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1.0 INTRODUCTION

In the case in which the Hamiltonian is no longer of a simple form, it
might be impossible to find an exact solution for the Schroedinger
equation. In such a situation, we may resort to perturbation method. In
Quantum Mechanics, the energy of abody in an infinite potential well is
guantised. Thus, the electron in an atom can only have a set of discrete
energies (bound states). For a finite potential, the energy for a particle
inside the potential, E V, the energy is quantised. For E V, the energy
Is one of a continuum. In this case, the energy is mixed, quantised and
continuous, depending on the value of the energy of the particle. For a
constant potential and for E V, the energy is continuous. Without aloss
of generdlity, as the reference for such a potential is arbitrary, we can
redefine the zero of the potential, such that we can set it to zero, giving
the case of a free particle. Thus, if an electron is no longer inside the
atom, that is no longer inside a potential well, it can have any value in a
continuum of energies. In addition, another electron can aso have a
continuum of energies. The difference in energy of such electrons can
also take up any value of a continuum of energies. Perturbation theory
relies on the known eigenstates of the unperturbed Hamiltonian. It
follows that the theory applies only to bound states. The idea is that if
the deviation from the simple Hamiltonian is small, the solution may
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be obtained by adding a small term to the energy and the wavefunction
associated with the smple Hamiltonian. In this Unit, we shall consider
Hamiltonians that are a little bit deviated from the simple Hamiltonians
we are already familiar with.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

find the first order correction to the energy of aslightly perturbed
system in terms of the known unperturbed energy

find the first order correction to the wave function of a dlightly
perturbed system in terms of the known wave function.

3.0 MAIN CONTENT

3.1 Perturbation Theory

We shall assume that the Hamiltonian of the particle under discussion is
alittle different from a simple unperturbed Hami Itonian H acting on
the Hilbert space , so we can write
Holu; By
1.1
is known so that the known orthornormal basis Iuj in the analysis of

the undisturbed Hamiltonian can still be used as a basis. We write the
perturbed Hamiltonian, H as a sum of the unperturbed Hamiltonian and

the small perturbation H,
H H, H, [0y
1.2
such that
[H.[  [Hol
1.3

in equation 1.2 is useful in keeping track of the order of order of
perturbation.

Let the elgenvalues-eigenvectors of the perturbed HamiltonianH be
such that

Hl n E1| n
1.4
We shall seek solution at the kth level, with energy E, and
wavefunction  so we can write

121



PHY 309 QUANTUM MECHANICSI

H | El
15
Assume E and  can be expanded interms of {u;}, {E;} and that
E R B R
1.6
| 0| 0 | 1 2| 2
1.7
Then,
Hl o W)L I Pl a -)(HS of
equation (1.4)
=(5 & B .. 1. ‘. 2)=El,
1.8

(RHS of equation (1.4)

H0| 0 H0| 1 2H0| r?

Hil o PHIl . CHIL

El. El. 'Bl.

El. °EBl. °El.

BEl. EBl. ‘&Bl.

Equating coefficientsof

WS ELS
19

oHY D HY Y B Bl

1.10

o Hl . HI L El. EBEl. El.

1.11

and so on.

Note that equation 1.9 is just stating the obvious, for the unperturbed
system.

3.1.1 First-Order Perturbation

We multiply equation 1.10 by r? | on the left:
0|H0| 1 0|H1| 1
- Er? 0| 1 Er:l]. 0| 0

1.12
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Thefirst term:

SIH°| ~ H° 2] EY °l .~ since H° is
Hermitian.
Clearly, the first term on either side cancel out.

The second term on the right hand side, E+ |
eguation 1.12 reduces to,
El 0 | Hl | 0

1.13
Thisisthe 1% order correction to the energy, and as you can see, it is

the expectation value of the perturbationH® over | ° , the
unperturbed state.

Again, from equation 1.10,
Rl . Bl . El. HIl,
We can rearrange thisinto
H BNl & (B H)I;
1.14
Expanding | + in terms of the orthonormal basis for the unperturbed
system,

| ! c™] ¢
n jnJ ]

1.15
where j n has been omitted because from equation 1.7, any |

teemin | |  could have been pulled out and combined with the first
term on the right.

0p O 1 21 2
| W | n I

Let us put equation 1.15 into equation 1.14:

(H° E) c”| § (B HYI .
jn
1.16

But H® | ? E?| ?

Therefore, equation 1.16 becomes,
(E] ENc”| | (Ex HHI |
jn

1.17
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Multiplyingby /|,

(B} ENc” &7 ¢ IEdl o CIHY G
or .
(B Ec” 17 B &loa CIHT o
. 1.18
Ifk n, 7|7 71 7 O (see explanation after equation 1.15

the left side of equation 1.18 becomes zero, giving yet again, equation
1.13.

For k n,

() ENS” ¢ (B E)c” E;, 0 ([H'| |

n
jn

Finally,
R s I A
k 0 0 0 0
Ek En En Ek
Therefore,
o CIHY R
] 0 0
E.) Ej;
1.19
And equation 1.15 becomes,
0 1 0
| 1 JlH | n | o
in En E} J
1.20

For first-order approximation and setting 1,
E B E B JIHIl .,

1.21
0 1 0
IH
1 0 J n 0
n I n I n I n i n Er? E? I J
1.22
Example 1
A particle is in a box santed such that we may write the Hamiltonian
2 2
H HO HO where HO — 9 and H® Yy, N \/zsinﬂ
2m dx* a a a
212
and E? g hz . What are the first order corrections to the zeroth order
ma

(unperturbed) energies?
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Solution 1
H H (0) H (]
(0) 2 d2 V
where H S HY —x
2madx a
Thesolutionto H? @ EQ © ge
2 .. nx n’h?
,(f’) \/: sn—"and EY ——
a a

Hence, the first order correction to the energiesis g®

MODULE 4

The first order corrections to the zeroth order (unperturbed)
energies are:

0 )
oo | 0

Er(]D

I
I
Q.
T

a

2n X

a
X cos——dx

a

2n X

XCOS—— dx

i< NI VIS VLS
<

SELF-ASSESSMENT EXERCISE 1

v
2
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Calculate the energy of the first two states for an infinite square well
potential of width d (Figure below).

40 CONCLUSION Yo

W » XX

Starting with the energy and the wavefunction of the unperturbed
guantum-mechanical system, you have learnt how to find the first order
correction to the energy and the wavefunction of a quantum-mechanical
system under avery small perturbation.

50 SUMMARY

In this Unit, you have learnt to:

find 1% order correction to the energy of a dightly perturbed
system

find 1% order correction to the wavefunction of a dightly
perturbed system

Answer to Self-Assessment Exercise 1
The modification to the Hamiltonian is H* V,(1 Vlv), which can be

considered a perturbation. The function you can easily prove by
recognising that the opeis V,/w, and the intercept onthe V axisis V,

V X
.Hence, H'(x) —x V, V,(1 —).
W W

The unperturbed eigenstates and the corresponding eigenvalues are,

2 . X 22
| —sin—,
P AwT w & 2mw?

2 2x _, 27?72
Z&ns 2,
2 \w w & 2mw?

Recall that
dntkdx X Lanak c
2 4k

2
xsin? kxdx X? 4—):<sin2<x S—lizcoska c
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In our own case, k

sin? — xdx

w
X
w 2

W .

—98n2—Xx ¢

4 w

X2 X

Xxsin?—xdx — ——sn2—x >
w 4 Aw w 8

cos2—X C
w

w . w
sin?—xdx —
0 W 2

2
W—sin2 Fcosz 0— 0—sin2—x

W w2
xsin®>—xdx —
0 4w

w

W
wow W W
4 8?2 82 4
Hence, the first order energy corrections are,
, X
10|H |10 10|V0(1 V_V)llo

w X, . AN, ow .
dxV,(1 —)sin®—x —2 “dxsin®—x
0 w w w o0 w

52
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w2, w1

W 2 W 4 2°

MODULE 4

32 cosO

xdxsin® — x

Notice that the definite integral has nothing to do with the value of n.

. . .1
Hence, the first order correction isthe same for all values of n. It is =V,

6.0 TUTOR-MARKED ASSIGNMENT

1 The Hamiltonian for anharmonic system in 1-dimensional

p> 1

oscillation is given by H o Ekx2 bx*. Find the energy of
m

this system up to the first order correction and obtain the total
energy. (Assume that the ground state wave function of a simple

. . . Kk L (&
harmonic oscillator is , (—)%e ? ,and E, 7).

x%e 2 dx 1\/:,
2\ a

Take

2. Consider a particle of mass and charge e in the central potential

2

2
V(r) eT’ when O r Rand V(r) eTe TR when
R r . If the difference in potential is considered as a
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7.0

perturbation, obtain the first order correction to the energy of the
ground state.

(Assume that the ground state wave function of a simple
1

1
harmonic oscillator is , (a)) %2e * = ,*= ,,* isthe
unperturbed ground state)

Calculate the energy of the first two states for an infinite square
well potential of width d (Figure below).

W »xx
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1.0 INTRODUCTION

In Unit 1, we took a look at the first order correction to a quantum-
mechanical system with a very small perturbation. In this Unit, we shall
be considering second-order corrections to the energy of the system. In
addition to that, we consider the case of degeneracy, that is, a case
where two different eigenfunctions have the same energy. In such a
situation, the denominator of the expression for correcting the energy
and the wavefunction becomes zero, meaning that the equations are no
longer valid.

2.0 OBJECTIVES
At the end of this unit, you shouldbe able to:

calculate second-order correction to the energy of a quantum-
mechanical system with avery small perturbation
split or separate degenerate energy levels.

3.0 MAIN CONTENT

3.1 Second Order Perturbation

Werecall equation 1.11:
HO2 ML B OB B
0

Multiplying ontheleftby | |,

2 IHT 8 L I O I~ I =t
For the same reason as for the first order perturbation, the first term on
the left is equal to the first term on the right. Also, the last term is En2

129



PHY 309 QUANTUM MECHANICSI

since the basis vectors are orthonormal. The second term on the right is

zerosincewesaidthat | © hasno| . term.

Then,
E. oIH
2.1
9||—|1| 0 )
Ot —! A I [using eq. (1.20)]
n EO EO ]
Jn n j
LA O Lo o I
in E, Ej
I L e A
in E, E/
2.2

Thisisthe 2" order correction tothe energy.

Example 1
A charged particle is in simple harmonic motion such that

V(%) %m 22, subjected to a constant electric field H, qex . With the

aid of the raising and lowering operators, calculate the energy shift in
the I'th level to first and second order in qE .

Solution 1
al m_ X i , a m_ X i
V2 m V2 m
a a 2x/™
2
Hence,
X [J—(@ a
W/zm ( )
Therefore,

H* gEx qE W(a a)

To afirst order,

E.=  LIH'l 2 4> nla a|n

2m
]

,/— njaln nja |n !

2m
1}

‘/2— n|\/ﬁ|n 1 njvn 1|n 1#

m
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\/;"\/ﬁ nin 1 Jn 1 nin 1#
0

To asecond order (recall that E;, m ),

= | KklgExin
2
k n (n k)
gz LKIxIn P o€’ | kla a|n P
K n (n k) 2m | ., n k

Sinceonly k n 1and k n 1 contribute to the second order term,

q°E’ | kla a |n [

2m ., n k
q°E? | n 1la a |n * | n 1la a |n [

2m n k n k

q°E’ | n 1lajn |* | n 1Ja |n
2m n (n 1 n (n 1

q°E’ | n 1laln * | n 1]a |n [

2m n (n 1 n (n 1

q2E? INn 2l n o1fn 1 ]2 |¥n 1P n 1jn 1 P
2m 1 1

q2E? Ivn 2l n 1n 1 P |¥n 1P n 1|n 1 P
2m 1 1
q°E? |Vn | |vn 1P
1 1

2m

qZEZ
2m

0 0

22 22
IE funr Wn ik OE
m

2m ?

3.2 Degeneracy
We have assumed that the state energy E,f Is distinct from those of other

states. That is, | ¥ is non-degenerate, otherwise, the denominator in
eguations 1.19, 1.20, 1.22 and 2.2 would vanish.

Suppose | ,‘f IS M-degenerate, that is, there are M states, v, , v, ,
,  Vwithsameenergy, m .2
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S rs

2.3
That is, they are orthogonal but have same energy. We redefine the m
states
&v, &v, ... &V,
2.4

subject to

| &

ri

F1

r

2.5

The simplest case, M= 2:
V"
2.6
1€ | 1
2.7
Letv, uandv, v.Then,
H H, H,
2.8
Hlu B |u
2.9
H°lv E’|v
2.10

ulv 0, uju 1, v|v 1

Let |lw =¢&]|u v = |

211
e, = olHlo
= w|H,|w
= &u "v|H,|€&u v
Hence, E, (& ")= &*& u|H,|u

+&* " u|H,|v
+ "*& vVv|H,|u
+ "* " v]|H,|v
2.12
Let us represent the inner products above, respectively by m,, m,,,
M, , M,,, with the matrix

M M 11 M 12
M 21 M 22
2.13
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Then, we can write
E/(& ") M &*& M_,&* " M, "*& M, "* "~
2.14
Smilarly, for E (&* **), &&* *°* 1, otherwise, &, - are
arbitrary.

The eigenvalues of M are the first-order corrections to the energy.
Different eigenvalues splits the energies, & &, removing the

degeneracy. The eigenvalues of the matrix equation 2.13 is obtained
from

SELF-ASSESSMENT EXERCISE 1
My, M,,) (J(My M,,)? 4(M,,)?

Show that , M, real, and
¢ 2
2 2
My M) JMy M) 4IMy P oy
¢ 2
EO 1
1 2
Ho H, B 2
L1 Hl

Fig. 12.1: The splitting of the degenerate energy levels by perturbation

If , ,,then perturbation H, removes the degeneracy. If ,= ,, then
H, does not remove the degeneracy. One has to repeat the process by

applying some perturbation in order to make distinct spectral lines. If
there is still degeneracy, apply more perturbation until all the levels are
distinct. Example: magnetic field applied to create distinction in spins.

SELF-ASSESSMENT EXERCISE 2

a When is a quantum-mechanical state said to be degenerate?

b. The first excited state of the one-dimensional harmonic oscillator
Is found to be two-fold degenerate. The matrix associated with
the perturbation of the oscillator is given as

1 01

2210
Find the two energy levels that result from the perturbation, given
that the energy of the stateisk,, .
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40 CONCLUSION

In this Unit, you have learnt how to calculate the second-order
correction to the energy of a quantum-mechanical system with a very
small perturbation. You also learnt that applying perturbation lifts
degeneracy, splitting up aline in the spectrum into distinct lines.

50 SUMMARY

In this Unit, you have learnt to:

calculate the second-order correction to slightly perturbed system
apply perturbation to remove degeneracy.

Answer to Salf-Assessment Exercise 1

‘M 11 M 12
0
M 21 M 22
M, )M, ) MM, O
Expanding,

2
(MJ_‘I. MlZ) M11M22 MQMZ. O
We solve this using the quadratic formula.
(Mll MZZ) (\/(Mll '\/IZZ)2 4(Mll MZZ MlZMZl)
¢ 2
(Mll MZZ) (\/M112 MZZZ 2M11M 22 4M11M12 4M12M21
2
(Mll MZZ) (\/M112 MZZZ 2M11M 22 4M12M21
2
(M Myp) (Y(My M) 4MuM,,
2
Since My, M,,M,M,, |M,F, sowe can write
My My) (J(Myy My,)* 4[My, P
(
2

Answer to Salf-Assessment Exercise 2

a A quantum-mechanical system is sad to be degenerate if
different eigenstates correspond to the same energy.

b.  Theeigenvalue equation is
0 27

0
220
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or
1 2
2 2 — 0
Therefore,
1
(5=

The two energy levelsare E,, and E,,

w2

Summary of Study Session 12

In this study session, you have learnt how to:

6.0

calculate the second order correction to a Hamiltonian subjected
to asmall perturbation.

apply perturbation in order to remove degeneracy, making a
single spectral line to split into distinct spectral lines.

TUTOR-MARKED ASSIGNMENT

The first energy correction term in the 2-degenerate perturbation
of a Hamiltonian H® by a Hamiltonian H® (H® H®@) is

3¢*¢ 2"+ "xg& 2&* ", where gu v is the
redefinition of the 2 states, subject to & 1. Show that H®
removes the degeneracy.

A charged particle of mass m and charge g is sSitting in a
harmonic potential v, %m 2x?. A weak constant electric field
E is applied in the ;-direction, so that the potential is perturbed
by v, qex.

(@ Show that there is no change in the energy levels to first

order in E.
(b) Calculate the second-order change in the energy levels.
(c) Solve this problem exactly, by changing variables to

X X —mq) 5
1) 0 O
Consider the Hamiltonian H E, O 1 ) | such that
o ) O

)| 1and E isaconstant.
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o

7.0

QUANTUM MECHANICSI

Find the eigenvalues and the eigenvectors of the unperturbed

Find the eigenvalues and the eigenvectors of the Hamiltonian H

and expand each to a second order in ).

Find the approximate eigenvalue for the eigenvector
corresponding to the non-degenerate eigenvector of the
unperturbed Hamiltonian.

Find the first-order correction to the degenerate eigenval ues using
the degenerate perturbation theory. Comment on your results.
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1.0 INTRODUCTION

The basic idea behind scattering in classical mechanics is that a beam of
particles of definite momentum are scattered from a target. In Quantum
Mechanics, the incident particle as well as the scattering source istreated
as waves, in line with the nature of the theory that matter behaves as a
wave. Examples include a plane wave incident on a localised potential,
or an alpha particle impinging on a nucleus. A flux of particles is
incident on the target, scattered by the target and collected by detectors
that measure the angle of deflection. The time-dependent Schroedinger
equation should be solved to find the probability amplitudes for the
scattered waves. However, if steady state conditions apply, it suffices to
solve the time-independent Schroedinger equation.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

distinguish between quantum scattering and scattering in classical

physics
find an expression for the quantum scattering differential cross
section.

3.1 Quantum Scattering

We start our analysis by considering a Hamiltonian of the form,
H H, H
3.1
where H, isthe Hamiltonian of afree particle of mass m,
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p2
H L
° 2m
3.2
H, IS dueto asource of scattering.

Assuming | isan eigenstate of H,, we can write,
H,|  El
3.3

If the elgenstate of the system described by H (scattering of the particle)
iIswrittenas* , then, we can write the Schroedinger equation as,
HI  (H, H)|  E
34
Then, we can write
1

| E H,
35
We noticethat | + | a8SH,+0.

H, |

1 .
The operator = issingular when H, correspondsto E .

0
To take care of the singularity, we make E a little bit complex, by
making the transformation E H, +E H, (i). Hence, we arrive at the
Lipmann-Schwinger equation:

| ( 1 (

L
N0,
3.6

where ) isasmall positive real number.

We can convert equation 3.6 into an integral equation. To achieve this,
let us multiply equation 3.6 onthe left by r|. Then,

Corp o r e
E H, (i)

The left hand side is the projection of the wavefunction | Cin the
direction of the vector r. Recall that a|b abcos, a(bcos,) can be
seen as the component of b in the direction of a, multiplied by the
magnitude of a. Hence, r| ¢ | ) and r|- (r). We insert
the completeness relation in three dimensions (refer to equation 4.10,
Module 1, Unit 4, the relation for 1-dimension) g% |r* | = The

resulting expression is an integral equation,

rl
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“ry () r‘ 1 rrorlH, | ¢ d°

E H, (1)
3.7

The integrand has two matrix elements and the wavefunction itself.

We can write the Schroedinger equation (scattering) as,

MODULE 4

2
(-2 K3 (1) =3 M
3.8
This is the inhomogeneous Helmholtz s equation, whi ch can be inverted
to,
() (1) 23 Gy rIH | dr

3.9

with (> KOGEr) (@ r). cr.r) isthe Green s function.

For the Helmholtz problem, the Green sfunction is,
Gy SPCKIr T

4 |r 1|
3.10
Inserting equation () into equation 3.9,
2m  exp((k|r r’)
r ry —
r ¢ — a7

311

rCiH, | dr

Comparing equations 3.7 and 3.11,

' 1 o 2mexp((ik|r r’|
E H, () 24 qr
3.12

In the case where H, isafunction of the position operators,
r’lH, |r V() (r r’)
3.13
(v Vv (r) impliesacentral potential)

Again, making use of the completenessrelation g%y » ¢ »

rjH, | ¢ ClH [rr o or © d¥r

3.14
Then, equation 13.11 becomes,
2m  exp((k|r r’|
r ry 2=
) ¢ — 40 1]

3.15

VE) COdT
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Letthe| beaplanewave of wave (representing afree particle) vector
k, then, the ket representing this stateis |k , such that,

exp(ik/r)
() rlk W
3.16

where the normalisation is possible by taking the free particle in three
dimensions to be a three-dimensional wave packet (understandably so in

quantum mechanics). The normalisation constant is (2 )*°.

Hence,
k |k’ kir rlk d (2)° exp(iri[k k7])d°
(k k)
3.17

(r r)@ r’)y rir 2/r ' rft
rz 2rfr’ x°®
r re? r
c rY¢ r)yr> 1250 — 0r* 1 25r" r 1’
r r r

The approximation holds because the square of the ratio r /r tends to

Z€ero.
v2

Ir r' | [€¢ rye r jf?or 1 2r—2/r’ or le/r v Lo
r r r

Thus, for r ', i.e, at apoint far away from the scattering region, to a
first order approximation,

|r r’|Or T
Ir
3.18

If we define k' such that the particles whose motion is defined by this
vector have the same energy as the incoming particle, propagating from
the scattering region to the point of observation.

k' kr/r
where r/r is a unit vector in the direction of r, that is, directed from the
scattering region to the observation point.

With the approximation, in equation (3.15),
exp((ik|r r’ DO exp((ik( r/r’'fr)) expikr ()ikr/r k)
exp((ikr ik 7r ")) exp(ikr )exp( ik fr ’

With
exp((ik [r r’]) 0 exp((ikr)exp( ikir’)
3.19
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Equation 3.15inthelimit r  r’ becomes,
( expik/r) m exp((ikr)
(r) 3/2 2
(2) 2 r
3.20
Thefirst term isthe incident wave, and the second a spherical wave with

the source the scattering region. IS the wave propagating away from

exp( ikIrV ) C¢)d’

the scattering region.  propagates towards the scattering region and is

therefore, not physically realisable. We conclude, therefore, that, far
from the scattering region,

") oy expik /1) eXp(kr)f(k )
3.21
with
fk) 2 )22”” exfz( ;l;]zr’)V(r’) ¢)d’r
CIM kym,|

3.22

The differential cross-section, d2/d1 , isthe fraction of the number of
incident particles to the number scattered into an element of solid angle
di.

The total cross-section, £, corresponds to scatterings through any

dz

scattering angle, 2 1d1 where differential cross-section =

d2/dl1.

The particle flux associated with  is,
jo—ImC *. )
m

For the incident wavefunction,
exp(k/r)

i (2 )3/2

exp( ik/r) exp(k/r)

and JinC r_nl (2 )3/2 - (2 )3/2
im SPCIKIN ik iy 1m 1k _k
(2) (2) (2)

Similarly, for the scattered wavefunction,
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exp(ikr) f(K’,k)
scat (2 )3/2 r

and
f(k’,k
J scat A N3 (3 )kr
2)
d_2d1 rzdl “scat |
di | inc |

Thus, the differential cross section is,

| f(k'K) |
2=k

dz r2

— —— |fkk
a1 " | T(kK) |

4.0 CONCLUSION

In this Unit, you learnt the theory of quantum scattering. In this case, the
incident particle as well as the scattering source istreated as waves. You
were able to identify the differential cross-section, which is the fraction
of the number of incident particles to the number scattered into an
element of solid angle as well as the total cross-section, corresponding
to scatterings through any scattering angle.

50 SUMMARY
In this unit, you have learnt how to:

find an expression for the scattered wave function due to a given
incident wave function.

find the expressions for the differential cross-section and the total
cross-section corresponds to scatterings through any scattering
angle.

SELF-ASSESSMENT EXERCISE 1

How is the completeness relation in Module 1, Unit 4 related to the one
you encountered in this unit?

Answer to Self-Assessment Exercise 1
The summation in the expression in Module 1, Unit 4 becomes an

integral in this Unit as we are dealing with a continuous function, very
much as inner product for continuous functionsis an integral.
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6.0

7.0

TUTOR-MARKED ASSIGNMENT

In the theory of quantum scattering, what do you understand
about differential cross-section and total cross section?
Why isit that you cannot normalise a free particle?

The operator = 1 Is singular when H, corresponds to E.

0

How do you take care of the singularity?

Define the terms (a) differential cross-section (b) total cross-
section.

Find an expression for the differential scattering cross-section in
the scattering of particles by a central potential v(r).
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1.0 INTRODUCTION

In Born approximation, instead of taking the total field as the incident
field, we take the incident field. This approximation then works when
the scattered field is small compared to the incident field in the scatterer.
In other words, the scattering is weak, and hence, the total wavefunction
Is not substantially different from the incident wavefront. In addition,
the outgoing flux is observed sufficiently far away from the scatterer.

2.0 OBJECTIVES

At the end of this Unit, you will be able to:
state the assumptions of the Born approximation
find the differential cross section for a given scattering potential
in the Born approximation.

3.0 MAIN CONTENT

3.1 TheBorn Approximation

You must have noticed that f (k k), (equation 3.22), depends on the
wavefunction  (r), which is not yet determined. However, if the
scattering is weak, we may take the total wavefunction (r)as being
almost the same as the incident wavefunction, that is,
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expk/r
00 (0 TR
4.1
or
N ~ EXpaK /)
¢)0 (2 )3/2
4.2
In the large r limit, we recall equation( )
GG %—mp(r'”) exp( ikIF)V () (r)d°r
which becomes
expik/r) m exp(kr) o A explik/r’) s,
(r) 22 2 ¢ o exp( ikIr")V ( )—(2 XE d°r
4.3
and
f(k’,k) (2 )2 m exp( Il?()llzr’)V(r’) exp(lk3//£’)d3r’
2) 2 )
0 2i expli(k K)/r'N ¢)dr
4.4

Observe that this is the Fourier transform of the scattering potential V(r)
with respect to the wave vector k Kk'.

L et this wave vector be k.

For a spherically symmetric potential,

) m 2 ) ) Np2im et 1
f(k’,k)O > % 000 explik r’cos,’V ¢')r°sin, 'dr’'d,’d

2 m
2 2 00

having integrated over ', with r’sin,drd, d being the volume
element in spherical-polar coordinates.

"explik r’cos, F'sin, d, &V ¢ )2 dr’

If f(,) exp(ik’r’'cos,’), f'(,) ik”r’sin, exp(ik "r’cos, ")

F(k',K) —m% . "explik T'cos, Tik T'sin, d, # ¢ y'dr

=T 06 explk r'cos,"|( ik r'sin, d, )V ¢ Y’'dr
(k') —m% Cexplik T°cos, T,V (y'dr

2

f(k',K) —m% exp[ ik T'cos  exp[ ik T'cosOV ¢ "Y'’

2
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—m% explik T expl ik TV ¢ x'dr

2

m2
—— sink ")V ('y'dr
o STV €y

2

m . , N
e 0st<"r)V( ¥'dr

But k” |k~ |k k|
k Kk’ since the energy is conserved. When two vectors of equal length
are added, the sumis equal to 2kcos(, /2) . Their differenceis 2ksin(, /2)

Therefore,

k” 2ksin(, /2)
This is referred to as the momentum transfer, which is the amount of
momentum one particle gives to another.

Example 1
Find the differential cross section for the Yukawa potentia
V() V, exp( 3r).
3r
Solution 1
2m . . N
f(,) e 0sln(k WV ¢ )x'dr
2mV, N s
K3 0exp( 3r’)sin(k r’)dr
2mv, 1 .
exp( 3r)—=[exp(k ") exp( ik r’)]r'dr’
%3 o P( )Zi[ plk ') exp( )]
2mV, .
————  exp( 3r)[exp(k ') exp( ik r’)]r’'dr’
5 K" 3 o p( 3r')[explk ") exp( )]
mv, exp[( 3 ikl exp[( 3 ik™)’
i k"3 3 ik’ 3 ik’ o
mv, 1 1
i k’3 3 ik’ 3 ik”
mv, 1 1 mv, 3 ik 3 ik’
i k"3 3 ik’ N | G k"3 k" 3
mv, 2ik”
i k"3 k™ 3?
2mv, 1
23 k”2 32
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Therefore,

dz
— | fq(, 2
a1 | ()1

2 2

2mv, 1
23 k n2 32
2

2mv, 1
23 [4k?sin®(,12) 3P

4.0 CONCLUSION

In this unit, you have learnt the condition under which the Born
approximation holds, that is, if the scattering is weak, we may take the
total wavefunction (r)as being amost the same as the incident

wavefunction You have aso learnt how to find the expression for the
differential cross-section for a given potential.

50 SUMMARY
In this Unit, you have learnt the following:

in what limit the Born approximation is valid
how to find the differential cross section for agiven potential

SELF-ASSESSMENT EXERCISE 1
Find the differentia cross-section for the Coulomb Potential .

Solution of Self-Assessment Exercise 1
If we dlow the 5+ 0, but such that V—g +%& then, the Yukawa

0

potentia V(r) Vooxp(_3r) becomes V(r) QQ,
3r 4 )1
which is the Coulomb potential. Then, the Bohr differential cross-
sectionis
dz 2m0Q, © 1

— | f(,) 0
di A 4 ), * 16k*sin’(, /2)

6.0 TUTOR-MARKED ASSIGNMENT

=

Define the term momentum transfer.
2. What are the assumptions made in the derivation of the Born
Approximation?
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7.0

A spherically-symmetric potential takes the constant value V, for

0 r a, and zero elsewhere. Find the differential cross section
for this potential in the Born Approximation.

Using the Born approximation approach for the potential,

v 2

r
Write down the expression for the scattering amplitude and show
that

() i
@ q’)
(Hint: note that the standard integral  e* sin grdr 2q ~ and
0 a q
q 2ksin(, /2))
32 mV;

Establish that the total cross-section 2, ——F———;
a® “(a® 4k9)

With the aid of the Born Approximation, find the scattering
amplitude f(,) for the truncated Coulomb potential,
11

V(r) Cg ?; Na and v(r) o for r a. Find an

expression for the scattering amplitude at very small values of ,
and hence, deduce the approximate value of sin E at which the

differential cross-section has falen to one-third of its forward

value. Take f(,) 2—”; rsin@nV(r)dr.

2
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1.0 INTRODUCTION

In Quantum Mechanics, every physically observable is associated with a
Hermitian operator. The physically observable properties include
position, time, energy, angular momentum, etc. Quite unlike the case
with Classica Mechanics, not all physically observable properties of a
guantum-mechanical system can be measured precisely simultaneously.
This is due to the Heisenberg uncertainty principle. If any two
observable physical properties can be measured simultaneously with
infinite accuracy, then their operators must commute. Indeed, you will
get to know that the two such observables can have the same
eigenvectors. In this unit, you will aso learn how to find the matrix
elements of an operator in a given quantum-mechanical state. Thus, you
will be able to calculate the expectation value of the physically
observable property in such a state. In addition, you will learn about
outer product of two vectors as well as the projection operator.

In Born approximation we assume the scattering is weak, and hence, the
total wavefunction does not substantialy differ from the incident
wavefront. Put another way, the outgoing flux is sufficiently far away
from the scatterer. As such, instead of the exact wavefunction, the
Schroedinger equation is solved by a Greens function approach,
excluding the possibility of double or multiple scattering. In partial wave
analysis, we obtain the cross section without imposing any limitation on
the strength of the scattering. We shall assume that the potential is
spherically symmetric, ensuring the conservation of the angular
momentum of the incident particle. The angular momentum of the
incoming particle is the same before and after scattering. The problem is
essentially that of a central potential, and the spherical harmonics come
in useful once again.
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20 OBJECTIVES

At the end of this unit, you shouldbe able to:

write the partial wave amplitudes for a given scattering problem
calculate the scattering amplitude for a given scattering problem
obtain the differential cross-section for a given scattering
problem

find the total cross-section for a given scattering process

write the partial-wave amplitudes in terms of the phase-shifts
calculate the phase shift for a given scatterer.

3.0 MAIN CONTENT

3.1 Partial Wave Analysis

Spherical harmonics are of the form, Y,"(,). We recall that the solution

of the Schroedinger equation in spherical-polar coordinates, (r,,, )
IS,

(r,,) ROYG,)
We have seen that,
2 g2 211 1
omar V(r) P U(r) EU(r)
As we often do in Quantum Mechanics, we first consider r very large.
Then, V(r) + 0 inthislimit, and,

2 d2
——7U(r)OEU
o dr? (r) (r)

5.1
or,

d—;U(r) OZI—TEU(r) K2U(r)

52
where k v 2mE/ 2.

Therefore,
U@r) Cé De™
53

We set D equal to zero as the second term on the right represents an
incoming spherical wave. Therefore,
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jkr
U(r)—-eT

54
an outgoing spherical wave.

Let us now consider the intermediate region in which 1/r? is important,
but v(r) is still effectively zero.
N ("
2mdr? 2m r?
55
R T 2mE
oz 17 u(r) >
5.6
This equation can easily be transformed to:

d’R drR
r2 2r— [K? 1I( DR O
dr? dr [ (2]
57
The solution of this equation is of the form,

u(r) Arjkn) Br4(kr)
5.8
where j, and 4, are the spherical Bessel functions, generalized sine
and cosine functions:

U(r) EU(r)

u) KkKU(r)

| .
g x T4SNX gy ok 1O cosx
X dx X X dx X

5.9
In the limit x+ 0, j(X) exists, as the limit 3" % exists, but 4(X)
X

becomes inadmissible.

In the limit X+

. sn(x | /2)
W)+ ———
5.10
4,(%) cos(x | /2)
X
511

We can also write,

) 50 1409
5.12
and

W20 1) 1409
5.13
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which are the spherical Hankel functions. Respectively, they represent
outgoing and incoming wave;, generalized e and e ™ waves. Yet
again, we drop the incoming wave and therefore conclude that,

(r.,,) Ae“ ¢nh® ()Y, )

Im

5.14
If we align the incident ray with the z-axis, ¢*" €™ is the incoming
wave.
Inthe casewhere v (r) V(r), that is, the spherically symmetric case, the

dependence on  becomes trivia (recall that the  part of Y"(,, )

involvesm (5( ) ~€™), and

r,,) A€ k ai'®@ 1h®(kr)P (cos,)

I 0

5.15

In this case, m = 0, and Y"°(,, ) 2|4—1P.(Cos,), and we have set

Go i"7ky4 (2 Da

Hence, since h® isafunction of T,

f(,) (@ DaR(cos)

10

5.16
Then we only need to calculate the &, s.

If we also write the incoming wavefunction as,

gl i'(2 Dj,(kr)P(cos,)
10
5.17
Equation 5.15 becomes,

r,,) A i'(2 1)6j|(kr) ika,h(l’(kr)YPl(Cos,)

5.18
There is no need to include 4 in the expansion for the incoming
wavefunction as it tends to infinity as I' tends to zero.

a, , the complex parameter is needed in the partial wave method. In one-
dimension, when there is a reflection at an infinite potential, the incident
wave suffers a phase shift asit is reflected, so that if the incident wave ~
e™ then the reflected wave ~e'® ), where the factor 2 in the phase
shift is out of convention.
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In the case of three-dimensional scattering, and where the potential is
spherically symmetric, the change due to scattering is a phase shift of |

;I'he |-component is
A2 Dj (kR (cos)

5.20
For large X,
. I 1 i a1 ix
B0 (i) e il te M
2X
5.21
and
20 1 | o ik
ATTE (De #5 (cos, )
5.22
1, . 1, € € €' 1 (K 1
REEPAS L 2 2ik Jik
where
SK €
5.23
and
f,) (@ DaPR(cos,) % @ De'sin P(cos,)

10

524
In the case where there is no flux loss, |S(K)| |€” ' | 1. If there is flux
loss due to absorption of the incident beam, then,
SK 4Ke
525
with O 4 (K) 81. In the no-flux loss case, all the 4, are equa to unity.

10

In case you find in the literature, f(,) % (2 DaPR(cos,), the

I 0
partial wave amplitude is correspondingly defined as,

. oA i 2 K) 1
a e"smle'e .e e.ls(.)
2 2 2

5.26

Example 1

In a purely elastic scattering process, only the s- and p-waves are
involved. Both pure s-wave and p-wave scattering are symmetric, is it
possible to for the scattering to be unsymmetric between the forward and
the backward hemispheres? Under what condition will the differential
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cross-section in the forward direction be less than in the backward
direction? Define

() ¢ @ DaR(ws,).

I 0

Solution 1

We know that,
dz 2
= |1,
& o

and

f() ¢ @ YaR(es,)

10
If only s- and p-waves contribute, then, the

f(,) %GQ 0 Da, ¥ (2 1 Da, cos,#l

1
-ﬁ% 3a, Cos, )
Then,

1 . .
TGP £2010) Shla P 9lafcos, 3aa aa;)cos,
Since the s-wave which has a, 0 is isotropic (does not depend on, )

and pure p-wave has a, O depends only on (cos,)?, both are

symmetric. But the interference term depends on cos, , and this is
introduces asymmetry.

Theforward (, 0)cross-sectionis,

daz 16 ) ) . .
Je 2 9 /
a1 kIaol la, I° 3, &)

The backward (,  )cross-sectionis,

dz 1 . .
o1 DlacF 9lal 3aa aa)l
For the backward cross-section to be larger than the forward cross-

section,
a3, aa 0

4.0 CONCLUSION

In this Unit, you have learnt we assumed that the potential is spherically
symmetric, ensuring the conservation of the angular momentum of the
incident particle. The angular momentum of the incoming particle is the
same before and after scattering. Now a central potential problem, we
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were able to take advantage of spherical harmonics once again. You
were able to calculate the scattering amplitude for a given scattering
problem, obtain the differential cross-section for a given scattering
process.

50 SUMMARY
In this study session, you have learnt how to:

write the partial wave amplitudes for a given scattering problem.
calculate the scattering amplitude for a given scattering problem.
obtain the differential cross-section for a given scattering
problem.

find the total cross-section for a given scattering process.
write the partial-wave amplitudes in terms of the phase-shifts.
calculate the phase shift for a given scatterer.

SELF-ASSESSMENT EXERCISE 1
What do you understand by partial-wave amplitude?

Solution to Self-Assessment Exercise 1

This is the complex number which multiplies the Legendre polynomial

P(cos,), and 2 1 in the expansion of the scattering amplitude over
the angular number |.

6.0 TUTOR-MARKED ASSIGNMENT

1 State the meanings of all the symbols in the expression for the
partial-wave expansion,
1 1

f(,) m (2 1aPR(cos,)

I 0

2. At a certain energy in a scattering process there is a resonance in
the sswave while the p-wave phase-shift is /6. Assuming the

scattering is purely elastic (4 1 for al 1) and that there is no
significant scattering in any other partial wave,

(@ Writethe € and p wave partial wave amplitudes.

(b)  Find the scattering amplitude.

(c)  Obtain the elastic cross-section by integrating over solid angle.
(d)  Findthetotal cross-section.
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Take f(,)

(@

(b)

(©

(@
(b)

(©

7.0

1 (2 DaP(cos,).

I 0

x|

In a scattering process, it is observed that there is significant
scattering only in the swave and one other partia wave, |.
Assuming that there is no scattering in any other partial wave and
that there is no loss of flux,

Write down, in terms of the partial wave amplitudes g,and 4,
an expression for the differential cross-section asafunction of ,

i:ind the extrema of the differential cross-section, such that

P remains unevaluated. Show that these occur at the
d(cos,)

turning points of P (C0S,) and at angles such that,

22 D3*gR(cos) (2,3 aa*) O

(i)
Write the partial-wave amplitudes in terms of the phase-shifts and
prove that at the turning points satisfying equation (i),

P(COS ) COS( 0 I)S.n 0
e (2 Dsin

1 (2 DaP(cos,).

I 0

Take f(,)

x|

Particles of a given energy scatter on an infinitely hard sphere of
radius a

Calculate the phase shift (k).

For swaves ( =0), obtain the expression for the total cross-
section.

Consider the case of low energies (ka<<1), show that the cross
section is four times the geometrical cross secti on of the rigid
sphere.

REFERENCESFURTHER READING

Griffiths, D. J. (2005) Introduction to Quantum Mechanics. Upper

Saddle River, NJ: Pearson Prentice Hall.

Mulders, P. J. (2011) Advanced Quantum Mechanics, Retrieved from

http://master.particles.nl/LectureNotes/2011-OFT .pdf

Schiff, L. 1. (1949). Quantum Mechanics. NY: McGraw-Hill

156



PHY 309 MODULE 4

Appendix 1
Lx | yi Zi
9z Yy
. ) ) . 9
I rsn,sn cos,— —sn, —
O r 9,
. . 9 . 9 cos 9
rcos, sin, sin — =cos, sin — —
9r r 9, rsn, 9

) ) ) 9 ., . 9 ) ) 9
i rsn,sn cos,— 9Sn°,sIn — rsSn,sSn coS, —
or 9, or

. 9 «cos,cos 9
cos’,sin — — =2 =
9, sin, 9

. . . 9 )
i sn®, sin — cos?, sin i Mi
9, 9, sn, 9

. . 9 . 2 cos, cos 9
i sin —(sin®, cos",) ———
9 sn, 9

. .9
i sn — cot, cos —
9 9

) 9 9
i z— X—
Ly 9% 9z

. . 9 1 9 sin 9
i rcos, sin,cos — —C0S, COS — —
O r 9, rsin, 9

. . 9 9 .
i rcos,sin,cos — cos’, cos — cot,sn —
or 9, 9

. . 9
rsin, cos, cos €n°, cos —

i §cos?, sin?, lcos S cot,sin >
9, 9
i cos — cot,sin —
L, 1 xi yi
9y "~ 9x
9 1 9 sg9n 9
sIn, coSs — —QoS, — —
O r 9, rsLn, 9
) .9 1 9 oos 9
In,In — =cos, 9N — ——
O r 9, rd9n, 9
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. . . . 9 1 . cos 9
i rsin,cos sin,sin — =cos, sin —
or r rsin, 9
: . . 9 1 9 sin 9
rsin, sin sin, cos — ~co0s, COS — —
Or r 9, rsn, 9
. 9 . 9 .9 .
i cos® — sin® — i —(cos® sin® )
9 9 9
.9
| _
9
.9 9
L, | ssn — cot, cos — ,
9, 9
9 9
L, i cos — cot,sn — ,
9,
.9
| PR
- 9
2 2 2 2
L LS L L
9 9 * 9 g
Sin cot, cos — Cos cot, sin — >
, , 9 9
2
.9 9 . 9 . 9
Sin cot, cos — Sin cot, cos — Sin cot, cos —
9, 9 9, 9 9, 9
.9 .9 9
sin — sin — cot, cos —
9, 9, 9
. 9? . 9° .9 . 9 . 9 9
( sn )>~ cot, sin cos sn —(sn )— sin —(cot, cos )—
9, 9,9 9, 9, 9, 9
. 9? . 9° . 9 9
( sin >~ cot, sin cos 0 sin cos —(cot,)—
9] 9]9 9’ 9
2 2

. 9 9
sn cos —(cot,)—
’2 4 9’( )9

. 9 .
an 9— cot, In cos

9 .9 9
cot, cos — dn 9. cot, cos 9

’

. 2 9 . 9 2 9° 2 9 \
cot, sSin cos cot, cos 9—(sm )9— cot®, cos’ 97 cot®, cos 9—(cos )—
. 2 9 ’ 2 . 9
cot, sin- cos cot, cos’ — oot?, cos’ 52 cot”’, sin cos 5

s s

9 .9 9 .9
cos — cot,sin — cos — cot,sin —
9 9 9

’ ’
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9 9
COS — COS —
9 9

’ ’

92

9 2

s

cos?

cos’

92

9 2

2
cos’ %

.9 9
cot, sin 9 cos —

cot, Sn cos

2
cot, sin cos

H

2

cot, sin
9 .

cos —(cos )— cot, Sh cos
9 9

0 cot,

cot, sin cos

MODULE 4

9
9
9

2

cos i(cot,sin )i
9 9

s s

s E

2

. . 9 9
sn cos sn cos 9—(cot,)9—

s s

sin cos i(cot,)i
9 9

s s

.9
cot, sin —
, 9

2 2

cot, sin gi(cos )9i cot’, sin® —

s

2
2

cot, sin gi(cos )9i cot®, sin >

cot, sin i(cot, sin )i
9 9

2

cot, sin cos 39 cot, sin? gi cot?, sin? > cot?, sin cos gi
Adding all,
2 2
- ) . 9 9
sn® — cot, sn cos sn cos —(cot,)—
5 5 9, 9
2 2
) 9 9 } 9
cot, Sin cos cot, cos’ 5 cot?, — oot?,sn cos 9
92 . 2 . 9 9
cos” 97 cot, sin cos sin cos 9—(cot,)9—
2 9 2 9
cot, sin cos cot, sin? 9 cot?, sin? > cot?, sin cos 9
2 2
P2 9 2 2 9
sin Fcot,cosz—oot,coSZF 92
2
cot, sin> — cot?, sin? 92
9
) 92 9?
2
an 92 cos’ 92 cot, cos? cot, sin? —
2 2
cot?, sin? 92 cot?, cos? 92
9
? 9
) . 2
(Sn COSZ ) 2 (COS2 S|I’]2 )COt,— (sin2 cos? )COtz,
9, 9, 2
2
9 92
9 2 cot, — cot’, —;
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: 9 9 92
Adding — =— —,
g9 9 9 2
9 9 ° 9 9 * g2
sin — cot, cos — cos — cot, sin — >
9, 9 ) 9 9
92 92
9 2 COt’_ (COtz, 1);
12 2 2|2 , 9? 9 5 92
L L L~ (i) ~ cot, — (cot’, 1)—
2 2
2 92 cot, > sec?, 92
9, 9, 9
2 9 1 97
2 cot, —
, 2 9, sin*, 9 2
Note that
9 9 9° 9 . 9 9? 9
9_Sm’9_ sn,F 9—(sm,)9— sm,9 5 cos,g—
Hence,
1 9. 9 9 cos, 9 9 9
an, 9, 9, 9, d9n,9, 9, ,
Finally, we can write
2 2 1 9, 9 1 9
sn, 9, 9, sn?,9°?
r X2 yz e
X2 y2
, tan'’ -
tan 1Y
X

y 7 9&()(2 y2 ZZ)JJZ E(XZ y2 22) 1/2 2X
X

9x  9x 2
_ X X rsn, cos §n. cos
(XZ y2 Z2)1/2 r r 4
Hence,
9x .
— sin, cos
9r
Similarly,
O . )
— 9n,9n
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r
—  Ccos,
9z
2 2
9, itan 1 X 2y
I9x  9x Z
2
X .
Letv zyz’ so that X 2—2( —. Then, we can write
V4 9x z z
9, 9 X2y 9 9v
—tan? 2y —tan'v —tan'‘v—
9x 9 Z 9x 9v 9x
1 X X
1/2 1/2
1 V? 2 2 yP 24 2y xR YR
2 ZZ ZZ
1 X X X
1V 2 2 2 2 2 r’tan
2 y 2 2 2y XY 7
z > Xy z)
z z
rsin, cos sin, cos 1
5 : =cos, cos
r°tan, sin, /cos,
Hence,
9, 1
—cos, cos
9x r

You can aso show that (bearing in mind that the expression is

symmetric for x and y)

9, y rsn, sn 1 :
2 2 . _COS, an
9 rftan, r°gn,/cos, r
ﬂ i X2 yz 12 izl(Xz 12 i(XZ yz)yz 1 XZ yz 12
9z 9z Z7? 9z z° z 7
9, 9 X2 9 9 v
—tan 1_2y2 —tan'v —tantv—
9z 9z Z 9z v 9z
X2y vz 2y 12
1 1 %2 y2 7’ 7
1vV2 z Z 2 2 z
21 X 2y T(Xz yz 22)
VA VA
2 2 1/2
z &Y
z rcos, tan, 1 . 1.
5 2 2 =cos, gn,/cos, =dn,

x= y 79 r r
9, _

=sin,
9z

161



PHY 309 QUANTUM MECHANICSI
9 9 1y 9 1Y 9w 1 y 1 y y
— _tan"= —t Y 2 2 2 N 2 2
9x  9x X 9w X 9x X Xy X X°y

1 Y
X x*
rsn, sin rsn, sn
r’sn®, cos r?sn’,dn* rsn’,(cos’ Sn® )
rsin, sin 1sin
rsin?, rsin,
9 1sin
9x rsin,
9 9 a¥ 9gayow 11 1 1 x_
9y 9y X 9w x9yly Xy x Xy
x X
rsn, cos rsn, cos
r’sn®, cos r?sn’,dn* rsn’,(cos’ Sn® )
rsin, cos 1 cos
r’sin®, r sin,
9 1cos
9y rdn,
S o
9z
99 99, 99
9% 9Uro9x 9, 9%x 9 9x
) 9 1 9 sgn 9
9n,Ccos — —C0S, C0S — - —
O r 9, rsn, 9
9 99 99, 99
9y 9r9%y 9,9y 9 9y
) .9 1 .9 oos 9
9n,In — —-Cos, 9N — - —
O r 9, rdgn, 9
9 1. 9
— €0S, — —sin, —
9z r 9,
. 1 9 sin 9 9
- sn, coOS — —C0S, C0OS — ———,8lIn, sin — —cos, sin —
rr 9, rsn, 9 rr 9,
9 . 9
cos, — —d9n, —
o r 9,
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2 . 9 1 9 sn 9 9 dgn 9
- sn, coS — —C0S, C0S — - sn, c0s — —C0S, C0OS — —
r r 9, rgn, 9 O r 9, rsn, 9
+
. . 9 . 9 sn 9 . . . 9 cos 9
sin, sin — —cos, sSn — ——— 8n,sn — —cos, Sin — —
O r 9, rsn, 9 O r 9, rsn, 9
) 9 9 9
c0s, — —-9n,— co0s,— —-9Sn,—
O r 9, O r 9,
Expanding and rearranging, we arrive at,

, 9% 19 1 9
oa* r*9,?
Rearranging,

gg cot, 9
r’sn®, 92 ror r? 9
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Appendix 2
L, yp, zp, vV I — z |i i yi zi
g £ 9z 9y 9z 9y
L, zp, Xp, z |i X 1 — I zi xi
oo ox 9z Ox 9z
9 9 9 9
[ — z— i Z— X—
LXLy y92 9y 9 9z
. 9 9 9 9
(1) vy 2o 2~ X~
9z Yy 9% 9z
29 ,9 433 39 93
9z 9% 9z 9z 9y 9x 9y 9z
> 9 92 92 , 9° 92
Yoo Y2 Py
9x 979x 9z 9y9x 9y9z
> 9 92 92 , 9? 92
Yoo Y2 Py
9x 9x9z 9z 9x9y 9y9z
LL i 22 x2 y2 Y
9% 9z 9z 9y
(i )2 Zi i i i
9% 9z 9z 9y
> 9 9 2 9 9 9 9 9
9% " 9z 9x 9y 9z 9z 9z 9y
2 92 , 97 92 92 9
yz — Xz X—
9x9z 9x9y 9z 979y 9y
2 92 , 97 92 92 9
yz — Xz X—
9x9z 9x9y 9z 9y9z 9y
2 2 2 2
L,L, 2 yz 9 z° 9 9—2 Xz J 9
9x9z 9x9y 9z 9y9z 9y
Rearranging,
2 2 2 2
LL 2 x2 vz 2 oy 29,9
9y 9x9z 9z 9x9y 9y9z
9 2 92 92 92
2 y— yz — 7 Xz
Ly Yox Y oxez 97° 9x9y 9y9z
2 2 2 2
LL 2 x> vz 2 Y 29 9
9y 9x9z 9z 9x9y 9y9z
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Adding equations () and ( ),

[L.,L] LL, LL, 2 yi xi i yi xi
y y y ox 9y Ox 9y
[ xi yi I L,

9y 9x
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