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INTRODUCTION

In Quantum Mechanics | (PHY 309), you learnt akihetinadequacies
of Classical Mechanics and the efforts made by ielsgs to address the
shortcomings on the platform of Quantum Mechar¥eal have taken a
look at the mathematical foundation necessary ttergtand that course.
Once that was done, you learnt the applicationuaintum mechanics to
the infinite as well as the finite potential wélhe quantum treatment of
the harmonic oscillator followed, culminating in tdete’s polynomials
and the operator treatment of the harmonic osoillat

PHY 409 is the second in the series of quantum amchl courses. In
the present course, you will start with further neabatics, laying a
foundation of metric spaces and eventually, Hillspdces on which the
inner product is defined. You will get to know treatery Hilbert space
has what we call a complete orthonormal basis, legabs to handle a
system which can be in a discrete set of states.

Later in the course, you will learn about the hyggno-like atom, the
spherically symmetric potential, leading to spha&ribarmonics and
eventually, specific radial functions, completirfge ttreatment of the
simplest atom, that of hydrogen.

In the last module, further areas of quantum meckaare discussed:
perturbation and scattering. In perturbation thegu will learn to
handle small perturbations by modifying the morenifear related
problem. Put another way, you will be able to dedthe energy levels
and eigenfunctions of the perturbed system in tesfrihe eigenstates
and eigenfunctions of the more familiar potentidbu are already
familiar with scattering in classical mechanicsthiere any difference in
the case of quantum scattering, in which case, haue represented a
particle by a wave?

You can see that you have a lot of interestingcpwaiting you in this
course. Quantum mechanics is perhaps the mostestiteg part of
Physics, and finds important applications of quantineory include
guantum chemistry, quantum optics, quantum comgutin
superconducting magnets, light-emitting diodes, dhd laser, the
transistor and semiconductors such as the micrepsoc, medical and
research imaging such as magnetic resonance imamdgelectron
microscopy. Explanations for many biological anggbal phenomena
are rooted in the nature of the chemical bond, mo&tibly the macro-
molecule DNA.
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COURSE AIMS

The aim of the course is to equip you with the kisalge of

fundamental aspects and derivations in the difteegaas of quantum
mechanics especially inmathematical foundationjmetpace, outer
product, the projection operator and the completenelation, angular
momentum and spin of atomic and nuclear partictege-dimensional
spherically symmetric potentials and the polar argguation, legendre
polynomials.

COURSE OBJECTIVES

To introduce you to the concept of Convergence 8kequence,
Cauchy Sequence

a. Banach Space, Hilbert Space Linear Map and Linear
Functional.

To define and give examples of a linear map, lifeactional,
explain and find the dual vector as well as to dalke the
transition probability between one eigenstate arathterLearners
would be able to find the matrix elements of adineperator,
given the relevant basis vectors.

To learn how to work with the spinors, find the Pagpin
matrices and calculate their eigenvectors and ggjaas. In
additionfind the solutions to the general Legenelgeation, the
associated Legendre functions.

To evaluate integrals related to the hydrogen atand
expectation value of some physical observables imgjiven
eigenstate of the hydrogen atom.

To show that radial wavefunction for a three-dimenal particle
free to move inside a sphere satisfies the Besggglton.

To state the assumptions of the Born approximadios find the
differential cross section for a given scatterirgential in the
Born approximation.

WORKING THROUGH THIS COURSE
The course is structured into four models. All Medules consist of

three unit each except .It is necessary that ferstiadent to study and
understand the content of all the units in theee8pe modules.
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COURSE MATERIALS
You will be provided with the following materials:

1. Course Guide
2. Study Units

Module 1 The Mathematical Foundation

Unit 1 Metric Space, Hilbert Space

Unit 2 Linear Map, Linear Functional, Dual Vectpace

Unit 3 Commutator Algebra, Matrix Elements Of Akar
Operator

Unit 4 The Outer Product, The Projection Operatod The

Completeness Relation
Module2  Angular Momentum and Spin of Atomic and Nuclear

Particles
Unit 1 Angular Momentum
Unit 2 Eigenfunctions of Angular Momentum |
Unit 3 Eigenfunctions of Angular Momentum I
Unit 4 Electron Spin |
Unit 5 Electron Spin Il
Module 3
Unit 1 Three-Dimensional Spherically Symmetric étdials
Unit 2 The Polar Angle Equation, Legendre Polyralmi
Unit 3 Associated Legendre Functions, Angular Bfgactions
Unit 4 The Radial Equation
Unit 5 The Hydrogen Atom

Module4  Perturbation Theory and Quantum Scattering

Unit 1 Perturbation Theory

Unit 2 Second Order Perturbation

Unit 3 Quantum Scattering |

Unit 4 Scattering Il - The Born Approximation
Unit 5 Scattering IIl - Partial Wave Analysis
TEXTBOOKS

At the end of each unit of the course, there afereace materials to
which you can refer in order to increase the deptyour knowledge on
the course. Please take this seriously.

Vi
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ASSIGNMENT FILES

A number of assignments have been prepared toybelgucceed in this
course. They will guide you to have understandimg) good grasp of the
course.

PRESENTATION SCHEDULE

The presentation schedule included in your couragemals also have
important dates of the year for the completion afot-marked
assignments (TMAs) and your attendance at tutorials

Remember, you are to submit all your assignmenthéylue date. You
should guard against falling behind in your work.

ASSESSMENTS

There are two aspects to the assessment of theecduist are the tutor-
marked assignments and a written examination.

In tackling the assignments, you are expected fgyamformation,
knowledge and techniques gathered during the colliftse assignments
must be submitted to your tutor for formal assesgne accordance
with the deadlines stated in the presentation sdbexhd the assignment
file. The work you submitted to your tutor will coufor 30 percent of
your total course mark.

At the end of the course, you will need to sit forfinal written
examination of three hour duration. This examimatll also count for
70 percent of your total coursework.

TUTOR-MARKED ASSIGNMENTS (TMAYS)

Each of the units in the course material has ar-uerked assignment
(TMA) in this course. You only need to submit fiwd the eight

assignments. You are to answer all the TMAs and peoen your

answers with those of your course mates. Howewar, should ensure
that you collect four (TMAs) from the Study Centieis compulsory

for you to answer four (4) TMAs from the Study QentEach TMA is

allocated a total of 10 marks. However, the besteh3) of the four
marks shall be used as your continuous assessowet S

You will be able to complete your assignment frdra information and
materials contained in your reading, references atully units.
However, it is desirable in all degree level ediorato demonstrate that
you have read and researched more widely thanetgred minimum.

Vii
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Using other references will give you a broader et and may
provide a deeper understanding of the subject.

FINAL EXAMINATION AND GRADING

The final examination for BFN721 will not be motah three hours’
duration and has a value of 70 percent of the ttakse grade. The
examination will consist of questions, which retléte types of practice
exercises and tutor-marked problems you have pusljicencountered.
All areas of the course will be assessed.

When you have gone through the whole course, engauerevise it
again before sitting for the final examination. Yimay find it useful to
review your tutor-marked assignments and commentshem before
the examination. The final examination covers infation from all
parts of the course.

COURSE MARKING SCHEME

Table showing the total course marking schemeasvalbelow:

ASSESSMENT MARKS
Assignment 4 (TMAS) Best three marks of the 4 TMAs
@ 10 marks is 30 marks of the
course = 30%

Final Examination 70% of overall course marks

Total 100% of course marks

HOW TO GET THE MOST FROM THIS COURSE

In distance learning, the study units replace thigassity lecturer. This
Is one of the great advantages of distance eduncatiou can read and
work through the specially designed study matemlgour own pace,
and at a time and place that suits you best. Thfrnk as you read the
lecture notes and that a lecturer might set youes@adings to do.

The study unit will tell you when to read your atlmeaterials. Just as a
lecturer might give you an in-class exercise, ystudy units also
provide assignments for you to do at appropriatetpo

Each of the study units follows a common formate Tinst item is an
introduction to the subject matter of the unit, doav a particular unit is
related with the other units and the course as@evh

Next is a set of learning objectives. These obyestiet you know what
you should be able to do by the time you have cetadlthe unit. You

viii
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should use these objectives to guide your studyeiWou have finished
the unit, you must go back and check whether yorte lrechieved the
objectives set. If you make a habit of doing tlyisy will significantly
improve your chances of passing the course.

The main body of the unit guides you through theuneed reading from
other sources. This will usually be either fré&tsading Section or some
other sources.

Self-tests/assignments are interspersed throughmutend of units.
Working through these tests will help you to achi¢ke objectives of
the unit and prepare you for the examinations. ¥bould do each of
the assignments as you come to it in the study Whiere will also be
numerous examples given in the study units, workugh these when
you come to them too.

The following is a practical strategy for workingrough the course. If
you run into any trouble, telephone your tutor. Wheu need help,
don't hesitate to call and ask your tutor to previd In summary:

(1) Read this course guide.

(2) Organise a study schedule. Refer to the coursevieverfor more
details. Note the time you are expected to spenelach unit and
how the assignments relate to the unit. Importaiarmation e.g.
details of your tutorials and the date of the fidgty of the
semester is available. You need to gather togetherformation
in one place, such as your diary or a wall calentinatever
method you choose to use, you should decide onwaitd in
your own dates for working on each unit.

(3) Once you have created your own study schedule veoything
you can to stick to it. The major reason that stisléail is that
they get behind with their coursework. If you getoi difficulty
with your schedule, please let your facilitator wnbefore it is
too late for help.

(4) Turn to unit 1 and read the introduction and thgctives for the
unit.

(5) Assemble the study materials. Information abouttwioai need
for a unit is given in the ‘Overview’ at the beging of each unit.
You will always need both the study unit you arerkirng on and
one of your set books, on your desk at the same tim
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(6) Work through the unit. The content of the unit litdeas been
arranged to provide a sequence for you to follow.yAu work
through this unit, you will be instructed to reaecions from
your set books or other articles. Use the unit todg your
reading.

(7)  Well before the relevant due dates (about 4 weelsré the
dates) access the Assignment file on the web anahidad your
next required assignment. Keep in mind that you drn a lot
by doing the assignments carefully. They have lssigned to
help you meet the objectives of the course andetbee, will
help you pass the examination. Submit all assignsneat later
than the due dates.

(8) Review the objectives for each study unit to confithat you
have achieved them. If you feel unsure about anythef
objectives, review the study material or consulirytwtor.

(9) When you are confident that you have achieved a’'suni
objectives, you can then start on the next unibc®ed unit by
unit through the course and try to pace your stsolythat you
keep yourself on schedule.

(10) When you have submitted an assignment to your témor
marking, do not wait for its return before startogthe next unit.
Keep to your schedule. When the assignment is metlirpay
particular attention to your facilitator's commen@onsult your
tutor as soon as possible if you have any questopsoblems.

(11) After completing the last unit, review the coursed gprepare
yourself for the final examination. Check that ywave achieved
the unit objectives and the course objectives.

TUTORSAND TUTORIALS

There are eight (8) hours of tutorials providedupport of this course.
You will be notified of the dates, times and looatiof these tutorials,
together with the names and phone number of ydar,tas soon as you
are allocated a tutorial group.

Your tutor will mark and comment on your assignrseikeep a close
watch on your progress and on any difficulties yoight encounter as
they would provide assistance to you during thes@uYou must mail
your tutor-marked assignments to your tutor wefbbe the due date (at
least two working days are required). They willrbarked by your tutor
and returned to you as soon as possible. Do natteeso contact your
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tutor by telephone, e-mail, or discussion boargafi need help. The
following might be circumstances in which you woufohd help
necessary.

Contact your tutor if you:

. do not understand any part of the study units er dssigned
readings;

o have difficulty with the tutor-marked assignments;

. have a question or problem with an assignment @h wour
tutor's comments on an assignment or with the giadif an
assignment.

You should try your possible best to attend thertals. This is the only
chance to have face-to-face contact with your tatat to ask questions
which are answered instantly. You can raise anplpro encountered in
the course of your study during such contact. Tim glae maximum
benefit from course tutorials, prepare a questieh defore attending
them. You will learn a lot from participating insgussions actively.

SUMMARY

On successful completion of the course, you woulieh gained
immense knowledge on applications of quantum thednich include
guantum chemistry, quantum optics, quantum comgutin
superconducting magnets, light-emitting diodes, dhd laser, the
transistor and semiconductors such as the micrepsoc, medical and
research imaging such as magnetic resonance imamdgelectron
microscopy. Explanations for many biological anggbal phenomena
are rooted in the nature of the chemical bond, mo&tibly the macro-
molecule DNA.

However, to gain a lot from the course pleasedrgpply anything you

learn in the course to term papers writing. We wigh success with the
course and hope that you will find it fascinatimgldandy.

Xi
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MODULE 1 THE MATHEMATICAL FOUNDATION

Unit 1 Metric Space, Hilbert Space

Unit 2 Linear Map, Linear Functional, Dual Vectpace

Unit 3 Commutator Algebra, Matrix Elements Of Ankar
Operator

Unit 4 The Outer Product, The Projection Operatod The

Completeness Relation

UNIT 1METRIC SPACE, HILBERT SPACE
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Metric Space
3.1.1 Definition
3.1.2 Convergence of a Sequence, Cauchy Sequence
3.2 Banach Space, Hilbert Space
3.3 Linear Map, Linear Functional
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment (TMA)
7.0 References/Further Reading

1.0 INTRODUCTION

A vector space is one in which we can carry outdtdition of two
vectors and the scalar multiplication of a vectahaut worrying about
whether the outcome of our operation falls outsttle allowable
possibilities, which in this case is the vectorcgpdself. In the language
of mathematics, this would mean that a vector spacsed under the
two operations of vector addition and scalar muégtion. We have
seen in PHY 309 that the idea of a vector has lymreralised to
include any mathematical structure on which we dafine these two
operations and have shown that the resulting sigaclkmsed under the
two operations. We also gave some examples, inguitie space of the
usual Euclidean vectors, the spacelB%N matrices and the space of
square integrable functions xfWe should be able to measure a form of
‘distance’ on a vector space. For this, we defiaetbrm, a function that
assigns a positive length to each vector, aparh ftbe zero vector,
which has length zero, the distance of a point fiw@lf. The norm can
be visualised as the distance of a vector fronotigen. In this Unit, you
will get to know more about vector spaces and thliglitinal

1
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requirement a vector space should possess to lbel usehe field of
Quantum Mechanics. Having defined the distance w#cor from the
origin, we could go on to define the distance betwthe endpoints of
two vectors. For this, the termmetric is defined. Once the metric is
defined on a vector space, it becomes a metrices@at we are in a
position to study the convergence of sequencesich & space. This
naturally leads to the concept of completeness ofefric space. A
complete normed vector space is a Banach spatiee Horm is defined
by the inner product, the complete normed space Hilbert space.
Quantum Mechanics is done in a Hilbert space, orapother way, the
Hilbert space is the space in which vectors in QuanMechanics live.

2.0 OBJECTIVES
At the end of this study session you will be abte t

define metric space

list and explain the properties of a metric space

prove whether or not a given space is a metricespac

give examples of a metric space

define and explain convergence of a sequence iatamspace
explain what is meant by a Cauchy sequence

explain what is meant by a complete metric space
complete a given metric space

define Banach space and Hilbert space

discuss the relationship between Banach space ginertspace
explain why Quantum Mechanics is done in a Hillspece

3.0 MAIN CONTENT
3.1 Metric Space
3.1.1 Definition

A metric space is a non-empty 3étsuch that for everx andy in V,
there is a non-negative number, called the medrikind of ‘distance,’
which satisfies a certain set of axioms. Naturalpen such a concept
of ‘distance’ involves three points, it should shtithe law of triangle
inequality, which stipulates that no single sideaofriangle should be
longer than the sum of the remaining two. The maximpossible value
of the length of one side is equal to the sum efrémaining two. This
Is the case of a degenerate triangle in which lake vertices are
collinear (along the same line). We would also explee distance from
point A to point B to be the same as the distanam fpoint B to point A
(symmetry). Finally, since a metric is a kind ofstance,’ it should be

2
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such that the metric of a point from itself be zemd zero metric imply
the distance from the same point to itself (dedingss). These are
outlined below in the language of Mathematics.

Mathematically, a metric is a functioi:v xv — R*, satisfying for all
f,g,heV:

0] d(f,g)<d(f,h)+d(h,g) (Triangle inequality)
1.1
(i) d(f,g)=d(g,f) (Symmetry)
1.2
(i) d(f,g)=o0ifandonlyif f = g (Definiteness)
1.3

An inner product induces a norm, and a norm indacetric.

(a,b) —llalky(a,a) —»|la-b]|

Recall that we said that the norm is the ‘distarafea vector from the
origin. You could see a metric as the ‘distanceiveen the ends of two
vectors, or equivalently, the distance betweenlwevectors.

We define a metric space as a vector spaaxuipped with a metrid,
written as(v,d) .

We take some examples:

0] One of the simplest examples of a metric spadke real number
line. An example of a metric on the vector spacthéabsolute
value metric,

d(x,y) =|x-yl|
1.4

(i)  Given the vector spacé we can define the metric

0, ifx=y
d(x y)= ,
() {1, otherwise

Thus, no pair of points are close. Every pair oihtsis apart.
This is thus called a discrete metric.

You can easily see that if we replace 1 in therskdn by a, the
distance between two distinct pair of points.is

(i) In the case of the two-dimensional (Euclidgaactor space/, , if
the position vector of is a,i+a,j and that ofb is ib, +jb,, we
can define the metric
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d(a,b) = /(b -a,)* +(b, -a,)?
1.5
This is called the usual metric on the two-dimenalcEuclidean
space. It is the distance between the two pa@rasdb on thex-y
plane. It is the usual metric because that is tmeept of distance
on a plane you have always been familiar with.

(iv) Consider thex-y plane (R?) as a vector space, together with the
taxicab metric,
d((xl’ yl)!(XZ’yZ)) :| X =% |+ | Yi— Y, |
1.6
As you can see, with the taxicab metric, the distdmetween two
points is the sum of the absolute differences @irtGartesian
coordinatesunlike the usual metric that is the square rddhe
sum of the squares of the difference between tBairtesian
coordinates.
(iv)  The metric induced by the supremum (at timbertened sup)
norm onk?,
d((xl’ yl)!(XZ’yZ)) = max(|x1 =% | + | Yi— Y |)
1.7
The sup norm is,
11X [l max(lx, [+, 1)
wherex = (x,,x,) for x e R>.
(v)  For the space of continuous real-valued fumsgtiof x over the
interval (a,b),
b
d(f,g)=[ | f(+g(x)|dx
1.8
Example 1.1

Given the metric spag¢&,d), show thafid(x,2)-d(z y)|<d(xy).

Solution 1.1

d(x,z) <d(x,y)+d(y,z) (triangle inequality) 1.9 from which,
d(x,y) 2 d(x 2)-d(y,2)
1.10
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Similarly, from triangle inequality,
d(y,2) <d(y,x)+d(x 2)
1.11
or
d(y,2) -d(x,2) <d(x,y)
1.12
Multiplying equation 1.12 by-1 reverses the inequality:
—d(y,2)+d(x,2) > -d(x,y)
Combining equations 1.10 and 1.12,
—d(x,y) <d(x,2) —d(y,2) <d(x,y)

1.13
Hence,
|d(x,2)-d(zy)[<d(xy)
1.14

Self-Assessment Exercise 1

List and explain the properties of a metric space.
3.1.2 Convergence of a Sequence, Cauchy Sequence

Let {x,}, wherene N, be a sequence in a metric spdé¢ed). We say
that x, converges tox (that is, (x,) converges taxeV) or x, — X, if
for £>0, there existsN e N such thatd(x,,x) <& for all n> N . More
loosely, we say, converges to if lim,__ d(x,,X)=0.

n—o0

In a normed linear space (a vector or linear smacevhich a norm is
defined), (x,) converges tax implieslim___ ||x,—X]|=0.

A sequencegx,) is said to be &auchy sequence when d(x.,x,,) >0

when n, m— . Or more precisely, for a Cauchy sequence,sfor0,
there existaN e X such thad(x,,x.) <& for all nnm> N.

In more plain terms, a Cauchy sequence is one wéleseents become
arbitrarily close as the sequence progresses.

A convergent sequence is Cauchy, because, owinghdotriangle
inequality,
d(x,,X,) <d(X,,X)+d(X, X)) <(e/2)+(c/2)=¢
1.15
since for a giverg >0, there existsN e X (a natural humbeN), such
that d(x,,x)<e/2 and d(xx,)<e/2, because the sequence is

convergent. (Recall the triangle inequality whictipdates that no
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single side of a triangle could be longer than ghm of the remaining
two sides. The longest it can be is the sum obther two sides.)

Thus, all convergent sequences are Cauchy, but aliotCauchy
sequences converge. As an example, in the metawes(®, 1) with the
absolute value metri@(x,y) =|x—y|, the sequence;, =1/n does not

converge in (0, 1). It does converge in [0, 1] heere Note thatl/n
converges td@, which is not included in (0O, 1).

SELF-ASSESSMENT EXERCISE 2

Why is the definition of Cauchy convergence invotyia small number
& considered more precise than that for which theiond(x,,x,,) —> 0?

3.2 Banach Space, Hilbert Space

We say a metric spac@/,d)is complete if every Cauchy sequence
converges to a point in the metric space.

Not all Cauchy sequences converge. For instaneesét of rational
numbers is not complete, becaué®, for example, is “missing” from it.

Yet, we can construct a Cauchy sequence that cgesep /2. The
sequence1.4,1.41,1.414,1.4142,1.41421 which can be shown to be

Cauchy, converges 2, which is an irrational number. Hence, the set
of rational numbers is not complete. However, wa C¢all all the
holes.” That is, we can enlarge (complete) a mefigce to contain the
limit of any of its Cauchy sequences. If this mets on a normed linear
space, this gives us Banach space. If we enlarge an inner product
space to include the limit of any of its Cauchy ws&tces, we get a
Hilbert space. Put another way, the Cauchy completion of a ndrme
linear space is a Banach space, and the Cauchyletonpof an inner
product space is called a Hilbert space. A norrreshl space is a space
on which a norm is defined. An inner product spsca normed linear
space in which the norm is induced by the innedpct

In the example in 1.1.2, on the real number lifg,1) is an open set
(alternatively an open interval). As such, O arard not elements of the
set. [0, 1) is half-open, containing O, but no(@. 1] is also half-open,
containing 1, but not zero. [0, 1] is a closed aead is the closure of the
open set (0, 1) or the half open sets [0, 1) and](Orhe closure of a set
Is written by writing the symbol for the set andtmg a bar on top. So,
if T=(0,1), T=[0,1]. This is achieved by adding the limits of the #et,
this case, the singletons (a set with only one eign{0} and {1}.
Thus, [0, 1] = (0, 1 {0} u{1}. You can now see that the sequence in
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guestion converges within the closed interval. Thue say that the
closed interval [0, 1] is complete with the abselualue metric.

For any metric spacé1 , we can equally construct a complete metric
spaceM , which containsM as a dense subspace. That is, ¥erM ,
any neighbourhood o contains at least one point fromh . What does
this mean? Let us takee M < M, and there is nothing to prove, since
any neighbourhood ok contains at least one point M. We should
therefore bother about a point on the bound#y. In this case, we note
that the smallest space that contdihsis a proper subset M . Thus,
for xe oM , any neighbourhood of contains at least one point k. A
subspace inherits all the properties of the spawdieh it is a subspace.

Fig. 1.1shows an open ball (Fig. 1.1a) and itswiegFig. 1.1b). Point
on the boundary of the closed ball has neighbowtt bvithin and
outside the open ball.

/ Neighbourhood o
a point on the
ST T~ boundary oM

|
oM oM
(a) (b)
Fig. 1.1: Showing that the open ball (a) isdensein the closed ball (b)

Consequently, a Banach space is a complete norpeck sthat is, a
normed space that is complete under the metricedbby the norm.

A Hilbert space is a Banach space in which the nisrmduced by the
inner product. Or a Hilbert space is a (Cauchy) glete inner product
space. A Hilbert space is a Banach space, butuaoy éanach space is
a Hilbert space. Hilbert- Banach.
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SELF-ASSESSMENT EXERCISE 3

State which of the following is an open or a closetl If an open set,
state the set needed to make it a closed set.

0 L1
() [1,1]
(i) [2,9)
(iv) (3,7

Why Hilbert Spaces. For one, a Hilbert space ispleta, meaning that
we have no problem of convergence. Completenefisisncase means
that if a sequence of vectors is Cauchy, thennveoges to a limit in the
space. In effect, eigenvectors or eigenfunctionQumantum mechanics
live inside Hilbert space.

Moreover, Zorn’s lemma (via the Hahn-Banach theonerirunctional
Analysis) ensures that every non-empty Hilbert spatas an
orthonormal basis. Thus, we can expand any waveamas a linear
combination of “elements” of the appropriate ortbional basis.

In an inner product space, the inner product defthe norm of a vector
|w > in the vector space a |v >=||v |}, and also enables us to write
<y,Ay > or <y|Ay>, the expectation value of the physical
observable represented by the operator A in sfate. The norm
<y|lw> Is a precursor to the normalisation of a vector (o

wavefunction), which in turn leads to definition pfobabilities in
Quantum mechanics.

Note:

An element of a Hilbert space can be uniquely d@eciby its
coordinates with respect to an orthonormal basis,amalogy with
Cartesian coordinates. When the basis is countabhjte, this means
that the Hilbert space can also be thought of imge of infinite
sequences that are square summable. You would femal PHS 307
and PHS 302 that ify > is normalised, andg,}”, is an orthonormal

set, then,

<y |y >= [ici¢i’icj¢jj=ici *icj (¢J #)
=>erg=Yle P=1

1.16
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Examples of finite-dimensional Hilbert spaces idduhe real numbers
with the dot productu,v>=u'vand the complex numbers with the
vector dot productu,v>=u’'v. Examples of infinite-dimensional
Hilbert space are, the set of all square integrabietions with the inner

product defined as< f,g >=f f(x)g(x)dxand the set of square

integrable complex valued functions with the inpeoduct defined as
<f,g>= f f * (x)g(x)dx. Square integrable in these cases is meant in

the sense, respectively, < f,f >= f[f(x)]zdx<oo and

<t =] [ F(F dx<oo.

4.0 CONCLUSION

In this Unit, you have learnt the background mataecal concepts that
define the environment in which Quantum Mechanipgrates. The

word quantum itself implies a set of states in Whé given physical

system can exist. Each of the possible statedledca vector. You also
learnt how to define a ‘distance’ on a vector spacethat you can find
the distance between any two points on the vegaces of interest. The
vectors in Quantum Mechanics live in a Hilbert spansuring that we
can expand any given state of the system as a lowmabination of the

possible states in which it can be found. This esgible because a
Hilbert space is complete.

50 SUMMARY

In this Unit, you have learnt that:

o a metric space is complete if every Cauchy sequenogerges
to a point in the metric space

o a normed linear (vector) space is a space on waictorm is
defined

o a complete normed linear space is a Banach space

. a complete normed linear space with the norm défibg the
inner product is a Hilbert space

o every Hilbert space is a Banach space

Answer to Salf-Assessment Exercise 1

A metric is a functiond :V xV — R", satisfying for allf,g,heV :
0] d(f,g) <d(f,h)+d(h,g) (Triangle inequality)
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The law of triangle inequality stipulates that niogte side of a triangle

can be longer than the sum of the remaining twessi@ihe endpoints of
the vectorsf, g andh form a triangle. As such the ‘lines’ joining the
endpoints must form a triangle, obeying the triangkequality.

(i) d(f,g)=d(g,f) (Symmetry)

The ‘distance’ from one point to another must be shme, irrespective
of the start point and the end point.

@iy d(f,g)=0ifandonlyif f =g (Definiteness)

The distance between a point must be zero, artiflistance between
the endpoints of the vectdrandg is zero, they must be the same point.

Answer to Sealf-Assessment Exercise 2

A sequencegx,) is said to be &£auchy sequence when d(x,,x,,) >0

when n, m— . Or more precisely, for a Cauchy sequence,sfor0,
there existaN e 8 such thad(x,,x.) <& for all nnm> N.

The case involvinge is stricter because we are able to find a finite
natural number N such that the condition of Caudeguence is
satisfied.

Answer to Self-Assessment Exercise 3

0] (-1, 1) open set, {-1} and {1} needed to addedget the closed
set [-1, 1]

(i)  [-1, 1] closed set

(i) [2,9) half-open set, {9} needed to be addedjet the closed set
[2, O]

(iv) (3, 7] half-open set, {3} needed to be addedét the closed set
[3, 7]

6.0 TUTOR-MARKED ASSIGNMENT

1. Justify whether or not each of the followingimetric space.

(@ % with d(04, %), (Y2, ¥2)) =% = ¥ |-
(b)  The real number line with(x,, x,) =| x,* - X,

(©) %2 with d(ab)=,/(a,~b)?+(a,-b,)?* .

10
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2 (@) Whenis a sequence said to be Cauchy?
(b)  Give an example of a Cauchy sequence thes dot
converge.
(c) What is the relationship between a Hillsgréice and a
Banach space?

3. Consider a Hilbert space with a scalar produgt. Prove the law
of triangle inequality] f +g [I< [If |+ & -
Hint:  (f,g)<|(f,g)] and Cauchy-Schwarz inequality,
[(f.9)I<IIf [k |b

4. Prove the Cauchy-Schwarz inequalifyu,v)|<|u |k |V , for
two vectorsu and v in the 2-dimensional (complex) Hilbert
space. Assume the complex nummm&M and the fact that

lIv If
[lu—Av |f> C.
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1.0 INTRODUCTION

In PHY 309, you noticed that the concept of vesfmace is necessary in
the description of a quantum-mechanical systen @i exist in a set of
possible eigenstates. We often have to go from \@@tor space to
another. A linear map is a ‘good’ function that leles us to take vectors
from one vector space to another. If a linear filmmcticts on the sum of
two vectors in the first vector space, the resulihe same as the linear
function taking each vector into the other vectoace and adding the
two resulting functions in the new space. This msetre function is
additive. In addition, a linear function taking @adar multiple of a
vector to another vector space is equivalent tolthear multiple (not a
power of it different from 1) multiplied by the quit of the function in
the new vector space. A linear map is between tecor spaces. A
linear functional is a linear map between a vedpace and its
underlying field. Recall that while defining a vectspace, we referred
to an underlying field, in which the scalar in hefinition of the vector
space resides.

In PHY 309, you noticed that we took the Hermit@njugate of the
first of two vectors involved in an inner produbt. this unit, you will
get to know that such a vector resides in what @alé & dual vector
space.

12
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2.0 OBJECTIVES
At the end of this Unit, you should be able to:

define and give examples of a linear map

define and give examples of a linear functional

explain the term dual vector space

find the dual of a given vector

work with the Dirac (bra and ket) notation

calculate the transition probability between ongeestate and
another.

3.0 MAIN CONTENT
3.1 Linear Map

A linear map f : X - Y between vector spaces andY is a function
which preserves vector addition and scalar mudgtion, i.e.
fx +%,)= F0)+ f(x,)
2.1
f(Ax)= 4 f(x) for 1K, a constant, and,, x, € X
2.2
We could lump these into a single requirement:
f (ax +bx,) = af (x) +bf (x,)
2.3

3.1.1 Examplesof Linear M aps

1. The zero mapf : X — Y, taking all vectors in vector spageto
the zero vector in vector spate

2. The identity mapf : X —» Y, taking each vector in vector spase
to itself in the same vector spaxe

3. The mapf : X - Y, such that (x) = 2x.

f (axi + bxz) = Z(ax1 + bxz) = a—(le)+ b(Z(Z): af (X1)+ bf (X 2)

3.2 Linear Functional

We could consider the underlying field, K, of thector space as a
vector space. In most problems in Physics, the nyidg field is either
the real number line or the complex plane. Eachthalse can be
considered a linear space — a sum of any two ve®also in the set, as
well as a scalar multiplication.

13
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A linear functional (or linear form or one-form oovector)g: X — K

Is a linear map (or linear function) from the vec$paceX to K, the
underlying field of X , with K considered as a vector space, i.e.,

9%, + %) = 9(%) + 9(X,)
2.4
g(Ax)= 219(x) for 2 K, a constant, and , x, € X
2.5
Equivalently,
g(ax, +bx,) =ag(x,) + bg(x,)
2.6

Thus, a linear functional is a function from a \cspace to its
underlying field that is additive and homogenedresmember these are
the two major characteristics of a vector spacaedual, all the properties
of a vector space are also the same for lineatitumas.

3.3 Dual Vector Space

The set of all linear functionals frotd to K is a vector space ove,
called the dual vector space Hif.

For example, if vectors iR" are represented as column vectors,

2.7
then any linear functional can be written in theserdinates as a sum of
the form

f(xX)=ax +...+a,X,

2.8
which is the matrix product of the row veclet . . a,] andx:
Xl
f)=la, . . a]
Xn
2.9
[a, . . a&,] is a matrix of constant elements and the rightdhside of

2.9 gives a number in the underlying field.

14
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As you can see in this expression, you need a deelor (linear

functional or covector) (from the dual vector spat¢he vector space)
on the left and a vector (from the vector space}henright to get an
inner product. Thus, a linear function@ . . a]has taken a vector

Xl
from the vector space to the underlying field. WA@u get out of

X

this is a member of the underlying field. For d resctor space, you will
get a real number; for a complex vector space,wiluget a complex
number in general. If you put the vector on the #fd the dual vector
on the right, you are not going to get a scalaatTihdeed would be the
outer product. The kdty > denotes the vector in a Hilbert space while
the bra<y | denotes a linear functional or covector in thel dggtor
space. This is why the dual vector space is aldedcthe space of linear
functionals over the vector space. Indeed, the diial Banach space is
also a Banach space. The corollary is already edplthe dual of a
Hilbert space is also a Hilbert space.

. i 1 .
Let us take a direct example: The vectér'slj and( j are in the

vector space of column vectors over the field ompltex numbers.
Notice that the second vector might not have entirvolvingi.

Nonetheless, it is still from the vector space wofeiest. It just so
happens that the imaginary part of each comporsenérno. You might

. : O+i 1+0
see the two vectors more generally in this aX | and -
-1+ 0 -1+ 0

To take the inner product, we write find the duaiigalent of the first
vector, or in our present language, the equivdieear functional:

[[ilﬂ*—(i 1) =( -1)=( -3

The inner product is then
(—i - )( 1J=—i><1+ CDxED=—i+1= Li

1-i is in the complex plane, the field underlying @actor space. Thus,
the linear functional(-i -1)(from the dual vector space over the

complex numbers) has taken a vector from the vegpace over the

field of complex numbers{lj to the underlying field of complex

numbers viewed as a vector space. Now, cast yood imack to PHY
309. How did you recover the coefficients of th@axsion of a vector
written as a linear combination of the vectorshe orthornormal basis?

15
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That process is the same as the one described Yauneexpanded the
vector aSl//=ZC,¢, , Wwhere{d} is an orthornormal set. To gef, you

took the inner product

(¢.)=(4;. 2 64)=2.6(4.4)=2 6d =,

You took this a step further, finding the probdbilthat the system
under consideration is in any particular statevipled y is normalized,

W)= 6h.2cd)=2.62.¢¢)=2.¢2c8 =) cc=2lc1=1

In this case, the expression on the left is themnof v, the output of

which is always a real number. Nevertheless, ths# fnember of the
inner product is from the dual vector space.

You can now generalise what we have done so fan tox nmatrix. Let
A and B be vectors in the vector space rokn matrices over the

complex plane. The inner producly(A'B)takes a vectorBfrom the
vector space to the field of complex numbers viewsa vector space.
Notice thatA'is annxm matrix. For example,

i 2 -2 1 i 1
A= . ,B= )
(2 i —1} (—2 i —Zj
The dual ofA is,
i* 2* -1 2

A= 2% i* |=|2 -
-2i* -1* 2i -1

- 2 _ -i-4 -1+2 -i-4
Tr(A'B)=Tr|| 2 i (_12 _i' _;j “Tr|2+3 -2+41 22
2 -1 A+2 221 -2+ 2
—-i-4 -1+24 -5
=Tr|2+2 -2+1 O |=—-—4 €2+ 1—-1—- 4 P+ £- 3
2i+2  2-i 0
=-3(1+i)

The functional above is defined with the productved matrices.

As another example of a linear functional, \ebe the vector space of
nxnmatrices over the fieltk, which could be the real number line or
the complex plane. The scalatsand g are elements of the real number
line or the complex plane as the case may be.rloe mapT :V — Ris

a linear map.

16
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Tr(A+B)=(A,+B,)+(A,+B,)+..+ (A, +B,)
=(A;+A,+..+A,)+ B +B,+..+B,)=Tr (A)+Tr B)

Tr(aA =aA,+aA,+..+ah, =a(A+ A+ ..+ A,)=alr (A)

Equivalently,

Tr(a A+ fB) =(aA;+ fB,) +(a¢A,+ SB,)+..+ (@A, + FB,)
=(aA;+aA,+..+aA,)+ BB+ B +..+5B,)
=a(A,+A,+..+A)+SB+B,+..+B,)
=aTr(A)+ fTr(B)

Tr is an element in the dual spa¢é of vector spac®. The maplr is
the row containing the trace of all the matriceshia vector space. Any
other linear functional defined on this space san element o¥ *,
the dual space df. The trace in this case acts only on a matrixikenl
that in the previous example in which it acts oer firoduct of two
matrices.

For example, the map:V — Rtaking the first elemen#,of a matrix to
the underlying field is also a linear functionalén. T(A) = A,.

Self-Assessment Exercise 1
Explain the terms linear map, linear functionalctee space and dual
space in a single paragraph.

34 TheDirac Notation (Bra and Ket Vectors)

To every vector|y > in the vector space, there is exactly one dual
vector <y | in the dual vector space.

(v >)" =<y (The dual of the ket vector is the bra
covector)
<y qHvw> (The dual of the bra covector is the (initial)

ket vector)
Put another way, the dual of the dual vector isratjee vector itself.

For an operatoA acting on the vector (eigenvectqg) > in the vector
space, we Writé |y >. This IS equivalent (since
(Aly>) =(lw>) A=<y |A") to <y | A" in the dual space. Moreover,
since (AB)" =B"A", AB|w > is equivalent to<y |B"A". ForHermitian
operatorsA andB, this becomes y | BA.

17
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SELF-ASSESSMENT EXERCISE 2

In terms of vector spaces, dual vector spaces atdaes, what are bra
and ket vectors? How can you form an inner profloch the two kinds
of vectors?

3.5 Transition Probability

In PHS 307, you expanded the wavefunction of a rgigeantum-
mechanical system as a linear combination of tlesipte orthonormal
eigenstates. There, you were able to (with the betpe inner product)
recover the coefficient of the expansion and thedude the probability
of finding the system in any particular eigenstéejust the same way,
the inner product also defines the transition atugé from stat¢y > to

state<g|, i.e.,<o|y >.

Therefore, in line with the Born interpretationtbe wavefunction, the
transition probability is,

Py =k 1y 5F=[] 6" Cow (o
2.10

This is the transition probability of the partialeder consideration from
state|y > to state<¢|.

You can see that the probability that the transitio the same state is
unity (each eigenstate is normalised:
P¢¢ =|< ¢ | ¢ >|2= 1)
2.11

In the time-dependent case,

iEqt
lg(xt)>=€ " |$(x,0) >
2.12
iEt'
ly(xt)>=e " |p(x0)>
2.13

and the transition probability from statey | to staté¢g > s,

18
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Et IEL 2

<g(x0)e" e " |y(x0) >

P, =[<g(xt)|w(xt)>]" =

2.14

IEt-E,t 2

<g(x)le " |y(x)>

2.15
SELF-ASSESSMENT EXERCISE 3
In terms of bra and ket vectors, what do you urtdats by ‘transition
probability?’
Example 2.1
A particle in a box of length. with infinite walls is in its ground state.
What is the probability (transition probability)aththe particle is in the
ground state if one wall is suddenly moved outwandking the new
box of length 8?
Solution 2.1

Let us denote the ground state of thiength welly (" and the ground
state of the B length welly " . The allowable wavefunctions for the
length well are,

L _ \/Esin Nz X
" L L

The eigenfunctions for theL well must be (transformatiob — 3L):
" N3l 3L

Therefore,

<y lyd) >:.[L isin”—xx\/Esin”—)(dx:i.[Lsin”—Xsin”—de
oVaL™ 3L VLo L Lv/3%° 3L L

You can see this as the case where the timeero because the change
occurred suddenly.

Note that the integral does not need to extend._tdb8cause the wave
function for theL well is zero outside the@ < x < L range.

19
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(3L)

2 (L. TX . X
< L > =~ | sin=—sin—dx
wo o W L\/g.[o 3L L

2 L1 TX 71X TX 71X
=L—\/§.[0§{co I—TJ—CO IJFTJ}OIX
1 (o - 27X A X
:L—\/é'[o {co{ 3L J—CO{IJ}dx
1 o 27 X A X
= L_\/é j . {CO{IJ - CO{IJ}dx

L

. 2T X Y
SN SN
_ 1 3L 3L
V3| 27 4n
3L L J,
27 X 4 X
SN SN
_ 1 3L 3L
/3| 47 ar

V3 4z|” 2 2
s ([ B
47[\/5 \/5_{_ ZD
3 J3
_47r\/5_3 \/§+7J
3 (3
:47r\/§ E\/EJ
_9
8r

Hence, the probability that the particle is in gteund state of the new
box of length 8 is

9 2_(&}{ 81
8z 64r°

P=-
8r
40 CONCLUSION

In this Unit, you learnt about linear maps, whick &unctions between
two vector spaces, linear functionals which arecfioms from a vector
space to the underlying field. You have also séan the inner product
of two vectors involves a vector from the spacelwél vectors on the
left and a vector from the vector space on thetrighis ensures that the
output of such an operation is in the field undedythe vector space.

20
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You also learnt how to calculate the transitionbatality between a ket
and a bra.

50 SUMMARY

In this Unit, you have learnt the following:

. a linear map is a function between two vector spagslich
preserves vector addition and scalar multiplication

o a linear functional is a function from a vector gpato the
underlying field which preserves vector additiondascalar
multiplication

o the set of all linear functionals of over a vectpace is the dual
space of the vector space

. the inner product of two vectors is between a vertdhe dual

space of the vector space as a bra on the lefa aedtor from the
vector space on the right

. how to calculate the transition probability fronket state to a bra
state.

Answer to Salf-Assessment Exercise 1

A linear map is a function between vector spacas rbspects linearity
and homogeneity. The codomain of a linear map v&®&or space. A
linear map therefore takes a vector space to &ttaggace that is also a
vector space. The output is a vector. A linear fional is a linear
transformation whose target space (codomain) istatar field, which
iIs a one-dimensional vector space or the complexepl(if from a
complex vector space). The output is a scalar. & dpace of a vector
space X is the set of all linear functionals frontoXthe underlying
scalar field of X, from which the scalars for X ah@wn. The dual space
is also a vector space if we define addition analascmultiplication
componentwise.

Answer to Salf-Assessment Exercise 2

Ket vectors are vectors from the vector space aadcalumn vectors.
Bra vectors are from the dual vector space andatsnn vectors.

An inner product is formed by having a row matrix the left and a
column matrix on the right. The resulting produieieg a scalar.

Answer to Self-Assessment Exercise 3

The ket vector can be seen as the initial stateaintransition.
The bra represents the final state. The transifiwabability is the
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probability that a system initially in the ket €as eventually found in
the bra state. It is not sufficient to just take thner product with the bra
on the left and the ket on the right as the outpigiht be complex. We
take the square of the magnitude which must of s@te be a real

number:P, =< ¢ |y >f.

6.0

1.

(a)
(b)
(€)

(d)
(e)

22

TUTOR-MARKED ASSIGNMENT

Define the following terms:
(@) Linear map (b) Linear functional

Show that the ordinary differential equation r@per L =% is a

linear operator.
Prove that the indefinite integral operatcbn—>J'f(x)dx Is a

linear operator.
Consider the space of functions. Show that #fenite integral

f |—>J'bf(x)dx is a linear functional from the vector spacka, b]

of continuous functions on the intervia,b] to the space of real
numbers.

A particle is confined in a one-dimensional lvaih dimensions
0<|a| and is known to be in the first excited state=(2). If
suddenly, the width of the box is doubled withoigtutbing the
state of the particle, and a measurement of theggns made,
find the probability that the system is in the grdwstate and the
first excited state of the new well.

Given an orthonormal séft¢, >}7,, Show that2|¢j ><¢ 1,
j=1
the spectral representation of the identity operato

The state of a system is given by

ly >=A[L+i)|1>+/ 27 |25 - (201 ) |3

What is the associated bra vector?

Normalise the vector.

Calculate the probability amplitude and thelyadaility of finding
the system in each of the possible in each of thges 1>, | 2>
and|3>.

What is the most probable state the systenbediound?
Another state of the system is given by
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|¢>=%[2|1>+f$i”’6 |2+ (21 )3

Calculate the probability of observing the systenstate|y > if
it was initially in statg ¢ > .

8. A molecule is composed of three atoms. An electamattach to
the molecule by attaching to any of the atoms. &leetron can
be in one of three possible eigenstgtes, |2> or |3>, where
the state| j > is the state in which the electron is attachethé&
j th atom.

(@) What is the dimension of the eigenspace ofjistem?

(b)  The eigenstategl>, |2> or |3> form a complete orthonormal

basis for the system. Explain the term completésbas
(c)  What would have been the implication if thee#heigenstates did
not form a complete basis for the system?

(d) If the system is in statey >:%,[3i |1>+2|2—/ 3|3 , on which

atom are you most likely to find the electron?

9. Show that the transformationT:R* > R®, given by
(x,y) = (y,%,2+x+y) is not a linear transformation.
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1.0 INTRODUCTION

In Quantum Mechanics, every physically observablassociated with a
Hermitian operator. The physically observable prbpe include
position, time, energy, angular momentum, etc. Quilike the case
with Classical Mechanics, not all physically obsdile properties of a
guantum-mechanical system can be measured presisaljtaneously.
This is due to the Heisenberg uncertainty principlie any two
observable physical properties can be measureditameously with
infinite accuracy, then their operators must conemindeed, you will
get to know that two such observables can havesdh®e eigenvectors.
In this unit, you will also learn how to find theatnix elements of an
operator in a given quantum-mechanical state. Tymus,will be able to
calculate the expectation value of the physicablgayvable property in
such a state. In addition, you will learn about theer product of two
vectors as well as the projection operator.

20 OBJECTIVES

At the end of this study session, you will be abte

J do commutator algebra

o write the matrix representation of a given lineperator

. show that two operators that commute can have #mes
eigenvectors

. find the outer product of two vectors

o work with projection operators.
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3.0 MAINCONTENT
3.1 TheCommutator

Let two operators, corresponding to two physicaestables bé and
B, and let them have the same eigenvegtowith eigenvaluesi, and

4, respectively. Then, we can write
Ay =y
3.1
and

By = Ay
3.2

Multiplying equation 3.1 on the left 18,
BAy =By = A,By = LAy
3.3

Multiplying equation 3.1 on the left 18,

ABy = Mgy = APy = Aoy
3.4

Subtracting equation (3.3 from equation 3.4),

ABV/_ BA‘// = ﬂbﬂ’al//_ﬂ“aﬂbl// =0
3.5

(AB-BA)y =0
3.6

since the eigenvalues are just numbers.

Generally, v 0. Hence, AB-BA=0. This is written as[A B]=0,
where[ A B] is the commutator of A and B.

The commutator is anticommutative, that is,

[B.Al={AH
3.7
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SELF-ASSESSMENT EXERCISE 1
Prove the relation 3.7.

Let the uncertainty in the measurement of physitalervablea with a
corresponding operatdy be Aa and the uncertainty in the measurement
of physical observable with its corresponding operat8rbe Ab. Then,
the uncertainty relation is

AaAb = '—Z[A, B]

If the commutatof A B] =0, then the product of the uncertainties in the
measurements of the corresponding physical obses/ab zero. It
means the two physical observables can be measumadtaneously
with infinite accuracy,Aa=Ab=0. We then sayA and B commute.
Measuring one of the physical observables leaves #ystem
undisturbed relative to a measurement of the athservable. We say
the two observables are compatible.

If the commutatofrA B] #0, A andB do not commute. Then the product
of the uncertainties in the measurements of theesponding physical
observables is not zero. It means the two physicsérvables cannot be
measured simultaneously with infinite accuraay=0 would imply
infinite error in the measurement lmf Measuring one of the observables
disturbs the system, causing an error in the measemt of the other
observable. We say the two observables are incaohpat

The commutator seems to ask, “What is the effecmefsuring the
physical quantity corresponding to operator A fitsten the physical
guantity corresponding to operator B, and measutiregn in reverse
order?” If the operators commute, it should nottaratvhich physical
guantity (corresponding to the operator) is measkfirst.

SELF-ASSESSMENT EXERCISE 2

What do you understand by commuting observables?
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3.2 Commutator Algebra

Here are some properties of the commutator:

1.  [AA=AA-AA=0
3.8

2.  [AB]=AB-BA=—(BA-AB)=-[B,A
3.9

3. [AB,C] = ABC — CAB + ACB — ACB - CAB
= ABC- ACB+ ACB-CAB
= A(BC-CB)+ (AC-CA)B
= AB,C]+[AC]B
3.10

4. [A BC]= ABC-BCA= ABC-BAC+ BAC-BCA
= (ABC - BAC) + (BAC - BCA)
=(AB- BA)C + B(AC-CA)
=[A BJC+ B[AC]
3.11

S. [A+B,C]=(A+B)C-C(A+B)
=AC+BC-CA-CB
=(AC-CA) + (BC-CB)
=[AC]+[B,C]
3.12

6. [AB+C]=AB+C)-(B+C)A
= AB+ AC - BA-CA
= AB-BA+ AC-CA
=[A B]+[AC]
3.13

7. [A[B,C]] = AB,C]-[B,C]A
3.14

SELF-ASSESSMENT EXERCISE 3

Prove the Jacobi identifyA [B,C]] +[B,[C, A]] +[C,[A,B]] =0

3.3 Matrix Elementsof aLinear Operator

Suppose operatdx acting on kely > results in the ketty >, we write
| x>=Aly >
We can also expand, > in an orthonormal bast$e >},

n
|'//>:ZVi le >
i1
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On the other hand, we can expgnd>directly in the same basis, using
a different dummy index as the counter,

n
lx>=>v,"e >
j=1
so that we can recovey'=<e, |y >.

n
Vi'=<e | x>=<e |Aly >=<g |A|2Vi e >
i1

v, <g |Ale >

SvA,

Try to write out this sum, and what you get is,

V.'=V,A, +V,AL +. 4V A,

Thus, we can write this as theéh row of a matrixA multiplying a
column vectow.

A, . . . . . AL
V2

Ac Ae - - o A

A, . : : : . ALV,

Then,
Vi A&l v A&n Vl

Vo) \Aw - - AnlV,
3.15
So, we can represent any linear operator by a square matrix

A =<e [Alg >.
More specifically, we can write,
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<1lA|Il> <1]A|2> . . . <1A|n>

<2|All> <2|A|2> . . . <2|a|ln>
A=

<n|A|l> <n|A|2> . . . <n|A|n>

Take a look at each column or each row and you s@# there is a
pattern: The matrix is made up of a collectiomalumn vectors or we
could see it as row vectors:

<1y, >) (<1ly,> <1y, >

<2y >| | <2y, > <20y, >

<nly, > <nly, > <nly, >
or

(<1//1|1> <y, 2> . .. <1//l|n>)

(<1//2|1> <y, |2> . .. <1//2|n>)

(<w, 11> <y, 12> . . . <y, |n>)

where |y, >= A|1>, |y, >=A|2>, etc., and<y, |=(ly, >)" =<1| A",
etc.

Example 3.1
Find the matrix of representation of the identipemator.
Solution 3.1
For the identity operator,
I [i>=]i >

Ly =<jlli>=<]jli>=g

Hence,
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1 ... 0
0 . 0
I p—
00...1
3.16

SELF-ASSESSMENT EXERCISE 4

Find the matrix of representation of the lineamsfarmation (in the
usual basis irR?),
L:R® = R, such thatL(x;, X,,X;) = (X + X5, X; — X5, X + X5) .

4.0 CONCLUSION

In this Unit, you learnt that two physical obsenesbcan be measured
simultaneously and with infinite accuracy if thegorresponding
operators commute. If the operators do not commmuegsuring one of
the observables induces an error in the measurewienhe other
physical observable. Moreover, you have been ablent the matrix
elements of a linear operator, given the relevastdvectors.

50 SUMMARY

In this Unit, you have learnt the following:

. a commutator tells us if we can or cannot measucephysical
observables simultaneously and with infinite accyra

o if the commutator is zero, the two quantities cgpanding to the
operators can be measured simultaneously withiiefatcuracy

o if the commutator is not zero, the two quantitiesresponding to
the operators cannot be measured simultaneously ininite
accuracy

o how to find the matrix elements of a linear operato

Answer to Salf-Assessment Exercise 1
[B, A = BA— AB=—AB-BA) ={A B

Answer to Self-Assessment Exercise 2
If the commutatof A B] =0, then the product of the uncertainties in the

measurements of the corresponding physical obses/ab zero. It
means the two physical observables can be measumadtaneously
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with infinite accuracy,Aa=Ab=0. We then sayA and B commute.

Measuring one of the physical observables leaves #ystem

undisturbed relative to a measurement of the athservable. We say
the two observables are compatible.

If the commutatof A B] #0, A andB do not commute. Then the product

of the uncertainties in the measurements of theesponding physical
observables is not zero. It means the two physicsérvables cannot be
measured simultaneously with infinite accuraaya=0 would imply
infinite error in the measurement lmf Measuring one of the observables
disturbs the system, causing an error in the measemt of the other
observable. We say the two observables are incaohpat

Answer to Self-Assessment Exercise 3

[A[B,CII+[B,[C, Al] +[C,[AB]]
= A[B,C] -[B,C]A+ B[C, Al -[C, A]B+ C[ A B] -[A B]C
= ABC — ACB— BCA+ CBA+ BCA— BAC
+ ACB— CAB + CAB— CBA+ BAC — ABC
=0

Solution to Self-Assessment Exercise 4

L(e,)=L@L00)=(1+0 1-0 1+0)=(1 1 1)
L(e,)=L(010)=(0+1 0-0 0+0)=(1 O 0
Le,)=L(©00)=(©0+0 0-1 0+)=(0 -1 1

Hence, the matrix representing the linear transébion is,

<xILI> <xILI> <X L K>
L={ <X |L|Xx> <X |L|X,> <X,|L ;>
<xILI%> <X IL x> <X, L ko>
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Notice that we might as well have arranged the isnair writing out the

three columns
L=(L(e) L(e,) L(ey))

Alternatively,
L|1>=L(@L0,0= & O)|2+ @ 0)]24H @& O I+ P2

L|2>=L(0,1,0%= (Or )|:+ (@ 0)|2+ (@ 0)}3= ¥
L|3>=L(0,0)= (O O)|2+ (@ 1|2+ © Dp3=— P2 ¥

Hence,
<xILI> <xILI> <X L K>
L={ <X |L|Xx> <X |L|X,> <X,|L ;>
<xILI%> <X IL x> <X, L Ko>
<11+ 12+ |3 ) < 1| < 1H |2+ B8
= <2|(|+ 12+ 13 ) < 2|2 < 2H |2+ |8
3B+ 12+ 13 ) < 3|2 < 3H 2+ B
0
-1
1

Il
N
O O -

Another approach:

e-Le)=(1 0 0)-(1 1 3=
e-L(e)=(1 0 0-(1 0 0=
e-Le)=(1 0 0-(0 -1 J=¢
e,-Le)=(0 1 0-:(1 1 3=
e,-L(e)=(0 1 0-(1 0 9=
e,-L(e)=(0 1 0):(0 -1 J=-
e-Le)=(1 0 0-(1 1 3=
e,-Le,)=(0 0 (1 0 0=
e-Le)=(0 0 1-(0 -1 3=

Arranging these in a matrix gives yet again,
11 0
L={1 0 -1
10 1

32
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6.0 TUTOR-MARKED ASSIGNMENT

1. Show thatA",B] =nA""'[A B], provided [[A B],A]=0, for all
ne XN, the set of natural numbers.

2. The action on staten > of the lowering and the raising operators
for the harmonic oscillator are, respectivelyin>=+/n|n-1>,

a’ |n>=+n+1|n+1>.

a. Write out the matrix elements afand that ofa*.
b. Find the two products of the matrices, anda‘a.
C. Write the matrix form of the Hamiltonian openattor the

harmonic oscillatori J%J(aa+ +a‘a).

3. 0] Find the eigenvectors of the matrices

3 2 2 4
and
;3 o
(i)  Show that the matrices commute.
(i)  Comment on your findings in (i) and (ii).

4. Find an expression for the commutaf@B, CD] in terms of the
commutators of pairs of the operators.

5. The usual basis for a spin-half systenis= @j and|->= Gj :

We can write the two vectors|1>=i(|—>+i [+>) and

V2

|2>=% (|->-i [+>). Let the operatoQ be defined by

Qlt>=+in|F>

(@)  Write the vectors as ket (column) vectors.

(b)  Show that the vectofd>and|2>are orthonormal.

(c) What is the matrix representation of the opmr&l in the basis
{{+>]->}.

(d) CalculateQ|1>andQ|2>.

(e) Calculate<1|Q, <1|Q'.

6. The operator of a physical observable in thbambrmal states

|1>, |2> and|3>which span the Hilbert space of a system is
given by
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QI>=2|>-2 |2+ |3
Q|2>=i|1>+2|2>-2 |3
Q|3>=-12 |+ |2-2|3
(@) What is the matrix representation Qf in the {|1>,|]2>,|3>}
basis?
1
(b)  For the statdy >= 7

<y | Qin the representation of the vectors and operatoithe
{I1>,]2>,]| 3> }basis.

(|>+2|2>+ |3 , determineQ|y > and

7. In the isospin theory, the nucleons (proton aedtron) are
assumed to be different states, denoted respectivel p> and
|n>. If the state of the nucleon changes as a reatoollision
between the nucleon and another particle, a chaeiyeed by

le>=%(lp>+i In>)

QIn>=71p>+In>)

(@)  Write the matrix representation Qf in the basig| p>,|n>}.

(b)  Assuming a proton undergoes such a collisiohatwis the
probability that the nucleon could be observed @¢oabneutron
after the collision?

(©) Normalise the statdy >=|p>+3 |n> and hence, determine the
new state of the system after the collision hasiwed.

(d)  Write the bra vectorly >as a row vector. Hence, find the
probability that the nucleon will be found in thiate |y > after
the collision.

(e)  Suppose the nucleon is in a sthte>=c, | p>+c, [In>before a
collision, find its state after the collision.

() Find, if possible, collisions in which the stadoes not change.
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1.0 INTRODUCTION

The inner product of two vectors is obtained bytipgta bra vector,

from the dual vector space on the left and a ketovefrom the vector

space on the right. The outcome of this procedugescalar. In contrast,
an outer product has a ket on the left and a bita@mnight. The outcome
IS a matrix, not a scalar. A special case of th&eroproduct is the

projection operator, which ...

The completeness relation is a summation of all dbéer products

formed from each vector in the basis and its dlilails summation gives
the identity matrix, meaning that the completenmetsion expresses the
physical situation where a measuring instrumentqaain the path of

the system under consideration, but making no measnt is the same
as not having the instrument there in the firstgla

In this study session, you will get to know the mection between
completeness .....

2.0 OBJECTIVES
At the end of this unit, you will be able to:
o do commutator algebra (SAQ 6.1 and SAQ 6.2).

o write the matrix representation of a given linege@tor (SAQ
6.3).
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. show that two operators that commute can have #mes
eigenvectors (SAQ 6.4).

o find the outer product of two vectors (SAQ 6.5).

o work with projection operators (SAQ 6.6 and SAQ,G65AQ
6.8).

3.0 MAIN CONTENT

3.1 TheOuter Product

With the bra-vectors<v|, <w]|and ket-vector$y >|w >, the inner
product of vectory andw is written, <v|w > and theouter product
| v ><w | which, is an operatoA,, .
A, ls>=(v><w|)|s>=N><w p>=a V>
4.1
where<w|s>=« .

The adjoint of the outer product |v><w| 5
(Jv><w])=w][) (v>) =w><v , recalling that(AB)'=B"A" and
noting that the adjoint operation turns a bra mtet and vice versa.

Example 4.1
Find the inner productk v |w >, and the outer produdty ><w |, of the

vectors

Vl Wl
[v>=|v, | and|w >=|w,
V3 W3

in a real vector space. (A real vector space ib st the entries of the
column or row vectors are all real.)

Solution 4.1
Wl
<viws=viw=[v, v, Vi][w, |=v,w +v,w, +vw,
W3
Vl VlWl VlWZ V1W3

T
= Vs [Wl W, W3]= VLW VoW, VoW,

|v><w=vw
V, VoW, VoW, VW,
More generally,
<alb>=a'b, while|a><b[ab”
That is, the transpose is not the relevant operabat the transpose and
then the complex conjugatiom” =(a’)*=(a*)", that is, Hermitian
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conjugation. Note that the order can be reversed:can first find the
complex conjugate and then transpose the columiorvec

Example 4.2

Find the inner product and the outer product ofvbetors<al|b >, and
the outer product,a><b|, given that,

i —2i
a=|-2| andb=| i
—i 2
Solution 4.2
—2i —2i
<alb>=[i -2 —i]*| i |=[-i -2 i]*| i |=—2-2i+2i=-2
2 2

In general, this should be a complex number. Is thise, the imaginary
part is zero.

i i i x2i i x—i ix2
la><bl|-2|[-2i i 2F=|-2|[2i -i 2]=|-2x2 -2x-i -2x2
—i —i —ix2l —ix—- -ix2
-2 1 2i
=|-4 -2 -4
2 -1 -2
SELF-ASSESSMENT EXERCISE 1
. 1 1 . . .
Given that|y >=—=|1>+— |2 +A | 3>Is normalised, findA. Hence,
17 \@I ﬁsl I

calculateP, |y >.

3.2 TheProjection Operator

Let us now take a special case of the operigtor< 4, |, where j =k in
a given orthonormal basis, where any vector insthece can be written,
ly >:Zci lv; >
i=1
4.2
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|¢j >< @ |W>:l¢j >< @ |ici | & >= C; |¢J >
4.3

We call

Pj :l ¢j >< ¢j |
4.4

the projection operator as its effect on vegior- is to project it in only
one ‘direction,’ that of ¢, >, that is in ‘direction’ .
It also makes sense, that

PJ.PJ. |y >= PJ. |y >

4.5
Indeed,
Pij |W>:|¢j ><¢j |¢J ><¢j ly >
:|¢j ><¢j |Cj |¢J >
:Cj |¢J ><¢j |¢J >
:Cj |¢J >
=P |y >

Thus, to prove that a given operator is a projectoperator, it is
sufficient for it to satisfy,

3.3 The Completeness Relation
Zl(/’j >< @ |W>:Z|¢j >< @, |ZC| o >:z p; >(ZC| <o b >J:zcj b >=¥>
j j i j i j

sinceZc, <o, |4 >=c;(Recall from Quantum Mechanics I)

Hence, we can see thathj >< g, | is an identity operator. Therefore,
i

we can write Y |p, >< o, [y >=1 |y >=|y >
j

4.7
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Thus,
| = Zl‘pj >< Q; |
i

4.8
This is the completeness relation for the orthoradreystem{] ¢, >} .

Equation 4.7 indicates that the completeness oglatieans all possible
projections of the system have been taken intoideretion. But this
also means that the system can be in any of thasessand in no other
state outside the ones in the given basis vectastates.

In the case of a continuous spectrum, the compsterelation takes the
form of an integral:

b
ly >=L lo; >< ¢, |y > dx

4.9
Hence,

b
|:ja|¢j >< g, Jdx

4.10
Now, is there any link between completeness as iseussed under
Banach and Hilbert spaces? Of course, there wedadbout ‘filling
holes.” With the *holes’ (if any) filled, we canfedy lay out our vectors
in such a way that a set of orthonormal basis veatan be utilised in
writing (or representing) any vector in the spade. Quantum
Mechanics, that vector could be an energy vectpgsation vector or an
angular momentum vector. A vector space, you vdbaecall, is one
that allows us to add vectors and multiply themalpypropriate scalars
(real or complex) and still be confident our resslstill in the vector
space. In addition, the idea of convergence imghese is an infinite
number of vectors between any two points on a cetaplector space
(what we referred to as denseness). There is ne. Adlus, every
Cauchy sequence converges within the vector sp@beag, for example,
there is an infinite number of vectors between(10) and (2, 0, 0),
such as (1.001, 0, 0), (1.01, 0, 0), (1.1,0,0), letteed, between any two
of these, there is an infinite humber of vectorse® that ring a bell?
Yes, the real number line itself is a Banach specthe irrationals that
are the ‘holes’ have been plugged in. Thus, betviz@rand 0.01, there
IS no open space and there is an infinite numbesafnumbers between
them. The norm in this case is the absolute vabrennLikewise, the
complex plane is a Banach space with the norm eefiby the

Euclidean norm\/(xl—x2)2+(yl— y,)?, where a vector in the space is

represented by = x+iy. It should also be clear from the foregoing, that

the n-dimensional Euclidean space is also a completaienspace.
Here, convergence should be seen in view of theienééfined on the
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vector space. We recall that a metric space isctéovepace equipped
with a metric.

SELF-ASSESSMENT EXERCISE 1

What is the completeness relation? Outline the, lihkany, between
completeness of a complete normed linear spacdlendompleteness
relation.

4.0 CONCLUSION

In this Unit, you learnt about the outer produbg projection operator
and the completeness relation. You learnt to dysish between the

inner product, the output of which is a scalar, #router product, the
output of which is an operator. The projection spacial outer product
that projects a vector in only one of the statewimch it can possibly

exist. Expectedly, applying the projection operaince more produces
the same result, as the system is already in thtg & which it has been
projected. You learnt that the completeness relatieans the system
under consideration can only be in the set of pilesd eigenstates. This
was also linked to completeness of a normed lispace as discussed
under Banach and Hilbert space in Unit 2.

50 SUMMARY

In this study session, you have learnt:

. to distinguish between inner and outer productgectors

o to find the outer product of two given vectors

o to work with projection operators

. about the completeness relation and its relatigngioi the

completeness of a normed linear space

Solution to Self-Assessment Exercise 1

<y >—i|cf—1—l+—1+Az——8+A2
vivEE Lk 35 15
A2_1—§=l,and s
15 15 15
Therefore,

1 1 7
Ss=—|D+—=|2>+]|— |3
Iy >= 112+ | 2|

7
P >=C,|3>=.— |3
3 v >=¢ ,/15I
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6.0 TUTOR-MARKED ASSIGNMENT

1. Find the inner product a|b >and the outer produdta >< b |of
the vectors
2 1
a=|-1|,b=|-1
1 3

2. Given an orthonormal sfit¢, >}7,, Show thati|¢j ><g 1.
j=1

0 0O
3. Show that the matrix0 1 0| is a projector fromR® to the
0 01
y—zplane.
4. Show that a linear operatBris a projection operator if and only

if there exists another linear opera@such thatP+Q=1.
5. What do you understand by ‘the completenessiogal2
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INTRODUCTION

Angular momentum in quantum mechanics is equivatenthe same
concept in classical mechanics. You will recall ttha classical
mechanics, the angular momentum of an isolatecesys conserved.
As usual, in quantum mechanics, the angular momemjperator is an
operator. In quantum mechanics however, unlike thse of the
classical analogy, the Cartesian components of di®tal angular
momentum are operators which do not commute. Timplies we
cannot measure the different components of thelanguomentum of a
body simultaneously and with infinite accuracy.

2.0
At the

OBJECTIVES
end of this Unit, you will be able to:
find the expressions for the components of angu@mentum

find the commutator relationship between pairs ofgwar
momentum operators
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PHY 309 QUANTUM MECHANICSI

. calculate the eigenvalues of the magnitude of thgular
momentum

. calculate the eigenvalues of tleecomponent of the angular
momentum

o explain what is meant by angular momentum cones.

3.0 MAIN CONTENT

3.1 Angular Momentum Operators

The angular momentum of a body is the moment oh@snentum about
a given reference point. In Classical mechaniaos,atiigular momentum
of a body can take on any value. Is this the cagguantum mechanics?
To start with, as it is with all physical observdlin Quantum

mechanics, the angular momentum of a body is repted by an

operator. We start our analysis by consideringahgular momentum

operaton. .

L=rxp
1.1

In the Cartesian system, we can write this as

i ]k
L=|x vy z
P By B,

wherer =xi+yj+zk andp=p,i+p,j+pk are respectively the position
vector and the linear momentum of the body.

Thus,
L =i(yp,—2zp,) +j(z0, — Xp,) +k(xp, — YP,)
1.2

The commutation relations below hold:
[L. L] =[yp, - 2p,, zp, — xp,]
=[yp,, 2p,]-[ yp,, xp,] -[ p,, Z0,] H zp, Xp]
= YP, 20, — 20, YP, — (YP,XP, — XP,YP,)
—(2p,2p, — 2p,2p,) + 20, XP, — XP, 2P,
= YP, 2P, + P, XP, — 2P, YP, — XP, 2P,
+2p,2p, — 2D, 2D, + XP,YP, — YP,Xp, (this part is

zero)
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That part is zero because all the operators commnteit does not
matter in which order they are written. Recgd|, p;] =i#J;

Hence,
[L,.L,]=1AL, = p,yp,Z2— P, YZD, + P,XZP, — P,XP,Z
= p,Y(P,z2—2p,) + p,X(zp, — P,2)
=-p,Y(zp, - P, 2)+ p,X(zp, - P,2)
=-pYz p,l+pXz p)l
=—inp,y +ihp, X
=-in(p,y—-p,x) =in(yp, —xp,) =L,

Thus,
[L.L,]=inL,
1.3
Similarly,
[L,.L,]=inL,
1.4
and
[L, L J]=iAL,
1.5

An alternative way of proving these commutationatiens is in
Appendix 2.

Equations 1.3-1.5 can all be summed up by Fig. GQldckwise rotation

Is reckoned positive, while counterclockwise ramatiis reckoned
negative. For instance, relation 1.3 gives a pasitinL,, while a

counterclockwisgL,,L ] =—iAL,

O

Fig. 1.1: Figure demonstrating the commutativeti@hship among the
X, y andz components of the angular momentum

The relevant Hamiltonian (see Appendix 2), is

|10 0 L2
H=——| >—|r*— |- +V(r
Zm{r2 6r( 6r} rzhz} ")

1.6
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Using the relatioriq, p,1=ins;, I, ] =1, 2, 3, we can write
[L,.H]=[p,,H]=[L,,p,] =0 (Show)
1.7

SELF-ASSESSMENT EXERCISE 1
Show each of the expressions in equation 1.6.

Since[AB,C] = A[B,C] +[AC]B,
L Ll=ULL)=u +L+L )L 4L 0fL 49

Indeed, L commutes with each of the component& pf.e., L,, L, and
L,. That s,
[ L] =[L%L]=[L L] =0
1.8

Since the three operatots, L, and p, commute with each other, it is

possible to find states that are simultaneouslgrestates for all three
operators.

The eigenvalue equation far, can be written as

L, |m>=nmi|m>

1.9

wherenv: are the eigenvalues &f and the states have been labelled by
m.
We conclude that the eigenvalues &of are degenerate: to each
eigenvalue L*=I(1+2)#* there are 21+1 linearly independent
eigenstates,,,, for values ofm in the range-1 < m<I. In other words,

eachL’ eigenvalue i2l +1-fold degenerate.

The m in mz is called the magnetic quantum number, whiie called
the orbital angular momentum (or azimuthal) quantwmber.

3.2 TheAngular Momentum Cones

The eigenvalues of the angular momentuare /(I +1)7#, meaning that

a measurement of the magnitude of angular momentiinonly find
one of the discrete set of values,

ILEJTT+Dn, |:o,%, 1,3

o
1.10

Also, a measurement of the component of angular emtunmn along a

certain axis, e.g., the-axis, would only find one of the possible values,

one of the eigenvalues,
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L, =mk, me{-l~l+1-1+2,..1-21-11}
1.11

We now note the differences between angular momentuclassical
and in quantum mechanics:

The angular momentum in any other direction, zkdirection say, is
always smaller than the magnitude of the total {p@m®) angular
momentum. SinceL, =17 is the largest possible value af, and

| < I +2):1 >0,

7 <J1(1 +Dn
1.12

We conclude that the angular momentum can nevecdrpletely
aligned in any particular direction. Indeed, if goegular momentum did
point in any one definite direction, then all thengponents would be
definite. However, we know corresponding operattiwssnot commute;
as such, these components cannot be measured tabcura
simultaneously.

We know in classical physics, thiatis a vector in a definite direction.
In quantum mechanics, in view of the Heisenbergetamty and non-
commutativity of the operators involved, this cahbe the case. Hence,
it is better to visualise the angular momentum eissed with a given
eigenstatep,, as a cone, thangular momentum cone.

Nevertheless, in an eigenstate we know that theniate of the
angular momenturL | and thez-componentL, are fixed,

ILE10+DA, L, =
1.13

While the values ofL, and L, are indefinite, the squared expectation
values must satisfy

<Li>+<li>+<Lli>=<L’>
1.14
Thus, due to non-commutativity of the componentd #dre attendant

uncertainty, an infinite number of allowable vestéorm a cone that can
have the same amplitude ardomponent.
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SELF-ASSESSMENT EXERCISE 2
What quantum-mechanical concept underlies angutamentum cones?

4.0 CONCLUSION

In Unit 1 of this Module, you learnt that the class angular momentum
has a gquantum analogue. However, unlike the classiase, the
components of the quantum-mechanical angular mamendo not

commute. The implication of this is that it is rpassible to measure all
the components at the same time and with infinteugacy. It also

means that they cannot have the same eigenfundtowever, the z-
component of the angular momentum commutes withstjuare of the
magnitude of the angular momentum as well as wWigh Hamiltonian.

All three operators can therefore have the samen&igction. In

addition, with the non-commuting nature of the comgnts of the
angular momentum, it is impossible to measure anyqf components
simultaneously with infinite accuracy due to theddaberg uncertainty
principle. As such, the angular momentum associatéd a given

eigenvector is best visualised as a cone, the angudmentum cone.

50 SUMMARY

In this Unit, you have learnt:

o the quantum-mechanical angular momentum is the tgoan
equivalent of the classical angular momentum

o Unlike the classical angular momentum, the comptmen the
guantum-mechanical angular momentum do not commute

o Non-commutativity implies the components of quantum

mechanical angular momentum cannot be measured

simultaneously with infinite accuracy

. the Hamiltonian, as well as the square of the ntadai of the
angular momentum commute with the z-component & th
angular momentumall three can have the same eigetidn

o the commutation relations for the Cartesian comptmef the
angular momentum operator.
o the magnitude of the orbital angular momentum atsdzi

component are fixed; as such, due to non-commitiatof the
components, an infinite number of vectors form aec¢angular
momentum cone) that can have the same amplitude zand
component.
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Answer to Salf-Assessment Exercise 1

[L,,H]=0
This is becausel(equation 1.6) involves a term m which commutes
with L,which has no term in, and[L,, L*] =0

[p,, H] =[Tha% H}O becauséd has no explicit dependence nn

[Lz1 pz] =0 Slnce|7 =Xpy_ypx and [(Xpy _ypx)1 pz] :[Xpy —YPe pz] =0

since all components of the linear momentum comnuie with
another.

Answer to Self-Assessment Exercise 2
Heizenberg's uncertainty principle.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the term ‘angular momentum cone.’
2. Prove the following identities:
(i) [L’L]=inL L, +inL L, (i) [L%L,]=0
1
3. Find all the possible values (spectrum)in the state\/% 1.
2

7.0 REFERENCESFURTHER READING

Greensite, J. (2003) Lecture Notes on Quantum MeckaRetrieved
http://stanford.edu/~oas/SI/QM/papers/QMGreendilfe.p

Griffiths, D. J. (2005)Introduction to Quantum Mechanics. Upper
Saddle River, NJ: Pearson Prentice Hall.
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1.0 INTRODUCTION

In Unit 1, we introduced the concept of quantum-nagical angular
momentum and were able to identify some commutpeyators, two of
which are the square of the magnitude of the angnéamentum and the
z-component of the angular momentum. As a redudt,tvo operators
can have the same eigenfunction. In this Unit, welage this

possibility. As in the case of the harmonic ostiitawe introduce the
ladder operators, and starting with the ‘higheggeefunction, we can
then use the lowering operator to obtain all othgenfunctions.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o showthe form of angular momentum eigenfunctions,sgpherical
harmonics

o identified all the wavefunctions for the squareaofjiven orbital
angular momentum and the z-component of the angular
momentum

. determined the eigenvalues of the square of thenimate of the
angular momentum as well those of the z-compontangular
momentum.

3.0 MAIN CONTENT

3.1 Angular Momentum in Spherical Coordinates
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In the case of the harmonic oscillator as treateldHY 319, the ground
state wavefunction was found by solving the firstles differential
equation,ay, =0, wherea is the lowering operator for the harmonic

oscillator, and all other eigenstates by applyhwgyraising operatoa”.

In the case of angular momentum, we use a simgpraach. Letl be
given. Then, we solve the first order differengglations,

I-+¢)II (X! Y, Z) =0
2.1

Lo, (X, y,2) =lhg,
2.2

and then obtain all othep,,, wavefunctions in the multiplet by applying
successively the lowering operator.

In view of the spherical symmetry of the problemisimuch easier to
solve these differential equations in sphericalrdo@tes:radiak , polar
¢, and azimuthat,

zZ=rcosd

X=rSinfdcosyp

y=rsingdsing
2.3

This is because in spherical coordinates, theriable drops out of the
angular momentum operators. The resulting angulasmemtum
operators become (see Appendix for proof):

. 0 0
L, =iA| sing— + cotédcosp—
. ( v S¢a¢}
2.4
) 0 . 0
L, =i# —cosp— +cotdsing—
Y ( S¢69 ¢6¢j

2.5
LZ=—ihi
o
2.6
2
L* =-n® _iisineijt _12 6—2
sing 06 060 sin“¢ 0¢
2.7
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SELF-ASSESSMENT EXERCISE 1

From the expression for L?in equation 2.7, show that
[L, ]=[L% H] =[ L] p] =0

We shall encounter equation 2.7 while solving thguar part of the
Schroedinger equation for a spherically symmetrmteptial. The
eigenfunctions ol* are of the form

Pm(%Y,2) = £(1)Y;(6,9)
2.8

where Y, (6,p)are the spherical harmonics. We can therefore \ilge
eigenvalue equation,
LY,.,(0.4) = (1 +D1?Y,,,(0,9)
2.9
Thus the eigenvalues af are I (I +1)4°. A measurement of?can only
give a set of valuegl +1)4°.
Since L’and L, commute, they can have the same eigenfunctions. So
we can also write
L,Ym(6, ) = 1Y, (6,9)
2.10
In like manner, the eigenvalues bfare mz. A measurement oE,can
only give a set of valuesy: .

f(r) is any function such that the normalisation caadit
1= I dxdydxs * (X, Y, 2¢(X, Y, 2)

= IowrzdrI:sin0d0I02”d¢f * (1) ()Y, (0, DY, (0, 0)

is satisfied. Conventionally, we normalise tkjg such that the integral
over angles is also equal to unity,

J sinodo] " dgv;.(0.9)%,,(0.9)= 1
With this normalisation, theY, (6,¢) are known as “spherical
harmonics”.

In spherical coordinates, the raising and loweapgrators are

L, =L, +iL,
2.11

=he' i+i cot0i
06 Y
2.12
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L =L, -iL,
2.13
Note thatL_=(L,)".
=—he (i —i cot@ij
00 ¢
2.14
We can then solve the first-order differential eores
I-+YII = O’ I-zYIm = IhYIm
2.15

The first equation in equation 2.15 is a conseqeaesfcour inability to
raise a state higher than the highest possibleshwihithis case m=1.

SELF-ASSESSMENT EXERCISE 2

Using the raising and the lowering operators, resyaly, L, =L, +iL,
L =L, -iL,, prove the following:

. 1 Lol
) Le=gW+L)yL,=2( -L)

(ii) L2=L22+%(L+L+LL+)
(i) [L,,L.]=2nL,

3.2 TheAzimuthal Equation

By the method of separation of variables
Yin(0,0) = AO)B(¢)
2.16
The L, eigenvalue equation (for any) is,
—ih@ =nviB
d¢
2.17
Hence,
dB

1 .
— =—-=-md¢ =imd
B [ ¢ =imdg

or
INB=img+c
Taking the Napierian logarithm of both sides,
B(¢) = De™
where D = ¢e°.
We can setD equal to unity since we are yet to normalise thecfion
Yin(6,4) = A©)B(9) . Then,
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B(#) = ™
2.18

Since the angleg=0 is the same as the anglg=2r, so the
wavefunctions must satisfy the periodicity conditio
Yim(0,0+27) =Y,..(0,9)
2.19
Since the periodicity condition must be satisfiédy increases byr ,

B(¢) must remain the same, i.&(¢) = €™ = B(¢+ 27) = ™",
g™ _ gmie+2r) _
Then,
™ =1=cosr +i sinnr
Equating the real parts,
1= cos2nr
This is possible only for integral (positive, nagatand zero) values of
m:

2imz

e™e

m=0, 1, +2, ...,
2.20
(mis the magnetic quantum number)

As a result, since'l <m<I, the possible values forare
1=0,1,2, ..
So we have
Y,.,(0.9) = A@)e™
2.21
and in particular, settingn equal td, the largest possible value rof
Y, (0.4) = A(0)e"
2.22

3.3 ThePolar Equation
Applying the raising operator to the state giveneguation 2.22, we

must have (raising the highest state gives you,z&ree no state is
higher than the highest state):

0 = I—+YII

= hei‘”(i cotd-2 +EJA(9)e”‘”
o9 of

— ig| : i ilg i ilg
he (lcoteaqﬁ(A(@)e )+80(A(9)e )J

- 0
:he'('+l’¢(—lcot0+—] 6
ry: A0)
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, d
= phe' ("7 —Icotﬁ+—) 6
( e A0)
2.23

(The form of the differential changes from partdferential to ordinary
differential, asa(o) is a function only ob)

or
d
a0 A(f) =1cotd A(O)
2.24
Hence,
_[ dA(g):|I C(_Jsgdﬁ
AO) sing

The integralj %dx: Inf(X)+ c.
InA@) =I(Insind) +c=Insin 6+c, sincen a® = bina

Taking the exponential of both sides,

énA(H) _ énsiH orc _ ecénsﬁe _ Delnsihe
wheree® = D, a constant. We can therefore write (bearing indrhat
eIn>< — X)
A@6) =Dxsin @
2.25

Then,

Y, (6,4) = N)B(¢) = Nsirl g€
2.26
where N is a normalisation constant, which is determineshnf the
normalisation condition

T, 2r %
1= sinode| " dgvy,
= 22N*["sin®* 9do
0
2731
F[I +3J
2
2.27
The I' -function is a special function with the property

1
I'(x+1) = x1r(x), \‘(—]=\/;

2
Equating equation 2.27 to 1, we get
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1/2
(I +J
2

= 312
27|

2.28

Y (6.4) also depends onin such a way that we choodé=(-1)' times
the expression in 2.28 obtained from the normadinat

From equation 7.41,

F(I + 3}
N = (-1) 2

3/2
277!

2.29
Therefore,

1/2
(I +J
2

- ilg
2771 sin' ge

Y, (6,¢) = (-1)

2.30
Answer to Salf-Assessment Exercise 1

L* is explicit only in the angleg and 4 and differentials with respect to

these angles. The operator commutes with any apethat is not
explicit in these angles and differentials haviogdb with the angles.
All the other operators are not explicit in the lasgor their differentials
with respect to them. The periodicity conditiontbe azimuthal part of
the spherical harmonics ensures that the eigervaluthe z-component
of the angular momentum are only 0, positive andatiee integers.
This also imposes a condition on the

Answer to Salf-Assessment Exercise 2

L, =L, +iL,

L =L -iL,
Adding and subtracting and dividing by 2, gives desired expressions.
=L’ +L,°+L,°
But,

LL +LL, =(L+iL)(L, —iL)+(L, —iL)(L, +iL)

2 . . 2 2 . . 2
= (L -iL L, +iL L, +L )+ (L —iL L +iL L, +L,%)
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=2L,2+2L,°

L +L,° =%(L+L_ +L.L,)

X

Hence,
L2=1L,> +%(L+L_ +L_L,)

[L,L1=LL -LL, =L, +L)(, —ik) (L L)L, +iL,)
=(L,* —iL,L, +iL L +L,*) —(L,* +iL,L, —iL L, +L,%)
= 2i(L,L, —L,L,]=2[L,,L,]=2(-AL,) = 24L,

4.0 CONCLUSION

In this Unit, you learnt that the spherical harnosniare the
eigenfunctions of both the square of the magnitofiehe angular
momentum operator and tleecomponent of the angular momentum.
The periodicity condition on the azimuthal part tbe wavefunction
ensures that the magnetic quantum number can akdyintegral values,
leading to a quantisation of the magnetic quantummiyers. This also
implies that the azimuthal quantum number can aldy be zero or a
set of positive integers. By applying the raisingd athe lowering
operators of angular momentum, you were able taaioball the
eigenfunctions (spherical harmonics) for a givelueaf the azimuthal
or orbital angular momentum number

50 SUMMARY

In this Unit, you have learnt the following:

. the square of the magnitude of the angular momerdpenator
and the z-component of the angular momentum commute
o the spherical harmonics are the eigenfunctionsotti the square

of the magnitude of the angular momentum andztbemponent
of the angular momentum

. with the help of the ladder operators, we obtairadd the
eigenfunctions for a particular valuelof

o the magnetic quantum number is quantised (onlyn@, @ositive
and negative integers)

. the orbital angular momentum quantum number is tgeh (O,
and positive integers only)

o expressions for the components of the angular mamenn
spherical coordinates.

o expressions for the eigenvalues and the eigenfurgtof the

square of the magnitude of theangular momentum thedz-
component of the angular momentum.
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6.0 TUTOR-MARKED ASSIGNMENT

1. Find the matrix of representation for the ragsamd the lowering
operators of angular momentum.
2. Find the expectation valueslL, >, < L, >, <L,> < LZ2 >in

the statq1,I > and show thatL,” >= <L *>.
3. Find the matrix representation for the raisimgl dhe lowering

operators of angular momentum.
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1.0 INTRODUCTION
In Unit 2, we introduced the raising and the lowgroperators of orbital
angular momentum. In this Unit, we shall continuéhvour analysis of

the eigenfunctions of angular momentum. We shalvbéng a few of
the spherical harmonics.

20 OBJECTIVES

At the end of this unit, you shouldbe able to:

o raise and lower the magnetic quantum number of rgie
harmonics with the ladder operators
. calculate all the multiplets of a given orbital alag momentum

guantum number
3.0 MAINCONTENT

3.1 Raising and Lowering Operators of Orbital Angular
M omentum

In the last Unit, we got the wavefunction (sphdrit@monic)

1/2
(I +J
2

| il
P sin' de

Y, (6,¢) = (-1)

We can get the othe¥, by applying the lowering operatdk, ,
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L_Y|,m(‘9’ ¢) = (:I;nYl,m—l(g’ ¢)
3.1
given the constan€,,. Corresponding constan€s;, are defined from
|—+Y|,m (‘9’ ¢) = CIJrrnYI,rml (‘9’ ¢)
3.2

To get theC,, constants, we do the following:
LL = L? - Lﬁ —hL,
3.3
LL = L2—I72+hl7
3.4

Then, making use of these values,

<AnlLL1an> =<@,|(C-L-i)|a,>
3.5

Therefore,
<@n | I-—L+ |ﬂm >=< (Lf)Jrﬁml L+ |Qm >
=<L @nlL.an,>

:hz[l(l +])_rnz_rn)<ﬂm|¢|m>

3.6
(Co)* (€)= PP(1—m(+m+])
3.7

so that
C! =h/( —m)(l + m+1)e”

3.8

Note that for a complex number z=re?, and|z[’=2*z=r?. Notice

that the phase disappears in the process of ofathe magnitude of
the number. We recover the original complex nunfdyemultiplying the
magnitude by an arbitrary phase factdr You can then confirm that

indeed, with this value of,, equation 3.7 holds.

Likewise,
<@nlLL|@n> =<¢,|(L-L+i,)|¢,>
3.9
<Lg,|La,> =rl0+)-nf+m<q.|a.,>
3.10
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G * G = (1 -m(-m+])
3.11
so that
G =7/l + M) ( —m+De™”
3.12

In this case is an arbitrary phase. This can always be absariiech
rescaling of the wavefunction, i.ep,, >€“®,,, which does not affect

the physical state. So we can always chdoge to be real. It can be

shown thatG,, =(C,,.,) *. Hence, if thec coefficients are real, then the
c* coefficients are also real and
Cr,=h/( +m)( —m+1)
3.13
Ci =h/( —m)( +m+1)
3.14
and we can now compute all tNg using

12
F(| + j
2

Y, (0.4) = (-1) Y sin' 9e"’
3.15

LY, =7/ +m)( -m+DY, .,
3.16

LY, =i (| =m)(I + M+ DY, .0
3.17

Since theY, was normalised to 1, all of th§, obtained by applying the
lowering operator will also be normalised to 1.

Spherical harmonics corresponding to different @alef | and/or M
will be orthogonal:

[7SInOdO[ " dp¥,(0,0)Y, 1 (0. 6) = 5,5

3.18
Example 3.1
1/2
Given thaty,, = (—1)[1;(53{5)} singe’ = —\/gsinae‘“’, compute two of
T

the | =1 multiplet of spherical harmonics, i.e,,, YcandY, ,
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Solution 3.1
re/2)1" .
Yll = (—1)|:W:| SII’N9€¢
3.19
:—\/Esin@e”j
8r
3.20
then
LY,= - ihe“”(i cotei—ijsinee“”
\8z op 00
3.21
2z AR \/gh(cotasin¢9+cos9)
3.22
3
Y= .[— cost
1 4
3.23

Applying the lowering operator again,

LY, = S etlicotw-2 -2 |coss
\ 4z o 00

3.24

2y, = ,/fhe‘”’ sing
T
3.25

Y, 1= 1/ie‘”’ sing
8r

3.26

SELF-ASSESSMENT EXERCISE 1
Show thatG,,=(C', ) *

SELF-ASSESSMENT EXERCISE 2

The Hamiltonian of a rigid rotator of angular mormen L and moment
of inertial immersed in a uniform magnetic field aligned wtitle z-axis

can be written as
2

L
H=—+0q
TR
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where @is a constant. lfy (t=0)>= ‘/4—8 sind co% +, /ﬂ cog, find
21 l6r

(a) the possible values a measuremenitofvill give, and with what
probability.
(b)  |w@)>for any arbitrary time.

(c) the expectation value df at timet.

40 CONCLUSON

In this Unit, you have learnt to make use of thising and lowering
operators to calculate all the multiplets of a giverbital angular
momentum.

5.0 SUMMARY

In this Unit, you have learnt to:

o raise and lower the spherical harmonics with tkieléa operators
. calculate the multiplets of a given orbital angutabmentum
number.

Answer to Sealf-Assessment Exercise 1

C! =h/(l —m)(l + m+1)e”
G =7/l + M) ( —m+De™

Co=Crd)”

Substitutingm-1 for min the expression fog",,,
(Cla)* = (1 (1 = [m-D)](1 +[m-1] + De"") *

(Crma)* =1 (1 ~[M=D](1 +[m~1] + De ™

(C'n)* =il —m+D)( + me ™

Answer to Salf-Assessment Exercise 2

(a) ,/4—85in¢900375+‘/i7 cog= ‘/ﬁsine cos;5+‘/%3 cog
2r i 2r i
=2, /i sing 00$5+§\E coé
2r 2\«
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|¢ i
/3 S|n9¢) —\F cog .
27 V4
=, fi sindE’ +e" )+§\E cod
27 2\«

:2><E /i singe’ + 2><—1‘/—3 sirde + &}P coé
2\ 2r 2\ 2r 2\
= _2Y1,1+ ZYJ.,— 1t 3Yl,(

Hence,
ly >=-2|1,1>+ 2|1~ b+ 3|1,6
Normalising,

L o142 2+ 3|19

>S—_
V=7

You can easily see that the possible outcome oéasnrement of the z-
component of the angular momentum would-bgo,», with probability

respectivelyi 9 i

17 17
(b) |W(0)>=E(—2|lj>+ 2|5 £+ 3|19
We write, rightaway,
|l//(t)>—\/—( 2|1]> —|E11t/h+ 2|1’_ jz —iE; yh+ 3|1,ﬁ —|E1@/h

Hence,< L >:%<V/(t) (L, L)y @)>

_ Lot

1 2 + 2< 1’_ 1¢—iE1171t/h+ 3 l’w—iEl‘d/h

(L, L)|\/_( 2|1, 1+ 2|1 re™"y 3|1,9e Y
L, |1,m>=(-m)(@+m+1) || m+ 1>

L_[l,m>=/@+m)( —m+2) || m-1>

Form=I, L |l,I>=0 Why?

Form=—1, L |l,H4>=0 why?

L, |1-1>=0 c))E + DI+ £ =V 2| 9
L,|1,0>=/(@ 0% O 1) ,0 3=+ 2| 4

L |11=(+ D) & 1|12 3=y 2| ;0

L |1,05>=/(@+ O)(& O- 1) ,6 3=V 2|2 4
Hence,
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1
<L, >:E <y@) (L, -L)|wt)>
= 1_17%(< 2|11 + < 1- 1= 4 3 1,04
L. |(-2]L>e™" + 2|1 2™+ 31,9

+1—17%(< —2|11 "%+ < 1 1 & 1,097

_L_ |i(_2|1’]>e—iE1,lt/h+ 2|]T $e—iElr$/h+ 3|1’ﬁe_iEl'é/h
J17
1
<Ly>= <y 1L -L)ly 6)>
_ii — —iEyt/h _ q g B tih iEy d/h
—172(< 2|11l + X 1 1¢ + % 1,08
| 1 @ \/—2 110> g Bl | 3/—2 113 o Edlh

NiE,

+1—17%(< “215,1 "5 2< 10 1 3 10875

(_2 \/_2 |1’0> e-iEl,lt/h n g‘ 2 | 14 e—iElvot/h

L
N,

<Ly>= o<y L)y O3>

21—17%(< —2|1,l|e_iE1*1t/h+ < 1- 1¢-i51,71t/h+ 3 LCH—iEmt/h

| (2\/_2 |11 0>e7iElv,lt/h n 3/_2 |1,ﬂ: efiELg/h

—1—17%(< —2|1,l|e_iE1’1t/h + < 1- 1¢-i51,71t/h+ 3 :LCH—iEmt/h

|2/2|,0e% + § 2|1 269"
:ix%x&fz—efz— 62 § 2= |

V17
6.0 TUTOR-MARKED ASSIGNMENT
1 0 0
1. In the standard basig|11>=|0(,J10>=|1|,|]1-1>=|0|;, find
0 0 1

the matrix representation of the operatbys L, L, andL’.

2. Show thaty,, (6,4) =1/£ sin” 9/ . Hence, findY,;.
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3.

7.0

Find the expectation valueslL, >, <L,>, <L, > <L,”>in

the statq1,I > and show thatL,* >= <L *>.

1 0 0
In the standard basig|11>=|0(,J10>=|1|,|]1-1>=|0|;, find
0 0 1

the matrix representation of the operatbys L, L, andL’.

Given the eigenstat¢l,m>=|2m> , what measurements are
possible forl> and., ?

The only possible value df, ig >=1(+2)#* = 2(2+ 1% = &°

The possible values af, arels, (-1 +1)#,...,07 |n, which in this

case, are, 2 ,# , Op ,72 . What values would you lget
operating on the eigenvectol3,— 2> with the angular

momentum ladder operatots  and  ?

If a system is found in the StafG9,¢)=\/;—7500519 sirg s,
74

Find the possible values a measuremerit,ofvill give, and with
what probability.
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UNIT 4ELECTRON SPIN |

CONTENTS
1.0 Introduction
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3.2 Spin Wave functions
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5.0 Summary
6.0 Tutor-Marked Assignment
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1.0 INTRODUCTION

Fine structure, the splitting of hydrogen speclireds and the results of
the Stern-Gerlach experiment suggest that an thgialielectron should
possess an intrinsic angular momentum and a magmatment

independent of the orbital angular momentum. Unlkbital angular

momentum which has as its analogy the classicatequnof angular
momentum, electron spin has no classical analogy.this Study

Session, you will learn how electron spin ariség tlectron spin
operators, as well as the eigenfunctions and theesponding

eigenvalues of the operators.

2.0

OBJECTIVES

At the end of this unit, you should be able to:

show that unlike orbital angular momentum which la&s its
analogy the classical concept of angular momengmm has no
classical analogy

indicate that an individual electron possessesamsic angular
momentum and a magnetic moment

depict that the intrinsic angular momentum is qiseol

point out that an electron has a spin equa%pto
reveal that the z-component of the spin angular emdom is

guantised
prove that when an atomic electron is placed inagmetic field

aligned with thez-axis, thez-component of the spin is eithézr

or _%, respectively spin-up or spin-down.
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3.0 MAIN CONTENT

3.1 Electron Spin

An electron orbiting the nucleus possesses an abrbéngular
momentum, resulting in the orbital angular momentguantum number
|. Related to the orbital angular momentum is theymeic quantum
numberm. —I <m<1. There are2l + 1values ofm for a givenl. The

magnetic quantum number becomes relevant whentdine ia placed in
an external magnetic field.

In addition, a charge moving in a circle constisugecurrent loop, the
magnitude of the magnetic moment of which is givanClassical
Physics as

1A

Sy

4.1
| is the current,A is the area enclosed by the circular orbit amglthe

speed of light in vacuo. The current is

_ e
1=__%y
2

4.2
that is, the charge per unit length of the loapgs the velocity,

The velocity,

v=P_ L (sinceL =r xp = pr in this case)
m mr

4.3
A= 7r?

Since both vectorg andL are normal to the loop,

e
= —L
a 2mc
4.4
In an external magnetic fiel®, the interaction energy between the

magnetic dipole and the field is given by
Emag: —Bll
4.5

:iB.L
2me

4.6
For a hydrogen atom in an external constant magrietid directed

along thez-axis, the Hamiltonian relevant for the motion loé telectron
IS
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H=H,+—B,L,
2me
4.7

where H, is the Hydrogen atom Hamiltonian in the absencearof
external field

p2 e2
“am r
4.8

The first term on the right hand side is the kimethergy while the
second term is the potential energy.

H, and L, in the case of quantum theory, become operattishw
commute with each other, implying thdl, and L, could have the

same eigenstateg,,,. In particular, since we can write

I7¢nlm= rrh¢nln’
4.9

Following from equation 4.7 and the fact that tigeevalues of_, are
m# ,

H(Dnlm = (Er? + mBz ﬂjgpnlm
2mc

4.10
with the energy eigenvalues,
E,—E°+mB, oL
2mc
4.11

where E are the energy eigenvalues of the electron wheretfs no
external field.

When placed in a strong magnetic field, this ma&eailable many
spectral lines (depending on the valuesmfor equivalentlyn, as the
m's depend on tha’'s). This makes it possible for transitions to accu
between the quantum numbefs and m, corresponding, respectively,
to the principal quantum numberg and n, split into many spectral
lines, corresponding to transitions between statiéis different values
of the L, quantum numbers, andm,. There are certain selection rules
governing which transitions are possible. The spfjtof spectral lines
in an external magnetic field is known as the girbeld Zeeman effect.
Indeed, for each pair of quantum numbérand |, there are twice as
many energy levels as one would expect. Indeetkadsof the expected
2l +1 levels, there are two sets 2if+1 levels, with energies
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eh

E! ~E’+(m+1)B, —
2mc

412
E- ~E%+(m-1)B, L
2mc

4.13

From the foregoing, we conclude that an electr@o &las an intrinsic
magnetic moment, associated with an intrinsic gpigular momentum.
This is in addition to the magnetic moment due téodrbital angular
momentum. Let the intrinsic magnetic moment ofelectron be (in line
with our analysis ot. ),
€9
= o S
4.14
g being the constant called the gyromagnetic ratier§ observable is

represented by a Hermitian operator in quantumrthe®ecall we said

that Hermitian operators have real eigenvaluesaumx the values a
measurement of the observable can possibly takémeuzal. ThusSis

a Hermitian operator. Further, we assume it sa8isfthe same
commutation relations as orbital angular momentum:

[S.§]=1nS,
4.15
[S,S]=1nS,
4.16
[S.S]=17S,
4.17

We conclude the possible eigenvaluesofinds, are
S=os+i? s=0,1,1,3, .
2 2
4.18

S,=5,i, —-S<5,<5
4.19
Just as we had it in the case of orbital angulamerum, the
eigenvalues ob are,
S=1#s(s+1)
4.20

Notice that the notation in orbital angular momemtare similar, withs
replacingL ands replacingl.

Taking the electron magnetic moment into accourlite ttotal
Hamiltonian is then
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e
H=H,+—B,L, - B
0 Zrm z-z (/ue)z z
4.21
H:H0+ © BZLZ+(/ue)sz
2me
4.22

Electron spin is independent of the electron pmsitand its angular
momentum. We can therefore assume that

[HO’Sz] =0
4.23
and
[L,,sS,]1=0
4.24
This means thaH,, L, and s, have a common set of eigenstates, say

[nims, > .

This means we can write the eigenvalue equation,
Hlnlimg >=E_ . [nlmg >
4.25
If we compare with the expressions fey ang., we get agreement
if the electron has an intrinsic spin

s=1 = S, = J_r1
2 z
4.26
with the gyromagnetic ratio
g=2
4.27

so thatE" corresponds t@, :% andE tos, = —%.

The experimental proof is provided by the Sterni&dr Experiment,
which confirms the double-valued character of thecteon magnetic
moment when a beam of electrons is sent throughorauniform

magnetic field, oriented in the z-direction. A ma@snent of the

deflection of the electron beam gives only two fukBes, s, = J_r%,

and the z-component of the force on a dipgle in a non-uniform

. —_ Z_ I I r
oriented up or down along the z-axis. The magnsdudes, however,

equal. Sz=+%h for spin-up eigenstate andzz_%h for spin-down

eigenstate.
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SELF-ASSESSMENT EXERCISE 1
What conclusion was drawn from the Stern-Gerlagiearment?
SELF-ASSESSMENT EXERCISE 2

An electron is in a uniform magnetic field alonge tirdirection. A
measurement of the spin is initially (at= 0) along the positive-
direction.

0] What is the Schroedinger state vector for tha.sThe relevant
Hamiltonian isH =—u-B=y0-B=hawo, =haBo,

(i) At time t>0, calculate the expectation value 8f, along they
direction. Note that this is the polarization aldhgy direction.

4.0 CONCLUSION

In this Unit, you learnt about the intrinsic angutaomentum or spin. In
analogy with the orbital angular momentum, the spialso quantised,
taking on 0 and positive multiples of half. It fmis that some particles
have integral spin (Bosons, e.g., photons) andrsthalf-integral spin

(Fermions, e.g., electrons). Just as in the caseorbital angular

momentum the component (or projection) of spinry direction is also

guantised.

50 SUMMARY
In this Unit, you have learnt that:
o unlike orbital angular momentum which has as italegy the

classical concept of angular momentum, electrom $@Es no
classical analogy

o an electron has a spin equalﬂzto

. an individual electron possesses an intrinsic argulomentum
and a magnetic moment

. the intrinsic angular momentum is quantised,

o the z-component of the spin angular momentum isiGged

o when an atomic electron is placed in a magnetid fadigned

with the z-axis, thez-component of the spin is eithézr or _%,

respectively spin-up or spin-down.
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Answer to Salf-Assessment Exercise 1
In the text.

Answer to Self-Assessment Exercise 3

: 1 0
(1) H:—y-B:yea-B:ha)azzha)( j

0 -1
(i |w(t=0)>=%@=[jjmj

Applying the time-dependent Schroedinger equation,
. Oy
ih——

ot

1 0
iha—l//:ha)( jw

ot 0 -1

(ve)olo S0
[ |=o
¥, 0 -1y,
Therefore,

=y,

W, =loy,
Integrating,

v =y

Yo =Wod “
Hence,

(t) _ [V/l(t)j _ l//loe—ia)t _ i e—ia}t
l// l//l(t) l/lzoeia)t 2 eia)t
The expectation value & is
h 1 i ot — it O _i e_m
<y(t)]s, |1//(t)>=E><—2(e e )[i oj[e‘”ﬁj
= E(eiwt e“”")[__iei_:o j
4 ie”
— (i) =0

6.0 TUTOR-MARKED ASSIGNMENT

1. What is the strong Zeeman Effect?

2. Show thats?is diagonalised in the basis of eigenvectorsSpf
Take the eigenvectors &f as% > and| _% > .
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3. In the case of spis = 1, three valuesngf  aresiptes so that
the S are represented by 3x3matrices. It follows that
s+|—1>:\/_2|0>; s+|0>:\/_2|+1>; sﬁ|+1>:\/_2|0>;

s |0>=+/2|-1>. Find the matrix elemen(s,),, (S,), and
(SX)ZS 0fSX

4. Given that the operators for the three companehnthe spin of a
. ) 1 _i
spin-1/2 particle are s, :ﬁax _h 0 , S _n O '
2 21 0 Y 2li 0

1 : . .
SZ:Z(O OJ, confirm the commutation relation of the

components, i.e[s,,s ] =iis, , etc.
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UNIT SELECTRON SPIN [l
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4.0 Conclusion
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1.0 INTRODUCTION

In Unit 4, we started our study of electron spis,arigin, and concluded
that an electron also has an intrinsic magnetic emd@massociated with
an intrinsic spin angular momentum. This is in &ddito the magnetic
moment due to its orbital angular momentum. We &aw that the
electron could either have a spin-up or a spin-daieng thez-axis. We

shall discuss the wavefunctions associated witbtrele spin. With the
help of these wavefunctions, we shall find the ma# associated with
the operators that are relevant to the theoryestedn spin.

2.0

OBJECTIVES

At the end of this study session, you shouldbe tble

3.0

3.1
Let

express the spin wavefunction as a column vector 2of
components, known apinor

find the matrix representation of the spin opemator

derive the Pauli spin matrices and relate them hie $pin
operators

calculate the probability of a spin-up or down givaespin state.

MAIN CONTENT

Spin Wave functions

2 J—

5.1

|S=%,S N and|s=

N

1
S, =——>
2
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be the two orthonormal ket eigenstatesofand s, vectors.

52|ll>:§h2|ll>
22 4 22
5.2
S, 122>=2n122s
22 2 22
5.3
SZ|E_E _§h2|1—1>
2 2 4 2 2
5.4
sl o= 1,11,
2 2 2 2 2
9.5

Any &= % state can be represented as a superpositiortl{gpistay you

would write any vector in any space as a linear sfirthe appropriate
basis vectors),

| >—a|11>+b|1—1>
v 22 272

5.6

The transformation matrix above becomes

HEAH
V‘z Ay A\ Y,
5.7
Hence, we can express the spin wavefunction aduanoovector of 2
components, known aspinor, and express the spin operator 282

matrices. Let the bases be

| >—|ll> |e >—|1—1>
€ 55 2

2 2
5.8
The eigenstates can then be written as the colwationrs (spinors)

|1£><—> _(* |E—E><—> _[©
2277 o) 1272747

5.9
and any spin% state can be written as a superposition, in ketiom

[lu>=u, |e >+u_|e, >
5.10
or in column vector notation

'”>=[Efj

5.11

We can then write
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S |ss >=gs+DA*|ss, >

5.12
S,|ss, >=s,li|ss, >
5.13
S |ss, >=|(s+s)(s-s, +Di|ss, ~1>
5.14
S, |ss, >=/(s-s,)(5+8, +Dn|ss, +1>
5.15
S, =3(s.+5S)
SRS
5.16
s -1(s-s)
-
5.17
We have used instead ofL , €instead ofl and s, instead ofM. For

the electron, <= % and s, = % _%. From these relations, we can

obtain all the matrix elements.

Example 5.1
Calculate the elemer),, of the spin operatoS),,.

Solution 5.1
S.=<e|S|e >

:<11|SX|E_1>
22 2 2

1 EE|S+|}_E>+<EE|S_|}_}>
22 2 2 22 2 2

2

:1 <E}|h|ié>+0
2l 22 22

1

=n
2

Eventually, we arrive at the following matrix forof the spin operators

for S:l:
2

10 01 0 —i 1 0
82=§7l2 ) S(:}h ) Sy:lh . y S, =
4 01 211 0 2\i 0 0 -1
5.18
If we factor out% , we can write
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s -1y, g -0 h
2

5.19
where the matrices

01 0 —i 1 0
GX = y O, = ) y GZ =
10 Y li O 0 -
5.20
are the Pauli Spin Matrices. They are all tracelébsit is, the trace of

each of the matrices is zero.

SELF-ASSESSMENT EXERCISE 1

Find the eigenvalues (possible values the spinnoélactron in thex-
direction can take) of the operator

S - 1h 01
210

SELF-ASSESSMENT EXERCISE 2
Show thats? = s ? +%(S+ S +SS,) -
40 CONCLUSION
In Unit 4, you learnt how to work with the spinoiou were able to
find the Pauli spin matrices and calculate theigervectors and
eigenvalues. In addition, you were able to writeheaf the eigenvectors
of any spin state in terms of the spinors. You désont to find the
matrix element of a spin operator with the aidhe spinors.

50 SUMMARY

In this Unit, you learnt the following:

o the spinors

o expressing a given spin state in terms of the spino

o calculating the matrix elements of a spin operaiith the help of
the spinors

o working with the Pauli spin matrices

o expressing the spin operators in terms of the RBairi matrices.
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Answer to Self-Assessment Exercise 1
The indicial equation is given by,

0-4 ni2| |-4 nl
‘h/Z O—l‘:‘h/Z —j:
2 —(nl2) =0
Hence,

a=sl
2

. 1 1
Therefore, the eigenvalues are-7 angh
9 2

These are the possible values of the spin ix-theection.

Answer to Salf-Assessment Exercise 2

S, =S, +iS,
S =S, -iS,
$°=S’+S2+S’
But,
S,S +S.S, =(S +iS))(S, -iS,) + (S, -iS,)(S, +iS,)
2 . . 2 2 . . 2
=(S5," —1§,S, +iS,S, +5,7) +(S,” —iS,S, +i§,S, + S,")
=2S,°+2S}
1
S°+8S,° =5(85 +85S)
Hence,

S?=S7 +%(S+S +SS)

6.0 TUTOR-MARKED ASSIGNMENT

=

What do you understand by the term spinor?
2. Find the eigenvalues & . Write the eigenvecioterms of the

spin-1/2 spinors.

303
21 0
3 A particle is in the statey >= 1 (ZiJ
: ~ &1
(@) Find the probability of measuring spin-up oimsgown in thez
direction.
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(b)

(ii)

(iii)

80

Find the probability of measuring spin-up omsgown in they
direction.

An electron is in state withz -component of s@ngular
momentunk /2 . An observation designed to measure the
component of spin angular momentum along an arkitra
directionf is made.

Prove that the operator corresponding to tiiseovables, =s-n

S )

" 2|singe? —cosy
Find the eigenvalues and the eigenvectors hef operators,
Hence, write the eigenvectors ef in terms of thm-sip and
the spin-down eigenvectors.
What are the probabilities of observing a qmwnent of spin
angular momenture z/2 along ? Interpret your answéine
with Classical Physics.
Hint: Let h =n(0,9) .

_ E{ cosd sin@e”’}

Find the eigenvalues and the eigenvectors of Rhali spin
matrices:

R A

Given the matrix forms of the spin angular motaen operator
as,

(010 (oo 10 0
s=—=|1 0 1|s=—=|i 0 -i|s=/0 0 O
20010 Y200 o 0 0-

Calculate (i)s?, (i) (s +is,)?and (i) (s,—is,)’

For the Pauli spin matrices, find expressiomgie commutators:
[0.0,], [0,0,] and [0,,0,]in terms of the matrices
themselves.

Using the expressions in equation 5.18, progddhowing:

[S,S]=0, [$*,§]=0, [$},S]=0
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3.0 Main Content
3.1  Three-Dimensional Spherically Symmetric Potdsti
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5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Three-dimensional symmetric potentials are ubiguatm Physics, from
the sun-earth system in classical mechanics topthiat charge in

spherically symmetric three-dimensional space ® é¢kectron in the
hydrogen atom. Advantage is taken of the symmetrthe problem,

such as all such problems having the same soluadied spherical
harmonics. In this Unit, you will learn how to firide series solution to
the problem, which has two parts, the azimuthal aamvell as the polar
equation part. Further, you will learn about theraghal equation and
its solution. The physical interpretation of théusion of the azimuthal
equation will certainly pique your interest.

20 OBJECTIVES

At the end of this study session, you will be abte

o solve the time-independent Schroedinger equation #o
spherically symmetric potential with the variabéparable
method

o write the solution of the angular part as a prodafcazimuthal

and polar solutions
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o link up the azimuthal part with the magnetic quamttumbers.
3.0 MAINCONTENT
3.1 Three-Dimensional Spherically Symmetric Potentials

In this chapter, we study the motion of a quantueeinanical particle in
a three-dimensional spherically symmetric poteniiéé say a potential
Is spherically symmetric if it is a function onlyf the radial distance
from the origin, appropriately chosen to be at0. Put in another form,
the potential can be written &%r,0,4) =V (r)

For this reason, you will see that the results gl ®btain will have the
spherical partr(9,4) behaving in the same way in whatpveblem a
spherical symmetry applies. The following .... comentind: the earth-
moon system, the sun-earth system.

It is obvious thatr,,¢ , the spherical coordinates Hre natural
coordinate system for a symmetrically symmetriceptal. The usual
Cartesian coordinate system fails to take advantafjespherical
symmetry of the problem, making it impossible tketadvantage of the
symmetry.

Naturally, we go from the more hitherto familiar ré&sian coordinate
system to the spherical coordinatezzc,ystem.

A

r sind sin
rcosg —» ¢

I sin@d cosp ; rsing

XX

Fig. 9.1: Spherical polar coordinates
X=rsinfd cosp
y =rsiné sing

Z=r cosf

The resulting Laplacian is (see Appendix 1),
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2_10(,0 1 o(. .0 1 0
V r + 2 . - S|n6’— +ﬁ—2
r2ar or) rZsing 06 00) r°sin“@ o¢

1.1

Let us now apply the Laplacian to the wavefunctio@,,s) via the
time-independent Schroedinger equation.

vzw(r,w)=27m(E—V(r))w(r,e,¢)

2
16 26+2_12 0 |n9— w(r,0,4) =
2ar or rZsin 0 0¢° rsm 2900 oo

F(E—V(r))l//(rﬂmﬁ) 1.2

We assume that the solution(r,é, ¢) Is variable-separabégning

we can write it in the form,
w(r,0,4) = R(r)®(8)®(4)
1.3

We shall have cause to write

Y(0.9) = 0(0)D(9)
1.4

popularly called the spherical harmonics.

We now write the left side of equation 1.2:

2
100, 1 0 L % 5ine-2 |Rre@)o) -
ar 6r r’sin’@ og® r sin®@ 06 00

OOL() d 2 d oy, ROOE) d°00) | RNOE) d ., dd ()
r drdr resin“g deg resin“6 dé déo
Dividing through byy (r,6,4) = R(r)®(8)®(¢) , We get,
1 1d ,d 1 1 ®(9)+ 1 1 si 9d®(¢)

———I"—R(r)+
R(r)rcdr dr Q@) r’sin’0 d¢* D(p) r*sin’o dé do

Multiplying through byr? leaves the last two termsdtofr.

1.d.dg R(F) + 1 d2®(9)+ 1 1 dg 000
R(r) dr dr @(9) sin@  dg? d(p) sin 9d0 do

We can then put the last two terms together:
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_ , ;
1 irZ—R(r)Jr ! _ 12 d ®(29) + ! _ 12 isinedq)((é)
R(r)dr dr | ©(0) sin“6 d¢ D(g) sin“ 6 do do

Equation 1.2 can now be written as,

L ddpy,[ 1 1 d*e() , 1 1 d g ,900)
R(r)dr dr | O(0) sin?0 dg> () sin®o do do |
2 2
= E-V()

(Recall we already divided the left side fpyr,0,4) = R(r)®@)d () )
or
2 2
L2 Lgy -2 (E—V(r»H L1 _do6), 21 4
(rydr dr h ®(0) sin“6 d¢ D (g) sin“ 6 do
The first term in the sum depends onlyroand the second only on the
angles6 andsy . Each term must be equal to a cdnstad the two

constants must sum to zero.

We write
rz d? 2mr?
——[rR] + E-V(I)=k
= OIrZ[ ] 2 ( (r)

2
A i(sineiG)J:—k
dsin® 6 o¢ ®sin“ 0 060 00

Equations (1.5) and (1.6) are respectively thealaahd the angular part
of the Schroedinger equation in spherical coorémat

We shall now consider the angular part.
Swapping the terms on the left in equation 1.6 @odtiplying through

by sin? 6,
: 2

SN0 4 gingd9, L4, ysinza=0
© do do @ dg?

1.7
Notice that we do not need partial differentialyraore. The terms in
the bracket have been separated into differentaly involving a
function of a single variable.
Rearranging,

The first two terms on the left are a function ooly6, while the last
term is a function only of . If the sum is zeroenh each of them must

be a constant, and the constants must sum updo zer
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3.2 TheAzimuthal Equation

If we set
1d*0
@ dp?
1.9

then,
sing d
do
1.10

sin Hd—®+ ksin?@ = m?
do

Rearranging equation 9.11, we get
d’®
dg?

+mMd =0

1.11
Equation 1.11 is the azimuthal equation. This wésexb earlier in
Module 3, Unit 2. We concluded that = Ae™, implying thatm must
be an integerm=0,+1,+ 2,..

SELF-ASSESSMENT EXERCISE 1
Show by direct substitution, thaie™ is a solution of equation 1.11.

3.2.1 The physical meaning of m

m is the magnetic quantum number. It determinestientation of the
angular momentum of an electron in an external magiield along a
specific axis. Thus, imposing the condition of pdicity on the
azimuthal part of the wave function ensures thdy arset of directions
are possible for the orientation of the angular motam vector.

SELF-ASSESSMENT EXERCISE 2
What is the physical significance of the magnetiargum number?
40 CONCLUSION

In this Unit, you learnt to solve the Schroedingsguation for a
spherically symmetric potential. The spherical syatmn allowed us to
separate the solution into an angular part, thetisol of which are the
spherical harmonics. Further, we separated therisph@armonics into
a function of the azimuthal angle and the polarl@angnposing the
periodicity condition on the azimuthal solution gaise to the magnetic
guantum numbers.
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50 SUMMARY

In this Unit, you were able to:

o solve the Schroedinger equation for a sphericajlgnreetric
potential by the variable-separable method

o write the solution as a product of a radial pad an angular part

. write the angular part as a product of the azimuplaat and the
polar part

o link the azimuthal solution to the magnetic quantwmbers

Answer to Salf-Assessment Exercise 1

2
d E) +m’® =0
® = Ae'™
d_q) — n«Aéer
d¢
2
2;2) =i’mM?AE™ = —m?Ae™ = -m%D
Hence,
2
d E) +m’® =0
d¢

Answer to Salf-Assessment Exercise 2

m is the magnetic quantum number. It determinestientation of the
angular momentum of an electron in an external rggiield along a
specific axis. Thus, imposing the condition of pdicity on the
azimuthal part of the wave function ensures thdy arset of directions
are possible for the orientation of the angular motam vector.

6.0 TUTOR-MARKED ASSIGNMENT

1. From x=rsindcosp, y=rsindsingand z=rcosd, find an
expression for, dand ¢

2. Find the spherical coordinates of the pqiaty,z) = (-1,1,2) In
the Cartesian coordinate system.

3. Calculate the Cartesian coordinates of a poimbsg spherical
coordinates arér,0,4)= (/6,45 ,138
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4. Solve with the method of separation of varialtles Laplace
equation,

2 2 2
0 + 0 + 0 ®=0
ox*>  oy? 0z°

7.0 REFERENCESFURTHER READING
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UNIT 2 THE POLAR ANGLE EQUATION, LEGENDRE
POLYNOMIALS
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1.0 INTRODUCTION

In Unit 1 of this Module, we studied the three-dima®nal symmetric

potential, culminating in a two-part solution, tiemuthal and the polar
angle parts. In this Unit, we look for a solutianthe polar angle part of
the equation. With appropriate assumptions, we | steduce this

equation to the Legendre equation. The solutionth® Legendre

equation is a set of polynomials called the Legeniynomials.

20 OBJECTIVES
At the end of this study session, you will be abte

solve the polar part of the Schroedinger equation

derive the Legendre equation

solve the Legendre equation by the series solutionmethod
write some Legendre polynomials using the Rodigue
formula.

3.0 MAINCONTENT
3.1 ThePolar Angle Equation, the L egendre Equation

The polar angle equation involving only (equatio8), must be equal
to nfso that the sum in equation 1.8 be zero as we ladready
discussed.
sind d.
déo
2.1
We make the substitution

sin Hd—®+ ksin?@ = m?
do
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X = Cc0osf
2.2
Then,
% =-sing
do
2.3

Applying the chain rule,

d _d & ——sm&—:—\ll cos? ——Vl—xZ%

do  dx do
and equation 2.1 becomes

HJ— [—Jl——ﬂd‘a}ka x?)=m

2.4

or,

-x* d do 2 2
o o [(1— )&}Lk(l—x) m-=0

2.5

2

1_
If we divide through byTX ,

2
i[(l—xz)d—(a}r k- lo=0
dx dx 1-x

2.6
This is the generalized Legendre equation.

Notice that this equation remains invariant withspect to the
transformation X—>—X . This implies that the solutions tie
generalized Legendre equation must be either syrmumeor
antisymmetric irx.

Let ® =P. Then,

d{(l— )d—P}[k— mzsz=o
dx dx 1-Xx

2.7
We set
k=1(+1)
2.8
d ,. dP m?
&{(1—x )&:|+[I(| +1)_l—x2jp_0
2.9

The solutions of this equation are the associategehdre functions,
P(x) = P(cos®) , that is, we set equal tocost .
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We shall first find the solutions of the simpleruatjon obtained by
settingm=0 :

d 2 dP ~
&[(1—x)dx}+l(l+l)P_O

2.10
Let us assume the series solution,
P(x) =) ax!
j=0
2.11
Then,
P & .
—=> jax
dx JZ_;‘ :
2.12
(1—x2)$:Zjajx"‘l—Zjajx“1
dx % j=0
2.13
d ,. dP 2. B, -
—| @-x)—|= —Da x'— - +1a. x'*
dx[( )dx} JZ_(;J(J )a, JZ_(;J(J )a,
2.14
Therefore,

%([(1— x%%}ﬂa +)P= 2 i(j-Dax/2

=Y i(i+Dax +1(1+)>Y ax =0
j=0 j=0
2.15

If we rewrite the right hand side of equation 2id%such a way as to
sum over the same powersxof :

i(j +2)(j +1)aj+2x" —Z 1(J +l)anj +1(l +l)Zanj =0
j=0 j=0 =0

2.16
we then obtain the recursive formula:

_JG+D-10+D
(G +23G+y
2.17

The recursive formula predic®,, from . We wouldréfere need

two initial values ofe :a, and,
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Since x=cosf , then-1<x<1 . If the series is to be infinite,rter
jG+D+10+)  ja+n  _j?
i 2

(i+23(+)  (j+2(+D) ]
a,,, = 4a,, so that in this limit,

P= iajx" zaixj
j=0 j=0

sufficiently large |, =1, and

2.18
This is a geometric series, the sum of which is,
n X l
ay x» =a—
JZ_;‘ 1-x

2.19
with the proviso that x <1 . The series has to convangine interval

[L-1], SO we need to terminate it. This we can do binge®, =0 for
all j greater than a certain finite value pfsay J.,,. This can be
achieved in equation 9.31 if we spt. (J D=0+ . This means we

can setj.=l . We also know thdt,, cannot be negativeg¥téwo
sequences:

| odd:
8y, 5. .. A,

or

| even:
&,0,,... 4

However, if| is odd, the highest power for whick gequence must be
zero must be odd. Likewise fbreven, the highest power for which the
sequence is zero must be even. We then see thiataldd, we must set

3, =0and if| is even, we set = 0

From our discussionP =P | that is, the solutions a@etdent oh

From equation 9.31,

N ([
: (i+2(+1n
2.20

Let &, =1; thena, =a,=...=0 .

Forl=1,j=0. We choose, =1
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Then,
P(x)=ax=Xx
2.21
Forl=2,j=1.
Then, forj =1, so that
_ 0(0+])—2(2+])a0 :_—6><1:—3

0+2)(0+1]) 2
Hence,
P,=a,+a,x" =1-3x
2.22
Forl=3,j=1.

We knowa, =1 . Then,

_ 10+2)—33+7) a = 10><1:—§
+2)(@1+1 6

5
P,(X) = a,x + a,x°® = x—§x3

2.23

Thus, the first four Legendre polynomials and tharesponding
normalised polynomials are:

P =1 P =1

P, = x P, =X

R=1-3¢  p - @¢-y
5 1

P3=x—§x3 E(SX - 3x)

The Legendre polynomials are defined by the Roésgormula:
1 d' .
RO =S5 0=
2.24
From this formula, it is obvious thatcan only take positive integers.

P(X) is polynomial of degrek

d° 2 0 _
R(X) = 2901 -1)" =1
1d 1
P(X) = 1 dx x—l)_EZX_x
1 d?
R(x) = 201 b x*-1)° ——[(X -D(¥)]= ——(X —X)
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1
==(3x* -1
2( )

Example 2.1
With the aid of the Rodrigues formula, firfg§(X)

Solution 2.1
P,(X) = 2313!3—;(% = =§§—X22[(x2 ~1*(x)
_ %%[Z(XZ _)(2x2) + (2 ~1)°]
=28 [t - x) + (2 -1
- %%[4%‘ —4x% + x* +1-2x%]
=%%[5x4 —6x +1]

= % (20x% —12x)

1
== (5x> - 3x
2( )

SELF-ASSESSMENT EXERCISE 1

1 B (2k)! 2k +1 2k+1-k
Show thatJOR(X) dx = m( K J(_l)
40 CONCLUSION

In this Unit, you transformed the polar part by imgka substitution,
leading to the general Legendre equation. You sbhe simplified
Legendre equation (for the case= 0) by the Frobenius series solution
method, and found that the solutions are the Legepdlynomials. You
were also able to write the Legendre polynomiaisgi$he Rodriguez
formula.

50 SUMMARY
In this Unit, you learnt how to:

solve the polar part of the Schroedinger equation

derive the Legendre equation

solve the Legendre equation by the series solutionmethod
write some Legendre polynomials using the Rodigue
formula
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Answer to Self-Awesment Exercise 1
1

2 | 1 dl_l 2 |
jp() —jo 'Ild' X =D dx= s (-1

0

The | — 1 derivatives do not exhaust all the | destof (X2 -1, and the
integral is zero at the upper limit x = 1.

If I is even, then, every term in the (I — 1)thfdiential of(X> 2" will

contain a term in x. The last surviving term is tBan involving x' -
or X. The expression therefore, vanishes at therddwit.

(x2-1)' = i(ran(—l)'m x*™ (Binomial expansion)

m=0

If | is odd, letl = 2k +1.
Then,

jolpl(x)dx{ 1 d*

1 2k+1
221 (2k +1)! dx* O -1) LO

_ |: 1 d* 2k+l(2k + 1] (=1) 2k+1-m XZm}

222k +) 1 dx* =l m o
Hence,
(2K)! 2k+1) ok
P (X i LI -1
J (9 2%k + 1)!( « )P

Why is it that only integral values bfire allowed in equation 2.247?

6.0 TUTOR-MARKED ASSIGNMENT

: . : . d?
1. Solve the equation of simple harmonic mOtIOﬁX+602y:0,

¥

using the Frobenius (series solution) method.

2. Show that the Legendre polynomials are the mwisitof the polar
part of the Schroedinger equation for the hydroaem

3. With the aid of the Rodrigues formula, fimg(x) .

4. Using the Rodrigues formula, prove the orthoradityn condition
for Legendre polynomials.
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1.0 INTRODUCTION

In Unit 2 of this Module, we simplified the genetadgendre equation
by settingm equal to zero. This led to the Legendre polynaosnikd this
unit, we solve the general Legendre equation t@inbthe associated
Legendre polynomials. Settingh equal to zero in the associated
Legendre polynomials naturally gives us the Legemmirlynomials. The
solutions of the general Legendre equation areafiseciated Legendre
functions. Thus, the associated Legendre functayasthe solutions of
the polar part of the time-independent Schroedireggration for the
spherically symmetric potential. The functions potynomials only for
even values ofn.

20 OBJECTIVES

At the end of this unit, you shouldbe able to:

o find the solutions to the general Legendre equatitme
associated Legendre functions

. find the associated Legendre function from a git@gendre
polynomial

o deduce that the associated Legendre functiondharsdiutions of
the polar part of the time-independent Schroediegeation

o write the spherical harmonics as a product of aatet Legendre

functions and the solution of the azimuthal equatio
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3.1 Associated Legendre functions, Angular Eigenfunctions
and the Laguerre Equation

Let us differentiate the equation for= 0, equation 2.10n times.
We repeat equation 2.10:

d[,. ,.dP ~
Ei(l—x )&}m +)P=0

Differentiating term by term oncen =1,
[a-x*)R"]? = @- x*)R"—2xp"
3.1

Differentiating one more timen = 2,
[a-x)R"]? = a-x*)R® - 2R —2xR® -~ 2R "
= (1-x?)P®? _202xP® — 202-1)P
| | |

Hence, differentiatingn times,
[(1_ XZ) P| ,,](m) _ (1_ XZ)Pl(m+2) _ 2rnXP|(m+l) _ m(m—l) P|
[-2xR]™ = —2xR™D — 2mp™
[0+DR]™ =10 +R™

Adding,

[a—xR ]+ [F2RT™ +Il1 +)R]™

= (L-x*)R™? —2mx@™ —m(m-DR — 2xR™ —2mR™
+1(1+)R™

= - X*)R™? —2x(m+DR™® +[I(1 +1) -’ —iR =0
Let the solution of this ordinary differential egioa be P™ , since it
now involvesm.

Let
Pl(m) — U(l— XZ)—mIZ
3.2

Then, differentiating with respect
Pl(m) _ ul(l_ XZ)—mIZ + IT]XL(:L_ XZ)—(m+2)/2

_ (u‘+ 1”"‘“ j(l— X2) ™2

_X2
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2
Pl(m)H: u''+ mJZ + 2rnX2U2 (l_XZ)—m/2+2xm(uv+ rnxuzj(l_ X2)—(m+2)/2
1-x° @-x9) 2 1-x

mu 2mx %u 2xm mxu
1_X2 u''+ + 1_X2 —m/2+ [ul+ j 1_X2 —(m+2)/2
( )H 1-x? (1—x2)2]( ) 2 11— ) )

—2x(m+1)(u'+ 1”"“1)(1— X2) ™2 411 +1) =P —mu(l—x2) ™ = 0
—X
@L—x*)u" +mu+ mezzu + xn‘(u'+ mxu2 )
1-x 1-x
—2X(m+J)(U'+1mi]+[l(| +1)—m? —m =0
—X

2mxu . m?xu

1-x>  1-x°

A—Xx*)u” —2xu+mu+

—2x(m+1)(1mxuzj+[|(| +)-m?—mju=0
—X
oy , 2mx°u  m°x°u mxu
L—x“)u —2xu+mu+ 12 + - —2x(m+1) 1
+[1(1 +D)—nf —mju=0
2
(- Xx*)u" — 2xu+mu+ 2mx22u + X 2U —~ 2x(m+])2mxu
1-x* 1-x 1-x
+1( +D) —nf —mu=0
A—)U" — 2+ mu 2mxCu + m?x%u — 2x(m+1)mxu
1-x?
+1( +D —nf —mu=0
_ _ 2
@L—X*)u" —2xu+mu+ (2m-+n7 12mzz 2m)xu +[1( +)—n7 —mju=0
— X
2 2
A—Xx*)u" - 2xu+mu— X 2U +1( +Du—nv 1 Xz u-mu=0
1-x 1-x
. e x°u mex’u - ny
1—X*)u" — 2Xu+mu— +1( +Du+ —~ u=0
=) 1-x? (+9 1-x* 1-x°
A—xu —2xu+ (I +Du— i u=0

2

3.3
But,
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i((1— x?)u') = (L- x*)u"-2xu’
dx

3.4
Hence, equation 10.3 becomes

d .- n

OIX((1 XHU)+1(1+Qu -

which is the general Legendre equation in whnchs arbitrary. This
implies thatu(x) is a solution of the general Legendgeation. The
solutions are the associated Legendre functions.

u=0

From equation 10.2,
R™ () =ul-x) ™"
Hence,
) = @XM R () = @) T
3.5
We usually denote the associated Legendre funaii@n by P™(X) .

Please note that this is different fro™(X)  which fe tmth

differential of R(X) , the Legendre polynomial, with pest tox (recall
that x = cosé ).

, d”

X"

R™(X) = L-x*)™

3.6
In equation 3.6, it does not matter whetH®r s tpesior negative.
Therefore,

R7(x=R"
3.7
We can therefore write,

[
F.”"<x>=<1—x2)'”"2(j'—xm R
3.8

R(¥)

SELF-ASSESSMENT EXERCISE 1
Generate the first five associated Legendre funstio

We recall that the Legendre polynomials are defingdhe Rodrigues
formula:

1 d'
2'11dx"
3.9

R(X) = (x* ~1)
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3.2 Angular Eigenfunctions

We can now write the spherical harmonics as,
Y"(6,4) =0(0)D(¢) = AR (co)e™
3.10
where A is a normalization constant. With normalaat

A{zl L1l —m)!T2

4z (I+m)
3.11
Hence,
Y, (0.9) - (—1)”[2'—+1 (- mﬂ P™ (coso)e™ ; M0
4z (1+m)
3.12

Confirm that forl = 1, we obtain the multiplets df=1 as we did in
Module 3, Unit 3 (equations 3.20, 3.23 and 3.26).

For m<0, we use the formula,
Y " =()"TY
3.13

4.0 CONCLUSION

In this Unit, you showed that the general assodidtgendre functions
are the solutions of the general Legendre equaliba.solutions of the
polar part of the time-independent Schroedingeraggn for the
spherically symmetric potential are the associdtegendre functions,
polynomials only whemm is even. The solution for the angular part of
the solution for the Schroedinger equation in tdaise is a product of the
associated Legendre functions and the azimuthatisol

50 SUMMARY

In this Unit, you learnt how to:

o find the solutions to the general Legendre equatitme
associated Legendre functions

. find the associated Legendre function from a giverLegendre
polynomial

o deduce that the associated Legendre functiondarsdiutions of
the polar part of the time-independent Schroediegeation

o write the spherical harmonics as a product of aatmt Legendre

functions and the solution of the azimuthal equmatio
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Answer to Salf-Assessment Exercise 1

d™P
Pm= 1_X2 m/2 |
= (1-x%) v

d°P
POOZ(l—XZ)OdTOO:POZJ.

0
Pl°=(1—x2)°%=|31:x:cose

X

dR

P = (- xz)”zd— =(1- xz)l’zdix: (1-x?)"? =4/1-cos 0 =sind
X X

P = (1= x°)

6.0

102

vz 97 _ 1- x2)1/2d£%(3x2 _1): (L x*)"? x3x = 3sinfcosy
X

drP. d? 1 .
P?=(1-x*)—2=(01-%x*)—=(3x*-1)= 1- x?*)x3x=3sin’ @
= - x) 2= )dxzz( )= @-x?)x
TUTOR-MARKED ASSIGNMENT

Show that the associated Legendre functionpslgnomial only
for meven.

Starting from %([(1—x2)3—ﬂ+l(l+1)P=O, derive the general
Legendre equation.

Given the Legendre polynomid®(X)=48¢C+72x*-1Dx , find
the associated Legendre polynomi&s P,

20 +1(1-m)!
4z (1 +m)

1/2
With the aid ofvlm(g,qj):(_l)m{ } R

m>0, show that:
Y, =7, /E sind cosfe”’
- 8r

Given thatY'(0,4)=C sin 8" | find the explicit form of the
spherical harmonic¥, (6,4) and’(6,4)

Calculate the explicit form of the spherical hanics Y, (6,4)
and Y, (6,4) .



PHY 309 QUANTUM MECHANICS
7.0 REFERENCESFURTHER READING

Byron, F. W. Jr. & Fuller, R. W. (1992Mathematics of Classical and
Quantum Physics. NY: Dover Publications.

Griffiths, D. J. (2005)Introduction to Quantum Mechanics. Upper
Saddle River, NJ: Pearson Prentice Hall.

Schiff, L. I. (1949).Quantum Mechanics: NY: McGraw-Hill.

103



PHY 309 MODULE 3

UNIT 4 THE RADIAL EQUATION
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 The Radial Equation
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

So far, we have discussed the spherically symmptiiential. This can
be seen as the potential energy part of the Shmgedequation. Adding
the kinetic part of the Hamiltonian gives the Se&uioger equation of a
body in a spherically symmetric potential. Thistie object of our
discussion in this Unit. The Equation consistsvad parts, the angular
part (which we have discussed), which is the saoneall spherically
symmetric problems and the radial part, which wffem one problem
to another. For the electron in the hydrogen atbmn resulting equation
Is the Laguerre equation, the solution of whiched®fs on the nature of
the problem under discussion.

20 OBJECTIVES

At the end of this study session, you shouldbe &ble

o write the radial part of the Schroedinger equa#iad identify the
expression for the effective potential

. show that the radial equation of the Schroedingpragon in
spherically polar coordinates results in the Laguequation.

3.0 MAIN CONTENT

3.1 TheRadial Equation

The electron in the hydrogen atom is under thet@static potential

e2

V(r):—T
4.1

wherer is the distance between the proton and the electro
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h 152 1 0
- o 6, 6—w(r,6,
om [W(r P+ Zeae(sm aeW(r ¢)j
L o (1.6.4) +(V (1)~ E)y (1,0.4) =
" sin 98¢2W v
4.2
102 1 o( . 8 1 02
S 2m ror? ' +rzsin26’£[5m6’£j r’sin®6 o¢? }//( 0.9)

=[E-V(N]w(r,0,¢)
4.3

With the aid of equations 1.3 and 3.10,

y(r,6,9) = RNSAO)D(¢) = RINY,,(0.9)

We can then write

LA S Bls.nﬁ};@ }R(r)vw)

2m r or? r’sin®e 06 00 ) r?sin®@ o0¢?
=[E-V(NIR(r)Y(¢.,9)
4.4

We repeat equation 1.5 and make use of equation 2.8

r2 2mr
Redr 2[ R+ =1(+)
4.5

2

R
Multiplying through by—zr XZr_n and rearranging,

n d? I(I +])h2
r Rr) =|E-V(r)|Rr
o (R (R =[E-V(")
4.6
Hence, with the help of equation 4.1,
L OIZ(R) I(I+1)2hz(Rr):{E+E}Rr
 2mdr? 2mr r
4.7

Letu =rR(r)=rR.
R(r) just shows the dependencel®f ron

Then,
n? d?  1(+DHr* e
—_— + —_—
2m dr? 2mr 2 r

4.8

2

U((r)=EU(r)
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R
Let ,0=r/80, and = _?E , Whereg, is the Bohr radMsE) and

1
4

E, is the ionization energ&t?) of the electron.

Then,
d* et

dr= canddr? =a’dp —
g,do ' do =3 07

Putting this in equation 4.8 and rearranging gives,
d? I(1+1) 2me? 2m
- - - EU(p)=0
a, dp? ’ a,’p? ah’p h? (p)
4.9

or
2 2 2 2 2
B ;j . I(I2+12)_ rr;aoze B mza02 EU(p)=0
a, dp a, p ash“p a,'n
4.10
M 42 2 2
dZ_I(I+21)+ma02e £+2mz°EU(p):0
| dp P h yo, n

4.11

2 4 2
Finally, sincea, =#°/mé and ™80 _ om_ 2 1
h? E

n’m’e* me* E;

d> I0+1) 2 E

4+ —=1|U(p)=0
{dp2 P +p+EJ )
4,12

Let us rewrite this equation as,

a2 10+ 2 ([FeY )
[dp27*;[ E] }“(‘”0

4.13
and sety-E/E, =1 , then,
d> 1(1+y 2 ,
—— =+ =-2U(p)=0
{dpz P }(p)

4.14
This is now in the form of the Laguerre equation.

Until we know the specific form ob (p) , we cannot doane with our
analysis.
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SELF-ASSESSMENT EXERCISE 1

A three-dimensional particle is free to move insidgphere of radiuA,

l.e.,
0, O<r<A
V(r)z{
o, > A

Starting from the radial equation,

1 d( —j—l(l D4 2mr? E-0,
Rd dr h?
2

and making the substitution = kr , where k = hle

, Show thatR

satisfies the Bessel equation
0 d°R
dn’ d77

+1)]R=0

40 CONCLUSION

In this Unit, by making the appropriate substitotiove have reduced the

radial part of the Schroedinger equation for a sphlly symmetric

potential to the Laguerre equation.

50 SUMMARY

In this Unit, you have learnt how to:

o write the radial part of the Schroedinger equa#iad identify the
expression for the effective potential

. show that the radial equation of the Schroedingpragon in

spherically polar coordinates results in the Lagriequation

Answer to Salf-Assessment Exercise 1

2
ld[zde—l(l + 2 e
Rdr dr h

Multiplying through byRr? ,

2
rzi[rzd—RJ—Rl(l L,
dr dr
Let 7 =kr . Then,dy =kdr andin? = k?dr?
R_ R
dr dn
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dZR:kzdzR
dr? dn?
2
EEZdRJ R(+)+ 2 Re_g
d h
, d?R dR i)+ 2mr? RE_O
dr2
2kzdR 21 IR gy 2 Re_o
k k dp
2 & AP AT 2L Re_o
dn
ZmE =k*. He ncezhE r’R=k’r’R=7°R
Therefore,
: d°R dr +1)]R=0
dn? dn

6.0 TUTOR-MARKED ASSIGNMENT

1. With the change of variabléd(r) =rR(r) , wheRér) simply
shows the functional dependence of the radial pavh r (the
radial distance from the nucleus)

(@) Write the radial part of the Schroedinger equat{equation
10.20) in
spherical coordinates in terms dfr)

2
(b)  Show that the effective potentiall |2+1)2h +V(r) . Whatis the
mr

physical significance of each term?

2. Show that the mass of the proton can be neglentethe
treatment of the motion of the electron insidetiidrogen atom.

3. Find the normalised ground statem & 0) wavefunction
R(r) = X(r)/r such thatdg(z(r) {i_rzn I(Ir+l)}X(r) 0. Take
X‘r:azx‘r:bzo'
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1.0 INTRODUCTION

In Unit 4, we studied the radial part of the angupart of the

Schroedinger equation for a particle in a sphdsicglmmetric potential

well. As a result, we obtained the Laguerre equatimn this study

session, we consider specific forms of the radaat pf the Schroedinger
equation. In particular, we shall consider the logén potential.

Consequently, we shall write the complete solutarthe Schroedinger
equation for the hydrogen atom.

20 OBJECTIVES

At the end of this Unit, you should be able to:

o evaluate integrals related to the hydrogen atom

o find the expectation value of some physical obddesin a
given eigenstate of the hydrogen atom

. find the probability of finding an electron at avgn distance
from the nucleus of the hydrogen atom

o show that radial wavefunction for a three-dimenaloparticle

free to move inside a sphere satisfies the Besggglton.
3.0 MAIN CONTENT
3.1 TheHydrogen Atom

We shall pick a specific function (p):
Let

U(p)=e" (p)
5.1

Then,
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a_ e y+e? dr
do do
5.2
2 2
2 Li =& y—le” % e % +e” —3 72(
p p p p
2
=’e ¥ y-22e” Y ez £
do dp
5.3
i 2
e y—-21e” dr +e” dz|_10+1) e y+ Ee‘ﬂ”;( ~-e”y=0
do do* | p° p

B 2
4,4 . ( .20
do dp p p
[ d? d (2 10+
—2A—+|=- =0
[dp® dp +[p P’ Hl
5.4
We seek a series solution for equation 11.4 irfdha,

2(p)=>c p"
i=0

5.5
Then,
dy <&,. et
=2 (j+s)c;p™
do JZ(; :
5.6
d’y &, . 12
=2 (1 +9)(j+s=Dc;p"™
de ; J
5.7

Substituting in equation 5.4,

D (i+9(j+s-Dcp"* =22 (j+9)c;p*
j=0 j=0

+(£_I(I +1)chjpj+s -0
P i=0

02
5.8

Z(j +9)(j+s-1)c;p'**? —212(1' +9)c,p
j=0 j=0
+2> ¢, p" T =1(1+1)D ¢, p" 2 =0

j=0

5.9
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The lowest term (witfy = 0) is then (coefficients @f" 2):

s(5-9g, ~1(1 +2)g, =0
5.10

[~ -1 +D]g, =0
511
Since C, # 0, this can only imply thag(s-1)—1(1 +1) = 0.

or

But,
& —s—I1? -l = —d—s+d—1*—| =(s+I)(s-1 -1 =0
Hence,s=-lor s=1+1

The general term,o'.*2 is given by settingj=j-1 in the terms
involving "7,
(i+9(ji+s-Dc,p""? =24 ([j -1 +9c, ,p" ™
+2Cj_1p(j—1)+s—1_|(| +:])ijprsrzzo

5.12
Hence,
(j+9( +s-Dc; -24([j -4 +9)c; , +2¢;, -1(1 +Dc; =0
5.13
Sets=1+1:

(J+1+D( +1 +1-Dc; —24([j - +1 +D)c;, +2¢, , — (1 +Dc; =0
(j+1+D(j +)c; =24(j +1)c;; +2¢,, — (1 +Dc; =0

[+ 1+ )+ jl+12+D) =10 +D]e, —[24(j +1)-2]c,, =0

(i +2jl+j)c; -2A(j +1)-1c, , =0

J(+2+Dc, -4 A(j +1)-1c;;, =0

5.14
The recursion relation is,
A(j+D -1
Cj :Mcj_l
j(g+2+)

5.15
In general, the recursion relation can be distilladto [

(A=4;;n=Kk+1) hydrogenator]

C,:(_l)j( 2 jj (k-1)! (@A +1)! 0
J k+1) (k-g-D!d(g+2 +1)!
Then,
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Rnl(P)Z—\/(nZJ LY ezl 27 (0)

a, ) 2n(n+N1° "
5.16
where L] (p) are the associated Laguerre polynomials,

21, N D' [(n+)!1*p "
Lo (P) = ; (=1 -1 K)1(2 + 1+ K) k!
5.17

Some of the first few associated Laguerre polyntaee:

191 122
1° =1-x 12 =18-6x
1 =2—4x+ X 12 =144-96+12¢

The Laguerre polynomials are defined as,
L,(X) =€ d—n(x”e‘x)
dx
5.18

and the associated Laguerre polynomials,
dl
= (= J)'
5.19

Vi 2 (%)

Example 5.1
From equations 5.18 and 5.19, find the Laguerravels as all the associated
Laguerre polynomials fam = 2.

Solution 5.1

2
L,(x) =€ % (x’e¥)=¢" dg (2xe™ —x’e¥) =" (267 - 2xe* - 2xe " + x°e¥)
X X

=2-4x+ X?
0
L, =L =(- ])0 d =L, (%) = L,(X) = X* —4x+2
le_lzLi=(—1)1&L2(x)=——(x2—4x+2)=—(2x—4)=—2(x—2)
d2
|_§_2:|_(2):(_])2d > 2(X)__(X —4X+2)——[2(X 2)]

= 2 (not relevant to our treatment of the hydrogen awohy?)
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SELF-ASSESSMENT EXERCISE 1

From equations 5.18 and 5.19, find the Laguerravels as all the associated
Laguerre polynomials fan = 3.

From equation 5.16, the first three of the radiaictions R, , are,

(2 ) a-o-n o
Role) = J((l)aoJ 2ot £ P

=— (i} le*pll(_]_)
2

=—2a,)°%""*  (sincep=r/a)

_ 2 (2-0-1)! 7,0/2 0 20+
Ry (p) = \/(Z%J 2(2)[(2+0)!] 7€ Lo (0)

(ij e L)

a, ) 4x8

R e B
23, 2

_2(2a )—3/2[ _je—rIZaO
2a,

1 r
R. =— a =3/2( e—r/2a0
21 \/ﬂ( O) [aoj

These functions are sketched in Fig. 5.1.

R10
- =R20

Rnl(r)
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Fig. 5.1: Graphs oR,,, R,y andr,

The corresponding wave functions for the hydrogemaare,

WnlmzR-ulYlm

W100:R0Y00:

on n (2 ) @-0-1 ., o,
Rio(0)Yo (60.9) = J((l)aj 2(1)[(1+0)!]3e P°LL(p)

(1] 20 +1 (0-0)
47 (0+0)!

(2Y1_,, 1
=- (g} Ee (—1)X\/;(1)

1 -pl2
—7e
3
7 a,

1/2
} P?(cos@)e'

But p=r/a,. Hence,
1

3
7 a,

e—r/a\0

Vio =

It should be easy for you to show that:

1 r —r /2a,
Voo = ——7— 2__}9
1/32a037z[ 2y’
S
32a,°7 o

1 r. : i
—e ?*singe’

Vou="T1——
\64a,’r Qo
__ 1 rg

YR T a4

Different quantum numbers, |, and m denote different stationary
states. (In three dimensions we need three quantumbers.) Since
the corresponding operators commute, the eigessiaitehe energy
operator are also eigenstates of the square ohrlgelar momentum
operator %, and of the-component of the angular momentum operator,
L,. We recall that the quantum numbecharacterizes the eigenvalues

| +D%%of L2, and the quantum number characterizes the eigenvalues

m# of L,. This implies thaE, L andL, can be measured simultaneously
(they all commute in pairs) for a particle with @otial energyJ(r), we
can know all three eigenvalues exactly at the stame. However, the
energy of a stationary state never dependsnomn a spherically
symmetric potential. All states with the samandl but differentm are

W oo = e "'?* cosd

-r/2a, Sin 0 e—i¢
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degenerate, as the different eigenstates all quwnes to the same
energy.

We note that the functionB,(r) depend on the exact form of the
spherically symmetric potentidJ(r) (recall that we had to specify the

form of U), but the spherical harmonic¥,(6,4), are the same for all

spherically symmetric potentials. They are the mfigections ofL? and
L., operators; they do not operate on the radialdinater (because of

spherical symmetricity).|Y,.(0,8) is the probability density of finding
the particle at anglego,g). Some of the normalized spherical
harmonics are given below.

1 3

_ 13 . »
YOO:EaYJﬂ:"' gsmé’e*“’,Ylo: 4—72_0039

Y,., = JE sin® 9 e”?
B 32r

SELF-ASSESSMENT EXERCISE 2

What is the average radius (expectation value) aif the orbit of the
electron for the radial wavefunction,,? Take j:r”e*'“dr -

kl+n

4.0 CONCLUSION

In this Unit, you found the solution to the radpalrt of the Schroedinger
equation for a specific form of the radial functioleading to the
associated Laguerre polynomials. The solution ¢oréttlial equation is a
function of the principal quantum number, and the orbital angular
momentum]. Hence, the solution of the Schroedinger equdtorihe
hydrogen atom is the product of the radial solutzomd the spherical
harmonics.

50 SUMMARY
In this study session, you have learnt how to:

) solve the Laguerre equation and hence obtain thekalra
wavefunction for a given principal quantum numbed ahe
orbital quantum number.

o write the Laguerre and the associated Laguerrenpatyals for a
given principal quantum number
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o write the full solution of the Schroedinger equatifor the
hydrogen atom as a product of the radial solution @he
appropriate spherical harmonic.

Answer to Salf-Assessment Exercise 1

_ r —r
R20 = —2(2&0) alz[l—z—aoje 1220

<Ry >= [ (r?dr)r |Ry [

2
© - | r2
:JO re{— 2(2a,) 3/2(1—£Je ""OJ dr

2
_ 3% 3a-rlag| q_ I r
= 4(2a,) IO r’e [1 a + 4a02]dr

* r* r®
= 4(2ao)'3j0 e‘”%[r3 "ot a 2]dr
0 0

4 5
_ 4(2a0)—3|:J'0 rse—r/aodr _J.O r.a_e—r/aodr J'O #e—r/aodr:|
0 0

- 4(2a0)‘3“:r3e‘”a°dr —ai.[:r“e‘”a‘)dr + 4: - I:rf’e‘”a‘)dr}
0 0

j:r”e““dr _n Here,k=1/g,.

kl+n
% 3!
3-1/g _ _ 4
[ reetdr= T = 6a,
. 41
r'e’'®dr=——— =243,
JO (1/a0)l+4 4a0
© _ 5' 6
re"®dr = =12
l (L 8,)™" (B"
Hence,
. 24a,° 120
<1 >= 4(2a,) 3{6%4 - ajo + o a,’
= 4(2a,)°[6a," —248," +308,']
= 4(2a,) *[12a,"]
=65,

Answer to Salf-Assessment Exercise 2
3

2
L,(X) =€" dd_x3 (x’e”)=¢" % (3x’e™ —x’e™)
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e d (6xe™ —6x%e™ + x’e™¥)

dx
=g (6 —6xe* —1Xe* +6x°e* +3Xe* —xe”)
=€ (e -1&e” +X’e” —xX’e™)

=6-18x+ 9x? — x°

L, =L =L,(X)=6-18&+9° - x°

L, =L, = _d4 Lo (X) = —1(6—18x+9x2 - x%) = —(-18+18x - 3x%)
dx dx

=36-6x+X°)

d? d? d
L3, =i = (05 L0 = 5 (6-18+9¢ —x) = (-18+18&-3)
=18-6x

3
L=l =(- 3)3 d L3(X)——— (L8-6x) =6 (Liis of no relevance to us).

6.0 TUTOR-MARKED ASSIGNMENT

1. Evaluate the integraJ:r”e*'“dr, wheren is an integer greater
than 1.
2. Find the expectation value ofand r? in the ground state of the

hydrogen atom.

3. At what distance, in terms of the Bohr radiug,, from the
nucleus does the probability distribution functicof the

wavefunctiony,,,(r) = e ''* pecome less than five percent of

3

its value at the Bohr radius?

—r/a

4. The wavefunction of a hydrogen-like atom ydr)=Ae

wherea=a,/Z, &, is the Bohr radius, typically 0.5 Angstrom,

and the charge on the nucleu<es If the atom contains only one
electron,

(@) Find the normalization constant.

(b)  If the mass number is 150 and the atomic nurig@®R, what is the
probability that it is not in the nucleus? Take ttaglius of the
nucleus as.1A"® x10~°* Angstrom.
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Assume the wavefunction is constant inside theausckince its
dimensions are small compared &/Z. Comment on your
result.

5. At timet = 0, the wave function for a hydrogen atom is giges,
1
W(rlo):E (100t Y o10H ¥ 1t 21 0)
where the subscripts anel, m.
(@) Calculate the expectation value for the enefghe system?
(b)  Calculate the probability of finding the systevith| =1, m=0
as a function of time.
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1.0 INTRODUCTION

In the case in which the Hamiltonian is no longéacsimple form, it
might be impossible to find an exact solution fbe tSchroedinger
equation. In such a situation, we may resort taupeation method. In
Quantum Mechanics, the energy of a body in anitefipotential well is
guantised. Thus, the electron in an atom can oalela set of discrete
energies (bound states). For a finite potentiad, éhergy for a particle
inside the potentialE<V, the energy is quantised. FBr-V, the energy
is one of a continuum. In this case, the energyixed, quantised and
continuous, depending on the value of the energh@fparticle. For a
constant potential and fd&>V, the energy is continuous. Without a loss
of generality, as the reference for such a potergtiarbitrary, we can
redefine the zero of the potential, such that we =t it to zero, giving
the case of a free particle. Thus, if an electsomo longer inside the
atom, that is no longer inside a potential weltah have any value in a
continuum of energies. In addition, another elettoan also have a
continuum of energies. The difference in energysuwth electrons can
also take up any value of a continuum of enerdfesturbation theory
relies on the known eigenstates of the unperturHadiltonian. It
follows that the theory applies only to bound staféhe idea is that if
the deviation from the simple Hamiltonian is ‘sniathe solution may
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be obtained by adding a small term to the energlythe wavefunction
associated with the simple Hamiltonian. In this tJnie shall consider
Hamiltonians that are a little bit deviated frone tsimple Hamiltonians
we are already familiar with.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o find the first order correction to the energy dflightly perturbed
system in terms of the known unperturbed energy

o find the first order correction to the wave funatiof a slightly
perturbed system in terms of the known wave functio

3.0 MAIN CONTENT

3.1 Perturbation Theory

We shall assume that the Hamiltonian of the particider discussion is
a little different from a “simple” unperturbed Hdtonian H, acting on
the Hilbert spac@l, so we can write
Hy lu; >=E; |u; >
1.1
is known so that the known orthornormal bagis>  hia analysis of
the undisturbed Hamiltonian can still be used dmsis. We write the
perturbed Hamiltoniarn as a sum of the unperturbed Hamiltonian and
the ‘small’ perturbatiordH, |
H=H,+AH,, 1 <[01]
1.2
such that
|H, [<<[H, |
1.3

4 in equation 1.2 is useful in keeping track of tmdew of order of

perturbation.
A

Let the eigenvalues-eigenvectors of the perturbegnibionianH be
such that
Hly, >=E, |y,>
1.4

We shall seek solution at thé& th level, with energy, and
wavefunctiony so we can write
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Hly >=E|y >
1.5
AssumeE ands can be expanded in termgigf {E;} and tha
E =AE +AE +E +...
1.6
|y, >=2 W >+t >+8 |p2 > +.

1.7
Then,

H |y, >=H+AH) (vl >+ Wt >+A% 2>+ .. (LHS of
equation (1.4)
=(PEYH+AE+AE+. )y >+ lw >+ 2w >+ .= E|ly, >
1.8
(RHS of equation (1.4)

H |y 2> +AH [y >+AH Ol 2> +..
FAH WS >+ H, i >+A°H, w2 >+..
=B lvp >+AE vy >+A°E Iy 2> +..
+AE vy >+2° B > +AE >+
TPEX W >+ E Wi +A By >+ .

Equating coefficients of*
220 Hlyy >=E] |y, >

1.9
2 H Ly >+H [y >=E) |y, >+E, |y, >
1.10
22 H g >+H |y >=E] v, >+, |y, >+E; |y, >
1.11

and so on.

Note that equation 1.9 is just stating the obvidos,the unperturbed
system.

3.1.1 First-Order Perturbation

We multiply equation 1.10 by l//r? | on the left:
<y [H [y >+ <y [H [y, >

= By <yn W >+ <y 1y >
1.12
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The first term:

<yn [H? |y >=<H%; [y, >=E) <y |y, > since H® s
Hermitian.
Clearly, the first term on either side cancel out.

The second term on the right hand sidg, <y’ |w. >=E' . Hence,
equation 1.12 reduces to,
E, =<y [H |y, >

1.13
This is thel® order correction to the energy, and as you can see, it is
the expectation value of the perturbatibh ovlayr? > e th

unperturbed state.

Again, from equation 1.10,

Ry > & e >=E [y >—H [y >
We can rearrange this into

(H°=E) s >= (& -H)y, >
1.14

Expanding|w: > in terms of the orthonormal basis fer timperturbed
system,

lya>=2 ¢y} >

j#n
1.15
where j=n has been omitted because from equationahy’|y > >

term in |t//ﬁ > could have been pulled out and combineti tie first
term on the right.

|y, >=2 W >+t >+8 |p2 > +..

Let us put equation 1.15 into equation 1.14:

(H°-END ™ |y >=(E;-HY) |y, >

j#n
1.16
But H® |y >=E] |y} >.
Therefore, equation 1.16 becomes,
> (E]—ENC” |y] >=(Ey - HY) |y >

j#n
1.17

123



PHY 309 QUANTUM MECHANICS |

Multiplying by <, |,

DUEY-ENC <y ly) >=<y |Ep lye >— <y |H ;>

j=n
or

D(E) BN <y |y >=EL <y lyg > =< [H [yg >

j#n

1.18

If k=n, <y |y >=<y, |y} >=0 (see explanation after equation 1.15
the left side of equation 1.18 becomes zero, giyiegagain, equation
1.13.

Fork=n,

S U(EY—ENC” 6, =(E) —EQ)cl” =Epx0— <y |H |yy >

j#n

Finally,
C(n)_—<WEIH1IWS>_<V/EIH1IV/3>
< EC _E° - E°-_E

k n n k

Therefore,

w _ <viIH Ny, >

C: =

J EC-E°
1.19

And equation 1.15 becomes,
L e <y IH g >
|l//n >= JZ;] Er? . Ej)
1.20
For first-order approximation and settiig=1
B =E+E =E+<yp |H v, >
1.21

0
v

0 1 0
<y |lH |y, >
ly, >=lwe>+lyy>=ly) >+ JEO Eo”
j#n n = Hj

0
v,

>

1.22

Example 1
A patrticle is in a box slanted such that we maytevthe Hamiltonian
2 2
H=H ©) +H (1)’ WhereH(O) :_h_d_ and—| @ :!X V/r? :\/gsin%
2m dx? a a a

212

g hz . What are the first order corrections to teeth order
me

(unperturbed) energies?

and E? =
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Solution 1
H=H®+H®
o h2 d2 V
whereH” =———— pHo - L
2mdx H a X

The solution toH %y +EQ© are:

o = [2sn™ ana? =T
" a a " 8mé&
The first order corrections to the zeroth ordenpgrturbed)
energies are:

ErED _<l//(0) |H(D |l//(0)

A2 (o o

_ nzx
——Zj Xsin——dx
a a

V 2n7xX
:—Zj X— XCOS—2 |dx
a

_V V| a .2 a fa. 2
=——— xsin - _Znﬂ-[sm " dx
0

dx

_V V. a. 2nax
jsm
a

_V V a 2nzx|*
COs

2 2nm2nr  a |0

_V_ _
2 (@n 7z) z )
_V

2

Hence, the first order correction to the energses® = v,

SELF-ASSESSMENT EXERCISE 1
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Calculate the energy of the first two states forirdmite square well
potential of widthd (Figure belowgé -

V(x) 4

>

40 CONCLUSION Vol
00 w

Starting with the energy and the wavefunction oé¢ tinperturbed

guantum-mechanical system, you have learnt howntbthe first order

correction to the energy and the wavefunction ghiantum-mechanical

system under a very small perturbation.

» XX

50 SUMMARY
In this Unit, you have learnt to:

o find 1% order correction to the energy of a slightly peyed
system

o find 1° order correction to the wavefunction of a slightly
perturbed system

Answer to Self-Assessment Exercise 1
The modification to the Hamiltonian isi'zvo(l—vlv) , which che

considered a perturbation. The function you canilyegsove by
recognising that the slope #8,/w , and the intercagheV axis isV,

v,
. Hence,H '(x) = —2 x+\} = | (1-2) .
W w

The unperturbed eigenstates and the corresponjagwalues are,

¢ = \/Esm— E) = Zh\;
\/7$|n— E’ = 227[7\;2

Recall that
j sin? kxdx:z—i sin 2kx+ ¢
2 4k

2
jxsin2 kxdx:xj—ﬁsiane% cosS X%
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T
In our own casek = —
w
LT X W . .
j5|n2—xdx:———5|n2— X+ C
w 2 4r W
2
LT XX xr . .
I xsin® = xdx=——--——sin 2= x-— cos 2 xt
W 4 4w W 8r w
LT w
IWS|n2—xdx:—
0 W 2

2
_[ xsinzzxdx= ﬁ—msin%—ﬁz CoSZ |- 0 —Oxﬁ sinﬁx—ﬁ cosll
0 w 4 Aw 8r w 154

(W _w ) W w

4 & 8r2) 4

Hence, the first order energy corrections are,
<@ IH 10 =< 40 1V (02 D>

_ 2w Xy oo  Nggw o .om Ny w T
= VVJ‘O dXVO(l_Vv)SInZVvX__WIO dx3|r12—W )GWJ‘O xdxslr?—WA

AN, w A, (w) 1
=—X——— | — :—2 0
Notice that the definite integral has nothing towidth the value of.

. . 1
Hence, the first order correction is the same lovadues ofn. It is EVO

6.0 TUTOR-MARKED ASSIGNMENT

1. The Hamiltonian for anharmonic system in 1-disienal
2
oscillation is given byH =2'O—+%kx2+bx4 . Find the energy of
m
this system up to the first order correction antdawbthe total
energy. (Assume that the ground state wave functfaa simple

1 kx?

. . . k . h
harmonic oscillator isy, =(ﬂh—)4e 2o andk, =7w ) . Take
w

J‘wxze*axzdx:l z
—o0 2\ a

2. Consider a particle of magsand charge in the central potential
2 2

V(i =-5, when O<r<Rand V(r)=-Sg#R when
r r

R<r<ow. If the difference in potential is considered as a
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perturbation, obtain the first order correctiorthie energy of the

ground state.

(Assume that the ground state wave function of mpkd
1 r

harmonic oscillator i¥, :(naf;‘)?eig W, * ¥ is the
unperturbed ground state)

3. Calculate the energy of the first two statesdorinfinite square
well potential of widthd (Figure below).

o0 o0
V(X) A

e
00 w .
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UNIT 2 SECOND ORDER PERTURBATION
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1  Second Order Perturbation
3.2 Degeneracy

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In Unit 1, we took a look at the first order coiien to a quantum-
mechanical system with a very small perturbatiarthis Unit, we shall
be considering second-order corrections to thegynef the system. In
addition to that, we consider the case of degemgertmat is, a case
where two different eigenfunctions have the samergn In such a
situation, the denominator of the expression fareming the energy
and the wavefunction becomes zero, meaning tha¢do@tions are no
longer valid.

20 OBJECTIVES

At the end of this unit, you shouldbe able to:

. calculate second-order correction to the energy afuantum-
mechanical system with a very small perturbation
o split or separate degenerate energy levels.

3.0 MAIN CONTENT

3.1 Second Order Perturbation

We recall equation 1.11:
H® lye > +H" [y >=E v > +E, |y, >+E; |y, >
Multiplying on the left by< | |
<y [H® lwa >+ <y |H [y >=E] <y, lwi >+E, <y, [y >+E; <y [y >
For the same reason as for the first order pertiarathe first term on
the left is equal to the first term on the rights@ the last term isEn2
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since the basis vectors are orthonormal. The setnuon the right is
zero since we said thhw: >  hasjwo. > term.

Then,
2 0 1 1
By =<y, [H |y, >
2.1
<w |HY|w? > ,
=Z< wl|H| ‘”JEIO_EIZ”” ly? > [using eq. (1.20)]
J#n n j
=Z<V/?|Hllw3><wlellw?>
j=n Eq - E}
o kylIH [y >
- JZ El-E?
2.2
This is the2™ order correction tothe energy.
Example 1
A charged particle is in simple harmonic motion hsuthat
V(x) =%ma)2x2, subjected to a constant electric field = gEx . With the

aid of the raising and lowering operators, calauldie energy shift in
the I' th level to first and second ordergn

ma)( ip J . ma)( ip J
= Xx+— |, a" =, —| x———
2h mae 2h mae
a+a*:2x1/@

2h

Hence,

x:‘/%w(a+a*)

Therefore,

Hl = qEX= qE ﬁ(aﬁ‘ a+)

To a first order,

h
E, =<y |H' |y, >=‘/2ma)<n|a+a+ |n>
/ h
= [<n|a|n>+<n|a*|n>]
2me

:‘/L[<n|\/ﬁ|n—1>+<n|\/n+1|n+1>]
2mw

Solution 1

a
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=/——hn<n n—1>+ﬁn+1<r|n+1>
NZ [ | | ]

=0

To a second order (recall th&f, = mio ),
2
EZ:Z|<k|qu|n>| _
k#=n ha)(n_k)
2 22
qZEZZ|<k|x|n>| _q E° 7 Z|<k|a+a |n>?
— ho(n—Kk) ho 2mMo i

Since onlyk=n-1 ank=n+1 contribute to the second orden.ter
q°E? Z|<k|a+a |n>?
ho 2Mmoic

ho 2mo n-k n-k

_q°E® n |<n—1|a|n>|2+|<n—1|a*|n>|2
ho 2mae n-(n-1 n-(n-1)

_q’E? n [|< n-1la+a’ |n>] +|< n+1lla+a’ |n>|2j

L 9°E’°
ho me

<n+1la|n>]? +kn+ﬂaﬂn>ﬁ
n—-(n+1) n-—(n+1)

o 2mMoe 1

h
hw 2Mmw

|\/_||<n+1|n 1> |w/n+1|2|<n+1|n+1>|2J

_9q°E? [I\/_||<n 1In-1> |«/n+1|2|<n—l|n+l>|2J

|J_| J 9’E’ [0+|\/n+1|2J

hw me i 2Mme

qEZ(\/—l _|m|) qmiz

2Mw

3.2 Degeneracy
We have assumed that the state en&by is digtoratthose of other

states. That isl,t//,'f > Is non-degenerate, otherwisegd¢neminator in
equations 1.19, 1.20, 1.22 and 2.2 would vanish.

Suppose| t//,'f > isM -degenerate, that is, therelfire States, ,
., Vi, with same energym>2
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<Vr |VS >:5rs
2.3

That is, they are orthogonal but have same ené&¥g/redefine them
states

Y=V, +o VN, +..+a. N,
2.4

subject to

m
Dla =1
r=1

2.5

The simplest casd]l = 2:
W =+ [l
2.6
|l + pF=1
2.7
Letv, =u andv, =v . Then,
H=H,+H,
2.8
H° |Ju>=E’ |u>
2.9
H° |v>=E |v>
2.10
<u|v>=0,<ulu>=1,<v]v>=1
Let |w > =a|u>+,8|v>:|l//0>
2.11
B, = <wplHlw>

=<wW|H,|w>

<au+ pV|H, |lau+ gv>
Hence, E,(a,f) = a*a<u|H,|u>

ta*pf <ulH,|v>

+ f*a<v|H,|u>

+ g*p<v|H,|v>

2.12

Let us represent the inner products above, respéctby m,, M, ,
M,,, M,,, with the matrix

M Z[Mll Mle
MZl M22
2.13
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Then, we can write
E(@,B)=Mpya*a+Mya*+M, B a+M,B*p
2.14
Similarly, for E,(a* g* , aa*+pB*=1, otherwise, & ,p are
arbitrary.

The eigenvalues oM are the first-order corrections to the energy.

Different eigenvalues splits the energids,+4, E+4,, removing the
degeneracy. The eigenvalues of the matrix equalid8 is obtained

from
‘Mll_}b Mlz -0
le Mzz_)b

2.15

SELF-ASSESSMENT EXERCISE 1
_ (M11+ M 22) i\/(M 1 M 22)2 +4(M 12)2

Show thati, = > , My, real, and
A, - (Mn"'Mzz)i\/(Mlzl—M 2. +4IM Lf . M,,complex
E,+
°+f11 A > A,
Hy H, Botdy
L1 Hl

Fig. 12.1: The splitting of the degenerate eneeygls by perturbation

If 2, = 4,, then perturbatiorH, removes the degeneracy, #.,, then
H, does not remove the degeneracy. One has to répe@rocess by

applying some perturbation in order to make distsmectral lines. If
there is still degeneracy, apply more perturbatiotil all the levels are
distinct. Example: magnetic field applied to creditinction in spins.

SELF-ASSESSMENT EXERCISE 2

a. When is a quantum-mechanical state said to pendeate?

b. The first excited state of the one-dimensiorahtonic oscillator
is found to be two-fold degenerate. The matrix aesded with
the perturbation of the oscillator is given as

1101
271 o
Find the two energy levels that result from thetypdation, given
that the energy of the statebg

133



PHY 309 QUANTUM MECHANICS |

40 CONCLUSION

In this Unit, you have learnt how to calculate teBecond-order
correction to the energy of a quantum-mechanicatesy with a very
small perturbation. You also learnt that applyingrtprbation lifts
degeneracy, splitting up a line in the spectrura dhstinct lines.

50 SUMMARY

In this Unit, you have learnt to:

. calculate the second-order correction to slighéstyrbed system
o apply perturbation to remove degeneracy.

Answer to Salf-Assessment Exercise 1

‘Mll_}b Mlz
=0
le M 22_)b
(My—AM,-)-M M ,=0
Expanding,

2
A —(|\/|11+|\/|12)ﬂ,+|\/|11\/| MM ,=0
We solve this using the quadratic formula.
L (MM E (MM )R -4 M MM )
: 2
_ (M11+M22)i\/M 112+M 222+2M 1M 22_4'\/I 1M 13 am M 2:
2
_ (M11+M22)i\/M 112+M 222_2M 1M 25" 4aM 1M 21
2
_ (M11+ M 22)i\/(M 11 M 22)2 +4M 1M 21
2
Since My, =M,,M M ,=|M f, so we can write
LMyt M) £ (M, =M ) +4 M f
- 2

Answer to Salf-Assessment Exercise 2

a. A guantum-mechanical system is said to be degenef
different eigenstates correspond to the same energy

b. The eigenvalue equation is
0-1 2pB°?
2% 0-21
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or
1 2
A2 —[ 2] =0
2p
Therefore,
A=+ 1
237
The two energy levels aite, +L amhgl, - A
gy 0 Zﬂz Zﬂz
Summary of Study Session 12
In this study session, you have learnt how to:
. calculate the second order correction to a Hamatorsubjected
to a small perturbation.
o apply perturbation in order to remove degeneracgking a
single spectral line to split into distinct spettiaes.
6.0 TUTOR-MARKED ASSIGNMENT
1. The first energy correction term in the 2-degateeperturbation

of a HamiltonianH® by a Hamiltoniam® H® <<H©® ) is
3a*a-2B*B-B*a+2a*p, Where y =qu+pv IS the
redefinition of the 2 states, subjecté6+/5°=1 . Showt tH&
removes the degeneracy.

2. A charged particle of mas® and chargeq is sitting in a
harmonic potential/, = %ma)zxz . A weak constant electric field

E is applied in the; -direction, so that the potdnsaperturbed

by v, = —qEx .

(@) Show that there is no change in the energy lewelsrat
order inE.

(b) Calculate the second-order change in the energyslev

(c) Solve this problem exactly, by changing variables t

v _9¢
X=X me?
1-¢ 0 O
3. Consider the HamiltonianH=E,| 0 1 -&|, such that
0O - O

| << 1 and K is a constant.
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S
Il

o

7.0

Find the eigenvalues and the eigenvectors ofutijgerturbed

Find the eigenvalues and the eigenvectors oHgmmiltonianH

and expand each to a second ordet.in

Find the approximate eigenvalue for the eigetorec
corresponding to the non-degenerate eigenvector the
unperturbed Hamiltonian.

Find the first-order correction to the degerergenvalues using
the degenerate perturbation theory. Comment on ngsuits.
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1.0 INTRODUCTION

The basic idea behind scattering in classical m&ckas that a beam of
particles of definite momentum are scattered frotarget. In Quantum
Mechanics, the incident particle as well as thétegag source istreated
as waves, in line with the nature of the theoryt thatter behaves as a
wave. Examples include a plane wave incident oocalised potential,
or an alpha particle impinging on a nucleus. A flok particles is
incident on the target, scattered by the targetcatiécted by detectors
that measure the angle of deflection. The time-ddeet Schroedinger
equation should be solved to find the probabilitppatudes for the
scattered waves. However, if steady state conditapply, it suffices to
solve the time-independent Schroedinger equation.

20 OBJECTIVES

At the end of this unit, you should be able to:

. distinguish between quantum scattering and scagfeni classical
physics

. find an expression for the quantum scattering dbffi@al cross
section.

3.1 Quantum Scattering

We start our analysis by considering a Hamiltormathe form,
H=H,+H,
3.1
where H, is the Hamiltonian of a free particle of sas
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2
Ho-P
2m
3.2
H, is due to a source of scattering.

Assuming|¢ > is an eigenstate bf, , we can write,
Ho |¢>=E|¢>
3.3

If the eigenstate of the system describedHbgcattering of the particle)
Is written asy > , then, we can write the Schroedimggration as,
H|y>=(H,+H,)|y>=E|y>
3.4
Then, we can write

1
H >
H lll//

— 1o

> = >+
w>=|¢ =

3.5
We notice thaty > > |¢> asl, » 0

1 .
The operatmﬁ is singular wherl,  correspond&to
— o

To take care of the singularity, we makea little bit complex, by
making the transformatiole—H, >E—H,tls . Hence, we arrive at the
Lipmann-Schwinger equation:

1
+ — H +
ly™ > I¢>+—E_Hoiig Ly >
3.6

where€ is a small positive real number.

We can convert equation 3.6 into an integral equafio achieve this,
let us multiply equation 3.6 on the left by | . Then,

1
<rly*>=<rl|¢>+<r|———H, |lv* >
ly |4 IE_HOiig |y

The left hand side is the projection of the wavetion |(//t> in the
direction of the vector. Recall that<a|b >=abcost = abco® = can be
seen as the component bfin the direction ofa, multiplied by the
magnitude of. Hence,<r |y >=|w" {)> and<r |p >=¢(r) . We insert
the completeness relation in three dimensions r(refeequation 4.10,
Module 1, Unit 4, the relation for l-dimensiop)dsr-“ 's<r'p 1 hel

resulting expression is an integral equation,
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p(r) =)+ [ < rs<r’|H, ly* >d3r

3.7
The integrand has two matrix elements and the wanatibn itself.

_r
E-H,zti¢

We can write the Schroedinger equation (scatteasg)
(V24 KA () =25 <1 [Hy >

3.8
This is the inhomogeneous Helmholtz's equationciwldan be inverted
to,

w(r)= ¢(r)+§l—TI G(r,r')<r'|H, |y >d®"
3.9
with (V2 +K)G({r,r) =8 —r'"). o(r.r') is the Green’s function.

For the Helmholtz problem, the Green’s function is,
G = exptik|r—r)

A |r —r|
3.10
Inserting equation () into equation 3.9,
. 2m exptik [r=r’) 3
) =d(r)—— <r'lH >d°r
v (D=0~ purme L L

3.11

Comparing equations 3.7 and 3.11,

' 1 ;- __2mexpfk |r—r']
E-H,ti¢ h? Ar|r-r|
3.12

In the case whera, is a function of the positioaerafors,
<r'|H, |r>=V()o(r—-r")
3.13
(v =V (r) implies a central potential)

Again, making use of the completeness reIa]iqn%r Clrts<r k1L ,

<Oy >=[ <rH rs<ry® > dr

3.14
Then, equation 13.11 becomes,

. 2m exptik |r—r|
N=¢(r)——
v O=00—z ] =
3.15

V() (r)d’r
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Let the|s¢> be a plane wave of wave (representinge particle) vector
k, then, the ket representing this statgis , Shat) t
expfk-r)
r)=<r|k>=—-—_-
v, (r) | (272_)3/2

3.16
where the normalisation is possible by taking tiee fparticle in three
dimensions to be a three-dimensional wave packetefistandably so in

. . . .\3/2
quantum mechanics). The normalisation constaf@ig

Hence,
<k [k'>=] <k|r><r[k'>d’r = 27)°[ expEir -[k —k'])dr

= 5(k —k")
3.17

(r=r)-(r=r)=rr=2r-r+r'r’
=r’-2rr+2r®

112
(r—r')-(r—r'):rz(l—z%-r ,{r_} ]zl’z(l— ZrLZ-r ) r>>r'
r r

The approximation holds because the square ofahe n'/r tends to
zero.

[r—r'E[C-r")-(-r ')]”%r(l— 2%-r j zr(l—rr_z.r j:r LI

r

Thus, forr >>r' | i.e., at a point far away from the sa@g region, to a
first order approximation,

r
|r—r'|=r—:-r"
Ir
3.18
If we definek' such that the particles whose mot®defined by this
vector have the same energy as the incoming parpcbpagating from
the scattering region to the point of observation.
kK'=kr/r
wherer/r is a unit vector in the direction of that is, directed from the
scattering region to the observation point.

With the approximation, in equation (3.15),
expEik |r—r '|)= exptik (—r-r 't ) expfikr — £ Yr-r ¥ )
=exp@ikr Fik ‘r V)= exptikr Yexpfik -t '

With
exp(zik [r —=r'"]) = exp(xikr ) exp(Fik"r")
3.19
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Equation 3.15 in the limit >>r"' becomes,
o explk-r)  m exp(ﬂkr)
v (r) = FRTar. [ expikir )V )y (r)d*r
3.20
The first term is the incident wave, and the sec@s@herical wave with

the source the scattering regiap. Is the wave ggaiing away from

the scattering regiony  propagates towards theesteg region and is
therefore, not physically realisable. We concluttesrefore, that, far
from the scattering region,

w(r) = (27[1)3,2 [exp(k 1)+ XPED) p(kr) (k' k)}
3.21
with
, __(27:)2m expliktrY). N
f(k' k)= - j PRE V() (r)dr
O ey,
3.22

Thedifferential cross-section, do /dQ , is the fraction of the number of
incident particles to the number scattered intel@ment of solid angle
dQ .

The total cross-section, 6 corresponds to scatterings through any
scattering angle,s = j —dQ , Where differential cross-secto

do/dQ.

The particle flux associated with  is,

= im(y V)
For the incident wavefunction,
_expik-r)
l//i - (272_)3/2
expéik-r) [ expik-r)
I Vv
andJmC m ( (272_)3/2 [ (272_)3/2 ]]
= Im[wik exp(k -r)j = Im[ h 3 kj __h 3
(2r7) (2r7) (2r7)

Similarly, for the scattered wavefunction,
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expikr) f(k',k)
Vscat = (271') 3/2 r

and
n fk'k
Jscat:—g (3 )kr
2r)" r
d_GdQ:erglj-scatl
dQ | inc |

Thus, the differential cross section is,

| (K" K)|
do " " f(k'.K)
E_ k _l ' |

4.0 CONCLUSION

In this Unit, you learnt the theory of quantum ssang. In this case, the
incident particle as well as the scattering soustreated as waves. You
were able to identify the differential cross-segfiavhich is the fraction

of the number of incident particles to the numbeattered into an

element of solid angle as well as the total cressisn, corresponding
to scatterings through any scattering angle.

50 SUMMARY

In this unit, you have learnt how to:

. find an expression for the scattered wave funcdioa to a given
incident wave function.

. find the expressions for the differential crosstisecand the total
cross-section corresponds to scatterings throughsaattering
angle.

SELF-ASSESSMENT EXERCISE 1

How is the completeness relation in Module 1, Unitlated to the one
you encountered in this unit?

Answer to Self-Assessment Exercise 1
The summation in the expression in Module 1, Unibecomes an

integral in this Unit as we are dealing with a combus function, very
much as inner product for continuous functionsnisrgegral.
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6.0

7.0

TUTOR-MARKED ASSIGNMENT

In the theory of quantum scattering, what do ymderstand
about differential cross-section and total crostice?
Why is it that you cannot normalise a free phett

The operator is singular wheii, correspondssto

0
How do you take care of the singularity?
Define the terms (a) differential cross-sectio(b) total cross-
section.
Find an expression for the differential scatigrcross-section in
the scattering of particles by a central potenta).
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UNIT 4 SCATTERING Il - THE BORN
APPROXIMATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1  The Born Approximation
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In Born approximation, instead of taking the tdiald as the incident
field, we take the incident field. This approxinaatithen works when
the scattered field is small compared to the intidield in the scatterer.
In other words, the scattering is weak, and hetingefotal wavefunction
Is not substantially different from the incident we&ont. In addition,
the outgoing flux is observed sufficiently far awfaym the scatterer.

2.0 OBJECTIVES

At the end of this Unit, you will be able to:

o state the assumptions of the Born approximation

o find the differential cross section for a given tssang potential
in the Born approximation.

3.0 MAIN CONTENT

3.1 TheBorn Approximation

You must have noticed that(k 'k) , (equation 3.22), ddpemn the
wavefunction y(r) , which is not yet determined. Howevdr the
scattering is weak, we may take the total wavefonci,(r)as being
almost the same as the incident wavefunction,ighat
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expik-r)

p(r) =) =—"—"55" 20)°"

4.1
or
N explk-r)
p(r) =
(272_)3/2
4.2
In the large limit, we recall equation ( )

(6) = 9(0) 5 s PO [expleibcr ) v oy ()

27h?
which becomes
exp(k r)

expk-r) m expikr) 3
w(r) = e oA 1 jexpekr)V(r) d’r
4.3
and
F(kK) = (27z)22mj exp(—il;'-zr')v(r.) expdks-/;') Ew
7l (27) (2r)
m 0 e '\ {3y
z—%I expl(k —K')-r'V(r")d’r
4.4

Observe that this is the Fourier transform of tb&ttering potential/(r)
with respect to the wave vectkrk'

Let this wave vector bk"

For a spherically symmetric potential,

, m e 21 s , A , , \ "
f(k',k) S jojo IO explk"'r'cog M (r')r2sind'dr'dé' dg

=— 2;;th j [exp[k”'r'cod' I 'sinddaV (r')r2 dr

having integrated overg' , withr’sirddrdddg being the volume
element in spherical-polar coordinates.

If f(e):exp(ik"r‘cosé"), f'(@) =-ik'"r'sin @ exp(ik''r'cos@")

f(k',k)=—- j j [explk”'r'cog? ik "r 'sin@dé]V (r)r'dr’
=7 j j [expilk'r'cog? |(ik "r 'singd@) [V (r")r'dr
f(k',K) :—?FI:[exp[k”r'cos?]]gJ:V(r‘)r'dr'

f(k' k)= —h—T%I:[expPik"r'cosz—epok”r'coS)]}\/(r')r'dr'
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= —h—”;% [ “Texplk"r'~exptik" IV (r)r'dr
:—h—n;%stink"r')V(r')r'dr'
2m
hzk..
But k''=|k"|=|k — k|
k=k' since the energy is conserved. When two vectoeqgaal length
are added, the sum is equal2tacos@ /2) . Their differeac $in(0/2)

j :sink"r')V(r')r'dr'

Therefore,
k''= 2ksin(8 /2)

This is referred to as thmomentum transfer, which is the amount of
momentum one particle gives to another.

Example 1
Find the differential cross section for the Yukawgotential

vir) Yo bun)

ur
Solution 1
2m o . o N
f(0)=- hzk“josun« rWV(rrdr
2m\, = N iAo Ty gt
=— hzk"y-[oeXpH” )sink''r")dr
2my, e 1 .
=— e r')—[expfk'r') —exp&ik' r')r'dr'
ey o SXPEHT) o [expl) —exptik )]
2mV, e .
=———| ex r')[expgk'r') —expEik' r')]r'dr!
zith--qu pEur)explk'r') —expeik' )]
_ mV, [expleu+ik)r] expleu—ik)r]”
i 7%K" — pu+ik" —pu—ik" o
my [ -1 -1 |
i7°K" | —p+ik" —p—ik" ],
_omy 11 °°: m\, | —pu—ik"+u—ik"
in°K" | —p+ik" - p—ik" o i 7K K'"2+ 1

o my, - 2ik"
ihzk",u k"2+,u2

_ . 2mV, 1
RPu | K +p?
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Therefore,
do , (2myYT 1 T
— =4O =|— >3
aQ u )| K +u

(2myY’ 1
L n2u ) [AKPsin?(012) + u?)?

4.0 CONCLUSION

In this unit, you have learnt the condition undehich the Born
approximation holds, that is, if the scatteringvisak, we may take the
total wavefunction w(r) as being almost the same as iticadent

wavefunction You have also learnt how to find thxression for the
differential cross-section for a given potential.

50 SUMMARY
In this Unit, you have learnt the following:

o in what limit the Born approximation is valid
o how to find the differential cross section for aeg potential

SELF-ASSESSMENT EXERCISE 1
Find the differential cross-section for the CouloRdiential.

Solution of Self-Assessment Exercise 1

If we allow the x— 0, but such thatﬁa% then, the Yukawa
H T &g

potentialv (r) = Vo expCur) becomes (r) = _QQ,

ur dre of
which is the Coulomb potential. Then, the Bohr ehéntial cross-
section is

do , (2mQQ,Y’ 1
— = f(0)|"~ > i
dQ Are,h” ) 16K™sin™(612)

6.0 TUTOR-MARKED ASSIGNMENT

=

Define the term momentum transfer.
2. What are the assumptions made in the derivatiothe Born
Approximation?
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3. A spherically-symmetric potential takes the ¢ansvalueV, for

O<r <a, and zero elsewhere. Find the differential crestien
for this potential in the Born Approximation.

4. Using the Born approximation approach for theteptal,

2\/ ear
V(r)=——,
r
a.  Write down the expression for the scatterimplgude and show
that
4m\
f(O)=——5 5o
h*(@“+q°)
(Hint: note that the standard integrd* singrdr = —; 9 and
0 a +dq
q=2ksin@/2))
: : 32im*V;
b.  Establish that the total cross-sectign = 0
tah a’n*(a® + 4k?)

5. With the aid of the Born Approximation, find trszattering
amplitude f(9) for the truncated Coulomb potential,

11 .
V(r)=C(g—?]; r<a and v(@)=0 for rza. Find an
expression for the scattering amplitude at verylswadues ofd
and hence, deduce the approximate valueirmz— athwihie

differential cross-section has fallen to one-thafdits forward

value. Takef (9) =—2—2m [rsinerv(dr .
h°q-°
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UNIT 5 SCATTERING Il - PARTIAL WAVE
ANALYSIS

CONTENTS

1.0 Introduction
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5.0 Summary
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1.0 INTRODUCTION

In Quantum Mechanics, every physically observablassociated with a
Hermitian operator. The physically observable prbpe include

position, time, energy, angular momentum, etc. Quilike the case
with Classical Mechanics, not all physically obsdile properties of a
guantum-mechanical system can be measured presisaljtaneously.
This is due to the Heisenberg uncertainty principlie any two

observable physical properties can be measureditameously with

infinite accuracy, then their operators must conemindeed, you will

get to know that the two such observables can hinee same
eigenvectors. In this unit, you will also learn heowvfind the matrix

elements of an operator in a given quantum-mechhstate. Thus, you
will be able to calculate the expectation value tbé physically

observable property in such a state. In additiany will learn about
outer product of two vectors as well as the proyacoperator.

In Born approximation we assume the scatteringgakyand hence, the
total wavefunction does not substantially diffelorfr the incident
wavefront. Put another way, the outgoing flux iffisiently far away
from the scatterer. As such, instead of the exaatvefunction, the
Schroedinger equation is solved by a Green’s fanctapproach,
excluding the possibility of double or multiple #eaing. In partial wave
analysis, we obtain the cross section without imqgpany limitation on
the strength of the scattering. We shall assume ttie potential is
spherically symmetric, ensuring the conservation tbé angular
momentum of the incident particle. The angular motmen of the
incoming patrticle is the same before and aftertecay. The problem is
essentially that of a central potential, and thieesigal harmonics come
in useful once again.
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20 OBJECTIVES

At the end of this unit, you shouldbe able to:

o write the partial wave amplitudes for a given satig problem

. calculate the scattering amplitude for a giventscaig problem

o obtain the differential cross-section for a givenatiering
problem

o find the total cross-section for a given scattepngcess

o write the partial-wave amplitudes in terms of tiage-shifts

. calculate the phase shift for a given scatterer.

3.0 MAIN CONTENT

3.1 Partial Wave Analysis

Spherical harmonics are of the ford, (¢) . We recadt the solution
of the Schroedinger equation in spherical-polarrdimates, v (r,0, ¢)
IS,

w(r,0,6)=RIY"(6.9)
We have seen that,
n? d? R 1(+1)
 2mdr? i+ 2m r?
As we often do in Quantum Mechanics, we first cdesr very large.
Then,V (r) » 0 in this limit, and,
n* d?
———=U(r) = EU(r
o dr? (r) (r)
5.1

U(r)=EU(r)

or,
2
2m
—U(r)~=EUr) =kU(r
ar (r) e (r) (r)

52
wherek =+ 2mE #? .

Therefore,
U(r)=Cé" +De™
5.3

We setD equal to zero as the second term on the righesemts an
incoming spherical wave. Therefore,
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eikr
u(r) ~

r

5.4
an outgoing spherical wave.

Let us now consider the intermediate region in Whic? is important,
butv(r) is still effectively Zero.

L S X +1)
o dr? + om }U (r)=EU(r)
5.5
42
d_2_|(|+1)}u( )=~ 2ME (1)~ kU )
| dr r
5.6
This equation can easily be transformed to:
d’R dR
re +2r—+[kr? =11 +1)]JR=0
e [ (I +D]
5.7

The solution of this equation is of the form,
U(r) = Arj(kn+Brr (kn)
5.8
where j, and7, are the spherical Bessel functionsergéimed sine
and cosine functions:

. ( 1d " sinx 1.d ) cosx
100 = x| =2 | S () = x| T |
X dx X X dx X

5.9

In the limit x—> 0, j;(X) exists, as the limif"X exists, bet(X)
X

becomes inadmissible.

In the limit X—20,

j (X)_>Sin(X—|7Z'/2)
5.10
7 (X) = cos(x—Iz /2)

X
511
We can also write,

h2() = j, )+ (%)
5.12
and

W)=, ~im (9
5.13
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which are the spherical Hankel functions. Respebtjvthey represent
outgoing and incoming wave; generalized at! wavast
again, we drop the incoming wave and therefore lcolecthat,

w(r,0,9) = Al:eikz + Z cmh® (kr)Y," (6, ¢)

5.14
If we align the incident ray with the-axis, e*" = e* is the incoming
wave.
In the case where(r)=Vv(r) , thatis, the spherically symmease, the

dependence o  becomes trivial (recall that ghe rt @aY"(6,¢)
involvesm (®(¢) ~€™), and

w(r,0) = A{e“‘Z + ki a'i™ @2 +1)h® (kr)P (cosﬁ)}

1=0

5.15
. o0 2+1
In this casem = 0, andY,"" (6,¢) = P(cos) , and we have set
74
Co =1""kJ47 (2 +D g
Hence, sinceh® is a function bf |
£(6) =Y. (2 +DaR(cow)
1=0
5.16
Then we only need to calculate tAe 's.

If we also write the incoming wavefunction as,

e = Zi' (A2 +1)j, (kr)P (co®)
1=0
5.17
Equation 5.15 becomes,

w(r,0) = Aii '@ +){j, (k) +ika h® (kn) IR (cos)

5.18
There is no need to includg, in the expansion F& inhcoming
wavefunction as it tends to infinity ds  tends éooz

a, , the complex parameter is needed in the partiséwaethod. In one-

dimension, when there is a reflection at an inéipbtential, the incident
wave suffers a phase shift as it is reflectedhat it the incident wave ~
e™ then the reflected wavee®*™ | where the factor zhim phase
shift is out of convention.
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In the case of three-dimensional scattering, andravtthe potential is
spherically symmetric, the change due to scattésimgphase shift of,

Thel-component is

y=Al @+ (k)P(cos)
5.20
For large X
jl(X)ZZ_:LX[(_i)Hleix +i|+le—iX)]
5.21

and
A2 ik
v =A ikt [e -D'e ]F’I (coso)
5.22

A -1_§(K-1

2 2ik 2ik

a =iei"‘I sing, =

1€
Kk

where
Sk ="
5.23
and

o0

£(0)=Y (@ +Da R (cos) =%Z(2| +1)é% sing R (co)
1=0 1=0
5.24
In the case where there is no flux lop§,(K)He”™ E1 . If thisrBux
loss due to absorption of the incident beam, then,
S (k) =7 (Kie™
5.25
with 0<73(K)<1. In the no-flux loss case, all thg  are edoalnity.

In case you find in the Iiteraturef(é’)=%2(2l+1)a1P|(cos9) , the
1=0
partial wave amplitude is correspondingly defined a
el -t -1 k-1
2 24 2

a =€" sing, =€

5.26
Example 1

In a purely elastic scattering process, only theasd p-waves are
involved. Both pure s-wave and p-wave scatterirggymmetric, is it
possible to for the scattering to be unsymmetrtevben the forward and
the backward hemispheres? Under what condition twél differential
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cross-section in the forward direction be less tharthe backward
direction? Define
f(6) =%Z(2| +1)a P (cos).

1=0
Solution 1

We know that,
do

Py |f(9)

and
£(0) =%§;(2| +1)a R (cosd)
If only s- and p-waves contribute, then, the
f () =%{[(2><0+1)a0 x1]+[(2x1+1)a, x coh]}

—+ (3, +33,C0%)
Then,

1 . .
| f(0) = f*(é’)f(é’)=?{|ao 2 +9]a, I cos 0+ 3(aya, +a,a; ) cosd)
Since the s-wave which hag =0 Is isotropic (doesdepend oa )

and pure p-wave hasy, =0 depends only @o)* , both are

symmetric. But the interference term dependsocosyd nd s is
introduces asymmetry.

The forward(¢ =0) cross-section is,
do 1

do _1 , , . .
) k{lao|+9|a1|+3(aoa1+aoa1)}

The backwardé = ) cross-section is,
do 1 . .
d—Qj{Iaolz +9]a, P ~3(aga, +a,a;)|
For the backward cross-section to be larger thanftmward cross-

section,
8,8, + 8,3 <0

4.0 CONCLUSION

In this Unit, you have learnt we assumed that thtemial is spherically
symmetric, ensuring the conservation of the angmamentum of the
incident particle. The angular momentum of the mow particle is the
same before and after scattering. Now a centranpad problem, we
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were able to take advantage of spherical harmommz® again. You
were able to calculate the scattering amplitude&agiven scattering
problem, obtain the differential cross-section forgiven scattering
process.

50 SUMMARY

In this study session, you have learnt how to:

. write the partial wave amplitudes for a given ssatg problem.

) calculate the scattering amplitude for a giventsciig problem.

o obtain the differential cross-section for a givenatiering
problem.

o find the total cross-section for a given scattepngcess.

o write the partial-wave amplitudes in terms of tiage-shifts.

. calculate the phase shift for a given scatterer.

SELF-ASSESSMENT EXERCISE 1
What do you understand by partial-wave amplitude?
Solution to Self-Assessment Exercise 1

This is the complex number which multiplies the &edre polynomial
P(co9), and 21 +1 in the expansion of the scattering amplitoder
the angular numbér

6.0 TUTOR-MARKED ASSIGNMENT

1. State the meanings of all the symbols in theresgion for the
partial-wave expansion,

f(0) =%i(2l +1Da, R (coy)

2. At a certain energy in a scattering processtigern resonance in
the s-wave while the p-wave phase-shiftzi&6 . Asagnthe
scattering is purely elastitj =1 for alj and thatréhes no
significant scattering in any other partial wave,

(@) Write theS— andp— wave partial wave amplitudes.

(b)  Find the scattering amplitude.
(c) Obtain the elastic cross-section by integratmgr solid angle.
(d)  Find the total cross-section.
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Take f(6) = %i (@ +Da P (cosd) .

1=0

3. In a scattering process, it is observed thatethge significant
scattering only in the s-wave and one other gdaxtiave, |.
Assuming that there is no scattering in any opfetial wave and
that there is no loss of flux,

(@)  Write down, in terms of the partial wave amp#s &, anda, |,
an expression for the differential cross-sectioa &sction ofd

(b) Find the extrema of the differential cross-sett such that

P remains unevaluated. Show that these occur at the
d(cod))

turning points of P (C0¥)) and at angles such that,

{22 +13 *3R(co%)+(3,*a +aa*)}=0
(i)
(c)  Write the partial-wave amplitudes in termslod phase-shifts and
prove that at the turning points satisfying equati,
P (cost)) = - CoSsP, — 9, ?smﬁo
(2 +Dsing,

Take f () = %i @ +Da P (cosd) .

4. Particles of a given energy scatter on an itdipihard sphere of
radiusa

(@) Calculate the phase stiftk).

(b)  For s-waves tE0), obtain the expression for the total cross-
section.

(c) Consider the case of low energies (ka<<l), stimt/the cross —
section is four times the geometrical cross — eaadf the rigid
sphere.

7.0 REFERENCESFURTHER READING

Griffiths, D. J. (2005)Introduction to Quantum Mechanic$Jpper
Saddle River, NJ: Pearson Prentice Hall.

Mulders, P. J. (2011Advanced Quantum Mechanid¢®etrieved from
http://master.particles.nl/LectureNotes/2011-QFT.pd

Schiff, L. I. (1949).Quantum MechanicNY: McGraw-Hill

156



PHY 309 MODULE 4

Appendix 1

L, =—iA yﬁ—zi
0z oYy

=—i% | rsind sing coﬁﬁ—E siré?ij
or r 06

—rcosd| siny sir;zﬁiJrE coé si¢i+ﬂﬁ
or r 06

r sind o¢
——ih[rsiné’sinqﬁ coﬁﬁ— sihg si¢i—r Sih  sif césg
or 00 o
—cog @ sirvﬁi——cosé cop 9
06 sind 0¢
L .0 .0 cosd cog 0
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2
Adding i(ij:aa_qu ,
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0 d
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2 2
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Hence,
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Finally, we can write
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sing 0
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Expanding and rearranging, we arrive at,
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V2_82 20 10> cotd o 1 ¢
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Appendix 2
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OX 020X

) a 62 62 62 82
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Rearranging,
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()
£

Adding equations () and ( ),

[L.LJ=LL,-LL = [y%—x—jz {

n‘{—lh[x——y
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