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INTRODUCTION

Solid state physics is a very wide field, with mamanches. It is concerned
with the physical properties of solids, particiathe special properties
exhibited by atoms and molecules because of tlssoaation in the solid
phase. The existence of powerful theoretical mettasdl concepts applicable
to a wide range of problems has been an importamfiying influence in the
field

Learning solid state physics requires a certainreegf maturity, since it
involves tying together diverse concepts from mamngas of physics. The
objective is to understand, in a basic way, hovidsolaterials behave. To do
this, requires a good physical and mathematicatdracind. One definition of
solid state physics is that it is the study of pigsical (e.g. the electrical,
dielectric, magnetic, elastic, and thermal) prapsrof solids in terms of basic
physical laws. In one sense, solid-state physianase like chemistry than
some other branches of physics because it focuse®mmon properties of
large classes of materials. It is typical thatdasliate physics emphasises how
physical properties link to the electronic struetufhe rapid rise of interest in
solid state physics in recent years has suddeelsepted universities with the
problem of offering adequate instruction in thejeab For this reason, there
should be an introductory or survey course followsd as a minimum
program for graduate students intending to do rekaa the field, a course in
x-ray crystallography and a course in the quantueorty of solids. These two
subjects are large, important, and well-developeds not possible to deal
with them adequately in an introductory course.

COURSE AIMS
The course aims is to provide an understandingliof state physics.
COURSE OBJECTIVES

To achieve the aim set out, the course has a sebjettives. Each unit has
specific objectives which are included at the bagmp of the unit. You should read
these objectives before you study the unit. Belentlde comprehensive objectives
of the course as a whole. By meeting these obgstiyou should have achieved
the aim of the course as a whole. After going thhothe course, you should be
able to:

Explain crystal structure of solids

Explain crystal binding

Explain X-ray diffraction in crystals

Explain thermal properties of the crystal lattice
Explain elastic properties of crystals

Explain lattice vibration

Explain the concept of free-electron theory of iiseta
Understand energy bands in crystals

Understand semiconductors
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° Understand superconductors
WHAT YOU WILL LEARN IN THIS COURSE

The course consists of 21 units and a course giigecourse guide tells you briefly
what the course is about, what course materialswlbbe using and how you can
work your' with these, materials. In addition,dtacates some general guidelines for
the amount of time you are likely to spend on eauh of the course in order to
complete it successtully.

It gives you guidance in respect of your Tutor-MatkAssignment which will
be made available in the assignment file. Theré balregular tutorial classes
that are related to the course. It is advisableyfmr to attend these tutorial sessions.
The course will prepare you for the challengeswitiimeet in the field of solid state
physics.

COURSE MATERIALS

The main components of the course are:

1. The Course Guide

2. Study Units

3. References/Further Reading
4, Assignments

5. Presentation Schedule
STUDY UNITS

The study units in this course are as follows:

Module 1 Property Of Crystal

Unit 1 Crystal Geometry

Unit 2 Crystal Classification

Unit 3 Simple Lattices

Unit 4 Crystal Diffraction (I)

Unit 5 Crystal Diffraction (1)

Unit 6 Experimental Crystal Structure Determinatio

Module 2 Crystal Elastic Constants And Vibrations

Unit 1 Elastic Constants of Crystals (1)
Unit 2 Elastic Constants of Crystals (11)
Unit 3 Crystals Binding

Unit 4 Lattice Vibration

Unit 5 Thermal Properties



Module 3 Free Electron Fermi Gas

Unit 1 Free Electron Theory of Metals
Unit 2 Electronic Transfer

Unit 3 Energy Band Theory

Unit 4 Electron Dynamics

Unit 5 Fermi Surfaces

Module 4 Semiconductors and Superconductors

Unit 1 Structure and Bonding in Semiconductors
Unit 2 Semiconductor Statistics

Unit 3 Electrical Conductivity and Real Semiconitus
Unit 4 Super Conductivity (I): The Basic Phenomeno
Unit 5 Superconductivity (I): Experiments and ©hies

Module 1 which consists of six units, deals witlystal structures and their
determination. Module 2 (five units) is devoted the fundamental
determination of elastic constants of crystal. Triee electron which discusses
the physical basis of the formation of bands, tlwstnimportant concept in the
band — Fermi surfaces were treated in five unit&cliconstitute module 3.
Module 4, in five units, provides discussions one tiproperties of
semiconductors as well as discussions on basic opmemon of
superconductors.

Each unit consists of either one or two weeks’ wakd includes an
introduction, objectives, definition, conclusionunsmary, Tutor-Marked
Assignments (TMA) and references. The TMA will hglpu to achieve the
stated learning objectives of the individual umit&l the course as a whole.

PRESENTATION SCHEDULE

Students are encouraged to complete and submitan their TMAs and to
guard against falling behind in attending tutorials

ASSESSMENT

There are three aspects to the assessment of tineecd’ hese are the self
assessment exercises, Tutor-Marked Assignments #mel written
examination/end of course examination. The assigtsneust be dealt with
by applying the knowledge and techniques gathergthgl the course and
must be submitted to your facilitator for formasassment in accordance with
the deadlines stated in the presentation sche@lbkeassessment will account
for 40% of the total course work while the examio@twill count for the
remaining 60%.

Vi
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TUTOR-MARKED ASSIGNMENT (TMA)

The TMA is a continuous assessment component ofcthese work. It

accounts for 40% of the total score. You will beegi six (6) TMAs to answer
out of which four must be answered before a stugeatiowed to sit for the

end of the course examination. Students are notved to present other
people’s work as their own (including copying armeststudent's work). Make
sure that each assignment reaches your facilitatoor before the deadline
given. Extension will not be granted after the dia¢e unless in exceptional
cases.

FINAL EXAMINATION AND GRADING
The end of course examination for solid state msysvill be for three (3)
hours and it has a value of 60% of the total couvsek. All areas of the

course will be assessed.

COURSE MARKING SCHEME

Assignment Marks

Assignment 1-6 Six assignments, best four markd 086
each totaling 40% of the course marks

End of course examination 60% of overall coursekar

Total 100% of course materials

FACILITATORS/TUTORS AND TUTORIALS

There will be tutorials provided in support of tlasurse at the end of each
unit. Students will be notified of the dates, tinaesl location of these tutorials
as well as the name and phone number of your ti&aiti Your facilitator will
mark and comment on your assignments and retum teyou as soon as
possible.

vii
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MODULE 1 PROPERTY OF CRYSTAL

Unit 1 Crystal Geometry

Unit 2 Crystal Classification

Unit 3 Simple Lattices

Unit 4 Crystal Diffraction (I

Unit 5 Crystal Diffraction (1)

Unit 6 Experimental Crystal Structure Determinatio
UNIT1 CRYSTAL GEOMETRY

CONTENTS

1.0 Introduction
2.0  Objectives
3.0 Definition
3.1  Translational symmetry
3.2 Lattice and Unit cell
3.3  Primitive and Non-primitive cells
3.4  Bravais Lattice
3.5 Basis and crystal structure
4.0 Conclusion
5.0 Summary
6.0  Tutor Marked Assignment
7.0  Further Reading/References

1.0 Introduction

The physical definition of a solid has several edients. We start by defining a solid
as a large collection of atoms that attract onehercso as to confine the atoms to a
definite volume of space. Additionally, in this ynthe termsolid will mostly be
restricted to crystalline solids. érystalline solidis a material whose atoms have a
regular arrangement that exhibits translationalragtny. When we say that the atoms
have a regular arrangement, what we mean is tleaedfilibrium positions of the
atoms have a regular arrangement. At any given éesiyire, the atoms may vibrate
with small amplitudes about fixed equilibrium pasits. Elements form solids
because for some range of temperature and pressaadid has less free energy than
other states of matter. It is generally supposed #h low enough temperature and
with suitable external pressure everything becoaseslid. The study of crystal and
electrons in crystal is a division of physics knoas solid state physics. The solid
state physics is an extension of atomic physickbwahg the discovery of X-ray
diffractions of crystalline properties.

2.0  Objectives

The candidates should be able to:

. Define crystals
° Explain the crystal structure
° Classify crystals
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3.0 Definition of crystal

Crystal may defined on the macroscopic scale asogeneous solids, in which some
of the physical properties are function of direatidlicrospically, a crystal may be
defined as a solid having an arrangement of ateammolecules) in which the atoms
are arranged in some repetitive pattern in threeedsions.

3.1 Translational Symmetry

A solid is said to be a crystal if atoms are areghgn such a way that their positions
are exactly periodic This concept is illustrated in Fig.1.1 using a{@imensional
(2D) structure. A perfect crystal maintains thisripgicity in both thex andy
directions from @ to +2. As follows from this periodicity, the atoms A, 8, etc. are
equivalent In other words, for an observer located at anyheke atomic sites, the
crystal appears exactly the same. The same idedeaxpressed by saying that a
crystal possessestianslational symmetryThe translational symmetry means that if
the crystal is translated by any vector joining @toms, say in  Fig.1.1, the crystal
appears exactly the same as it did before thelatams. In other words the crystal
remaingnvariantunder any such translation.

-1.

-
A aj X

Fig.1.1: Periodicity and concept of symmetry.

—
wbo\OO—
~
o0 0 0
o0 0 0

3.2 Lattice and Unit cell

The structure of all crystals can be describedemms of alattice. A lattice can be
defined as a regular periodic array of points iacgp(Fig.1.2).Every lattice point can
be located as;

Tmpn=ma+nbhb

(1.2)

Or in three dimensional case
Timn =la+mb+nc
(1.2)

where a, b, ¢ arecalled Lattice vectors arldm andn are integers.
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The network of lattice lines divide the space imdentical parts calledinit cells.
Hence, because of inherent periodicity of spadedgtit can thus be represented by a
unit cell. A unit cell is a conveniently chosen fiamental block by repeating the
entire space lattice which is generated. The ueit may be in form of a
parallelogram (2D) or a parallelepiped (3D) witltitee points at their corners. The
size and shape of the unit cell are described kethattice vectors, b, ¢, originating
from one corner of the unit cell. The axial lengghb, c and the inter axial angles
andy are lattice parameters of the unit cell. Fig.h8ves the unit cell with the axes
lengths and inter axial angles while Fig.1.4 shdhes lattice and unit cells in 2-
dimension.

Fig.1.2: Lattice point and Lattice vectors

Fig.1.3: Unit cell showing axes lengths and irteial angles.

The convention for drawing the lattice parameterasi follows:

a parallel tax-axis

b parallel toy-axis

parallel taz-axis

angle betweepandz

angle betweenandx

angle betweer andy

< ™R O
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3.3 Primitive and Non-Primitive cells

The cell is said to bprimitive if the lattice points are at the corners of te#é (Fig.
1.5) and if there are lattice points in the celastthan the corners, the cell is said to
be nonprimitive(Fig.1.5)

L] L] L] L] L] -
1 square
cF"— - . e ® . e q e . °
bI»}" bEY o . o
. - * * aw#b * a#h
s o . (=]
. . ® o IF 0 ° * o I= 90
L] L] [ ]
L] L - L] [ ] - - L] L ] -
2 (a) rectangular 2 (b) centred rectangular
a
bt ° ° ¢ e Te o o o =
Y b -y
a#h ' a=h
3 B * ¥# 90° - . * % y=120°
L] L L] L L] - L ] L . - L L]
3 oblique 4 hexagonal

Fig.1.4: Lattice and unit cells in 2-Dimension(@&ftittel,1979)

o - o - o o - o o e

® “ ® ® ° Tlonprifnitive® ® ®
- - ,r'/ T

= - ~ - - IC\; - } - -
FPrimitive

& LT A & - & v a - -

- - o - - s - -

e - ° - - a - -

Frimitive

- - o - L L - - - -

= - L3 = - = = s - L]

o - o - ° o - - o e

Fig.1.5: Primitve and Non-primitive cells (After iy K Gupta,
www.4shared.com)
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For a single atom, the single atom is placed orattiee site and is known &yavais
lattice. On the other hand, if there are several atomaupircell, we have #attice
with a basis.

3.4 Bravais Lattice

There are many ways in which an actual crystal feypuilt, thus possible crystal
structures are unlimited. However, the possibleesws of space lattices are highly
restricted. Each space lattice has some convesmnbf axes which need not be
necessarily orthogonal and chosen length alongthtee axes may not be equal.
Bravais in 1848 proved that there are only fourtepace lattices in total which are
required to describe all possible arrangement ahtpoin space subject to the
condition that each lattice point has exactly id=dtenvironment. The fourteen space
environments are called Bravais Lattices. The Bralaitices are the distinct lattice
types which when repeated can fill the whole spdde lattice can therefore be
generated by three unit vectoasp andc and a set of integers k, | and m so that each
lattice point, identified by a vector can be obtained from:

r=ka+lb+mc
(1.3)

Bravais showed that in two dimensions there am diigtinct Bravais lattices, while in
three dimensions there exist no more than fourtpae lattices.

3.5 Basis and Crystal structure.

The arrangement of atoms in a solid is termed algs$tucture. In order to convert the
geometrical array of points in space (lattice) iatorystal structure, we must locate
atoms or molecules on the lattice points. The répgainit assembly of atoms or
molecules that are located at each lattice poigtlled thebasis. The basis must be
identical in composition, arrangement and orieatatsuch that the crystal appears
exactly the same at one point as it does not atratigquivalent points. No basis
contains fewer atoms than a primitive basis costain

The crystal structure is thus given by two speatfans:

l.the lattice, and
Il.The assembly that repeat itself.
Hence, the logical relation is
Space lattice + basis = crystal structure
(1.4)
Equation (1.4) is illustrated in Fig.1.6

(0]
X

O
b X
&
i
O X
O X o X
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Fig.1.6: Two-dimensional lattices. (a) Bravaidita; a and a are basis

vectors; (b) Lattice with a basis of three atogngy «

4.0

(After Kachhava, 1992)

Conclusion

The fundamental feature of a crystal is the pecitglof the structure.

5.0

6.0

Q1.

Q2.

Summary

The size and shape of the unit cell are descrilydatiree lattice vectors, b, c,
originating from one corner of the unit cell. Téodal lengthsa, b, c and the
inter axial angles, § andy are lattice parameters of the unit cell.

A cell is said to berimitive if the lattice points are at the corners of taki ¢
and if there are lattice point in the cell otttean the corners, the cell is
said to be  nonprimitive

A lattice is any array of points related by thensiational operator

R, = ma +mpb+nsc

The Bravais lattices are the distinct lattice typdsch when repeated can fill
the  whole space generated by three unit veapbsandc and a set of
integers k,I andm

Tutor marked Assignment
A group is represented by three matrices

SR IR - S

- « a

Wherer =sin30° and B =cos 30°.
(a) Determine the multiplication tabbe this group.
(b) Give an example of a 2-D crystal with thesapgroup symmetries.

(@) Filled circles in the tetragonal crystal in theuiig below represent
copper oxide atoms and the copper oxide layerstacked with  spacing c.
assume that there are no other atoms in theatyrg&etch the Bravais lattice
and indicate a possible set of primitive vecforghis crystal.

®e O® O e O0Owe
O O O )
®e O OeOe
O @) O 0[:&
e O e O Oe
O O O O
e Oe OCOeOoe

(b) Define the following terms

(i) Unit cell and
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(ii) Basis
7.0  Further reading/References
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UNIT 2 CRYSTAL CLASSIFICATION
CONTENTS

1.0 Introduction
2.0  Objectives
3.0 Definition
3.1 Fundamental types of lattice
3.2  Direction indices
3.3 Miller indices
3.4  Determination of miller indices
3.5 Some general principles of miller indices
4.0 Conclusion
5.0 Summary
6.0  Tutor Marked Assignment
7.0  Further Reading/References

1.0 Introduction

Crystal lattices are classified according to thsymmetry properties, such as
inversion, reflection and rotation. Also, it is setimes more convenient to deal with
non-primitive or conventional cells, which have diddal lattice sites either inside
the cell or on its surface. In three dimensionsehae 14 different Bravais crystal
lattices which belong to 7 crystal systems. Thestesns are triclinic, monoclinic,

orthorhombic, tetragonal, cubic, hexagonal andtréd.

2.0  Objectives

o To revise the classification of crystal lattices
. To understand direction indices
) To understand miller indices

3.0  Definition of Crystal Lattice

Crystal lattice classification is the regular getmeearrangement of points in the atom
of a crystal

3.1 Fundamental types of lattices

The most obvious feature of a crystal is its regiylaor symmetry. The basis of
classification of crystal is the symmetry exhibitegthem. In a well defined crystal,
the various symmetry elements (rotation, reflectiomersion etc.) intersect at a point.
Each set of symmetry elements intersecting at at §thie centre of unit cell) is called
a point-group. Since there are 32 point groups, there are equalbers of crystal
classes, which can be grouped together into sexapg known as crystal systems.
Table 1.1, consists of the list describing theaasisystems. Fig 2.1 shows how seven
crystal systems can be obtained by successivetilist@f a cube.
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Table 1.1: Seven Crystal Systems
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Crystal System | Axial Lengths and Unit cell Number of
angles Lattices
Cubic a=b=co=p=y= a cube 3
P
Tetragonal a=b#c,a=f=y= a squared-based right | 2
9P prism
Orthorhombic |a#b#c, a=p=y= a rectangular-based |4
9P right prism
Rhombohedra |a=b=c,a=pf=vy# a rhombohedron 1
P
Hexagonal a=b#c,a=p =90, a rhombus-based right| 1
=120 angles
Monoclinic azb#c,a=y=90+ | A parallelepiped-based 2
B right prism
Triclinic azb#c,a£B#£y# a parallelepiped 1
o
3.2 Direction indices

To find the direction indices, the following rulase used:

l. Find any vector in the desired direction.
Il. Express this vector in terms of the basish 9.
[I. Divide the coefficient ofd, b, ¢ by their greatest common divisor.

The resultant set of three integers u, v, w ususlbtfuded in parentheses [uvw]

defines a direction{uvw means that all vectors are equivalent to [uvw]gdiive

sign in any of the numbers are indicated by plaaigr over the numbeﬁI. Leta=

2,b = 3,c =4 units and the vector be

r=6i+12j +10k

Then r = 3(2)i +4(3)j + 2.5(4)k
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Thus, the coefficients ofa( b, g are 3, 4, 2.5. The relevant greatest common alivis
is 0.5. Thus, the three numbers 6, 8, 5 are fobiethce, for the example considered
the indices of direction are [685].

In the cubic system, u, v, w are proportional te threction cosines of the chosen
vector. The cube edgewould be denoted by [100], that of directiotby [010], ancc
by [001].The negative direction afwould be [L00]. When we speak of [200] plane,
we mean a plane parallel to [100] but cuttangxis atl/,«. Fig 2.1 shows the indices
of some important planes and directions in crystdége that:

l. All parallel rows of atoms have the same [uvw].
Il. The angled between two crystallographic directiomjuwi] and [wvaws] in a
cubic system is given by

UiUy +v1v2 +W1W2
)

cosf = 7

2
2,22 2,22
(uZ+v2+w? (us+vz+w

2.1)

3.3 Miller indices

Miller indices are the most commonly used notafmmspecifying points, directions,
and planes in crystal lattice systems. Not onlytltey simplify the description of
locations and directions within the lattice, bugythalso allow vector operations like
dot and cross productMiller Indices are a symbolic vector representation for the
orientation of an atomic plane in a crystal latiécel are defineds the reciprocals of
the fractional intercepts which the plane makewhe crystallographic axe8efore
Miller indices can be used, a coordinate systentHercrystal structure must first be
selected. The right-hand Cartesian coordinateesysts the usual choice for this
(Fig.2.2). Points within the coordinate systemspecified by Miller indices as h, k, I,
where h, k, and | are fractions of the lattice pagters a, b, and c. Recall that a, b,
and care the lengths of the edges of the crystal'sagfiiin the X, y, and z directions.

10
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1]

a§§

monoclinic triclinic

Fig.2.1: seven crystals in three dimensions

11
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A plane oriented with respect to the rectangulardmate system, which intercepts
the x-,y-and z-coordinates at distance a, b amdpectively is represented by the
equation

X,y , z __
—tit-=1 (2.2)

Denoting the reciprocal of axial intercepts%as h,lbk andlz = [,
Eq. (2.2) becomes

hx +ky+lz=1 (2.3)

e 1 \
e RN
AT
/_:ﬁ/l{__;__;;g_ﬁ_f__;z\ ~

Fig.2.2: Construction for description of a plamais plane intercepts the b,
C axes at 8, 2b, 2c. (After Kittel, 1979)

3.4 Determination of Miller Indices

TheRules for Miller Indices are:

o Determine the intercepts of the plane along theetlorystallographic axeis,
terms of unit cell dimension€oordinates of the points of interception are

expressed as integral multiples of the axial lemgththe respective directions.
The integers p, g and r are the multiples of adeilagiths a, b and c respectively

° Take the reciprocals of the integers p, g and r

o The reciprocals are reduced to the smallest seteders h, k and | by taking
LCM

. The integers are written as (hkl) by enclosingangmthesis

For example, if the x-, y-, and z- intercepts aré,2and 3, the Miller indices are
calculated as:

The integers are 2, 1, 3

Take reciprocals: 1/2, 1/1, 1/3

Clear fractions (multiply by 6): 3, 6, 2
Reduce to lowest terms (already there)

Thus, the Miller indices are 3, 6, 2. If a plang&allel to an axis, its intercept is at
infinity and its Miller index is zero. A generic Mar index is denoted bfhkl). If a

12
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plane has negative intercept, the negative nunmbeatenoted by a bar above the
number.Never alter negative numbeiSsor example, do not divide -1, -1, -1 by -1 to
get 1, 1, 1. This implies symmetry that the crystaly not have!

3.5

General Principles of Miller Indices

If a Miller index is zero, the plane is parallelttat axis.

The smaller a Miller index, the more nearly patatlee plane is to the
axis.

The larger a Miller index, the more nearly perpeotiir a plane is to that
axis.

Multiplying or dividing a Miller index by a constarhas no effect on the
orientation of the plane

Miller indices are almost always small.

Fig.2.3 shows some planes for cubic lattices withrtMiller notations.

dnit = e

nt | i
' B
! ]
e 31 G
7 [ .J"f ."r
(100) (200)

/ (110)

(1) (222)
Fig.2.3: Some of the prominent planes for cubittdes with their Miller
indices (After Kachhava, 1992)
Note that:

Miller indices are proportional to the directionsates of the normal to the
corresponding plane. Direction cosines are given a

hd kd ld
cosa@ =—,co0sff =—=cosy =—

a a a
The normal to the plane with index numb@t&l) is the directiobhkl]
The purpose of taking reciprocals is to bring la planes inside a single unit
cell
Assumedp,,; represent the distance between two adjacent pam#ees
having miller indice§kl), then

a
(2.4)

Whered,,,; = distance between planes
a = lattice constant (edge of unit cell)

13
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h, k,I = Miller indices of planes being considered

Figure 2.4 shows inter planer spacing in term#iefdube edge, a.
(110) plane 1

(110) plane 2

A (110} plane 3

dip

Fig.2.4: inter planer spacing (After KachhavaQ2p
4.0 Conclusion
Miller indices are the most commonly used notafmmspecifying points, directions,
and planes in crystal lattice systems. Not onlytltey simplify the description of
locations and directions within the lattice, bugythalso allow vector operations like
dot and cross products.

5.0 Summary

o In a well defined crystal, the various symmetryngdats (rotation, reflection,
inversion etc.) intersect at a point.

° Each set of symmetry elements intersecting at atftie centre of unit cell)
is called goint-group.

o The Miller indices are defined as the reciprocdishe fractional intercepts
which the plane makes with the crystallographiesa

. The angled between two crystallographic directiomjuwi] and [wvaws] in a

cubic system is given by

cosd = U U, + V,V, + W, W,

2 1/2
(uf +Vf +W12)V (u22 +V2 +W22)

. The distancel,,;,; between neighboring planes of the farfligl), is given in
terms of the cube edge a as

(hz 2a 2\L/2
+ Kk +1 )

dhkl =

14
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6.0. Tutor marked Assignment

Q1 (a). Show that the perpendicular distance between tyacadt planes of a set
(hkl) in a cubic lattice of lattice constaats

(hz 2a 2\/2
+ Kk +1 )

(b). The Bragg angleorresponding to the first order reflection froranm

dhkl =

(111) in a crystal is 3avhen X-rays of wavelength 1.A5are used.
Calculate the interatomic spacing
Q2. Ifx,yand z axes intercept 3, 4, and 2, calculéeMiller indices
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1.0 Introduction

The most highly symmetrical lattices which occutunally are cubic structure. These
are, therefore, of some practical interest and alswvide useful simple examples
which help in visualizing the more general casebot 90% of metallic crystal
structures crystallize into 3 densely packed ctystaictures vis-a-vis Body-Centered
Cubic cell (BCC), Face-Centered Cubic cell (FCCY dtexagonal Close-Packed
(HCP).

2.0  Objectives

The objectives are to understand metallic crystacture such as:
Simple cubic

Body centered cubic

Face centered cubic
Hexagonal Close packed

3.0  Definition of Simple lattices

Simple lattices arerystalline solids that consist of a small groupgatdms (unit cells)
that contains unique features.

3.1 Simple lattices

The simple lattices have the following elementamyperties:

l. Effective no of atoms/ unit cell, Z, which defindse number of atom per
primitive cell

Il. Atomic radius, R usually defines in terms of lagticonstant (length of a side
of unit cell),a.
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[I. Nearest neighbor distance which definesrtbarest distance between atomic

centers.
V. Coordinate number which defines the number of reareighbor of an atom.
V. Atomic Packing Fraction (APF) defined as the fractof volume in a crystal

structure that is occupied by atoms.
3.2  The simple cubic lattice.

The simple cubic lattice has basis vectors
a; =ai, a;=aj, as; = ak (3.1)

and the unit cell is a simple cube. The simplegstal based on this lattice has single
atoms at the lattice points, Fig. 3.1. Each atomdraidentical nearest neighbors.

Fig.3.1: Simple cubic lattice (After Kachhava929
3.2 Body-Centered cubic Lattice

The body-centered cubic (bcc) lattice may be regruak two interpenetrating simple
cubic lattices with atoms at the centre of eachecab well as at the corners. The
space lattice may be taken with the basis vectors

a. = a a, = a a. = a
17 2-itj+k)’ 27 2(i-j+k)’ 37 2(i+j-k)
(3.2)

Wherea is the side of the cube ang, k are orthogonal unit vectors parallel to the
cube edges. The primitive cell of the bcc latties b volume one-half that of the unit
cube.By elementary vector analysis the volume is given b

V=|aa xas|
(3.3)

3.3  Face- Centered Cubic Lattice
The face centered cubic lattice can be considesddua interpenetrating simple cubic
lattices giving a cubic unit cell with extra lagi points at the centers of the faces of

the fundamental cube. Each point has 12 neareghb@irs. The full translational
symmetry has basis vectors.
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_ a a _ a a _ a
T 2(+k) T2 T 2kt 3 T 23i4))

aq (3.4)

The primitive cell of thefcc lattice is shown in Fig.3.4 and is a rhombohedrbn o

volume one quarter that of the unit cube. The tedios vectorsa, a andas connect
the lattice point at the origin with the latticeipis at the face centers. The angles

between the axes are%0

Fig.3.2: Face- centered cubic lattice
3.4 Hexagonal Close-Packed (HCP)

In the hexagonal closed pack@tp) structure, Fig 3.5 the unit cell is a rhombic and
the basis vectors are

. a
a; = ai, a, = m, as = k (3.5
2N
f‘ﬁy o o E
' !
i
%
i ¢ |
% i
g

:
|
:
p .
ke J&l

Fig.3.3: Hexagonal Close-packed structure (Afteitefi1979)

In this structure, there are two atoms per unitseparated by the vector
1 . a .
R = E(al + ﬁ] + Ck) (36)

Here, as irfcc structure, each atom has twelve neighbours, buarttemgement is
slightly different.
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3.5 Closed-packed Structures

If the atoms are considered as hard spheres, tleemost efficient packing in one
plane is theclosed—packedrrangement shown in Fig 3.6.There are two simlgs

in which such planes can be laid on top of one laroto form a three-dimensional
structures. One leads to the face-centered cublmidclose-packed) structure, while
the other has hexagonal symmetry and is callechéxagonal closed packéddécp)
structure (Fig3.7). The fraction of the total volerfilled by the spheres is 0.74 for
both thefcc and hcp structures.

Fig.3.6: The Hexagonal closed packed structurdée(Kittel, 1979)

Spheres may be arranged in a single closest-pdaked by placing each sphere in
contact with six others. Such a layer can eithethieebasal plane offacp structure or
the (111) plane offcc structure. A second similar layer is added by plgceach
sphere in contact with three spheres of the boterar as in Fig.3.6. A third layer
can be added in two ways: in tfiec structure the spheres in the third layer are place
over the holes in the first layer not occupied bg second layer; in the hexagonal
structure the spheres in the third layer are platiexttly over the spheres in the first
layer. We say that the packing in tfiec structure is ABCABC. ..... , Whereas in the
hep structure the packing is ABABAB..... Thécp structure has a hexagonal
primitive cell; the basis contains two atoms. Tlae primitive cell contains one atom.
The c/a ratio for hexagonal closest-packing of sphés (8/3Y2 = 1.633. We refer to
crystals ashcp even if the actual c/a ratio departs somewhat fthen theoretical
value. Thus zinc with c/a = 1.86 is referred to aoonly ashcp. Magnesium with c/a
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= 1.623 is close to ideahcp. Many metals transform easily at appropriate
temperatures betwegfitc andhcp. The coordination number, defined as the number
of nearest-neighbor atoms, is 12.

A quantitative measure of the closeness of packing crystal structure is provided
by thepacking fraction, fdefined as

f=

volume occupied by atoms(hard spheres)

3.5
volume of the unit cell of the structure (3.5)

The theoretical calculations 6frequires the knowledge of number of atoms, N, per
unit cell and atomic radius,aRin terms of a, the length of a side of a cubitide.
Table 3.1 as reported by (Kachhava, 1992) displalgedrsalues of N, Rand f along
with number (N) of nearest neighbors and that.{Nfor next nearest neighbors for
simple cubic (sc), body centered cubbcd), face-centered cuhifcc) and hexagonal
close-packedicp) structures.

Table 3.1Data for common structures (modified after Kachha@®2)

sc bcc fcc hcp

N 1 2 4 2
Nn 6 8 12 12
Nnn 12 6 6 6
Ra a a a a

2 2 2 \/3_ 4 2
f n/6 = 0.52 \/E%: 0.74 V3 % =068 |0.74 (ideal)
4.0 Conclusion

The ideal crystal of classical structures is forrbgdhe repetition of identical units in
space. The most highly symmetrical lattices whicbup naturally are cubic structures
which help in visualizing the more general case.

5.0

6.0

Q1.

Q2

20

Summary

The simple cubic lattice has basis vectors
a, —a a,=aj a;= ak
Important simple structures are the bfea; andhcp
The structures differ in the stacking sequencéeftianes
fcc have the sequence ABCABC...
hcp have the sequence ABABAB...

Tutor Marked Assignment

Use elementary vector analysis to find the valuthefangle between the body
diagonals of a cube shown in the Figure Q1

Show that the c/a ratio for an ideal hexagonaledegsacked structure is
(8/3}2=1.633.
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Q3. Sodium transform fronbccto hep at about T= 23K. Assuming that the
density remain fixed, and the c/a ratio is idealculate théiwcp lattice
spacing a given that the cubic lattice spacirg4.23i.What is the difference
in the cubic phase

7.0 Further reading/References

Ashcroft, N.W., Mermin, D. N.(1976). Solid stateysits, Saunders College
Publishing.

Denna, S. S. (2022). Solid State Physics. Depattofdvaterials Science and

Engineering._https://www.materialvetenskap.uudaisstate-physics%20/
Hunklinger, S. (2022). Solid State Physics.

https://www.degruyter.com/document/doi/10.18783110666502/html?lang=en

Kachhava, C.M. (1992). Solid State physics, Tat&kéev-Hill Publishing
Company Limited, New Delhi.

Kittel, C. (2005). Introduction to solid state plgg Wiley Eastern Limited.

Sharon, A. H. (2021). Understanding Solid Statgsiis. 2¢ Edition.
ISBN 9780367249854

https://www.youtube.com/watch?v=UWW fPB2E5k

https://www.toppr.com/guides/physics/mechanicalpernties-of-solids/solid-state-
physics/

https://www.vedantu.com/physics/solid-state-physics

https://testbook.com/physics/solid-state-physics

21



PHL 307 SOLID STATE PHYSICS 1

https://www-
thphys.physics.ox.ac.uk/people/SteveSimon/condm2i2@ctureNotes2012.

pdf

https://www.vedantu.com/physics/solid-state-physics

https://lwww.sciencedirect.com/topics/materials4scedsolid-state-physics

22


https://www.vedantu.com/physics/solid-state-physics
https://www.sciencedirect.com/topics/materials-science/solid-state-physics

PHL 307 SOLID STATE PHYSICS 1

UNIT 4 CRYSTAL DIFFRACTION (1)
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Definition
3.1 Bragg formulation of diffraction by a crystal
3.2 Von Laue formulation of diffraction by a crgbt
3.3 Diffraction of crystal by electrons
3.4 Diffraction of crystal by neutrons

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0 Further Reading/References

1.0 Introduction

In order to explore the structure of crystals wguiee waves which interact with
atoms and which have a wavelength comparable Vmghitter atomic spacing in
crystals; that is, we require a wavelength of tmdep of 1 A= 1078 cm). The
interaction should be weak enough so that the weare penetrate in a coherent
fashion into the crystal for a distance of the oroeperhaps 1000 lattice constants.
The most convenient waves suitable for our pur@wseehose associated with x-rays,
while the waves associated with neutrons and @esthave found important special
applications. When an atom is exposed to electrowtag radiation, the atomic
electrons are accelerated, and they radiate aftrelqeency of the incident radiation.
The superposition of the waves scattered by indaiiéitoms in a crystal results in the
ordinary optical refraction. If the wavelength dietradiation is comparable with or
smaller than the lattice constant, we will alsoemckrtain conditions have diffraction
of the incident beam.

2.0  Objectives

° To study the use of X-ray as a tool for investigatihe structure of crystals.
3.0. Definition

When a monochromatic beam of x-rays is shone upmggalar crystalline material
then the beam will be scattered from the matetialedinite angles. This produced an

interference effect called diffraction between ¥weays from different layers within
the crystal.

3.1 Bragg formulation of diffraction by a crystal

W. L. Bragg (1913) found that one could accounttfee position of the diffracted
beams produced by a crystal in an x-ray beam bgrg simple model according to
which x-rays are reflected from various planestofies in the crystal. The diffracted
beams are found for situations in which the reiftexst from parallel planes of atoms
interfere constructively. The derivation of the galaw is indicated in Fig. 4.1. We
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consider in the crystal a series of atomic plandschv are partly reflecting for
radiation of wavelength X and which are spaced kedisgancesl apart. The radiation
is incident in the plane of the paper. The patted#hce for rays reflected from
adjacent planes Bdsinf. Reinforcement of the radiation reflected from cassive

planes will occur when the path difference is ategnal numbemn of wavelengths.

The condition for constructive reflection is that

2d sinf = na 4.1)

Equation (4.1) represents the Bragg law. The imtageepresents the order of
corresponding reflection. It should be emphasiZeat the Bragg equation results
from the periodicity of the structure, without reface to the composition of the unit

of repetition

[ & L 4 & 9

Fig. 4.1: Derivation of the Bragg equati?dd sinf = n4 ; hered is the spacing of
parallel atomic planes (After Ashcroft and Mermif,76).

Worked example:

(@) State Bragg's law of diffraction and give two gedrnual facts that are
necessary for the derivation of the law.

(b)  An X-ray Diffractometer recorder chat for an elemewhich has a cubic
crystal structure, shows diffraction peaks at wiowing 26:40, 58, 73, 86.8,
100.4 and 114.7. The wavelength of the incomingysrused was540 A.

(1) determine the type of the cubic structure posselsgdke element

(i) Determine the lattice constant of the element.

Solution:

€)) Bragg’'s law of diffraction states that the pathfeliénce between two X-rays
which are reflected from adjacent planes is aregral multiple of its
wavelength i.e.,
2d sinf =nA
Wherep = Bragg’s angle
d= interatomic plane spacing
A = Wavelength of the X-rays
n = order of diffraction
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The two geometrical facts are:

(1) The incident beam, the normal to the diffractioana@ and the diffracted beam
are always coplanar.

(i) The angle between the diffracted beam is alw2§sthis is known as the
diffraction angle.

(b) ().The values of the angles given 2fle Thereforeg is equal to the half the
26 values. The ratio of the square of the sine ofiftievo planes gives the
true structure of the element, i.e.,

(c)

S0, = Structure type

sin20, P

< If the ratio is 0.5, the structure bsc.

X If the ratio is 0.75, it ifcc

The F'two planes havé values being 20, and 29 and the sines of theskesiage
0.3420 and 0.4848 respectively, therefore,

sin®6; _ 0.117 _

sin20, 0.235

Hence, the crystal structure is bcc.

(ii).  The relationship between Miller indidgstl) of the Bragg plane and the
Bragg angle is given by
AZ
sin?g = — (h? + k* +1?)
4q?
Where; a is the lattice constant.
For a bcc lattice, the surh+ k + [ must be even, hence thé& &et of principal

diffraction plane for the bcc structure{is10} and the corresponding value fan?8
is 0.117, then,

A [h?+ k% + 12
2 sin%6

. . 0.154 1241240
This implies, a = b / =0.318 nm
2 0.117

~a=3.18A

a =

3.2  Von Laue formulation of diffraction by a crystd

Considering the nature of the x-ray diffractiontpat produced by identical atoms
located at the corners (lattice points) of primétisells of a space lattice to investigate
scattering from any two lattice point3; and P (Fig. 4.2) separated by the vector
The unit incident wave normal is, and the unit scattered wave normal is s. let us
examine at a point a long distance away the difieeein phase of the radiation
scattered by fand B. If P.B and BA are the projections af on the incident and
scattered wave directions, the path difference éetvthe two scattered waves is

25



PHL 307 SOLID STATE PHYSICS 1

PB— PLA=r-s—r-so_1-(5s—5p) (4.2)

I. MW'GM

Y e,
AT, fa

Fig.4.2: Calculation of the Phase difference & thaves scattered from two
lattice points (After Kittel, 1979)

The vectors — sy = S has a simple interpretation (Fig. 4.3) as thedtioa of the
normal to a plane that would reflect the incideinéction into the scattering direction.
This plane is a useful mathematical constructicohthis is called theeflecting plane.

If 26 is the angles makes witls,, thend is the angle of incidence, and from the figure
(4.3), we see thdf| = 2sin6 , ass ands are unit vectors.

Bemg—s

et it el A R I et wpbs O W Sn T Ry S

e R Ah ol s e

tang

Fig.4.3: Construction of the normal the reflectpigne (After Kittel, 1979)

The phase differencg is 27T//1 times the path difference. We have

¢ =(>7/)a@9 (4.3)

The amplitude of the scattered wave is a maximuna idirection such that the
contributions from each lattice point differ in geaonly by integral multiplies 2fr.
This is satisfied if the phase difference betwedja@ent lattice points is an integral

multiple of 2 . If a, b, care the basis vectors, we must have for the diitra
maxima

$a= (¥7/))(@- 5) = 2mh;
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- (27/;) (b - 5) = 27k;
(4.4)

pe- (2/3) (- 5) = 2ml;

whereh, k; lare integers.
If a, B,y are the direction cosines 8fwith respect t@, b, c, we have

a-s = 2aasing = hA
b-s = 2bp sinf = kA (4.5)
c-s=2cysinf =14

Equations (4.4 & 4.5) are the Laue equations. Ti@ye solutions only for special
values of 8 and the Wavelength The Laue equations (4.5) have a simple
geometrical interpretation. The Laue equationseedfaat in a diffraction direction the
direction cosines are proportionaltita, k/b, I/c,respectively and the adjacent
lattice planeghkl) intersect the axes at intervala/h, b/k, c/l so that by
elementary plane geometry the direction cosinesthed normal to (hkl) are
proportional toh/a, k/b, I/c respectivelyherefore the lattice plandg&kl) must be
parallel to the reflecting plane. dihkl) is the spacing between two adjacent planes
of a set(hkl), we have by projection

d(hkl) = aay, =B/ — vy (4.6)
Then, from (4.5), we have

2d(hkl) sinf = A 4.7)

We may interpret (4.7) by giving an extended meginthe spacing é!) whenh,

k, | have a common factor n: the diffracted wave acjuatises from the nth order

reflection from the true lattice planes, but we nagya mathematical device think of
the diffracted wave as a first order reflectionnfra set of planes parallel to the true
lattice planes but with a spacid¢hkl) equal to I/n of the true spacing.

3.3 Diffraction of crystals by electrons
de Broglie in 1924 predicted thahe wavelengthassociated with garticle of
momentunmp= mvis given by

where h is plank’s constant. One of the most dipetes of evidence of the wave
aspect of particles was provided by the electrdfradtion experiments of Davisson

and Germer in 1972. They concluded that if one @ates a wavelength with the

electrons given by (4.9), the diffraction pattebitaaned can be interpreted in exactly
the same way as the X-ray diffraction patternslokg as the velocity of the electrons
is small compared with the velocity of light, thewelength of the electrons may be
expressed in terms of the accelerating voltage Mlasvs

Ymi=ev  Or A= %2mev)”2 x (15%)“’2 (4.9)
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A is obtained in Angstroms if V is expressed in sollote that only 150 volts are
required to produce electrons of a wavelength afcbmpared with X-rays, which
require approximately 12,000 volts foAl1Electrons are scattered by the nucleus as
well as by the electrons in the atoms. For sphediarge distribution one can show
that the scattering factor is given by

AZ

sin2@

E0) = ™€ /50 (Z = £) (4.10)
Heref, is the scattering factor for X-rays, Z is the maelcharge, and is the Bragg
angle. As for X-rays the scattering factor decreaséth increasing values 6f
However, there is a considerable difference betweéaays and electrons in that,
electrons are scattered much more efficiently loynatthan are X-rays. In fact, atoms
scattered electrons more strongly by several poafetsn for the energy involved. At
normal incidence an electron of about 50 keV hgsemetration depth for elastic
scattering of only about 500) while for the small angles of incidence used in
reflection techniques this may be aboutdfeasured perpendicularly to the surface.
It is evident, therefore, that electron diffractimnparticularly useful in investigating
the structure of thin surface layers such as omitlenetals. Such layers would not be
detected by X-rays diffraction because the pattebiained are characteristics for the
bulk material.

3.4  Diffraction of crystals by neutrons

The mass of a neutron is about 2000 as large aotlam electron, so that according
to Eqn.(4.8) the wavelength associated with a oeuis about 1/2000 that for an
electron of the same velocity. Thus the energy péatron required to giveA is of
order of only 0.1eV. Such neutrons can be obtain@th a chain-reacting pile, and
diffraction from crystals may be observed. Neutrans scattered essentially by the
nuclei of the atoms, except when they are magnéke.radius of an atomic nuclei is
of the order of 18%m, and as a consequence, the atomic scatteritay facnearly
independent of the scattering angle, becdusel0~3c¢m. Also, the scattering
power does not vary in a regular manner with thema& number, so that light
elements such as hydrogen and carbon still prodelegively strong scattering. The
scattering of X-rays by light element is in contrad course, relatively weak. Thus
the positions of such atoms in crystalline solidaynbe determined from neutron
diffraction experiments. Another important aspetteutron diffraction is the fact
that scattering from neighboring elements in theiooéc system may differ
appreciably. For example, neutron diffraction albomne to detect with relative ease
ordered phases of an alloy such as FeCo, whereas dbtection by X-rays is
difficult. A particularly important aspect of neatr diffraction is their use in
investigating the magnetic structure of solids.sT8 a result of the interaction
between the magnetic moment of the neutron andaht#te atoms concerned. In a
paramagnetic substance, in which the magnetic mtsreme randomly oriented in
space, this leads to incoherent scattering, regulin a diffuse background. This
diffuse background of magnetic scattering is themesimposed on the lines produced
by the nuclear scattering mentioned above. In @feagnetic substance in which the
magnetic moments within a domain are lined up iralbel, this diffuse background is
absent. In an antiferromagnetic solid, the magnetments of particular pairs of
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atoms are aligned antiparallel and hence, frompthiet of view of the neutron, such
atoms would appear to be different.

4.0 Conclusions

From the discussions of the application of scattgdiffraction techniques to the
study of the structure of solid crystals that giv&arays of 1A it requires energy of

the order of 1feV, for electrons of & it needs 1DeV while the energy of a neutron
required to give & is of the order of 0.1 eV. Thus the diffractiorcha@ique is a useful

tool in the investigation of the structure of sotid/stal from surface thin layers to
bulky materials.

5.0 Summary

Bragg condition for crystal diffraction is givéy 2d sinf = ni
Laue condition for diffraction is given by

$a= (27/,)(a5) = 2mh;
$u-(27/,) (b - 5) = 2mk;

¢ (2"/;)(c-5) = 2nl;  and
a-s = 2aa sinfd = hA
b-s = 2bp sinf = kA
c-s=2cysind =IA
de Broglie Wavelength equation is given by-= h/p
wavelength of electron associated with accelerataigcity is given by

150\ /2
=)
Vv
° Scattering factor of electron by neutron is olediby
2 22
E6) = me /th (Z - fs)m

6.0. Tutor Marked Assignment

Q1. (a) Discuss the major experimental differencesvben x-ray, electron, and
neutron diffraction from the standpoint of the eb®d diffraction patterns
(b) Show that the Laue equations for thedent beam parallel to theecube
edge of a simple cubic crystal give diffractedsraytheyz plane when

2 _ 1,2
A/a =21(1% + k?) and f,- L k )/(lz + k2)
Where | and k are integers afidis the direction cosine of the diffracted ray
relative to the z axis.

Q2. While sitting in front of a color TV with a 25Kpicture tube potential, you
have an excellent chance of being irradiated Xitays.
(@)  Calculate the shortest wavelength (maximum enexXgsgdy. (h = 6.6 X

10734Js,
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c=3x%x108m/s,1eV = 1.6 x 1071,
(b) For a rock sa({tvaCl) crystal placed in front of the tube, calculate Bragg

angle for a first order reflection maximumJat 0.5 A. (pyqc; =
2.165 g/cm?)
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1.0 Introduction

To explain the theory of X-ray diffraction by crgbtplanes, Ewald introduced the
concept of reciprocal lattice. According to this ncept, the description of
interpenetrating planes inside a crystal could it@ioed in space by means of a set of
points. Thus the properties of planes and poinés iaterchangeable. The space
constructed from these points is caltediprocal lattice

2.0  Objective

The objectives of this unit is to explain

X Reciprocal lattice
<& Ewald’s construction
< Brillouin zones

3.0 Definition

The reciprocal space lattice is a set of imaginaoiynts constructed in such a way that
the direction of a vector from one point to anotbeincides with the direction of a
normal to the real space planes and the separatithose points (absolute value of
the vector) is equal to the reciprocal of the retdr planar distance

3.1 Reciprocal Lattice

For a perfect single crystal, the reciprocal lattis an infinite periodic three-
dimensional array of points whose spacing is inslgreroportional to the distances
between the planes in the direct lattice. The sristors of the reciprocal lattice is
given by Egn. (5.1)

bxc axb
; C =2x; X
a-b xc’ a-b xc’ a-b xc’

A =2n

(5.1)

If a, b, care primitive vectors of the crystal lattice, thenB, C are primitive vectors
of the reciprocal lattice. Each vector is orthodawatwo of the axis vectors of the
crystal lattice. Thu#\, B, C has property:
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A-a=2m, B-a=0, C-a=0;

A-b=0, B-b =2m, C-b=0,
(5.2)

A-c=0, B-c=o, C-c=2m,

Any arbitrary set of primitive vectows, b, cof a given crystal lattice leads to the
same set of reciprocal lattice points.
G=hA+kB+IC, (h k, |areintegerns (5.3)

Any vector G of the form in Eq. (5.3) is called a reciprocaltit¢ vector. Every
crystal structure has two lattices associated witiththe crystal lattice and the
reciprocal lattice. A diffraction pattern of a ctgkis a map of the reciprocal lattice of
the crystal; a microscopic image, if it could beaked on a fine scale, represents a
map of the crystal structure in real space. Wherrot&te a lattice crystal, we rotate
both the direct lattice and the reciprocal latti¢ectors in the crystal lattice have the
dimensions of [length]; vectors in the reciprocattite have the dimensions of
[lengthIl. In dealing with wave properties of crystals,stdonvenient to define the
reciprocal lattice vectoB as

G =2n(hA + kB + IC) (5.4)
This in conjunction with equation (1.1) yields
@Rn=21(hn,; + kn, + ln;)=2m X integer (5.5)
Thus every vector of the equation (5.3) satisfiesdondition
expliG-R,] =1 (5.6)
Some of the elementary properties of the reciglrlattice are as follows:
l. The unit cell of the reciprocal lattice need notabgarallelepiped.
Il. Simple cubic lattice is its own reciprocal, sohs hcp. On the other hand,
bcc and fcc are reciprocal of each other.
[I. The volume of a unit cell of the reciprocal lattiseinversely proportional to
the volume of a unit cell of the direct lattice.
V. If A is the matrix of the components Af, Bi, C1 and B for those of A2, B,
C2thenB =A1

The properties of the reciprocal lattice that mikd importance in the diffraction
theory are:

The vectorG (hkl) from the origin to the point (h, k, I) oferocal lattice is
normal to the (hkl) plane of the crystal lattice.

The length of the vectds(hkl) is equal to the reciprocal of the spacinghef
planes(hkl) of the crystal lattice

Worked example:
Prove that the reciprocal lattice vectors as defineequation (5.1) satisfy:
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8m3

ABXC=
a.b xc

Solution:

To solve the problem, we need to use the vectatiitkes:
abxc=b.cxa=caXxbh

and ax(bxc)=(a.c)b—- (a.b)c

From Eqg. (5.1)

aBxc=a-—" (s b
.b XL = m(( .cxa)a—(a.cxa) )
(2m)?
= m((h.cxa}a—O)
(2m)®
=A m(ab X c)(a.b X C)
Then, A.BxC=-"
a.bxc
3.2 Ewald’s Construction in the reciprocalattice

For simplicity, we draw the Ewald constructiontimo dimensions. Ewald put the
information about the wavelength and direction floe incident X-ray beam into
reciprocal lattice as follows (Fig.5.1). Draw a t@cAO in the incident direction of

length 1//1 terminating at the origin O. Construct a circle raflius 1//1(a sphere,

called reflex sphere, of radiu%//1 in three dimensions) with centre at A. Two
possibilities arise:

1. The circle does not pass through any reciprpoatt. This implies that the
particular wavelength in question would not berdifted by that crystal in the
orientation. Further, if the magnitude of the vefa| < 1/2a wherea is the

lattice constant), the circle would not pass thfoagy point, showing that X-
ray diffraction cannot occur if > 2a. It may also be noticed that the longer
the vectorAO (the shorter the wavelength), the greater isitedithood of the
circle’s intersecting a point, and hence of diffrac.

2. The circle passes through any point B of tlegprecal lattice. Join A and O to
B. Thus,OB is a reciprocal lattice vectoG and is normal to some set of

lattice planes, e.g., AE. Hen®&8 = |G| = 1/d , d is the interplanar for the
set.
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Fig.5.1: Ewald’s construction in the reciprocatitz (After Ashcroft & Mermin,
(1976)

Let k = OA andk' = AB respectively be the incident wave vector and #flected
wave vector. Thus,
k'=k+G (5.7)

which shows that (i) scattering changes only thieadition ofk and (ii) the scattered
wave differs from the incident wave by a reciprde#tice vectolG. for diffraction, it
is necessary that the vectdr that is the vectoAB, equal in magnitude to the vector
k:

k2= (k+ G)2= K2 (5.8)
2kG + G2= 0 (5.9)
(k + G/2yG = 0 (5.10)

Equation (5.10) is Bragg’s law in vector form. dtsalar form can be obtained by
noting thatAE =k + G/2) is perpendicular t®B. Thus OB = 20E = (2 si®)/ 1 .

Also OB :1/d. Hence,

@sinoy A=1/,

2d sing =1
This shows that the Bragg equation has a simplengegaal significance in the
reciprocal lattice.

3.3 Brillouin Zones

For solid state physics the most important statéroéthe diffraction condition was
given by Brillouin. Fig. 5.1 shows that incident weaand reflected wave make an
equal angle with the lattice plane AE, which isgerdfore, a reflecting plane. The
reciprocal lattice vecto6 = OB is perpendicular to the reflecting plane AE. Thus,
corresponding t& = OB, the reflecting plane is AE (produced). From thatieh k'

= k + G, we see thaftAO +OE)-OB = 0. That isAE-OB = 0. Thus, AE is
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perpendicular to OB and also bisects it, since thesmidpoint of OB by construction.
Hence, for a given reciprocal lattice vector, ight bisector is the reflecting plane.
One can extend the procedure for finding the réfigcplanes corresponding to
reciprocal lattice vectors connecting the reciptdattice point O (origin) with its
neighbours in reciprocal space. The volume bourethese planes is referred to as
the geometrical definition of the firBrrillouin zone BZ).

Figure 5.2 gives a portion of reciprocal spaceddwo dimensional oblique lattice
showing the lines bisecting some reciprocal latfroen O. The six shortest of these
vectors can be right bisected to produce the B&tcentered on the reciprocal point
0.

mran

Fig.5.2: Construction of fiBZ for a two-dimensional oblique lattice
(After  Kittel.1979).

Mathematically the reflecting planes and hence Brdlouin zones could be

calculated from equation (5.9). For the simple squattice (of lattice constaa), the
reciprocal lattice vectors are

G =2 (nyi + nyj) (5.11)

The wave vector for an X-ray measured from theiorg the reciprocal lattice is

k= kyi+kyj (5.12)

Use of Eq. (5.11) and Eq. (5.12) in Eq.(5.9) gives

niky + noky, = (nf + n%)g 5(13)

By assigning different value to,, n,, we can obtain various reflection lines. Sokall
vectors originating at the origin and ending onsthdines, will produce Bragg
reflection.

4.0 Conclusion

The reciprocal lattice explains the theory of X-diffraction by crystal planes while
the Brillouin zone gives a vivid interpretationtbe diffraction condition.
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5.0 Summary

. A wavelength of the order of & (1A=10"% cm) is require to explore the
structure of crystals

o The concept of reciprocal lattice explained theotlieof X-ray diffraction by
crystal planes

° The reciprocal lattice is an infinite periodic terdimensional array of points

whose spacing is inversely proportional to thdagise between the planes in
the direct lattice.
° Brillouin zone gives a vivid interpretation of tdéfraction condition.

6.0  Tutor marked assignment

Q1.  Prove that the volume of the unit cell of theipeocal lattice is proportional to
that  of the corresponding direct lattice.

Q2. The primitive translational vectors of the heswagl space lattice may taken as

1 , , 1 , ,
A= (3(2) a/z) i+(%)i; B=- (3(2) a/z) i+ ()i C=ck
€)) Show that the volume of the primitive ceII(iS(E) a/z) a’c
(b) Show thathe primitive translations of the reciprocal lagtiare

A=(251p)i+ (Ca)ii B == (*"312) i+ (7/a)is € = (PT/c)k
So that the lattice is its own reciprocal, buthnatrotation axes.

Q3.  Show that the volume of the first Brillouin zis given bV”)Z/VC. Where
V. the volume is is of a crystal primitive cell
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UNIT 6 EXPERIMENTAL CRYSTAL STRUCTURE DETERMINATION
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1.0 Introduction

In practice, to satisfy Bragg's law for X-ray d#ifttion, it is necessary to vary either
the angle of inclination of the specimen to therbes the wavelength of radiation.

The three standard methods of X-ray crystallograjghpe discussed are the Laue
method, the Rotating crystal technique and the Rowtethod.

2.0 Objective

To explain experimental crystal structure deterridmaaccording to:

o Laue method
o Rotating crystal technique
o Powder method

3.0 Definition

Experimental crystal structure determination is experimental method to study
scattering of crystal based on Ewald’s simple gegameonstruction.

3.1 Laue method

In the Laue method (Fig 6.1), a single crystal isunted on a gonimeter, which
enables the crystal to be rotated through knowneanip two perpendicular planes,
and maintained stationary in a beam of X-rays mag@n wavelength from about 0.1
to 2.0 A. The crystal selects out and diffractssthwalues oft for which planes exits,

of spacingd and glancing anglé , satisfying the Bragg equation. A flat photograph
film is placed to receive either the transmittedfrdcted beam or the reflected
diffracted beam.

As shown in the figure (6.1), the resulting Laudtgra consists of a series of spots.
Sharp well-defined spots on the film are good evi#eof a perfect crystal structure,
whereas diffuse, broken or extended spots indiedtiee distortion, defects or other
departures from the perfect crystal lattice. Thed_gattern reveals the symmetry of
the crystal structure in the orientation used;doample, if a cubic crystal is oriented
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with a cube edge, i.e., a [100] axis, parallel th@dent beam, the Laue pattern will
show the four fold symmetry appropriate to thissaxi

Whute X-ray beam

/s
Collimator Single -crysial

Sereen for back - reflec tion /
pattern !
Screen for transmission
pattern-showing a lypwal
pattern,

Fig.6.1: Schematic representation of Laue tecten{@fter Kacchava, 1990)
3.2 Rotating Crystal Technique

A small single crystal (1 mm dimension) is mounteda goniometer which, in turn,
is rigidly fixed to a spindle so that the crystaincbe rotated about a fixed axis in a
beam of monochromatic radiation. The specimen ugllys oriented with one of the
crystallographic axes parallel to the axis of niotat The resulting variation i
brings different lattice planes into position faflection and diffracted images are
recorded on a photographic film placed cylindrigatloaxial with the rotating spindle

(Fig.6.2).
=" film

M Rromalc - Single cryso
MO

x-rgy beam -

L Goniomeler

Aotaling Sp-ndﬂo

A

Fig.6.2: Rotating crystal technique (after Kachdnal092)
To explain the general nature of the diffractioonsider a crystal mounted so that one

of the axes (e.gC) is parallel to the axis of rotation, then diffriact cannot occur
from the planes of atoms parallel to this axis ssle

Ccosd, = ni (6.1)
where n is an integer [Fig.6.2 (a)]. The diffracteshm will, therefore, be along the

surface of a family of cones whose vertices atbeatrystal, and whose semi-vertical
angles are given by the above equation [Fig.6.R (b)
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(a)

Fig.6.2: Diffraction pattern in rotating crystaichnique
(a)Diffraction condition (b) Cones of diffractigAfter Kachhava, 1992)

The diffracted beams will only occur along thosedfic directions lying on the
cones for which the correct phase relationship alslds for planes parallel to the
other two coordinate axes. When the film is flagigrout after development, these
diffraction images will lie on a series of lineslled layer lines, as illustrated in
Fig.6.3. All the images on the zero layer line cdnoen planes parallel to the axis of
rotation, i.e., planes with = 0, and the other layer lines arise from planeth Wi
+1,+2,..... , etc. diffraction images from planes wilie same values of h and k
but different values af, all lie on one of a series of curves known as lioes which
are transverse to the layer lines and in the pdaiccase when th& andB axes are
perpendicular t&, they intersect with the zero layer line at righgles.

Layer line Row line

..\,.. v ‘J..... e]l=z2

. \. s . { oa .. ts =1
i
- —.—0-.-—-.-——0.._...'._._.__._.___.. i___o

ol - » . u . . . . * » . '__2
=

Fig.6.3: Typical Rotation photograph (After Kachhat992)

If S,, is the separation of these layer lines and Ragalius of the camera, then from
Fig.6.2 (b),

S, = R cotg, (6.2)

From equation (6.1) and equation (6.2)
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ni
Sp = —( /C) =R
1= (")
(6.3)
N C= Z—A(RZ — §2)1/2 (6.4)

By subsequent orientation of the crystal wikhand B axes parallel to the axis of
rotation, the other unit cell parameters may bermeined.

3.3:  Powder method

In this technique, a monochromatic X-ray beam lisweed to irradiate a small
specimen of the substance grinded to a fine powddrcontained in a thin-walled
glass capillary tube. Since the orientation of timénute crystal fragments is
completely random, a certain number of them waél With any set of lattice planes
making exactly the correct angle with the incidétam for reflection to occur.
Further, these planes in the different crystallies randomly distributed about the
axis of the incident beam so that the correspondifigctions from all the crystallites
in the specimen lie on a cone coaxial with the ad with a semi-apex angle of
twice the Bragg angle (i.ed2 The specimen is surrounded by a cylindrical fand
two small portions of each cone are recorded &s lon the film (Fig.6.3). If the grain
size is fairly large (> 1® m), there is insufficient room within the irradiat volume
for enough crystallites to be in all possible ot&ions and the resultant powder lines
will be rather ‘spotty’. This spottiness can bemetiated by rotating the specimen
during exposure this considerably increases thebeunof crystallites which can
contribute to each powder line.

Drttraction

Colhmator cone A B

LGN
KT Bem,
Stop
Specimen  (a)
A P 0 B amera
IV rodus
Collimalor hok Collimator” ¥
(0) e
Monocromatic X - ray beam
(b)

Fig.6.3: Schematic of powder method (a) experimeartangement
(b)Diffraction geometry (c) Developed films (Aft&achhava, 1992)

The Bragg angled of the various reflections can be calculated byasneng the
separation of the pairs of lines since, from thengetry of Fig.6.2 (b)
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(2m-40) _ OP
2T 2mR

(6.5)

where R is the radius of the camera. The reflestican be indexed and the unit cell
parameters evaluated.

4.0 Conclusion

This unit showed that the three methods discuseedoals for better understanding
of diffraction phenomena in crystalline samples.

5.0 Summary

° Variation of the angle of inclination of the speeimto the beam or the
wavelength of radiation allows better understandihBragg’s law.

o In the Laue technique , a single stationary cryistatadiated by a range of X-
ray  wavelengths

o in the Rotational crystal method, a single crysta@cimen is rotated in a beam
of monochromatic x-rays wavelength

° in the Powder technique, a polycrystalline powdgescimen is kept stationary

ina beam of monochromatic radiation.
6.0  Tutor marked Assignment

Q1. Find the Bragg angles and the indices of diffracfior the three lowest angle
lines on the powder photographsfat crystal: a = 6.2 andi = 1.54A
Q2.  Cobalt has two formsi-Co, with hep structure (lattice spacing afF 2.154 )

and B-Co, with fcc structure (lattice spacing @f.,;;.= 3.55A). Assume
that thehcp  structure has an ided), ration. Calculate and compare the
position of the first  five X-ray powder diffractiopeaks. The quantitf =

47T/ 1sing C@nbeusedto  characterize the peak positioaee ¢h is the
wavelength of the X-ray radiation  and2s the scattering angle)
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UNIT 1 ELASTIC CONSTANTS OF CRYSTALS
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1.0 Introduction

The study of the elastic behavior of solids is vienportant in the fundamental and
technical researches. In technology, it would tedl about the strength of the
materials. In fundamental research, it is of irgelecause of the insight it provides in

to the nature of binding forces in solids. They also of importance for the thermal
properties of solids.

2.0  Objective

To explain elastic constant in solids
To explain strength of solid materials
To understand fully the binding forces in solids

3.0 Definition

Elasticity is the study of the ability of crystatsincorporate changes or adapt to new
circumstances easily
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3.1 Analysis of elastic strains and stresses

The local elastic strain of a body may be specibgdsix numbers. I, 8,y are the
angles between the unit cell ax@d, c, the strain may be specified by the changes
Aa,AB, Ay; Aa,Ab,Ac resulting from the deformation. This is a good pbgk
specification of strain, but for non-orthogonal sxé& leads to mathematical
complications. The strain may be specified in termd the six
COMPONENtR,, , €y, 8,7, €xy, €yz €, Which are defined below. We imagine that
threeorthogonalaxesf, g, h of unit lengthare embedded securely in the unstrained
solid, as shown in Fig. 1.1(a). We suppose thatr atsmall uniform deformation has
taken place the axes, which we now lalfélg’, b/, are distorted in orientation and in
length, so that with the same atom as origin we ynatge.

ff=Q+e)f + Exyg T &xz I
9 = enf+ (1+e,)g+ &,h; .1)
h' = e, f+ e, + (1 +¢e,)h

The fractional changes of length of the, andh. axes are ¢, , ,,, €., respectively,
to the first order. We define the strain componesyts, ey, ,e,, by the relations

€xx = Exx > €yy = Eyy €2z = €zz; (1.2)

The strain components,,, e,, e, may be defined as the changes in angle
between the axes, so that to the first order

Exy = f, ’ g’ = EyytéEyy

ey, =g -h' =¢,+ey, ; (1.3)

€rx = h'- f’ = EptEyz

This completes the definition of the six strain gaments. A deformation igniform
if the values of the strain components are independf the choice of origin.

| v,
(N ;
| %ﬂ ié“"”ﬁﬂw@?w jf MWWM“
G A ¥ 4 o
ﬁ""@é% e L
) - e,
ifl=igi=|b] =1
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Fig.1.1 Coordinate axes for the description ofdtage of strain; the orthogonal unit
axes in the unstrained state (a) are deformeckistifained state (b).

We note that merely rotating the axes does notgdhdime angle between them, so for
a pure rotation&y, = —&yy; €5y = Ey;; €55 = —&x,. If we exclude pure
rotations, we may without further loss of geneyaltake &y, = &y, ; €,y =
€yz; €zx = Exz- SO thatin terms of the strain components we have

1 1
f, _f = €xx +Eexyg +Eeth;
1 1
g —g= Eexyf +eyyg + Eeyzh; (1.4)
1 1
h'— h = sexf +5ey,9+eh;
We consider under a deformation which is substéytimiform near the origin a

particle originally at the position
r =xf+yg+zh (1.5)

After deformation the particle is at
r' =xf' +yg' +zh' (1.6)

so that the displacement is given by
e=r'"—-r=x(f —f)+y (@' -9 +z(h"—h) 1.7)

If we write the displacement as
o=uf +vg+wh (1.8)

we have from E@l.4) and Eql1.7) the following expressions for the strain
components:

_ ou . _0v. _ Ow,

€xx = 35 Cyy =3y €227 3> (1.9)
_0v  Ju _ 0w 0v _Ju  ow
exy= 52Ty 2T 5t G T atax

We have written derivatives for application to namform strain. The expressions
(1.9) are frequently used in the literature to wkefithe strain components.

Occasionally definitions oé.,,, e,,;, ande,, are given which differ by a factor %2

from those given here. For a uniform deformatioe ttisplacemenp has the
components

1 1
U = ExxX T oexyy + €527,
_ 1 1 :

1 1
w = Eezxx + Eeyzy +e,,Z;
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3.2 Dilation

The fractional increment of volume caused by a aeétion is called thdilation.
The unit cube of edgdsg, andh. after deformation has a volume

V’ = f,'g,Xh, = 1+ exx+eyy+eZZ (111)

where squares and products of strain componentsegitected. Thus the dilation is

3.3 Shearing strain
We may interpret the strain components of the type

e =9, Ou
Xy " ox dy

as made up of two simple shears. In one of thershpines of the material normal to
thex axis slide in the direction; in the other shear, planes normat ¢tide in thex
direction.

3.4 Stress Components

The force acting on a unit area in the solid isiref as the stress. There are nine
stress componentx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Z. The capital letter indicates the
direction of the force, and the subscript indicdtesnormal to the plane to which the
force is applied. Thus the stress componéntepresents a force applied in tke
direction to a unit area of a plane whose normed in thex direction; the stress
componentXy represents a force applied in tkealirection to a unit area of a plane
whose normal lies in thedirection. The number of independent stress commuisrie
reduced to six by applying to an elementary cubm &g. 1.2 the condition that the
angular acceleration vanish, and hence that tla totque must be zero. It follows
that

Yz:Zy, Zx:Xz,, )(yzYx
and the independent stress components may be &k€gn Yy, Z, Y, Z, X The
stress components have the dimensions of forceupirarea or energy per unit
volume, which the strain components are dimensgsnle
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Fig. 1.2: Demonstration that number of independénatss componenté= Xy order
that the body may be in equilibrium.

3.5 Elastic Compliance and Stiffness Constants
Hooke's law states that for small deformationsstinain is proportional to the stress,
so that the strain components are linear functidriee stress components:

€xx = S11Xx + S12Yy + $13Z, + 514Y, + Si5Z, + 516Xy

eyy = S21Xx + S22Yy, + 5232, + $24Y, + S25Z; + 536X,

e,z = 531Xy + 832, + S33Z, + S34Y, + 5352, + s36X,;  (1.13)
€y, = S41Xx + S42Yy + SuzZ, + S44Y, + SasZy + 546Xy,

€rx = SSIXx + SSZYy + 553Zz + 554Yz + SSSZx+ 556X )

€xy = Se1Xx + Se2Yy + S63Z, + Se4Y, + Se5Zy + Se6Xy
Conversely, the stress components are linear fumetf the strain components
Xx = C11€xx + ClZeyy + Ci13€,, + C14eyz + Ci5€5 + Cl6exy;

Yy = €21€xx + SZZeyy + C23€;2 + C24-eyz + C25€2x + C26exy;

Zz = €31€xx + CSZeyy + C33€;; + C34-eyz + C35€;x + C36exy;

Yz = €41€xx + C4-Zeyy + C43€;2 + c44eyz + C45€2x + C4-6exy;

Z, = C51exy + Cs52€yy + Cs3€,, + C54€y; t Css€yy + C56€xy; (1.14)
Xy = Ce1€xx T C6Zeyy + Cez€,; + C64-eyz + Ces€zx + C66exy

The quantitiessy; .....S12 are called theelastic constantor elastic compliance
constants;the quantitiescy; ........cq1 are called theelastic stiffness constants
moduli of elasticityOther names are also current. The S’s and C'’s theevdimension
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of area per unit force or volume per unit energgl &rce per unit area or energy per
unit volume respectively

3.6 Energy Density
We calculate the increment of wosk/ done by the stress system in straining a small

cube of sidd., with the origin at one corner of the cube and therdinate axes
parallel to the cube edges. We have

SW =F- 8o (1.15)

whereF is the applied force and

60 = féu + gév + héw (1.16)
is the displacement. K, Y, Zdenote the components Bfper unit area, then
SW = L*(X6u + Yév + Zéw) (1.17)

We note that the displacement of the three cubesfaontaining the origin is zero, so
that the forces all act at a distarhicrom the origin. Now by definition of the strain
components

1 1
du=1L (Sexx + E6exy + E6ezx) (1.18)etc., so that
W = L3(X,Sexx + Yy 00y, + Z,,8e,, + Y,8e,, + Z,0e,, + X,0ey,) (1.19)
The incremendU of elastic energy per unit volume is

06U = X, 6exy + Y, 0ey, +Z,8e,, + Y, 0e,, + Z,6e,, + X, 0ey, (1.20)

We have5U/5exx =X, and 5U/5eyy =Y, and on further differentiation

5Xx/ _ 5Yy/
dey, €,y

This leads from Eq. (1.14) to the relation
€1z = €21

and in general we have

Cii = Cii (12.21)

y=75j
giving fifteen relations among the thirty non-diagb terms of the matrix of the Cs.
The thirty-six elastic stiffness constants are lis tway reduced to twenty-one
coefficients. Similar relations hold among the Btasompliances. The matrix of the
Cs or S's is therefore symmetrical.
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3.7 Cubic crystal

The number of independent elastic stiffness comstarusually reduced if the crystal
possesses symmetry elements, and in the imporsaet af cubic crystals there are
only three independent stiffness constants, as eve show. We suppose that the
coordinate axes are chosen parallel to the cubesediy Eq. (1.14) we must have

Cia = C15 = C16 = Cg4 = (5 = Cz6 = C34 = C35 = C36 =10

Since the stress must not be altered by reverkimgditection of one of the other
coordinate axes. As the axes are equivalent, vochalge
C11 = C22 = (33,
and ¢ = €13 = €31 = C3 = €31 = C3p,

so that the first three lines of Eq.(1.14) arecdégd by the two independent
constantg,; andc;,. The last three lines of Eq.(1.14) are describethb
independent constan},, as

Caq = C15 = Cep

by equivalence of the axes, and the other constaihtsanish because of their
behavior on reversing the direction of one or otéveis. The array of values of the
elastic stiffness constant is therefore reducea foubic crystal to the matrix below:

Xy €1 Cp C 0 0 O
Y, C Cy Cp, O 0 0
|Cij|= Z, Cp Cp Gy O 0 0
Yy, 0 0 0 C, O O
Z, 0 0 0 0 Cyu O
X, 0 0 0 0 0 Cy

(1.22)

It is readily seen that for a cubic crystal

U= 1/2 Cll(egx + 63%3, + ezzz) + Clz (eyyezz t €zzxx t exxeyy)
+ 1/5Coa(ed, + €2+ e3) (1.23)

satisfies the Eq.(1.19); for the elastic energysdgriunction.

For example, aU/aeyy = Cr1eyy + Cipez + Craeyx = Yy,

Using Eq. (1.22).
For cubic crystals the compliance and stiffnesstamts are related by

_ S11+S512 .
Cll - )
(511—512)(511+2512)
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Cip = [ e ] :

(511—S512)(811—25113)

(1.24)

Cu="1s,

A general review of elastic constant data and lafti@nships among various
coefficients for the crystal classes has been goygdearmon (1946).

4.0 Conclusion

The elastic properties of a crystal consideredossdgeneous continuous medium
rather than a periodic array of atoms is obtainetibok’s law and Newton second
law.

5.0 Summary

o The local elastic strain of a body is specifiedsby component numbers:
€xx.» eyy 1€22) exy: eyz, €zx
There are nine stress componeXs:Xy, Xz, Yx, Yy, Yz, Zx, Zy, Z2
A deformation isuniformif the values of the strain components are
independent of the choice of origin

° The fractional increment of volume caused by a heédion is called the
dilation
o Cubic crystals have only three independent stiframstants.

6.0  Tutor marked assignment

Q1. Show that the shear constail{tc11 — C;,)in a cubic crystals defined by
. 1 .
settinge,, = — ey, = e and all other strains equal to zero.

Q2. Prove that in a cubical, the effective elastinstant for a shear across the
(110) plane in thg110] direction is equalC;; — C;3)/2.
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UNIT 2 ELASTIC CONSTANTS OF CRYSTALS (l1)
CONTENT

1.0 Introduction

2.0 Objectives

3.0 Definition
3.1 Elastic waves in cubic crystals
3.2 Elastic isotropy
3.3  Cauchy relations

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0 Further Reading/References

1.0 Introduction

The elastic properties of a homogeneous crystal arergéiy anisotropic. Even in a
cubic crystal, the relationship between stresssrain depends on the orientation of
the crystal axes relative to stress. In generat, mumber of elastic constants
characterizing a body is large. However, this numbeonsiderably reduced due to
the symmetric nature of both strain and stressotsns

2.0 Objective
The objectives of this unit are to describe:

Elastic waves in cubic crystals
Elastic isotropy

Cauchy relations

Lattice theory of elastic coefficients

3.0 Definition

Same as in unit 1

3.1 Experimental determination of elastic constants.

The classic methods for the measurement of theielasnstants of crystals are
described in the review by Hearmon (1964). In timisthod, quartz transducer is
transmitted through the test crystal and refledtech the rear surface of the crystal
back to the transducerhe elapsed time between initiation and receighefpulse is
measured by standard electronic methods. The ¥glaciobtained by dividing the
round trip distance by the elapsed time. In a gr@tive arrangement the
experimental frequency may be 15 and the pulse length 1 psec. The wavelength is
of the order of 3 x Icm. The crystal specimen may be of the order ofnlirc
length. The elastic stiffness constarts, ,C;,.C,4 Of a cubic crystal may be
determined from the velocities of three waves. Agitudinal wave propagates along

a cube axis with veloci(§11/p)1/2, where p is the densityA shear wave propagates
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1/2
along a cube axis with Veloci()f“/p) , While a shear wave with particle motion
along a110 direction propagates along a 110 direction Witlﬂ)tvi@y[(cn— Clz)/zp]l/z.
3.2  Elastic waves in cubic crystals

By considering the forces acting on an elementodfime in the crystal we find for
the equation of motion in the x direction

0X 0X 0X
X + y _l_ zZ

u =
p ax ady 0z

(2.1)

With similar equations for thg and z directions; p is the density andi is the
2

displacement and is%. From Eq. (1.21) in unit 1, it follows, taking thalee edges

as thex, y, zdirections, that

_ % dey,, de,, 6exy aezx)
'Du B Cll 0x T Clz(ax T ax)+ 644(637 + 0z

This reduces, using Eqg. (1.9) of unit 1, to
a%u o%u a%u

U=c c ( ) (c,, + C,0) (azy azw) 2.2
= — + —+— )+ + — + :
p 1 ax? 4 0y2 az* 12 44 dxdy 0x0z ( )

Here u, v and w are components of displacement
One solution is given by a longitudinal wave

U= uoei(wt—kx)

moving along the x cube edge; from (2.2)
—w?’p = —k?Cy4

Herek = 27" whereA is wave vector and = 2mv is the angular frequency
So that the velocity is

C 1/2
v= @/ = ( 11/p) (2.3)
Another solution is given by a transverse or sheare moving along the y cube edge
with the particle motion in the x direction:

which gives, on substitution in Eq. (1.2)

—w?’p = —k?Cyy
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so that;

v= (/) (2.4)

There is also a solution given by a shear wave nmin thez direction with particle
motion in thex direction. In general there are three types of waeéion for a given
direction of propagation in the crystal, but onbr fa few special directions can the
waves be classified as pure longitudinal or puaagdverse.

3.3 Elastic isotropy

By minor manipulations we may rewrite Eq. (2.2) as

.. - 92 ;.
poii = (Cy— Cyp — 2C44)6_;; + ChaVPu + (Cpp + C44)ad”7 e
(2.5)

where the displacement= ui + vj + wk is not to be confused with density now
written aspy. if

Ci1— Ciz = 204 (2-6)

the first term on the right in (2.5) drops out, angl can write on summing with the
equations for thg andz motions:

é = C44_ VZQ + (Clz + C4_4) gTad dlv Q (27)

This equation has the important property that itnigariant under rotations of the
reference axes, as each term in the equation isvaniant. Thus the relation (1.6) is
the condition that the crystal should be elastycabtropic; that is, that waves should
propagate in all directions with equal velociti¢sowever, the longitudinal wave
velocity is not necessarily equal to the transveraee velocity.

The anisotropy factor A in a cubic crystal is defiras

_ 2Cyy

4 . _/(Cn - Clz_) ) (2.8)
and is unity for elastic isotropy.

3.4  Cauchy relation

There are among the elastic stiffness constantaioaelations first obtained by
Cauchy. The relations reduce to

Ciz = Cyq

in a crystal of cubic symmetry. If this is satisfjethe isotropy condition (2.6)
becomes

Ci; = 3C4,. If then a cubic crystal were elastically isotophdthe Cauchy relation

is satisfied, the velocity of the transverse waweslld be equal to the velocity of the
longitudinal waves.
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The conditions for the validity of the Cauchy redat are:

All forces must be central, i.e., act along linesing the centers of the atoms.
This is not generally true of covalent binding fesc nor of metallic binding

forces.

Every atom must be at a center of symmetry; thateplacing every inter

atomic vector should not change the structure.

The crystal should be initially under no stressmietallic lattices the nature of
the binding is not such that we would expect thedbs relation to work out

well. In ionic crystals the electrostatic interactiof the ions is the principal

interaction and is central in nature. It is nofsising that the Cauchy relation
is moderately well satisfied in the alkali halides

Worked example:

Show that the velocity of a longitudinal wave ie[thl 1] direction of a cubic crystal
. . 1/2

Solution:

For a longitudinal phonon in tHe11]direction, u = v = w.
Letu = uoeik[x"‘Y"‘Z]/\/ge—iwt

Wherek = 27” is the wave number and = 2mv is angular frequency. From Eq.
(2.2),

w?p = [C1q + 2C4s + (C12Caa)] k%/3
Thus, the velocity /k of the longitudinal wave in thie 11] direction is given by
v = w/k = [(Ci1 + 2C15 + 4C4s/3p)]*?
4.0 Conclusion
The existence of the centre of symmetry of a cubystal stable under the central
inters atomic forces leads to the well known Cauahgtion,C;, = C44. This reduces

the number of independent elastic constants ob&arystal to two only.

5.0 Summary

. The longitudinal wave velocity along the x cubgeds given by
1/2
v = w/k = (Cll/p)
° The transverse wave velocity along the y cube edtethe particle motion
in the x direction is given by
C 1/2
v = w/k= ( 44/p)
o The Cauchy relation i€, = Cy,

56



PHL 307 SOLID STATE PHYSICS 1

o Cauchy relation does not work well for metallidilzgs while it is moderately
well satisfied in the alkali halides.

6.0  Tutor marked assignment

Q1. Show that the velocity of a longitudinal wavettie [111] direction of a cubic
crystal is given by

1 1/2
v = [g (€1 — 2Cp + 4644)/,0]

Q2.  Show that the velocity of a transverse wave in[tHe ] direction of a cubic
crystal is given by

1 1/2
v = [g (Ci1— Cip + C44)/P]

7.0  Further reading/References

Ashcroft, N.W., Mermin, D. N.(1976). Solid stateysits, Saunders College
Publishing.

Denna, S. S. (2022). Solid State Physics. Depattofdvaterials Science and
Engineering._https://www.materialvetenskap.usslél-state-physics%20/

Hearmon, R. F. S. (1946). Elastic constants ofaropic materials. Revs.
Modern Phys. 18, 409-440.

Hunklinger, S. (2022). Solid State Physics.
https://www.degruyter.com/document/doi/10.18¥83110666502/html?lang=en

Kachhava, C.M. (1992). Solid State physics, Tat&kéev-Hill Publishing
Company Limited, New Delhi.

Kittel, C. (2005). Introduction to solid state plgg Wiley Eastern Limited.

Love, A. E. H.(1944). A treatise on the mathemafikaory of elasticity. Dover
Publications, New York.

Sharon, A. H. (2021). Understanding Solid Statgsiis. 2¢ Edition.
ISBN 9780367249854

Wooster, W. A. (1938). A textbook on Crystal Phgsi€Cambridge University
Press.

Zener, C. (1948). Elasticity and anelasticityradtals, University of Chicago
Press, Chicago

57


https://www.materialvetenskap.uu.se/solid-state-physics%20/
https://www.degruyter.com/document/doi/10.1515/9783110666502/html?lang=en

PHL 307 SOLID STATE PHYSICS 1

https://www.youtube.com/watch?v=UWW fPB2E5k

https://www.toppr.com/quides/physics/mechanicalpenties-of-solids/solid-state-

physics/
https://www.vedantu.com/physics/solid-state-physics

https://testbook.com/physics/solid-state-physics

https://www-
thphys.physics.ox.ac.uk/people/SteveSimon/condm2i2@ctureNotes2012.

pdf

https://www.vedantu.com/physics/solid-state-physics

https://www.sciencedirect.com/topics/materials-scegsolid-state-physics
https://web.pdx.edu/~egertonr/ph311-12/solstate.ht

58


https://www.youtube.com/watch?v=UWW_fPB2E5k
https://www.toppr.com/guides/physics/mechanical-properties-of-solids/solid-state-
https://www.vedantu.com/physics/solid-state-physics
https://testbook.com/physics/solid-state-physics
https://www.vedantu.com/physics/solid-state-physics
https://www.sciencedirect.com/topics/materials-science/solid-state-physics
https://web.pdx.edu/~egertonr/ph311-12/solstate.htm

PHL 307 SOLID STATE PHYSICS 1

UNIT 3 CRYSTALS BINDING

CONTENT

1.0 Introduction

2.0 Objectives

3.0 Definition
3.1 Inter atomic force
3.2  Vander Waals (Molecular) bonding
3.3 lonic bonding
3.4  Covalent bonding
3.5 Metallic Bonding

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0 Further Reading/References

1.0 Introduction

The attractive electrostatic interaction betweenribgative charges of the electrons and
the positive charges of the nuclei is entirely cesgible for the cohesion of solid. As the
atoms come close together their closed electrotisshvl start to overlap. The Pauli
principle states that each electron state can bepoed by only one electron. In order to
have overlap of closed shells, electrons have texaited to higher states. This costs
energy and leads to a repulsive interaction betwieeratoms. The repulsive interaction
dominates for short distances between atoms, whelattractive interaction dominates at
large distances. The actual atomic spacing in sta@irys defined by the equilibrium where
the potential energy exhibits a minimum.

2.0  Objective
To explain:

Inter atomic forces
Vander Waals bonding
lonic bonding
Covalent bonding
Metallic bonding

3.0 Definition

Crystal binding is the attractive inter atomic fettat hold atom together in a crystal.
3.1 Inter atomic forces

Solids are stable structures, and therefore theist mteractions holding atoms in a
crystal together. For example a crystal of sodiumoride is more stable than a

collection of free Na and CIl atoms. This implieattthe Na and CI atoms attract each
other, i.e. there exist an attractive inter atofoice, which holds the atoms together.
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This also implies that the energy of the crystaloiser than the energy of the free
atoms. The amount of energy which is required tib the crystal apart into a set of
free atoms is called treohesive energyf the crystal.

Cohesive energy = energy of free atoms — crystatgn

Magnitude of the cohesive energy varies for differsolids from 1 to 10 eV/atom,
except inert gases in which the cohesive energy the order of 0.1eV/atom. The
cohesive energy controls the melting temperaturéypical curve for the potential
energy (binding energy) representing the interacbietween two atoms is shown in
Fig.1.1 It has a minimum at some distarReR,. For R>R, the potential increases
gradually, approaching 0 &>, while for R<R, the potential increases very rapidly,
tending to infinity atR=0. Since the system tends to have the lowest lpessnergy,

it is most stable at RzRwhich is the equilibrium inter atomic distancelhe
corresponding energy, is the cohesive energy. A typical value of the Bloium
distance is of the order of a few angstroms (e-8AP so that the forces under
consideration are short range. The inter atomicefas determined by the gradient of
the potential energy, so that

U
F(R) = — T (3.1)

If we apply this to the curve in Fig.3.1, we seattfi(R) <0 for R>R,. This means that
for large separations the forceatiractive tending to pull the atoms together. On the
other, hand=(R)>0 for R<R,, i.e. the force becomeepulsiveat small separations of
the atoms, and tends to push the atoms apart. dpsive and attractive forces
cancel each other exactly at the poidt which is the point of equilibrium. The
attractive inter atomic forces reflect the preseatbondsbetween atoms in solids,
which are responsible for the stability of the taysThere are several types of
bonding depending on the physical origin and nature efttbnding force involved.

U

_ repulsive energy

.,
llllll

cohesive energy I i Ro

4
Uo ’

PSS :
/ ~ attractive energy

Fig.3.1. A typical curve for the potential energwnding energy) representing the
interaction between two atoms (After Kittel.1979)
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Although the nature of thattractive energys different in different solids, the origin
of the repulsive energyis similar in all solids and it is mainly due toetiPauli
Exclusion Principle The elementary statement of this principle ig tha electrons
cannot occupy the same orbital. As ions approach ether close enough, the orbits
of the electrons begin to overlap, i.e. some adastrattempt to occupy orbits already
occupied by others. This is, however, forbidderth®yPauli Exclusion Principle. As a
result, electrons are excited to unoccupied higinergy states of the atoms. Thus, the
electron overlap increases the total energy of sgstem and gives repulsive
contribution to the interaction. The repulsive mtion is not easy to treat
analytically from first principles. In order to k& some quantitative estimates it is
often assumed that this interaction can be destriipe a central field repulsive
potential of the formi exp ¢r /p), where A and p are some constants or of the
form B /Rn, wheren is sufficiently large an@ is some constant.

3.2 Vander Waals (Inter atomic) bonding

This type of binding is exhibited by solid noblesgaystals. The outermost electron shell
is completely filled and the electron distributisnspherically symmetric. Each atom is
neutral and has no permanent dipole moment. Thactte forces between the atoms
arise from fluctuations in the electron distributioThese give an instantaneous
fluctuating dipole moment in the atom. Its interactwith induced dipole moments in the
neighboring atom leads to a weak interactibime electron distribution in inert gases is
very close to that in free atoms. The noble gasef @s neon (Ne), argo@r),
krypton (Kr) and xenonXe) are characterized by filled electron shells arsgplaerical
distribution of electronic clouds in the free atorirs the crystal the inert gas atoms
pack together within the cubijtcc structure. Consider two inert gas atoms (1 and 2)
separated by distance R. The average charge distrbin a single atom is
spherically symmetric, which implies that the aggradipole moment of atom 1 is
zero: (d1) =0. Here the brackets denote the time average ofdibele moment.
However, at any moment of time there may be a revn-dipole moment caused by
fluctuations of the electronic charge distributidde denote this dipole moment by
di. From electrostatics consideration, this dipol@ment produces an electric field,
which induces a dipole moment on atom 2. This dippbment is proportional to the
electric field which is in its turn proportional tbe d/Rs so that

d, < E oc% (3.2)

The dipole moments of the two atoms interact witithe other. The energy is
therefore reduced due to this interaction. Thegnef the interaction is proportional
to the product of the dipole moments and invergebportional to the cube of the
distance between the atoms, so that

X — —= (3.3)

and that the coupling between the two dipoles, amesed by a fluctuation, and the
other induced by the electric field produced byfihs, results in the attractive force,
which is called th&/an der Waals forcelThe time averaged potential is determined by
the average value ¢#?) which is not vanish, even thoug)is zero.

61



PHL 307 SOLID STATE PHYSICS 1

(df)
X — F

U (3.4)

The respective potential decreasesR&geduces with the separation between the
atoms.Van der Waals bondinig relatively weak; the respective cohesive enésgmf

the order of 0.1eV/atom. This attractive interactdescribed by Eg. (3.4) holds only
for a relatively large separation between atomssill separations a very strong
repulsive forces cause by the overlap of the imbertronic shells start to dominate. It
appears that for inert gases this repulsive intenacan be fitted quite well by the
potential of the forn’B/R12 whereB is a positive constant. Combining this with Eq.

(3.4) we obtain the total potential energy of twonas at separatioR which can be
represented as

v=4e|(2)" - ()] @9

where4sc® = A and4so2°= B. This potential is known as Lennard-Jones potential.
3.3 lonic bonding

The ionic bond results from the electrostatic iattion of oppositely charged ions.
Let us take sodium chloride as an example. In tiistalline state, each Na atom loses
its single valence electron to a neighboring Clmat@roducing Naand Cl™-ions
which have filled electronic shells. As a resultianic crystal is formed containing
positive and negative ions coupled by a strongtedstatic interaction.

Na + 5.1eV(lonization energy) - Na*e~
e~ + Cl - Cl™ + 3.6eV(electron af finity)
Na* + Cl™ - NaCl + 7.9¢eV (electrostatic energy)

The cohesive energy with respect to neutral atcamsbe calculated as 7.9eV - 5.1eV
+ 3.6eV, i.e. Na + Cb NaCl + 6.4 eV (cohesive energy). The structureVaiCl is
two interpenetrating fcc lattices of NandCl~ ions as shown in Fig.3.2

N Na~

CI”

O
Fig 3.2 structure @t CIl(After Kachhava, 1992)

Thus each Naon is surrounded by 61~ ions and vice versa. This structure suggests

that there is a strong attractive Coulombic foredween nearest-neighbors ions,
which is responsible for the ionic bonding. To cédte binding energy we need to

62



PHL 307 SOLID STATE PHYSICS 1

include Coulomb interactions with all atoms in #aid. Also we need to take into
account the repulsive energy, which we assume toekgonential. Thus the
interaction between two atomandj in a lattice is given by

—Tij 2
Uij = Ae( /P) iq rij (3.6)

Herer;; is the distance between the two atoqis, the electric charge on the atom,
the (+) sign is taken for the like charges and(#)esign for the unlike charges. The
total energy of the crystal is the sum ovandj so that

2
U = %Z Uj;=NY,; (}Le(—n‘j/P) + 4 /rij) (3.7)

In this formula ¥z is due to the fact that each mdimteractions should be counted
only once. The second equality results from the fadheNacl structure the sum
overj does not depend on whether the reference i@ positive or negative, which
gives the total number of atoms. The latter dividgdtwo gives the number of
moleculesN, composed of a positive and a negative ion. Werassfor simplicity
that the repulsive interaction is non-zero only flioe nearest neighbors (because it
drops down very quickly with the distance betwetmmss). In this case we obtain

U=N (ZAe‘R/p —a qz/R) (3.8)

HereR is the distance between the nearest neighlzassthe number of the nearest
neighbors, and is theMadelung constant

(£1) (3.9)

where p;;is defined by;; = p;jR .The value of the Madelung constant plays an
important role in the theory of ionic crystals.daneral it is not possible to compute
the Madelung constant analytically. A powerful nogttor calculation of lattice sums
was developed by Ewald, which is callediald summationThis method can be used
for the numerical evaluation of the Madelung conttan solids. Example considers a
one-dimensional lattice of ions of alternating segnshown in Fig.3.3 below.

©® 060 0O o0

R

Fig.3.3: 1-D lattice of ions of alternating sign.

In this case

a_21 1+1 1+
R “IR 2R 3R 4R

Or
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a=2[1-Z+3-2+--]| (3.10)

The factor 2 occurs because there are two ionstaotiee right and one to the left at
equal distances.
we sum this series by the expansion

o)
n

In(1 + x) = Z(—nn-l XT

n=1

Thus the Madelung constant for 1-dimensional cieain= 2 In2.

In three dimensions calculation of the series ixmmore difficult and cannot be
performed so easy. The values of the Madelung aatsstfor various solids are
calculated, tabulated and can be found in liteeatarg.Kittel, 1996).

3.4 Covalent bonding

The covalent bond is another important type of bahith exits in many solids. The
covalent bond between two atoms is usually formednm electrons, one from each
atom participating in the bond. The electrons fawgnihe bond tend to be partly
localized in the region between the two atoms jditgy the bond. Normally the
covalent bond is strong: for example, it is the dyowhich couples carbon atoms in
diamond. The covalent bond is also responsible tifier binding of silicon and
germanium crystaldn a two-atomic molecule (one electron per ators)dhergy levels
are split into a binding and an antibinding onee Tho electrons are shared between the
two atoms and fill the lowest, binding, moleculabital. In a solid the energy levels are
no longer discrete but the binding and antibindexgels become broaenergy bands
The structure of covalent crystals is determinedh®ydirection of the bonds, they have
often fewer nearest neighbor atoms (lower coor@inatumber).

Compounds where the atoms have different numbealehce electrons exhibit a mixture
of ionic and covalent binding. ExaAs. Ga has 3 valence electrons afislhas 5. On the
average we have 4 electrons per atom which carhdeed in tetrahedral bonds with
neighboring atoms. However if the bonds are toylensetrical theGa will be negatively
charged andls positively charged. Hence partial ionic binding wainbe avoided in this
and similar cases.

3.5 Metallic bonding

Metals are characterized by a high electrical cetiditly, which implies that a large
number of electrons in a metal are free to moves €lectrons capable to move
throughout the crystal are called thenductions electronsNormally the valence
electrons in atoms become the conduction elecirosslids. The main feature of the
metallic bond is the lowering of the energy of taence electrons in metal as
compared to the free atoms. Below, some qualitargeiments are given to explain
this fact. According to the Heisenberg uncertaiptinciple the indefiniteness in
coordinate and in the momentum are related to edoér so thal\xAp = h.In a
free atom the valence electrons are restricted t®yaéively small volume. Therefore,
Ap is relatively large which makes the kinetic eneofyhe valence electrons in a free
atom large. On the other hand in the crystallirsgesthe electrons are free to move
throughout the whole crystal, the volume of whishlarge. Therefore the kinetic
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energy of the electrons is greatly reduced, wheads$ to diminishing the total energy
of the system in the solid. This mechanism is tberse of the metallic bonding.
Figuratively speaking, the negatively charged fe&trons in a metal serve as glue
that holds positively charged ions together. Theaitie bond is somewhat weaker
than the ionic and covalent bond. For instancentiedting temperature of metallic
sodium is about 48@vhich is smaller than 118t NaCl and about 400n diamond.
Nevertheless, this type of bond should be regaagestrong. In transition metals like
Fe, Ni, Ti, Co the mechanism of metallic bondingnisre complex. This is due to the
fact that in addition to s electrons which behale Ifree electrons we have 3d
electrons which are more localized. Hence the dtles tend to create covalent
bonds with nearest neighbors. The d electrons @mailly strongly hybridized with s
electrons making the picture of bonding much mamulicated.

4.0 Conclusion
Solids are stable structures, and therefore thase¢ iateractions holding atoms in a
crystal together Depending on the distribution of the outer elecsraiith respect to the

ions, different binding types can occur.

5.0 Summary

o The cohesive energy the energy that must be added to the crystsdparate it
to neutral free atoms at rest, at infinite sepamati

o Crystals of inert gas atoms are bound by Vanderl$\iateraction.

o lonic crystals are bound by electrostatic attracbbcharged ions of separate
signs.

o A covalent bound is characterized by the overlaphairge distributions of
antiparallel spin.

o Metals are bound by reduction in kinetic energyhefvalence electrons in the

metal as compared with the free atom.

6.0 Tutor marked assignment

Q1. Repulsive potential between two atoms is reprmbrtnyA/Rn, where

constant®\ andn are phenomenological parameters.
(@  Show that the equilibrium inter atomic distancegiien by

_n_
R = <6nA)n—1
0 — aqz

(b) Demonstrate that the cohesive energy per mole¢w@gualibrium is

2
w(-5)
Uy=——"—|1—-
0 R, n

(© Calculate the constantfor NaCl, taking into account that the lattice constant
is a=5.63A, a=1.75, g=e and the measured binding energy per molecule for
this crystal is —=7.94 eV.

-2

Q2.  Using the Lennard-Jones potential wéthl.04710 eV ands=3.40A and
taking into account only nearest-neighbor atorak;utate the lattice
parameter and the cohesive energy of the fccargsiAr.
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UNIT 4 LATTICE VIBRATION
CONTENT

1.0 Introduction

2.0 Objectives

3.0 Definition
3.1 One-dimensional lattice
3.2 Diatomic one-dimensional lattice
3.3 Three —dimensional lattice
3.4  Phonon

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0 Further Reading/References

1.0 Introduction

An important aspect of the study of solid state ptsyscthe lattice dynamics, which
concerns itself with the vibrations of atoms abthdir equilibrium sites in a solid.
These vibrations occur at any temperature, evabstlute zero. They are responsible
for the thermal properties - heat capacity, theromiductivity, thermal expansion,
etc. of insulators and contribute the greater phtihe heat capacity of metals.

2.0 Objective
To describe:

One-dimensional monatomic lattice.
° One-dimensional diatomic lattice
Three- dimensional lattice.

3.0 Definition

Lattice vibration is a continuing periodic osciitat relative to a fixed reference point,
or a single complete oscillation.

3.1 One-dimensional monatomic lattice

Consider one-dimensional crystal lattice and asstima¢ the forces between the
atoms in this lattice are proportional to relatdisplacements from the equilibrium
positions. This is known as th@rmonic approximationwhich holds well provided
that the displacements are small. One might thimbua the atoms in the lattice as
interconnected by elastic springs (Fig.4.1).
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Uyp-1 Uy Un+1
+—>
n—1 n n+l a

Fig.4.1: Lattice vibration of monatomic lattice
(After www.pa.uk.edu/kwng/phy/525/lec)

Therefore, the force exerted oth atom in the lattice is given by
Fn = C(un+1 - un) + C(un—l - un) (4-1)

whereC is the interatomic force (elastic) constant. ApptyNewton’s second law to
the motion of thex — th atom we obtain

d*u,
M d:z = F = C(un+1 - un) + C(un—l - un) = _C(Zun - Upt1 —

un—l)(4-2)

whereM is the mass of an atom. Note that we neglected therénteraction of the
n — th atom with all but its nearest neighbors. A simigguation should be written
for each atom in the lattice, resulting ik coupled differential equations, which
should be solved simultaneousi {s the total number of atoms in the lattice). In
addition the boundary conditions applied to the atwin in the lattice should be taken
into account.

Now let us attempt a solution of the form

U, = Ae'(@%n~ wt) (4.3)

where x,, is the equilibrium position of the —th atom so thatx,, = na. This
equation represents a traveling wave, in whicltredl atoms oscillate with the same

frequencyw and the same amplitudeand have wave vectar Note that a solution
of the form Eq. (4.3) is only possible becausehaf transnational symmetry of the
lattice. Now substituting Eq. (4.3) into Eq.(4.2)dacanceling the common quantities
(the amplitude and the time-dependent factor) wainb

M(_a)Z)eiqna — _C[zeiqna _ eiq(n+1)a — eiq(n—l)a] (4.4)

This equation can be further simplified by canagline common facta@d"® which
leads to

Mw? = C(2 — e!9% — e714%) = 2¢(1 - cosqa) = 4Csin2qz—a (4.5)

We find therefore the dispersion relation for thexjtiency
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4C . qa
w = ’— |sm—
M 2

which is the relationship between the frequencyibfations and the wave vectgr
This dispersion relation has a number of imporpanperties.

4.6)

() Reducing to the first Brillouin zon&he frequency (4.6) and the displacement
of the atoms (5.3) do not change when we chanbeg g+2n/a. This means
that these solutions are physically identical.sThallows us to set the range of
independent values gfwithin the first Brillouin zone, i.e.

4.7)

S I

<q<

S I

Within this range ofy the w versusg is shown in Fig.4.2. The maximum frequency
isy/4C /M. The frequency is symmetric with respect to the sitpange inq, i.e.
w(q)=w(—q)). This is not surprising because a mode with pa@si corresponds to
the wave traveling in the lattice from the leftth@ right and a mode with a negatiye
corresponds to the wave traveling from the righthtleft. Since these two directions
are equivalent in the lattice the frequency dodschange with the sign changegn
At the boundaries of the Brillouin zorge=tn/a the solution represents a standing
wavel,, = A(—1)"e~®t: atoms oscillate in the opposite phases depending
whethem is even or odd. The wave moves neither right nfor le

-1t/a 0 T/a

q

Fig.4.2: Dispersion curve of a one-dimensional atomic lattice representing the
First Brillouin Zone. www.pa.uk.edu/kwng/phy/52%)e

(i) Phase and group velocityhe phase velocity is defined by

v, = (4.8)

SHES

and the group velocity by
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dw

iq (4.9)

Vg =

The physical distinction between the two velocitigghatv,, is the velocity of the

propagation of the plane wave, whereastithes the velocity of the propagation of

the wave packet. The latter is the velocity for grepagation of energy in the
medium. For the particular dispersion relation @g6) the group velocity is given by

v, = %2 cos L2 4.10
9 = > (4.10)

As is seen from Eq. (4.10) the group velocity isoza the edge of the zone where
g=tmn/a. Here the wave is standing and therefore the tnéasson velocity for the
energy is zero.

(iif) Long wavelength limitThe long wavelength limit implies that>a. In this limit
qa<<l. We can then expand the sine in Eq. (4.6) dtdi for the positive
frequencies:

- |&
w= |-qa (4.11)

We see that the frequency of vibration is propodido the wave vector. This is
equivalent to the statement that velocity is inawjaat of frequency. In this case

—_— w J—

Worked example:

Atoms in crystals arbeld together by chemical bonds. Consider thesd$tmbe
elastic springs of the same force constgntsr one-dimensional crystal lattice.
Suppose one of the atoms is displaced from its rpeaition by an external force and
then released;

(@)  derive an expression for its periodic motion wigspect to its nearest
neighbours

(b) prove that these atoms can vibrate with a numbédrsafete frequencies up to
a maximum value given by

43
m
Solution:

(a) Consider a linear chain of atoms connected lagtie springs, each of spring
constant$ (Fig below).If the atoms are each of mass m and the distarteesbe any
two consecutive atoms is ‘a’, then a small disptaeet by some external force on one
of them will result into an oscillatory motion?
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Fre——Fr
n-1 : n | n+l
-0V M- @I @
:Un-ll Un : Un :Un+1:
| ,

| a |
e |

The displacements @ — 1)th, nth, and(n + 1)th atoms from their mean positions
at any instant will beU,,_;,U,, and U,,, respectively. Also, the extension of the
spring betweerin — 1)th, andnth atoms will be(a + U,, — U,,_,) and therefore, the
restoring force Fon thenth atom due to the left spring will be

Fp=p(a+Up—Upy) Q)

Similarly, the extension of the spring on the rigiitnth atom will be (a + U411 —
U,) and restoring force is given by

Fr =pB(a+ Upy1 —Uy) (i)

The net force on theth atom will be

F=Fa—F =p(@a+ Uy —Up) —Bla+ Uy —Upy)

“F=pBUpsr + Upoy — 2Uy) (ii)

Applying Newton’s second law of motion to the deg@ment of thexth atom, we
obtain

dZUn
F=m dt2 = B(Uny1 + Un_1 — 2Uy)
d?Up .
a2 .B(Un+1 +Up-1—2U,) =0 (iv)

Hence, Eq.(iv) is the equation of periodic motidntlee nth atom with respect to
(n— 1)th and(n + 1)th atoms.

(b)The general solution of Eq. (iv), if the amptlaiof this motion is U, is given by
Un — Uei(wt+an) (V)

WhereX,, is the distance of theth atom from the origin i.eX,, = na. Similarly, if
X,—, andX,,,, are the distances ¢h — 1)th and(n + 1)th atom from the origin,
thenX,,_; = (n — 1)a andX,;; = (n + 1)a. Thus, we have

Un—l — Uel'(wt+an_1)

(vi)

Un+1 — Uel(wt+an+1)

Wherew is the angular frequency akd= 27”
Substituting Eq.(v) and Eq.(vi) into Eq.(iv) witk,, = na, X,_4 = (n —1)a and
Xns1 = (n+ 1)a, gives,

_mszelwtelkna — ﬁUelwtelkna[elka + e—ka _ 2]

e ika\? ¢ _ikay? ka  _ika)?
—mw?Ue'@tetkna = p (ez) +(e 2) -2 =,B[e2 —e 2]
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ika  _ka]? ’

2 = 4872 ez —e 2 4ﬁ[ : ka]

—mw? = 4Bi* [————| = —4B|sin—
@ 20 2

w SIn—

2

o fﬁ . ka N
- w = [~ sin= (vii)
E.(vii) gives a number of frequencies with whicke tatoms of the 1-dimensional
lattice can vibrate. Whesﬂn% =+1 i.e. when% = % the maximum frequency is

=]

obtained from Eq.(vii) asv,, = i\/%

3.2 Diatomic one-dimensional lattice

Now we consider a one-dimensional lattice with mam-equivalent atoms in a unit
cell. Fig.4.3 shows a diatomic lattice with the tucell composed of two atoms of
massed/; andM, with the distance between two neighboring atams

@' YWWN-O'WN-@-YWWN-OPWN- @ VWO
<« >
n—1 n n+l1 a

Fig.4.3: Lattice vibration of diatomic lattice (A&ft www.pa.uk.edu/kwng/phy/525/lec)

We can treat the motion of this lattice in a simiiashion as for monatomic lattice.
However, in this because we have two different &inflatoms, we should write two
equations of motion:

d*U,
Ml dt2 - _C(ZUn_ Un+1 - Un—l)
(4.13)
2
M, £ — _C(2Upy — Unaz — Up)

dt?

In analogy with the monatomic lattice we are loagkiar the solution in the form of
traveling mode for the two atoms:

Up | A eldna ot
Upsrl |Azeiq(n+1)a € (4.14)
2C — M;w? —2cosqa | Ay

= =0 4.15
—2Ccosqa 2C— M,w? A, (4.19)
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This is a system of linear homogeneous equationth&unknowng\i andAz. A
nontrivial solution exists only if the determinarftthe matrix is zero. This leads to
the secular equation

(2C — M;w?)(2C — M,w?) — 4C?cos?’qa =0 (4.16)

This is a quadratic equation, which can be reagblyed

W=t D) tc (B p) - (417

1 M, My M, MM,

Depending on sign in this formula there are twdedént solutions corresponding to
two different dispersion curves, as is shown in4iy

Optical

/,F\

Acoustic

)

-1t/2a 0 n/2a

q

Fig.4.4: Dispersion Curve for one-dimensional diaitolattice. (After
www.pa.uk.edu/kwng/phy/525/lec)

The lower curve is called thacoustic branchwhile the upper curve is called the
optical branch The optical branch begins @0 andw=0. Then with increasing the
frequency increases in a linear fashion. This iy Whis branch is called acoustic: it
corresponds to elastic waves or sound. Eventulhi$ydurve saturates at the edge of
the Brillouin zone. On the other hand, the optimanch has a nonzero frequency at
zeroq

Wy = ch(Mi1+ M%) (4.18)

and it does not change much with

The distinction between the acoustic and opticahbihes of lattice vibrations can be
seen most clearly by comparing themga0 (infinite wavelength). From Eq. (4.15),
for the acoustic branah=0 andA4;=A,. So in this limit the two atoms in the cell have
the same amplitude and the phase. Therefore, tihecaie oscillates as a rigid body,
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as shown in Fig.4.5 for the acoustic mode. On theerohand, for the optical
vibrations, substituting Eq. (4.18) to Eq. (4.16% obtain forg=0:

MlAl + M2A2 = 0 @-19)

It implies that the optical oscillation takes planesuch a way that the center of mass
of a molecule remains fixed. The two atoms moveuhof phase as shown in Fig.4.5.
The frequency of these vibrations lies in inframedjion which is the reason for
referring to this branch as optical.

%@MM»
Fig.4.5: Distinction between Acoustic and Opticalwe (After Kittel, 1976)

3.3 Three- dimension

The concept of the division of the vibrational med@to acoustic and optical
branches can be generalized to be applicable ¢e-tiimensional structure. To avoid
mathematical details we shall present only a catali discussion. Consider, first, the
monatomic Bravais lattice, in which each unit ¢&lk a single atom. The equation of
motion of each atom can be written in a mannerlamio that of Eq. (4.2). The
solution of this equation in three dimensions canrépresented in terms nbrmal
modes.

U, = Aei@— 0 4(20)

where the wave vectar specifies both the wavelength and direction of pgation.
The vectorA determines the amplitude as well as the directibrilaration of the
atoms. Thus this vector specifies fhaarizationof the wave, i.e., whether the wave
is longitudinal (A parallel toq) or transverse(A perpendicular tog). When we
substitute EQ.(5.20) into the equation of motiore wbtain three simultaneous
equations involvinddx, Ay. andAz, the components ¢k. These equations are coupled
together and are equivalent to a 3 x 3 matrix agoafhe roots of this equation lead
to three different dispersion relations, or threspdrsion curves, as shown in Fig.4.6.
All the three branches pass through the origin,ctvhineans all the branches are
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acoustic. This is of course to be expected, sineeave dealing with anonatomic
Bravais lattice.

Fig.4.6: Dispersion curve.

The three branches in Fig.4.6 differ in their piziation. Whenq lies along a
direction of high symmetry - for example, the [1@0][110] directions- these waves
may be classified as either pure longitudinal orepwansverse waves. In that case,
two of the branches are transverse and one istlafigal. One usually refers to these
as the TA - transverse acousticand LA - longitudinal acoustic branches,
respectively. However, along non-symmetry diretidhe waves may not be pure
longitudinal or pure transverse, but have a mixearacter.

Fig.4.7: Dispersion curve for Al in the [100] aridLD] directions (After Kittel, 1979)

Figure 4.7 shows the dispersion curves for Al ia fh00] and [110] directions. Note
that in certain high-symmetry directions, such s [tL00] in Al, the two transverse
branches coincide. The branches are then saiddedenerate.

We turn our attention now to the non-Bravais thdeaensional lattice. Here the unit
cell contains two or more atoms. If there aaoms per cell, then on the basis of our
previous experience we conclude that there3ardispersion curves. Of thesdree
branches are acoustic, and the remaining 3) are optical. The mathematical
justification for this assertion is as follows: Wite the equation of motion for each
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atom in the cell, which results mequations. Since these are vector equations, they
are equivalent to3scalar equations, which have ®ots. It can be shown that three
of these roots always vanish @t= 0, which results in three acoustic branches. The
remaining (3 -3) roots, therefore, belong to the optical branchesstated above. The
acoustic branches may be classified, as beforéydiy polarizations as TATA,, and

LA. The optical branches can also be classified as longitudinatamsverse whenq

lies along a high symmetry direction, and one spedk.O and TO branches. As in
the one-dimensional case, one can also show thraanf optical branch, the atoms in
the unit cell vibrate out of phase relative to eather. As an example of a non-
Bravais lattice, the dispersion curves for Ge &@s in Fig.4.8. Since there are two
atoms per unit cell in germanium, there are sixhbings: three acoustic and three
optical. Note that the two transverse branches dagenerate along the [100]
direction, as indicated earlier.

W0

Fig.4.8: Dispersion curve for Ge along [100] andl(JLdirections (After Kittel, 1979)
3.4  Phonons

So far we discussed a classical approach to thiedatibrations. As we know from
guantum mechanics the energy levels of the harmosdaillator are quantized.
Similarly the energy levels of lattice vibrationseaquantized. The quantum of
vibration is called ghononin analogy with the photon, which is the quantunthef
electromagnetic wave.

We know that the allowed energy levels of the harimoscillator are given by
E=(n+ 1/2)ha) (4.21)

wheren is the quantum number. A normal vibration mode iorystal of frequency
o is given by Eq. (4.20). If the energy of this maslgiven by Eq. (4.21) we can say
that this mode is occupied by phononsof energyfio . The term Yfio is the zero
point energy of the mode.

Let us now make a comparison between the clasarmhlquantum solutions in one-
dimensional case. Consider a normal vibration
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u = Ael(ax—ot) (4.22)

whereu is the displacement of an atom from its equilibripasitionx andA is the
amplitude. The energy of this vibrational mode aged over time is

E= 1/2 Mw?A? = (n+ 1/2)ha) (4.23)

It is evident from Eq.(4.23) above that there relationship between the amplitude of
vibration and the frequency and the phonon occapatif the mode. In classical
mechanics any amplitude of vibration is possibleemas in quantum mechanics only
discrete values are allowed. This is shown in F83.4

E

%

7/2h@
s/2h@
32hw

1/2h@

A
Fig.4.9: Relation between amplitude and frequerdtef Kittel, 1979)

The lattice withs atoms in a unit cell is described by i8dependent oscillators. The
frequencies of normal modes of these oscillatots b given by the solution of 3s
linear equations as we discussed before. Theywg(g) , where p denotes a

particular mode, i.p = 1,...3. The energy of this mode is given by

Eqp = (ngy + 5) heop (@) (4.24)

where ng, the occupation is number of the normal mode andrisinteger. A
vibrational state of the entire crystal is spedifigy giving the occupation numbers for
each of the 8 modes. The total vibrational energy of the cryséathe sum of the
energies of the individual modes, so that

E=YwEwp =Zap ("qp + %) hawy, () 4(29)

Phonons can interact with other particles such lastgms, neutrons and electrons.
This interaction occurs such as if photon had a semom#hg. However, a phonon
does not carry real physical momentum. The reasdhait the center of mass of the
crystal does not change it position under vibrati¢exceptg=0). In crystals there
exist selection rules for allowed transitions betweuantum states. We saw that the
elastic scattering of an x-ray photon by a crystagjoverned by the wave vector
selection rulek’ = k +G, whereG is a vector in the reciprocal lattick;is the wave
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vector of the incident photon arkdis the wave vector of the scattered photon. This
equation can be considered as condition for theewmation of the momentum of the
whole system, in which the lattice acquires a mamman-AG. If the scattering of
photon is inelastic and is accompanied by the attoit or absorption of a phonon the
selection rule becomes

k'=k +q+G (4.26)

where sign (+) corresponds to creation of phonod aign (-) corresponds to
absorption of phonon. Phonon dispersion relatiansq can be determined by the

inelastic scattering of neutrons with emission lmaption of phonons. In this case in
addition to the condition of the momentum conseovatve have the requirement of
conservation of energy. The latter condition canvbéen as

h*k?  h2k?

+ hw (4.27)
2M 2M

whereM is the mass of the neutron afid and fik’ are the momenta of the incident
and scattered neutron. Once we know in experintenkinetic energy of the incident

and scattered neutrons from Eq. (4.27) we can méterthe frequency of the emitted
or absorbed phonon. Then experimentally we needetermine those directions,

which characterized by highest intensity of thettetad beam. For these directions
the conditions (5.26) are satisfied and therefooenfEq. (4.26) we can find the wave
vector of the phonon. Therefore, this is the waglitain the dispersion conditions for
the frequency of phonons which we discussed before.

4.0 Conclusion

Lattice vibrations are elastic waves propagatinthwicrystals and the quantum unit
of vibration is a phonon. The general equation aftion provides the phonon
dispersion or phonon spectrum,

5.0 Summary

° All lattice waves can be described by wave vectbeg lie within the first
Brillouin zone
o The quantum unit of vibration is a phonon.

o The energy of the phonon Asv
6.0  Tutor marked assignment

Q1. Consider a linear chain in which alternative ioagdimassebliandM2 and
only nearest neighbors interact.
(@) Discuss the form of the dispersion relatiod the nature of the
vibrational modes whekl1 >> Mz,
(b) Show that foM1=Mz2the dispersion relation becomes identical to that
for the monatomic lattice
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Q2. Consider the normal modes of a linear chain in tvhite force constants
between nearest-neighbor atoms are alternativein 10C. Assuming that
the masses are equal and the nearest neighborlgepasa/2 find o(qg) at
0g=0 andg=n/a. Sketch the dispersion curve. This problem sineglat crystal
of diatomic molecules such as.H
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1.0 Introduction

This unit is devoted to the description of certain tharproperties of solid materials.
The properties considered on the basis of atomintpuf view are specific heat,
thermal expansion, equation of state and thernradlectivity. The most fundamental
approach for the theoretical evaluation of thesaratteristics for a solid is to relate
them to the internal energy, the total kinetic ggeand potential energy of its
constituents.

2.0 Objective

To explain

o Lattice specific heats

o Debye model

o Einstein model

° Lattice thermal conductivity

3.0 Definition
Specific heat is a measure of the number of degrefgsedom of oscillating lattice.
3.1 Heat capacity

The heat capacit¢ is defined as the healQ which is required to raise the temperature
by AT, i.e.

_ Ae
C = T (5.1)

If the process is carried out at constant voliunthenAQ = AE, whereAE is the increase
in internal energy of the system. The heat capaatitgonstant vqumé:V is therefore

given by
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C, = (Z—i)v (5.2)

The contribution of the phonons to the heat capadithe crystal is called tHattice heat
capacity

The total energy of the phonons at temperaturea crystal can be written as the sum of
the energies over all phonon modes, so that

E= Z(nqp)hw(q) (5.3)
qp

Where (n,,,) is the thermal equilibrium occupancy of phononswaive vectorg and
modep (p = 1...35, wheresis the number of atoms in a unit cell). The angblackets
denote the average in thermal equilibrium. Note ¥ assumed here that the zero-point
energy is chosen as the origin of the energy, abttie ground energy lies at zero. The
average thermal equilibrium can be calculated.

Consider a harmonic oscillator in a thermal batte Pprobability to find this oscillator
in an excited state, which is characterized byréiquaar energ;Enis given by the

Boltzmann distribution

p. = pyel""/ar) (5.4)

where the constanﬁ’(ois determined from the normalization condition.

D P=1 (5.5)

n=0
so that
o) -1
nhw
Poz( e(- /kBT)> (5.6)

The average excitation number of the oscillagagiven by

© —nhw/kgT

= np, = 20 (5.7)

00 —nhw/kgT
Zn=oe / B

n=0

The summation in the numerator can be performedgushe known property of
geometrical progression:
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i x" = (5.8)

n=0

Using this property we find:

0
d 1 X

=xal—x(1—x)2 (5.9)
hw
Wherex = e &1, then we obtain
X 1 1
(n) = 1-x  x~1-1  p(hw/kp)_q (5.10)

The distribution given by Eq. (5.10) is known as Blanck distribution. Coming back to
the expression for the total energy of the phonaesfind that

ehw(a)
E= Z (5.11)

ehw(Q) -1

Usually it is convenient to replace the summativerg by an integral over frequency. In
order to do this we need to introduce tlemsity of modesr thedensity of stateB, (w).
D, (w)dw represents the number of modes of a given numinethe frequency ranges(

o +dw . Then the energy is

hw
_ E 5.12
E = jdep(w) ol — 1 ( )
P

The lattice heat capacity can be found by diffeegian of this equation with respect to
temperature, so that

"7

C, =
((hw/kB) 1)

> = = kg, [ dwD, (w)

(5.13

We see that the central problem is to find the derd state®,(w), the number of
modes per unit frequency range.

3.2 Density of state

Consider the longitudinal waves in a long bar. $bkition for the displacement of atoms
is given by

u = Ae'd* (5.14)
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where we omitted a time-dependent factor it islewant for the present discussion. We
shall now consider the effects of the boundary @@mm$s on this solution. These
boundary conditions are determined by the exteraaétraints applied to the ends of the
bar. The most convenient type of boundary conditsoknown as th@eriodic boundary
condition.By this we mean that the right end of the bar isst@ined in such a way that
it is always in the same state of oscillation asl#ft end. It is as if the bar were deformed
into a circular shape so that the right end joitiedleft. Given that the length of the bar is
L, if we take the origin as being at the left ef&, periodic condition means that

u(x=0)=u (x=1) (5.15)

whereu is the solution given by Eq.(5.14). If we subs#t(6.14) into (5.15), we find that

eldl =1 (5.16)
This equation imposes a condition on the admissidlges oi:
q= nZT” (5.17)

wheren = 0, + 1, +2, etc. When these values are plottedgadpaxis,they form a one-
dimensional mesh of regularly spaced points. Tharigg between the points isi/R.
When the bar length is large, the spacing becommdl @nd the points form a quasi-
continuous mesh. Eadfivalue of Eq. (5.17) representsrdeof vibration. Suppose we
choose an arbitrary intervdly in g-space, and look for the number of modes whyise

lie in this interval. We assume here thas large, so that the points are quasi-continuous,
which is true for the macroscopic objects. Sinee ghacing between the points 1§12

the number of modes is

L dg (5.18)

2T

We are interested in the number of modes in theuacy rangdw lying betwdw, w +
dw). The density of stated(w) is defined such thab(w)dw gives this number.
Comparing this definition with EQq.(5.18), one may rite'D(w)dw = (L/
2m)dq,or D(w) = (L/2m)/(dw/dq). We note from Fig.5.1, however, that in
calculatingD (w) we must include the modes lying in the negatjwvegion as well as in
the positive region. The effect is to multiply thieove expression fd¥(w) by a factor of
two. That is,

L 1

D(a)) = - W (5.19)
q

We see that the density of staiEgv) is determined by the dispersion relation
w =w(q).
Now we extend these results to the 3D case. The waltion analogous to (5.14) is

u= Aei(qu"'qyy"'qzz) (5.20)
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Fig.5.1: Density of state
where the propagation is described by the waveovert (qX qy qz), whose direction

specifies the direction of wave propagation. Hegaimwe need to take into account the
boundary conditions. For simplicity, we assume &icisample whose edge ks By
imposing the periodic boundary conditions, one dittldat the allowed values gfmust
satisfy the condition

eldxl = gldyl = oldzl (5.21)
Therefore, the values are given by

27 21 21
(qx, 9y q,) = (I—-,m—,n—) (5.22)

wherel, m, nare some integers

if we plot these values in gspace, as in Fig.5.2, we obtain a three-dimenkiculaic
3

mesh. The volume assigned to each point ingtsipace is (2Z/L) .

w contour q.fr

Fig.5.2:Three-dimensional cubic mesh (After KittE9,79)

Each point in Fig.5.2 determines one mode. We nasth wo find the number of modes
lying in the spherical shell between the ragliandg + dg, as shown in Fig.2. The

3
volume of this shell is, ?dq and since the volume per point istl?) , it follows that
the number we seek

14

3
(i) Amq?dq = o 4mq?dq (5.23)

2T
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3
whereV = L is the volume of the sample. By definition of thendity of modes, this
quantity is equal taD (w)dw . Thus, we arrive at

1
d
w/ dq

D(w) = Z—Zi (5.24)

We note that Eqg. (5.24) is valid only for @otropic solid in which the vibrational
frequency,», does not depend on the directiongpfAlso we note that in the above
discussion we have associated a single mode with e@ue ofg. This is not quite true
for the 3D case, because for eaghthere are actually three different modes, one
longitudinal and two transverse, associated withdame value af. In addition, in the
case of non-Bravais lattice we have a few siteshabthe number of modes is, 3vhere

s is the number of non-equivalent atoms. This shdaddtaken into account by index
p=1...3sin the density of states because the dispersiatioat for the longitudinal and
transverse waves are different, and acoustic aiidabpodes are different.

3.2.1 Debye model

The Debye model assumes that the acoustic modegiggvdominant contribution to the
heat capacity. Within the Debye approximation theweity of sound is taken a constant
independent of polarization as it would be in a&sieal elastic continuum. The dispersion
relation is written as

w =vq (5.25)
where v is the velocity of sound.
In this approximation the density of states is gibg

Vw?
2m2p3

i.e. the density of states increases quadrativatty the frequency.

D(w) = (5.26)

The normalization condition for the density of sgatletermines the limits of integration
over . The lower limit is obviouslyn=0. The upper limit can be found from the
condition that the number of vibrational modes iorgstal is finite and is equal to the
number of degrees of freedom of the lattice. Assignthat there ard&l unit cells is the
crystal, and there is only one atom per cell (st there aréN atoms in the crystal), the
total number of phonon modes iN.3Therefore, we can write

wDD(w)da) = 3N (5.27)
2]

where the cutoff frequenayD is known as Debye frequency. Assuming that thecogio

of the three acoustic modes is independent of paldon and substituting Eq.(5.26) in
Eq.(5.27) we obtain

1/3

6m?v3N
wp = ( — ) (5.28)

The cutoff wave vector which corresponds to thegjfrency is given by
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(5.29)

|4

q wp (67‘[2N>1/3

so that modes of wave vector larger th%rare not allowed. This is due to the fact that

the number of modes with < q, exhausts the number of degrees of freedom of the
lattice.

The thermal energy is given by Eq. (5.12), so that

2
E = 3f0wD dow Vw hw

2m2p3 o(hw/kg) _1 SGQ

where a factor of 3 is due to the assumption thatphonon velocity is independent of
polarization. This leads to

£9))
_ 3Vh [@p w3 _ 3VkaT* p x3
- 2712173]0 w e(w/kgT) —_ 1 2n2v3h3f xex 1 (5.31)
0

Wherex = hw/kBT and

h 0
XD = wD/kBT = D/T

(5.32)
The latter expression defines the Debye temperature
h fem2n\1/3
0p = 1= (%7) 6.33)
The total phonon energy is then
_ T 3 XD x3
E = 9NkgT (5) [P dx—— (5.34)

whereN is the number of atoms in the crystal ape GD/T :

The heat capacity is most easily found by diffeegimg the middle expression of
Eq.(5.31) with respect to the temperature so that

hw

3Vh2 wa wie kBT

VT 2n2y3kRT?2

_ T\3 (xp x*e*
N a)—hw/ > = 9Nk (%) fo dx D)
Fr)

(5.35)

In the limit T>>0, we can expand the expression under the integl abtainC, =
3Nkjg. This is exactly the classical value for the rezgiacity, which is known from the
elementary physics. Recall that, according to tementary thermodynamics the average
thermal energy per a degree of freedom is equél+tok;T . Therefore for a system bff

atomsE =3NkgT which results irC,, = 3Nkg. This is known as thBulong-Petitlaw.
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Now consider an opposite limit, i.€<<0. At very low temperatures we can approximate
(5.34) by letting the upper limit go to infinity. $\bbtain

3 » 3 3 4 4 3
E = 9NkgT (%) 2 dx = = oNk,T (%) = 2 NkeyT (%)
(5.36)
and therefore

NkpT (%)3 (5.37)

C = 12m*
v 5

We see that within the Debye model at low tempeeatthe heat capacity is proportional
toT3. The cubic dependence may be understood fronotleving qualitative argument.
At low temperature, only a few modes are excitdiese are the modes whose quantum

energyfio is less tharkBT. The number of these modes may be estimated byirdyaa

sphere in they-space whose frequenoy- h/kBT, and counting the number of points
inside, as shown in Fig. 5.3. This sphere may biedahethermal spherein analogy
with the Debye sphere discussed above. The nunibeodes inside the thermal sphere
is proportional ta®~w3~T3. Each mode is fully excited and has an averageggne
equal tokBT. Therefore the total energy of excitation is pmjpmal to73, which leads to

a specific heat proportional 18, in agreement with Eq. (5.37).
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Fig.5.3: The thermal sphere (After Kittel, 1979)

3.2.2 Einstein model

Within the Einstein model the density of statespproximated by a delta function at
some frequencyy i.e.

D(w) = N6(w — wg) 5.88)

whereN is the total number of atoms (oscillator®)g is known as the Einstein
frequency. The thermal energy of the system is then
3NhwE

E = Goens

where a factor of 3 reflects the fact that theeethree degree of freedom for each
oscillator. The heat capacity is then

(5.39)
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efla)E/kBT

— OE _ hwg
C, = (E)V = 3Nkpg KpT (e(fla)E/kBT)_l) (5.40

The high temperature limit for the Einstein modelthe same as that for the Debye

model, i.e. C, = 3Nkpg, which is the Dulong-Petit law. At low temperatsiieowever
hwp

Eq.(5.40) decreases s~ e *B T, while the experimental form of the phonon is kmow

to beT 3as given by the Debye model. The reason for tréagieement is that at low

temperatures only acoustic phonons are populatddhen Debye model is much better
approximation that the Einstein model. The Einstamdel is often used to approximate
the optical phonon part of the phonon specti@oncluding our discussion about the heat
capacity we note that a real density of vibratiomabdes could be much more

complicated than those described by the Debye amstdin models.

3.3 Thermal conductivity

When the two ends of a given sample material ate@different temperature@L andT2
(T2>T1), heat flows down the thermal gradient, i.e. frtme hotter to the cooler end.

Observations show that theat current density(amount of heat flowing across unit area
per unit time) is proportional to the temperaturadient ¢T /dx). That is,

j = —K— (5.41)

The proportionality constari{, known as theéhermal conductivityjs a measure of the
ease of transmission of heat across the bar (theswsign is included to make a positive
guantity).

Heat may be transmitted in the material by sever@pendent agents. In metals, for

example, the heat is carried by both electronspdrmhons, although the contribution of

the electrons is much larger. In insulators, ondtieer hand, heat is transmitted entirely

by phonons, since there are no mobile electronthieése substances. Here we consider
only transmission by phonons.

When we discuss transmission of heat by phonorns,dbnvenient to think of these as
forming a phonon gas. In every region of spaceetla@e phonons traveling randomly in
all directions, corresponding to all tlggs in the Brillouin zone (BZ), much like the

molecules in an ordinary gas. The concentratiomplainons at the hotter end of the
sample is larger and they move to the cooler ehd. &dvantage of using this gas model
is that many of the familiar concepts of the kingheory of gases can also be applied
here. In particular, thermal conductivity is givien

K = 2Cyvl (5.42)

whereCVis the specific heat per unit volume, v the velpoit the particle, antits mean

free path In the present case, v ahdefer, of course, to the velocity and the mean free
path of the phonon, respectively. The mean freh gatefined as the average distances
between two consecutive scattering events, soltkatr, wheret is the average time
between collisions which is calledllision timeor relaxation time
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Let us give a qualitative explanation for Eq. (5.42or simplicity we consider a one-
dimensional picture, in which phonons can move ahbyng thex axis. We assume that a
temperature gradient is imposed alongxlais. We also assume that collisions between
phonons maintain local thermodynamic equilibrium;tlsat we can assign local thermal
energy density to a particular point of the sanffjié(x)]. The phonons which originate
from this point have this energy on average. Aivery pointx half the phonons come
from the high temperature side and half phononsectnom the low temperature side.
The phonons which arrive to this point from the hhigmperature side will, on the
average, have had their last collision at potlt, and will therefore carry a thermal
energy density o [T (x — 1)]. Their contribution to the thermal current densitypointx
will therefore be thé4vE ([T (x — 1)]. The phonons arriving atfrom the low temperature
side, on the other hand, will contribute’2vE[T (x + 1)], since they come from the
positivex-direction and are moving toward negatweAdding these together gives

j = wE[r(x - )] + vE[T(x + 1] (5.43)

Provided that the variation in the temperature diiermean free path is very small we
may expand this about the poiio find:

. dE ( dT o dE ( dT
Jj= vlﬁ(—d—) = v T—(——) (5.44)
x dT dx

This result can be easily generalized to the tdieeensional case. We need to replace v
by the x-component,, and then average over all the angles. Sitgd = (v]) =

. dE . . .
(v2) 1/3v?% and sincel), = — is the heat capacity we obtain,

j=z:cvl(-5) (5.45)

where v is the phonon velocity.

Let us now discuss the dependence of the thermradumbivity ] on temperature. The
dependence cﬁ)v on temperature has already been studied in dedtaile the velocity v

is found to be essentially insensitive to tempermtd’he mean free pathdepends
strongly on temperature. Indeéds the average distance the phonon travels bettveen
successive collisions. Three important mechanisnay e distinguished: (a) The
collision of a phonon with other phonons, (b) tledision of a phonon with imperfections
in the crystal, such as impurities and dislocati@msl (c) the collision of a phonon with
the external boundaries of the sample.

Consider a collision of type (a). The phonon-phoroattering is due to trenharmonic
interaction between them. When the atomic displargsbecome appreciable, this gives
rise to anharmonic coupling between the phononssiog their mutual scattering.
Suppose that two phonons of vectqusand a, collide, and produce a third phonon of

vectorqs. Since momentum must be conserved, it foIIowsqgatq1+ q,. Although both
q andq2 lie inside the Brillouin zoneRBrillouin zones are primitive cells that arise in
the theories of electronic levels - Band Theoq%)r,nay not do so. If it does, then the
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momentum of the system before and after collisothe same. Such a process has no
effect at all on thermal resistivity, as it haseftect on the flow of the phonon system as
a whole. It is called aormalprocess. By contrast, dfslies outside the BZ, such a vector

is not physically meaningful according to our camven. We reduce it to its equivalent
q4inside the first BZ, wherq3= q,+ G andG is the appropriate reciprocal lattice vector.

As is seen from Fig.5.6, the phonquroduced by the collision travels in a direction
almost opposite to either of the original phonq?andqz. The difference in momentum

is transferred to the center of mass of the latfites type of process is highly efficient in
changing the momentum of the phonon, and is redplenfor phonon scattering at high
temperatures. It is known as thnklapp proces@German for "flipping over").

Brillouin

b

:‘\—-4_“'. g -q..,____«!‘l.'_.__an

Fig.5.6:Umklapp process(After Kittel, 1979)

Phonon-phonon collisions become particularly imgotrtat high temperature, at which
the atomic displacements are large. In this regiba,corresponding mean free path is
inversely proportional to the temperature, that ¢s,1/T. This is reasonable, since the
largerT is, the greater the number of phonons participatirthe collision.

The second mechanism (b) which results in phonattesing results from defects and
impurities. Real crystals are never perfect andettae always crystal imperfections in
the crystal lattice, such as impurities and defestsich scatter phonons because they
partially destroy the perfect periodicity of theystal. At very low temperature (say
below10°K), both phonon-phonon and phonon-imperfection siollis become
ineffective, because, in the former case, thereoahg a few phonons present, and in the
latter the few phonons which are excited at this temperature are long-wavelength
ones. These are not effectively scattered by abjeaeth as impurities, which are much
smaller in size than the wavelength. In the lowgerature region, the primary scattering
mechanism is the external boundary of the specimbith leads to the so-calleilzeor
geometrical effectsThis mechanism becomes effective because the watbke of the
excited phonons are very long - comparable, in, facthe size of the specimen. The
mean free path here lis- L, whereL is roughly equal to the diameter of the specimen,
and is therefore independent of temperature.
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4.0 Conclusion

There are two contributions to thermal propertiesadids: one comes fropphonons(or
lattice vibrations) and another froabectrons.In most solids, the energy given to lattice
vibrations is the dominant contribution to specifeat.

50 Summary

Lattice heat capacity is the contribution of phonon tot lva@acity

Debye model at low temperature is proportionalto T

Dulong Petit law results iGv = 3Nkg for N atoms

Einstein model is used to approximate the optieal pf the phonon spectrum
Changing the momentum of the phonon which is nesibte for phonon
scattering at high temperatures is known asithilapp process

6.0 Tutor marked assignment

Q1. Using the dispersion relation for the monatomiedinlattice oN atoms with nearest
neighbor interactions, show that the density ofatilonal modes is given by

2N 1 . .
D(w) = ————= Werew,, is the maximum frequency
T 2 ) m
w3, -w

Q2. Inthe Debye approximation, show that the meanreqdigplacement of an atom at
absolute zero is

<R >-_ 812 pv2

where v is the velocity of soundEstimate this value for C#f =

hw% 3
o 343K, p = 8920 kg/m, v = 3570 m/s).
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MODULE 3 FREE ELECTRON FERMI GAS

Unit 1 Free Electron Theory of Metals
Unit 2 Electronic Transfer
Unit 3 Energy Band Theory
Electron Dynamics
Unit 5 Fermi Surfaces
UNIT 1 FREE ELECTRON THEORY OF METALS
CONTENT
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4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0 Further Reading/References

1.0 Introduction

The free electron theory of metals refers to theeci which the atomic valance
electrons are treated as if they are free ratham theing bound to the lattice points.
Our assumption amounts to supposing that the eleztmove in a uniform potential

rather than the true periodic potential provided thg positive ions. The basic

assumption of the theory is that a metal is eqeiviato a gas of free electrons in an
otherwise empty box.

2.0 Objective

. To revise the free electron gas (FEG) model andraggons made.

. To understand how this simple model can be usedetive equations heat
capacity of the free electron.

o To employ the time-independent Schrodinger equdtaterive the electron

wave functions and energies.
3.0 Definition

A free electron model is the simplest way to repn¢she electronic structure of
metals.
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3.1 Free electron model

A free electron model is the simplest way to repnéshe electronic structure of
metals. Although the free electron model is a gmearsimplification of the reality,
surprisingly in many cases it works pretty well, that it is able to describe many
important properties of metals. According to thisdel, the valence electrons of the
constituent atoms of the crystal become conducktecttrons and travel freely
throughout the crystal. Therefore, within this miode neglect the interaction of
conduction electrons with ions of the lattice artk tinteraction between the
conduction electrons. In this sense we are talkingut afree electron gasHowever,
there is a principle difference between the freectebn gas and ordinary gas of
molecules. First, electrons are charged particdleégrefore, in order to maintain the
charge neutralityof the whole crystal, we need to include positiwes. This is done
within thejelly mode] according to which the positive charge of ionsnseared out
uniformly throughout the crystal. This positive kgoound maintains the charge
neutrality but does not exert any field on the &tats. lons form a uniform jelly into
which electrons move. Second important propertyhef free electron gas is that it
should meet the Pauli Exclusion Principle, whichdie to important consequences.

3.2 One-dimension

We consider first a free electron gas in one dinmmdVe assume that an electron of
massm is confined to a lengtl by infinite potential barriers. The wave function
Y, (x) of the electron is a solution of the Schrodingeuagmpn, Hy(x) = EY(x)
whereEnis the energy of electron in the orbital. Sinceam assume that the potential
lies at zero, the Hamiltoniat includes only the kinetic energy so that

p? h? d? 1.1
Hl/)n(x) - %lpn(x) - _%Wlpn(x) - Enlpn(x)
Note that this is a one-electron equation, whiclamsethat we neglect the electron-
electron interactions. We use the tegrbital to describe the solution of this equation.
Since thap,,(x) is a continuous function and is equal to zero bdyibe length., the
boundary conditions for the wave function grg(0) = y,,(L) = 0. The solution of
Eq. (1.1) is therefore

Pa () = Asin () x 12

whereA is a constant andis an integer. Substituting (1.2) into (1.1) weabtthe
eigenvalues

E = ﬁ_z(ﬂ)z 1.3

n 2m \ L

These solutions correspond to standing waves wiifferent number of nodes within
the potential well as is shown in Fig.1.1
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e BmETgy lovels

Cuantsm mmnber; n

Fig.1.1First three energy levels and wave-functions ata £lectron of masa
confined to a line of length.(Kittel, 1979).

Now we need to accommodafd valence electrons in these quantum states.
According to the Pauli Exclusion Principle no twlearons can have their quantum
number identical. That is, each electronic quanstate can be occupied by at most
one electron. The electronic state in a 1D solicdharacterized by two quantum
numbers that are and ms, wheren is the positive integer anaks is the magnetic
guantum number such thats = +%2 according to spin orientation.

Therefore, each orbital labeled by the quantum remmbcan accommodate two
electrons, one with spin up and one with spin dowentation.

Let np denote the highest filled energy level, where vegtdilling the levels from the
bottom (n = 1) and continue filling higher levels with electsoantil allN electrons
are accommodated. It is convenient to suppose Kh& an even number. The
condition2n; = N determinesi; the value ofn for the uppermost filled level. The
energy of the highest occupied level is called Begmi energy¥. For one -
dimensional system & electrons we can defirfg;, using Eq. (1.3),

"2 (7N 2
Ep = _(_) 1.4
2m \ 2L

In metals the value of the Fermi energy is of ttaeoof 5 eV. The ground state of the
N electron system is illustrated in Fig.1.2 a: Akthlectronic levels are filled up to
the Fermi energy. All the levels above are empty.
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{a} b}
Fig. 1.2(a) Occupation of energy levels according to thaliPexclusion principle,
(b) The distribution functiof(E), at T = 0°K andT> 0°K.

3.3 Fermi distribution

This is the ground state of tiNeelectron system at absolute zero. What happehs if t
temperature is increased? The kinetic energy of @leetron gas increases with
temperature. Therefore, some energy levels becaroep@ed which were vacant at
zero temperature, and some levels become vacachwiere occupied at absolute
zero. The distribution of electrons among the Isvisl usually described by the
distribution functionf (E), which is defined as the probability that the legeis
occupied by an electron. Thus if the level is aalyaempty, thenf (E) = 0, while if

it is certainly full, thenf(E) = 1. In general,f(E) has a value between zero and
unity. It follows from the preceding discussion ttlihe distribution functions for
electrons aT = 0°K has the form

1 E < Ey
= ! (1.5)
f(E) {0, E < Ey

That is, all levels belovi; are completely filled, and all those abdyeare
completely empty. This function is plotted in Fig2(b), which shows the
discontinuity at the Fermi energy.

When the system is heateB>0°K), thermal energy excites the electrons. Howgever
all the electrons do not share this energy equaiywould be the case in the classical
treatment, because the electrons lying well belogy Eermi levelEr cannot absorb
energy. If they did so, they would move to a higlesel, which would be already
occupied, and hence the exclusion principle wo@diblated. Recall in this context
that the energy which an electron may absorb thiynsaof the orderk;T (= 0.025

eV at room temperature), which is much smaller tanthis being of the order of 5
eV. Therefore only those electrons close to theniFvel can be excited, because the
levels aboveE, are empty, and hence when those electrons movehighar level
there is no violation of the exclusion principlehus only these electrons which are
small fraction of the total number - are capablebefng thermally excited. The
distribution function at non-zero temperature ivegi by theFermi distribution
function The Fermi distribution function determines thelmbility that an orbital of
energyE is occupied at thermal equilibrium.
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1
f(E) = o(E— m/kpT) 4 1

(1.6)

This function is also plotted in Fig.1.2(b), whishows that it is substantially the
same as the distribution at= 0°K, except very close to the Fermi level, wheoene

of the electrons are excited from beldiy to above it. The quantity is called the
chemical potential. The chemical potential can btenined in a way that the total

number of electrons in the system is equdl.tét absolute zerg. = E.
3.3  Three —dimension

The Schrédinger equation in the three dimensiokestéhe form

HP() = L) = -2 vp0) = - (S + 2+ 2 ) () = Bp(@) (1.7)

2m 2m \9x?2

If the electrons are confined to a cube of eldgehe solution is the standing wave

Y(r) = Asin (% x) sin (nTny y) sin (mZZ Z) (1.8)
wheren, n, , andn, are positive integers.

In many cases, however, it is convenient to intoedperiodic boundary conditions, as
we did for phonons. The advantage of this desonipts that we assume that our
crystal is infinite and disregard the influencetlod outer boundaries of the crystal on
the solution. We require then that our wave functie periodic inx, y, and z

directions with period., so that (1.9)

Y(x+Lyz)=9kxy,2),
and similarly for they andz coordinates. The solution of the Schrodinger equaq.

(1.7) which satisfies these boundary conditionsthadorm of the traveling plane
wave:

Y, (r) = Aexp(ik.1), (1.10)

provided that the component of the wave vektare determined from

_ 2mny _ 21y, —
kx - ) ky - _, kZ -

L L

2mn,
L

(1.11)

wheren, , n,, andn, are positive or negative integers.
If we now substitute this solution to Eq. (1.7) al#ain for the energies of the orbital
with the wave vectok

h?k?
2m

2
Ey =2 (I3 + k5 + k2) (1.12)

The wave functions equations (1.10) are the eigarifons of the momentum
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P = —ihV this can be readily seen by differentiating (1.10):

pYi (1) = —ihV, (r) = hky, (1) (1.13)

The eigenvalues of the momentuniuls. The velocity of the electron is defined by
=p/m= hk/m.

In the ground state a system WNfelectrons occupies states with lowest possible
energies. Therefore all the occupied states ligléna in k space. The energy at
the surface of this sphere is the Fermi enBggyhe magnitude of the wave vectgr

and the Fermi energy are related by the followiggagion:

h2k?
E. = F 1.14
F= (1.14)

The Fermi energy and the Fermi wave vector (momrmhtare determined by the
number of valence electrons in the system. In oi@énd the relationship betweéh
andkr we need to count the total number of orbitals sphere of radiug; which
should be equal ttN. There are two available spin states for a givenos k,, k,
andk,. The volume in th&k space which occupies this state is equéRrto/ L)3.

Thus in the sphere ¢f™#/,) the total number of states is

4nk,3,~/3_ Vo

ek =N (1.15)

where the factor 2 comes from the spin degenerdugn

k,;:(?’ﬂ;lv)l/3 (1.16)

this depends only of the particle concentration. Mv&in then for the Fermi energy:

h (3n2N)2/3

Ep=——\— (1.17)
and the Fermi velocity
h (3m2N\"> (1.18)
Vg = —
Fom\ v

An important quantity which characterizes electcoproperties of a solid is the
density of stateswhich is thenumber of electronic states per unit energy ranbe
find it we use Eq.(1.17) and write the total numbkorbitals of energx E :

N(E) = — (sz)3/2 (1.19)

3m2 \ K2
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The density of states is then

3/2
D(E) = Z—Z = ZV?(Z;—T) E1/2 (1.20)
or equivalently
3N
D(E) = = (1.21)

So within a factor of the order of unity, the numbéstates per unit energy interval at
the Fermi energ® (Er), is the total number of conduction electrons dididyy the
Fermi energy.

The density of states normalized in such a waytti@atntegral

Ep

N=f D(E)dE (1.22)

0

gives the total number of electrons in the syst&tmon-zero temperature we should
take into account the Fermi distribution functiantkat

o0}

N = f D(E)f(E)dE (1.23)

0
This expression also determines the chemical patent
3.5 Heat capacity

The question that caused the greatest difficultythia early development of the
electron theory of metals concerns the heat capaditthe conduction electrons.
Classical statistical mechanics predicts that @ frarticle should have a heat capacity
of3/,ks, Wherekp is the Boltzmann constant. N atoms each give one valence
electron to the electron gas and the electrondrasty mobile, then the electronic
contribution to the heat capacity should3/gedk3, just as for the atoms of a
monatomic gas. But the observed electronic coriohuat room temperature is
usually less than 0.01 of this value. This discnegawas resolved only upon the
discovery of the Pauli Exclusion Principle and Ee¥mi distribution function. When
we heat the specimen from absolute zero not evepgren gains an energykzTas
expected classically, but only those electronsgciviiave the energy within an energy
range kzT of the Fermi level, can be excited thermally. Thesectrons gain an
energy, which is itself of the orderkgfT, as in Fig. 3. This gives a qualitative
solution to the problem of the heat capacity of¢haduction electron gas. N is the
total number of electrons, only a fraction of theler of kz;T/Er can be excited
thermally at temperaturg, because only these lie within an energy range ebtider
of kT of the top of the energy distribution. Each of thes, T/EF electrons has a

thermal energy of the order ®T. The total electronic thermal kinetic enetdys of
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ar
Nkg (kB T/EF)and is directly proportional t@, in agreement with the experimental

results discussed in the following section. At rotamperatureC is smaller than the
classical value: Nk by a factor 0.01 or less, f6f~5 x 10*k

We now derive a quantitative expression for theted@ic heat capacity valid at low
temperatureg ;T < Ep. The total energy of a system Mfelectrons at temperatufie
is

the order OUE(NkBT/EF)kBT. The electronic heat capacity is,, ==

[oe)

U= f ED(E)f(E,T)dE (1.24)
0
Where f g, T) is the Fermi distribution function arid (E) is the density of states.
The heat capacity can be found by differentiatings tequation with respect to
temperature. Since only the distriQution functi@peinds on temperature we obtain

dU df (E,T)
L= a7 ]ED(E)—T (1.25)
0

It is more convenient to represent this result different form:

Ce

[oe)

1.26
= [E - LD ar (20

Eq. (1.26) is equivalent to Eq. (1.25) due to thet fvhich follows from Eq. (1.22):

df (E,T) JE

— (1.27)

0=E dN—E jD(E)
~TFar T F
0
Since we are interested only temperatures for whjdh <« Erthe derivativedf /dTis
large only at the energies which lie very clos¢hi® Fermi energy. Therefore, we can
ignore the variation oD (E) under the integral and take it outside the irdadrat the
Fermi energy, so that

df (E T)

a—D@ﬁf@ gy (1.28)

We also ignore the variation of the chemical pagmnwith temperature and assume
thatu = Er , which is good approximation at room temperatunre laelow. Then

df(ET) _ E—Ep el(E-Ep)/kgT]

— . (1.29)
dT kpT? [e[(E_EF)/kBT]]
Eq. (1.28) can then be rewritten as
(E- Ep/kpT) x
Co = D(E) [P EEE 2 qp = p(Ey) [©,  EUEDT_ gy (1.30)

kpT? [(E—EF)/kBT ] Ep/kpT kpT? (e*+1)2
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Taking into account thakz>>kzT, we can put the low integration limit to minus
infinity and obtain

C, = D(EKET [ 22 dx = = D(Ep)kET
et = DERKT |_ o, oy 4% = 5 D(Erpdks (1.31)
For a free electron gas we should use Eg. (1.21h#odensity of states to finally
obtain
_r T
Cel = 7NkB /TF' (1.32)

where we defined the Fermi temperatilze= i—p . This is similar to what we expected
B

to obtain according to the qualitative argument®giin the beginning of this section.
Experimentally the heat capacity at temperaturexchmbelow both the Debye
temperature and the Fermi temperature can be exgsgsin the form:

C = Cel + Cph = aTl + ,BT?’ (133)

The electronic term is dominant at sufficiently ltemperatures. The constantgnd
B can be obtained by fitting the experimental data.

4.0 Conclusion

The classical free electron theory is an attempég@ard the valence electrons in metal
as the non-interacting particles of an ideal gdme ®nly difference between this gas
of electrons and any other ideal gas defined bgtidgrtheory is that the particles are
charged.

5.0 Summary

o The energy of the highest occupied level is calhed-ermi energy

o Variouselectronics states of the crystals can be obtaimedigh the
application  of Schrodinger’s wave equation.

° The total energy of a systemMfelectrons at temperatufes

o0}

U= f ED(E)f(E, T)dE

0
6.0  Tutor marked assignment

Q1. Consider the free electron energy bands of anrgstal lattice in the reduced
zone scheme in which dils are transformed to lie in the first Brillouinren
Plot roughly in the [111] direction the energiesatifbands up to six times the
lowest band energy at the zone boundary at(2r/a)(Y2,%2,%2). Explain what
happens with these bands in the presence of a evgsiial potential.

Q2. Suppose that the crystal potential in a one-dinmradi lattice of lattice
constanta is composed of a series of rectangular wells wisigiround the
atom. Suppose that the depth of each Weﬂloiand its widtha/5.
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a. Calculate the values of the first three engays. Compare the magnitudes of
these gaps.
b. Evaluate these gaps for the casblooi 5eV anda = 4A.
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1.0 Introduction

In this unit we are going to study how the cladsite electron theory developed by
Lorentz, Drude and Debye uses kinetic theory toutate the transport properties of
the free electron of a gas including electrical Hratmal conductivity.

2.0

3.0

Objective

To explain the Drude model of the thermal conduiisti of solid

To explain motion in Magnetic field in terms of €gtron resonance and
Hall Effect

Definition

Electronic transfer is the determination of thermm@ conductivity of electrons
treated as classical particles.

3.1

Drude model

The simplest treatment of the electrical conduttiwas given by Drude. There are
four major assumptions within the Drude model.

Electrons are treated as classical particles wittan free-electron

approximation. Thus, in the absence of externatteleagnetic fields each
electron is taken to move uniformly in a straiglme| neglecting the

interactions with other electrons and ions. In finesence of external fields
each electron is taken to move according to Newtlam's of motion.

Electrons move free only between collisions withatgring centers.

Collisions, as in kinetic theory, are instantaneewsnts that abruptly alter the
velocity of an electron. Drude attributed themHhe &lectrons scattering by ion
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cores. However, as we will see later, this is nabaect picture of electron
scattering on ordered periodic structures. A paldic type of scattering
centers does not matter in the Drude model. An rataleding of metallic

conduction can be achieved by simply assumingttiere issomescattering

mechanism, without inquiring too closely into jugtat that mechanism might
be.

An electron experiences a collision, resulting im abrupt change in its
velocity, with a probability per unit timg'z. This implies that the probability
of an electron undergoing a collision in any inf@simal time interval of
length dt is justdt/t. The timet is therefore an average time between the
two consecutive scattering events. It is knownttaescollision time(relaxation
time), it plays a fundamental role in the theoryroétallic conduction. It
follows from this assumption that an electron pitla random at a given
moment will, on the average, travel for a time tooe its next collision. The
relaxation time t is taken to be independent ofedectron's position and
velocity.

Electrons are assumed to achieve thermal equifibsuth their surroundings

only through collisions. These collisions are assdnto maintain local

thermo-dynamic equilibrium in a particularly simphay: immediately after

each collision an electron is taken to emerge witkelocity that is not related
to its velocity just before the collision, but ramdly directed and with a speed
appropriate to the temperature prevailing at tha&celwhere the collision

occurred.

Now we consider the application of the Drude modet electrical
conductivity in a metal. According t®hm's law,the currentl flowing in a
wire (Fig 2.1) is proportional to the potential drg=V>-V1 along the wireV

= IR, whereR, the resistance of the wire, depends on its dimessit is
much more convenient to express tldm's lawin a form which is
independent of the dimensions of the wire becalsset factors are irrelevant
to the basic physics of the conduction We defireedbnductivity which is the
proportionality constant between the current dgrjsénd the electric fielde

at a point in the metal:

Vs I 14
/,-4 ) f— )
Vi >
L

Fig. 2.1: Current flowing in a wire (After www.p&iedu/kwng.phy/525/lec/lecture-
8)

j =oE (2.1)
The current density is a vector, parallel to the flow of charge, whosagnitude is

the amount of charge per unit time crossing a arga perpendicular to the flow.
Thus if a uniform current flows through a wire of length and cross-sectional area
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A, the current density will be=!/, Since the potential drop along the wire will
beV = EL Eq. (2.1) givesl/A=cVI/L, and henceR = L/cA =pL/A, here we have
introduced resistivityp=1/c. Unlike R, o andp is a property of the material, since it
does not depend on the shape and size. Now we tovaa®presss is terms of the
microscopic properties using the Drude modeh éfectrons per unit volume all move
with velocity v, then the current density they give rise to wid parallel tov.
Furthermore, in a timdt the electrons will advance by a distanck in the direction
of v, so thatn(vdt)A electrons will cross an aréaperpendicular to the direction of
flow. Since each electron carries a chamyehe charge crossingin the timedt will
be-nevAdt and hence the current density is

Jj = nev. (2.2)

At any point in a metal, electrons are always mgyuma variety of directions with a
variety of thermal energies. The net current dgnsithus given by Eqg. (2.2), wheve

is the average electronic velocity dnift velocity. In the absence of an electric field,
electrons are as likely to be moving in any onedtion as in any othev,averages to
zero, and, as expected, there is no net electnemiudensity. In the presence of a
field E, however, there will be a drift velocity directeghposite to the field (the
electronic charge being negative), which we can mgm as follows. Consider a
typical electron at time zero. Létbe the time elapsed since its last collision. Its
velocity at time zero will be its velociff, immediately after that collision plus the

additional velocity— eEt/m it has subsequently acquired. Since we assumeathat
electron emerges from a collision in a random dioeg there will be no contribution
from v, to the average electronic velocity, which must ¢fi@e be given entirely by

the average of eEt/mHowever, the average ofs the relaxation time. Therefore

Vavg - _ eEt/m (2.3)
j= — nirE (2.4)

The conductivity is, therefore, given by

ne?t (2.5)

m

o =

We see that the conductivity is proportional to tlemsity of electrons, which is not
surprising since the higher the number of carrigre, more the current density. The
conductivity is inversely proportional to the masscause the mass determine the
acceleration of an electron in electric field. Tgr@portionality tot follows because

T is the time between two consecutive collisions.réfare, the larger is, the more
time for electron to be accelerated between thismols and consequently the larger
the drift velocity. The values of relaxation timancbe obtained from the measured
values of electrical conductivity. For example abm temperature the resistivity of
many metals lies in the range of 1{10cm. The corresponding relaxation time is of
the order ofl0 — 14 s. In this discussion of electrical conductivity weeated
electrons on a classical basis. How are the resuligified when the quantum
mechanics is taken into account? Let us refer go2B3. In the absence of an electric
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field, the Fermi sphere is centred at the origig.(2.3a). The various electrons are all
moving - some at very high speeds - and they dadiyidual currents. But the total
current of the system is zero, because, for evlagtren at velocity there exists
another electron with velocity-and the sum of their two currents is zero. Ths th
total current vanishes due to pair wise cancelhatibthe electron currents.

Drinpiaced 8, .
Freas m
e,
e,
NN
i "

@ {5}

Fig.2.2:(a) The Fermi sphere at equilibrium, (b) Displacetdd the Fermi sphere
due to an electric field (After www.pa.uk.edu/kwplgy/525/lec/lecture-8)

The situation changes when a field is appliedhédffield is in the positive-direction,
each electron acquires a drift velocity, as givgrEly. (2.2). Thus the whole Fermi
sphere is displaced to the left, as shown in Rig(B). Although the displacement is
very small and although the great majority of thex&ons still cancel each other pair
wise, some electrons - in the shaded crescentiffighre -remain uncompensated. It
is these electrons which produce the observed muifée very small displacement is
due to a relatively small drift velocity. If we asse that the electric field is 0.1V/cm,
we obtain the drift velocity of 1cm/s, which is By orders in magnitude smaller the
Fermi velocity of electrons.

Let us estimate the current density. The fractidn etectrons which remain
uncompensated is approximatelfvr. The concentration of these electrons is
thereforen(v/vp)and since each electron has a velocity of appraeiyng., the
current density is given by

j= —en(v/vg)Vy = —nev (2.6)

This is the same expression we obtained beforerefdre, formally the conductivity
is expressed by the same formula (2.5). Howevar, attual picture of electrical
conduction is thus quite different from the claakigne. In the classical picture, we
assumed that the current is carried equally beglelttrons, each moving with a very
small drift velocityv. In the quantum-mechanical picture the currentisied only by
very small fraction of electrons, all moving withet Fermi velocity. The relaxation
time is determined only by electrons at the Fermifaxe, because only these
electrons can contribute to the transport proper8®th approaches lead to the same
result, but the latter is conceptually the moreusate. Since only electrons at the
Fermi surface contribute to the conductance, we define the mean free path of
electrons a$ = tvy. We can make an estimate of the mean free patiméial at
room temperature. This estimate gives a value 681®o it is of the order of a few
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tens inter atomic distances. At low temperaturesvésy pure metals the mean free
path can be made as high as a few cm.
3.2  The origin of collision time

We see that between two collisions, the electramels a distance of more than 20
times the inter atomic distance. This is much lardp@an one would expect if the
electron reallydid collide with the ions whenever it passed them. Plaisadox can be
explained only using quantum concepts accordingicch an electron has a wave
character. It is well known from the theory of wauepagation in periodic structures
that, when a wave passes through a periodic latiicecontinues propagating
indefinitely without scattering. The effect of tteoms in the lattice is to absorb
energy from the wave and radiate it back, so thatret result is that the wave
continues without modification in either direction intensity. Therefore we see that,
if the ions form a perfect lattice, there is nolisadn at all - that is| = « - and hence

T = o0, Which in turn leads to infinite conductivity. ias been shown, however, that
the observedlis about10? A. The finiteness o must thus be due to the deviation of
the lattice from perfect periodicity; this happeegher because of (1) thermal
vibration of the ions, or because of (2) the presenf imperfections or foreign
impurities.

In order to consider their contribution we examihe temperature dependence of the
electrical conductivity. The electrical conductwvinf a metal varies with temperature
in a characteristic manner. This variation is ugugdiscussed in terms of the behavior
of the resistivityp versusT. Figure 2.3 shows the observed curve for NaT At0°K,

p has a smallconstantvalue; above thatp increases withT, slowly at first, but
afterwardp increases linearly witfi. The linear behavior continues essentially until
the melting point is reached. This pattern is fekol by most metals, and usually
room temperature falls into the linear range.

3
g
o

WEV (B0

Y 2R

Fig. 2.3The normalized resistivity (T)/p (290°K) versud for Na in the low-
temperature region (a), and at higher temperatie@\fter Kittel, 1979)
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We want to explain this behavior in terms of theide formula. Recalling that =

o~ ! we have
m

pP= = (2.7
As we have discussed earliet Which enters equation (2.7), is the probabilityttoeé
electron scattering per unit time. Thusg & 10~ s, then the electron undergoes
10 collisions in one second. We found that the electrndergoes collisions only
because the lattice is not perfectly regular. Weugrthe deviations from a perfect
lattice into two classes. a) Lattice vibrations dpbns) of the ions around their
equilibrium position due to thermal excitation bétions. (b) All static imperfections,
such as impurities or crystal defects. Of thiselagiroup we shall take impurities as an
example. The total probability for an electron ®dzattered in a unit time is the sum
of the probabilities of scattering by phonons agdrbpurities. This is because these
two mechanisms are assumed to act independenttyefidie we may write

.1 (28)

T T; Ty

Where the first term on the right is due to imgasgtand the second is due to phonons.
The scattering by impurities is essentially indegent of temperature, whereas the
scattering by phonons is temperature dependentubecthe number of phonons

increases with temperature. When equation (2.8)listituted into equation (2.7), we

readily find

m m
p=pit Pph = ne?t; + ne2tpp (2.9)
We see thap has split into two terms. A term; due to scattering by impurities,
which is independent of, is called theresidual resistivity Another termp,,, (T)is
due to scattering by phonons; hence it is temperatiependent. Sometimes it is
called thdattice resistivity

At very low T, scattering by phonons is negligible because timplitudes of
oscillation are very small; in that regiar,, > o, p,, > 0and hencep = p; is a
constant. This is in agreement with Fig.2.3. Asncreases, scattering by phonons
becomes more effective, apgh(T),) increases; this is whyp increases. WhefT
becomes sufficiently large, scattering by phonoosidates andp ~ppr(T). The
statement thap can be split into two parts, is known as tatthiessen ruleThis
rule is embodied in (2.9). In general, Matthiessen rulgredicts that if there are two
distinguishable sources of scattering (like in ¢hee above — phonons and impurities)
the resistivity is the sum of the resistivities dadhe first and the second mechanism
of scattering. The Matthiessen rule is sort of emoal observation which can be used
for a qualitative understanding of the contributidrom different scattering
mechanisms. However, one must always bear in niagossibility a failure of this
rule. In particular, in the case when the relaxatiome depends on the wave vedtor
the Matthiessen rule becomes invalid.

Now let us derive approximate expressionstfandz,, using arguments from the

kinetic theory of gases. Consider first the cadiisdf electrons with impurities. We
write

108



PHL 307 SOLID STATE PHYSICS 1

l.
7=t (2.10)

Wherel; is the mean free path for collision with impuritiés order to find the mean
free path we shall assume, for simplicity, that todlision is of the hard-spheres
(billiard-ball) type and introduce thecattering cross sectioof an impurityZi which

is the area an impurity atom presents to the imtidéectron. Then, we can argue that
the product of the mean free path and the croggsenf impurityliZi , Is equal

to the average volume per impurit)y,i, wheren; is the impurity concentration, i.e.

and therefore

[, = — (212

The scattering cross secti@nis of the same magnitude as the actual geometieal
of the impurity atom. That isi ~ IA= Calculations of the exact value Bf require
guantum scattering theory. By substituting EqslZ®.and Eqgs. (2.10) into (2.9), we
find

mvg

pl- = ni Zi (2 13)

ne?
As expectedp; is proportional tar; the concentration of impurities. Calculating
ppn is much more difficult, but equations similar tol@) and (2.12) still hold. In
particular, one may write

__1 2.14
Iph - naza ( )
wheren, is the concentration of the host atoms in thedaftandzais the scattering
cross section per atom. We should note herehlaas no relation to the geometrical
cross section of the atom. Rather it is the areagmted by the thermally fluctuating
atom to the passing electron. Suppose that thardistof deviation from equilibrium
is X, then the average scattering cross section is

>« (x?) (2.15)

where (x?) is the average of!. We can easily estimate this value at high
temperatures, when the classical approach is v8lidce the ion is a harmonic
oscillator, the valuéx?) is proportional to the average of its potentizmgy is equal

to half the total energy. Thus,

Yoo (x?) 22T (2.16)
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whereC is inter atomic force constant introduced earliedt e used the formula for
the energy of a classical oscillator. We see tlogegthat at high temperatures the
resistivity is linear irr,

b o MVETa K @17)
ph ne? 2C

which is in agreement with experiment.

In the low-temperature range the lattice resistiwries with temperature in a
different way. Using the Debye model at low temp@e range one can find
thatp,,~T*>.

3.3  Thermal conductivity

When the ends of a metallic wire are at differemyperatures, heat flows from the hot
to the cold end. The basic experimental fact i$ tihe heat current densitj, i.e. the
amount of thermal energy crossing a unit area pdértime is proportional to the
temperature gradient

- g
Jo= K (2.18)

whereK is the thermal conductivity. In insulators, heatasried entirely by phonons,
but in metals heat may be transported by both relestand phonons. The thermal
conductivityK is therefore equal to the sum of the two contritmsi

K=K, + Ky (2.19

whereK, andK,, refer to electrons and phonons, respectively. Istmuetals, the
contribution of the electrons greatly exceeds tiidhe phonons, because of the great
concentration of electrons. Typicalllgé~102Kph

Fig.2.4: Heat conduction process (Afterwww.pa.uk.edu/kwhg/H25/lec/lecture-8)

The physical process by which heat conduction tpk&se via electrons is illustrated
in Fig.2.4. Electrons at the hot end (to the l&fivel in all directions, but a certain
fraction travel to the right and carry energy t@ ttold end. Similarly, a certain
fraction of the electrons at the cold end (on tightj travel to the left, and carry
energy to the hot end. Since on the average etectabthe hot end are more energetic
than those on the right, a net energy is transpddéehe right, resulting in a current of
heat. Note that heat is transported entirely byteas having the Fermi energy,
because those well below this energy cancel edwr'stcontributions.
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To evaluate the thermal conductivity quantitatively, we use the formuld =
1/3 C.vrl here C,; is the electronic specific heat per unit volumeisvthe Fermi

velocity of electrons| is the mean free path of electrons at the FermiggneéJsing
expression for the heat capacity derived earlierfind

1(n% K3
K=2(ZnZT)v,l (2.20)
3\2 Efp
Noting thatE = 1/2 mvz and thatl/vF = T we can simplify this expression firto
2 2
K = n“nkgtT (2.21)
3m

This expresses thermal conductivity in terms ofdleetronic properties of the metal.
Many of the parameters appearing in the expredsiok were also included in the

expression for electrical conductivityRecalling that = nez/m we find

(2.22)

K l(nkB
o 3

2
—) T =LT
e

We see from here that the ratio of the thermal ootidity to the electrical
conductivity is directly proportional to the tempgirre. This is called th&/iedemann-
Franz law The constant of proportionality, which is called the Lorentz number, is
independent of the particular metal. It dependy onl the universal constantg and

e, should be the same fatl metals. The Lorentz number numerical valuz4s x

1078WQ/K?. This conclusion suggests that the electrical thiedmal conductivities
are intimately related, which is to be expectediceiboth electrical and thermal
current are carried by the same agent: electrons.

Worked example

Solid Ar has anfcc structure with cubic lattice constaat= 5.264, atomic mass
mur = 6.67 X 10726 kg and a Debye temperatutg = 92°K.

a) Estimate the phonon velocity using the Young moslw@Ar, C;; = 1.6 X
10°N /m?2.

b) Using the expressioR = §Cvl in which C is the phonon heat capacity per
unit volume. Find the thermal conductivity, K (imitiof Jm~ts"1K~1) of a

1 mm3 crystal of Ar at1°K, assuming that phonon scattering occurs only at

the boundaries of the sample.
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Solution:
a) The phonon velocity is estimated from the velootyound which is

V= Cll/ = a3611/ since infcc structure there are 4 atoms in a cubic unit
- p~ dmyp

m a4m
— = — , then
3 1 1]
a /4 a3

o= \/5.263 X 1073% x 1.6 X 109Nm?

cell and hences

~ -1
/4 % 6.67 10-26kgm3 ~ 934 ms

b) Since T=1K « 0, =926, we can use the low temperature
approximation for heat capacity. Recall Eq.(5.3vModule 2, unit 5, the heat
capacity of a solid which contains N atoms is given

12m? TH?
Cv = 5 NkB (g)
Dividing the expression by N, we obtain the hegtagaty per unit atom and dividing

the latter b)ﬂ3/4, we obtain the heat capacity per unit volume, Geréfore,

4872k, s T\? 48x3.143x138x 1078 /13
v = — (_) - 3 % 10-30 (_) I 5 ~114x102)
5a Op 5% 5.26% x 10 92/ 'm’K m’K

Since the scattering of phonons is determined bybthundaries of the sample we can
assume that the mean free pathk=id mm and the thermal conductivity is

1
K = 5Covl = 0.33 x 1.14 x 102934 x 1037/ 3 Mgm =35/ .

3.4  Motion in a magnetic field

The application of a magnetic field to a metal givese to several interesting
phenomena due to conduction electrons. dyaotron resonancand theHall Effect
are to be considered

3.4.1 Cyclotron resonance

If a magnetic field is applied to a metal the LdreforceF = —e[E+(v x B)] acts on
each electron. For a perfect metal in the absehekeatric field the equation of
motion takes the form

m% =-evX B (2.23)

If the magnetic field lies along theedirection this results in

dvy (2.24)
dr YWy
dv
d_ty WUy
where
(2.25)
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eB

w,. =
‘" m
is thecyclotron frequencyn Sl system of unitgin CGS w, = eB/mC ). For magnetic
fields of the order of a fewkG the cyclotron frequencies lie in the range of w fe
GHz. For example foB=1kG, the cyclotron frequencyﬂrg:wC/Zﬂzz.SGHz.

Therefore, the magnetic field causes electronsdeenin a counterclockwise circular
fashion with the cyclotron frequency in a planemakto the field.

Suppose now that an electromagnetic signal is gasseugh the slab in a direction
parallel toB, as shown in figure 2.5. The electric field of thignal acts on the
electrons, and some of the energy in the signabsorbed. The rate of absorption is
greatest when the frequency of the signal is exasual to the frequency of the
cyclotron (see Fig.2.5b), i.e.

W = w, (2.26)

Semul Q“

fa}

Fig. 2.5 (a) Cyclotron motion, (b) The absorption coeffidciemersus w(After
www.pa.uk.edu/kwng.phy/525/lec/lecture-8)

This is so because, when this condition holds taeh electron moves with the wave
throughout the cycle, and therefore the absorptiomtinues all through the cycle.
Thus, Eg. (2.26) is the condition foyclotron resonanceOn the other hand, when
Eq. (2.26) is not satisfied, the electron is ingghwith the wave through only a part of
the cycle, during which time it absorbs energy fribva wave. In the remainder of the
cycle, the electron is out of phase and returngggnéo the wave. Cyclotron
resonance is commonly used to measure the eleatnass in metals and
semiconductors. The cyclotron frequency is deteechifrom the absorption curve,
and this value is then substituted in Eqgs. (2.8®valuate the effective mass.

3.4.2 Hall effect

First we derive an equation of motion of an electio applied magnetic and electric
field in the presence of scattering. Assume that the momentum of an electron is
p(t) at timet, let us calculate the momentum per elecppén + dt) an infinitesimal
time dt later. An electron taken at random at tileill have a collision before time
t + dt, with probability dt/t, and will therefore survive to time + dt without
suffering a collision with probabilityl — dt/t. If it experiences no collision,
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however, it simply evolves under the influence loé forceF (due to the spatially
uniform electric and/or magnetic fields) and wilietefore acquire an additional
momentunkdt. The contribution of all those electrons that ad collide between
andt + dt to the momentum per electron at time- dt is the fraction(1 — dt/t)
they constitute of all electrons, times their ageranomentum per electrgn(t) +
Fdt. Thus, neglecting the moment the contribution p@¢ + dt) from those
electrons thatlo undergo a collision in the time betweand + dt, we have

p(t+dt) = (1- <) (p(V) + Fdb) (2.27)
Note that if the force is not the same for evegcebn it should be averaged.

The correction to (2.27) due to those electronstiage had a collision in the interval
tto t +dt is only of the order @tlt)?. To see this, first note that such electrons
constitute a fractiondt/t of the total number of electrons. Furthermore, esitize
electronic velocity (and momentum) is randomly dieel immediately after a
collision, each such electron will contribute toetlaverage momenturp(t +

dt) only to the extent that it has acquired momentusmfthe forceF since its last
collision. Such momentum is acquired over a timéamger thardt, and is therefore
of ordeFdt. Thus the correction to (2.27) is of or(kér/t)Fdt, and does not affect
the terms of linear order ut. We may therefore write

pt+d)—p® _dp _ p_ _P® (2.28)
dt dt T

This simply states that the effect of individua¢atton collisions is to introduce a
damping term into the equation of motion for thenmemtum per electron. We apply
this equation to discuss the Hall Effect in metaséng a free electron model. The
physical process underlying the Hall Effect isstiated in Fig.2.6. Suppose that an
electric curreny, is flowing in a wire in thex-direction, and a magnetic fiel8, is
applied normal to the wire in the z-direction. Wealé show that this leads to an
additional electric field, normal to bofhandB,, that is, in the/-direction. Before the
magnetic field is applied, there is an electricreat flowing in the positivex
direction, which means that the conduction electrare drifting with a velocity in
the negativex-direction. When the magnetic field is applied, therentz forceF =
—e(v x B) causes the electrons to bend downward, as showheirfigure. As a
result, electrons accumulate on the lower surfaceducing a net negative charge
there. Simultaneously a net positive charge appaaithe upper surface, because of
the deficiency of electrons there. This combinatdrpositive and negative surface
charges creates a downward electric #igjdwhich is called thédall field.
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P i
Hall
Fig. 2.6: Origin of the Hall field and Hall Effect

(After www.pa.uk.edu/kwng.phy/525/lec/lecture-8)

Let us evaluate this Hall field. We start from tlegentz force acting on each electron
F =-e[E+ (v xB)]. According to (2.28) we find

m% = —e|E+v XB| — m?> (2.29)
dt T

wherer is the relaxation time. Note that the Lorentz fascaot the same for all
electrons because they move with different velesjttherefore it is averaged over
ensemble. We are looking for the solution of tlgjgagion in the steady state when the

current is independent of time and therefdf‘é/dt =0.
v
0= —eE, — eBv, — me
y (2.30)
— Yy
0= —eE, +eBv, — m-—=

We multiply these equations byetr/mto introduce current densities components
Jx = —env, andj, = —env,, so that

oEy = wcTy + jx
(2.31)
oE), = —w.Tjy + j,

Whereo is the Drude conductivity in the absence of a magrield. In the steady
state there is no electric current flowing perpeualdir to the wire. Therefore the Hall
field E; =Ey can be determined by the requirement that therexddransverse
currenj,.. Settingj, to zero in the second equation of (2.31) we firat th

E, = — (“’CT) o= — n—le j.B (2.32)

g

The proportionality constantl/,e , is known as thefall constantand is usually
denoted byRy.. Therefore,
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Ry = —= (2.33)

This is a very striking result, which predicts thla¢ Hall coefficient depends on no
parameters of the metal except the density of exarriSinceRy is inversely
proportional to the electron concentrationit follows that we can determine by
measuring the Hall field. Since we have alreadgudatedn assuming that the atomic
valence electrons become the metallic conductiectrns, a measurement of the
Hall constant provides a direct test of the vayidit this assumption.

4.0 Conclusion

The electrical and thermal conductivity of the fedectron were obtained through the
Drude model.

5.0 Summary

° Drude model provided the simplest treatment of telead conduction of a
metal

o The splitting up of resistivity to two terms (dteeimpurities and phonon) is
known as Matthiessen rule

o Resistivity ((pph) due to scattering of phonons which is independént o

temperature is known as lattice resistivity
° Resistivity (p;) due to scattering by impurities which is indegent of
temperature is known as residual resistivity

o The cyclotron resonan@nd the Hall Effecare phenomena due to application
of a magnetic field to a metal.

6.0  Tutor marked assignment

Q1. A Cuwire of diameter 2mm carries 10A of currdfihd the drift velocity

Q2. If the Fermi energy of Na is 3.1 eV and the eleatr conductivity is
2.1x1G7 esu at OK, calculate the relaxation time.

Q3. Using the Drude formula, calculate the mean fpath of K, if its lattice
parameter a = 4.2A. Also calculate the Hall cogffit.
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UNIT 3 ENERGY BAND THEORY
CONTENTS
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3.1 Energy bands
3.2 Periodic potential-
3.3  Weak potential
3.4. Metal and Insulators
4.0 Conclusion
5.0 Summary
6.0  Tutor Marked Assignment
7.0 Further Reading/References

1.0 Introduction

The free electron model gives us a good insiglt many properties of metals, such
as the heat capacity, thermal conductivity andteéat conductivity. However, this
model fails to help us with other important projeest For example, it does not predict
the difference between metals, semiconductors @swlators. It does not explain the
occurrence of positive values of the Hall coefintieAlso the relation between
conduction electrons in the metal and the numbeateEnce electrons in free atoms is
not always correct. We need a more accurate thadrgh would be able to answer
these questions.

2.0 Objective
The objectives of this unit is

To explain the general features of band levels

To explain the periodic potential of an electron

To explain the properties of the Bloch electron

To explain the difference between Metals and Irisuga

3.0 Definition
Energy band is the range of energies possessdeédiyoas in a solid
3.1 Energy band

It is customary to visualize the existence of bamlain energy scale of band structure
scheme, according to which, the energy bands tntbst tightly bound electrons lie
at the bottom, followed by the band of the secomdtrtightly bound electrons, and so
on, till we reach the top of the set of completllf energy bands. The top of the
band of the set is known as thalence bandNext higher energy band is referred to
asconduction bandwhich might be completely empty. The charactirishergy that
separate the occupied from empty states is caledmi energy E and is
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characterized by Fermi level existing between thedaction band and the valence
band. The two bands are separated by energy gatefined by

E,= E.— E, (3.1)
WhereE, and E, are respectively the energy of the bottom of tedaction band
and the top of the valence band. Tevalue for a semiconductor is typically of the
order of 1eV and that for an insulator ise¥. based o the relative positions of
conduction and valence bands, metals may be dkx$sifto two categories. In one,
valence band is completely full and conduction bangartially filled, e.g., Na, 2p
(valence) band is completely full and conductios) (8and is half filled. In the other,
conduction and valence bands overlap each other.r Fexample,
Mg(1s?,2s2, 2p®, 3s2), 3s%(valence) an@p(conduction) bands overlap in energy.

3.2 Periodic Potential

The potential seen by an electron due to the nsaé@n isolated atom of valence z

is _Zez/r, where e is the electronic charge and r the naclezlectron distance
However , the atom in a perfect crystal are arrdnigea regular periodic array,
therefore, we are led to consider the problem oélantron in a potential W) with
the periodicity of the under-lying Bravais lattice.

Ur)=U(r +T) (3.2)
where T is a lattice vector. Qualitatively, a typical crgine potential might be

expected to have a form shown in Fig.3.1, resemglihe individual atomic potentials
as the ion is approached closely and flatteningnotiie region between ions.

\\i/\‘x‘/\\é/\\l/f\
\|f oo

‘/
I

Fig.3.1: The crystal potential seen by the electron (Aftatdk 1979)
Since the scale of periodicity of the potential{U10® cm) is the size of a typical de
Broglie wavelength of an electron, it is essertbalse quantum mechanics in

accounting for the effect of periodicity on electiomotion. Thus we consider the
Hamiltonian.

H@E) = -2 v2+ U@ (3.3)

Using Eq. (3.2) in Eqg. (3.3) leads to

H(r+T)= H(r) (3.4)
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This shows that the Hamiltonian also has the fberiodicity. Hence, to predict the
physical properties of the crystal, one should sdhe following Schrodinger
equation for a single electron

HW) = [-2 v2+ um)|p) = Ep) (35)

in which (r) is a wave function for one electron. Independagecttrons, which obey
a one electron Schrdédinger equation (3.5) with aode& potential, are known as
Bloch electronsin contrast to "free electrons,” to which Blodhatrons reduce when
the periodic potential is identically zero.

Now we discuss general properties of the solutibthe Schrédinger equation (3.5)
taking into account periodicity of the effective tgotial (3.2) and discuss main
properties of Bloch electrons, which follow fromighsolution. We represent the
solution as an expansion over plain waves

P = ) ael (3.6)

k

This expansion in a Fourier series is a naturaég®ization of the free-electron
solution for a zero potential. The summation ir6)3s performed over aK vectors,
which are permitted by the periodic boundary caadg. According to these
conditions the wave function (3.6) should satisfy

Y(x,y,2) = Yx+Lyz)=yYPxy+Lz)= P&y z+L)

(3.7)
So that
2 2Tn 2

wheren,, n,, andn, are positive or negative integers. Note that inegehny (r) is
not periodic in the lattice translation vectors. On ¢ileer hand, according to Eq. (3.2)
the potential energy is periodic, i.e. it is ineeni under a crystal lattice translation.
Therefore, its plane wave expansion will only camtgplane waves with the
periodicity of the lattice. Therefore, only recipab lattice vectors are left in the
Fourier expansion for the potential:

UGr) = Z Ugel6™ (3.9)
G

where the Fourier coefficientds are related tdJ(r) by

Ug = — J e T udr

7 (3.10)

whereV, is the volume of the unit cell. It is easy to de&t indeed the potential
energy represented by (3.9) is periodic in théckatt
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Ur+T) = Z Ugel6UtT) = I€T z Ugel®" = U(r)
G G (3.11)

where the last equation comes from the definition tlme reciprocal lattice
vectorse!T = 1. The values of Fourier componerits for actual crystal potentials
tend to decrease rapidly with increasing magniwfd@. For example, for a Coulomb

potentialU; decreases 315/(;2 .Note that since the potential energy is realRberier
components should satisy ; = Up.

We now substitute (3.6) and (3.9) in Eq. (3.5) abthin:

h2 | | |
—mz K2C et + z z Uy el t+Or = Ez Cee™  (3.12)
k k G K

changing the summation index in the second sumhenldft fromk to k +G this
equation can be rewritten in a form:

Yekr {(%kz —E) Cr + 26 UGCk—G} =0 (3.13)

Since this equation must be satisfied for atlye Fourier coefficients in each separate
term of (3.13) must vanish and therefore

h
<2_k2 >Ck Z UGCk c = =0 (314)

This is a set of linear equations for the coefiitseGk. These equations are nothing
but restatement of the original Schrdodinger equatio the momentum space,
simplified by the fact that the potential is pefiodrhis set of equations does not look
very pleasant because, in principle, an infinitenbar of coefficients should be
determined. However, a careful examination of EB.14) leads to important
consequences.

First, we see that for a fixed valuelothe set of equations (3.14) couples only those
coefficients, whose wave vectors differ frdmby a reciprocal lattice vector. In the
one-dimensional case these are k2#a, kt4n/a, and so on. We can therefore
assume that thke vector belongs to the first Brillouin zone. Thegumial problem is
decoupled tdN independent problemsl(is the total number of atoms in a lattice): for
each allowed value & in the first Brillouin zone. Each such problem lsatutions
that are superposition of plane waves containinly tre wave vectok and wave
vectors differing fronk by the reciprocal lattice vector.

Putting this information back into the expansior6}®f the wave functiony (r), we see
that the wave function will be of the form

121



PHL 307 SOLID STATE PHYSICS 1

Yr(r) = Z Cr—ge'*=Or (3.15)
G

where the summation is performed over the recipilatizce vectors and we introduced
indexk for the wave function. We can rearrange this sb tha

l/]k(r) = eikr Ck_Ge—iGT (316)
2
Or
() = e, (r) (3.17)
where u, (r) = u,(r + T) is a periodic function which is defined by
uk(r) = Z Ck_Ge_iGr (318)
G

Equation (3.17) is known as Bloch theorem, whichypl an important role in
electronic band structure theory. Now we discussimber of important conclusions
which follow from the Bloch theorem.

1. Bloch's theorem introduces a wave vector which plays the same
fundamental role in the general problem of motiora periodic potential
that the free electron wave vectorplays in the free-electron theory. Note,
however, that although the free electron Waveoreistsimply‘”/h, wherep
is the momentum of the electron, in the Bloch dagenot proportional to
the electronic momentum. This is clear on genagedunds, since the
Hamiltonian does not have complete translationalvaiiance in the presence
of a non-constant potential, and therefore itsrestpges  will not be
simultaneous eigenstates of the momentum opefgta@.conclusion is
confirmed by the fact that the momentum operapot,—inv, when acting
onwy(r) gives

— iV (1) = —ihV[e* ()] = hky () — ihe ™V () (3.19)

Which is not, in general, just a constant timgr); i.e., w,(r) is not a momentum
eigenstate. Nevertheless, in many walyss a natural extension @fto the case of a
periodic potential. It is known as tleystal momentunor quasimomentunof the
electron, to emphasize this similarity, but oneudtianot be misled by the name into
thinking thatrk is a momentum.

2 The wave vectok appearing in Bloch's theorem can always be confiogbe
first Brillouin zone (or to any other conveniemtrpitive cell of the reciprocal
lattice). This is because akynot in the first Brillouin zone can be writtes

K =k+G (3.20)
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whereG is a reciprocal lattice vector akddoes lie in the first zone. Sineé” =1
for any reciprocal lattice vector, if the Bloch fierEq. (3.17) holds fok', it will also
hold fork. An example is given below for a nearly free el@ettmodel.

The energyE of free electrons which is plotted verdus Fig 3.2a exhibits a curve in
the familiar parabolic shape. Figure 3.2b showsé#sealt of translations. Segments of
the parabola of Fig.3.2a are cut at the edgeseo¥dhnious zones, and are translated by
multiples of G = 2r/a in order to ensure that the energy is the samenattao
equivalent points. Fig.3.2c displays the shape haf énergy spectrum when we
confine our consideration to the first Brillouinreoonly. The type of representation
used in Fig.3.2c is referred to as tkduced-zone schenm®ecause it specifies all the
needed information, it is the one we shall find tramvenient. The representation of
Fig.3.2 a, known as thextended-zone schenie convenient when we wish to
emphasize the close connection between a crysadiind a free electron. Fig.3.2b
employs the periodic-zone scheme, and is sometimes useful in topological
considerations involving thie space. All these representations are strictly edent;

the use of any particular one is dictated by corerere, and not by any intrinsic
advantages it has over the others.

&
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Fig.3.2Free electron bands withreduced (a), extendee (b) andperiodic-zongc)
schemgAfterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8)

3 An important consequence of the Bloch theorem & dppearance of the
energy bands. All solutions to the Schrodingeragign (3.5) have the Bloch
form wi(r) = e u,(r)where k is fixed andu,(r) has the
periodicity of the Bravais lattice. Subdiig this into the Schrodinger
equation, we find that, (r)is determined by the eigenvalue problem
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HOw (r) = [—j—m (ik + V)% + U(r)] (1) = E(k)uy(r) (3.21)
With boundary condition
u(r) =u(r+7T) (3.22)

Because of the periodic boundary condition we @gard (3.21) as an eigenvalue
problem restricted to a single primitive cell oketlrystal. Because the eigenvalue
problem is set in a fixed finite volume, we expect general grounds to find an
infinite family of solutions withdiscretelyspaced eigenvalues, which we label with
the band indexn. The Bloch function can therefore be denotedvhy(r) which
indicates that each value of the band indeand the vectok specifies an electron
state, or orbital with enerdy, (r). Note that in terms of the eigenvalue problem
specified by (3.21) and (3.22), the wave vedt@ppears only as a parameter in the
HamiltonianH (k). We therefore expect each of the energy levelsgivenk, to vary
continuously ak varies. In this way we arrive at a description lué tevels of an
electron in a periodic potential in terms of a fgnoif continuous functiong,, (). For
eachn, the set of electronic levels specified By(r) is called arenergy bandThe
information contained in these functions for difietn andk is referred to as the
band structureof the solid

4 Number of states in a band.

Thenumber of orbitals in a band within the first Baoillin zone is equal to the number
of unit cells N in the crystalThis is much the same as the statement made in
connection with the number of lattice vibrationabaes, and is proved in a like
manner, by appealing to the boundary conditionsisCler first the one-dimensional
case. The allowed values lbform a uniform mesh whose unit spacing 1gl2 The
number of states inside the first zone, whose lengnr/a, is therefore equal to
(2n/a)l (2r/L) = L/a = N, whereN is the number of unit cells, in agreement with the
assertion made earlier. A similar argument maydeziuo establish the validity of the
statement in two- and three-dimensional latticeBas been shown that each band has
N states inside the first zone. Since each such stateaccommodate at most two
electrons, of opposite spins, in accordance with Bauli Exclusion Principle, it
follows that the maximum number of electrons thatyroccupy a single band 2.
This result is significant, as it will be used idager section to establish the criterion
for predicting whether a solid is going to behaseanetal or an insulator.

5. Now we show that an electron in a level spediby band inder and wave
vectork has a nonvanishing mean velocity, given by
_ dEq (k)
v, (k) = P r (3.23)

To show this we calculate the expectation valuiefderivative of the Hamiltonian H
(k) in EqQ. (3.21) with respect ta
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(‘%V)

Sincev = (—ih/m)V is the velocity operator, this establishes (3.23).

2

aH (k) —i h— (ik + V)
m

(un W un) = <l/}n l/)n)

(3.24)

un) = <un

This is a remarkable fact. It asserts that theeestationary levels for an electron in a
periodic potential in which, in spite of the intetian of the electron with the fixed

lattice of ions, it moves forever without any degation of its mean velocity. This is

in striking contrast to the idea of Drude that istdins were simply encounters
between the electron and a static ion.

3.3 Weak potential
When the potential is zero the solutions of ther&dimger equation (3.14) are plane
waves

E° (k) = % (3.25)

1/Jk(T)— — ik (3.26)

Where the wave function is normalized to the volurhenit cellV.. In the reduced-
zone representation shown in Fig.3.3, for e&ckhere is an infinite number of
solutions which correspond to differedt(and can be labeled by inde as we have
already discussed. Each band in Fig.3.3 corresptndsdifferent value o6 in the
extended scheme.

Fig.3.3: Only those states which have the same k in thet Biillouin zone are
coupled by perturbation (After Kittel, 1979)

Suppose now that a weak potential is switched artoAling to the Schrédinger
equation (3.14) only those states, which diffetGyyare coupled by a perturbation. In
the reduced zone scheme those states haveksanedifferenin (see Fig.3.3). From
guantum mechanics, if the perturbation is small gared to the energy difference
between the states, which are coupled by the fation, we can use the perturbation
theory to calculated wave functions and energyl$ev&ssuming for simplicity that
we are looking for the correction to the energytoé lowest band?(k), the
condition for using the perturbation theory is
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|[E°(k) —E°(k+G)| » U (3.27)

For anyG = 0. According to the perturbation theory the energgiven by

FOO = O + (RN + Kgao AU (o

The first term in Eq. (3.28) is the undisturbedetedectron value for the energy. The
second term is the mean value of the potentidiérstatepy (r) :

(WrlUIYR) = Vicfcqu(T)dT = U, (3.29)

This term gives a constant independerit.dts effect on the spectrum is a rigid shift
by a constant value without causing any changkershape of the energy spectrum.
This term can be set equal to zero. The third ambe rewritten as

1 s . _ 1 i
WRIVIWR) = [ o™ U@ mdr = - [ U(r)e™dr = U (330)

Finally we obtain for the energy:

|Ug|?

E(k) =F0 4+ ZG;#O —Eo(k)—EO(k—G) (331)

The perturbation theory breaks down, however, ms¢hcases when the potential
cannot be considered as a small perturbation. fdppens when the magnitude of the
potential becomes comparable with the energy separaetween the bands, i.e.

|E°(k) —E°(k—G)| < U (3.32)
In th_is_ case we have to include these levels irStteddinger equation and solve it
'?')k(glrgﬂgre specidt points for which the energy levels become degeeesat the
relationship (3.32) holds for any non-zero valué¢hef potential. For thesepoints
E°(k) = E°(k — G) (3.33)
and consequently

|k| = |k — G| (3.34)

The latter conduction implies th&t must lie on a Bragg plane bisecting the line
joining the origin ok space and the reciprocal lattice pdiitas is shown in Fig.3.4.
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Fig. 3.4If |k| = k — G|, then the poirk must lie in the Bragg plane determined®y
(Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8)

Therefore, a weak periodic potential has its meftect on those free electron levels
whose wave vectors are close to ones at which taggBreflection can occur. In
order to find the energy levels and the wave fumgtiof near these points we include
to the equation (3.14) only the two levels: oneclihtorresponds tk and the other
which corresponds th — G assuming thak lies near the Bragg plane:

(Eo(k) - E)CK + UGCk_G = 0

(3.35)
(E°(k— G) — E)Cy_g + U_gCy
These equations have the solution when the detannis equal to zero, i.e.
E°(k) — E Ug “ o
U; E°(k—-G)—E|l~ (3.36)
this leads to the quadratic equation
(E°(k) = E)(E°(k — 6) — E) — |Ugl? (3:37)

The two roots are

E=1(E0) +E°(k — 6) £ [ (E°™) — E°(k — 6))” + IU(;IZ]l/2 (3.38)

These solutions are plotted in Fig.3.4 kgparallel toG.
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¥ 2/Udl

Fig.3.4: Plotof the energy bands given by Eq. (3.38)Kqgrarallel toG.
(Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8)

This results is particularly simple for point lyilng the Bragg plane, since in this case
E°(k) = E°(k — G) we find from (3.38) then that

E=E°k) + |Ug| (3.39)

Thus, at all points in the Bragg plane, one legelniformly raised by}U;|and the
other is uniformly lowered by the same amount. Theans that there are no states in
the energy interval betwedh (k) = E°(k) + |Ug| andE, (k) = E°(k) + |Ug| which
implies the creation of the band gap. The magnitfdbe band gap is equal to twice
the Fourier component of the crystal potential. Wistrate this behavior using a one-
dimensional lattice shown in Fig.3.5. We see thétsg of the bands at each Bragg
plane in the extended-zone scheme (Fig.3.5b). rEsigdts in the splitting of the bands
both at the boundaries and at the centre of teeBirllouin zone (Fig.3.5a). There are
two important points to note. First, since the ggahere increases &$, the higher
the band, the greater its width. Second, the higierenergy, the narrower the gap;
this follows from the fact that the gap is propantl to a Fourier component of the
crystal potential and that the order of the compobnecreases as the energy rises.
Since the Fourier components of the potential desaeapidly as the order increases,
this leads to a decrease in the energy gap. tvalitherefore that, as we move up the
energy scale, the bands become wider and the gapewer; i.e., the electron
behaves more and more like a free particle.
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Fig. 3.5(a) Dispersion curves in the nearly-free-electrardat, in the reduced-zone
scheme; (b) The same dispersion curves in the datkrone scheme.
(Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8)

Now we discuss the origin of the appearance ofbtéred gaps at the Bragg planes.
When k lies on a Bragg plane we can easily find the forinthe@ wave function
corresponding to the two solutions (3.39). Assunfargsimplicity that the potential is
real we obtain from Eq. (3.35)

Cx = +Cr_g (3.40)

For simplicity we consider a one-dimensional |&ttifor which the Bragg reflection
occurs ak=%G. We have then

1 . .
lpi — — [ezGr/Z + elGr/Z] (3.41)

5

We see that at the zone edge, the scatteringss@ug that the reflected wave has the
same amplitude as the incident wave. The elecgorpresented there bystanding
wave, very unlike a free particle

The distribution of the charge density is proparéibto| {2, so that

[P | o cos?*(G - r/2),
(3.42)

[_|? < sin?(G-1/2)

Since the origin lies at the ion, tihe— state distributes the electron so that it is piled
predominantly at the nuclei (see Fig.3.6). Sincee fibtential is most negative there,

this distribution has a low energy. The functign- therefore corresponds to the

energy at the top of band 1, that is, poiniAFig. 3.5a.
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Fig.3.6: Spatial distributions of the charge density desatiby the functionss + and
v - (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecture-8).

By contrast, the functioy + deposits its electron mostly between the ions lfasva
in Fig.3.6), corresponds to the bottom of band Big3.5a, that is, point AThe gap
arises, therefore, because of the two differeritidigions for the same value kf the
distributions having different energies.

Worked Example:

Consider two-dimensional electrons subjected teakwperiodic potential coming
from a square lattice of spacing= 5 A. For ak vectors far away from the Brillouin
zone boundary, the wavefunction can be well deedrtiy planes waves. Assume we
want to write the wavefunction in the Bloch forn(k) = e**"u(r) and considering

R—1
a state of energy and wavevectork = (0'5 64 )

a) What will the three lowest energies be at this wawveber?
b) What are the correspondimgr) functions

Note that’’/, . = 3.806 eVAZ2.

Solution:

a) Recall Eq.(3.5), the Schrodinger equation is

h? 52y B
— o5z TV = EY(r)

Where &Y A2
5k?

If the potential is weak, the solutions will be @awaves:
From Eq. (3.25)

and Eq.(3.25)
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l/)(k*) — ieik*r

VvV
wherek* extends over the entikespace. We can transform tk&wvavevector into the
first Brillouin zone by using Eqg. (3.20) i.e.

k"=k+G
Letk = nb1 +mb2,

Whereb,; andb, are primitive reciprocal lattice vectors am@éndm are integers. The
primitive reciprocal lattice vectors are given by

_ (1.256 A-l) _ 0
by = ( 0 and b, = (1.256 A-l)'

With the value oft = 0.5 A1, the length of thé*vector for several values afand
m is shown in the table below

n m |k*|
0 0 0.5

-1 0 0.756

1 0 1.756

0 1 1.351

0 -1 1.351

1 1 2.159

Since the energies increases With|, the three lowest energies obtained using Eq.
(3.25) are:

.LE=095¢eV (n=0,m=0)
ILE=217eV (n=-1,m = 0)
I.E=696eV(n=0, m+1)

(b) From
eik'T = gikry () = (x)
Solving foru(r), we have:

@ um=1
(b) u(r) = e~ih1x = g-il256x
(c) u(r) = etb2y = gt1256y

Note that from Eq. (3.2), the functiarn(r) has the periodicity of the lattiag(r) =
u(r+T). The third energy level is degenerate; there ave torresponding
wavefunctions.

131



PHL 307 SOLID STATE PHYSICS 1

34 Metals and Insulators

Solids are divided into two major classesetals and insulatorsA metal — or a
conductor — is a solid in which an electric curréiotvs under the application of
electric field. By contrast, application of an etecfield produces no electric current
in an insulator. There is a simple criterion fostaiguishing between the two classes
on the basis of the band structure. If the valezieetrons exactly fill one or more
bands, leaving others empty, the crystal will beresilator. An external electric field
will not cause current flow in an insulator. Praaatthat a filled band is separated by
energy gap from the next higher band, there isargituousway to change the total
momentum of the electrons if every accessible ssafdled. Nothing changes when the
field is applied.

On the contrary if the valence band is not compldiied the solid is a metal. In a
metal there are empty states available above tireifevel like in a free electron gas.
An application of an external electric field result the current flow. It is possible to
determine whether a solid is a metal or an insulbtoconsidering the number of
valence electrons. A crystal can be an insulatdy @inthe number of valence
electrons in a primitive cell of the crystal iseren integer. This is because each band
can accommodate only two electrons per primitivik é®r example, diamond has
two atoms of valence four, so that there are erglégnce electrons per primitive cell.
The band gap in diamond is 7eV and this crysta good insulator. However, if a
crystal has an even number of valence electronpnaitive cell, it is not necessarily
an insulator. It may happen that the bands overlagnergy. If the bands overlap in
energy, then instead of one filled band giving asulator, we can have two partly
filled bands giving a metal (Fig.3.7b). For examyles divalent metals, such as Mg
or Zn, have two valence electrons per cell. Howetlezy are metals, although a poor
ones — their conductivity is small.

- B &*
b Er )
Fig.3.7: Occupied states and band structures giving (aphsmator, (b) a metal or a

semimetal because of band overlap, and (c) a roetaluse of electron concentration
(After Kittel, 1979)

If this overlap is very small, we deal wigemimetalsThe best known example of a
semimetal is bismuth (Bi). If the number of valemtectrons per cell is odd the solid
is a metal. For example, the alkali metals andrtbble metals have one valence
electron per primitive cell, so that they have &rhetals. The alkaline earth metals
have two valence electrons per primitive cell; titeuyld be insulators, but the bands
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overlap in energy to give metals, but not very gooetals. Diamond, silicon, and
Germanium each have two atoms of valence four,hab there are eight valence
electrons per primitive cell; the bands do not tamgrand the pure crystals are
insulators at absolute zero. There are substawkih fall in an intermediate
position between metals and insulators. If the lgefpveen the valence band and the
band immediately above it is small, then electrans readily excitable thermally
from the former to the latter band. Both bands bez@nly partially filled and both
contribute to the electric condition. Such a substais known as aemiconductor.
Examples are Si and Ge, in which the gaps are abarnd 0.7 eV, respectively.
Roughly speaking, a substance behaves as a sematondat room temperature
whenever the gap is less than 2 eV. The condugtofita typical semiconductor is
very small compared to that of a metal, but ittils many orders of magnitude larger
than that of an insulator. It is justifiable, thieme, to classify semiconductors as a
new class of substance, although they are, strggibaking, insulators at very low
temperatures.

4.0 Conclusion

Solution of Schrodinger equation for a single etactllows the prediction of the
physical properties of a crystal while the Blochdhem plays an important role in
electronic band structure theory.

5.0 Summary

° Separation of the valence and conduction band= E. — E,

Periodic potential of an electron is in the forbi:(r) = U(r + T)
One electron Schrodinger equation with a periodteptial, are known as
Bloch electrons

° From the Bloch theorem, The number of orbitals bmad within the first
Brillouin zone is equal to the number of unit séll in the crystal
o Solids are divided into two major classes: metat$iasulators which can be

distinguished on the basis of band structure.

6.0  Tutor marked assignment

Q1. Using the solution for the energy bands near time Zmundary in the
presence of a weak crystal potential. Show thaetactron velocity is parallel

to the Bragg plane.

Q2. Prove that the current carried by Bloch electrisrgiven by

2
j=- (hf;"‘) k
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1.0 Introduction

The Fermi surfaces (FS) concept enables to visualie relative fullness or
occupation of the allowed empty lattice bands gadoadly in k-space and thus helps
in the theoretical determination of the electromimperties of a solid- metal,
semiconductor or insulator. In fact, the purposehaf FS construction is to know
about the details of the motion of an itinerantelm in three-dimension.

2.0  Objective

to understand the concept of Fermi surfaces
to revise the concept of electron dynamic

to revise the concept of effective mass

to revise the concept of hole

3.0 Definition

Electron dynamics is using classical equations aion in a classical way to describe
electronic structure quantum-mechanically, i.enditag waves that distribute
electrons to different regions of the bands.

3.1  Electro dynamics

Given the function€En(k) the semiclassical model associates with eachrefe@
position, a wave vector and a band indexin the presence of applied fields the
position, the wave vector, and the index are takezvolve according to the following
rules:

0] The band index is a constant of the motiore $amiclassical model
ignores the possibility of interband transitiomhis implies that within
this model it assumed that the applied elecigid fis small.

(i) The time evolution of the position and the wsavector of an electron with
band index are determined by the equations of motion:
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1dEn(k)
- n(k) o dk (4.1)

hj—’: — F(r,t) = —eE(r, t) (4.2)

Strictly speaking Eq. (4.2) has to be proved. Itentical to the Newton’s second law
if we assume that the electron momentum is equidl. tdhe fact that electrons belong
to particular bands makes their movement in thdieghlectric field different from
that of free electrons. For example, if the appé&ttric field is independent of time,
according to Equation (4.2) the wave vector of électron increases uniformly with
time.

eEt

k(t) = k(0) —— (4.3)

Since velocity and energy are periodic in the nexpl lattice, the velocity and the
energy will be oscillatory. This is in striking doast to the free electron case, where
is proportional tok and grows linearly in time. Thie dependence (and, to within a
scale factor, thedependence) of the velocity is illustrated in Fit),4vhere bothe(k)
and vK) are plotted in one dimension. Although the velp@s linear ink near the
band minimum, it reaches a maximum as the zonedsoyris approached, and then
drops back down, going to zero at the zone edgiemegion between the maximum
of v and the zone edge the velocity actually desggawith increasing, so that the
acceleration of the electron is opposite to therenly applied electric force! This
extraordinary behavior is a consequence of thetiaddi force exerted by the
periodic potential, which is included in the fumctal form ofE (k). As an electron
approaches a Bragg plane, the external electid fi@ves it in the opposite direction
due to the Bragg-reflection.

Ve g o ~.
N6k s
FEEF
o -
: .qult i s Zpne
- boundary 7 ] : boundary

Fig.4.1.E(k) and vK) vs.kin one dimension (After
www.pa.uk.edu/kwng.phy/525/lec/lecture-8)
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3.2 Effective mass

When discussing electron dynamics in solids itftero convenient to introduce the
concept of effective mass. If we differentiate E41) with respect to time we find
that

2 2
dv _14d°FE _ 1d7Edk (4.4)
dt hdkdt hdk? dt

Where the second derivative with respect to a vesttould be understood as a tensor.
Using Eq. (4.2) we find that

dv _ 1 d%E 4
dt  h2 dk2 (4.5)
In one dimensional case this reduces to

dv _ 1 d?E (4.6)

dt  h2 dk?

This has the same form as the Newton’s seconddewijded that we defined an
effective mass by the relation:

1 1 d%E

The massn* is inversely proportional to the curvature of tlem®); where the curvature is
large - that is‘,izE/dk2 is large - the mass is small; a small curvaturdies@m large mass
(Fig.4.2).

&
_ i
_ ;7 Small snass
i ;

N
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n '_ /
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Fig: 4.2. The inverse relationship between the mass and theurvature of the
energy band
(After www.pa.uk.edu/kwng.phy/525/lec/lecture-8).

In a general case the effective mass is a tensmhvidndefined by

1 1 d2E
(m*) = W2 dk,dk (48)
Uv paky
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Wherec, andk, are Cartesian coordinates. The effective mass eatifferent
depending on the directions on the crystal.

3.3  Current density

The current density within a free electron mode$ wafined ag = —env,

wheren is the number of valence electrons per unit voluamelv is the velocity of
electrons. This expression can generalize to tse o& Bloch electrons. In this case
the velocity depends on the wave vector and we teedim up ovek vectors for
which there are occupied states available

j=7e Z v (k) (4.9)

k,occupied

Here the sum is performed within the extended mmieeme and V is the volume of
the solid. It is often convenient to replace themsation by the integration. Because
the volume ofk-space per allowekl value isak = 8773/‘, we can write the sum ovér
as

Sk = 5o dk (4.10)

8m3

Taking into account the spin degeneracy we obtaithfe current density:

. dk (4.11)
Occupied

Using this expression we show now tlatpletely filled bands do not contribute to
the current For the filled bands Eq. (4.11) should be replage

dk dE(K)
43 dk

zone

j= —e (4.12)

This vanishes as a consequence of the theorerththattegral over any primitive cell
of the gradient of a periodic function must vanish.

3.4 Hole

One of the most impressive achievements of thedassical model is its explanation
for phenomena that free electron theory can acctanonly if the carriers have a
positive charge. We now introduce the conceptiubla.

The contribution of all the electrons in a givemddo the current density is given by

Eq. (4.11), where the integral is over all occupg@ackls in the band. By exploiting the
fact that a completely filled band carries no cotyéhus we have
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B dk B dk dk (4.13)
0= .]- Fv(k) = j Fv(k) + j mv(k)
zone occupied unoccupied
we can equally well write Eq. (4.11), in the form
_ dk
j=+te f yread Q) (4.14)

unoccupied

Thus the current produced by electrons occupyisgegified set of levels in a band is
precisely the same as the current that would bdymed if the specified levels were
unoccupied and all other levels in the band wemiped with particles of charge +e
(opposite to the electronic charge).

Thus, even though the only charge carriers aretreles; we may, whenever it is
convenient, consider the current to be carried@mtby fictitious particles of positive
charge that fill all those levels in the band tha¢ unoccupied by electrons. The
fictitious particles are calletioles. It must be emphasized that pictures cannot be
mixed within a given band. If one wishes to regalectrons as carrying the current,
then the unoccupied levels make no contributioonié wishes to regard the holes as
carrying the current, then the electrons make natribmtion. One may, however,
regard some bands using the electron picture dmer ttands using the hole picture,
as suits one's convenience. Normally it is convdrtie consider transport of the holes
for the bands which are almost occupied, so thit arfew electrons are missing.
This happens in semiconductors in which a few edestare excited from the valence
to the conduction bands. Similar to electrons we in&roduce the effective mass for
the holes. It has a negative sign.

4.0 Conclusion

The electron dynamics in metals is the electromiacture described by quantum
mechanics based on semiclassical model

5.0 Summary

o Effective mass of an electron is defined by
1 1 d’E

m* ﬁﬁ

o Current density is defined by

) dk
J= _efoccupied Fv(k)

6.0  Tutor marked assignment

Q1. Consider a slab of Cu 0.1mm thick, 10.0 mm vedd 10.0mm long.
(@) If a current of 1A is driven down the length of #lab, what is the current
density?
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(b) If we put the slab in the magnetic field of 1 T lwthe field perpendicular to
the 1 mm x10 mm face, what Hall Effect will be puodd, if the Hall
coefficient is -0.55x18° m%/C.

(c) What Hall voltage will be observed across the slab?
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1.0 Introduction

The Fermi surface is the surface of constant enetgin k space. The Fermi surface
separates the unfilled orbitals from the filled itals, at absolute zero. Quantum
mechanics showed that the occupation of electratestis governed by the Pauli
exclusion and that the chemical potentjalis equal toer. The shape of the Fermi
surface may be very intricate but the constructimtglired the applications of the
reduced and the periodic zone schemes. In the eddmone scheme, it is always
possible to select the wavevector inderf any Bloch function to lie within the first
Brillouin zone. This procedure is known as mappihg band in the reduced zone
scheme. In the periodic zone, a given Brillouinea repeated periodically through
all of the wavevector space. This is achieved apdiating the zone by a reciprocal
lattice.

2.0 Objective

o to understand Fermi surfaces
o to explain the Brillouin zone
o to explain effect of crystal potential

3.0 Definition

Fermi energy surface the energy distribution of particles that obey Braili
Exclusion Principle.

3.1 Fermi surface
The ground state dfl Bloch electrons is constructed in a similar fashasnthat for
free electrons, i.e. by occupying all one-electemrergy levels with band energies

E, (k) less tharE, , whereEy is determined by requiring the total number of Ilsve
with energies less thaFi; to be equal to the total number of electrons. Tlaen
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vectork must be confined to a single primitive cell of tiegiprocal lattice. When the
lowest of these levels are filled by a specifiednber of electrons, two quite distinct
types of configuration can result:

1. A certain number of bands may be completely fillad, others remaining
empty. Because the number of levels in a band imletp the number of
primitive cells in the crystal (and because easkellean accommodate two
electrons (one of each spin), a configuration withand gap can arise only if
the number of electrons per primitive cell is even.

2 A number of bands may be patrtially filled. Wharstoccurs, the energy of the
highest occupied level, the Fermi endigylies within the energy range of
one or more bands. For each partially filled bdrete will be a surface ik-
space separating the occupied from the unoccugweds. The set of all such
surfaces is known as the Fermi surface, and igéneralization to Bloch
electrons of the free electron Fermi sphere. Thi#spaf the Fermi surface
arising from individual partially filled bands alewown as branches of the
Fermi surface.

Analytically, the branch of the Fermi surface ire tiith band is that surface k+
space determined by

E,(k) = Ep (5.1)
Thus the Fermi surface is a constant energy su(faoéaces) irk-space.

Since theE,, (k) are periodic in the reciprocal lattice, the coat@lsolution to EQ.
(5.1) for eachn is a k-space surface with the periodicity of the reciptolattice.
When a branch of the Fermi surface is represengetiofull periodic structure, it is
said to be described inreapeated zone schen@ften, however, it is preferable to take
just enough of each branch of the Fermi surfaciabevery physically distinct level
is represented by just one point of the surfacés Ehachieved by representing each
branch by that portion of the full periodic surfamentained within a single primitive
cell of the reciprocal lattice. Such a represeatais described as reduced zone
schemeThe primitive cell chosen is often, but not alwathe first Brillouin zone

3.2 Brillouin Zone

We consider now an example of building of a Fermiface. We start from
considering the Fermi surface for free electrond #en investigate the influence of
the crystal potential. The Fermi surface for fresxions is a sphere centered at k = 0.
To construct the Fermi surface in the reduced-zmmeme, one can translate all the
pieces of the sphere into the first zone througtiprecal lattice vectors. This
procedure is made systematically through the gewraétnotion of the higher
Brillouin zones
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a b
Fig. 5.1: (a) Construction irk space of the first three Brillouin zones of a squar

lattice. (b) On constructing all lines equivalent by symmetryttie three lines in (a)
we obtain the regions ik space which form the first three Brillouin zonesfték
Kittel, 1979).

We illustrate this construction for the two dimemsl cubic lattice shown in Fig.5.1.
Recall that the boundaries of the Brillouin zones planes normal t& at the
midpoint ofG. The first Brillouin zone of the square latticeth® area enclosed by the
perpendicular bisectors 6f; and of the three reciprocal lattice vectors egevaby

symmetry toG, in Fig. 5.1a. These four reciprocal lattice vestare_l—(Z"/a)k'x and

i(zn/a)k'y. The second zone is constructed frafg and the three vectors
equivalent to it by symmetry, and similarly for thi@rd zone. The pieces of the
second and third zones are drawn in Fig. 5.1b.

In general, thdirst Brillouin zoneis the set of points in k-space that can be reached
from the origin without crossingny Bragg plane. Theecond Brillouin zonés the set

of points that can be reached from the first zopetossing only one Bragg plane.
The (n + 1) — th Brillouin zoneis the set of points not in th@ — [) — th zone that
can be reached from the— th zone by crossing only one Bragg plane. The free
electron Fermi surface for an arbitrary electronaamtration is shown in Fig.5.2.

Fig.5.2: Brillouin zones of a square lattice in two dimemsi¢After Kittel, 1979).
Now we perform a transformation to the reduced zmieeme as is shown in Figs.5.3

and 5.4. We take the triangle labeled 2a (Fig &r#2) move it by a reciprocal lattice
vectorG = —(Zﬂ/a)k'x such that the triangle reappears in the area dirgieBrillouin
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zone (Fig.5.3). Other reciprocal lattice vectort slift the triangles 2 2, 23 to other
parts of the first zone, completing the mappingh&f second zone into the reduced
zone scheme. The parts of the Fermi surface failinghe second zone are now
connected, as shown in Fig. 5.4.

st zme dnd zone Bl woue
a b c
Fig.5.3 Mapping of the first, second, and third Brillouiores in the reduced zone
scheme. The sections of the second zone in Figarg. put together into a square by
translation through an appropriate reciprocaldattiector (After Kittel, 1979).

igt vome o wone

Fig.5.4: The free electron Fermi surfaces of Fig.5.3, asvetein the reduced zone
scheme. The shaded areas represent occupied eletates. Parts of the Fermi
surface fall in the second and third zones. Th& #ione is entirely occupied (After
Kittel, 1979).

Construction of Brillouin zones and Fermi surfadgesthree-dimensions is more
complicated. Fig5.5 shows the first three Brilloaones for bcc and fcc structures.
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Fig.5.5:Surfaces of the first, second, and third Brilloamnes for (a) body-centered
cubic and (b) face-centered cubic crystals. (Ohly éxterior surfaces are shown
(After Kittel, 1979)..

The free electron Fermi surfaces farc cubic metals of valence 2 and 3 are shown in
Fig.5.6.

r P

Second zone

Third zone ‘ Fourth zone

First zone

Valence

I i f
i e R i LT R S e D e PR s T P kS

Fig.5.6: The free electron Fermi surfaces for face-centerdsic metals of valence 2
and 3(After Kittel, 1979).

3.3  Effect of a crystal potential

How do we go from Fermi surfaces for free electrémsFermi surfaces in the
presence of a weak crystal potential? We can makmo&imate constructions
freehand by the use of the following facts:

0] The interaction of the electron with the pélimpotential of the crystal causes
energy gaps at the zone boundaries.

(i)  Almost always the Fermi surface will interseczone boundaries
perpendicularly. Using the equation for the enemggar the zone

boundary it is easy to show thfétz fn—z(k — % G) which implies that on the
Bragg plane the gradient of energy is parallelhi® Bragg plane. Since the

gradient is perpendicular to the surfaces on wiliigiction is constant,
the constant energy surfaces at the Bragg  plaee parpendicular to the
plane.

(i) The crystal potential will round out sharpraers in the Fermi surfaces.

(iv)  The total volume enclosed by the Fermi sugfdepends only on the electron
concentration and is independent of the detaith@tattice interaction.

(v) If a branch of the Fermi surface consists efyvsmall pieces of surface
(surrounding either occupied or unoccupied lev&lspwn as "pockets of
electrons” or "pockets of holes"), then a weak quiBd potential may cause
these to disappear. In addition, if the free etect~ermi surface has parts
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with a very narrow cross section, a weak perioditeptial may cause it to
become disconnected at such points.

Below we give a few examples for real metals
3.3.1. Alkali metals

The radius of the Fermi sphere in bcc alkali metless than the shortest distance
from the center of the zone to a zone face anctbir the Fermi sphere lies entirely
within the first Brillouin zone. The crystal pot&dtdoes not distort much the free
electron Fermi surface and it remains very simitaa sphereFig 5.7 shows Fermi
surface for sodium.

Fig.5.7: Fermi surface of sodium (After WWW.pa.uk.edu/kwmfrg'/525llec-8)

3.3.2. Noble metals

The Fermi surface for a single half-filled freeaten band in fcc Bravais lattice is a
sphere entirely contained within the first Brillauzone, approaching the surface of
the zone most closely in the [111] directions, vehiérreaches 0.903 of the distance
from the origin to the center of the hexagonal fa€er all three noble metals
therefore their Fermi surfaces are closely relédettie free electron sphere. However,
in the [111] directions contact is actually madéwthe zone faces, and the measured
Fermi surfaces have the shape shown in Fig.5.tEmgecks reach out to touch the
eight hexagonal faces of the zone, but otherwisestirface is not grossly distorted
from spherical.

Fig. 5.8: In the three noble metals the free electron sphatges out in the [111]
directions to make contact with the hexagonal Zanes.
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3.3.3. Cubic divalent metals

With two electrons per primitive cell, calcium, attium, and barium could, in
principle, be insulators. In the free electron mpdee Fermi sphere has the same
volume as the first zone and therefore intersdutszone faces. The free electron
Fermi surface is thus a fairly complex structurethe first zone, and pockets of
electrons in the second. The question is whetleeettective lattice potential is strong
enough to shrink the second-zone pockets downrtoadume, thereby filling up all
the unoccupied levels in the first zone. Evidemtiyg is not the case, since the group
Il elements are all metals. Calculations show thetffirst Brillouin zone is completely
filled and a small number of electrons in the selcaone determine the non-zero
conductance.

Fig.5.9: Fermi surface of calcium (Afterwww.pa.uk.edu/kwpigy/525/lec/lecture-8)

3.3.4. Trivalent metals

The Fermi surface of aluminum is close to thathe free electron surface for fcc
cubic monatomic lattice with three conduction eleas per atom. The first Brillouin
zone is filled and the Fermi surface of free elmwdris entirely contained in the
second, third and fourth Brillouin zones. When tigpd in a reduced-zone scheme
the second-zone surface is a closed structure inorgaunoccupied levels, while the
third-zone surface is a complex structure of nartabes (Fig.5.6). The amount of
surface in the fourth zone is very small, encloging pockets of occupied levels. The
effect of a weak periodic potential is to elimingte fourth-zone pockets of electrons,
and reduce the third-zone surface to a set of dissxted "rings" (Fig.5.10).
Aluminum provides a striking illustration of theeibry of Hall coefficients. The high-
field Hall coefficient should bh&,; = —1(n, — n,)e where n, and n; are the
number of levels per unit volume enclosed by théigde-like and hole-like branches
of the Fermi surface. Since the first zone of ahwm is completely filled and
accommodates two electrons per atom, one of thee thalence electrons per atom
remains to occupy second- and third-zone levelasTh

n
nll + nllf = 3 (5.2)

wheren is the free electron carrier density appropriatevatence 3. On the other
hand, since the total number of levels in any zerenough to hold two electrons per
atom, we also have
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n
nll + nll = 2 (5.3)
Subtracting (5.3) from (5.2) gives

n
nll + nil = -3 (5.4)

Thus the high-field Hall coefficient should haveasitive sign and yield an effective
density of carriers a third of the free electrofueaThis is precisely what is observed.

Fig.5.10: Fermi surface of aluminum (After www.pu.
uk.edu/kwang.phys/525/lecture8)

4.0 Conclusion

The Fermi surfaces (FS) concept enables to visu#tie relative fullness or
occupation of the allowed empty lattice bands gedoadly in k-space and thus helps
in the theoretical determination of the electrgmioperties of a solid.

6.0 Summary

. The N Bloch electron is constructed when the waaatar k is confined to
single primitive cell.
In Alkali metals, the Fermi surface is very muidela sphere

In Noble metals, the Fermi surface is a sphereayttontained within the
first  Brillouin zone.

° In Cubic divalent metals, the Fermi surface hassHme volume as the first
Brillouin zone.
. In Trivalent metals, the Fermi surface is entiretyitained in the™ , 39 and

the 4" Brillouin zone.
6.0  Tutor marked assignment

Q1. A two-dimensional metal has one atom of valenceiara simple rectangular
primitive cell ofa, = 2A anda, = 4A.

@ Draw the first and the second Brillouin zones.

(b) Calculate the radius of the free electron Fesphmere and draw this sphere to
scale on the drawing of the Brillouin zones.
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(© Draw the Fermi surface in reduced zone schaenteshow schematically the
effect of a weak crystal potential.

Q2 Suppose that some atoms in a Cu crystal, which drafcc lattice, are
gradually replaced by Zn atoms. Considering thatsZdivalent while Cu is
monovalent, calculate the atomic ratio of Zn toi€@ CuZn alloy (brass) at
which the Fermi sphere touches the zone faces.thésé&ee-electron model.
This particular alloy is interesting because th&dsandergoes a structural
phase change at this concentration ratio.
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MODULE 4 SEMICONDUCTORS AND

SUPERCONDUCTORS
Unit 1 Structure and Bonding in Semiconductors
Unit 2 Semiconductor Statistics
Unit 3 Electrical Conductivity and
Real Semiconductors
Unit 4 Super Conductivity (I):
The Basic Phenomenon
Unit 5 Superconductivity (11):
Experiments and Theories
UNIT 1 STRUCTURE AND BONDING (SEMICONDUCTORYS)
CONTENT
1.0 Introduction
2.0 Objectives
3.0 Definition
3.1  Crystal structure and bonding
3.2 Bonding structure
3.3 intrinsic semiconductor
3.4 Impurities states
3.5  Acceptors
4.0 Conclusion
5.0 Summary
6.0  Tutor Marked Assignment
7.0 Further Reading/References
1.0 Introduction

In a semiconductor the valence band is almost cet@lglfilled while the conduction
band is empty. Thermal excitation or (energy) apson processes may cause some
electrons to cross the band gap, making it simdaemimetals. Semiconductors tend
to be bonded tetrahedrally and covalently, althdoiglary semiconductors may have
polar, as well as covalent character.

2.0

152

Objective

The objective of this unit is to

Understand the structure and bonding in semicoodsict
Explain intrinsic semiconductors.

Understand the importance of impurity states ofisenductors.
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3.0 Definition

Semiconductors are electronic conductors with Béadtresistivity values generally
in the range of 1®to 1 ohm-cm at room temperature, intermediate betweed g
conductors(18 ohm-cm) and insulators (1to 162 ohm-cm).

3.1  Crystal structure and bonding

Semiconductors include a large number of substantevidely different chemical

and physical properties. These materials are gupe several classes of similar
behavior, the classification being based on thatipasin the periodic table of the
elements.

The best-known class is the Group IV semiconduct@&@s(diamond), SiGe, - all of
which lie in the fourth column of the periodic tablThey have been studied
intensively, particularly Si and Ge, which haveridumany applications in electronic
devices. The elemental semiconductors all crygalin the diamond structure. The
diamond structure has an fcc lattice with a basmmmosed of two identical atoms, and
is such that each atom is surrounded by four neighy atoms, forming a regular
tetrahedron. Group IV semiconductors are covaleydtals, i.e., the atoms are held
together by covalent bonds. These bonds consisiv@felectrons of opposite spins
distributed along the line joining the two atomieTcovalent electrons forming the
bonds are hybridp3 atomic orbitals.

Another important group of semiconductors is theuprlll-V compounds, so named
because each contains two elements, one from tltkahd the other from the fifth
column of the periodic table. The best-known memldrthis group ar&aAs and
InSb (indium antimonite), but the list also contacompounds such &aP, InAs,
GaSb, and many others. These substances crystallizesinibc blend structure which
is the same as the diamond structure, except lbatwo atoms forming the basis of
the lattice are now different. Thus,GaAs, the basis of the fcc lattice consists of two
atoms, Ga and As. Because of this structure, etch & surrounded by four others
of the opposite kind, and these latter atoms formagallar tetrahedron, just as in the
diamond structure.

The bonding in the IlI-V compounds is also primaitiovalent. The eight electrons
required for the four tetrahedral covalent bonds supplied by the two types of
atoms, the trivalent atom contributing its threéemae electrons, and the pentavalent
atom five electrons. The bonding in this group @ entirely covalent. Because the
two elements in the compound are different, th&ibigtion of the electrons along the
bond is not symmetric, but is displaced toward ohéhe atoms. As a result, one of
the atoms acquires a net electric charge. Suctmd isccallecheteropolar,in contrast

to the purely covalent bond in the elemental sendoetors, which is called
homopolar.

The distribution of electrons in the bond is displd toward the atom of higher
electronegativity.In GaAs for instance, theAs atom has a higher electronegativity
than the Ga, and consequently the atom acquires a net negative charge, whose
value is —0.46 per atom (a typical value in Group IlI-V compound§he Ga atom
correspondingly acquires a net positive charge.480 Charge transfer leads to an
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ionic contribution to the bonding in Group IlI-V egounds. Their bonding is
therefore actually a mixture of covalent and iocoenponents, although covalent ones
predominate in most of these substances.

3.2 Bonding structure

A semiconductor is a solid in which the highestupied energy band, thealence
band,is completely full ail = 0°K, but in which the gap above this band is alsall,

so that electrons may be excited thermally at reemmperature from the valence band
to the next-higher band, which is known as ¢baduction bandGenerally speaking,
the number of excited electrons is appreciablerdatn temperature) whenever the
energy gapEF is less than 2 eV. The substance may then be fidassas a

semiconductor. When the gap is larger, the numbeteatrons is negligible, and the
substance is an insulator. When electrons areeskaitross the gap, the bottom of the
conduction band (CB) is populated by electrons,taedop of the valence band (VB)
by holes. As a result, both bands are now onlyigdbrfull, and would carry a current
if an electric field were applied. The conductivity the semiconductor is small
compared with the conductivities of metals of theah number of electrons and holes
involved, but this conductivity is nonetheless midintly large for practical purposes.
The simplest band structure of a semiconductondgcated in Fig.1.1. Since we are
interested only in the region which lies close lte band gap, where electrons and
holes lie, we can ignore a more complex variatibthe energy bands far away from
the gap. The energy of the CB has the form.

h2K2

2me

E.(k) =E,+ (1.1)

where k is the wave vector aml the effective mass of the electron. The enéfgy

represents the energy gap. The zero-energy leehbisen to lie at the top of the VB.
The energy of the VB (Fig.1.1) may be written as

h2k?2
2my

E,(k) =E, — (1.2)

Wheremh is the effective mass of the hole which is posit(Because of the inverted

shape of the VB, the mass of an electron at thetdpe VB is negative, but the mass of
a hole is positive).
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Fig. 1.1:Band structure in a semiconductor.

Within this simple picture of the semiconductor,e tiprimary band-structure
parameters are thus the electron and hole maBesaad m, and the band gaﬁg.

Table 1.1 gives these parameters for various semiadors. Note that the masses
differ considerably from the free-electron massmiany cases they are much smaller
than the free-electron mass. The energy gaps famige0.18 eV ininSh to 3.7 eV in
ZnS. The table also shows that the wider the depgteater the mass of the electron
The energy gap for a semiconductor varies with tradpre, but the variation is
usually slight. That a variation with temperatun@sld exist at all can be appreciated
from the fact that the crystal, when it is hea&yeriences a volume expansion, and
hence a change in its lattice constant. This, i, taffects the band structure, which is
a sensitive function of the lattice constant. Thed structure in Fig 1.1 is the
simplest possible structure. Band structures of seaiconductors are somewhat
more complicated, as we shall see later.

3.3 Intrinsic Semiconductors

In the field of semiconductor, electrons and hakes usually referred to asee
carriers, or simply carriers, because it is these particles which are responsible
carrying the electric current. The number of casriss an important property of a
semiconductor, as this determines its electricabloativity. Intrinsic semiconductors
are semiconductors in which the number of carried the conductivity is not
influenced by impurities. Intrinsic conductivity isypical at relatively high
temperatures in highly purified specimens. In ortierdetermine the number of
carriers, we need some of the basic results aéstal mechanics.
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Table 1.1 Band Structure parameters of Semiconductors

Group Crystal Eg(eV) m./m 1my,/1m

v C 5.3

v Si 1.1 0.19 0.16

1Y Ge 0.7 0.08 0.04
-V GaAs 1.4 0.07 0.09
-V GaP 2.3 0.12 0.50
II-v InSb 0.2 0.01 0.18
II-VI nsS 3.6 0.40 5.41
II-VI ZnSe 2.7 0.1 0.6
II-VI CdSe 1.7 0.13 0.45

The most important result in this regard is thenkiddirac (FD) distribution function.

1

F)= —o
JE) =Ty T
(1.3)

This function, gives the probability that an enelgyel E is occupied by an electron
when the system is at temperattitél he function is plotted versisin Fig.1.2. Here
we see that, as the temperature riigs,unoccupied region below the Fermi IeEgI

becomes longeryhich implies that the occupation of high energtes increases as the
temperature is raiseda conclusion which is most plausible, since iasimeg the
temperature raises the overall energy of the system

S(E)

Fig. 1.2: The Fermi-Dirac distributions function (After Kitfe1 979)
We will see later that the Fermi level in intrinsemiconductors lies close to the

middle of the band gap. Therefore we can repreabendistribution function and the
conduction and valence bands of the semicondustehawn in FidL.3.
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Fig.1.3: (a) conduction and valence bands (b) theiloution function
(c) Density of states for electrons and holeggAKittel, 1979)

First we calculate the concentration of electranshie CB. The number of states in
the energy range (E, E + dE) is equabitE)dE, wherd,(E) is the density of
electron states. Since each of these states hascapation probability f (E), the
number of electrons actually found in this enemyyge is equal #(E)D,(E)dE. The
concentration of electrons throughout the CB issthiven by the integral over the
conduction band.

n= J £.(E)D, (E)dE (14

=
s

where E_. is the bottom the conduction band, as shown inlEg.

The band gap in semiconductors is of the ordeedf, Which is much larger than KT.
Therefore E—) >> kBT and we can neglect the unity term in the denommattthe

distribution function Eq. (1.3), so that
fo(E) =~ e~ (E-#)/ksT (1.5)

The density of the conduction band is given by

D.(E) = L(Zme)g/z (E — Ec)l/z (1.6)

212 \ h2

Note thatD, (F) vanishes foE < E_.and is finite only fol£ > E. as shown in Fig.1.3.
When we substitute equations fdE) andD, (E) into Eq. (1.4), we obtain

oo
-

1 /2m,
=1

'-:_ et | _ 1/2,—E/kgT
2m? ﬁ:) e’ JKE E)Fe " dE (1.7)

E
S

By changing the variable, and using the result
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A

VT (1.8)

J ¥l TR dE = —
2

O

one can readily evaluate the integral in (1.7). @leetron concentration then reduces

to the expression

3/2
n = (mekT) e(H_EC)/kBT (19)
2mh?

The electron concentration is still not known egiplly because the Fermi energyis
so far unknown. Essentially the same ideas empl@m/e may also be used to
evaluate the number of holes in the VB. The prdiigithat a hole occupies a leVil

in this band is equal to 1<E), sincef (E) is the probability of electron occupation.
Assuming that the Fermi level lies close to the diedof the band gap, i.e.
(u—E)>>kBT for the valence band, we find for the distributfanction of holes

1 1
=1— — ~ o—(W—E)/kpT (1.10)
fu(B) =1 elE-0/ksT] + 1 elu-E)/kgr] ¢ °

The density of states for the holes is

1 (2mp\3/2
Du(E) = — (332) " (B, — E)'/? (1.11)
whereE,, is the energy of the valence band edge. Proceadiagimilar fashion as
we did for electrons we find for the concentratajrholes in the valence band

E,

Ly

p= [ (e, ()i =2

—ox

- .
T =

’mthJ

(1.12)

2mh=

The electron and hole concentrations have thusbésn treated as independent
guantities. For intrinsic semiconductors the twamantrations are, in fact, equal,
because the electrons in the CB are due to exmiafrom the VB across the energy
gap, and for each electron thus excited a holeceted in the VB. Therefore,

n=p (1.13)

(m,)3/2eW-EA/ kT = (1, )3/2¢Ev-w)/keT  (119)
We obtain then, for the Fermi energy

E,—E. 3 mp, (1.15)
% + ZkBTln—

"= m,
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The second term on the right of (1.15) is very smmampared with the first, and the
energy level is close to the middle of the energp.drhis is consistent with earlier
assertions that both the bottom of the CB anddpeof the VB are far from the Fermi
level. The concentration of electrons may now be evaluexgticitly by using the above
value of u. Substitution of Eq. (1.15) into Eq9(lyields

kpT \3/2 _ 1.16
n =2 (271;2) (mmy)3 *e Ey/2kpT (1.16)
whereE,; = E. — E,, is the band gap. The important feature of this esgion is than
increases very rapidly - exponentially - with temgtere, particularly by virtue of the
exponential factor. Thus as temperature is raide@stly greater number of electrons
is excited across the gap. Our discussion of gacaoacentration in this section is
based on the premise of a pure semiconductor. Whensubstance ismpure,
additional electrons or holes are provided by thepurities. In that case, the
concentrations of electrons and holes may no lohgexqual, and the amount of each
depends on the concentration and type of impunigsgnt. When the substance is
sufficiently pure so that the concentrations otelens and holes are equal, we speak
of an intrinsic semiconductorThat is, the concentrations are determined by the
intrinsic properties of the semiconductor itselh Me other hand, when a substance
contains a large number of impurities which supplyst of the carriers, it is referred
to as arextrinsic semiconductor.

3.4 Impurity states

A pure semiconductor has equal numbers of bothstygecarriers, electrons and
holes. In most applications, however one needsirseas which have one type of
carrier only, and none of the other. By doping sleeniconductor with appropriate
impurities, one can obtain samples which contdineeielectrons only or holes only.
Consider, for instance, a specimen of Si whichbbeendopedby As. TheAs atoms
(the impurities) occupy some of the lattice sitearferly occupied by the Si host
atoms. The distribution of the impurities is randtmoughout the lattice. But their
presence affects the solid in one very importaspeet. Theds atom has valence 5
while Si has valence 4. Of the five electronsdef four participate in the tetrahedral
bond of Si, as shown in Fig. 1.4. The fifth elentimannot enter the bond, which is
now saturated, and hence this electron detaches fr@ impurity and is free to
migrate through the crystal as a conduction electre., the electron enters the CB.
The impurity is now actually a positive ioAs*(since it has lost one of its electrons),
and thus it tends to capture the free electron,vireitshall show shortly that the
attraction force is very weak, and not enough tptwa the electron in most
circumstances. The net result is that Alzeimpurities contribute electrons to the CB
of the semiconductors, and for this reason thegmuiities are calleadlonors.Note
that the electrons have been creaté@tioutthe generation of holes.
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X
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Fig.1.4: An As impurity in a Si crystal. The exgkectron migrates through the
crystal.

When an electron is captured by an ionized donasrhits around the donor much
like the situation in hydrogen. We can calculate thnding energy by using the
familiar Bohr model. However, we must take into @oat the fact that the coulomb
interaction here is weakened by the screening duethe presence of the
semiconductor crystal, which serves as a mediumwhith both the donor and ion
reside. Thus the coulomb potential is now given by

e? (1.17)
V(ir) = ——
Er

whereg is the reduced dielectric constant of the mediurhe dielectric constant=
11.7 in Si, for example, shows a substantial deeréathe interaction force. It is this
screening which is responsible for the small bigdanergy of the electron at the
donor site.Using this potential in the Bohr model, we find thénding energy,
corresponding to the ground state of the dondogeto

E, = — &M (1.18)

2822

Note that binding energy of the hydrogen atom, whig equal to 13.6 eV. The
binding energy of the donor is reduced by the fatte?, and also by the mass factor
m./mwhich is usually smaller than unity. Using the tagli valuese ~ 10

andm,/m ~0.1, we find that the binding energy of the donor mat 103 of the
hydrogen energy, i.e., about 0.01 eV. This i®edlthe order of the observed values.
The donor level lies in the energy gap, very slighelow the conduction band, as
shown in Fig.1.5. Because the level is so clogeedCB, almost all the donors are
ionized at room temperature, their electrons haenlexcited into CB.
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Fig. 1.5: The donor level in a semiconductor

It is instructive to evaluate the Bohr radius oé ttionor electron. Straightforward
adaptation of the Bohr result leads to

Ty = Emﬂao (1.19)

e

wherea, is the Bohr radius, equal to 0.53 A. The radiughef orbit is thus much
larger tham,, by a factor of 100, if we use the previous valtmses andm,. A
typical radius is thus of the order of 50 A. Sirthes is much greater than the inter
atomic spacing, the orbit of the electron enclasa@geat many host atoms, and our
picture of the lattice acting as a continuous, poddle dielectric is thus a plausible
one. Since the donors are almost all ionized, treentration of electrons is nearly
equal to that of the donors. Typical concentratiaresabout 01°cm?3. But sometimes
much higher concentrations are obtained by dopihghe sample, for example,
10'8cm 3or even more.

3.5  Acceptors

An appropriate choice of impurity may produce hadlesead of electrons. Suppose
that the Si crystal is doped witia impurity atoms. Thesa impurity resides at a site
previously occupied by a Si atom, but sirizeis trivalent; one of the electron bonds
remains vacant (Fig.1.6). This vacancy may bedilly an electron moving in from
another bond, resulting in a vacancy (or holehat latter bond. The hole is then free
to migrate throughout the crystal. In this manndmr,introducing a large number of
trivalent impurities, one creates an appreciablecentration of holes, which lack
electrons. The trivalent impurity is called acceptor,because it accepts an electron
to complete its tetrahedral bond. The acceptoegatively charged, by virtue of the
additional electron it has entrapped. Since tiselteag hole has a positive charge, it
is attracted by the acceptor. We can evaluate idirlg energy of the hole at the
acceptor in the same manner followed above in #ee ©f the donor. Again this
energy is very small, of the order of 0.01 eV. Tlessentially all the acceptors are
ionized at room temperature.
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Fig. 1.6: A Ga impurity in a Si crystal. The extra hole migratiesough the crystal

The acceptor level lies in the energy gap, sligatipve the edge of the VB, as shown
in Fig.1.7. This level corresponds to the hole faiaptured by the acceptor. When an
acceptor is ionized (an electron excited from thye ¢f the VB to fill this hole), the
hole falls to the top of the VB, and is now a foegrier. Thus the ionization process,
indicated by upward transition of the electron lo@ ¢nergy scale, may be represented
by a downward transition of the hole on this scale.

Conduction band

T T o
o '.{fff’-f.-’_,::_‘,-_’_.{ s

l Acceptor

E
o0
T
1 :-ﬁf/’ﬁ»::.;'r,é-’f’//,f}ﬁ-ﬁ?}v:f,;fﬁ_f:r_:i,»;f.‘rif-i-'

Valence band

Fig.1.7:The acceptor level in a semiconductor.
4.0 Conclusion

Semiconductors include a large number of substasfoeglely different chemical
and physical properties. The number of carrierscfebns and holes) is an important
property of a semiconductor, as this determinesl@strical conductivity.

5.0 Summary

° The best-known class of semiconductors is the Gidufdiamond, Silicon,
Germanium).

o The valence band completely full al = 0°K.

o Electrons at room temperature may be excited thHgrmflmm the valence

band to the next-higher band, known asdatveduction band.
. The energy of the CB has the form.

h?k
E.(k) =E.+ o
. The energy of the VB
h2k?
E,(k) =E, —
17( ) v Zme
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6.0

Q1.

Q2.

7.0

In an intrinsic semiconductor the number of elatsres equal to the number
of holes.

Tutor marked assignment

For the nondegenerate case wtereu >> kT, calculate the number of
electrons per unit volume in the conduction bandifthe integral

[ee)

n = j D(E) f(E)dE
Ec
D (E) is the density of stateB(E) is the Fermi function
(@) Compute the concentration of electrons and hol@s imtrinsic
semiconductofnShb at room temperaturef=0.2eV,m, = 0.0Im
andmy, = 0.018m).
(b) Determine the position of the Fermi.
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UNIT 2 SEMICONDUCTOR STATISTICS

1.0 Introduction

2.0 Objectives

3.0 Definition

3.1 Semiconductor statistics

3.1.1 Intrinsic region
31.2 extrinsic region

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0 Further Reading/References

1.0 Introduction

In this unit, we are going to study the concentratof the carriers both in the
conduction and valence bands and the differencerdest intrinsic region and the
extrinsic region.

2.0 Objective
The objective of this unit is to differentiate

o the intrinsic region from
° the extrinsic region

3.0 Definition
3.1 Semiconductor statistics

Semiconductors usually contain both donors andpoce Electrons in the CB can
be created either by thermal excitation or by therimnization of the donors. Holes
in the VB may be generated by interband excitatbonby thermal excitation of
electrons from the VB into the acceptor level. Andaddition, electrons may fall
from the donor levels to the acceptor level. Fig@ré indicates these various
processes.

Yalence band
Fig. 2.1: The various electronic processes in a semiconductor
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Finding the concentrations of carriers, both etawdr and holes, taking all these
processes into account, is quite complicated. Véé sleat a few special cases, which
are often encountered in practice. Two regions bmylistinguished, depending on
the physical parameters involved: Tih&insic and theextrinsicregions.

3.1.1. Intrinsic region

The concentration of carriers in the intrinsic oegis determined primarily by
thermally induced interband transitions. In thigiom n=p. The intrinsic region
obtains when the impurity doping is small. When aenote the concentrations of
donors and acceptors by, and N, the requirement for the validity of the intrinsic
condition is

n=N,N, (2.1)

Since n increases rapidly with temperature, the intrinsotmdition becomes more
favorable at higher temperatures. All semicondstan fact, become intrinsic at
sufficiently high temperatures (unless the dopsignusually high).

3.1.2 Extrinsic region

Quite often the intrinsic condition is not satisfié&or the common dopings
encountered, abod0*® cm™3, the number of carriers supplied by the impusitie
is large enough to change the intrinsic concemnadippreciably at room temperature.
The contribution of impurities, in fact, frequentgxceeds those carriers that are
supplied by interband excitation. When this istee,sample is in thextrinsic region.

Two different types of extrinsic regions may betidiguished. The first occurs when
the donor concentration greatly exceeds the acceymocentration, that is, when
N; > N,.In this case; the concentration of electrons mag\usuated quite readily.

Since the donor's ionization energy (i.e. the bigdenergy) is quite small all the
donors are essentially ionized, their electronsganto the CB. Therefore, to a good
approximation,

n= Nd 22)

A semiconductor in whiclm >> p is called am-type semiconductdn for negative).
Such a sample is characterized, as we have seangi®at concentration of electrons.
The other type of extrinsic region occurs wh¥p > N, that is, the doping is
primarily by acceptors. Using an argument sintitathe above, one then has,

p= Ng 2.8)

i.e., all the acceptors are ionized. Such a materiealled ap-type semiconductoht

is characterized by a preponderance of holes.doudsing ionization of donors (and
acceptors), we assumed that the temperature isisutfy high so that all of these are
ionized. This is certainly true at room temperatuBat if the temperature is
progressively lowered, a point is reached at whiehthermal energy becomes too
small to cause electron excitation. In that case electrons fall from the CB into the
donor level, and the conductivity of the sample idishes dramatically. This is
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referred to adreeze-outjn that the electrons are now "frozen" at their umy sites.
The temperature at which freeze-out takes plaég tskT,which gives a temperature
of about 100°K. The variation of the electron cortcation with temperature in an
typesample is indicated schematically in Fig. 2.2.

4.0

O

Freeze-out

ob———

1
|
-— Fxirinsic - -t -Intrinsic——=
|
1
|
|
|

T

Fig.2.2: Variation of electron concentration nlwiémperature in an n-type
semiconductor.

Conclusion

Both holes and electrons contribute to conductivity

5.0

6.0

(a)
(b)

Q2.

7.0

Summary

Thermal vibration or energy can be used to creatmla by exciting an
electron from the valence band to the conductiordba

In an intrinsic semiconductor (undoped), the nuntdifeholes in the valence
band is equals the number of electrons in the woinmh band.

an n-type semiconductor is one characterized byeatgconcentration of
electrons.

a p-type semiconductor is onkaracterized by a preponderance of holes.

Tutor marked assignment
Q1. Indium antimonide haB,= 0.23 eV; dielectric constant= 18;
electron effective mass = 0.015m. Calculate

the donor ionization energy and
the radius of the ground state orbit.

In a particular semiconductor there aré3i6nor/cni with an ionization
energy Bof 1 meV and an effective mass 0.01 m.

Estimate the concentration of conduction electiaing K

What is the value of the Hall coefficient? Assumeeacceptor atoms are
present and thadf, > kgT.

Further readings/References

Kittel, C., Introduction to solid state physics, & Eastern Limited, 1979

Kachhava, C.M., Solid State physics, Tata McGraWiblishing Company
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UNIT 3 ELECTRICAL CONDUCTIVITY AND REAL
SEMICONDUCTORS
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1.0 Introduction

In this unit, we are going to study the electricahductivity and mobility which are
the primary interest in semiconductors, the bandcsire so that the observed
phenomenon in the model structure can be used t@inolguantitative agreement
between experiments and theoretical analysis.

2.0 Objective

The objectives of this unit is to

o Understand electrical conductivity which measuresthbscattering and
electron concentration

° Understand electrical mobility which measures sceig)

o Understand band structure of real semiconductor

3.0  Definition
Electrical conductivity is the ability of a matdrta conduct electrical current.
3.1 Electrical conductivity

Electrical conductivity is, of course, the quantityf primary interest in
semiconductors. Both electrons and holes contrituiectric current. Assume first
that a sample is strongly n-type and contains only type of carrier: electrons. The
conductivity can be treated according to the fedeetron model:

ne?t,

O, = (3.1)

me
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wherem, is an effective mass angis the lifetime of the electron. To estimate the
value fora,, we substitute =101* cm ™3, which is eight orders in magnitude less
than that in metals, and, = 0.Im. This leads to ¢,~10"7(u ohm - cm)~* which is

a typical figure in semiconductors. Although ths many orders of magnitude
smaller than the value in a typical metal, whese~ 1(uohm-cm)™! the
conductivity in a semiconductor is still suffictgn  large for practical
applications. Semiconductor physicists often use another tramspoefficient:
mobility. The mobilityu, is defined as the proportionality coefficient betwetbe
electron drift velocity and the applied elecfiigd, i.e.

[Vel = peE (3.2)
Where|V,| is the absolute value of the velocity. Taking iat@ount that
je= —en,V,andj, = o.E we find that
e'[e
He = — (3.3)

me
As defined, the mobility is a measure of the ragidf the motion of the electron in
the field. The longer the lifetime of the electrand the smaller its mass, the higher
the mobility. We can now express electrical conitgtin terms of mobility. We can
write

O = Nell
(3.4)

Indicating thato, is proportional tqu,. A typical value foru, may be obtained by
substitutings, = (1 ohm - cm)™* andn = 10 ¢m™3 in Eq. (3.4). This yield

pe~103cm3y1s7? (3.5)

What we have said about electrons in a stronglype-substance can be carried
over to a discussion of holes in a strongly p-typbstance. The conductivity of the
holes is given by

2
pe~Te

Op = = Ppéln (3.6)

mp

wherelyis the hole mobility.
Let us now treat the general case, in which babtedns and holes are present. When
a field is applied, electrons drift opposite to tiedld and holes drift in the same

direction as the field. The currents and condutigigi of the two carriers are both
additive. Therefore

o =0, + oy (3.7)

i.e., both electrons and holes contribute to threetits. In terms of the mobilities, one
may write
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o = ney, + peuy (3.8)

The carriers' concentrations and p may be different if the sample is doped, as
discussed before. And one or the other of the exarmay dominate, depending on
whether the semiconductorris- or p — type. When the substance is in the intrinsic
region, howevem = p,and Eq. (3.8) becomes

o =ne(te + Up) (3.9)

wheren is the intrinsic concentration. Even now the two @gido not contribute
equally to the current. The carrier with the greatebility usually the electron
contributes the larger share.

3.1.1 Dependence on temperature

Conductivity depends on temperature, and this digrece is often pronounced.
Consider a semiconductor in the intrinsic regids. donductivity is expressed by
(3.9). But in this situation the concentratiam increases exponentially with
temperature, as may be recalled from Eq. (1.16) Mg write the conductivitin the
form

6=F(T)e(~Eg/2kT) (3.10)

where F(T) is a function which depends only weakly on thengerature. (This
function depends on the mobilities and effectivessea of the carriers.) Thus
conductivity increases exponentially with temperatas shown in Fig.3.1.

10°
10° -
T 10 =
=t
i
2 I
(=]
-
ln-—l R
1072 - o
1 L | | (R |, S| S [
0001  0.002  0.003

1T, e =1
Fig. 3.1:Conductivity of Si versus T/in the intrinsic range.

This result can be used to determine the energy gapemiconductors. In the early
days of semiconductor this was the standard proeefiu finding the energy gap.
Nowadays, however, the gap is often measured bicabpinethods. When the
substance is not in the intrinsic region, its cahty is given by the general
expression (3.8). In that case the temperaturentigmee of the conductivity ohis
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not usually as strong as indicated above. To seeedason for this, suppose that the
substance is extrinsic and stronglyype.The conductivity is

o = ney, (3.11)

But the electron concentratioris now a constant equal A&, the donor (hole)
concentration. And any temperature dependenceriresest be due to the mobility
of electrons or holes.

3.1.2 Mobility versus temperature
Mobility of electrons (or holes) varies with tematire. In n-type semiconductor

eTe el

Ue = — =

me meVe

(3.12)

Since the lifetime of the electron, or its collisibme, varies with temperature, its
mobility also varies with temperature. Normally thdifetime and mobility diminish

as the temperature rises. The relaxation timevengpyz, = 1,/V, wherel,, is
the mean free path of the electron #nds the drift velocity. The velocity of
electrons is different depending on their locaimthe conduction band.
Electrons at the bottom of the conduction bana insemiconductor obey the
classical statistics and not the highly degendfateni statistics prevailing in metals.
The higher electrons are in the band, the greatr velocity. We can evaluate the
conductivity by assuming thét is the average velocity. The average velocity can b
estimated using the  procedure of the kinetic thebgases:

1/mo vz = 3/, kT (3.13)

-1/2
This introduces a factor of T dependence in the mobility:
ele

He = T ryre .14

e
The mean free path also depends on the temperature, and in much the seay as
it does in metalsl, is determined by the various collision mechanisoigg on the
electrons. These mechanisms are the collisiondeatrens with thermally excited
phonons and collisions with impurities. At high {@enatures, at which collisions with
phonons is the dominant factdg,is inversely proportional to temperature, that is,
l, < T~1. In that case, mobility varies as o T3/2. Figure 3.2 shows this fdfe.
Another important scattering mechanism in semicotas is that ofionized
impurities. When a substance is doped the donorac@eptors) lose their electrons
(or holes) to the conduction band. The impurities #hus ionized, and are quite
effective in scattering the electrons (holes). ighhtemperatures this scattering is
masked by the much stronger phonon mechanism,thotvaemperatures this latter
mechanism becomes weak and the ionized-impurigttexing gradually takes
over.
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Fig.3.2: Electron mobility versu3 in Ge. The dashed curve represents pure phonon
scattering; numbers in parentheses refer to damaorentrations

3.2 Band structure of real semiconductor

So far, we have assumed the simplest possible siancture, namely, a conduction
band of a standard form, centered at the origm0kand a valence band of a
standard inverted form, also centered at the ari@och a simple structure is
applicable for elucidating many observed phenomeéna,it does not represent the
actual band structures of many common semiconduc®nly when one uses the
actual band structure is it possible to obtain angtative agreement between
experiments and theoretical analysis.

A material whose band structure comes close tadébed structure igads (Fig. 3.3).
The conduction band has a minimum at the origin & and the region close to the

origin is well represented by quadratic energy ddpacel (k) = "k

m:, whereme=
0.072m. Since the electrons are most likely to populhig tegion, one can represent
this band by a single effective mass. Note, howeWat ask increases, the energy
E(Kk) is no longer quadratic ik and those states may no longer by represented by
a single, unique effective mass. In particulart thi@de next-higher energy
minimum occurs along the [100] direction. The defsrce of energy okin the
neighborhood of thisecondaryminimum is quadratic, and hence an effective
mass may be defined locally, but its value is myieater than that of the primary
minimum (at the center). The actual value is G(B®ue to cubic symmetry there are
six equivalent secondary minima, @alleys in all along the [100] directions.
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Conduction
band

Valence
band

Fig. 3.3Band structure of GaAs plotted along the [100] Arid ] directions.

These secondary valleys do not play any role unatest circumstances, since the
electrons usually occupy only the central or priynaalley. In such situations, these
secondary valleys may be disregarded altogethehererl are also other secondary
valleys in the [111] directions, as shown in Rg. These are higher than the [100]
valleys, and hence are even less likely to be @aedlby electrons. The valence band
is also illustrated inFig.3.3. Here it is compos#dthree closely spaced subbands.
Because the curvatures of the bands are diffesengre the effective masses of the
corresponding holes .One speakéigiit holesandheavy holesOther IlI- V
semiconductors have band structures quite sinalérdt ofGaAs.

Figure 3.4a shows the band structure of Si. Arr@sténg feature is that the
conduction band has its lowest (primary) minimunt abk=0. The minimum lies
along the [100] direction, at about 0.85 the disgafiom the center to the edge of
the zone. Note that the bottom of the conduction oeschot lie directly above the top
of the valence band. This type of semiconductorsknewn asindirect gap
semiconductorsThese should be distinguished fraiinect gap semiconductossich
asGaAs. Because of the cubic symmetry, there are dgtsed equivalent primary
valleys located along the [100] directions. These illustrated in Fig. 3.4b.
The energy surfaces at these valleys are compdsg#dmmgated ellipsoidal surfaces of
revolution, whose axes of symmetry are along tH#]Mirections. There are two
different effective masses which correspond todtssfaces: thingitudinaland the
transverseeffective masses. The longitudinal massris = 0.97m, while the two
identical transverse masses arg= 0.19m. The mass anisotropy ratio is about 5. The
valence band in silicon is represented by threfemiht holes (Fig.3.4a). One of the
holes is heavyr,; = 0.5m), and the other two are light. The energy gapijrfrBm
the top of the valence band to the bottom of thedaction band, is equal to 1.08 eV.
The fact that the bottom of the conduction doeslieotlirectly above the top of the
valence band, is irrelevant to the definition o ttand gap.

3.3 Excitons
An electron and a hole may be bound together by #tieactive coulomb interaction,

just as an electron is bound to a proton to formewatral  hydrogen  atom.  The
bound electron-hole pair is called Brcitons Fig.3.5. Excitons can move through the
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crystal and transport energy; it does not transpbérge because it is electrically
neutral. It is similar to positronium, which is foed from an electron and a positron.
Excitons can be formed in every insulating crys#l. Excitons are unstable with
respect to the ultimate recombination process ichvithe electron drops into the
hole. The binding energy of the Excitons can besuesl by optical transitions from
the valence band, by the difference between theggmequired to create an Excitons
and the energy to create a free electron and trke Rig.3.6

l.3cY

Conduction
_bond .

{a) (I}

Fig.3.4(a) Band structure of Si plotted along the [100] &Il 1] directions, (b)
Ellipsoidal energy surfaces corresponding to primalleys along the [100]
directions (After Kittel, 1979)
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Fig.3.5: An Excitons, a bound electron-hole pair.
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Fig.3.6 Energy levels of Excitons.

Energy levels of Excitons can be calculated afl Consider an electron in the
conduction band and a hole in the valence band.€elésron and hole attract each
other by the Coulomb potential

e?

v = - (3.15)

where ris the distance between the particles ands the appropriate dielectric
constant. There will be bound states of the Exsitepstem having total energies
lower than the bottom of the conduction band. Theblem is the hydrogen atom
problem if the energy surfaces for the electron dmale are spherical and
nondegenerate. The energy levels are given by

et
2&2h2n2

E,=E, — (3.16)

Heren isthe principal quantum number ands the reduced mass:
-= —+ — (3.17)

formed from the effective masses of the electrod hale. The Excitons ground
state energy is obtained on settimg 1 in Eqg. (316); this is the ionization
energy of the Excitons.

Worked example:

At room temperaturézT /e = 26 mV. A sample of cadmium sulfide displays a
mobile carrier density of0¢ cm® and a mobility coefficient = 102 cm? /volt sec

€)) Calculate the electrical conductivity of this saepl

(b) If the charge carriers have an effective mass egu@ll times the mass of a
free electron, what is the average time betweeoessive scatterings
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Solutions:

(@) From Eq. (3.4), the electrical conductivity in teraf mobility is given by

Oe = M€l
Withn = 10%2m=3, = 1.6 X 1071%, u, = 1072m?y~1s71,

we haves, = 1607 1m™1

(b) From Eq.(3.6), the free electron model of metaleg
ne’t

o=—, wherem™ is the effective mass of an electron is, then the
average time between successive scattering is

T= H(%) =57 x 10155

ne

4.0 Conclusion
The number of carriers (electrons and holes) isimportant property of a
semiconductor, as this determines its electricatloativity. Both conductivity and

mobility (a measure of the rapidity of the motidrtlee electron in the field)
depend on temperature.

5.0 Summary

ne?t,

° O = —— defines electrical conductivity according to fresectron
e
model.
° Ue = % defines mobility
e
o electrical conductivity in terms of mobility is deéd aso, = neu,
. o = neu, + peu, definesContribution to the currents by both electrons
and holes in terms of the mobilities
o A material whose band structure comes close tadéed structure i§aAs
° The bound electron-hole pair is calledEaxtitons

6.0  Tutor marked Assignment

Q1. A sample of Si contains I®atomic per cent of phosphorous donors that
are all singly ionized at room temperature. Theeibn mobility is 0.15
m?V- Isl Calculate the extrinsic resistivity of the sam(te Si, atomic

weight = 28, density = 2300 kg/m3

Q2. Given the data for Sj1, = 1350 crVV-s, u, = 475 cm/V-s,m, = 0.1,
my = 0.16nandE, = 1.1 eV, calculate
(a) The lifetimes of electrons and holes.
(b) The intrinsic conductivity at room temperature
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1.0 Introduction

Superconductivity was first discovered and so nalmelamerlingh Onnes in 1911. In
the course of an investigation of the electricaistance of various metals at liquid
helium temperatures, he observed that the resestaina sample of mercury dropped
from 0.08Q at about 4 K to less than 3xA®@ over a temperature interval of 0.01K.
Subsequent attempts showed that the width of tesition region in a particular
specimen depends on a number of factors, suchegsutity and metallurgical history
and can be as sharp as one millidegree or spread several degrees. While the
breadth of the transition may increase if the samplmetallurgically imperfect, the
extraordinary smallness of the resistance in tipersonducting state appears to hold
for all superconductors. Thus, the first charasterproperty of a superconductor is that
its electrical resistance, for all practical pugmsis zero, below a well-defined
temperature J called the critical, or transition temperaturéus, the conductivity in
this range of temperature is infinite; hence th@eoclature of superconductivity.

Figure 4.1 shows how the electrical resistivity @& superconductor becomes

immeasurably small at the transition temperaturee Tigure also contrasts the

behaviour of a normal metal for which at very loamperatures, the remanent
resistivity is characteristic of residual impurdi€l'he resistance of a superconductor is
believed to be zero rather than just very small.
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E
% Normal giétal
[+ 4
—
o Superconductor
0 0 20
Temperature T (K)

Fig.4.1: Temperature dependence of the resistafi@enormal and superconducting
material (After Kachhava, 1992)

2.0  Objective
The objective of this unit is to revise the basitSuperconductors in terms of:

° Empirical criteria
° Transition temperature
° Energy gap

3.0 Definition

Superconductivity is the phenomenon on which teetdtal resistivity of metals or
alloys drop to zero (infinite conductivity) whenated into its critical temperature.

3.1  Empirical criteria

There are found to be a number of regularitieléeppearance of superconductivity, the
principal of which are the following:

l. Superconductivity has been observed only for tmostallic substances for which

the number of valence electrons Z lies betweerdBa

I. In all cases involving transition metals, the aton of Tc with number of
valence electrons shows sharp maxima for Z =a$b7, as shown in Fig. 4.2.

[l A rather striking correlation (a straight line jgini exists between 3 and or
elements along given rows of periodic table (£ig).

V. For a given value of Z, certain crystal structuseem more favourable than
others. For exampl@;tungsten and-manganese structure are conductive to the
phenomenon of superconductivity

V. Ferromagnetic and ferroelectric ordering are faiendhibit superconductivity.
VI. Tc increases with a high power of the atomic volume iaversely as the atomic
mass.
VII. Superconductivity occurs in materials having mghmal resistivities. The condition

n p > 16 is a good criterion for the existence of superctidity, where n is the
number of valence electrons per c.c. and p isdsistivity in electrostatic units at
20°C.
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These empirical rules have played an importantindliee discovery of new

superconductors.
A

Tec

A 4
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7 ——
Fig 4.2: Variation of transition temperature with

number of valence electron
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Fig 4.3: Empirical correlation between transition
temperature and?fAfter Kachhava, 1992)

3.2 Transition Temperature

The temperature at which the normal metal passesuperconducting state is called the
transition temperature. TThe transition temperature is generally affebiethe application of
pressure though no specific regularity in the bielavhas been found. The value offdr
most of the metals lies below 4K; e.g., for Alsifl.20 K. For C-15 structure (e.g., V2 Hf), itis
10K; for B-1 structure (e.g., NbN), it is near 13 whereas NbZr and NbT1 [BCC (A-2)
structure] have the values ofc Tas 11.0 and 10.0 K respectively. For A-15 stracttihe
highest T =23.2 K has been observed inJ&8.

3,3 Energy Gap

Experiments have shown that in superconductorstefmperatures in the vicinitgf
absolute zero, a forbidden energy gap just aba/Edimi level is observed. Figure 4.4(a)
shows the conduction band in the normal state.ewhbil depicts an energy gap equal to
2A at the Fermi level in the superconducting stakeisTthe Fermi level in a superconductor
is midway between the ground state and the firsitexk state so that each lies an energy
distance =A away from the Fermi level. Electrons in exciteatest above the gap behave
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as normal electrons. At absolute zero, there areelaotrons above the gapAis

typically of the order of 10 eV.
-

Filled.

Normal Superconducting
(a) (b)
Fig.4.4: (a) Conduction band in the normal metaHbergy gap at the Fermi level in
the superconducting state (After Kachhava, 1992)

A is found to be a function of temperature T. ThUisyépresents energy gap at temperature

T. Figure 4.5 shows reduced values of observedygrmap  (T)/2 (0) as a function of
the reduced temperature T/Elementary theory predicts that

% =1.74(1 - Ti)l (4.1)

We observe that the energy gap decreases contintmusro as the temperature is increased
to Tc . Numerically, experiments show that for mosthef inetalsThe transition from the
superconducting state to the normal state is obdete be a second-order phase
transition. In such a transition, there is no latesat, but there is a discontinuity in the
heat capacity.

A(T) [A0) —=
o < -
R o O

o
£~

02

02K 06 08 10
TTc >

Fig. 4.5: Temperature dependence of -the supercondiing energy gap (After Kachhava, 1992)

3.4.  Properties Dependent on Energy Gap

3.4.1 Microwave and Infrared Absorptions

The response of a metal to electromagnetic radiasiaetermined by the frequency
dependent conductivity. This in turn depends onawelable mechanisms for energy
absorption by the conduction electrons at the givequency. Because the electronic
excitation spectrum in the superconducting stath&acterized by an energy géip
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one would expect the AC conductivity to differ stavgially from its normal state
form at frequencies small compared V\Rt%“'ﬁ, and to be essentially the same in the

superconducting and normal states at frequencige leompared With'z“i‘l,-“'PE The

value of?4/;  is typically in the range between microwave amidared frequencies.

In the superconducting state, an AC behaviour geted which is indistinguishable
from that in the normal state at optical frequesciBeviations from normal state
behaviour first appear in the infrared, and onlyratrowave frequencies does AC
behaviour fully displaying the lack of electroniesarption characteristic of an energy
gap becomes completely developed.

3.4.2 Density of States

The three parts of Fig. 4.6 give a highly exaggetaticture of the difference between
the spectrum and occupancy of states in a normalalmend those in a
superconductor. Part (a) considers the densitytaiés at T = 0 in the absence of
superconductivity (which can be arranged by applyansuitable magnetic field). The
superconducting ground state for zero temperatupactured in part (b). This shows a
zero density of states for energies withiA£2) on either side of the Fermi energy, and a
piling up of the displaced states on either sidéhefgap. At T — O, no electrons are
excited to higher states. Part (c) of the figur@gmes the consequences of a finite
temperature less thag The superconducting energy gid?) is now smaller thari ().
Fractions of number of electrons are in states al&Ev+ AT leaving behind some
unoccupied states beld# — AT. Finally, the gap decreases to zero when T redchesd
the corresponding density of states is the onetiebin part (a).

p0s |
a
po.s!
b
posf
c

Fig. 4.6: Density and occupancy of states (D.O.S) for a noamé a superconductor (After
Kachhava, 1992)
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3.4.3 Specific Heat

There is no heat of transformation associated with superconducting-normal

transition in a metal, but there is an anomalyha ¢lectronic component of the specific
heat. An example of this is illustrated in Fig..4The discontinuity in the specific heat
reflects the second-order transition from a reddfivdisordered (normal) state to a more
highly ordered (superconducting) state of loweragyt At low temperatures, the specific
heat of a normal metal has the form

¢ = AT+ RT? 4.2

where the linear term is due to electronic excitegt and the cubic term is due to lattice
vibrations. Below the superconducting critical temapure, this' behaviour is substantially

altered. As the temperature drops belwthe specific heat jumps to a higher value and
then slowly decreases, eventually falling well beline value one would expect for a

normal metal. By applying a magnetic field to dribe metal into the normal state, one
can compare the specific heats of the supercomguethnd normal states below the

critical temperature.

WV TR WD e Sk Sy T S e s ——

——— "

f_'i-. e i o -

T
Fig.4.7: Specific heat of normal and supercondiiétiter Kachhava, 1992)

Such an analysis reveals that in the supercondudate, the linear electronic
contribution to the specific heat is replaced bynt¢hat vanishes much more rapidly at
very low temperatures, having dominant low-tempeeatbehaviour of the form
exp(—A/kgT). This is the characteristic thermal behaviour afystem whose excited
levels are separated from the ground state by g2arghus, the total specific heat of the
superconducting state is

l!r?: = 4T3ﬁt: (4.3)

Where

% =qa exp ( —b (T'J,'flr) j 4.4)

whereyT is the low-temperature electronic specific heahefnormal state (obtained by
applying suitable magnetic field), anal™ 9 and’ ¥ 1.5.These parameters are
themselves weakly temperature dependent. In Fitpd.gize of the discontinuity in specific
heat afl =T is 2.5 in units oiT_.The exponential decrease in specific heat belpeaif
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be interpreted as follows. Because, of the enexgythe number of electrons excited across
the gap is given roughly by a Boltzmann factor,(exy/ kzT). Hence, the heat capacity
varies exponentially with temperature.

3.4.4 Acoustic Attenuation

When a sound wave propagates through a metal, ithesoopic electric fields due to the
displacement of the ions can impart energy to elachear the Fermi level, thereby
removing energy from the wave. This is expressethbwttenuation coefficieny, of
acoustic waves. The ratio @ffor superconducting and normal state is given by

T (4.5)

2n 1+exp(A/kgT)

At low temperatures

L= 2exp (- k'rW

The exponential decay ratio is represented in4&Rg).

A (4.6)

T ——t

Fig.4.8 Ratio of attenuation coefficients for acoustioresin superconducting and
normal metal as a function of temperature (Aftechfava, 1992).

3.4.5 Thermal Conductivity

In normal metals, the heat current is predominamtlyried by the conduction
electrons and at low temperatures, the electromntribution to the thermal
conductivity Ken is given by the Wiedemann-Franz law. In a supetootor,
however, the electron pairs have zero energy sy thanot contribute to energy
transport and hence to the heat current (but beagged, they can still contribute to
the electric current). Hence, the electronic cbutiibn to the heat current depends on
the number of normal electrons and like the eledtrapecific heat represented by
Eq. (4.4), we have the ratio of superconductingdonal phase conductivities as

:‘-i &Y - ._ -'i'l- A
exp [ -’k;TJ 4.7)

Han 4
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This is illustrated in Fig.4.9. When< T, K,. — 0 and the only thermal current will
be carried by the phonons (as in insulator). Ustéiable conditions may be very

large

%
K

(~10%) and this property can be used to make a heatlswihe heat flow being
controlled by a magnet. The phonon contributioth&rmal conduction will actually
increase in the superconducting state since thitesog of phonons by electrons is
reduced by the formation of pairs. In extreme caglesnii,,, is made small by the
introduction of impurities, the increase in the pbo contribution to the thermal
conductivity belowT, may outweigh the reduction in the electronic ciition so
that the total conductivity increases in the supedcicting state. To achieve this
condition, an impurity of similar mass but diffeteralence, which will reducé.,
without greatly affecting phonon transport, shdoddused. An example is Bi in Pb.

1.0 —1

o8

0 oz o4 06 08 (Y]
T#TC—-

Fig.4.9: Ratio of the electronic contribution t@ tthermal conduction of Al (After
Kachhava, 1992)

4.0 Conclusion

At a critical temperatur&_, many metals and alloy undergo a phase tranditam a
state of normal electrical resistivity to a sup&ebacting state.

5.0 Summary

. Superconductivity has been observed only for tmoestllic substances for which
the number of valence electrons Z lies betweerdBan

. The temperature at which the normal metal passessuperconducting state is
called the transition temperature, T

. In superconductors, for temperatures in the viginftabsolute zero, a forbidden
energy gap just above the Fermi level is observed.

. The ratio of attenuating coefficient for supercoettg and normal state is given
by
e, 2
ar 1 +esp [%".&-JJ

° The ratio of superconducting to normal phase cotinties is given as
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Koz A i
= ~oexp|—58/ |
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6.0  Tutor marked assignment

Q1. Prove that the Meissner effect is consistent Wiehdisappearance of

resistivity in a super conductor.
Q2. Show thawhen superconductivity is destroyed by tfieéa magnetic
field, the magnet will cool.
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1.0 Introduction

In this unit, we are going to study both the expemtal and theoretical situations
concerning superconductivity. The experimental syruncludes the effects of
magnetic field on superconductivity(the Meissnée&), the minimum magnetic field
(critical field) necessary to destroy superconditstias well as the minimum current
(critical current) that can be passed without asstg superconductivity.
Thermodynamics, London equation and type | and semiconductors constitute the
theoretical surveys.

2.0 Objective
The objectives of this unit are:

° To survey the central experimental facts concegrauperconductivity
° To discuss the theoretical situations of superaotinity

3.0 Definition

Superconductivity is the phenomenon on which teetdtal resistivity of metals or
alloys drop to zero (infinite conductivity) whenated into its critical temperature.

3.1 Meissner effect

Meissner and Ochsenfeld (1933) showed that, iing Euperconductor is cooled in a
longitudinal magnetic field from above the trarmiti temperature, the lines of
induction are pushed out (Fig. 5.1) at the traositiThe Meissner effect shows that a
super- conductor behaves as if inside the specinerD ory — — 1|,-"4|T; that is, a

superconductor exhibits perfect diamagnetism. Vely important result cannot be
derived merely from the characterization of a sopeductor as a medium of zero

resistivityo: from E =gj we see that, if is zero while j is finite, then E must be zero
and with it curl E must be zero. Therefore from MaX's equations
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ds."‘;.:{f = —curl E=0 (5.1)

so that the flux through the metal cannot changeamting through the transition.
The Meissner effect contradicts this result andyssts that perfect diamagnetism and
zero resistivity are two independent essential @rigs of the superconducting state.

Fig.5.1: Meissner effect in a sphere cooled instant applied magnetic field; on
passing below the transition temperature the lafésduction are ejected from the
sphere. (After Kittel,

3.2 Critical Field

The minimumapplied magnetic field necessary to destroy supehectivity and
restore the normal resistivity is called thketical field, H.. H.depends on the
temperature. Fig.5.2 shows the critical field darection of temperature. The curve is
nearly parabolic and can be reasonably well reptedeby the relation

m=mh—gﬂ (5.2)

Where!l; is the critical field at absolute zero. This edquats really the equation of
phase boundary between the normal and supercondwsttite. The typical value of

H. is 5000A/m.

H(T)

A
Normal

Superconducting

»T

Tc

Fig.5.2: Critical magnetic field as a function efriperature (After James and
Bernard, 2005).
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3.3 Type |l and Type Il Superconductors

Superconductors may be divided into two classeshwihepend on the way in which the
transition from the superconducting to the norntalesproceedaihen the applied field
exceeddd.. In typed materials, agi, is reached entire specimen enters the normal state
practically simultaneously, the resistance retutmes diamagnetic moment becomes zero
andBinternat = Bexterna (FI95.2a).

) B A

./
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e
J{ ,
|

-~
-
-~
-
-
”

#

i
L
Sl
| .~ ! |
- k- [ ! ]
;’H Her Heg Hes
Fig.5.2: Flux penetration as a function of magnitc in (B.)
type-l superconductor and (b) type-Ill superconducto

—————

> H

In type-Il superconductors, the transition to a ptately normal specimen is much more
gradual. As shown in Fig. 5.2b, there is a papegletration of the magnetic field between
the critical fieldHc1 andHco. Small surface super currents may still flow uoapplied
field Hes.

3.4 Critical Currents

The minimum current that can be passed in a samleout destroying its
superconductivity is calleccritical currentf.. If a wire (radiusr) of a typet
superconductor carries a current |, there is aasarfmagnetic fieldH;= I/2zr
associated with the currentHf exceedd!,, the material will go normal. If in addition, a
transverse magnetic field is applied to the wire, the condition for the titios to the
normal state at the surface is that the sum offipdied field and the field due to the
current should equal the critical field. Thus, esrsfrom Fig. (5.3b), we have

H._ H; + 2H
I.
H =-°"=H.— 2H
2nr )
Hence I.= 2ar(H.— 2H) 5. 3)

The critical currenti, will decrease linearly with increase of the applietd until it
reaches zero & = H./2. If the applied field is zerd, = 2mx+H . similar considerations
apply to typeH superconductor fof < H_; that is when the superconductor is not in the
mixed state.
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Seclion®x —x*

(b)

Fig.5.3 :(a) wire carrying current | subjectedransverse field H.(b) Cross-section of
wire showing fields at equatorial position on tlheface(After Kachhava,1990)

3.5 London Equations

In 1935, two brothers F. and H. London, proposed equations to govern the
microscopic electric and magnetic fields (two baslectrodynamics properties)
which give superconductivity its unique interesheTLondon theory is based on
rather old ideas of the two —fluid model accordiagvhich a superconductor can be

thought to be composed of both normal and supdréiectrons. Let,,,», and n_wv,

be respectively the density, and velocity of thenmad and superfluid electrons. #f,
is the number of electrons per unit volume, thethenaverage

Mg — 1M, + 1,
The equation of motion for the superfluid electras

dvg
dt

= —eE (5.4)

The density of the superfluid electrons is
js = —TENV; (5-5)

Then Eq. (5.4) and (5.5) yield

djs 187
- X F (5.6)

dt m

This is the first London equation.
Taking curl of Eq. (5.6)
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o e
G_IS :J:g'ﬁ
dat 1

v curl E

and using Maxwell’s equation

3B
curl E = -
we get ‘
dj 2
VxYs o mel s (5.7)
ar m ot

Integrating this equation with respect to time, ahdosing the constant of integration
to be zero consistent with the Meissner effecthexe

-

Vxij, =-=2 B (5.8)

This is the second London equation.

We may derive the Meissner effect from the secomadion equation by using the
Maxwell equation

VDB =puyj. (5.9)

Taking curl of this equation

Curl euwl B = i, VX J. (5.10)

Then using the condition dB = 0 of a superconductor in the identity

Curl curl B = grad divB —V°B

We get
Curl curl B=—V°B (5.11)

Oncombining Eqg. (5.10) and (5.11),
—V’B=pu, VX j. (5.12)
This along with Eqg. (5.8) gives

V'B= 5B (5.13)

Where is called the London penetration depth artfined by

m

1/2
A= (,1.!,31:5»32) (5.14)

For a superconductor to the right of the planeQ Eq. (5.13) has the solution
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B(x) = B({])exp(—f) (5.15)

This equation indicates that B does not penetratg geeply into superconductor, and
therefore it implies the Meissner effect. The fipkehetrates only a distangewithin

the surfaceA is typically of the order of 1000A. The graphicafrh of Eq. (5.15) is
shown in Fig.5.4. The penetration depth is alsonfbuo depend strongly on
temperature and to become much larger as T apme@chThe observation can be
fitted extremely well by a simple expression of thiem

[Z] = [1 - @411 (5.16)

This equation implies that

-1

n, = n, [1 - (;]*] (5.17)

Ho

=

X 2N 3N WA sAT
X

Fig.5.4: Magnetic field penetration at surface of a supedcator (After Kachhava,
1992).

The density superconducting electrons increase #rern atl’, to iz, at absolute zero

as shown in Fig.5.5, which also depicts the tentpegavariation of. . is called the
order parametebecause it characterizes threler in the superconducting state.
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Fig.5.5: Density of superconducting electrons amation of temperature (After
Kachhava, 1992)

Worked example:

The London equation for simple superconductorph@nomenological equation
relating the supercurrej to the magnetic vector potential

—nee?

Js= .
Wherem, is the electron mass. Using the appropriate Maxeglation, show how
the above equation leads to Meissner effect.

Solution:

The Meissner effect refers to the fact that inghperconducting state magnetic
induction vanishes and materials become stronglyndgnetic. From London
equation (Eq.58),

-

Vxjs =—=—B (i)

SinceA? = nme we get

VXjs =——B (ii)

Inside a superconductor, the electrical field viaessand we have the Maxwell
equation

Error! Bookmark not defined. VX B = 4T”js

242
Hence B=—-cA?Vxj,=—-<2[vV(V-B)-V2B],

41T

. , . 1
Or, using Maxwell’s equatioW’B = =B
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m \1/2
uonsez)

For a superconductor to the right of x= 0, Eqg.Ha}k the solution

Whereld = (

B = Boe(_i)
This shows thaB decays exponentially such that= %BO at x =A.

Forx > A, B— 0, indicating that the magnetic field exists only anthin layer of
thickness: 4 beneath the surface of the superconductor. Thesntagnetic field
inside a superconductor is zero. This is the Meissifect.

3.6  Thermodynamics of Superconducting transition

It has been demonstrated experimentally that thesition between the normal and
superconducting states is thermodynamically rebkrsin the same sense that with
slow evaporation the transition between liquid aagbor phases of a substance is
reversible. The Meissner effect also suggests tiattransition is reversible and
would not subsist if the superconducting currenés alvay with the production of
Joule heat when superconductivity is destroyedhadransition is reversible we may
apply thermodynamics to the transition, obtaining expression for the entropy
difference between normal and superconducting statdéerms of the critical field
curveH. versud..

The Gibbs free energy per unit volume in a magrfegid

MH

G=U-TS +PV— (5.18)
Ho

Then the differential Gibbs free energ§ is
MdH

dG = —5dT + PdV — (5.19)

Mo
At constant T and P, the free energy differenceabse of the presence of a magnetic
field, is found by integration. Thus

T.H H M
Joo dG = — [ IdH (5.20)
HM
G(T,H) - 6(1,0)= — [, —dH (5.21)
0
For superconducto!, = —Hor M = —VH and
HVH
G.(T.H)— 6.(T,0)= — [ —dH
Ho
6.(T.H) — 6.(T.0) = —VH? (5.22)

__LJ.I:I
Here(, is the free energy of a superconducting phase
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Along the phase boundary between normal and supéwucting state, the normal
phase must have a free energy indistinguishabia filtat of the superconducting

phase. Therefore

G, (T,H.) - G.(T,00 = —VH? (5.23)

=Hn

Where G, is the free energy of the normal phase. Fig.5d@wvshthe variation ofr,
and G, belowT,, where the normal phase is obtained by applyiedigid in excess of

H,.

Free energy—s»

Tc=H8 K

? Temperature ——
Fig.5.6: Experimental values of free energy of iAthe normal and superconducting

state as a function of temperature (After Kachhagap)

Let us now calculate the difference in entropy ldé two phases. For solids, the
entropy S is given byds /dT. Hence, differentiating Eq. (5.23) with respeciitave

have

S,— S, = - <(2vH?)

dT \2 5,

VH, dH
£ < (5.24)

fg dT

Where the entropies, and 5, refer to normal and superconducting phases

respectively. Thug,, = 5, as illustrated in Fig.5.7.

Te
Sn
55

Entropy —=

e T
Fig.5.7: Entropy S of Al in the normal and supermuacting state as a function of

temperature (After Kachhava, 1992).

196



PHL 307 SOLID STATE PHYSICS 1

As i—i’f is always negativey, — 5. is always positive and the superconducting state i
observed to be more ordered than the normal skédteéhe transition temperature
5,— 5. = 0 becaused, = 0, and at OK,5, — 5, = 0 from the third law of

thermodynamics, which is satisfied, beca%%fetends to zero. At some intermediate

temperatures, 5, — 5. has a maximum. The latent heat absorbed when
superconductivity is destroyed is

Q = T(SJI _ 55)
__ L_T H, ‘Eﬂ (5.25)
i

In the absence of a magnetic field, the transiboours atT. and the latent heat is

zero. If U, and U, are respectively the normal and superconductiate Shternal
energies, then from Eq. (5.25)

U]! - Us =T (‘51: _ 55)

VTH, dH
= £ —= (5.26)
fg dT

From experimeng,, — 5.)% 107" eI/, which is extremely small compared to the band
energies. For a unit volume, the difference of thehe heat capacities, from Eq.
(5.26), will be

(Cs - C]!) = T% {55 — -Sv])

TH d?H, T (-:‘IH,:)E (5.27)

T dTZ | pg \ dT

On substituting” = 1 ., H. = Qin this equation, we get tHRugers formula

2

(C. C) = ::—D (E};) (5.28)

This equation reproduces the experimental datawetly

=1
P—d

3.7 Isotope effect

It has been found by early experimentalists thatttansition temperature is strongly
dependent on the average isotopic mass, M, ofdhstituents of a superconductor. In
particular

T. o« M~1/2 (5.29)

More recent experiments have suggested the follpgeneral form
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T oo M™% (5.30)

In which & is called the isotope effect coefficient and iiresd by
__ 9InT

@ = &1lnM (5.31)

Recent theories lead to the result

a = 0.5[1 — 0.01{N{0)V} %] (5.32)

where the parameté( 1) is the density of single states for one spin atRrmi level
andV is the model potential between the electrons. tfdesition temperature can be

connected to the Debye temperatéige,becausé, ¢ sound velocityxx M~1/2,
Hence, from Eq. (5.30),

T. x &,

T
ie.—=

= constant (5.33)
€p
The constant o#;—: implies that the lattice vibrations have an impottbearing on

superconductivity;, and gives a clear guide to theoty that electron-phonon
interaction must be the basis of the existenceipésconductivity.

4.0 Conclusion

The magnetic properties exhibited by supercondsctme as dramatic as their
electrical properties. The magnetic properties oanme accounted for by the
assumption that the superconducting state is cteaized properly by zero electrical
resistivity.

5.0 Summary

° A bulk specimen of metal in the superconducting sexaibits perfect
diamagnetism, with the magnetic inducti®r 0. This is Meissner effect.
o There are two types of superconductbrandll
. In type I, the superconducting state is destroyed and thmalostate is
restored by application of critical valé..
. A type Il superconductor has two critical fields, < H. < H_,
. The London ¥ and 29 equations
; - n
j{f: 2 FE  Or VXj. =-=B
L m 5 m

i

Leads to the Meissner effect through the penetraimjationVEB = 3B
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6.0 Tutor marked assignment

Q1. A superconducting tin has a critical temperatur8.@fK in zero magnetic
fields and a critical field of 0.0306 T at O KnBithe critical field at 2 K.
Q2. Estimate the London penetration depth from theofaithg data:
Critical temperature = 3.7 K

Density =7.3gch
Atomic weight =118.7
Effective mass* = 1.9m, where m is the nafss free electron
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