 
 independent values of q within the first Brillouin zone, i.e. 
 

           � tu � � � tu                               (4.7) 

 
Within this range of g the � versus g is shown in Fig.4.2. The maximum frequency 
is�4� /�. The frequency is symmetric with respect to the sign change in q, i.e. 
����=�����). This is not surprising because a mode with positive q corresponds to 
the wave traveling in the lattice from the left to the right and a mode with a negative q 
corresponds to the wave traveling from the right to the left. Since these two directions 
are equivalent in the lattice the frequency does not change with the sign change in g. 
At the boundaries of the Brillouin zone q=/a  the solution represents a standing 
wavec� � ,�+1��
��42: atoms oscillate in the opposite phases depending on 
whether n is even or odd. The wave moves neither right nor left. 
 

 
Fig.4.2:  Dispersion curve of a one-dimensional monatomic lattice representing the 
First Brillouin Zone. www.pa.uk.edu/kwng/phy/525/lec) 
 
 (ii) Phase and group velocity. The phase velocity is defined by 
 

�� � ��                      (4.8) 

and the group velocity by  
    

http://www.pa.uk.edu/kwng/phy/525/lec)
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0 =  +1+2          (4.9) 

 

The physical distinction between the two velocities is that �� is the velocity of the 

propagation of the plane wave, whereas the ��  is the velocity of the propagation of 
the wave packet. The latter is the velocity for the propagation of energy in the 
medium. For the particular dispersion relation Eq. (4.6) the group velocity is given by 
 
0 =  ��
�3  cos 2
�        (4.10) 

 
As is seen from Eq. (4.10) the group velocity is zero at the edge of the zone where 
q=/a. Here the wave is standing and therefore the transmission velocity for the 
energy is zero. 
 
(iii) Long wavelength limit. The long wavelength limit implies that >>a. In this limit p�<<1. We can then expand the sine in Eq. (4.6) and obtain for the positive 
frequencies: 

 � =  ��3 ��                                                     (4.11) 

 
We see that the frequency of vibration is proportional to the wave vector. This is 
equivalent to the statement that velocity is independent of frequency. In this case 
 

 
4 =  12 =  ��3 �                (4.12)             

 
Worked example: 
 
Atoms in crystals are held together by chemical bonds. Consider these bonds to be 
elastic springs of the same force constants � for one-dimensional crystal lattice. 
Suppose one of the atoms is displaced from its mean position by an external force and 
then released; 
 
(a) derive an expression for its periodic motion with respect to its nearest 

neighbours 
(b) prove that these atoms can vibrate with a number of discrete frequencies up to 

a maximum value given by f� = ±r4��  

Solution: 
 
(a) Consider a linear chain of atoms connected by elastic springs, each of spring 
constants β (Fig below). If the atoms are each of mass m and the distance between any 
two consecutive atoms is ‘a’, then a small displacement by some external force on one 
of them will result into an oscillatory motion?  
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The displacements of �! − 1�@ℎ, !@ℎ, and �! + 1�@ℎ atoms from their mean positions 
at any instant will be [�	�, [� and [��� respectively. Also, the extension of the 
spring between �! − 1�@ℎ, and !@ℎ atoms will be �� + [� − [�	�� and therefore, the 
restoring force FL on the !@ℎ atom due to the left spring will be  
 s; = ��� + [� − [�	��                                                              (i) 
Similarly, the extension of the spring on the right of !@ℎ atom will be �� + [��� −[�� and restoring force is given by s< = ��� + [��� − [��                                                             (ii) 
The net force on the !@ℎ atom will be s = s< − s; = ��� + [��� − [�� − ��� + [� − [�	�� ∴ s = ��[��� + [�	� − 2[��                                                   (iii) 
Applying Newton’s second law of motion to the displacement of the !@ℎ atom, we 
obtain s = � ��[��@� = ��[��� + [�	� − 2[�� 
∴ � 1�=�12� − ��[��� + [�	� − 2[�� = 0                                    (iv) 

 
Hence, Eq.(iv) is the equation of periodic motion of the !@ℎ atom with respect to �! − 1�@ℎ and �! + 1�@ℎ atoms. 
(b)The general solution of Eq. (iv), if the amplitude of this motion is U, is given by [� = [0�>92��?�@                                                                        (v) 
Where Y� is the distance of the !@ℎ atom from the origin i.e. Y� = !�. Similarly, if Y�	� and Y��� are the distances of �! − 1�@ℎ and �! + 1�@ℎ atom from the origin, 
then Y�	� = �! − 1��  and Y��� = �! + 1��. Thus, we have 
 [�	� = [0�>92��?���@ 
             (vi)  [��� = [0�>92��?���@        
Where f is the angular frequency and � = �$�                                     

Substituting Eq.(v) and Eq.(vi) into Eq.(iv) with Y� = !�, Y�	� = �! − 1�� and Y��� = �! + 1��, gives, 
 
−�f�[0�920���� = �[0�920����t0��� + 0	�� − 2u 
 

−�f�[0�920���� = � vo0���� q� + o0	���� q� − 2w = � �0���� − 0	���� 	� 
 

a 

n 

Un 

FL FR 
n+1 

Un Un+1 Un-1 

n-1 
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+�p� � 4<2� v
�5�� + 
�5��22 w� � +4< isin :�2 k�
 p� � 4<� isin :�2 k�

 

 ∴  p � {�6
�  sin 5�

�           (vii) 

E.(vii) gives a number of frequencies with which the atoms of the 1-dimensional 

lattice can vibrate. When sin 5�
� � f1 i.e. when 

5�
� � 7

�, the maximum frequency is 

obtained from Eq.(vii) as  p� � f{�6
�          

 
3.2 Diatomic one-dimensional lattice               
 
Now we consider a one-dimensional lattice with two non-equivalent atoms in a unit 
cell. Fig.4.3 shows a diatomic lattice with the unit cell composed of two atoms of 
masses m� and m� with the distance between two neighboring atoms a.    
                        

Fig.4.3: Lattice vibration of diatomic lattice (After www.pa.uk.edu/kwng/phy/525/lec) 
 
We can treat the motion of this lattice in a similar fashion as for monatomic lattice. 
However, in this because we have two different kinds of atoms, we should write two 
equations of motion:     m�

9�c�9��  �  +V�2c� + c�'� + c���� 
                     (4.13) 

    m� 0�8���
02�  �  +V�2c�'� + c�'� + c�� 

 
 
In analogy with the monatomic lattice we are looking for the solution in the form of 
traveling mode for the two atoms: 
 � ������� �  � ������������������� ��� !                   (4.14) 

 �2	 ����� �2 cos "#�2	 cos "# 2	 � ����� �  ������ � 0                                 (4.15) 

 

http://www.pa.uk.edu/kwng/phy/525/lec)
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This is a system of linear homogeneous equations for the unknowns A1 and A2. A 
nontrivial solution exists only if the determinant of the matrix is zero. This leads to 
the secular equation 
 �2� �������2� � ����� �  4�� cos� ��  � 0                           (4.16) 
 
This is a quadratic equation, which can be readily solved 
 
� � � � �

�� � ���� � ��� �
�� � ����� � ��	��
�����                     (4.17) 

 
Depending on sign in this formula there are two different solutions corresponding to 
two different dispersion curves, as is shown in Fig.4.4: 
 

 
Fig.4.4: Dispersion Curve for one-dimensional diatomic lattice. (After 
www.pa.uk.edu/kwng/phy/525/lec) 
 
The lower curve is called the acoustic branch, while the upper curve is called the 
optical branch. The optical branch begins at q=0 and =0. Then with increasing q the 
frequency increases in a linear fashion. This is why this branch is called acoustic: it 
corresponds to elastic waves or sound. Eventually this curve saturates at the edge of 
the Brillouin zone. On the other hand, the optical branch has a nonzero frequency at 
zero q 
 p9 � {2V e 1�1

� 1�2
h                                (4.18) 

 
and it does not change much with q. 
The distinction between the acoustic and optical branches of lattice vibrations can be 
seen most clearly by comparing them at q=0 (infinite wavelength). From Eq. (4.15), 
for the acoustic branch =0 and ,�=,�. So in this limit the two atoms in the cell have 
the same amplitude and the phase. Therefore, the molecule oscillates as a rigid body, 

http://www.pa.uk.edu/kwng/phy/525/lec)
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as shown in Fig.4.5 for the acoustic mode. On the other hand, for the optical 
vibrations, substituting Eq. (4.18) to Eq. (4.15), we obtain for q=0:  
 m�,� � m�,� � 0       (4.19)  
 
It implies that the optical oscillation takes place in such a way that the center of mass 
of a molecule remains fixed. The two atoms move in out of phase as shown in Fig.4.5. 
The frequency of these vibrations lies in infrared region which is the reason for 
referring to this branch as optical. 
 

 
Fig.4.5: Distinction between Acoustic and Optical wave (After Kittel, 1976) 
 
3.3 Three- dimension 
 
The concept of the division of the vibrational modes into acoustic and optical 
branches can be generalized to be applicable to three-dimensional structure. To avoid 
mathematical details we shall present only a qualitative discussion. Consider, first, the 
monatomic Bravais lattice, in which each unit cell has a single atom. The equation of 
motion of each atom can be written in a manner similar to that of Eq. (4.2). The 
solution of this equation in three dimensions can be represented in terms of normal 
modes. 
 |: � }
�;3*� 42<                                (4.20) 
 
where the wave vector q specifies both the wavelength and direction of propagation. 
The vector A determines the amplitude as well as the direction of vibration of the 
atoms. Thus this vector specifies the polarization of the wave, i.e., whether the wave 
is longitudinal (A parallel to q) or transverse (A perpendicular to q). When we 
substitute Eq.(5.20) into the equation of motion, we obtain three simultaneous 
equations involving Ax, Ay. and Az, the components of A. These equations are coupled 
together and are equivalent to a 3 x 3 matrix equation. The roots of this equation lead 
to three different dispersion relations, or three dispersion curves, as shown in Fig.4.6. 
All the three branches pass through the origin, which means all the branches are 
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acoustic. This is of course to be expected, since we are dealing with a monatomic 
Bravais lattice.  

 
   Fig.4.6: Dispersion curve. 
 
 
The three branches in Fig.4.6 differ in their polarization. When q lies along a 
direction of high symmetry - for example, the [100] or [110] directions these waves 
may be classified as either pure longitudinal or pure transverse waves. In that case, 
two of the branches are transverse and one is longitudinal. One usually refers to these 
as the TA - transverse acoustic and LA longitudinal acoustic branches, 
respectively. However, along non-symmetry directions the waves may not be pure 
longitudinal or pure transverse, but have a mixed character. 
 

 
Fig.4.7: Dispersion curve for Al in the [100] and [110] directions (After Kittel, 1979) 
 
Figure 4.7 shows the dispersion curves for Al in the [100] and [110] directions. Note 
that in certain high-symmetry directions, such as the [100] in Al, the two transverse 
branches coincide. The branches are then said to be degenerate. 
 
 We turn our attention now to the non-Bravais three-dimensional lattice. Here the unit 
cell contains two or more atoms. If there are s atoms per cell, then on the basis of our 
previous experience we conclude that there are 3s dispersion curves. Of these, three 
branches are acoustic, and the remaining (3s 3) are optical. The mathematical 
justification for this assertion is as follows: We write the equation of motion for each 
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atom in the cell, which results in s equations. Since these are vector equations, they 
are equivalent to 3s scalar equations, which have 3s roots. It can be shown that three 
of these roots always vanish at q = 0, which results in three acoustic branches. The 
remaining (3s 3) roots, therefore, belong to the optical branches, as stated above. The 
acoustic branches may be classified, as before, by their polarizations as TA1, TA2, and 
LA. The optical branches can also be classified as longitudinal or transverse when q 
lies along a high symmetry direction, and one speaks of LO and TO branches. As in 
the one-dimensional case, one can also show that, for an optical branch, the atoms in 
the unit cell vibrate out of phase relative to each other. As an example of a non-
Bravais lattice, the dispersion curves for Ge are shown in Fig.4.8. Since there are two 
atoms per unit cell in germanium, there are six branches: three acoustic and three 
optical. Note that the two transverse branches are degenerate along the [100] 
direction, as indicated earlier. 
 

 
Fig.4.8: Dispersion curve for Ge along [100] and [110] directions (After Kittel, 1979) 
. 
3.4 Phonons 
 
So far we discussed a classical approach to the lattice vibrations. As we know from 
quantum mechanics the energy levels of the harmonic oscillator are quantized. 
Similarly the energy levels of lattice vibrations are quantized. The quantum of 
vibration is called a phonon in analogy with the photon, which is the quantum of the 
electromagnetic wave. 
 
We know that the allowed energy levels of the harmonic oscillator are given by 
 
               > �  M� � 1 26 Nℏp                                                               (4.21) 
 
where n is the quantum number. A normal vibration mode in a crystal of frequency 
is given by Eq. (4.20). If the energy of this mode is given by Eq. (4.21) we can say 
that this mode is occupied by n phonons of energy . The term ½is the zero 
point energy of the mode. 
 
 Let us now make a comparison between the classical and quantum solutions in one-   
dimensional case. Consider a normal vibration 
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 � � ,
�;3�� 42<     (4.22) 
 
where u is the displacement of an atom from its equilibrium position x and A is the 
amplitude. The energy of this vibrational mode averaged over time is 
 
 > �  1 26  mp�,� � M� � 1 26 Nℏp            (4.23)    
 
It is evident from Eq.(4.23) above that there is a relationship between the amplitude of 
vibration and the frequency and the phonon occupation of the mode. In classical 
mechanics any amplitude of vibration is possible, whereas in quantum mechanics only 
discrete values are allowed. This is shown in Fig.4.9. 

         
Fig.4.9: Relation between amplitude and frequency (After Kittel, 1979) 
 
The lattice with s atoms in a unit cell is described by 3s independent oscillators. The 
frequencies of normal modes of these oscillators will be given by the solution of 3s 
linear equations as we discussed before. They are p=��� , where p denotes a 
particular mode, i.e. p = 1,…3s. The energy of this mode is given by                                        

""# � #$"# % ��& ℏ�#�(�                                                             (4.24) 

 
where $"# the occupation is number of the normal mode and is an integer. A 
vibrational state of the entire crystal is specified by giving the occupation numbers for 
each of the 3s modes. The total vibrational energy of the crystal is the sum of the 
energies of the individual modes, so that 
 

 > � ∑ >3=3= � ∑ ��3= � �
��3=  ℏ�$�(�                            (4.25) 

 
Phonons can interact with other particles such as photons, neutrons and electrons. 
This interaction occurs such as if photon had a momentum ℏq. However, a phonon 
does not carry real physical momentum. The reason is that the center of mass of the 
crystal does not change it position under vibrations (except q=0).  In crystals there 
exist selection rules for allowed transitions between quantum states. We saw that the 
elastic scattering of an x-ray photon by a crystal is governed by the wave vector 
selection rule kk G, where G is a vector in the reciprocal lattice; k is the wave 
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vector of the incident photon and kis the wave vector of the scattered photon. This 
equation can be considered as condition for the conservation of the momentum of the 
whole system, in which the lattice acquires a momentum −ℏG. If the scattering of 
photon is inelastic and is accompanied by the excitation or absorption of a phonon the 
selection rule becomes  
 
kk q G        (4.26)  
 
where sign (+) corresponds to creation of phonon and sign (–) corresponds to 
absorption of phonon. Phonon dispersion relations �%  q can be determined by the 
inelastic scattering of neutrons with emission or absorption of phonons. In this case in 
addition to the condition of the momentum conservation we have the requirement of 
conservation of energy. The latter condition can be written as 
 

 
ℏ����3 = ℏ����3  ± ℏ�                                                (4.27) 

 
where M is the mass of the neutron and k and kare the momenta of the incident 
and scattered neutron. Once we know in experiment the kinetic energy of the incident 
and scattered neutrons from Eq. (4.27) we can determine the frequency of the emitted 
or absorbed phonon. Then experimentally we need to determine those directions, 
which characterized by highest intensity of the scattered beam. For these directions 
the conditions (5.26) are satisfied and therefore from Eq. (4.26) we can find the wave 
vector of the phonon. Therefore, this is the way to obtain the dispersion conditions for 
the frequency of phonons which we discussed before.    
   
4.0 Conclusion 
 
Lattice vibrations are elastic waves propagating within crystals and the quantum unit 
of vibration is a phonon. The general equation of motion provides the phonon 
dispersion or phonon spectrum, f. 
 
5.0 Summary  
 
 All lattice waves can be described by wave vectors that lie within the first 

Brillouin zone 
 The quantum unit of vibration is a phonon. 
 The energy of the phonon is ℏf  
 
6.0 Tutor marked assignment 
 
Q1. Consider a linear chain in which alternative ions have masses M1 and M2   and 

only nearest neighbors interact.  
 (a)  Discuss the form of the dispersion relation and the nature of the 

 vibrational modes when M1 >> M2.  
 (b)  Show that for M1=M2 the dispersion relation becomes identical to that 

 for the   monatomic lattice 
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Q2. Consider the normal modes of a linear chain in which the force constants 
between nearest-neighbor atoms are alternatively C and 10C. Assuming that 
the masses are equal and the nearest neighbor separation is a/2 find (q) at 
q=0 and q=/a. Sketch the dispersion curve. This problem simulates a crystal 
of diatomic molecules such as H2. 
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1.0 Introduction  
 
This unit is devoted to the description of certain thermal properties of solid materials. 
The properties considered on the basis of atomic point of view are specific heat, 
thermal expansion, equation of state and thermal conductivity. The most fundamental 
approach for the theoretical evaluation of these characteristics for a solid is to relate 
them to the internal energy, the total kinetic energy and potential energy of its 
constituents. 
 
2.0 Objective 
 
To explain 
 
 Lattice specific heats 
 Debye model 
 Einstein model 
 Lattice thermal conductivity 
 
3.0 Definition 
 
Specific heat is a measure of the number of degrees of freedom of oscillating lattice. 
 
3.1 Heat capacity 
 
The heat capacity C is defined as the heat ΔQ which is required to raise the temperature 
by ΔT, i.e.  

  � =  
∆�
∆�                                                 (5.1) 

 
If the process is carried out at constant volume V, then ΔQ = ΔE, where ΔE is the increase 
in internal energy of the system. The heat capacity at constant volume C

V 
is therefore 

given by 
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 �� =  �������         (5.2) 

 
The contribution of the phonons to the heat capacity of the crystal is called the lattice heat 
capacity.  

The total energy of the phonons at temperature T in a crystal can be written as the sum of 
the energies over all phonon modes, so that 
 

                   

 Where 〈!AB〉 is the thermal equilibrium occupancy of phonons of wave vector q and 
mode p (p = 1…3s, where s is the number of atoms in a unit cell). The angular brackets 
denote the average in thermal equilibrium. Note that we assumed here that the zero-point 
energy is chosen as the origin of the energy, so that the ground energy lies at zero. The 
average thermal equilibrium can be calculated.  

Consider a harmonic oscillator in a thermal bath. The probability to find this oscillator 
in an excited state, which is characterized by a particular energy E

n 
is given by the 

Boltzmann distribution  

   x� =  x�0'	�ℏ9 ��CD (
                                                              (5.4) 

 
 where the constant P

0 
is determined from the normalization condition. 

 
so that 
 x�  � yn 0'	�ℏ9 ��CD (:

���
z	�

                                                                                         ({. |)   
 
  The average excitation number of the oscillator is given by 
 
 

 
The summation in the numerator can be performed using the known property of 
geometrical progression: 

〈!〉 = n !x� = ∑ !0	�ℏ9 ��C⁄:���∑ 0	�ℏ9 ��C⁄:���
:
���

 

n x� = 1
:
���

 

� = n〈!AB〉ℏf�~�
AB

 (5.3) 

(5.5) 

(5.7) 
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Using this property we find: 
 n !�� = � ���:

���
n ��:
���

= � ��� 1
1 − �  ��1 − ���                                                              ({. �) 

 

Where� =  0	ℏ	
�, then we obtain 
 〈�〉 =  ���� =  ������ =  ���ℏ� ��⁄  ��                                                       (5.10) 

  
The distribution given by Eq. (5.10) is known as the Planck distribution. Coming back to 
the expression for the total energy of the phonons, we find that 
 
 

 
Usually it is convenient to replace the summation over q by an integral over frequency. In 
order to do this we need to introduce the density of modes or the density of states 5�(6).  5� �6�76 represents the number of modes of a given number s in the frequency range (ω, 
ω + 76 . Then the energy is  
 

 
The lattice heat capacity can be found by differentiation of this equation with respect to 
temperature, so that 

                      �& = '(') = �* ∑����% ��� + ℏ����,�0�ℏ- �./� �
+0�ℏ- �.� �−1,2                              

(5.13) 

We see that the central problem is to find the density of states5�(6), the number of   
modes per unit frequency range. 

3.2 Density of state 

Consider the longitudinal waves in a long bar. The solution for the displacement of atoms 
is given by 

                              O = �0�A%                                                               (5.14) 

� = n ��f�B�f� ℏf0>ℏ9 ��⁄ @ − 1B
 

� = n 0ℏ9>A@0ℏ9>A@ − 1
:
���

 

n �� = 1
:
���

 

(5.11) 

(5.12) 

(5.8) 
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where we omitted a time-dependent factor it is irrelevant for the present discussion. We 
shall now consider the effects of the boundary conditions on this solution. These 
boundary conditions are determined by the external constraints applied to the ends of the 
bar. The most convenient type of boundary condition is known as the periodic boundary 
condition. By this we mean that the right end of the bar is constrained in such a way that 
it is always in the same state of oscillation as the left end. It is as if the bar were deformed 
into a circular shape so that the right end joined the left. Given that the length of the bar is 
L, if we take the origin as being at the left end, the periodic condition means that 

 

 O�� = 0� = O  �� = X�                                           (5.15) 

 

where u is the solution given by Eq.(5.14). If we substitute (5.14) into (5.15), we find that 

 

 0�A; = 1                                                                       (5.16) 

This equation imposes a condition on the admissible values of q: 

 8 = 9 ���                                                                            (5.17) 

where n = 0, + 1, ±2, etc. When these values are plotted along q-axis, they form a one-
dimensional mesh of regularly spaced points. The spacing between the points is 2π/L. 
When the bar length is large, the spacing becomes small and the points form a quasi-
continuous mesh. Each q-value of Eq. (5.17) represents a mode of vibration. Suppose we 
choose an arbitrary interval 78 in q-space, and look for the number of modes whose q’s 
lie in this interval. We assume here that L is large, so that the points are quasi-continuous, 
which is true for the macroscopic objects. Since the spacing between the points is 2π/L, 
the number of modes is 

 
�	
��        (5.18) 

We are interested in the number of modes in the frequency range 76 lying betwe�6,6 +
 76�. The density of states 5(6) is defined such that 5(6)76 gives this number. 
Comparing this definition with Eq.(5.18), one may write 5(6)76 =  (:/
2;) 78,<= 5(6)  =  (:/2;)/(76/78). We note from Fig.5.1, however, that in 
calculating 5(6) we must include the modes lying in the negative q-region as well as in 
the positive region. The effect is to multiply the above expression for 5(6) by a factor of 
two. That is, 

 

���� =  �
  ��
 ���                                                            (5.19)    

We see that the density of states 5�6� is determined by the dispersion relation   6 = 6(8).  

Now we extend these results to the 3D case. The wave solution analogous to (5.14) is 

 > = ?@����� ��! ��"#       (5.20) 
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Fig.5.1: Density of state 

where the propagation is described by the wave vector q = (q
x, 

q
y, 

q
z
), whose direction 

specifies the direction of wave propagation. Here again we need to take into account the 
boundary conditions. For simplicity, we assume a cubic sample whose edge is L. By 
imposing the periodic boundary conditions, one finds that the allowed values of q must 
satisfy the condition 

����� = ����� � �����                                                                      (5.21) 

Therefore, the values are given by ���, ��, ��� �  �
 ��� , � ��
� , � ��

� �                                   (5.22) 

where l, m, n are some integers 

if we plot these values in a q-space, as in Fig.5.2, we obtain a three-dimensional cubic 

mesh. The volume assigned to each point in this q-space is (2π/L)
3
. 

 
Fig.5.2:Three-dimensional cubic mesh (After Kittel, 1979) 

Each point in Fig.5.2 determines one mode. We now wish to find the number of modes 
lying in the spherical shell between the radii q and � �   �, as shown in Fig.2. The 

volume of this shell is, 4πq2dq and since the volume per point is (2π/L)
3
, it follows that 

the number we seek 

 

! �
��"� 4$�� � %  �

����� 4$�� �                                                    (5.23) 
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where V = L
3 

is the volume of the sample. By definition of the density of modes, this 
quantity is equal to  5(6)76 . Thus, we arrive at 

���� =  ��E
�E � !  �"                                                                 (5.24) 

 

We note that Eq. (5.24) is valid only for an isotropic solid, in which the vibrational 
frequency, ω, does not depend on the direction of q. Also we note that in the above 
discussion we have associated a single mode with each value of q. This is not quite true 
for the 3D case, because for each q there are actually three different modes, one 
longitudinal and two transverse, associated with the same value of q. In addition, in the 
case of non-Bravais lattice we have a few sites, so that the number of modes is 3s, where 
s is the number of non-equivalent atoms. This should be taken into account by index 
p=1…3s in the density of states because the dispersion relations for the longitudinal and 
transverse waves are different, and acoustic and optical modes are different. 

3.2.1 Debye model 

The Debye model assumes that the acoustic modes give the dominant contribution to the 
heat capacity. Within the Debye approximation the velocity of sound is taken a constant 
independent of polarization as it would be in a classical elastic continuum. The dispersion 
relation is written as  6 = $8                                                                                            (5.25) 

where v is the velocity of sound.  

In this approximation the density of states is given by 

 ���� =  �
�	
��$                                                       (5.26) 

i.e. the density of states increases quadratically with the frequency.  

The normalization condition for the density of states determines the limits of integration 
over ω. The lower limit is obviously ω=0. The upper limit can be found from the 
condition that the number of vibrational modes in a crystal is finite and is equal to the 
number of degrees of freedom of the lattice. Assuming that there are N unit cells is the 
crystal, and there is only one atom per cell (so that there are N atoms in the crystal), the 
total number of phonon modes is 3N. Therefore, we can write n � ��f�lf = 35                                                                                �{. :��  

         
F�

3G
 

where the cutoff frequency ω
D 

is known as Debye frequency. Assuming that the velocity 

of the three acoustic modes is independent of polarization and substituting Eq.(5.26) in 
Eq.(5.27) we obtain 

  �# =  �$�E�H%� ��/&
                                          (5.28) 

 

The cutoff wave vector which corresponds to this frequency is given by 
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�� �  ���   � o����� q�/�                                             (5.29)  

 
so that modes of wave vector larger than q

D 
are not allowed. This is due to the fact that 

the number of modes with 8 ≤  8%  exhausts the number of degrees of freedom of the 
lattice.  

The thermal energy is given by Eq. (5.12), so that 

	 = 3
 �� �!E
�E�H!I' ℏ��JℏK LM⁄ N��                                  (5.30) 

where a factor of 3 is due to the assumption that the phonon velocity is independent of 
polarization. This leads to 

         

Where � =    ℏ� ��	 
   and 

                                              �� =  ℏ�� ��	 
 =  �� 	
                                     

(5.32)  

The latter expression defines the Debye temperature  

�� =  ℏ��� ��
��� 
�/�
                                                           (5.33)    

The total phonon energy is then 

� =  9���	 � � &
� � �� !$"' # �!&$         (5.34) 

where N is the number of atoms in the crystal and "%= A% B�  . 

The heat capacity is most easily found by differentiating the middle expression of 
Eq.(5.31) with respect to the temperature so that 

 

�� = ��ℏ�	
��$���� � �� 
("ℏ) ��� �
%"ℏ) ��� � #�&�
&$ = 9��� � � &
� � �� !("' '"' # �(�!&$            

(5.35)     

In the limit T>>θ, we can expand the expression under the integral and obtain:C*  =
   3DE+. This is exactly the classical value for the heat capacity, which is known from the 
elementary physics. Recall that, according to the elementary thermodynamics the average 
thermal energy per a degree of freedom is equal to � = �O� . Therefore for a system of N 
atoms � =35�O� which results in �! =  3��". This is known as the Dulong-Petit law. 

� = 33ℏ
2*�P� � �f f�0>ℏ9 ��C⁄ @ − 1 = 33�O���

2*�P�ℏ� � �� ��0% − 1
%


�
9

�  (5.31)

1 
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Now consider an opposite limit, i.e. T<<θ. At very low temperatures we can approximate 
(5.34) by letting the upper limit go to infinity. We obtain 

 

& % 9()�* ! 	

�"� +  , ��

�� 
 � %�
�  9()�* ! 	


�"� ��

�� % ���

� ()�* ! 	

�"�      

(5.36) 

and therefore 

 
� � ����
� ���� � 	


���                                                        (5.37) 

 

We see that within the Debye model at low temperatures the heat capacity is proportional 
to ��. The cubic dependence may be understood from the following qualitative argument. 
At low temperature, only a few modes are excited. These are the modes whose quantum 
energy ω is less than k

B
T. The number of these modes may be estimated by drawing a 

sphere in the q-space whose frequency > ?    ℏ A�B - , and counting the number of points 
inside, as shown in Fig. 5.3. This sphere may be called the thermal sphere, in analogy 
with the Debye sphere discussed above. The number of modes inside the thermal sphere 
is proportional to ��~/�~*�. Each mode is fully excited and has an average energy 
equal to k

B
T. Therefore the total energy of excitation is proportional to *�, which leads to 

a specific heat proportional to ��, in agreement with Eq. (5.37).    

 

Fig.5.3: The thermal sphere (After Kittel, 1979)  

 

3.2.2 Einstein model 

Within the Einstein model the density of states is approximated by a delta function at 
some frequency /� i.e. ���� � ���� � ���                                             (5.38) 

where N is the total number of atoms (oscillators). ��  is known as the Einstein 
frequency. The thermal energy of the system is then 

� � 3&ℏ��(�ℏ�� ���⁄ �)1                                                       (5.39) 

where a factor of 3 reflects the fact that there are three degree of freedom for each 
oscillator. The heat capacity is then 
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�� = �)*)�
� = 3��� ℏ
,��� "ℏ), ���⁄+"�ℏ), ���⁄ ##�,                             (5.40)  

 

The high temperature limit for the Einstein model is the same as that for the Debye 
model, i.e.  �# =  3��$, which is the Dulong-Petit law. At low temperatures however 

Eq.(5.40) decreases as �#~ 0−ℏ�./0 �, while the experimental form of the phonon is known 
to be T 3 as given by the Debye model. The reason for this disagreement is that at low 
temperatures only acoustic phonons are populated and the Debye model is much better 
approximation that the Einstein model. The Einstein model is often used to approximate 
the optical phonon part of the phonon spectrum. Concluding our discussion about the heat 
capacity we note that a real density of vibrational modes could be much more 
complicated than those described by the Debye and Einstein models.  

 

3.3 Thermal conductivity 

 

When the two ends of a given sample material are at two different temperatures, T
1 
and T

2 

(T
2
>T

1
), heat flows down the thermal gradient, i.e. from the hotter to the cooler end. 

Observations show that the heat current density j (amount of heat flowing across unit area 
per unit time) is proportional to the temperature gradient (7B/7"). That is, 

 � =  −� ���b                                                   (5.41) 

The proportionality constant K, known as the thermal conductivity, is a measure of the 
ease of transmission of heat across the bar (the minus sign is included to make a positive 
quantity).  

Heat may be transmitted in the material by several independent agents. In metals, for 
example, the heat is carried by both electrons and phonons, although the contribution of 
the electrons is much larger. In insulators, on the other hand, heat is transmitted entirely 
by phonons, since there are no mobile electrons in these substances. Here we consider 
only transmission by phonons.  

When we discuss transmission of heat by phonons, it is convenient to think of these as 
forming a phonon gas. In every region of space there are phonons traveling randomly in 
all directions, corresponding to all the q's in the Brillouin zone (BZ), much like the 
molecules in an ordinary gas. The concentration of phonons at the hotter end of the 
sample is larger and they move to the cooler end. The advantage of using this gas model 
is that many of the familiar concepts of the kinetic theory of gases can also be applied 
here. In particular, thermal conductivity is given by I =  ��6PP�                                                                   (5.42) 

where C
V 

is the specific heat per unit volume, v the velocity of the particle, and l its mean 

free path. In the present case, v and l refer, of course, to the velocity and the mean free 
path of the phonon, respectively. The mean free path is defined as the average distances 
between two consecutive scattering events, so that  F = $G, where τ is the average time 
between collisions which is called collision time or relaxation time. 
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Let us give a qualitative explanation for Eq. (5.42). For simplicity we consider a one-
dimensional picture, in which phonons can move only along the x axis. We assume that a 
temperature gradient is imposed along the x axis. We also assume that collisions between 
phonons maintain local thermodynamic equilibrium; so that we can assign local thermal 
energy density to a particular point of the sample H[B(")]. The phonons which originate 
from this point have this energy on average. At a given point x half the phonons come 
from the high temperature side and half phonons come from the low temperature side. 
The phonons which arrive to this point from the high-temperature side will, on the 
average, have had their last collision at point x−l, and will therefore carry a thermal 
energy density of H[B(" − F)]. Their contribution to the thermal current density at point x 
will therefore be the ½$H[B(" − F)]. The phonons arriving at x from the low temperature 
side, on the other hand, will contribute −½$H[B(" + F)], since they come from the 
positive x-direction and are moving toward negative x. Adding these together gives 

 � =  ½$H�B�" − F�� + ½$H�B�" + F��                                         (5.43) 

 

Provided that the variation in the temperature over the mean free path is very small we 
may expand this about the point x to find: 

� = �� ���� 	−
���b
  =  ��� ���� 	−

���b
                               (5.44) 

 

This result can be easily generalized to the three dimensional case. We need to replace v 
by the x-component �1, and then average over all the angles. Since 〈$1�〉 = 〈$2�〉 =
 〈$3�〉  1 3� $� and since �� = �*�� is the heat capacity we obtain, 

 � = �K �!�� �− +L���                                                     (5.45)  

where v is the phonon velocity.  

Let us now discuss the dependence of the thermal conductivity j on temperature. The 
dependence of C

V 
on temperature has already been studied in detail, while the velocity v 

is found to be essentially insensitive to temperature. The mean free path l depends 
strongly on temperature. Indeed, l is the average distance the phonon travels between two 
successive collisions. Three important mechanisms may be distinguished: (a) The 
collision of a phonon with other phonons, (b) the collision of a phonon with imperfections 
in the crystal, such as impurities and dislocations, and (c) the collision of a phonon with 
the external boundaries of the sample.  

 

Consider a collision of type (a). The phonon-phonon scattering is due to the anharmonic 
interaction between them. When the atomic displacements become appreciable, this gives 
rise to anharmonic coupling between the phonons, causing their mutual scattering. 
Suppose that two phonons of vectors q

1 
and q

2 
collide, and produce a third phonon of 

vector q
3
. Since momentum must be conserved, it follows that q

3 
= q

1 
+ q

2
. Although both 

q
1 

and q
2 

lie inside the Brillouin zone (Brillouin zones are primitive cells that arise in 

the theories of electronic levels - Band Theory), q
3 

may not do so. If it does, then the 
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momentum of the system before and after collision is the same. Such a process has no 
effect at all on thermal resistivity, as it has no effect on the flow of the phonon system as 
a whole. It is called a normal process. By contrast, if q

3 
lies outside the BZ, such a vector 

is not physically meaningful according to our convention. We reduce it to its equivalent 
q

4 
inside the first BZ, where q

3 
= q

4 
+ G and G is the appropriate reciprocal lattice vector. 

As is seen from Fig.5.6, the phonon q
4 

produced by the collision travels in a direction 

almost opposite to either of the original phonons q
1 
and q

2
. The difference in momentum 

is transferred to the center of mass of the lattice. This type of process is highly efficient in 
changing the momentum of the phonon, and is responsible for phonon scattering at high 
temperatures. It is known as the umklapp process (German for "flipping over"). 

 

 

  Fig.5.6: Umklapp process(After Kittel, 1979) 

Phonon-phonon collisions become particularly important at high temperature, at which 
the atomic displacements are large. In this region, the corresponding mean free path is 
inversely proportional to the temperature, that is, 0 ∝ 1 *⁄ . This is reasonable, since the 
larger T is, the greater the number of phonons participating in the collision.  
 
The second mechanism (b) which results in phonon scattering results from defects and 
impurities. Real crystals are never perfect and there are always crystal imperfections in 
the crystal lattice, such as impurities and defects, which scatter phonons because they 
partially destroy the perfect periodicity of the crystal. At very low temperature (say 
below 10�5), both phonon-phonon and phonon-imperfection collisions become 
ineffective, because, in the former case, there are only a few phonons present, and in the 
latter the few phonons which are excited at this low temperature are long-wavelength 
ones. These are not effectively scattered by objects such as impurities, which are much 
smaller in size than the wavelength. In the low-temperature region, the primary scattering 
mechanism is the external boundary of the specimen, which leads to the so-called size or 
geometrical effects. This mechanism becomes effective because the wavelengths of the 
excited phonons are very long - comparable, in fact, to the size of the specimen. The 
mean free path here is l ~ L, where L is roughly equal to the diameter of the specimen, 
and is therefore independent of temperature. 
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4.0 Conclusion 
 
There are two contributions to thermal properties of solids: one comes from phonons (or 
lattice vibrations) and another from electrons. In most solids, the energy given to lattice 
vibrations is the dominant contribution to specific heat. 
 
5.0 Summary 
 
 Lattice  heat capacity is the contribution of phonon to heat capacity 
 Debye model at low temperature is proportional to T3 
 Dulong Petit law results in C$ =  3DE+ for N atoms 
 Einstein model is used to approximate the optical part of the phonon spectrum 
 Changing the momentum of the phonon which  is responsible for phonon 
 scattering at high temperatures  is known as the umklapp process 
 
6.0   Tutor marked assignment 

Q1. Using the dispersion relation for the monatomic linear lattice of N atoms with nearest 
neighbor interactions, show that the density of vibrational modes is given by 
 

 ���� =  
%� �(!QE �!E     were �) is the maximum frequency     

 
Q2.   In the Debye approximation, show that the mean square displacement of an atom at 
 absolute zero is  〈�
〉 =  &ℏ!%�+��,��  where v is the velocity of sound.   Estimate this value for Cu (A% =

 ℏ-&24� = 343M, ρ = 8920 kg/m
3
, v = 3570 m/s).  
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UNIT 1 FREE ELECTRON THEORY OF METALS  
 
CONTENT  
 
1.0       Introduction      
2.0       Objectives       
3.0       Definition        
 3.1 Free electron model      
  3.2 One- dimension         
 3.3 Fermi distribution       
 3.4 Three -dimension        
 3.5 Heat capacity       
4.0 Conclusion         
5.0 Summary       
6.0 Tutor Marked Assignment       
7.0       Further Reading/References    
     
1.0 Introduction 
 
The free electron theory of metals refers to the case in which the atomic valance 
electrons are treated as if they are free rather than being bound to the lattice points. 
Our assumption amounts to supposing that the electrons move in a uniform potential 
rather than the true periodic potential provided by the positive ions. The basic 
assumption of the theory is that a metal is equivalent to a gas of free electrons in an 
otherwise empty box. 
 
2.0 Objective 
 
 To revise the free electron gas (FEG) model and assumptions made. 

 To understand how this simple model can be used to derive equations heat 
capacity of the free electron. 

 To employ the time-independent Schrodinger equation to derive the electron 
wave functions and energies. 

 
3.0 Definition 
 
A free electron model is the simplest way to represent the electronic structure of 
metals. 
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3.1 Free electron model 
 
A free electron model is the simplest way to represent the electronic structure of 
metals. Although the free electron model is a great oversimplification of the reality, 
surprisingly in many cases it works pretty well, so that it is able to describe many 
important properties of metals. According to this model, the valence electrons of the 
constituent atoms of the crystal become conduction electrons and travel freely 
throughout the crystal. Therefore, within this model we neglect the interaction of 
conduction electrons with ions of the lattice and the interaction between the 
conduction electrons. In this sense we are talking about a free electron gas. However, 
there is a principle difference between the free electron gas and ordinary gas of 
molecules. First, electrons are charged particles. Therefore, in order to maintain the 
charge neutrality of the whole crystal, we need to include positive ions. This is done 
within the jelly model, according to which the positive charge of ions is smeared out 
uniformly throughout the crystal. This positive background maintains the charge 
neutrality but does not exert any field on the electrons. Ions form a uniform jelly into 
which electrons move. Second important property of the free electron gas is that it 
should meet the Pauli Exclusion Principle, which leads to important consequences. 
 
3.2 One-dimension 
 
We consider first a free electron gas in one dimension. We assume that an electron of 
mass m is confined to a length L by infinite potential barriers. The wave function N5�"� of the electron is a solution of the Schrödinger equation, ����� = ����� 
where En is the energy of electron in the orbital. Since w can assume that the potential 
lies at zero, the Hamiltonian H includes only the kinetic energy so that 
 ������ =  ��

2� ����� =  − ℏ�
2� ����� ����� =  ������� 

Note that this is a one-electron equation, which means that we neglect the electron-
electron interactions. We use the term orbital to describe the solution of this equation. 
Since the N5�"�  is a continuous function and is equal to zero beyond the length L, the 
boundary conditions for the wave function are N5�0� =  N5�:� = 0 . The solution of 
Eq. (1.1) is therefore 
 

 ����� = � sin )$�; , � 

 
where A is a constant and n is an integer. Substituting (1.2) into (1.1) we obtain the 
eigenvalues 

 �� =  ℏ��� )$�; ,� 

 
 
These solutions correspond to standing waves with a different number of nodes within 
the potential well as is shown in Fig.1.1 
 

1.1 

1.2 

1.3 
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Fig.1.1 First three energy levels and wave-functions of a free electron of mass m 
confined to a line of length L.(Kittel, 1979). 
 
Now we need to accommodate N valence electrons in these quantum states. 
According to the Pauli Exclusion Principle no two electrons can have their quantum 
number identical. That is, each electronic quantum state can be occupied by at most 
one electron. The electronic state in a 1D solid is characterized by two quantum 
numbers that are n and ms, where n is the positive integer and ms is the magnetic 
quantum number such that  ms = ±½ according to spin orientation. 
 
Therefore, each orbital labeled by the quantum number n can accommodate two 
electrons, one with spin up and one with spin down orientation.  
 
Let �C  denote the highest filled energy level, where we start filling the levels from the 
bottom (n = 1) and continue filling higher levels with electrons until all N electrons 
are accommodated. It is convenient to suppose that N is an even number. The 
condition 2�C  = N determines �C the value of n for the uppermost filled level. The 
energy of the highest occupied level is called the Fermi energy >C. For one -
dimensional system of N electrons we can define >C, using Eq. (1.3), 
 

 �6 � ℏ
8� �9:8;�8 

 

In metals the value of the Fermi energy is of the order of 5 eV. The ground state of the 
N electron system is illustrated in Fig.1.2 a: All the electronic levels are filled up to 
the Fermi energy. All the levels above are empty. 

1.4 
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Fig. 1.2 (a) Occupation of energy levels according to the Pauli  exclusion principle, 
(b) The distribution function f(E), at T = 0°K and T> 0°K. 
   
3.3 Fermi distribution 
 
This is the ground state of the N electron system at absolute zero. What happens if the 
temperature is increased? The kinetic energy of the electron gas increases with 
temperature. Therefore, some energy levels become occupied which were vacant at 
zero temperature, and some levels become vacant which were occupied at absolute 
zero. The distribution of electrons among the levels is usually described by the 
distribution function, ��>�, which is defined as the probability that the level E is 
occupied by an electron. Thus if the level is certainly empty, then, ��>�  � 0, while if 
it is certainly full, then ��>�  �  1. In general, ��>� has a value between zero and 
unity. It follows from the preceding discussion that the distribution functions for 
electrons at T = 0°K has the form 

  ����  �  �1,0, � � ��� � ��  

 
That is, all levels below >C  are completely filled, and all those above >C  are 
completely empty. This function is plotted in Fig. 1.2(b), which shows the 
discontinuity at the Fermi energy. 
 
When the system is heated (T>0°K), thermal energy excites the electrons. However, 
all the electrons do not share this energy equally, as would be the case in the classical 
treatment, because the electrons lying well below the Fermi level >C  cannot absorb 
energy. If they did so, they would move to a higher level, which would be already 
occupied, and hence the exclusion principle would be violated. Recall in this context 
that the energy which an electron may absorb thermally is of the order :D� (= 0.025 
Y at room temperature), which is much smaller than >C, this being of the order of 5 
eV. Therefore only those electrons close to the Fermi level can be excited, because the 
levels above >C  are empty, and hence when those electrons move to a higher level 
there is no violation of the exclusion principle. Thus only these electrons which are 
small fraction of the total number - are capable of being thermally excited. The 
distribution function at non-zero temperature is given by the Fermi distribution 
function. The Fermi distribution function determines the probability that an orbital of 
energy E is occupied at thermal equilibrium. 

(1.5) 
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���	 =  �(-〈/0 1〉 345⁄ 6�� 

 
This function is also plotted in Fig.1.2(b), which shows that it is substantially the 
same as the distribution at T = 0°K, except very close to the Fermi level, where some 
of the electrons are excited from below �R  to above it. The quantity is called the 
chemical potential. The chemical potential can be determined in a way that the total 
number of electrons in the system is equal to N. At absolute zero �R. 
 
3.3 Three – dimension 
 
The Schrödinger equation in the three dimensions takes the form  
 ���J� =  B�����J� = − ℏ��� ∇���J� = − ℏ��� ) 4�4%� + 4�4&� + 4�4,�, ��J� = ���J� 
 
If the electrons are confined to a cube of edge L, the solution is the standing wave 
    

  ���� = � sin �'(�) �� sin �'(�) 	� sin �'(�) 
� 

 
where !%, !&,, and !,, are positive integers. 
 
In many cases, however, it is convenient to introduce periodic boundary conditions, as 
we did for phonons. The advantage of this description is that we assume that our 
crystal is infinite and disregard the influence of the outer boundaries of the crystal on 
the solution. We require then that our wave function is periodic in x, y, and z 
directions with period L, so that ��� + X, 
, �� = ���, 
, ��, 
 
and similarly for the y and z coordinates. The solution of the Schrödinger equation Eq. 
(1.7) which satisfies these boundary conditions has the form of the traveling plane 
wave: 
 
   ����� = �������. ��, 
 
provided that the component of the wave vector k are determined from 

 
� = ����O ;  
) = ����O ;  
* = ����O  

where !%,, !&, and !,, are positive or negative integers. 
If we now substitute this solution to Eq. (1.7) we obtain for the energies of the orbital 
with the wave vector k 
 

   �� = ℏ����0 = ℏ��0 ���� + ��� + ���� 

The wave functions equations (1.10) are the eigenfunctions of the momentum  

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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� =  − ℏ∇ this can be readily seen by differentiating (1.10): 
 ��1��� = −�ℏ∇�1��� = ℏ������ 
 
The eigenvalues of the momentum is ℏ� . The velocity of the electron is defined by v 
p /m  ℏ� /m. 
 
In the ground state a system of N electrons occupies states with lowest possible 
energies. Therefore all the occupied states lie inside a in k space, �R. The energy at 
the surface of this sphere is the Fermi energy�R. The magnitude of the wave vector �R  

and the Fermi energy are related by the following equation: 
    

   �� =
ℏ2�32��  

 
The Fermi energy and the Fermi wave vector (momentum) are determined by the 
number of valence electrons in the system. In order to find the relationship between N 
and �R we need to count the total number of orbitals in a sphere of radius �R  which 
should be equal to N. There are two available spin states for a given set of �%, �& 
and �,. The volume in the k space which occupies this state is equal to(2* / X)�  . 
Thus in the sphere of *2
+�� 3� , the total number of states is 

 

2 ��P78 K⁄��� O⁄ ��= 
4�5� �6� = � 

 
where the factor 2 comes from the spin degeneracy. Then 
 �.=�&��%� �� &⁄

 

 
this depends only of the particle concentration. We obtain then for the Fermi energy: 
 �. = ℏ
) �&��%� �
 &⁄

 
 
and the Fermi velocity 
 �R = ℏ��3
��� �� K⁄

 

 
An important quantity which characterizes electronic properties of a solid is the 
density of states, which is the number of electronic states per unit energy range. To 
find it we use Eq.(1.17) and write the total number of orbitals of energy ≤ E : 
 

                                   �	�
 = �&�� �
)0ℏ� �& 
⁄
 

(1.13) 

(1.15) 

(1.16) 

(1.14)
) 

(1.17) 

(1.18) 

(1.19) 
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The density of states is then 
 

                                     ���� = 787( = 4�5� ��0ℏ�  � �⁄ .�� �⁄  

 
or equivalently 
 

     ���	 = 35�S 

So within a factor of the order of unity, the number of states per unit energy interval at 
the Fermi energy ���R�, is the total number of conduction electrons divided by the 
Fermi energy. 
The density of states normalized in such a way that the integral 
 

 
 
gives the total number of electrons in the system. At non-zero temperature we should 
take into account the Fermi distribution function so that 

   

   

This expression also determines the chemical potential. 

3.5 Heat capacity 

The question that caused the greatest difficulty in the early development of the 
electron theory of metals concerns the heat capacity of the conduction electrons. 
Classical statistical mechanics predicts that a free particle should have a heat capacity 
of 3 2� +�, where �O  is the Boltzmann constant. If N atoms each give one valence 
electron to the electron gas and the electrons are freely mobile, then the electronic 
contribution to the heat capacity should be3

2: Nk�, just as for the atoms of a 
monatomic gas. But the observed electronic contribution at room temperature is 
usually less than 0.01 of this value. This discrepancy was resolved only upon the 
discovery of the Pauli Exclusion Principle and the Fermi distribution function. When 
we heat the specimen from absolute zero not every electron gains an energy ~�O�as 
expected classically, but only those electrons, which have the energy within an energy 
range �O� of the Fermi level, can be excited thermally. These electrons gain an 
energy, which is itself of the order of�O�, as in Fig. 3. This gives a qualitative 
solution to the problem of the heat capacity of the conduction electron gas. If N is the 
total number of electrons, only a fraction of the order of �OT/�R  can be excited 
thermally at temperature T, because only these lie within an energy range of the order 
of �O� of the top of the energy distribution. Each of these ;�� / <�:  electrons has a 

thermal energy of the order of �OT. The total electronic thermal kinetic energy U is of 

5 = � ������S�

�
 

(1.20) 

(1.21) 

(1.22) 

(1.23) 5 = � ����������:

�
 



PHL 307          SOLID STATE PHYSICS 1 
 

100 

the order of = ≅ );�� / <�+ , ��/. The electronic heat capacity is >�� = ���� =;�� ?�� / <�: @and is directly proportional to T, in agreement with the experimental 

results discussed in the following section. At room temperature C is smaller than the 
classical value N�O  by a factor 0.01 or less, for �R~5 × 10�� 
We now derive a quantitative expression for the electronic heat capacity valid at low 
temperatures �O� ≪ �R. The total energy of a system of N electrons at temperature T 
is 

 
Where f (E, T) is the Fermi distribution function and D (E) is the density of states. 
The heat capacity can be found by differentiating this equation with respect to 
temperature. Since only the distribution function depends on temperature we obtain 
 
 
 
It is more convenient to represent this result in a different form: 
 
 
 
 
 
Eq. (1.26) is equivalent to Eq. (1.25) due to the fact which follows from Eq. (1.22): 
 
 
 
 
Since we are interested only temperatures for which �O� ≪ �Rthe derivative �� ��⁄ is 
large only at the energies which lie very close to the Fermi energy. Therefore, we can 
ignore the variation of D (E) under the integral and take it outside the integrand at the 
Fermi energy, so that 
 
 
 
 
 
We also ignore the variation of the chemical potential with temperature and assume 
that � = �R   , which is good approximation at room temperature and below. Then 

   
����,���� =  

�� �A�B�2  
�CDEF EAG HBI: J��CDEFEAG HBI: J�2 

Eq. (1.28) can then be rewritten as   6T� = ���R� � >S	 S�@���C�
T��� �� 
��⁄ �

UT��� ��� 
��� ��V� �� = ���R�  � %�>��C@���C�
:

–S� ��C⁄ T�>T���@� ��:�  

[ = � ��������, ����:

�
 (1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

6T� = �[�� = � ����� ����, ���� ��:

�
 

6T� = ��� − �R����� ����, ����:

�
�� 

0 = �R �5�� = �R � ���� ����, ���� ��:

�
 

6T� = ���R� ��� − �R� ����, ���� ��:

�
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Taking into account that �R>>�OT, we can put the low integration limit to minus 
 infinity and obtain 

�KL = ���6��*�! � ��K'	K'���� �� = 5�� ���6��*�!M
M  

For a free electron gas we should use Eq. (1.21) for the density of states to finally 
obtain 

             �(	 = ��� �
T � �9� , 

where we defined the Fermi temperature �R = S��� . This is similar to what we expected 

to obtain according to the qualitative arguments given in the beginning of this section. 
Experimentally the heat capacity at temperatures much below both the Debye 
temperature and the Fermi temperature can be represented in the form: 
 
  6 = 6T� + 6B� =  �� +  ��� 
 
The electronic term is dominant at sufficiently low temperatures. The constants and 
can be obtained by fitting the experimental data. 
 
4.0 Conclusion 
 
The classical free electron theory is an attempt to regard the valence electrons in metal 
as the non-interacting particles of an ideal gas. The only difference between this gas 
of electrons and any other ideal gas defined by kinetic theory is that the particles are 
charged. 
 
5.0 Summary 
 
 The energy of the highest occupied level is called the Fermi energy 
  Various electronics states of the crystals can be obtained through the 
 application  of Schrodinger’s wave equation. 
 The total energy of a system of N electrons at temperature T is 
 

U =  � ED�E�f�E, T�dE
:

�
 

6.0 Tutor marked assignment  

Q1. Consider the free electron energy bands of an fcc crystal lattice in the reduced 
zone scheme in which all k 's are transformed to lie in the first Brillouin zone. 
Plot roughly in the [111] direction the energies of all bands up to six times the 
lowest band energy at the zone boundary at k = (2π/a)(½,½,½). Explain what 
happens with these bands in the presence of a weak crystal potential.  

Q2. Suppose that the crystal potential in a one-dimensional lattice of lattice 
constant � is composed of a series of rectangular wells which surround the 
atom. Suppose that the depth of each well is U

0 
and its width a/5.  

(1.31) 

(1.32) 

(1.33) 
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a.  Calculate the values of the first three energy gaps. Compare the magnitudes of 
 these gaps.  

b.  Evaluate these gaps for the case of U
0 
= 5 03 and a = 4Å.  
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1.0 Introduction 
 
In this unit we are going to study how the classical free electron theory developed by 
Lorentz, Drude and Debye uses kinetic theory to calculate the transport properties of 
the free electron of a gas including electrical and thermal conductivity. 
 
2.0 Objective 
 
 To explain the Drude model  of the thermal conductivity  of solid 

 To  explain motion in Magnetic field in terms of Cyclotron resonance and  
 Hall Effect 
 
3.0 Definition 
 
Electronic transfer is the determination of the thermal conductivity of electrons 
treated as classical particles. 
 
3.1 Drude model 

The simplest treatment of the electrical conductivity was given by Drude. There are 
four major assumptions within the Drude model. 
 

i. Electrons are treated as classical particles within a free-electron 
approximation. Thus, in the absence of external electromagnetic fields each 
electron is taken to move uniformly in a straight line, neglecting the 
interactions with other electrons and ions. In the presence of external fields 
each electron is taken to move according to Newton's laws of motion. 

ii.  Electrons move free only between collisions with scattering centers. 
Collisions, as in kinetic theory, are instantaneous events that abruptly alter the 
velocity of an electron. Drude attributed them to the electrons scattering by ion 
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cores. However, as we will see later, this is not a correct picture of electron 
scattering on ordered periodic structures. A particular type of scattering 
centers does not matter in the Drude model. An understanding of metallic 
conduction can be achieved by simply assuming that there is some scattering 
mechanism, without inquiring too closely into just what that mechanism might 
be. 
 

iii.  An electron experiences a collision, resulting in an abrupt change in its 
velocity, with a probability per unit time1/�. This implies that the probability 
of an electron undergoing a collision in any infinitesimal time interval of 
length 9� is just 9�/�. The time �  is therefore an average time between the 
two consecutive scattering events. It is known as, the collision time (relaxation 
time), it plays a fundamental role in the theory of metallic conduction. It 
follows from this assumption that an electron picked at random at a given 
moment will, on the average, travel for a time t before its next collision. The 
relaxation time t is taken to be independent of an electron's position and 
velocity. 

 
iv. Electrons are assumed to achieve thermal equilibrium with their surroundings 

only through collisions. These collisions are assumed to maintain local 
thermo-dynamic equilibrium in a particularly simple way: immediately after 
each collision an electron is taken to emerge with a velocity that is not related 
to its velocity just before the collision, but randomly directed and with a speed 
appropriate to the temperature prevailing at the place where the collision 
occurred. 

 
Now we consider the application of the Drude model for electrical 
conductivity in a metal. According to Ohm's law, the current I flowing in a 
wire (Fig 2.1) is proportional to the potential drop V=V2V1 along the wire: V 
= IR, where R, the resistance of the wire, depends on its dimensions. It is 
much more convenient to express the Ohm's law in a form which is 
independent of the dimensions of the wire because these factors are irrelevant 
to the basic physics of the conduction We define the conductivity which is the 
proportionality constant between the current density j and the electric field E 
at a point in the metal: 

 
Fig. 2.1: Current flowing in a wire (After www.pa.uk.edu/kwng.phy/525/lec/lecture-
8) 
 � � �� �                                             (2.1) 
 
The current density j is a vector, parallel to the flow of charge, whose magnitude is 
the amount of charge per unit time crossing a unit area perpendicular to the flow. 
Thus if a uniform current I flows through a wire of length L and cross-sectional area 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-
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A, the current density will be - = . /⁄  Since the potential drop along the wire will 
be 3 = �X Eq. (2.1) gives I/A=V/L, and hence R = L/A =L/A, here we have  
introduced resistivity =1/. Unlike R, and 7 is a property of the material, since it 
does not depend on the shape and size. Now we want to express is terms of the 
microscopic properties using the Drude model. If n electrons per unit volume all move 
with velocity v, then the current density they give rise to will be parallel to v. 
Furthermore, in a time �@ the electrons will advance by a distance P�@ in the direction 
of v, so that !�P�@�� electrons will cross an area A perpendicular to the direction of 
flow. Since each electron carries a charge -e, the charge crossing A in the time �@ will 
be – !0P��@  and hence the current density is 
 � = ���.             (2.2) 
 
At any point in a metal, electrons are always moving in a variety of directions with a 
variety of thermal energies. The net current density is thus given by Eq. (2.2), where v 
is the average electronic velocity or drift velocity. In the absence of an electric field, 
electrons are as likely to be moving in any one direction as in any other, v averages to 
zero, and, as expected, there is no net electric current density. In the presence of a 
field E, however, there will be a drift velocity directed opposite to the field (the 
electronic charge being negative), which we can compute as follows. Consider a 
typical electron at time zero. Let t be the time elapsed since its last collision. Its 
velocity at time zero will be its velocity 3� immediately after that collision plus the 
additional velocity − 0�@ �+  it has subsequently acquired. Since we assume that an 
electron emerges from a collision in a random direction, there will be no contribution 
from �3 to the average electronic velocity, which must therefore be given entirely by 
the average of − 0�@ �+ However, the average of t is the relaxation time . Therefore 
 
 ��PW = − 0�@ �+  
 

 " =  − NO6PQ E 
 
The conductivity is, therefore, given by 

 � =  12�34  

 
We see that the conductivity is proportional to the density of electrons, which is not 
surprising since the higher the number of carriers, the more the current density. The 
conductivity is inversely proportional to the mass because the mass determine the 
acceleration of an electron in electric field. The proportionality to follows because 
is the time between two consecutive collisions. Therefore, the larger is, the more 
time for electron to be accelerated between the collisions and consequently the larger 
the drift velocity. The values of relaxation time can be obtained from the measured 
values of electrical conductivity. For example at room temperature the resistivity of 
many metals lies in the range of 1-10 cm. The corresponding relaxation time is of 
the order of 10 − 14 �. In this discussion of electrical conductivity we treated 
electrons on a classical basis. How are the results modified when the quantum 
mechanics is taken into account? Let us refer to Fig.2.3. In the absence of an electric 

(2.3) 

(2.4) 

(2.5) 
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field, the Fermi sphere is centred at the origin (Fig. 2.3a). The various electrons are all 
moving - some at very high speeds - and they carry individual currents. But the total 
current of the system is zero, because, for every electron at velocity v there exists 
another electron with velocity -v and the sum of their two currents is zero. Thus the 
total current vanishes due to pair wise cancellation of the electron currents. 
 

 
Fig.2.2: (a) The Fermi sphere at equilibrium, (b) Displacement of the Fermi sphere 
due to an electric field (After www.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
 
The situation changes when a field is applied. If the field is in the positive x-direction, 
each electron acquires a drift velocity, as given by Eq. (2.2). Thus the whole Fermi 
sphere is displaced to the left, as shown in Fig.2.2 (b). Although the displacement is 
very small and although the great majority of the electrons still cancel each other pair 
wise, some electrons - in the shaded crescent in the figure -remain uncompensated. It 
is these electrons which produce the observed current. The very small displacement is 
due to a relatively small drift velocity. If we assume that the electric field is 0.1V/cm, 
we obtain the drift velocity of 1cm/s, which is by 8, orders in magnitude smaller the 
Fermi velocity of electrons.  
 
Let us estimate the current density. The fraction of electrons which remain 
uncompensated is approximately � �C⁄ . The concentration of these electrons is 
therefore ��� �C⁄ �and since each electron has a velocity of approximately�C, the 
current density is  given by 
 
               � �  +
��� �C⁄ �YC � +�
� 
 
This is the same expression we obtained before. Therefore, formally the conductivity 
is expressed by the same formula (2.5). However, the actual picture of electrical 
conduction is thus quite different from the classical one. In the classical picture, we 
assumed that the current is carried equally by all electrons, each moving with a very 
small drift velocity v. In the quantum-mechanical picture the current is carried only by 
very small fraction of electrons, all moving with the Fermi velocity. The relaxation 
time is determined only by electrons at the Fermi surface, because only these 
electrons can contribute to the transport properties. Both approaches lead to the same 
result, but the latter is conceptually the more accurate. Since only electrons at the 
Fermi surface contribute to the conductance, we can define the mean free path of 
electrons as 	 � ��C. We can make an estimate of the mean free path for metal at 
room temperature. This estimate gives a value of 100Å. So it is of the order of a few 

(2.6) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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tens inter atomic distances. At low temperatures for very pure metals the mean free 
path can be made as high as a few cm. 
3.2 The origin of collision time 
 
We see that between two collisions, the electron travels a distance of more than 20 
times the inter atomic distance. This is much larger than one would expect if the 
electron really did collide with the ions whenever it passed them. This paradox can be 
explained only using quantum concepts according to which an electron has a wave 
character. It is well known from the theory of wave propagation in periodic structures 
that, when a wave passes through a periodic lattice, it continues propagating 
indefinitely without scattering. The effect of the atoms in the lattice is to absorb 
energy from the wave and radiate it back, so that the net result is that the wave 
continues without modification in either direction or intensity. Therefore we see that, 
if the ions form a perfect lattice, there is no collision at all - that is, l = - and hence 
= , which in turn leads to infinite conductivity. It has been shown, however, that 
the observed l is about 10� A. The finiteness of must thus be due to the deviation of 
the lattice from perfect periodicity; this happens either because of (1) thermal 
vibration of the ions, or because of (2) the presence of imperfections or foreign 
impurities. 
 

In order to consider their contribution we examine the temperature dependence of the 
electrical conductivity. The electrical conductivity of a metal varies with temperature 
in a characteristic manner. This variation is usually discussed in terms of the behavior 
of the resistivity versus T. Figure 2.3 shows the observed curve for Na. At T ~ 0°K, 
has a small constant value; above that, increases with T, slowly at first, but 
afterward increases linearly with T. The linear behavior continues essentially until 
the melting point is reached. This pattern is followed by most metals, and usually 
room temperature falls into the linear range. 
 
 

 
Fig. 2.3 The normalized resistivity (T)/ (290°K) versus T for Na in the low-
temperature region (a), and at higher temperatures (b) (After Kittel, 1979)  
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We want to explain this behavior  in terms of the Drude formula. Recalling that 7 =
 �	�  we have 

      # =  0RK�P 
As we have discussed earlier 1/which enters equation (2.7), is the probability of the 
electron scattering per unit time. Thus, if � = 10−14�, then the electron undergoes 
10�0

 collisions in one second. We found that the electron undergoes collisions only 
because the lattice is not perfectly regular. We group the deviations from a perfect 
lattice into two classes. a) Lattice vibrations (phonons) of the ions around their 
equilibrium position due to thermal excitation of the ions. (b) All static imperfections, 
such as impurities or crystal defects. Of this latter group we shall take impurities as an 
example. The total probability for an electron to be scattered in a unit time is the sum 
of the probabilities of scattering by phonons and by impurities. This is because these 
two mechanisms are assumed to act independently. Therefore we may write 
 1� =  1�� +  1��� 

Where the first term on the right is due to impurities and the second is due to phonons. 
The scattering by impurities is essentially independent of temperature, whereas the 
scattering by phonons is temperature dependent because the number of phonons 
increases with temperature. When equation (2.8) is substituted into equation (2.7), we 
readily find 
 7 =  7� +  7B� =  ��T�X� + ��T�X ! 
 

We see that has split into two terms. A term 7�  due to scattering by impurities, 
which is independent of T, is called the residual resistivity. Another term 7B����is 
due to scattering by phonons; hence it is temperature dependent. Sometimes it is 
called the lattice resistivity. 
 
At very low T, scattering by phonons is negligible because the amplitudes of 
oscillation are very small; in that region �B� >  ∞, 7B� > 0and hence 7 = 7�  is a 
constant. This is in agreement with Fig.2.3. As T increases, scattering by phonons 
becomes more effective, and �7ℎ(�),) increases; this is why increases. When T 
becomes sufficiently large, scattering by phonons dominates and ~�7ℎ���. The 
statement that can be split into two parts, is known as the Matthiessen rule. This 
rule is embodied in (2.9). In general, the Matthiessen rule predicts that if there are two 
distinguishable sources of scattering (like in the case above – phonons and impurities) 
the resistivity is the sum of the resistivities due to the first and the second mechanism 
of scattering. The Matthiessen rule is sort of empirical observation which can be used 
for a qualitative understanding of the contribution from different scattering 
mechanisms. However, one must always bear in mind the possibility a failure of this 
rule. In particular, in the case when the relaxation time depends on the wave vector k, 
the Matthiessen rule becomes invalid. 
 
Now let us derive approximate expressions for �1 and �23  using arguments from the 
kinetic theory of gases. Consider first the collision of electrons with impurities. We 
write 

(2.7) 

(2.8) 

(2.9) 
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 �� =  �4�5 

 
Where ��  is the mean free path for collision with impurities. In order to find the mean 
free path we shall assume, for simplicity, that the collision is of the hard-spheres 
(billiard-ball) type and introduce the scattering cross section of an impurity i which 
is the area an impurity atom presents to the incident electron. Then, we can argue that 
the product of the mean free path and the cross section of impurity l ii 7 7 7 7  , is equal 
to the average volume per impurity,1 �": , where !�  is the impurity concentration, i.e. 
 

  �� ∑ =  ����  

and therefore 

  $S =  �R8T9 
The scattering cross section i is of the same magnitude as the actual geometrical area 

of the impurity atom. That is, i ~ lÅ2. Calculations of the exact value of i  require 
quantum scattering theory. By substituting Eqs. (2.12)  and Eqs. (2.10) into (2.9), we 
find 7� =  �P��T� !�Σ� 
 
As expected, 7�  is proportional to !� the concentration of impurities. Calculating 7B� is much more difficult, but equations similar to (2.10) and (2.12) still hold. In 
particular, one may write  B� = 1!�Σ� 

 
where !�  is the concentration of the host atoms in the lattice, and a is the scattering 
cross section per atom. We should note here that a has no relation to the geometrical 
cross section of the atom. Rather it is the area presented by the thermally fluctuating 
atom to the passing electron. Suppose that the distance of deviation from equilibrium 
is x, then the average scattering cross section is 
 n ∝  〈��〉�  

 
where 〈��〉 is the average of ��. We can easily estimate this value at high 
temperatures, when the classical approach is valid. Since the ion is a harmonic 
oscillator, the value 〈��〉  is proportional to the average of its potential energy is equal 
to half the total energy. Thus, ∑ ∝  〈��〉 ∝� ���� � 

 

(2.10) 

(2.11) 

(2.12) 

 (2.13) 

 (2.14) 

(2.15) 

(2.16) 
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where C is inter atomic force constant introduced earlier and we used the formula for 
the energy of a classical oscillator. We see therefore that at high temperatures the 
resistivity is linear in T, 
 

��� ∝
�����
���

� 
2	 
 

 
which is in agreement with experiment. 
In the low-temperature range the lattice resistivity varies with temperature in a 
different way. Using the Debye model at low temperature range one can find 
that �=E~�F. 
   
3.3 Thermal conductivity 
 
When the ends of a metallic wire are at different temperatures, heat flows from the hot 
to the cold end. The basic experimental fact is that the heat current density, �G i.e. the 
amount of thermal energy crossing a unit area per unit time is proportional to the 
temperature gradient 
   

  �G � +� 0H
0� 

 
where K is the thermal conductivity. In insulators, heat is carried entirely by phonons, 
but in metals heat may be transported by both electrons and phonons. The thermal 
conductivity K is therefore equal to the sum of the two contributions 
 � � �I � �=E 
 
where �I  and �=E refer to electrons and phonons, respectively. In most metals, the 
contribution of the electrons greatly exceeds that of the phonons, because of the great 
concentration of electrons. Typically �I~10��=E 
 

 
Fig.2.4: Heat conduction process (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
 
The physical process by which heat conduction takes place via electrons is illustrated 
in Fig.2.4. Electrons at the hot end (to the left) travel in all directions, but a certain 
fraction travel to the right and carry energy to the cold end. Similarly, a certain 
fraction of the electrons at the cold end (on the right) travel to the left, and carry 
energy to the hot end. Since on the average electrons at the hot end are more energetic 
than those on the right, a net energy is transported to the right, resulting in a current of 
heat. Note that heat is transported entirely by electrons having the Fermi energy, 
because those well below this energy cancel each other's contributions. 

  (2.17) 

( 2.18) 

(2.19) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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To evaluate the thermal conductivity K quantitatively, we use the formula I =1 3+ 6T�PR� here 6T�  is the electronic specific heat per unit volume, v is the Fermi 
velocity of electrons; l is the mean free path of electrons at the Fermi energy. Using 
expression for the heat capacity derived earlier, we find 
  = �& ���
 � ���05 !� �." 
 

Noting that � = 1 2+ �PR� and that � PR+ = � we can simplify this expression for K to � =  ����4�ULKV  
 
This expresses thermal conductivity in terms of the electronic properties of the metal. 
Many of the parameters appearing in the expression for K were also included in the 

expression for electrical conductivity. Recalling that � = ��� ��  we find 
 �� = 1

3 �

T� �� � = �� 

 
We see from here that the ratio of the thermal conductivity to the electrical 
conductivity is directly proportional to the temperature. This is called the Wiedemann-
Franz law. The constant of proportionality L, which is called the Lorentz number, is 
independent of the particular metal. It depends only on the universal constants �O  and 
e, should be the same for all metals. The Lorentz number numerical value is2.45 ×
10	
UΩ/I�. This conclusion suggests that the electrical and thermal conductivities 
are intimately related, which is to be expected, since both electrical and thermal 
current are carried by the same agent: electrons. 
 
Worked example: 
 
Solid �A has an ��� structure with cubic lattice constant � = 5.26Å, atomic mass �Y< = 6.67 × 10	�/ kg and a Debye temperature "Z = 92�I.  
 
a) Estimate the phonon velocity using the Young modulus of �A, 6�� = 1.6 ×

10�5/��. 
b) Using the expression I = ��6P� in which C is the phonon heat capacity per 

unit volume. Find the thermal conductivity, K (in unit of 4�	��	�I	�) of a 
1 ��� crystal of �A at 1�I, assuming that phonon scattering occurs only at 
the boundaries of the sample. 

 
  

(2.20) 

(2.21) 

(2.22) 
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 Solution: 
a) The phonon velocity is estimated from the velocity of sound which is  � � {V�� �6  ={��V�� 4�J.6     since in ��� structure there are 4 atoms in a cubic unit 

cell and hence, � �
�� �K � ��

��  , then,  � � {5. 26� C 10��9 C 1.6 C 10LW�� 4 C 6.67 C 10��&:]��6 � 934 ���� 

b) Since � � 19� ≪ /M � 929�,  we can use the low temperature 
approximation for heat capacity. Recall Eq.(5.37) in Module 2, unit 5, the heat 
capacity of a solid which contains N atoms is given, VN � 124�5 W:D e �/Mh�

 

Dividing the expression by N, we obtain the heat capacity per unit atom and dividing 

the latter by �� 46 , we obtain the heat capacity per unit volume, C. Therefore, 

�� � 48����5	� 
 ���

� � 48 - 3.143 - 1.38 - 10�235 - 5.263 - 10�30 
 192
3 4 536� 7 1.14 - 102 4 536�  

Since the scattering of phonons is determined by the boundaries of the sample we can 
assume that the mean free path is l=  1 mm and the thermal conductivity is  � � 13 VN�	 � 0.33 C 1.14 C 10�934 C 10�� F ���6 � �⁄ � ≃ 35 F ���6  

 
3.4 Motion in a magnetic field 
 
The application of a magnetic field to a metal gives rise to several interesting 
phenomena due to conduction electrons. The cyclotron resonance and the Hall Effect 
are to be considered 
 
3.4.1 Cyclotron resonance 
 
If a magnetic field is applied to a metal the Lorentz force F = e[E+(v B)] acts on 
each electron. For a perfect metal in the absence of electric field the equation of 
motion takes the form � OP

OQ �-evC � 
 
If the magnetic field lies along the z-direction this results in 
 ����� � ��8��, 
 9��9� � p��� 

 
where  
 

(2.23) 

(2.24) 

(2.25) 
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�! � 
��
�  

 

is the cyclotron frequency in SI system of units �2� V�1 �� � �� ��6  �. For magnetic 
fields of the order of a few :� the cyclotron frequencies lie in the range of a few 
GHz. For example for B=1kG, the cyclotron frequency is �R  ?�� 2�� 	2.8�
�. 

Therefore, the magnetic field causes electrons to move in a counterclockwise circular 
fashion with the cyclotron frequency in a plane normal to the field. 
 
Suppose now that an electromagnetic signal is passed through the slab in a direction 
parallel to B, as shown in figure 2.5. The electric field of the signal acts on the 
electrons, and some of the energy in the signal is absorbed. The rate of absorption is 
greatest when the frequency of the signal is exactly equal to the frequency of the 
cyclotron (see Fig.2.5b), i.e. 
 
  p � p� 
 

 
Fig. 2.5 (a) Cyclotron motion, (b) The absorption coefficient versus After 
www.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
   
This is so because, when this condition holds true, each electron moves with the wave 
throughout the cycle, and therefore the absorption continues all through the cycle. 
Thus, Eq. (2.26) is the condition for cyclotron resonance. On the other hand, when 
Eq. (2.26) is not satisfied, the electron is in phase with the wave through only a part of 
the cycle, during which time it absorbs energy from the wave. In the remainder of the 
cycle, the electron is out of phase and returns energy to the wave. Cyclotron 
resonance is commonly used to measure the electron mass in metals and 
semiconductors. The cyclotron frequency is determined from the absorption curve, 
and this value is then substituted in Eqs. (2.25) to evaluate the effective mass. 
   
3.4.2 Hall effect 
    
First we derive an equation of motion of an electron in applied magnetic and electric 
field in the presence of scattering. Assume that that the momentum of an electron is #��� at time t, let us calculate the momentum per electron #�� �  9�� an infinitesimal 
time 9� later. An electron taken at random at time t will have a collision before time � �  9�, with probability 9�/�, and will therefore survive to time � �  9� without 
suffering a collision with probability 1 +  9�/�. If it experiences no collision, 

(2.26) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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however, it simply evolves under the influence of the force F (due to the spatially 
uniform electric and/or magnetic fields) and will therefore acquire an additional 
momentumV�@. The contribution of all those electrons that do not collide between t 
and @ +  �@ to the momentum per electron at time @ +  �@ is the fraction (1 −  �@/	) 
they constitute of all electrons, times their average momentum per electron, ¡(@)  +
 V�@. Thus, neglecting the moment the contribution to ¡(@ +  �@) from those 
electrons that do undergo a collision in the time between t and@ +  �@, we have 

 ¢�t + dt� = )1 −  12[ , �¢�t� +  £dt� 
 
Note that if the force is not the same for every electron it should be averaged. 
 
The correction to (2.27) due to those electrons that have had a collision in the interval 
t to @ + �@ is only of the order of(�@)�. To see this, first note that such electrons 
constitute a fraction �@/of the total number of electrons. Furthermore, since the 
electronic velocity (and momentum) is randomly directed immediately after a 
collision, each such electron will contribute to the average momentum ¡(@ +
 �@) only to the extent that it has acquired momentum from the force F since its last 
collision. Such momentum is acquired over a time no longer than �@, and is therefore 
of orderV�@. Thus the correction to (2.27) is of order(�@/	)V�@, and does not affect 
the terms of linear order in �@. We may therefore write 
 W�X�YX�� W�X�+Z = +W+Z = F = − W�X�[  

 
This simply states that the effect of individual electron collisions is to introduce a 
damping term into the equation of motion for the momentum per electron. We apply 
this equation to discuss the Hall Effect in metals using a free electron model. The 
physical process underlying the Hall Effect is illustrated in Fig.2.6. Suppose that an 
electric current 4%  is flowing in a wire in the x-direction, and a magnetic field 
, is 
applied normal to the wire in the z-direction. We shall show that this leads to an 
additional electric field, normal to both 4%  and 
,, that is, in the y-direction. Before the 
magnetic field is applied, there is an electric current flowing in the positive x 
direction, which means that the conduction electrons are drifting with a velocity v in 
the negative x-direction. When the magnetic field is applied, the Lorentz force V =
 −0(� ¤ <) causes the electrons to bend downward, as shown in the figure. As a 
result, electrons accumulate on the lower surface, producing a net negative charge 
there. Simultaneously a net positive charge appears on the upper surface, because of 
the deficiency of electrons there. This combination of positive and negative surface 
charges creates a downward electric field�\, which is called the Hall field. 
 

(2.27) 

(2.28) 
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Fig. 2.6: Origin of the Hall field and Hall Effect  
 
(After www.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
   
Let us evaluate this Hall field. We start from the Lorentz force acting on each electron 
F = e [E+ (v B)]. According to (2.28) we find 

� "#
"$ � ��⌊� � � � �⌋ �  � #

% 
 
where is the relaxation time. Note that the Lorentz force is not the same for all 
electrons because they move with different velocities; therefore it is averaged over 
ensemble. We are looking for the solution of this equation in the steady state when the 

current is independent of time and therefore  9� 9�6  = 0. 
 0 �  �	
� �  	�v� �  
 :�;  

 

                        0 �  �	
� � 	�v� �  
 :�;  

 
We multiply these equations by ne/m to introduce current densities components �� � +
���  and �� � +
��� , so that 
 σE< � ω=�j> � j< 
 
             σE� �  ��8��� � �� 
 
Where is the Drude conductivity in the absence of a magnetic field. In the steady 
state there is no electric current flowing perpendicular to the wire. Therefore the Hall 
field >S =>T  can be determined by the requirement that there be no transverse 
current��. Setting  ��  to zero in the second equation of (2.31) we find that    
 
� � � �? ;@ � �� �  � ��& ��� 
 
The proportionality constant �1 ne�  , is known as the Hall constant, and is usually 
denoted by US.. Therefore, 

(2.29) 

(2.30) 

 (2.31) 

 (2.32) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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¥ =  −
¦§¨ 

 
This is a very striking result, which predicts that the Hall coefficient depends on no 
parameters of the metal except the density of carriers. Since j]  is inversely 
proportional to the electron concentration n, it follows that we can determine n by 
measuring the Hall field. Since we have already calculated n assuming that the atomic 
valence electrons become the metallic conduction electrons, a measurement of the 
Hall constant provides a direct test of the validity of this assumption.  
 
4.0 Conclusion 
 
The electrical and thermal conductivity of the free electron were obtained through the 
Drude model. 
 
5.0 Summary 

 
 Drude model provided the simplest treatment of electrical conduction of a 

metal 
 The splitting up of resistivity  to two terms (due to impurities and phonon) is 

known  as Matthiessen rule 
 Resistivity ((�B�) due to scattering of phonons which is independent of 

temperature is known as lattice resistivity 
 Resistivity (��) due to  scattering by impurities  which is independent of 

temperature is known as residual resistivity 
 The cyclotron resonance and the Hall Effect are phenomena due to application 

of a magnetic field to a metal. 
 
6.0 Tutor marked assignment 
 
Q1. A Cu wire of diameter 2mm carries 10A of current. Find the drift velocity 
Q2. If the Fermi energy of Na is 3.1 eV and the electrical conductivity is 
 2.1x1017  esu at 0K, calculate the relaxation time. 
Q3. Using the Drude formula, calculate the mean free path of K, if its lattice 
 parameter a = 4.2Å. Also calculate the Hall coefficient. 
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UNIT 3  ENERGY BAND THEORY     
  
CONTENTS 
 
1.0       Introduction   
2.0       Objectives-   
3.0       Definition 
 3.1 Energy bands  
  3.2 Periodic potential- 
 3.3 Weak potential 
 3.4. Metal and Insulators  
4.0 Conclusion    
5.0 Summary  
6.0 Tutor Marked Assignment    
7.0       Further Reading/References 
 
1.0 Introduction 

The free electron model gives us a good insight into many properties of metals, such 
as the heat capacity, thermal conductivity and electrical conductivity. However, this 
model fails to help us with other important properties. For example, it does not predict 
the difference between metals, semiconductors and insulators. It does not explain the 
occurrence of positive values of the Hall coefficient. Also the relation between 
conduction electrons in the metal and the number of valence electrons in free atoms is 
not always correct. We need a more accurate theory, which would be able to answer 
these questions. 
 
2.0 Objective 
 
The objectives of this unit is  
 
 To explain the general features of band levels 
 To explain the periodic potential of an electron 
 To explain the  properties of the Bloch electron 
 To explain the difference between Metals and Insulators. 
 
3.0 Definition 
 
Energy band is the range of energies possessed by electrons in a solid 
 
3.1 Energy band 
 
It is customary to visualize the existence of bands on an energy scale of band structure 
scheme, according to which, the energy bands for the most tightly bound electrons lie 
at the bottom, followed by the band of the second most tightly bound electrons, and so 
on, till we reach the top of the set of completely full energy bands. The top of the 
band of the set is known as the valence band. Next higher energy band is referred to 
as conduction band, which might be completely empty. The characteristic energy that 
separate the occupied from empty states is called Fermi energy EF and is 
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characterized by Fermi level existing between the conduction band and the valence 
band. The two bands are separated by energy gap >U, defined by  
 �< � �� � ��                                                                                 (3.1)   
 
Where >� and  >N are respectively the energy of the bottom of the conduction band 
and the top of the valence band. The >U value for a semiconductor is typically of the 
order of 1 
Y and that for an insulator is 5 
Y. based o the relative positions of 
conduction and valence bands, metals may be classified into two categories. In one, 
valence band is completely full and conduction band is partially filled, e.g., Na, 2p 
(valence) band is completely full and conduction (3s) band is half filled. In the other, 
conduction and valence bands overlap each other. For example, 
Mg�1��, 2��, 2�&, 3���, 3��(valence) and 3�(conduction) bands overlap in energy. 
 
3.2 Periodic Potential 
 
The potential seen by an electron due to the nucleus of an isolated atom of valence z 

is +\
� �6 , where e is the electronic charge and r the nucleus –electron distance. 
However , the atom in a perfect crystal are arranged in a regular periodic array, 
therefore, we are led to consider the problem of an electron in a potential U(r ) with 
the periodicity of the under-lying Bravais lattice i.e. 
 
U(r ) = U(r  + T)                        (3.2)  
 
where T is a lattice vector. Qualitatively, a typical crystalline potential might be 
expected to have a form shown in Fig.3.1, resembling the individual atomic potentials 
as the ion is approached closely and flattening off in the region between ions. 
 

 
Fig.3.1: The crystal potential seen by the electron (After Kittel, 1979) 
 
Since the scale of periodicity of the potential U (~ 10-8 cm) is the size of a typical de 
Broglie wavelength of an electron, it is essential to use quantum mechanics in 
accounting for the effect of periodicity on electronic motion. Thus we consider the 
Hamiltonian. 
 

 ���� �  + ℏ�
��  �� �  c���     (3.3) 

 
Using Eq. (3.2) in Eq. (3.3) leads to 
 
 ��� � �� �  ����                                                                  (3.4) 
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This shows that the Hamiltonian also has the lattice periodicity. Hence, to predict the 
physical properties of the crystal, one should solve the following Schrodinger 
equation for a single electron 
 ��©� =  �− ℏ���  ª� +  [(J)� ��A� = ���A�    (3.5) 

 
in which (r ) is a wave function for one electron. Independent electrons, which obey 
a one electron Schrödinger equation (3.5) with a periodic potential, are known as 
Bloch electrons, in contrast to "free electrons," to which Bloch electrons reduce when 
the periodic potential is identically zero. 
Now we discuss general properties of the solution of the Schrödinger equation (3.5) 
taking into account periodicity of the effective potential (3.2) and discuss main 
properties of Bloch electrons, which follow from this solution. We represent the 
solution as an expansion over plain waves. 
 

                     
��� =  �
6�178
9  

   
This expansion in a Fourier series is a natural generalization of the free-electron 
solution for a zero potential. The summation in (3.6) is performed over all k vectors, 
which are permitted by the periodic boundary conditions. According to these 
conditions the wave function (3.6) should satisfy  
 
                           ���, 
, �� =  ��� + X, 
, �� =  ���, 
 + X, �� =  ���, 
, � + X�     
(3.7) 
 
 So that 

k� =  �5R'U ;  k� =  �5R:U ;  k� =  �5R;U  

 
where !% , !&, and !, are positive or negative integers. Note that in general (r ) is 
not periodic in the lattice translation vectors. On the other hand, according to Eq. (3.2) 
the potential energy is periodic, i.e. it is invariant under a crystal lattice translation. 
Therefore, its plane wave expansion will only contain plane waves with the 
periodicity of the lattice. Therefore, only reciprocal lattice vectors are left in the 
Fourier expansion for the potential: 
 [�J� =  n [^0�^_

^
 

 
where the Fourier coefficients UG are related to U(r ) by 
 #5 =  ��: ∫6������57#	$
�� 

 
where 3�  is the volume of the unit cell. It is easy to see that indeed the potential 
energy represented by (3.9) is periodic in the lattice: 
 

(3.6) 

 (3.8) 

 (3.9) 

   (3.10) 
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U�« + ¬� =  n U`ea`>b�c@ =  ea`c n U`ea`b
`

= U�«�
`

 

 
where the last equation comes from the definition of the reciprocal lattice 
vectors 0�dC = 1. The values of Fourier components [d for actual crystal potentials 
tend to decrease rapidly with increasing magnitude of G. For example, for a Coulomb 
potential [d decreases as 1 ­�+  .Note that since the potential energy is real the Fourier 

components should satisfy [	d =  [d∗ . 
 
We now substitute (3.6) and (3.9) in Eq. (3.5) and obtain: 
 
 
 
 
 
changing the summation index in the second sum on the left from k to k +G this 
equation can be rewritten in a form: 
 ∑ 0�e_ ®) ℏ��� �� − �, 6� + ∑ [^6e	^d ¯f = 0 

 
Since this equation must be satisfied for any r the Fourier coefficients in each separate 
term of (3.13) must vanish and therefore 
 
 ° ℏ�

2� �� − �± 6� + n [d6�	d = 0
d

 

 
This is a set of linear equations for the coefficients Ck. These equations are nothing 
but restatement of the original Schrödinger equation in the momentum space, 
simplified by the fact that the potential is periodic. This set of equations does not look 
very pleasant because, in principle, an infinite number of coefficients should be 
determined. However, a careful examination of Eq. (3.14) leads to important 
consequences. 
 
First, we see that for a fixed value of k the set of equations (3.14) couples only those 
coefficients, whose wave vectors differ from k by a reciprocal lattice vector. In the 
one-dimensional case these are k, k2/a, k4/a, and so on. We can therefore 
assume that the k vector belongs to the first Brillouin zone. The original problem is 
decoupled to N independent problems (N is the total number of atoms in a lattice): for 
each allowed value of k in the first Brillouin zone. Each such problem has solutions 
that are superposition of plane waves containing only the wave vector k and wave 
vectors differing from k by the reciprocal lattice vector. 
 
Putting this information back into the expansion (3.6) of the wave function (r ), we see 
that the wave function will be of the form 
 

   (3.11) 

  (3.12) 

(3.13) 

(3.14) 

ℏ�
2� n ��6�0��_ + n n [d6�0�>��d@_ = � n 6�0��_gd��
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=!�>� %  ?@"
#A$�!
%�&
%

 

 
where the summation is performed over the reciprocal lattice vectors and we introduced 
index k for the wave function. We can rearrange this so that 
 ="�>� %  A$!&?@!
%A
$%&

%
 

Or �V��� � 
�VW�V��� 
 
where  �5��� �  �5�� � �� is a periodic function which is defined by 
 �V��� � lVV�X
��XW

X
 

 
 
Equation (3.17) is known as Bloch theorem, which plays an important role in 
electronic band structure theory. Now we discuss a number of important conclusions 
which follow from the Bloch theorem. 
 
1. Bloch's theorem introduces a wave vector k, which plays the same 

fundamental  role in the general problem of motion in a periodic potential 
that the free electron  wave vector k plays in the free-electron theory. Note, 
however, that although the  free electron wave vector is simply A ℏ6 , where p 
is the momentum of the electron,  in the Bloch case k is not proportional to 
the electronic momentum. This is clear  on general grounds, since the 
Hamiltonian does not have complete translational  invariance in the presence 
of a non-constant potential, and therefore its eigenstates  will not be 
simultaneous eigenstates of the momentum operator. This conclusion  is 
confirmed by the fact that the momentum operator, A B )�ℏC, when acting 
on p5��� gives 

 +2ℏ∇�5��� � +2ℏ∇�
�VW�V���� � ℏ��5��� + 2ℏ
�VW∇�V��� 
 
Which is not, in general, just a constant time p5���; i.e.,  p5��� is not a momentum 
eigenstate. Nevertheless, in many ways ℏk is a natural extension of p to the case of a 
periodic potential. It is known as the crystal momentum or quasimomentum of the 
electron, to emphasize this similarity, but one should not be misled by the name into 
thinking that ℏk is a momentum. 
 
2 The wave vector k appearing in Bloch's theorem can always be confined to the 
 first Brillouin zone (or to any other convenient primitive cell of the reciprocal 
 lattice). This is because any k ' not in the first Brillouin zone can be written as 
 G� � G � � 
 

 (3.15) 

(3.16) 

(3.17) 

 (3.18) 

(3.19) 

(3.20) 
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where G is a reciprocal lattice vector and k does lie in the first zone. Since 
�YH  �1 
for any reciprocal lattice vector, if the Bloch form Eq. (3.17) holds for k ', it will also 
hold for k. An example is given below for a nearly free electron model. 
 
The energy E of free electrons which is plotted versus k in Fig 3.2a exhibits a curve in 
the familiar parabolic shape. Figure 3.2b shows the result of translations. Segments of 
the parabola of Fig.3.2a are cut at the edges of the various zones, and are translated by 
multiples of G = 2/a in order to ensure that the energy is the same at any two 
equivalent points. Fig.3.2c displays the shape of the energy spectrum when we 
confine our consideration to the first Brillouin zone only. The type of representation 
used in Fig.3.2c is referred to as the reduced-zone scheme. Because it specifies all the 
needed information, it is the one we shall find most convenient. The representation of 
Fig.3.2 a, known as the extended-zone scheme is convenient when we wish to 
emphasize the close connection between a crystalline and a free electron. Fig.3.2b 
employs the periodic-zone scheme, and is sometimes useful in topological 
considerations involving the k space. All these representations are strictly equivalent; 
the use of any particular one is dictated by convenience, and not by any intrinsic 
advantages it has over the others. 
 

 
 

Fig.3.2 Free electron bands within reduced- (a), extended- (b) and periodic-zone (c) 
scheme (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
 
3 An important consequence of the Bloch theorem is the appearance of the 

energy  bands. All solutions to the Schrodinger equation (3.5) have the Bloch 
form              �V��� �  PZVW�V��� where k is fixed and �V��� has the 
periodicity of the Bravais       lattice.  Substituting this into the Schrodinger 
equation, we find that B!�>�is  determined by  the eigenvalue problem 

 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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\�P�!<�]� = ^− ℏ��= �_P + ∇�� + `�]�a !<�]� = H�P�!<�]� 
 
With boundary condition 
 ><�]� = !<�] + b� 
 
Because of the periodic boundary condition we can regard (3.21) as an eigenvalue 
problem restricted to a single primitive cell of the crystal. Because the eigenvalue 
problem is set in a fixed finite volume, we expect on general grounds to find an 
infinite family of solutions with discretely spaced eigenvalues, which we label with 
the band index n. The Bloch function can therefore be denoted by f���J�   which 
indicates that each value of the band index n and the vector k specifies an electron 
state, or orbital with energy ���J�. Note that in terms of the eigenvalue problem 
specified by (3.21) and (3.22), the wave vector k appears only as a parameter in the 
Hamiltonian H (k). We therefore expect each of the energy levels, for given k, to vary 
continuously as k varies. In this way we arrive at a description of the levels of an 
electron in a periodic potential in terms of a family of continuous functions ���J�. For 
each n, the set of electronic levels specified by ���J� is called an energy band. The 
information contained in these functions for different n and k is referred to as the 
band structure of the solid. 
 
4 Number of states in a band. 
 
The number of orbitals in a band within the first Brillouin zone is equal to the number 
of unit cells N in the crystal. This is much the same as the statement made in 
connection with the number of lattice vibrational modes, and is proved in a like 
manner, by appealing to the boundary conditions. Consider first the one-dimensional 
case. The allowed values of k form a uniform mesh whose unit spacing is 2/L. The 
number of states inside the first zone, whose length is 2/a, is therefore equal to 
(2/a)/ (2/L) = L/a = N, where N is the number of unit cells, in agreement with the 
assertion made earlier. A similar argument may be used to establish the validity of the 
statement in two- and three-dimensional lattices. It has been shown that each band has 
N states inside the first zone. Since each such state can accommodate at most two 
electrons, of opposite spins, in accordance with the Pauli Exclusion Principle, it 
follows that the maximum number of electrons that may occupy a single band is 2N. 
This result is significant, as it will be used in a later section to establish the criterion 
for predicting whether a solid is going to behave as a metal or an insulator. 
  

5.  Now we show that an electron in a level specified by band index n and wave 
 vector k  has a nonvanishing mean velocity, given by 
  

 ����� = 89h:;<
ℏ8;  

  
To show this we calculate the expectation value of the derivative of the Hamiltonian H 
(k) in Eq. (3.21) with respect to k: 
 

(3.21) 

(3.22) 

(3.23) 
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〈�� �������� � ��〉 � 〈�� ��� ℏ�� ��� ! ∇�� ��〉 � 〈#� $ℏ %� �ℏ� ∇&$#�〉 
 
 
Since C % �DEℏ F⁄ �∇ is the velocity operator, this establishes (3.23). 
 
This is a remarkable fact. It asserts that there are stationary levels for an electron in a 
periodic potential in which, in spite of the interaction of the electron with the fixed 
lattice of ions, it moves forever without any degradation of its mean velocity. This is 
in striking contrast to the idea of Drude that collisions were simply encounters 
between the electron and a static ion. 
 
 3.3        Weak potential 
When the potential is zero the solutions of the Schrödinger equation (3.14) are plane 
waves 

�' ��� � ℏ�)�
�*  , 

 

�+,��� � �
-.� �

	/0 

   
Where the wave function is normalized to the volume of unit cell Y�. In the reduced-
zone representation shown in Fig.3.3, for each k there is an infinite number of 
solutions which correspond to different G (and can be labeled by index n), as we have 
already discussed. Each band in Fig.3.3 corresponds to a different value of G in the 
extended scheme. 
 

 
Fig.3.3: Only those states which have the same k in the First Brillouin zone are 
coupled by perturbation (After Kittel, 1979) 
 
Suppose now that a weak potential is switched on. According to the Schrödinger 
equation (3.14) only those states, which differ by G, are coupled by a perturbation. In 
the reduced zone scheme those states have same k and different n (see Fig.3.3). From 
quantum mechanics, if the perturbation is small compared to the energy difference 
between the states, which are coupled by the perturbation, we can use the perturbation 
theory to calculated wave functions and energy levels. Assuming for simplicity that 
we are looking for the correction to the energy of the lowest band >9���, the 
condition for using the perturbation theory is 

(3.24) 

(3.25) 

(3.26) 
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 |����� − ���� + B�| ≫ [ 
 
For any G 0. According to the perturbation theory the energy is given by 
   

  ���� = �� + 〈���|�|���〉 + ∑ �〈�7;|�|�7�<= 〉���=!�"#�=!�#$"$%�  

 
The first term in Eq. (3.28) is the undisturbed free-electron value for the energy. The 
second term is the mean value of the potential in the state N<>�]� : 
 〈�;'|�|�;'〉 = ��i ∫6��������� = �' 
   
This term gives a constant independent of k. Its effect on the spectrum is a rigid shift 
by a constant value without causing any change in the shape of the energy spectrum. 
This term can be set equal to zero. The third term can be rewritten as 
   

 〈���|[|�e�〉 = �j# ∫�T��²	-ek[�J�0�>e	^@k�A = �j# ∫�T��[�J�0	�^k�A = [^ 

 
Finally we obtain for the energy: 
 ���� = �3 + ∑ |=$|%S&>e@	S&>e	^@^m3  

 
The perturbation theory breaks down, however, in those cases when the potential 
cannot be considered as a small perturbation. This happens when the magnitude of the 
potential becomes comparable with the energy separation between the bands, i.e. 
 ]����� − �3�� − B�] ≤ [ 
 
In this case we have to include these levels in the Schrödinger equation and solve it 
explicitly 
There are special k points for which the energy levels become degenerate and the 
relationship (3.32) holds for any non-zero value of the potential. For these k points 
 ����� = ���� − B� 
 
and consequently 
 |�| = |� − B| 
 
The latter conduction implies that k must lie on a Bragg plane bisecting the line 
joining the origin of k space and the reciprocal lattice point G, as is shown in Fig.3.4. 
 

(3.27) 

 (3.28) 

 (3.29) 

(3.30) 

(3.31) 

(3.32)

  (3.33) 

 (3.34) 
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Fig. 3.4 If |k| = |k – G|, then the point k must lie in the Bragg plane determined by G. 
(Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
 
Therefore, a weak periodic potential has its major effect on those free electron levels 
whose wave vectors are close to ones at which the Bragg reflection can occur. In 
order to find the energy levels and the wave functions of near these points we include 
to the equation (3.14) only the two levels: one which corresponds to k and the other 
which corresponds to � + H assuming that k lies near the Bragg plane: 
 �>9��� + >�V[ � cXVV�X � 0 
 �>9�� + H� + >�VV�X � c�XVV 
 
These equations have the solution when the determinant is equal to zero, i.e. 
 �>9��� + > cXcX∗ >9�� + H� + >� � 0 

 
this leads to the quadratic equation 

  �&��H� D &��&��H D I� D &� D |K%|� 
The two roots are 

 � 	 �
� ������ � ���� � ��� � ��
 ������ � ���� � ���� � |��|��� �⁄

 

These solutions are plotted in Fig.3.4 for k parallel to G. 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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Fig.3.4: Plot of the energy bands given by Eq. (3.38) for k parallel to G.   
(Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8) 

This results is particularly simple for point lying on the Bragg plane, since in this case &��H� % &��H D I� we find from (3.38) then that 
 ' � '���� ( |*�| 
 
Thus, at all points in the Bragg plane, one level is uniformly raised by |cY|and the 
other is uniformly lowered by the same amount. This means that there are no states in 
the energy interval between >���� � >9��� � |cX| and >���� � >9��� � |cX| which 
implies the creation of the band gap. The magnitude of the band gap is equal to twice 
the Fourier component of the crystal potential. We illustrate this behavior using a one-
dimensional lattice shown in Fig.3.5. We see the splitting of the bands at each Bragg 
plane in the extended-zone scheme (Fig.3.5b). This results in the splitting of the bands 
both at the boundaries and at the centre of the first Brillouin zone (Fig.3.5a). There are 
two important points to note. First, since the energy there increases as :�, the higher 
the band, the greater its width. Second, the higher the energy, the narrower the gap; 
this follows from the fact that the gap is proportional to a Fourier component of the 
crystal potential and that the order of the component increases as the energy rises. 
Since the Fourier components of the potential decrease rapidly as the order increases, 
this leads to a decrease in the energy gap. It follows therefore that, as we move up the 
energy scale, the bands become wider and the gaps narrower; i.e., the electron 
behaves more and more like a free particle. 

(3.39) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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Fig. 3.5 (a) Dispersion curves in the nearly-free-electron model, in the reduced-zone 
scheme; (b) The same dispersion curves in the extended-zone scheme. 
(Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
   
Now we discuss the origin of the appearance of the band gaps at the Bragg planes. 
When k lies on a Bragg plane we can easily find the form of the wave function 
corresponding to the two solutions (3.39). Assuming for simplicity that the potential is 
real we obtain from Eq. (3.35) 
 C] � fC]�^ 
 
For simplicity we consider a one-dimensional lattice, for which the Bragg  reflection 
occurs at k=½G. We have then 

  �D � ���E �	�FG �⁄ � 	�FG �⁄ � 
We see that at the zone edge, the scattering is so strong that the reflected wave has the 
same amplitude as the incident wave. The electron is represented there by a standing 
wave, very unlike a free particle. 

The distribution of the charge density is proportional to ||2, so that 
 |ψ'|� ∝ cos��� ∙   2⁄ �, 
 |��|� ∝ �2���H ∙ � 2⁄ � 
   

Since the origin lies at the ion, the state distributes the electron so that it is piled 
predominantly at the nuclei (see Fig.3.6). Since the potential is most negative there, 
this distribution has a low energy. The function therefore corresponds to the 
energy at the top of band 1, that is, point A1 in Fig. 3.5a. 

(3.41) 

(3.40) 

(3.42) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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Fig.3.6: Spatial distributions of the charge density described by the functions and 
 (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8). 
 
By contrast, the function deposits its electron mostly between the ions (as shown 
in Fig.3.6), corresponds to the bottom of band 2 in Fig.3.5a, that is, point A2. The gap 
arises, therefore, because of the two different distributions for the same value of k, the 
distributions having different energies. 
 
Worked Example: 

Consider two-dimensional electrons subjected to a weak periodic potential coming 

from a square lattice of spacing � � 5 Å. For a k vectors far away from the Brillouin 
zone boundary, the wavefunction can be well described by planes waves. Assume we 
want to write the wavefunction in the Bloch form, ���� � 
ZV.W���� and considering 

a state of energy E and wavevector   � � e0.5 Å��0 h,  

a) What will the three lowest energies be at this wavenumber? 
b) What are the corresponding ���� functions 

Note that  ℏ� 2�6 � 3.806 
YÅ�. 
 

Solution: 

a) Recall Eq.(3.5), the Schrodinger equation is  

 � ℏ'�H I'JI�( � ����� � 
����     
 

Where   
I'JIK' � ∆�   

 
If the potential is weak, the solutions will be plane waves: 
From Eq. (3.25)   
 >5 � ℏ�|:∗|�2�  

and Eq.(3.25) 
 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8).
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���∗� = 1√3 0�e∗k 
where �∗ extends over the entire k space. We can transform the �∗wavevector into the 
first Brillouin zone by using Eq. (3.20) i.e. �∗ = � + B 
 
Let � = !$� + �$�, 
 
Where $� and $� are primitive reciprocal lattice vectors and n and m are integers. The 
primitive reciprocal lattice vectors are given by 
 $� = o1.256 Å	�

0 q    and   $� = ) 0
1.256 Å	�,. 

 
With the value of � = 0.5 Å	�, the length of the �∗vector for several values of n and 
m  is shown in the table  below 
 
n m |�∗| 
0 
-1 
1 
0 
0 
1 

0 
0 
0 
1 
-1 
1 

0.5 
0.756 
1.756 
1.351 
1.351 
2.159 

 
Since the energies increases with |�∗|, the three lowest energies obtained using Eq. 
(3.25) are: 
 

I.� = 0.95 03 �! = 0, � = 0� 
II.� = 2.17 03 �! = −1, � = 0� 

III. � = 6.96 03�! = 0,   � ± 1� 
 
(b) From  0-e∗k = 0-ekO�J� ,   A = )�
, 

 
Solving for O�J�, we have: 
 
(a) O�J� = 1 

(b)  O�J� = 0	���% = 0	��.�
/% 
(c) O�J� = 0±��& = 0±�.�
/& 
 
Note that from Eq. (3.2), the function O�A� has the periodicity of the lattice,O�J� =O�J + ´�. The third energy level is degenerate; there are two corresponding 
wavefunctions.  
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3.4 Metals and Insulators  
 
Solids are divided into two major classes: metals and insulators. A metal – or a 
conductor – is a solid in which an electric current flows under the application of 
electric field. By contrast, application of an electric field produces no electric current 
in an insulator. There is a simple criterion for distinguishing between the two classes 
on the basis of the band structure. If the valence electrons exactly fill one or more 
bands, leaving others empty, the crystal will be an insulator. An external electric field 
will not cause current flow in an insulator. Provided that a filled band is separated by 
energy gap from the next higher band, there is no continuous way to change the total 
momentum of the electrons if every accessible state is filled. Nothing changes when the 
field is applied. 
 
On the contrary if the valence band is not completely filled the solid is a metal. In a 
metal there are empty states available above the Fermi level like in a free electron gas. 
An application of an external electric field results in the current flow. It is possible to 
determine whether a solid is a metal or an insulator by considering the number of 
valence electrons. A crystal can be an insulator only if the number of valence 
electrons in a primitive cell of the crystal is an even integer. This is because each band 
can accommodate only two electrons per primitive cell. For example, diamond has 
two atoms of valence four, so that there are eight valence electrons per primitive cell. 
The band gap in diamond is 7eV and this crystal is a good insulator. However, if a 
crystal has an even number of valence electrons per primitive cell, it is not necessarily 
an insulator. It may happen that the bands overlap in energy. If the bands overlap in 
energy, then instead of one filled band giving an insulator, we can have two partly 
filled bands giving a metal (Fig.3.7b). For example, the divalent metals, such as Mg 
or Zn, have two valence electrons per cell. However, they are metals, although a poor 
ones – their conductivity is small. 
 

 
Fig.3.7: Occupied states and band structures giving (a) an insulator, (b) a metal or a 
semimetal because of band overlap, and (c) a metal because of electron concentration 
(After Kittel, 1979) 
 
If this overlap is very small, we deal with semimetals. The best known example of a 
semimetal is bismuth (Bi). If the number of valence electrons per cell is odd the solid 
is a metal. For example, the alkali metals and the noble metals have one valence 
electron per primitive cell, so that they have to be metals. The alkaline earth metals 
have two valence electrons per primitive cell; they could be insulators, but the bands 
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overlap in energy to give metals, but not very good metals. Diamond, silicon, and 
Germanium each have two atoms of valence four, so that there are eight valence 
electrons per primitive cell; the bands do not overlap, and the pure crystals are 
insulators at absolute zero. There are substances, which fall in an intermediate 
position between metals and insulators. If the gap between the valence band and the 
band immediately above it is small, then electrons are readily excitable thermally 
from the former to the latter band. Both bands become only partially filled and both 
contribute to the electric condition. Such a substance is known as a semiconductor. 
Examples are Si and Ge, in which the gaps are about 1 and 0.7 eV, respectively. 
Roughly speaking, a substance behaves as a semiconductor at room temperature 
whenever the gap is less than 2 eV. The conductivity of a typical semiconductor is 
very small compared to that of a metal, but it is still many orders of magnitude larger 
than that of an insulator. It is justifiable, therefore, to classify semiconductors as a 
new class of substance, although they are, strictly speaking, insulators at very low 
temperatures. 
 
4.0 Conclusion 
 
Solution of Schrodinger equation for a single electron allows the prediction of the 
physical properties of a crystal while the Bloch theorem plays an important role in 
electronic band structure theory.  
 
5.0 Summary 
 
 Separation of the valence and conduction band : �W =  �� −  �P 
 Periodic potential of an electron is in the form:  [ �J� = [�J + ´� 
 One electron Schrödinger equation with a periodic potential, are known as 
 Bloch  electrons  
 From the Bloch theorem, The number of orbitals in a band within the first 
 Brillouin zone is equal to the number of unit cells N in the crystal 
 Solids are divided into two major classes: metals and insulators which can be 
 distinguished on the basis of band structure. 
 
6.0 Tutor marked assignment 
 
Q1. Using the solution for the energy bands near the zone boundary in the 
 presence of a weak crystal potential. Show that the electron velocity is parallel 
 to the Bragg plane. 
  
Q2. Prove that the current carried by Bloch electrons is given by 
 

  � = − %ℏ=>7>) &' 
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UNIT 4 ELECTRON DYNAMICS         
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1.0  Introduction 
 
The Fermi surfaces (FS) concept enables to visualize the relative fullness or 
occupation of the allowed empty lattice bands geometrically in k-space and thus helps 
in the theoretical determination of the electronic properties of a solid- metal, 
semiconductor or insulator. In fact, the purpose of the FS construction is to know 
about the details of the motion of an itinerant electron in three-dimension. 
 
2.0 Objective 
 
 to  understand the concept of Fermi surfaces 
 to revise the concept of electron dynamic 
 to revise the concept of effective mass 
 to revise the concept of hole 
  
3.0 Definition 
 
Electron dynamics is using classical equations of motion in a classical way to describe 
electronic structure quantum-mechanically, i.e. standing waves that distribute 
electrons to different regions of the bands. 
 
3.1 Electro dynamics 
 
Given the functions En(k) the semiclassical model associates with each electron a 
position, a wave vector and a band index n. In the presence of applied fields the 
position, the wave vector, and the index are taken to evolve according to the following 
rules: 
 
(i)  The band index is a constant of the motion. The semiclassical model 
 ignores  the possibility of interband transitions. This implies that within 
 this model it  assumed that the applied electric field is small. 
(ii)  The time evolution of the position and the wave vector of an electron with 
 band  index n are determined by the equations of motion: 
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Strictly speaking Eq. (4.2) has to be proved. It is identical to the Newton’s second law 
if we assume that the electron momentum is equal toℏk. The fact that electrons belong 
to particular bands makes their movement in the applied electric field different from 
that of free electrons. For example, if the applied electric field is independent of time, 
according to Equation (4.2) the wave vector of the electron increases uniformly with 
time. 
 

���� � ��0� � 12$
ℏ  

  
                                
Since velocity and energy are periodic in the reciprocal lattice, the velocity and the 
energy will be oscillatory. This is in striking contrast to the free electron case, where v 
is proportional to k and grows linearly in time. The k dependence (and, to within a 
scale factor, the t dependence) of the velocity is illustrated in Fig 4.1, where both E(k) 
and v(k) are plotted in one dimension. Although the velocity is linear in k near the 
band minimum, it reaches a maximum as the zone boundary is approached, and then 
drops back down, going to zero at the zone edge. In the region between the maximum 
of v and the zone edge the velocity actually decreases with increasing k, so that the 
acceleration of the electron is opposite to the externally applied electric force! This 
extraordinary behavior is a consequence of the additional force exerted by the 
periodic potential, which is included in the functional form of E (k). As an electron 
approaches a Bragg plane, the external electric field moves it in the opposite direction 
due to the Bragg-reflection.   
 

 

Fig.4.1. E(k) and v(k) vs. k in one dimension (After 
www.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
  

(4.1) 

(4.2) 

(4.3) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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3.2 Effective mass 
 
When discussing electron dynamics in solids it is often convenient to introduce the 
concept of effective mass. If we differentiate Eq. (4.1) with respect to time we find 
that 
 �N�� � Lℏ �
M�H�� � Lℏ �
M�H� �H��  

Where the second derivative with respect to a vector should be understood as a tensor. 
Using Eq. (4.2) we find that 

  
"3
"$ �

�
ℏ�

"�4
"/�   

  In one dimensional case this reduces to 

  
���� � �ℏ� ������ � 

This has the same form as the Newton’s second law, provided that we defined an 
effective mass by the relation: 

  
¢£∗

¢ℏ
 ¤
¥¤¦
 

The mass m* is inversely proportional to the curvature of the band; where the  curvature is 
large - that is, _�` _A�  K is large - the mass is small; a small curvature implies a large mass 
(Fig.4.2). 

   
Fig: 4.2. The inverse relationship between the mass and the       curvature of the 
energy band  
(After www.pa.uk.edu/kwng.phy/525/lec/lecture-8). 
 
In a general case the effective mass is a tensor which is defined by 
 � L�∗�O� � Lℏ
 �
M�P��P� 

   

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8).
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Where�nand �Pare Cartesian coordinates. The effective mass can be different 
depending on the directions on the crystal. 
 
3.3 Current density 
 
The current density within a free electron model was defined as � = −0!�, 
 where n is the number of valence electrons per unit volume, and v is the velocity of 
electrons. This expression can generalize to the case of Bloch electrons. In this case 
the velocity depends on the wave vector and we need to sum up over k vectors for 
which there are occupied states available: 
 c = −de f g�P�<,?@@A�BCD  

 
Here the sum is performed within the extended zone scheme and V is the volume of 
the solid. It is often convenient to replace the summation by the integration. Because 
the volume of k-space per allowed k value is ∆7 = 8
� ��  we can write the sum over k 
as 
 ∑ = j
$� � ��o  

 
Taking into account the spin degeneracy we obtain for the current density: 

 
Using this expression we show now that completely filled bands do not contribute to 
the current. For the filled bands Eq. (4.11) should be replace by 

 
This vanishes as a consequence of the theorem that the integral over any primitive cell 
of the gradient of a periodic function must vanish. 

 
3.4 Hole 
 
One of the most impressive achievements of the semiclassical model is its explanation 
for phenomena that free electron theory can account for only if the carriers have a 
positive charge. We now introduce the concept of a hole. 
 
The contribution of all the electrons in a given band to the current density is given by 
Eq. (4.11), where the integral is over all occupied levels in the band. By exploiting the 
fact that a completely filled band carries no current, thus we have 
 

% =  −e & d'
4π� dE�'�

d'VWXY  

 

� = −0 � ��
4*� ����

p��*B�T1
 

 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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we can equally well write Eq. (4.11), in the form: 

 
Thus the current produced by electrons occupying a specified set of levels in a band is 
precisely the same as the current that would be produced if the specified levels were 
unoccupied and all other levels in the band were occupied with particles of charge +e 
(opposite to the electronic charge). 
 
Thus, even though the only charge carriers are electrons, we may, whenever it is 
convenient, consider the current to be carried entirely by fictitious particles of positive 
charge that fill all those levels in the band that are unoccupied by electrons. The 
fictitious particles are called holes. It must be emphasized that pictures cannot be 
mixed within a given band. If one wishes to regard electrons as carrying the current, 
then the unoccupied levels make no contribution; if one wishes to regard the holes as 
carrying the current, then the electrons make no contribution. One may, however, 
regard some bands using the electron picture and other bands using the hole picture, 
as suits one's convenience. Normally it is convenient to consider transport of the holes 
for the bands which are almost occupied, so that only a few electrons are missing. 
This happens in semiconductors in which a few electrons are excited from the valence 
to the conduction bands. Similar to electrons we can introduce the effective mass for 
the holes. It has a negative sign. 
 
4.0 Conclusion 
 
The electron dynamics in metals is the electronic structure described by quantum 
mechanics based on semiclassical model 

5.0 Summary 
 
 Effective mass of an electron is defined by  
1�∗ = 1

ℏ� ������ 

 Current density is defined by � = −0∫���*B�T1 ��
4*� ���� 

6.0 Tutor marked assignment  

Q1.   Consider a slab of Cu 0.1mm thick, 10.0 mm wide and 10.0mm long. 
(a) If a current of 1A is driven down the length of the slab, what is the current 

density?   

� = +0 � ��
4*� P���

*����*B�T1
 

0 = � ��
4*� ���� = � ��

4*� ���� + � ��
4*� ����

*����*B�T1���*B�T1,��T
 

(4.13) 

(4.14) 
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(b) If we put the slab in the magnetic field of 1 T with the field perpendicular to 
the 1 mm x10 mm face, what Hall Effect will be produced, if the Hall 
coefficient is -0.55x10-10 m3/C. 

(c) What Hall voltage will be observed across the slab?   
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1.0  Introduction 
 
The Fermi surface is the surface of constant energy  µR in k space. The Fermi surface 
separates the unfilled orbitals from the filled orbitals, at absolute zero. Quantum 
mechanics showed that the occupation of electron states is governed by the Pauli 
exclusion and that the chemical potential, � is equal to µR. The shape of the Fermi 
surface may be very intricate but the constructions required the applications of the 
reduced and the periodic zone schemes. In the reduced zone scheme, it is always 
possible to select the wavevector index k of any Bloch function to lie within the first 
Brillouin zone. This procedure is known as mapping the band in the reduced zone 
scheme. In the periodic zone, a given Brillouin zone is repeated periodically through 
all of the wavevector space. This is achieved by translating the zone by a reciprocal 
lattice. 
 
2.0 Objective 
 
 to understand Fermi surfaces 
 to explain the Brillouin zone 
 to explain effect of crystal potential 
 
3.0 Definition 
 
Fermi energy surface is the energy distribution of particles that obey the Pauli 
Exclusion Principle.  
 
3.1 Fermi surface 
 
The ground state of N Bloch electrons is constructed in a similar fashion as that for 
free electrons, i.e. by occupying all one-electron energy levels with band energies ����� less than �R , where �R is determined by requiring the total number of levels 
with energies less than �R to be equal to the total number of electrons. The wave 
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vector k must be confined to a single primitive cell of the reciprocal lattice. When the 
lowest of these levels are filled by a specified number of electrons, two quite distinct 
types of configuration can result: 
 
1. A certain number of bands may be completely filled, all others remaining 

empty. Because the number of levels in a band is equal to the number of 
primitive cells in the crystal (and because each level can accommodate two 
electrons (one of each spin), a configuration with a band gap can arise only if 
the number of electrons per primitive cell is even. 

 
2 A number of bands may be partially filled. When this occurs, the energy of the 

highest occupied level, the Fermi energy�R, lies within the energy range of 
one or  more bands. For each partially filled band there will be a surface in k-
space  separating the occupied from the unoccupied levels. The set of all such 
surfaces is  known as the Fermi surface, and is the generalization to Bloch 
electrons of the free electron Fermi sphere. The parts of the Fermi surface 
arising from individual partially filled bands are known as branches of the 
Fermi surface. 

 
Analytically, the branch of the Fermi surface in the n-th band is that surface in k-
space determined by 
 
 ����� = �R 
 
Thus the Fermi surface is a constant energy surface (surfaces) in k-space. 
 
Since the ��(�)  are periodic in the reciprocal lattice, the complete solution to Eq. 
(5.1) for each n is a k-space surface with the periodicity of the reciprocal lattice. 
When a branch of the Fermi surface is represented by the full periodic structure, it is 
said to be described in a repeated zone scheme. Often, however, it is preferable to take 
just enough of each branch of the Fermi surface so that every physically distinct level 
is represented by just one point of the surface. This is achieved by representing each 
branch by that portion of the full periodic surface contained within a single primitive 
cell of the reciprocal lattice. Such a representation is described as a reduced zone 
scheme. The primitive cell chosen is often, but not always, the first Brillouin zone. 
 
3.2 Brillouin Zone 
   
We consider now an example of building of a Fermi surface. We start from 
considering the Fermi surface for free electrons and then investigate the influence of 
the crystal potential. The Fermi surface for free electrons is a sphere centered at k = 0. 
To construct the Fermi surface in the reduced-zone scheme, one can translate all the 
pieces of the sphere into the first zone through reciprocal lattice vectors. This 
procedure is made systematically through the geometrical notion of the higher 
Brillouin zones 
 

(5.1) 
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Fig. 5.1: (a) Construction in k space of the first three Brillouin zones of a square 
lattice. (b) On constructing all lines equivalent by symmetry to the three lines in (a) 
we obtain the regions in k space which form the first three Brillouin zones (After 
Kittel, 1979). 
 
We illustrate this construction for the two dimensional cubic lattice shown in Fig.5.1. 
Recall that the boundaries of the Brillouin zones are planes normal to G at the 
midpoint of G. The first Brillouin zone of the square lattice is the area enclosed by the 
perpendicular bisectors of H� and of the three reciprocal lattice vectors equivalent by 
symmetry to H� in Fig. 5.1a. These four reciprocal lattice vectors arefM24 �6 N�� § and fM24 �6 N�� .§   The second zone is constructed from H
 and the three vectors 
equivalent to it by symmetry, and similarly for the third zone. The pieces of the 
second and third zones are drawn in Fig. 5.1b. 
 
In general, the first Brillouin zone is the set of points in k-space that can be reached 
from the origin without crossing any Bragg plane. The second Brillouin zone is the set 
of points that can be reached from the first zone by crossing only one Bragg plane. �ℎ
 �� � 1� + �ℎ Brillouin zone is the set of points not in the �� + 	� + �ℎ zone that 
can be reached from the � + �ℎ zone by crossing only one Bragg plane. The free 
electron Fermi surface for an arbitrary electron concentration is shown in Fig.5.2.  
 

 
Fig.5.2: Brillouin zones of a square lattice in two dimensions (After Kittel, 1979). 
 
Now we perform a transformation to the reduced zone scheme as is shown in Figs.5.3 
and 5.4. We take the triangle labeled 2a (Fig 5.2) and move it by a reciprocal lattice 
vector � � ��2� 	� ���   such that the triangle reappears in the area of the first Brillouin 

a b 
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zone (Fig.5.3). Other reciprocal lattice vectors will shift the triangles 2b, 2c, 2d to other 
parts of the first zone, completing the mapping of the second zone into the reduced 
zone scheme. The parts of the Fermi surface falling in the second zone are now 
connected, as shown in Fig. 5.4. 
 

 
 

Fig.5.3 Mapping of the first, second, and third Brillouin zones in the reduced zone 
scheme. The sections of the second zone in Fig. 5.1 are put together into a square by 
translation through an appropriate reciprocal lattice vector (After Kittel, 1979).  
 
 
           

    
Fig.5.4: The free electron Fermi surfaces of Fig.5.3, as viewed in the reduced zone 
scheme. The shaded areas represent occupied electron states. Parts of the Fermi 
surface fall in the second and third zones. The first zone is entirely occupied (After 
Kittel, 1979). 
 
Construction of Brillouin zones and Fermi surfaces in three-dimensions is more 
complicated. Fig5.5 shows the first three Brillouin zones for bcc and fcc structures. 
 

 
 

 
 

a b c 

a b 
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Fig.5.5:Surfaces of the first, second, and third Brillouin zones for (a) body-centered 
cubic and (b) face-centered cubic crystals. (Only the exterior surfaces are shown 
(After Kittel, 1979).. 
 
The free electron Fermi surfaces for ��� cubic metals of valence 2 and 3 are shown in 
Fig.5.6. 

  
Fig.5.6: The free electron Fermi surfaces for face-centered cubic metals of valence 2 
and 3(After Kittel, 1979). 
    
  
3.3 Effect of a crystal potential 
 
How do we go from Fermi surfaces for free electrons to Fermi surfaces in the 
presence of a weak crystal potential? We can make approximate constructions 
freehand by the use of the following facts: 
 
(i)  The interaction of the electron with the periodic potential of the crystal causes 

energy gaps at the zone boundaries. 
(ii)  Almost always the Fermi surface will intersect zone boundaries 

perpendicularly.  Using the equation for the energy near the zone 

boundary it is easy to show  that 0a
0V � ℏ�

� �� + �
� H� which implies that on the 

Bragg plane the gradient of  energy is parallel to the Bragg plane. Since the 
gradient is perpendicular to the  surfaces on which function is constant, 
the constant energy surfaces at the Bragg  plane are perpendicular to the 
plane. 

(iii)  The crystal potential will round out sharp corners in the Fermi surfaces. 
(iv)  The total volume enclosed by the Fermi surface depends only on the electron 

concentration and is independent of the details of the lattice interaction. 
(v)  If a branch of the Fermi surface consists of very small pieces of surface 

(surrounding either occupied or unoccupied levels, known as "pockets of 
electrons" or "pockets of holes"), then a weak periodic potential may cause 
these  to disappear. In addition, if the free electron Fermi surface has parts 
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with a very narrow cross section, a weak periodic potential may cause it to 
become disconnected at such points. 

 
Below we give a few examples for real metals. 
 
3.3.1. Alkali metals 
 
The radius of the Fermi sphere in bcc alkali metals is less than the shortest distance 
from the center of the zone to a zone face and therefore the Fermi sphere lies entirely 
within the first Brillouin zone. The crystal potential does not distort much the free 
electron Fermi surface and it remains very similar to a sphere. Fig 5.7 shows Fermi 
surface for sodium. 
 

 
Fig.5.7: Fermi surface of sodium (After www.pa.uk.edu/kwang.phy/525/lec-8) 
    
3.3.2. Noble metals 
 
The Fermi surface for a single half-filled free electron band in fcc Bravais lattice is a 
sphere entirely contained within the first Brillouin zone, approaching the surface of 
the zone most closely in the [111] directions, where it reaches 0.903 of the distance 
from the origin to the center of the hexagonal face. For all three noble metals 
therefore their Fermi surfaces are closely related to the free electron sphere. However, 
in the [111] directions contact is actually made with the zone faces, and the measured 
Fermi surfaces have the shape shown in Fig.5.8. Eight "necks reach out to touch the 
eight hexagonal faces of the zone, but otherwise the surface is not grossly distorted 
from spherical. 

 
Fig. 5.8: In the three noble metals the free electron sphere bulges out in the [111] 
directions to make contact with the hexagonal zone faces. 
 
  

http://www.pa.uk.edu/kwang.phy/525/lec-8)
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3.3.3. Cubic divalent metals 
 
With two electrons per primitive cell, calcium, strontium, and barium could, in 
principle, be insulators. In the free electron model, the Fermi sphere has the same 
volume as the first zone and therefore intersects the zone faces. The free electron 
Fermi surface is thus a fairly complex structure in the first zone, and pockets of 
electrons in the second. The question is whether the effective lattice potential is strong 
enough to shrink the second-zone pockets down to zero volume, thereby filling up all 
the unoccupied levels in the first zone. Evidently this is not the case, since the group 
II elements are all metals. Calculations show that the first Brillouin zone is completely 
filled and a small number of electrons in the second zone determine the non-zero 
conductance. 
 

 
Fig.5.9: Fermi surface of calcium (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8) 
. 
 
3.3.4. Trivalent metals 
 
The Fermi surface of aluminum is close to that of the free electron surface for fcc 
cubic monatomic lattice with three conduction electrons per atom. The first Brillouin 
zone is filled and the Fermi surface of free electrons is entirely contained in the 
second, third and fourth Brillouin zones. When displayed in a reduced-zone scheme 
the second-zone surface is a closed structure containing unoccupied levels, while the 
third-zone surface is a complex structure of narrow tubes (Fig.5.6). The amount of 
surface in the fourth zone is very small, enclosing tiny pockets of occupied levels. The 
effect of a weak periodic potential is to eliminate the fourth-zone pockets of electrons, 
and reduce the third-zone surface to a set of disconnected "rings" (Fig.5.10). 
Aluminum provides a striking illustration of the theory of Hall coefficients. The high-
field Hall coefficient should be,US � +1��I + �E�
 where �I and �E are the 
number of levels per unit volume enclosed by the particle-like and hole-like branches 
of the Fermi surface. Since the first zone of aluminum is completely filled and 
accommodates two electrons per atom, one of the three valence electrons per atom 
remains to occupy second- and third-zone levels. Thus 
    ��QQ � ��QQQ � �R                                                  (5.2) 

 
where n is the free electron carrier density appropriate to valence 3. On the other 
hand, since the total number of levels in any zone is enough to hold two electrons per 
atom, we also have 
 

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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��QQ � ��QQ � 2 �R                                                 (5.3) 

 
Subtracting (5.3) from (5.2) gives 
 ��QQQ � ��QQ � � �R                       (5.4)    

 
Thus the high-field Hall coefficient should have a positive sign and yield an effective 
density of carriers a third of the free electron value. This is precisely what is observed. 

      

 
Fig.5.10: Fermi surface of aluminum (After www.pu. 
uk.edu/kwang.phys/525/lecture8) 
 
4.0 Conclusion 
 
The Fermi surfaces (FS) concept enables to visualize the relative fullness or 
occupation of the allowed empty lattice bands geometrically in k-space and thus helps 
in the theoretical determination of the electronic properties of a solid. 
 
6.0 Summary 

 
 The N Bloch electron is constructed when the wave vector k is confined to 

single  primitive cell. 
 In  Alkali metals, the Fermi surface is very much like a sphere 
 In Noble metals, the Fermi surface is a sphere entirely contained within the 

first  Brillouin zone. 
 In Cubic divalent metals, the Fermi surface has the same volume as the first 

Brillouin zone. 
 In Trivalent metals, the Fermi surface is entirely contained in the 2nd , 3rd  and 

the  4th Brillouin zone. 
 
6.0 Tutor marked assignment 
 
Q1.  A two-dimensional metal has one atom of valence one in a simple rectangular 
 primitive cell of a

1 
= 2Å and a

2 
= 4Å.  

(a)  Draw the first and the second Brillouin zones.  

(b)  Calculate the radius of the free electron Fermi sphere and draw this sphere to 
scale on the drawing of the Brillouin zones.  

http://www.pu.
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(c)  Draw the Fermi surface in reduced zone scheme and show schematically the 
effect of a weak crystal potential. 

Q2  Suppose that some atoms in a Cu crystal, which has an ��� lattice, are 
gradually replaced by Zn atoms. Considering that Zn is divalent while Cu is 
monovalent, calculate the atomic ratio of Zn to Cu in a 6O1! alloy (brass) at 
which the Fermi sphere touches the zone faces. Use the free-electron model. 
This particular alloy is interesting because the solid undergoes a structural 
phase change at this concentration ratio.   

 
 
7.0  Further reading/References 
 
Animalu, A. O. E. (1978). Intermediate quantum theory of crystalline solids,  
 Prentice-Hall of India, New Delhi. 
 
Ashcroft, N.W., Mermin, D. N.(1976). Solid state physics, Saunders College  
 Publishing. 
 
Blakemore ,J.S., Solid State Physics, W.B. Saunders Co.,1974 
 
Denna, S. S. (2022). Solid State Physics. Department of Materials Science and  
 Engineering.  https://www.materialvetenskap.uu.se/solid-state-physics%20/ 
 
Hearmon, R. F. S. (1946). Elastic constants of anisotropic materials.  Revs.  
 Modern Phys. 18, 409-440. 
 

Hunklinger, S. (2022). Solid State Physics.   

     https://www.degruyter.com/document/doi/10.1515/9783110666502/html?lang=en 

 
Kachhava, C.M. (1992). Solid State physics, Tata McGraw-Hill Publishing 
 Company Limited, New Delhi.  
 
Kittel, C. (2005). Introduction to solid state physics, Wiley Eastern Limited. 
 
Kittel, C. (2014). Quantum theory of solids.     
 https://www.bol.com/nl/nl/f/quantum-theory-of-solids/38733304/ 
 
Love, A. E. H.(1944). A treatise on the mathematical theory of elasticity. Dover  
 Publications, New York. 
 
Sharon, A. H. (2021).  Understanding Solid State Physics. 2nd Edition.   
 ISBN 9780367249854 
 
Wooster, W. A. (1938). A textbook on Crystal Physics. Cambridge University 
 Press. 
 
 Zener, C. (1948).  Elasticity and anelasticity of metals, University of Chicago  
 Press, Chicago 

https://www.materialvetenskap.uu.se/solid-state-physics%20/
https://www.degruyter.com/document/doi/10.1515/9783110666502/html?lang=en
https://www.bol.com/nl/nl/f/quantum-theory-of-solids/38733304/


PHL 307          SOLID STATE PHYSICS 1 
 

151 

Ziman, J.M., Electrons and Phonons, Cambridge University Press, 1960 
 
https://www.youtube.com/watch?v=UWW_fPB2E5k 

https://www.toppr.com/guides/physics/mechanical-properties-of-solids/solid-state-
physics/ 
https://www.vedantu.com/physics/solid-state-physics 

https://testbook.com/physics/solid-state-physics 

https://www-
thphys.physics.ox.ac.uk/people/SteveSimon/condmat2012/LectureNotes2012.pdf 

https://www.vedantu.com/physics/solid-state-physics 

https://www.sciencedirect.com/topics/materials-science/solid-state-physics 
https://web.pdx.edu/~egertonr/ph311-12/solstate.htm 
 
 
 
  
    
 
  

https://www.youtube.com/watch?v=UWW_fPB2E5k
https://www.toppr.com/guides/physics/mechanical-properties-of-solids/solid-state-
https://www.vedantu.com/physics/solid-state-physics
https://testbook.com/physics/solid-state-physics
https://www.vedantu.com/physics/solid-state-physics
https://www.sciencedirect.com/topics/materials-science/solid-state-physics
https://web.pdx.edu/~egertonr/ph311-12/solstate.htm


PHL 307          SOLID STATE PHYSICS 1 
 

152 

MODULE 4  SEMICONDUCTORS AND  
 

SUPERCONDUCTORS 
 
Unit 1  Structure and Bonding in Semiconductors 
Unit 2  Semiconductor Statistics 
Unit 3  Electrical Conductivity and  

Real Semiconductors 
Unit 4  Super Conductivity (I):  

The Basic Phenomenon 
Unit 5  Superconductivity (II):  

Experiments and Theories  
 
UNIT 1 STRUCTURE AND BONDING (SEMICONDUCTORS)  
 
CONTENT 
 
1.0       Introduction  
2.0       Objectives   
3.0       Definition   
 3.1 Crystal structure and bonding 
  3.2 Bonding structure    
 3.3 intrinsic semiconductor 
 3.4 Impurities states   
 3.5 Acceptors   
4.0 Conclusion   
5.0 Summary   
6.0 Tutor Marked Assignment    
7.0       Further Reading/References    
 
1.0 Introduction 
 
In a semiconductor the valence band is almost completely filled while the conduction 
band is empty. Thermal excitation or (energy) absorption processes may cause some 
electrons to cross the band gap, making it similar to semimetals. Semiconductors tend 
to be bonded tetrahedrally and covalently, although binary semiconductors may have 
polar, as well as covalent character. 
 
2.0 Objective 
 
 The objective of this unit is to 
 Understand the structure and bonding in semiconductors. 
 Explain intrinsic semiconductors. 
 Understand the importance of impurity states of semiconductors. 
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3.0 Definition 
 
Semiconductors are electronic conductors with electrical resistivity values generally 
in the range of 10-2 to 109 ohm-cm at room temperature, intermediate between good 
conductors(10-6 ohm-cm) and insulators (1014 to 1022 ohm-cm). 
  
3.1 Crystal structure and bonding  
   
 Semiconductors include a large number of substances of widely different chemical 
and physical properties. These materials are grouped into several classes of similar 
behavior, the classification being based on the position in the periodic table of the 
elements.  
 
The best-known class is the Group IV semiconductors - C (diamond), Si, ­0, - all of 
which lie in the fourth column of the periodic table. They have been studied 
intensively, particularly Si and Ge, which have found many applications in electronic 
devices. The elemental semiconductors all crystallize in the diamond structure. The 
diamond structure has an fcc lattice with a basis composed of two identical atoms, and 
is such that each atom is surrounded by four neighboring atoms, forming a regular 
tetrahedron. Group IV semiconductors are covalent crystals, i.e., the atoms are held 
together by covalent bonds. These bonds consist of two electrons of opposite spins 
distributed along the line joining the two atoms. The covalent electrons forming the 
bonds are hybrid ��� 

atomic orbitals.  
 
Another important group of semiconductors is the Group III-V compounds, so named 
because each contains two elements, one from the third and the other from the fifth 
column of the periodic table. The best-known members of this group are ­��� and 
InSb (indium antimonite), but the list also contains compounds such as ­�x, InAs, ­�H$, and many others. These substances crystallize in the zinc blend structure which 
is the same as the diamond structure, except that the two atoms forming the basis of 
the lattice are now different. Thus, in ­���, the basis of the fcc lattice consists of two 
atoms, Ga and As. Because of this structure, each atom is surrounded by four others 
of the opposite kind, and these latter atoms form a regular tetrahedron, just as in the 
diamond structure.  
 
The bonding in the III-V compounds is also primarily covalent. The eight electrons 
required for the four tetrahedral covalent bonds are supplied by the two types of 
atoms, the trivalent atom contributing its three valence electrons, and the pentavalent 
atom five electrons. The bonding in this group is not entirely covalent. Because the 
two elements in the compound are different, the distribution of the electrons along the 
bond is not symmetric, but is displaced toward one of the atoms. As a result, one of 
the atoms acquires a net electric charge. Such a bond is called heteropolar, in contrast 
to the purely covalent bond in the elemental semiconductors, which is called 
homopolar.  
 
The distribution of electrons in the bond is displaced toward the atom of higher 
electronegativity. In ­��� for instance, the As atom has a higher electronegativity 
than the Ga, and consequently the As atom acquires a net negative charge, whose 
value is −0.46e per atom (a typical value in Group III-V compounds). The Ga atom 
correspondingly acquires a net positive charge of 0.46e. Charge transfer leads to an 
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ionic contribution to the bonding in Group III-V compounds. Their bonding is 
therefore actually a mixture of covalent and ionic components, although covalent ones 
predominate in most of these substances.  
 
3.2       Bonding structure    
   
A semiconductor is a solid in which the highest occupied energy band, the valence 
band, is completely full at T = 0°K, but in which the gap above this band is also small, 
so that electrons may be excited thermally at room temperature from the valence band 
to the next-higher band, which is known as the conduction band. Generally speaking, 
the number of excited electrons is appreciable (at room temperature) whenever the 
energy gap E

F 
is less than 2 eV. The substance may then be classified as a 

semiconductor. When the gap is larger, the number of electrons is negligible, and the 
substance is an insulator. When electrons are excited across the gap, the bottom of the 
conduction band (CB) is populated by electrons, and the top of the valence band (VB) 
by holes. As a result, both bands are now only partially full, and would carry a current 
if an electric field were applied. The conductivity of the semiconductor is small 
compared with the conductivities of metals of the small number of electrons and holes 
involved, but this conductivity is nonetheless sufficiently large for practical purposes. 
The simplest band structure of a semiconductor is indicated in Fig.1.1. Since we are 
interested only in the region which lies close to the band gap, where electrons and 
holes lie, we can ignore a more complex variation of the energy bands far away from 
the gap. The energy of the CB has the form.  
 �6	�
 = �6 + ℏ���
)?       (1.1) 

  
where k is the wave vector and m

e 
the effective mass of the electron. The energy E

g 

represents the energy gap. The zero-energy level is chosen to lie at the top of the VB.  
The energy of the VB (Fig.1.1) may be written as 
 �¶��� = �¶ −

ℏ2�2��Z       (1.2) 

  
Where m

h 
is the effective mass of the hole which is positive. (Because of the inverted 

shape of the VB, the mass of an electron at the top of the VB is negative, but the mass of 
a hole is positive).   
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Fig. 1.1: Band structure in a semiconductor. 

 
Within this simple picture of the semiconductor, the primary band-structure 
parameters are thus the electron and hole masses m

e
 and m

h
, and the band gap E

g
. 

Table 1.1 gives these parameters for various semiconductors. Note that the masses 
differ considerably from the free-electron mass. In many cases they are much smaller 
than the free-electron mass. The energy gaps range from 0.18 eV in  !H$ to 3.7 eV in 
ZnS. The table also shows that the wider the gap, the greater the mass of the electron. 
The energy gap for a semiconductor varies with temperature, but the variation is 
usually slight. That a variation with temperature should exist at all can be appreciated 
from the fact that the crystal, when it is heated, experiences a volume expansion, and 
hence a change in its lattice constant. This, in turn, affects the band structure, which is 
a sensitive function of the lattice constant. The band structure in Fig 1.1 is the 
simplest possible structure. Band structures of real semiconductors are somewhat 
more complicated, as we shall see later.  
 
3.3 Intrinsic Semiconductors   
 
In the field of semiconductor, electrons and holes are usually referred to as free 
carriers, or simply carriers, because it is these particles which are responsible for 
carrying the electric current. The number of carriers is an important property of a 
semiconductor, as this determines its electrical conductivity. Intrinsic semiconductors 
are semiconductors in which the number of carries and the conductivity is not 
influenced by impurities. Intrinsic conductivity is typical at relatively high 
temperatures in highly purified specimens. In order to determine the number of 
carriers, we need some of the basic results of statistical mechanics.  
 
 
  



PHL 307          SOLID STATE PHYSICS 1 
 

156 

  Table 1.1. Band Structure parameters of Semiconductors 

 
 
The most important result in this regard is the Fermi-Dirac (FD) distribution function.
  
 ���� = �

T'(��)* 
��+ ,��        

 (1.3) 
 
This function, gives the probability that an energy level E is occupied by an electron 
when the system is at temperature T. The function is plotted versus E in Fig.1.2. Here 
we see that, as the temperature rises, the unoccupied region below the Fermi level E

F
  

becomes longer, which implies that the occupation of high energy states increases as the 
temperature is raised, a conclusion which is most plausible, since increasing the 
temperature raises the overall energy of the system.  
 

 
Fig. 1.2: The Fermi-Dirac distributions function (After Kittel, 1979) 

.  
We will see later that the Fermi level in intrinsic semiconductors lies close to the 
middle of the band gap. Therefore we can represent the distribution function and the 
conduction and valence bands of the semiconductor as shown in Fig.1.3. 
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Fig.1.3: (a) conduction and valence bands (b) the distribution function 
  (c) Density of states for electrons and holes (After Kittel, 1979) 
. 
First we calculate the concentration of electrons in the CB. The number of states in 
the energy range (E, E + dE) is equal to�T�����, where�T��� is the density of 
electron states. Since each of these states has an occupation probability f (E), the 
number of electrons actually found in this energy range is equal to�����T�����. The 
concentration of electrons throughout the CB is thus given by the integral over the 
conduction band.  

 
where  �� is the bottom the conduction band, as shown in Fig.1.3. 
 
The band gap in semiconductors is of the order of 1eV, which is much larger than kT. 
Therefore (E−μ) >> k

B
T and we can neglect the unity term in the denominator of the 

distribution function Eq. (1.3), so that 
 �(��	 ≈ ���S�h� ��L⁄             
      
The density of the conduction band is given by 
 

DY�E� = ��[� ��\E
ℏ�  � �⁄ �E − E]�� �⁄   

                
Note that �T��� vanishes for � < �� and is finite only for � > �� as shown in Fig.1.3. 
When we substitute equations for f (E) and �T��� into Eq. (1.4), we obtain 

 
By changing the variable, and using the result  

 

 

(1.4) 

(1.5) 

(1.7) 

(1.6) 
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one can readily evaluate the integral in (1.7). The electron concentration then reduces 
to the expression 
 � = 2 ��(
�

2
ℏ� �K �⁄ ��h�S�� ��L⁄  

 
The electron concentration is still not known explicitly because the Fermi energy μ is 
so far unknown. Essentially the same ideas employed above may also be used to 
evaluate the number of holes in the VB. The probability that a hole occupies a level E 
in this band is equal to 1−f (E), since f (E) is the probability of electron occupation. 
Assuming that the Fermi level lies close to the middle of the band gap, i.e. 
(μ−E)>>k

B
T for the valence band, we find for the distribution function of holes  

 ����� = 1 − 106>S	n@ ��C⁄ 7 + 1 = 106>n	S@ ��C⁄ 7 ≈ 0	>n	S@ ��C⁄  

 
The density of states for the holes is  
 ����� = ��$� )��!

ℏ� ,� �⁄ ��P − ��� �⁄  

 
where �P is the energy of the valence band edge. Proceeding in a similar fashion as 
we did for electrons we find for the concentration of holes in the valence band 

 
 
The electron and hole concentrations have thus far been treated as independent 
quantities. For intrinsic semiconductors the two concentrations are, in fact, equal, 
because the electrons in the CB are due to excitations from the VB across the energy 
gap, and for each electron thus excited a hole is created in the VB. Therefore,   
 
n = p  
               
and 
 	(�
& 
⁄ �:?�0:< ��@⁄ = 	(�
& 
⁄ �:0@�?< ��@⁄  
 
We obtain then, for the Fermi energy 
 � = �� − �i

2 + 3
4 
T�ln���(  

 

 

 

(1.8) 

(1.9) 

(1.10) 
9) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 
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The second term on the right of (1.15) is very small compared with the first, and the 
energy level is close to the middle of the energy gap. This is consistent with earlier 
assertions that both the bottom of the CB and the top of the VB are far from the Fermi 
level. The concentration of electrons may now be evaluated explicitly by using the above 
value of µ. Substitution of Eq. (1.15) into Eq. (1.9) yields 
 � = 2 � ��L��ℏ��K �⁄ ��(��	K �⁄ ��S� ���L⁄

 

 
where �W = �� − �P is the band gap. The important feature of this expression is that n 
increases very rapidly - exponentially - with temperature, particularly by virtue of the 
exponential factor. Thus as temperature is raised, a vastly greater number of electrons 
is excited across the gap. Our discussion of carrier concentration in this section is 
based on the premise of a pure semiconductor. When the substance is impure, 
additional electrons or holes are provided by the impurities. In that case, the 
concentrations of electrons and holes may no longer be equal, and the amount of each 
depends on the concentration and type of impurity present. When the substance is 
sufficiently pure so that the concentrations of electrons and holes are equal, we speak 
of an intrinsic semiconductor. That is, the concentrations are determined by the 
intrinsic properties of the semiconductor itself. On the other hand, when a substance 
contains a large number of impurities which supply most of the carriers, it is referred 
to as an extrinsic semiconductor.  
 
3.4 Impurity states 
 
A pure semiconductor has equal numbers of both types of carriers, electrons and 
holes. In most applications, however one needs specimens which have one type of 
carrier only, and none of the other. By doping the semiconductor with appropriate 
impurities, one can obtain samples which contain either electrons only or holes only. 
Consider, for instance, a specimen of Si which has been doped by As. The �� atoms 
(the impurities) occupy some of the lattice sites formerly occupied by the Si host 
atoms. The distribution of the impurities is random throughout the lattice. But their 
presence affects the solid in one very important respect. The �� atom has valence 5 
while Si has valence 4. Of the five electrons of ��, four participate in the tetrahedral 
bond of Si, as shown in Fig. 1.4. The fifth electron cannot enter the bond, which is 
now saturated, and hence this electron detaches from the impurity and is free to 
migrate through the crystal as a conduction electron, i.e., the electron enters the CB. 
The impurity is now actually a positive ion, ���(since it has lost one of its electrons), 
and thus it tends to capture the free electron, but we shall show shortly that the 
attraction force is very weak, and not enough to capture the electron in most 
circumstances. The net result is that the ��  impurities contribute electrons to the CB 
of the semiconductors, and for this reason these impurities are called donors. Note 
that the electrons have been created without the generation of holes. 
 

(1.16) 
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Fig.1.4: An As impurity in a Si crystal. The extra electron migrates through the 
crystal. 
 
When an electron is captured by an ionized donor, it orbits around the donor much 
like the situation in hydrogen. We can calculate the binding energy by using the 
familiar Bohr model. However, we must take into account the fact that the coulomb 
interaction here is weakened by the screening due to the presence of the 
semiconductor crystal, which serves as a medium in which both the donor and ion 
reside. Thus the coulomb potential is now given by 
 ���	 = − ��

ℇ� 

 
where ε is the reduced dielectric constant of the medium . The dielectric constant ε = 
11.7 in Si, for example, shows a substantial decrease in the interaction force. It is this 
screening which is responsible for the small binding energy of the electron at the 
donor site. Using this potential in the Bohr model, we find the binding energy, 
corresponding to the ground state of the donor, to be 
 

�� = −
�A�B
�ℇCℏC 

 
Note that binding energy of the hydrogen atom, which is equal to 13.6 eV. The 
binding energy of the donor is reduced by the factor 1 ℇ2⁄ , and also by the mass factor 
 ^� ^ ⁄ which is usually smaller than unity. Using the typical values ε ~ 10 

and �T �⁄ ~0.1, we find that the binding energy of the donor is about 10
-3 

of the 
hydrogen energy, i.e.,  about  0.01 eV. This is indeed the order of the observed values. 
The donor level lies in the energy gap, very slightly below the conduction band, as 
shown in Fig.1.5. Because the level is so close to the CB,  almost all the donors are 
ionized at room temperature, their electrons have been excited into CB. 
 

(1.18) 

(1.17) 
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   Fig. 1.5: The donor level in a semiconductor  
   
It is instructive to evaluate the Bohr radius of the donor electron. Straightforward 
adaptation of the Bohr result leads to 
 (7 = ℇ 00F )_          (1.19) 

 
where �� is the Bohr radius, equal to 0.53 Å. The radius of the orbit is thus much 
larger than �� , by a factor of 100, if we use the previous values for ε and �T. A 
typical radius is thus of the order of 50 Å. Since this is much greater than the inter 
atomic spacing, the orbit of the electron encloses a great many host atoms, and our 
picture of the lattice acting as a continuous, polarizable dielectric is thus a plausible 
one. Since the donors are almost all ionized, the concentration of electrons is nearly 
equal to that of the donors. Typical concentrations are about 10�
���. But sometimes 
much higher concentrations are obtained by doping of the sample, for example, 
10�
�� �or even more. 
 
3.5 Acceptors 
 
An appropriate choice of impurity may produce holes instead of electrons. Suppose 
that the Si crystal is doped with Ga impurity atoms. The Ga impurity resides at a site 
previously occupied by a Si atom, but since Ga is trivalent; one of the electron bonds 
remains vacant (Fig.1.6). This vacancy may be filled by an electron moving in from 
another bond, resulting in a vacancy (or hole) at this latter bond. The hole is then free 
to migrate throughout the crystal. In this manner, by introducing a large number of 
trivalent impurities, one creates an appreciable concentration of holes, which lack 
electrons. The trivalent impurity is called an acceptor, because it accepts an electron 
to complete its tetrahedral bond. The acceptor is negatively charged, by virtue of the 
additional electron it has entrapped.  Since the resulting hole has a positive charge, it 
is attracted by the acceptor. We can evaluate the binding energy of the hole at the 
acceptor in the same manner followed above in the case of the donor. Again this 
energy is very small, of the order of 0.01 eV. Thus essentially all the acceptors are 
ionized at room temperature. 
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Fig. 1.6: A Ga impurity in a Si crystal. The extra hole migrates through the crystal  
 
The acceptor level lies in the energy gap, slightly above the edge of the VB, as shown 
in Fig.1.7. This level corresponds to the hole being captured by the acceptor. When an 
acceptor is ionized (an electron excited from the top of the VB to fill this hole), the 
hole falls to the top of the VB, and is now a free carrier. Thus the ionization process, 
indicated by upward transition of the electron on the energy scale, may be represented 
by a downward transition of the hole on this scale.  
 

 
   Fig.1.7: The acceptor level in a semiconductor.  
4.0 Conclusion 
 
Semiconductors include a large number of substances of widely different  chemical 
and physical properties. The number of carriers (electrons and holes) is  an important 
property of a semiconductor, as this determines its electrical  conductivity.                                                              
 
5.0 Summary 
 
 The best-known class of semiconductors is the Group IV (diamond, Silicon, 
 Germanium). 
 The valence band is completely full at T = 0°K. 
 Electrons at room temperature may be excited thermally from the valence 
 band to the next-higher band, known as the conduction band. 
 The energy of the CB has the form.  
 

             �6	�
 = �6 + ℏ���
)? . 

 The energy of the VB 
 

                �#��� = �# −
ℏA�A
2	B  
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 In an intrinsic semiconductor the number of electrons is equal to the number 
 of  holes. 
 
6.0  Tutor marked assignment 
 
Q1. For the nondegenerate case where E − μ >> kT, calculate the number of  
 electrons per unit volume in the conduction band from the integral ! =  � ����:

S#
������ 

  D (E) is the density of states, f (E) is the Fermi function 
Q2. (a) Compute the concentration of electrons and holes in an intrinsic  
  semiconductor  !H$ at room temperature (�W=0.2eV, �0 

= 0.01m  
  and �ℎ 

=  0.018 m).  
 (b)  Determine the position of the Fermi. 
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1.0 Introduction 
 
In this unit, we are going to study the concentration of the carriers both in the 
conduction and valence bands and the difference between intrinsic region and the 
extrinsic region. 
 
2.0 Objective 
 
The objective of this unit is to differentiate 
 
 the intrinsic region from  
 the extrinsic region 
 
3.0 Definition 
 
3.1 Semiconductor statistics 
 
Semiconductors usually contain both donors and acceptors. Electrons in the CB can 
be created either by thermal excitation or by thermal ionization of the donors. Holes 
in the VB may be generated by interband excitation or by thermal excitation of 
electrons from the VB into the acceptor level. And in addition, electrons may fall 
from the donor levels to the acceptor level. Figure 2.1 indicates these various 
processes. 
   

 
Fig. 2.1: The various electronic processes in a semiconductor  
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Finding the concentrations of carriers, both electrons and holes, taking all these 
processes into account, is quite complicated. We shall treat a few special cases, which 
are often encountered in practice. Two regions may be distinguished, depending on 
the physical parameters involved: The intrinsic and the extrinsic regions. 
 
3.1.1. Intrinsic region    
 
The concentration of carriers in the intrinsic region is determined  primarily by 
thermally induced interband transitions. In this region n=p. The intrinsic region 
obtains when the impurity doping is small. When we denote the concentrations of 
donors and acceptors by 51 and 5�,the requirement for the validity of the intrinsic 
condition is 
 

 
Since n increases rapidly with temperature, the intrinsic condition becomes more 
favorable at higher temperatures. All semiconductors, in fact, become intrinsic at 
sufficiently high temperatures (unless the doping is unusually high). 
 
3.1.2 Extrinsic region 
 
Quite often the intrinsic condition is not satisfied. For the common  dopings 
encountered, about 10�
 ��	�, the number of carriers supplied by the  impurities 
is large enough to change the intrinsic concentration appreciably at room temperature. 
The contribution of impurities, in fact, frequently exceeds those carriers that are 
supplied by interband excitation. When this is so, the sample is in the extrinsic region. 
 
Two different types of extrinsic regions may be distinguished. The first occurs when 
the donor concentration greatly exceeds the acceptor concentration, that is, when 51 ≫ 5� . In this case; the concentration of electrons may be evaluated quite readily. 
Since the donor's ionization energy (i.e. the binding energy) is quite small all the 
donors are essentially ionized, their electrons going into the CB. Therefore, to a good 
approximation,  
 ! =  51                                                                                              (2.2) 
 
A semiconductor in which n >> p is called an n-type semiconductor (n for negative). 
Such a sample is characterized, as we have seen, by a great concentration of electrons. 
The other type of extrinsic region occurs when 5� ≫ 51   that is, the doping is 
primarily by acceptors.  Using an argument similar to the above, one then has, 
 � =  5�                                               (2.3)  
 
i.e., all the acceptors are ionized. Such a material is called a p-type semiconductor. It 
is characterized by a preponderance of holes. In discussing ionization of donors (and 
acceptors), we assumed that the temperature is sufficiently high so that all of these are 
ionized. This is certainly true at room temperature. But if the temperature is 
progressively lowered, a point is reached at which the thermal energy becomes too 
small to cause electron excitation. In that case, the electrons fall from the CB into the 
donor level, and the conductivity of the sample diminishes dramatically. This is 

(2.1) 
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referred to as freeze-out, in that the electrons are now "frozen" at their impurity sites. 
The temperature at which freeze-out takes place is �1  

~ kT, which gives a temperature 
of about 100°K. The variation of the electron concentration with temperature in an n-
type sample is indicated schematically in Fig. 2.2.     
   

 
 Fig.2.2: Variation of electron concentration n with temperature in an n-type 
 semiconductor. 
 
4.0 Conclusion 
 
Both holes and electrons contribute to conductivity. 
 
5.0 Summary 
 
 Thermal vibration or energy can be used to create a hole by exciting an 

electron from the valence band to the conduction band. 
 In an intrinsic semiconductor (undoped), the number of holes in the valence 

band  is equals the number of electrons in the conduction band. 
 an n-type semiconductor is one characterized by a great concentration of 

electrons. 
 a p-type semiconductor is one characterized by a preponderance of holes. 
 
6.0 Tutor marked assignment 
 Q1.  Indium antimonide has �W= 0.23 eV; dielectric constant ε = 18;  
 electron effective mass m

e 
= 0.015 m. Calculate  

(a) the donor ionization energy and  
(b) the radius of the ground state orbit. 
 
Q2. In a particular semiconductor there are 1013donor/cm3 with an ionization  
 energy Ed of 1 meV and an effective mass 0.01 m. 
 Estimate the concentration of conduction electrons at 4 K 
 What is the value of the Hall coefficient? Assume no acceptor atoms are  
 present and that �W ≫ �O�. 
 
7.0 Further readings/References 
 
Kittel, C., Introduction to solid state physics, Wiley Eastern Limited, 1979 
 
Kachhava, C.M., Solid State physics, Tata McGraw-Hill Publishing Company 
 Limited, New Delhi, 1992. 
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Long, D., Energy bands in semiconductors, Wiley, 1968 
 
Smith, R.A., Semiconductors, Cambridge, 1959 
 
Wooster, W. A., A textbook on crystal physics, Cambridge University Press, 
 Cambridge, 1938. 
 
www.pa.uk.edu/kwng.phy/525/lec/lecture-8 
  

http://www.pa.uk.edu/kwng.phy/525/lec/lecture-8
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1.0 Introduction  
 
In this unit, we are going to study the electrical conductivity and mobility which are 
the primary interest in semiconductors, the band structure so that the observed 
phenomenon in the model structure can be used to obtain quantitative agreement 
between experiments and theoretical analysis. 
 
2.0 Objective 
 
The objectives of this unit is to 
 
 Understand electrical conductivity which measures both scattering and 
 electron concentration 
 Understand electrical mobility which measures scattering 
 Understand band structure of real semiconductor 
 
3.0 Definition 
 
Electrical conductivity is the ability of a material to conduct electrical current. 
 
3.1 Electrical conductivity  
 
Electrical conductivity is, of course, the quantity of primary interest in 
semiconductors. Both electrons and holes contribute to electric current. Assume first 
that a sample is strongly n-type and contains only one type of carrier: electrons. The 
conductivity can be treated according to the free- electron model: 
 

          �¨ =  
§¨2·`�`      (3.1) 
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where �T  
is an effective mass and ¸T is the lifetime of the electron. To estimate the 

value for �T, we substitute n =10�� ��	�, which is eight  orders in magnitude less 
than that in metals, and �T  

= 0.lm. This leads to      �T~10	�(� ¹ℎ� ⋅ ��)	� which is 
a typical figure in semiconductors.  Although this is many orders of magnitude 
smaller than the value in a typical metal, where  �T~ 1(� ¹ℎ� ⋅ ��)	� the 
conductivity in a semiconductor is still  sufficiently large for practical 
applications.  Semiconductor physicists often use another transport coefficient: 
mobility. The mobility �T is  defined as the proportionality coefficient between the 
electron drift velocity and the applied electric field, i.e. 
  
 |Vq| =  μqE             (3.2) 
 
Where |Vq| is the absolute value of the velocity. Taking into account that 
 �T =  −0!T�T  and  �T =   �T�  we find that  
 

     �� =  abG^G        (3.3) 

As defined, the mobility is a measure of the rapidity of the motion of the  electron in 
the field. The longer the lifetime of the electron and the smaller its mass, the higher 
the mobility. We can now express electrical conductivity in terms of mobility. We can 
write 

             �� = ��)�           
(3.4) 
 
Indicating that �T  is proportional to �r. A typical value for �T  may be obtained by 
substituting �T = (� ¹ℎ� ⋅ ��)	� and  ! =  10�� ��	� in Eq. (3.4). This yield 
 

            )�~10&�(&3−1�−1        (3.5) 
 
What we have said about electrons in a strongly n-type substance can be  carried 
over to a discussion of holes in a strongly p-type substance. The conductivity of the 
holes is given by 
 

            �� =  ���D?)C =  *�)�         (3.6) 

 
where )�is the hole mobility. 
 
Let us now treat the general case, in which both electrons and holes are present. When 
a field is applied, electrons drift opposite to the field and holes drift in the same 
direction as the field. The currents and conductivities of the two carriers are both 
additive. Therefore 
 

          � = �� + ��          (3.7) 
 
i.e., both electrons and holes contribute to the currents. In terms of the mobilities, one 
may write 
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           * = +�,K +  ��,c              (3.8) 
 
The carriers' concentrations n and p may be different if the sample is doped, as 
discussed before. And one or the other of the carriers may dominate, depending on 
whether the semiconductor is ! −  ¹A � − @
�0. When the substance is in the intrinsic 
region, however, n = p, and Eq. (3.8) becomes 
 
              * = +�(,K +  ,c)          (3.9) 
 
where n is the intrinsic concentration. Even now the two carriers do not contribute 
equally to the current. The carrier with the greater mobility usually the electron 
contributes the larger share.  
 

3.1.1 Dependence on temperature 

Conductivity depends on temperature, and this dependence is often pronounced. 
Consider a semiconductor in the intrinsic region. Its conductivity is expressed by 
(3.9). But in this situation the concentration n increases exponentially with 
temperature, as may be recalled from Eq. (1.16). We may write the conductivity in the 
form 
 

 σ=F�T�0J	S- ��C⁄ N                   (3.10)  
 
where F(T) is a function which depends only weakly on the temperature. (This 
function depends on the mobilities and effective masses of the carriers.) Thus 
conductivity increases exponentially with temperature as  shown in Fig.3.1.  
 

 
 Fig. 3.1: Conductivity of Si versus 1/T in the intrinsic range. 
 
This result can be used to determine the energy gaps in semiconductors. In the early 
days of semiconductor this was the standard procedure for finding the energy gap. 
Nowadays, however, the gap is often measured by optical methods. When the 
substance is not in the intrinsic region, its conductivity is given by the general 
expression (3.8). In that case the temperature dependence of the conductivity on T is 
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not usually as strong as indicated above. To see the reason for this, suppose that the 
substance is extrinsic and strongly n-type. The conductivity is  

 � = ��)�          (3.11) 
 
But the electron concentration n is now a constant equal to 51, the donor  (hole) 
concentration. And any temperature dependence present must be  due to the mobility 
of electrons or holes. 
 
3.1.2 Mobility versus temperature 
Mobility of electrons (or holes) varies with temperature. In n-type  semiconductor 
 

          �(  =  (j�V�
=  (	�V�k�               (3.12) 

 
Since the lifetime of the electron, or its collision time, varies with  temperature, its 
mobility also varies with temperature. Normally, both lifetime and mobility diminish 

as the temperature rises. The relaxation  time is given by ̧ 0 =  �0/30  where "�  is 
the mean free path of the electron and 3T is the drift velocity.  The velocity of 
electrons is different depending on their location in the  conduction band. 
Electrons at the  bottom of the conduction band in a  semiconductor obey the 
classical statistics and not the highly degenerate Fermi statistics prevailing in metals. 
The higher electrons are in the band, the greater their velocity. We can evaluate the 
conductivity by assuming that 3T is the average velocity. The average velocity can be 
estimated using the  procedure of the kinetic theory of gases: 
               1 2+ �T 3T� =  3 2+ ��                                 (3.13) 
 

 This introduces a factor of T
-1/2 

dependence in the mobility: 

          )� =  ��?)?�/�:&�@<�/�             (3.14) 

 
The mean free path �T  

also depends on the temperature, and in much the same way as 
it does in metals. �T  is determined by the various collision mechanisms acting on the 
electrons. These mechanisms are the collisions of electrons with thermally excited 
phonons and collisions with impurities. At high temperatures, at which collisions with 
phonons is the dominant factor, le is inversely proportional to temperature, that is, �T ∝ �	�. In that case, mobility varies as �T ∝ �� �⁄ . Figure 3.2 shows this for ­0. 
Another important scattering mechanism in semiconductors is that of ionized 
impurities. When a substance is doped the donors (or acceptors) lose their  electrons 
(or holes) to the conduction band. The impurities are thus ionized, and are quite 
effective in scattering the electrons (holes). At high  temperatures this scattering is 
masked by the much stronger phonon mechanism, but at low temperatures this latter 
mechanism becomes weak  and the ionized-impurity scattering gradually takes 
over. 
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Fig.3.2: Electron mobility versus T in ­0. The dashed curve represents pure phonon 
scattering; numbers in parentheses refer to donor concentrations. 
 
3.2 Band structure of real semiconductor 
 
So far, we have assumed the simplest possible band structure, namely, a  conduction 
band of a standard form, centered at the origin, k = 0, and a  valence band of a 
standard inverted form, also centered at the origin. Such a simple structure is 
applicable for elucidating many observed phenomena, but it does not represent the 
actual band structures of many common semiconductors. Only when one uses the 
actual band structure is it possible to obtain a quantitative agreement between 
experiments and theoretical analysis. 
 
A material whose band structure comes close to the ideal structure is ­��� (Fig. 3.3). 
The conduction band has a minimum at the origin k = 0 and the region close to the 

origin is well represented by quadratic energy dependence,���� =  ℏ����. , where me = 

0.072 m. Since the electrons are most likely to populate this region, one can represent 
this band by a single effective mass.  Note, however, that as k increases, the energy 
E(k) is no  longer quadratic in k, and those states may no longer by represented by 
a  single, unique effective mass. In particular that the next-higher energy 
minimum occurs along the [100] direction. The dependence of energy on kin the 
neighborhood of this secondary minimum is quadratic, and hence an  effective 
mass may be defined locally, but its value is much greater than  that of the primary 
minimum (at the center). The actual value is 0.36 m. Due to cubic symmetry there are 
six equivalent secondary minima, or  valleys, in all along the [100] directions. 
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Fig. 3.3 Band structure of GaAs plotted along the [100] and [111] directions. 

 
These secondary valleys do not play any role under most circumstances,  since the 
electrons usually occupy only the central or primary valley. In such situations, these 
secondary valleys may be disregarded altogether.  There are also other secondary 
valleys in the [111] directions, as shown in  Fig. 3.3. These are higher than the [100] 
valleys, and hence are even less likely to be populated by electrons. The valence band 
is also illustrated inFig.3.3. Here it is composed of three closely spaced subbands. 
Because the curvatures of the bands are different, so are the effective masses of the 
corresponding holes .One speaks of light holes and heavy holes. Other III- V 
semiconductors have band structures quite similar to that of ­���. 
 
Figure 3.4a shows the band structure of Si. An interesting feature is that  the 
conduction band has its lowest (primary) minimum not at k=0. The minimum lies 
along the [100] direction, at about 0.85 the distance from  the center to the edge of 
the zone. Note that the bottom of the conduction  does not lie directly above the top 
of the valence band. This type of semiconductors is known as indirect gap 
semiconductors. These should be distinguished from direct gap semiconductors such 
as ­��s. Because of  the cubic symmetry, there are actually six equivalent primary 
valleys  located along the [100] directions. These are illustrated in Fig. 3.4b. 
The energy surfaces at these valleys are composed of elongated ellipsoidal surfaces of 
revolution, whose axes of symmetry are along the [100] directions. There are two 
different effective masses which correspond to these surfaces: the longitudinal and the 
transverse effective masses. The longitudinal mass is �� = 0.97m, while the two 
identical transverse masses are �2= 0.19m. The mass anisotropy ratio is about 5. The 
valence band in silicon is represented by three different holes (Fig.3.4a). One of the 
holes is heavy (�� = 0.5m), and the other two are light. The energy gap in Si, from 
the top of the valence band to the bottom of the conduction band, is equal to 1.08 eV. 
The fact that the bottom of the conduction does not lie directly above the top of the 
valence band, is irrelevant to the definition of the band gap. 
 
3.3 Excitons 
 
An electron and a hole may be bound together by their attractive coulomb  interaction, 
just as an electron is bound to a proton to form a neutral  hydrogen atom. The 
bound electron-hole pair is called an Excitons, Fig.3.5. Excitons can move through the 
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crystal and transport energy; it does not transport charge because it is electrically 
neutral. It is similar to positronium, which is formed from an electron and a positron. 
Excitons can be formed in every insulating crystal. All Excitons are unstable with 
respect to the ultimate recombination process in which the electron drops into the 
hole. The binding energy of the Excitons can be measured by optical transitions from 
the valence band, by the difference between the energy required to create an Excitons 
and the energy to create a free electron and free hole, Fig.3.6. 
 

 
Fig.3.4 (a) Band structure of Si plotted along the [100] and [111] directions, (b) 
Ellipsoidal energy surfaces corresponding to primary valleys along the [100] 
directions (After Kittel, 1979) 
. 

 
Fig.3.5: An Excitons, a bound electron-hole pair. 



PHL 307          SOLID STATE PHYSICS 1 
 

176 

 
  Fig.3.6: Energy levels of Excitons. 
 
Energy levels of Excitons can be calculated as follows. Consider an electron in the 
conduction band and a hole in the valence band. The electron and hole attract each 
other by the Coulomb potential 
 

                3�A� =  − T�EF       (3.15) 
 
where r is the distance between the particles and ε is the appropriate dielectric 
constant. There will be bound states of the Excitons system having total energies 
lower than the bottom of the conduction band. The problem is the hydrogen atom 
problem if the energy surfaces for the electron and hole are spherical and 
nondegenerate. The energy levels are given by   
 �R =  �� −  K(d�e�ℏ�R�                    (3.16) 

 
Here n is the principal quantum number and μ is the reduced mass: 
 �d =  �0F +  �0H                    (3.17)  

           
formed from the effective masses of the electron and hole. The Excitons ground 
 state energy is obtained on setting n = 1 in Eq. (316); this is the ionization 
energy of the Excitons. 
 
Worked example: 
 
At room temperature, �O� 0 = 26 �3.⁄  A sample of cadmium sulfide displays a 
mobile carrier density of 10�/ cm-3 and a mobility coefficient � = 10� ��� P¹�@ �0�⁄  
 
(a) Calculate the electrical conductivity of this sample 
(b) If the charge carriers have an effective mass equal to 0.1 times the mass of a 

free electron, what is the average time between successive scatterings 
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Solutions: 
 
(a) From Eq. (3.4), the electrical conductivity in terms of mobility is given by  �T = !0�T 
  With ! = 10���	�, = 1.6 × 10	��, �T = 10	���3	��	�,  
 
  we have �T = 16Ω	��	� 
 
(b) From Eq.(3.6),  the free electron model of metals gives 

 � = �T�X�∗ , where �∗  � the effective mass of an electron is, then the 

 average time between successive scattering is  
 

 ¸ = �.�s�T )�T , = 5.7 × 10	�
� 

 
4.0 Conclusion 
 
The number of carriers (electrons and holes) is an important property of a 
semiconductor, as this determines its electrical conductivity. Both  conductivity and 
mobility (a measure of the rapidity of the motion of the  electron in the field) 
depend on temperature. 
 
5.0 Summary 
 

 
B =  (B�D�E�
  defines electrical conductivity according to free electron

 model. 
  �T =  �GFHF   defines mobility 

 electrical conductivity in terms of mobility is defined as �� = ��)� 

 � = !0�T +  �0��  defines contribution  to the currents  by  both electrons 
 and     holes in terms of the mobilities 
 A material whose band structure comes close to the ideal structure is GaAs 
 The bound electron-hole pair is called an Excitons  
  
6.0 Tutor marked Assignment 
 
Q1. A sample of Si contains 10–4 atomic per cent of phosphorous donors that  
 are all singly ionized at room temperature. The electron mobility is 0.15  
 m2V– 1s–1. Calculate the extrinsic resistivity of the sample (for Si, atomic  
 weight = 28,  density = 2300 kg/m3). 
Q2.  Given the data for Si: �T  

= 1350 cm
2
/V⋅s, ��  

= 475 cm
2
/V⋅s, �T  

= 0.19m,  
 ��  

= 0.16m and �W 
= 1.1 eV, calculate  

  (a) The lifetimes of electrons and holes.  
  (b) The intrinsic conductivity σ at room temperature 
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1.0 Introduction 
 
Superconductivity was first discovered and so named by Kamerlingh Onnes in 1911. In 
the course of an investigation of the electrical resistance of various metals at liquid 
helium temperatures, he observed that the resistance of a sample of mercury dropped 
from 0.08 Ω at about 4 K to less than 3x l0- 6Ω  over a temperature interval of 0.01K. 
Subsequent attempts showed that the width of the transition region in a particular 
specimen depends on a number of factors, such as the purity and metallurgical history 
and can be as sharp as one millidegree or spread over several degrees. While the 
breadth of the transition may increase if the sample is metallurgically imperfect, the 
extraordinary smallness of the resistance in the superconducting state appears to hold 
for all superconductors. Thus, the first characteristic property of a superconductor is that 
its electrical resistance, for all practical purposes, is zero, below a well-defined 
temperature Tc, called the critical, or transition temperature. Thus, the conductivity in 
this range of temperature is infinite; hence the nomenclature of superconductivity. 
 
Figure 4.1 shows how the electrical resistivity in a superconductor becomes 
immeasurably small at the transition temperature. The figure also contrasts the 
behaviour of a normal metal for which at very low temperatures, the remanent 
resistivity is characteristic of residual impurities. The resistance of a superconductor is 
believed to be zero rather than just very small. 
  



PHL 307          SOLID STATE PHYSICS 1 
 

180 

 
 

Fig.4.1: Temperature dependence of the resistance: of a normal and superconducting 
material (After Kachhava, 1992) 
 
2.0 Objective 
 
The objective of this unit is to revise the basics of Superconductors in terms of: 
 
 Empirical criteria 
 Transition temperature 
 Energy gap 
 
3.0 Definition 
 
Superconductivity is the phenomenon on which the electrical resistivity of metals or 
alloys drop to zero (infinite conductivity) when cooled into its critical temperature. 
 
3.1 Empirical criteria  
 
There are found to be a number of regularities in the appearance of superconductivity, the 
principal of which are the following: 
 

I. Superconductivity has been observed only for those metallic substances for which 
 the number of valence electrons Z lies between 2 and 8. 

II.  In all cases involving transition metals, the variation of Tc with number of 
 valence electrons shows sharp maxima for Z = 3, 5 and 7, as shown in Fig. 4.2. 

III.  A rather striking correlation (a straight line graph) exists between 3 and Z2 for 
 elements along given rows of periodic table (Fig. 4.3). 

IV. For a given value of Z, certain crystal structures seem more favourable than 
 others.  For example, β-tungsten and α-manganese structure are conductive to the 
 phenomenon of superconductivity. 

V. Ferromagnetic and ferroelectric ordering are found to inhibit superconductivity. 
VI. Tc increases with a high power of the atomic volume and inversely as the atomic 

 mass. 
VII. Superconductivity occurs in materials having high normal resistivities. The condition 

 n p > 106 is a good criterion for the existence of superconductivity, where n is the 
 number of valence electrons per c.c. and p is the resistivity in electrostatic units at 
 20°C. 

  

Superconductor
 SUPERCONDUCTOR 

Normal metal 

Temperature T (K)  
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These empirical rules have played an important role in the discovery of new 
superconductors.  
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3.2 Transition Temperature 

The temperature at which the normal metal passes into superconducting state is called the 
transition temperature, Tc. The transition temperature is generally affected by the application of 
pressure though no specific regularity in the behaviour has been found. The value of Tc for 
most of the metals lies below 4K; e.g., for Al, it is 1.20 K. For C-15 structure (e.g., V2 Hf), it is 
10K; for B-1 structure (e.g., NbN), it is near 13 K, whereas NbZr and NbT1 [BCC (A-2) 
structure] have the values of  Tc  as 11.0 and 10.0 K respectively. For A-15 structure, the 
highest Tc = 23.2 K has been observed in NB3Ge.   
 
3,3      Energy Gap 
 
Experiments have shown that in superconductors, for temperatures in the vicinity of 
absolute zero, a forbidden energy gap just above the Fermi level is observed. Figure 4.4(a) 
shows the conduction band in the normal state, while (b) depicts an energy gap equal to 
2∆ at the Fermi level in the superconducting state. Thus, the Fermi level in a superconductor 
is midway between the ground state and the first excited state so that each lies an energy 
distance =  away from the Fermi level. Electrons in excited states above the gap behave 

Fig 4.3: Empirical correlation between transition 
temperature and Z2(After Kachhava, 1992) 

Fig 4.2: Variation of transition temperature with 
number of valence electron 

 

Tc 
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as normal electrons. At absolute zero, there are no electrons above the gap. 2∆is 
typically of the order of 10- 4 eV. 
  

 
    
 
Fig.4.4: (a) Conduction band in the normal metal (b) Energy gap at the Fermi level in 
the superconducting state (After Kachhava, 1992) 

∆ is found to be a function of temperature T. Thus, (T) represents energy gap at temperature 
T. Figure 4.5 shows reduced values of observed energy gap  (T)/  (0)  as a function of 
the reduced temperature T/Tc. Elementary theory predicts that 
   

                                          (4.1)  

   
We observe that the energy gap decreases continuously to zero as the temperature is increased 
to Tc . Numerically, experiments show that for most of the metals. The transition from the 
superconducting state to the normal state is observed to be a second-order phase 
transition. In such a transition, there is no latent heat, but there is a discontinuity in the 
heat capacity. 
 
 

 
                                               02    <K    06   O8      10 
                                                          T/Tc———>- 
 Fig. 4.5: Temperature dependence of the superconducting energy gap (After Kachhava, 1992) 

3.4. Properties Dependent on Energy Gap 

3.4.1 Microwave and Infrared Absorptions 
 
The response of a metal to electromagnetic radiation is determined by the frequency 
dependent conductivity. This in turn depends on the available mechanisms for energy 
absorption by the conduction electrons at the given frequency. Because the electronic 
excitation spectrum in the superconducting state is characterized by an energy gap, 

Normal 
    (a) 

Superconducting                    
(b) 
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one would expect the AC conductivity to differ substantially from its normal state 
form at frequencies small compared with , and to be essentially the same in the 

superconducting and normal states at frequencies large compared with  The 

value of , is typically in the range between microwave and infrared frequencies. 

In the superconducting state, an AC behaviour is observed which is indistinguishable 
from that in the normal state at optical frequencies. Deviations from normal state 
behaviour first appear in the infrared, and only at microwave frequencies does AC 
behaviour fully displaying the lack of electronic absorption characteristic of an energy 
gap becomes completely developed. 
 
3.4.2 Density of States 

 

The three parts of Fig. 4.6 give a highly exaggerated picture of the difference between 
the spectrum and occupancy of states in a normal metal and those in a 
superconductor. Part (a) considers the density of states at T = 0 in the absence of 
superconductivity (which can be arranged by applying a suitable magnetic field). The 
superconducting ground state for zero temperature is pictured in part (b). This shows a 
zero density of states for energies within ± on either side of the Fermi energy, and a 
piling up of the displaced states on either side of the gap. At T — 0, no electrons are 
excited to higher states. Part (c) of the figure imagines the consequences of a finite 
temperature less than Tc .The superconducting energy gap is now smaller than . 
Fractions of number of electrons are in states above leaving behind some 
unoccupied states below . Finally, the gap decreases to zero when T reaches Tc and 
the corresponding density of states is the one depicted in part (a). 
   

 
Fig. 4.6: Density and occupancy of states (D.O.S) for a normal and a superconductor (After 
Kachhava, 1992)  
 
  

a 

b 
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3.4.3 Specific Heat 

 

There is no heat of transformation associated with the superconducting-normal 
transition in a metal, but there is an anomaly in the electronic component of the specific 
heat. An example of this is illustrated in Fig. 4.7. The discontinuity in the specific heat 
reflects the second-order transition from a relatively disordered (normal) state to a more 
highly ordered (superconducting) state of lower entropy. At low temperatures, the specific 
heat of a normal metal has the form 
    

      (4.2) 
    
where the linear term is due to electronic excitations- and the cubic term is due to lattice 
vibrations. Below the superconducting critical temperature, this' behaviour is substantially 
altered. As the temperature drops below Tc, the specific heat jumps to a higher value and 
then slowly decreases, eventually falling well below the value one would expect for a 
normal metal. By applying a magnetic field to drive the metal into the normal state, one 
can compare the specific heats of the superconducting and normal states below the 
critical temperature. 

Fig.4.7: Specific heat of normal and superconductor (After Kachhava, 1992)  
    

Such an analysis reveals that in the superconducting state, the linear electronic 
contribution to the specific heat is replaced by term that vanishes much more rapidly at 
very low temperatures, having dominant low-temperature behaviour of the form 
exp�−∆ �O�⁄ �. This is the characteristic thermal behaviour of a system whose excited 
levels are separated from the ground state by energy 2∆, thus, the total specific heat of the 
superconducting state is 

                                                                                               (4.3) 
    
Where 

          (4.4) 

where is the low-temperature electronic specific heat of the normal state (obtained by 
applying suitable magnetic field),  and  and .These parameters are 
themselves weakly temperature dependent. In Fig.4.7 the size of the discontinuity in specific 
heat at T =Tc is 2.5 in units of .The exponential decrease in specific heat below Tc can 
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be interpreted as follows. Because, of the energy gap, the number of electrons excited across 
the gap is given roughly by a Boltzmann factor, exp�−∆ �O�⁄ �. Hence, the heat capacity 
varies exponentially with temperature. 

 
3.4.4 Acoustic Attenuation 

When a sound wave propagates through a metal, the microscopic electric fields due to the 
displacement of the ions can impart energy to electron near the Fermi level, thereby 
removing energy from the wave. This is expressed by the attenuation coefficient, α, of 
acoustic waves. The ratio of α for superconducting and normal state is given by 

 

                              (4.5)      

    
At low temperatures 
 

                                                                  (4.6)  

The exponential decay ratio is represented in Fig. 4.8 
 

 
 

Fig.4.8: Ratio of attenuation coefficients for acoustic waves in superconducting and 
normal metal as a function of temperature (After Kachhava, 1992). 
    
3.4.5 Thermal Conductivity 
 
In normal metals, the heat current is predominantly carried by the conduction 
electrons and at low temperatures, the electronic contribution to the thermal 
conductivity Ken is given by the Wiedemann-Franz law. In a superconductor, 
however, the electron pairs have zero energy so they cannot contribute to energy 
transport and hence to the heat current (but being charged, they can still contribute to 
the electric current). Hence, the electronic contribution to the heat current depends on 
the number of normal electrons and like the electronic specific heat represented by 
Eq. (4.4), we have the ratio of superconducting to normal phase conductivities as 
 

           (4.7)  
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This is illustrated in Fig.4.9. When T ,  and the only thermal current will 
be carried by the phonons (as in insulator). Under suitable conditions,   may be very 

large  

( ) and this property can be used to make a heat switch, the heat flow being 
controlled by a magnet. The phonon contribution to thermal conduction will actually 
increase in the superconducting state since the scattering of phonons by electrons is 
reduced by the formation of pairs. In extreme cases when   is made small by the 
introduction of impurities, the increase in the phonon contribution to the thermal 
conductivity below  may outweigh the reduction in the electronic contribution so 
that the total conductivity increases in the superconducting state. To achieve this 
condition, an impurity of similar mass but different valence, which will reduce  
without greatly affecting phonon transport, should be used. An example is Bi in Pb.  

 

Fig.4.9: Ratio of the electronic contribution to the thermal conduction of Al (After 
Kachhava, 1992) 

4.0 Conclusion 
 
At a critical temperature , many metals and alloy undergo a phase transition from a 
state of normal electrical resistivity to a superconducting state. 
 
5.0 Summary 
 
 Superconductivity has been observed only for those metallic substances for which 

the number of valence electrons Z lies between 2 and 8. 
 The temperature at which the normal metal passes into superconducting state is 

called the transition temperature, Tc 
 In superconductors, for temperatures in the vicinity of absolute zero, a forbidden 

energy gap just above the Fermi level is observed. 
 The ratio of attenuating coefficient for superconducting and normal state is given 

by 

  
 The ratio of superconducting to normal phase conductivities  is given as 
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6.0 Tutor marked assignment 
 
Q1.  Prove that the Meissner effect is consistent with the disappearance of 
 resistivity in a super conductor. 
Q2.  Show that when superconductivity is destroyed by the of a magnetic 
 field, the magnet will cool. 
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1.0       Introduction 
 
In this unit, we are going to study both the experimental and theoretical situations 
concerning superconductivity. The experimental survey includes the effects of 
magnetic field on superconductivity(the Meissner effect), the minimum magnetic field 
(critical field) necessary to destroy superconductivity as well as the minimum current 
(critical current) that can be passed without destroying superconductivity.  
Thermodynamics, London equation and type I and II of semiconductors constitute the 
theoretical surveys.  
 
2.0 Objective 
 
The objectives of this unit are:   
 
 To survey the  central experimental facts concerning superconductivity 
 To discuss the  theoretical situations of superconductivity 
 
3.0 Definition 
 
Superconductivity is the phenomenon on which the electrical resistivity of metals or 
alloys drop to zero (infinite conductivity) when cooled into its critical temperature. 
 
3.1 Meissner effect 
 
Meissner and Ochsenfeld (1933) showed that, if a long superconductor is cooled in a 
longitudinal magnetic field from above the transition temperature, the lines of 
induction are pushed out (Fig. 5.1) at the transition. The Meissner effect shows that a 

super- conductor behaves as if inside the specimen B = 0 or ; that is, a 
superconductor exhibits perfect diamagnetism. This very important result cannot be 
derived merely from the characterization of a superconductor as a medium of zero 
resistivity : from E = j we see that, if  is zero while j is finite, then E must be zero 
and with it curl E must be zero. Therefore from Maxwell's equations 
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                        (5.1) 
 
so that the flux through the metal cannot change on cooling through the transition. 
The Meissner effect contradicts this result and suggests that perfect diamagnetism and 
zero resistivity are two independent essential properties of the superconducting state. 
 

Fig.5.1: Meissner effect in a sphere cooled in a constant applied magnetic field; on 
passing below the transition temperature the lines of induction are ejected from the 
sphere. (After Kittel,  
 
3.2 Critical Field 
 
The minimum applied magnetic field necessary to destroy superconductivity and 
restore the normal resistivity is called the critical field, . depends on the 
temperature. Fig.5.2 shows the critical field as a function of temperature. The curve is 
nearly parabolic and can be reasonably well represented by the relation  
 

                                                                              (5.2) 

 
Where  is the critical field at absolute zero. This equation is really the equation of 
phase boundary between the normal and superconducting state. The typical value of 

 is 5000A/m.  
 

 
Fig.5.2: Critical magnetic field as a function of temperature (After James and 
Bernard, 2005). 
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3.3 Type I and Type II Superconductors 
 
Superconductors may be divided into two classes which depend on the way in which the 
transition from the superconducting to the normal state proceeds when the applied field 
exceeds ��. In type-I materials, as �� is reached entire specimen enters the normal state 
practically simultaneously, the resistance returns, the diamagnetic moment becomes zero 
and 
��2T_���  =  
T%2T_��� (Fig5.2a). 

 
Fig.5.2: Flux penetration as a function of magnetic filed in (a) 
type-I superconductor and (b) type-II superconductor 

In type-II superconductors, the transition to a completely normal specimen is much more 
gradual. As shown in Fig. 5.2b, there is a partial penetration of the magnetic field between 
the critical field Hc1 and Hc2. Small surface super currents may still flow up to an applied 
field Hc3. 

   

3.4  Critical Currents 

 
The minimum current that can be passed in a sample without destroying its 
superconductivity is called critical current . If a wire (radius r) of a type-I  
superconductor carries a current I, there is a surface magnetic field HI= I/2πr 
associated with the current. If HI exceeds , the material will go normal. If in addition, a 
transverse magnetic field H is applied to the wire, the condition for the transition to the 
normal state at the surface is that the sum of the applied field and the field due to the 
current should equal the critical field. Thus, as seen from Fig. (5.3b), we have 
 

 

 
 
Hence                        (5. 3) 
 
  
The critical current  will decrease linearly with increase of the applied field unt i l  it 
reaches zero at � = �� 2⁄ . If the applied field is zero,  similar considerations 
apply to type-II  superconductor for  that is when the superconductor is not in the 
mixed state. 

a b 
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Fig.5.3 :(a) wire carrying current I subjected to transverse field H.(b) Cross-section of 
wire showing fields at equatorial position on the surface(After Kachhava,1990) 

 
3.5 London Equations  
 
In 1935, two brothers F. and H.  London, proposed two equations to govern the 
microscopic electric and magnetic fields (two basic electrodynamics properties) 
which give superconductivity its unique interest. The London theory is based on 
rather old ideas of the two –fluid model according to which a superconductor can be 
thought to be composed of both normal and superfluid electrons. Let ,   
be respectively the density, and velocity of the normal and superfluid electrons. If  
is the number of electrons per unit volume, then on the average 
 

          
 
The equation of motion for the superfluid electrons is  
 

                    (5.4)         

 
The density of the superfluid electrons is  
 

                                                                                      (5.5)   
 
Then Eq. (5.4) and (5.5) yield 
 

                       (5.6)   

 
This is the first London equation. 
Taking curl of Eq. (5.6) 
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 =               

  
and using Maxwell’s equation 
 

                       
we get     

 =                                                                  (5.7) 

 
Integrating this equation with respect to time, and choosing the constant of integration 
to be zero consistent with the Meissner effect, we have  
 

 =           (5.8) 

 
This is the second London equation. 
We may derive the Meissner effect from the second London equation by using the 
Maxwell equation 
 

 =                                                                                       (5.9) 
 
Taking curl of this equation  
 

 B =                                           (5.10)  
 
Then using the condition div B = 0 of a superconductor in the identity 
 

 B = grad div B B 
 
We get 

 B =                                                                           (5.11) 
 
On combining Eq. (5.10) and (5.11),  
 

                                                                            (5.12) 
 
This along with Eq. (5.8) gives 
 

                                                                                          (5.13)   

 
Where  is called the London penetration depth and is defined by  
 

                                                                              (5.14)  

 
For a superconductor to the right of the plane x = 0, Eq. (5.13) has the solution 
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                                                                 (5.15) 

 
This equation indicates that B does not penetrate very deeply into superconductor, and 
therefore it implies the Meissner effect. The field penetrates only a distance  within 
the surface.  is typically of the order of 1000Å. The graphical form of Eq. (5.15) is 
shown in Fig.5.4. The penetration depth is also found to depend strongly on 
temperature and to become much larger as T approaches . The observation can be 
fitted extremely well by a simple expression of the form 
 

                                                               (5.16) 

 
This equation implies that 
 

                                                           (5.17) 

 
 

 
Fig.5.4: Magnetic field penetration at surface of a superconductor (After Kachhava, 
1992). 
 
The density superconducting electrons increase from zero at to at absolute zero 
as shown in Fig.5.5, which also depicts the temperature variation of . is called the 
order parameter because it characterizes the order in the superconducting state. 
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Fig.5.5: Density of superconducting electrons as a function of temperature (After 
Kachhava, 1992) 
 

Worked example:  

The London equation for simple superconductor is a phenomenological equation 
relating the supercurrent �t to the magnetic vector potential A: �t = 	�.T��.� 9  

Where �T is the electron mass. Using the appropriate Maxwell equation, show how 
the above equation leads to Meissner effect. 

 Solution: 

The Meissner effect refers to the fact that in the superconducting state magnetic 
induction vanishes and materials become strongly diamagnetic. From London 
equation (Eq.58), 

 =    (i) 

Since #� = �.�/T�,   we get 

 = − �!u% <   (ii) 

Inside a superconductor, the electrical field vanishes and we have the Maxwell 
equation 

Error!  Bookmark not defined.  ª × < = 
vw! �t 

Hence  < = −�#�∇ × �t = − !%u%�$ �∇�∇ ∙ <� − ª�<�, 
Or, using Maxwell’s equation ∇�< = ��� < 
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Where # = ) �n0�/T�,� �⁄
 

For a superconductor to the right of x= 0, Eq. (ii) has the solution 

  < = <30'	�1( 
This shows that B decays exponentially such that < = �T <� at x = #. 

For � ≫ #, B→ 0, indicating that the magnetic field exists only in a thin layer of 
thickness≈ # beneath the surface of the superconductor. Thus the magnetic field 
inside a superconductor is zero. This is the Meissner effect. 
  
3.6 Thermodynamics of Superconducting transition 
 
It has been demonstrated experimentally that the transition between the normal and 
superconducting states is thermodynamically reversible, in the same sense that with 
slow evaporation the transition between liquid and vapor phases of a substance is 
reversible. The Meissner effect also suggests that the transition is reversible and 
would not subsist if the superconducting currents die away with the production of 
Joule heat when superconductivity is destroyed. As the transition is reversible we may 
apply thermodynamics to the transition, obtaining an expression for the entropy 
difference between normal and superconducting states in terms of the critical field 
curve  versus . 
The Gibbs free energy per unit volume in a magnetic field 
 

       (5.18)  

Then the differential Gibbs free energy  is 
 

                                                       (5.19)  

At constant T and P, the free energy difference, because of the presence of a magnetic 
field, is found by integration. Thus 
 

                                      (5.20) 

 

                  (5.21) 

 
For superconductor,  or    and  
 

                                

  
        (5.22)  

Here  is the free energy of a superconducting phase 
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Along the phase boundary between normal and superconducting state, the normal 
phase must have a free energy indistinguishable from that of the superconducting 
phase. Therefore 
 

           (5.23) 

 
Where  is the free energy of the normal phase. Fig.5.6 shows the variation of  
and  below , where the normal phase is obtained by applying the field in excess of  

. 
 
 

 
Fig.5.6: Experimental values of free energy of Al in the normal and superconducting 
state as a function of temperature (After Kachhava, 1992) 
 
Let us now calculate the difference in entropy of the two phases. For solids, the 
entropy S is given by . Hence, differentiating Eq. (5.23) with respect to T, we 
have 
 

  

 

            =                  (5.24) 

Where the entropies  and   refer to normal and superconducting phases 
respectively. Thus  as illustrated in Fig.5.7. 
 

 
Fig.5.7: Entropy S of Al in the normal and superconducting state as a function of 
temperature (After Kachhava, 1992). 
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As  is always negative,  is always positive and the superconducting state is 

observed to be more ordered than the normal state. At the transition temperature 
 = 0 because  = 0, and at 0K,  = 0 from the third law of 

thermodynamics, which is satisfied, because  tends to zero. At some intermediate 

temperatures,  has a maximum. The latent heat absorbed when 
superconductivity is destroyed is 
 
 

 ( ) 
 

    =        (5.25) 

 
In the absence of a magnetic field, the transition occurs at  and the latent heat is 
zero. If  and  are respectively the normal and superconducting state internal 
energies, then from Eq. (5.25) 
   

 =  ( )  
 

                 =        (5.26) 

 
From experiment, ) , which is extremely small compared to the band 
energies. For a unit volume, the difference of the of the heat capacities, from Eq. 
(5.26), will be 
 

)  = )    

 

                    =    (5.27) 

 
On substituting ,  = 0 in this equation, we get the Rugers formula 
 

)  =     (5.28) 

This equation reproduces the experimental data very well. 

3.7 Isotope effect 

It has been found by early experimentalists that the transition temperature is strongly 
dependent on the average isotopic mass, M, of the constituents of a superconductor. In 
particular 
 

       (5.29) 
 
More recent experiments have suggested the following general form 
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        (5.30) 
In which  is called the isotope effect coefficient and is defined by  
 

      (5.31) 

 
Recent theories lead to the result 
 

     (5.32) 
 
where the parameter  is the density of single states for one spin at the Fermi level 
and V is the model potential between the electrons. The transition temperature can be 
connected to the Debye temperature, because  sound velocity . 
Hence, from Eq. (5.30), 
 

   
 

i.e.  = constant                   (5.33) 

 

The constant of  implies that the lattice vibrations have an important bearing on 

superconductivity, and gives a clear guide to the theory that electron-phonon 
interaction must be the basis of the existence of superconductivity. 
 

4.0 Conclusion 

The magnetic properties exhibited by superconductors are as dramatic as their 
electrical properties. The magnetic properties cannot be accounted for by the 
assumption that the superconducting state is characterized properly by zero electrical 
resistivity. 

5.0 Summary 

 A bulk specimen of metal in the superconducting state exhibits perfect 
 diamagnetism, with the magnetic induction B = 0. This is Meissner effect. 
 There are two types of superconductors, I  and II 
 In type I , the superconducting state is destroyed and the normal state is 
 restored by application of critical value . 
 A type II superconductor has two critical fields  
 The London 1st and 2nd equations  

           Or    =   

Leads to the Meissner effect through the penetration equation  
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6.0     Tutor marked assignment 

Q1.   A superconducting tin has a critical temperature of 3.7 K in zero magnetic 
 fields and a critical field of 0.0306 T at 0 K. Find the critical field at 2 K. 
Q2.    Estimate the London penetration depth from the following data: 
  Critical temperature = 3.7 K 
  Density          = 7.3 g cm-3  
  Atomic weight          = 118.7 
  Effective mass*       = 1.9m, where m is the mass of a free electron 
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