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MODULE 4  PERTURBATION THEORY AND   
   QUANTUM SCATTERING 
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Unit 2  Second Order Perturbation 
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Unit 5  Scattering III - Partial Wave Analysis 
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1.0 INTRODUCTION 
 
In the case in which the Hamiltonian is no longer of a simple form, it 
might be impossible to find an exact solution for the Schroedinger 
equation. In such a situation, we may resort to perturbation method. In 
Quantum Mechanics, the energy of a body in an infinite potential well is 
quantised. Thus, the electron in an atom can only have a set of discrete 
energies (bound states). For a finite potential, the energy for a particle 
inside the potential, E V� , the energy is quantised. For E V� , the energy 
is one of a continuum. In this case, the energy is mixed, quantised and 
continuous, depending on the value of the energy of the particle. For a 
constant potential and for E V� , the energy is continuous. Without a loss 
of generality, as the reference for such a potential is arbitrary, we can 
redefine the zero of the potential, such that we can set it to zero, giving 
the case of a free particle. Thus, if an electron is no longer inside the 
atom, that is no longer inside a potential well, it can have any value in a 
continuum of energies. In addition, another electron can also have a 
continuum of energies. The difference in energy of such electrons can 
also take up any value of a continuum of energies. Perturbation theory 
relies on the known eigenstates of the unperturbed Hamiltonian. It 
follows that the theory applies only to bound states. The idea is that if 
the deviation from the simple Hamiltonian is �small,� the solution may 



PHY 309                    MODULE 4 
 

121 
 

be obtained by adding a small term to the energy and the wavefunction 
associated with the simple Hamiltonian. In this Unit, we shall consider 
Hamiltonians that are a little bit deviated from the simple Hamiltonians 
we are already familiar with. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
� find the first order correction to the energy of a slightly perturbed 

system in terms of the known unperturbed energy  
� find the first order correction to the wave function of a slightly 

perturbed system in terms of the known wave function. 
 
3.0 MAIN CONTENT 
 
3.1 Perturbation Theory 
 
We shall assume that the Hamiltonian of the particle under discussion is 

a little different from a �simple� unperturbed Hami ltonian  acting on 
the Hilbert space �, so we can write 
        

  1.1 
is known so that the known orthornormal basis  in the analysis of 

the undisturbed Hamiltonian can still be used as a basis. We write the 
perturbed Hamiltonian, H as a sum of the unperturbed Hamiltonian and 

the �small� perturbation ,  

 ,       
  1.2 
such that 

        
   1.3 

�  in equation 1.2 is useful in keeping track of the order of order of 
perturbation.  

�   
Let the eigenvalues-eigenvectors of the perturbed Hamiltonian  be 
such that 

 | |n n nH E� ��� �       
  1.4 
We shall seek solution at the th level, with energy , and 
wavefunction so we can write 
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  1.5 
Assume  and  can be expanded in terms of ,  and that 

      
   1.6 

     
  1.7 
Then,  

(LHS of 
equation (1.4) 

     = =  
  1.8 
  (RHS of equation (1.4) 
 

 

 

 

 

 
 

Equating coefficients of , 

 :      
  1.9 

 :   
   1.10 

 :  
  1.11 
and so on. 
 
Note that equation 1.9 is just stating the obvious, for the unperturbed 
system. 
 
3.1.1 First-Order Perturbation 
 

We multiply equation 1.10 by  on the left: 

  

   =    
  1.12 
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The first term: 

  since  is 
Hermitian. 
Clearly, the first term on either side cancel out.  
 

The second term on the right hand side, . Hence, 
equation 1.12 reduces to, 

  
         

  1.13 
This is the 1st order correction to the energy, and as you can see, it is 

the expectation value of the perturbation  over , the 
unperturbed state. 
 
Again, from equation 1.10,  

  
We can rearrange this into 

      
  1.14      

Expanding  in terms of the orthonormal basis for the unperturbed 
system, 

       

   1.15 

where  has been omitted because from equation 1.7, any  

term in  could have been pulled out and combined with the first 
term on the right. 
 

 
 
Let us put equation 1.15 into equation 1.14: 

     

  1.16 
But . 

Therefore, equation 1.16 becomes, 

     

  1.17 
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Multiplying by , 

  

or 

  

  1.18 
If ,  (see explanation after equation 1.15 

the left side of equation 1.18 becomes zero, giving yet again, equation 
1.13.  
 
For ,  

  

Finally, 

     

Therefore, 

       

  1.19 
And equation 1.15 becomes, 

      

  1.20  
For first-order approximation and setting , 

     
   1.21 

   

  1.22 
 
Example 1 
A particle is in a box slanted such that we may write the Hamiltonian 

, where  and .  

and . What are the first order corrections to the zeroth order 

(unperturbed) energies? 
 
  

|0
k��

��
�����
�
�

01001000)(00 |||||)( nknnk
nj

jk
n

jnj HEcEE ������

��
�����
�
�

01000100)(00 ||||)( nknkn
nj

jk
n

jnj HEcEE ������

nk � 0|| 0000 ������ jnjk ����

nk �

��
�
�
�
�

0101)(00)(00 ||0)()( nkn
n

knk
nj

kj
n

jnj HEcEEcEE ���

00

010

00

010
)( ||||

kn

nk

nk

nkn
k

EE

H

EE

H
c




��
�




��

�

����

00

010
)(

||

jn

njn
j EE

H
c




��
�

��

�
�

�



��
��

nj
j

jn

nj
n EE

H 0
00

010
1 |

||
| �

��
�

1��
������ 0

1
0

0
10 || nnnnn HEEEE ��

�
�

�



��
��������

nj
j

jn

nj
nnnn EE

H 0
00

010
010 |

||
|||| �

��
����

)1()0( HHH ��
2

22
)0(

2 dx

d

m
H

�

� x

a

V
H �)1(

a

xn

an

�
� sin

20 �

2

22
0

8ma

hn
En �



PHY 309                    MODULE 4 
 

125 
 

Solution 1 
)1()0( HHH ��  

 where 2
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Hence, the first order correction to the energies is 
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SELF-ASSESSMENT EXERCISE 1 
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Calculate the energy of the first two states for an infinite square well 
potential of width d (Figure below).  
 
 
 
 
 
4.0 CONCLUSION 
 
Starting with the energy and the wavefunction of the unperturbed 
quantum-mechanical system, you have learnt how to find the first order 
correction to the energy and the wavefunction of a quantum-mechanical 
system under a very small perturbation.  
 
5.0 SUMMARY 
 
In this Unit, you have learnt to: 
 
� find 1st order correction to the energy of a slightly perturbed 

system 
� find 1st order correction to the wavefunction of a slightly 

perturbed system 
 
 
Answer to Self-Assessment Exercise 1 

The modification to the Hamiltonian is , which can be 

considered a perturbation. The function you can easily prove by 
recognising that the slope is , and the intercept on the V axis is  

. Hence, . 

 
The unperturbed eigenstates and the corresponding eigenvalues are, 
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In our own case,  

 

  

 

 

 

 

 

 
Hence, the first order energy corrections are, 
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Notice that the definite integral has nothing to do with the value of n. 

Hence, the first order correction is the same for all values of n. It is  

 
6.0 TUTOR-MARKED ASSIGNMENT  
 
1. The Hamiltonian for anharmonic system in 1-dimensional 

oscillation is given by . Find the energy of 

this system up to the first order correction and obtain the total 
energy. (Assume that the ground state wave function of a simple 

harmonic oscillator is ,and ) .  Take 
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perturbation, obtain the first order correction to the energy of the 
ground state. 
(Assume that the ground state wave function of a simple 

harmonic oscillator is  = =    is the 
unperturbed ground state)     

 
3. Calculate the energy of the first two states for an infinite square 

well potential of width d (Figure below).  
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1.0 INTRODUCTION 
 
In Unit 1, we took a look at the first order correction to a quantum-
mechanical system with a very small perturbation. In this Unit, we shall 
be considering second-order corrections to the energy of the system. In 
addition to that, we consider the case of degeneracy, that is, a case 
where two different eigenfunctions have the same energy. In such a 
situation, the denominator of the expression for correcting the energy 
and the wavefunction becomes zero, meaning that the equations are no 
longer valid. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you shouldbe able to: 
 
� calculate second-order correction to the energy of a quantum-

mechanical system with a very small perturbation 
� split or separate degenerate energy levels. 
 
3.0 MAIN CONTENT 
 
3.1 Second Order Perturbation 
 
We recall equation 1.11: 

 

Multiplying on the left by , 

 
For the same reason as for the first order perturbation, the first term on 

the left is equal to the first term on the right. Also, the last term is  
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since the basis vectors are orthonormal. The second term on the right is 

zero since we said that  has no  term. 
 
Then, 

      
   2.1  

   [using eq. (1.20)] 

  

       

  2.2  
This is the 2nd order correction to the energy. 
 
Example 1 
A charged particle is in simple harmonic motion such that 

, subjected to a constant electric field . With the 

aid of the raising and lowering operators, calculate the energy shift in 
the th level to first and second order in .  
 
Solution 1 
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To a second order (recall that ), 

 

     
Since only  and  contribute to the second order term, 
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3.2 Degeneracy 
We have assumed that the state energy  is distinct from those of other 

states. That is,  is non-degenerate, otherwise, the denominator in 
equations 1.19, 1.20, 1.22 and 2.2 would vanish. 
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  2.3  
That is, they are orthogonal but have same energy. We redefine the  
states 

       
  2.4  
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The simplest case, = 2: 
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Then, we can write  
   
  2.14  
Similarly, for , , otherwise, ,  are 
arbitrary. 
 
The eigenvalues of M are the first-order corrections to the energy. 

Different eigenvalues splits the energies, 0 1 0 2,E E� �� � , removing the 
degeneracy. The eigenvalues of the matrix equation 2.13 is obtained 
from 
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SELF-ASSESSMENT EXERCISE 1 

Show that 
2 2

11 22 11 22 12( ) ( ) 4( )
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�  , 12M real, and  
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� , 12M complex 

 
 
 
 
 
 
Fig. 12.1: The splitting of the degenerate energy levels by perturbation 
 
If , then perturbation  removes the degeneracy. If = , then 

 does not remove the degeneracy. One has to repeat the process by 
applying some perturbation in order to make distinct spectral lines. If 
there is still degeneracy, apply more perturbation until all the levels are 
distinct. Example: magnetic field applied to create distinction in spins.  
 
SELF-ASSESSMENT EXERCISE 2 
 
a. When is a quantum-mechanical state said to be degenerate? 
b. The first excited state of the one-dimensional harmonic oscillator 

is found to be two-fold degenerate. The matrix associated with 
the perturbation of the oscillator is given as  

    

Find the two energy levels that result from the perturbation, given 
that the energy of the state is . 
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4.0 CONCLUSION 
 
In this Unit, you have learnt how to calculate the second-order 
correction to the energy of a quantum-mechanical system with a very 
small perturbation. You also learnt that applying perturbation lifts 
degeneracy, splitting up a line in the spectrum into distinct lines. 
 
5.0 SUMMARY 
 
In this Unit, you have learnt to: 
 
� calculate the second-order correction to slightly perturbed system 
� apply perturbation to remove degeneracy. 
 
Answer to Self-Assessment Exercise 1 

 11 12

21 22
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 �  
Expanding, 
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We solve this using the quadratic formula. 
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Answer to Self-Assessment Exercise 2 
 
a. A quantum-mechanical system is said to be degenerate if 

different eigenstates correspond to the same energy. 
 
 b. The eigenvalue equation is  

 0
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  or 

    

  Therefore,  

    

  The two energy levels are  and  

Summary of Study Session 12 
�

In this study session, you have learnt how to: 
 
� calculate the second order correction to a Hamiltonian subjected 

to a small perturbation. 
� apply perturbation in order to remove degeneracy, making a 

single spectral line to split into distinct spectral lines. 
 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 
1. The first energy correction term in the 2-degenerate perturbation 

of a Hamiltonian  by a Hamiltonian  ( ) is 
, where  is the 

redefinition of the 2 states, subject to . Show that  
removes the degeneracy. 

 
2. A charged particle of mass m and charge q is sitting in a 

harmonic potential . A weak constant electric field 

E is applied in the -direction, so that the potential is perturbed 
by . 
(a) Show that there is no change in the energy levels to first 

order in E. 
(b) Calculate the second-order change in the energy levels. 
(c) Solve this problem exactly, by changing variables to 

 

 

3. Consider the Hamiltonian 0
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a. Find the eigenvalues and the eigenvectors of the unperturbed 
0) � .  

b. Find the eigenvalues and the eigenvectors of the Hamiltonian H 
and expand each to a second order in ). 

c. Find the approximate eigenvalue for the eigenvector 
corresponding to the non-degenerate eigenvector of the 
unperturbed Hamiltonian. 

d. Find the first-order correction to the degenerate eigenvalues using 
the degenerate perturbation theory. Comment on your results. 
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UNIT 3  QUANTUM SCATTERING I 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0  Main Content 

3.1 Quantum Scattering 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading 
 
1.0 INTRODUCTION 
 
The basic idea behind scattering in classical mechanics is that a beam of 
particles of definite momentum are scattered from a target. In Quantum 
Mechanics, the incident particle as well as the scattering source istreated 
as waves, in line with the nature of the theory that matter behaves as a 
wave. Examples include a plane wave incident on a localised potential, 
or an alpha particle impinging on a nucleus. A flux of particles is 
incident on the target, scattered by the target and collected by detectors 
that measure the angle of deflection. The time-dependent Schroedinger 
equation should be solved to find the probability amplitudes for the 
scattered waves. However, if steady state conditions apply, it suffices to 
solve the time-independent Schroedinger equation. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
� distinguish between quantum scattering and scattering in classical 

physics 
� find an expression for the quantum scattering differential cross 

section. 
 
3.1 Quantum Scattering 
 
We start our analysis by considering a Hamiltonian of the form, 

         
  3.1 

where  is the Hamiltonian of a free particle of mass m, 

10 HHH ��

0H
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  3.2 
 is due to a source of scattering.  

 

Assuming  is an eigenstate of , we can write, 

        
  3.3 
 
If the eigenstate of the system described by H (scattering of the particle) 
is written as , then, we can write the Schroedinger equation as, 

      
  3.4 
Then, we can write 

      

  3.5 
We notice that  as .  
 

The operator  is singular when  corresponds to . 

To take care of the singularity, we make E a little bit complex, by 

making the transformation . Hence, we arrive at the 
Lipmann-Schwinger equation: 

     

  3.6 
where  is a small positive real number.  
 
We can convert equation 3.6 into an integral equation. To achieve this, 
let us multiply equation 3.6 on the left by . Then, 

 
 

The left hand side is the projection of the wavefunction  in the 
direction of the vector r. Recall that  can be 
seen as the component of b in the direction of a, multiplied by the 

magnitude of a. Hence, and . We insert 
the completeness relation in three dimensions (refer to equation 4.10, 
Module 1, Unit 4, the relation for 1-dimension) . The 

resulting expression is an integral equation, 
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  3.7 
The integrand has two matrix elements and the wavefunction itself. 
 
We can write the Schroedinger equation (scattering) as, 

      

  3.8 
This is the inhomogeneous Helmholtz�s equation, which can be inverted 
to, 

    

  3.9 

with .  is the Green�s function. 
 
For the Helmholtz problem, the Green�s function is, 

       

  3.10 
Inserting equation (   ) into equation 3.9, 

   

  3.11 
 
Comparing equations 3.7 and 3.11, 

     

  3.12 
 
In the case where  is a function of the position operators, 
       
  3.13 
(  implies a central potential) 
 
Again, making use of the completeness relation , 

    

  3.14 
Then, equation 13.11 becomes, 
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Let the  be a plane wave of wave (representing a free particle) vector 
k, then, the ket representing this state is , such that, 

       

  3.16 
where the normalisation is possible by taking the free particle in three 
dimensions to be a three-dimensional wave packet (understandably so in 

quantum mechanics). The normalisation constant is . 
 
Hence,  

  

         
  3.17 
 

 

 

  
The approximation holds because the square of the ratio r� /r tends to 
zero. 

 

 
Thus, for , i.e., at a point far away from the scattering region, to a 
first order approximation, 

        

  3.18 
If we define  such that the particles whose motion is defined by this 
vector have the same energy as the incoming particle, propagating from 
the scattering region to the point of observation. 
  
where r/r is a unit vector in the direction of r, that is, directed from the 
scattering region to the observation point. 

 
With the approximation, in equation (3.15), 
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Equation 3.15 in the limit  becomes, 

 

  3.20 
The first term is the incident wave, and the second a spherical wave with 

the source the scattering region.  is the wave propagating away from 

the scattering region.  propagates towards the scattering region and is 
therefore, not physically realisable. We conclude, therefore, that, far 
from the scattering region, 

    

  3.21 
with  

  

       

  3.22 
 
The differential cross-section, , is the fraction of the number of 
incident particles to the number scattered into an element of solid angle 

.  
 
The total cross-section, , corresponds to scatterings through any 

scattering angle, , where differential cross-section = 

. 
 
The particle flux associated with  is, 

  

For the incident wavefunction, 

  

and  
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and 

  

  

  

 
Thus, the differential cross section is, 

 

 
4.0 CONCLUSION 
 
In this Unit, you learnt the theory of quantum scattering. In this case, the 
incident particle as well as the scattering source istreated as waves. You 
were able to identify the differential cross-section, which is the fraction 
of the number of incident particles to the number scattered into an 
element of solid angle as well as the total cross-section,  corresponding 
to scatterings through any scattering angle. 
 
 
5.0 SUMMARY 
 
In this unit, you have learnt how to: 
 
� find an expression for the scattered wave function due to a given 

incident wave function. 
� find the expressions for the differential cross-section and the total 

cross-section corresponds to scatterings through any scattering 
angle. 

 
SELF-ASSESSMENT EXERCISE 1 
 
How is the completeness relation in Module 1, Unit 4 related to the one 
you encountered in this unit? 
 
Answer to Self-Assessment Exercise 1 
 
The summation in the expression in Module 1, Unit 4 becomes an 
integral in this Unit as we are dealing with a continuous function, very 
much as inner product for continuous functions is an integral. 
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6.0 TUTOR-MARKED ASSIGNMENT 
  
1. In the theory of quantum scattering, what do you understand 

about differential cross-section and total cross section? 
2. Why is it that you cannot normalise a free particle? 

3. The operator  is singular when  corresponds to . 

How do you take care of the singularity? 
4. Define the terms (a) differential cross-section (b) total cross-
 section. 
5. Find an expression for the differential scattering cross-section in 

the scattering of particles by a central potential .  
 
7.0 REFERENCES/FURTHER READING 
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UNIT 4  SCATTERING II - THE BORN    
  APPROXIMATION 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 The Born Approximation 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading 
 
1.0 INTRODUCTION 
 
In Born approximation, instead of taking the total field as the incident 
field, we take the incident field. This approximation then works when 
the scattered field is small compared to the incident field in the scatterer. 
In other words, the scattering is weak, and hence, the total wavefunction 
is not substantially different from the incident wavefront. In addition, 
the outgoing flux is observed sufficiently far away from the scatterer.  
 
2.0 OBJECTIVES 
 
At the end of this Unit, you will be able to: 
 
� state the assumptions of the Born approximation  
� find the differential cross section for a given scattering potential 

in the Born approximation. 
 
3.0 MAIN CONTENT 
 
3.1 The Born Approximation 
 
You must have noticed that , (equation 3.22), depends on the 
wavefunction , which is not yet determined. However, if the 
scattering is weak, we may take the total wavefunction as being 
almost the same as the incident wavefunction, that is, 
  

( ’, )f k k
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  4.1 
or 

        

  4.2 
In the large r limit, we recall equation (   ) 

  

which becomes 

 

  4.3 
and 

  

     

  4.4 
Observe that this is the Fourier transform of the scattering potential  
with respect to the wave vector . 
Let this wave vector be . 
For a spherically symmetric potential,  

  

  

having integrated over , with being the volume 
element in spherical-polar coordinates. 
 
If ,  
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But  
 since the energy is conserved. When two vectors of equal length 

are added, the sum is equal to . Their difference is 
. 
 
Therefore, 
  
This is referred to as the momentum transfer, which is the amount of 
momentum one particle gives to another. 
 
Example 1 
Find the differential cross section for the Yukawa potential 

. 

Solution 1 
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Therefore, 

  

   

 
 
4.0 CONCLUSION 
 
In this unit, you have learnt the condition under which the Born 
approximation holds, that is, if the scattering is weak, we may take the 
total wavefunction as being almost the same as the incident 
wavefunction You have also learnt how to find the expression for the 
differential cross-section for a given potential. 
 
5.0 SUMMARY 
 
In this Unit, you have learnt the following: 
 
� in what limit the Born approximation is valid 
� how to find the differential cross section for a given potential 
 
SELF-ASSESSMENT EXERCISE 1 
 
Find the differential cross-section for the Coulomb Potential. 
 
Solution of Self-Assessment Exercise 1 

If we allow the , but such that  then, the Yukawa 

potential  becomes  

which is the Coulomb potential. Then, the Bohr differential cross-
section is 

 

 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. Define the term momentum transfer. 
2. What are the assumptions made in the derivation of the Born 
 Approximation? 
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3. A spherically-symmetric potential takes the constant value  for 
, and zero elsewhere. Find the differential cross section 

for this potential in the Born Approximation. 
 
4. Using the Born approximation approach for the potential, 

 ,   

  a. Write down the expression for the scattering amplitude and show 
 that  

  

(Hint: note that the standard integral    and 

)  

  b. Establish that the total cross-section  

 
5. With the aid of the Born Approximation, find the scattering 

amplitude  for the truncated Coulomb potential,

;  and  for . Find an 

expression for the scattering amplitude at very small values of  

and hence, deduce the approximate value of  at which the 

differential cross-section has fallen to one-third of its forward 

value. Take . 
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UNIT 5   SCATTERING III - PARTIAL WAVE   
  ANALYSIS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Partial Wave Analysis 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading 
 
1.0 INTRODUCTION 
 
In Quantum Mechanics, every physically observable is associated with a 
Hermitian operator. The physically observable properties include 
position, time, energy, angular momentum, etc. Quite unlike the case 
with Classical Mechanics, not all physically observable properties of a 
quantum-mechanical system can be measured precisely simultaneously. 
This is due to the Heisenberg uncertainty principle. If any two 
observable physical properties can be measured simultaneously with 
infinite accuracy, then their operators must commute. Indeed, you will 
get to know that the two such observables can have the same 
eigenvectors. In this unit, you will also learn how to find the matrix 
elements of an operator in a given quantum-mechanical state. Thus, you 
will be able to calculate the expectation value of the physically 
observable property in such a state. In addition, you will learn about 
outer product of two vectors as well as the projection operator. 
 
In Born approximation we assume the scattering is weak, and hence, the 
total wavefunction does not substantially differ from the incident 
wavefront. Put another way, the outgoing flux is sufficiently far away 
from the scatterer. As such, instead of the exact wavefunction, the 
Schroedinger equation is solved by a Green�s function approach, 
excluding the possibility of double or multiple scattering. In partial wave 
analysis, we obtain the cross section without imposing any limitation on 
the strength of the scattering. We shall assume that the potential is 
spherically symmetric, ensuring the conservation of the angular 
momentum of the incident particle. The angular momentum of the 
incoming particle is the same before and after scattering. The problem is 
essentially that of a central potential, and the spherical harmonics come 
in useful once again. 
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2.0 OBJECTIVES 
�

At the end of this unit, you shouldbe able to: 
 
� write the partial wave amplitudes for a given scattering problem  
� calculate the scattering amplitude for a given scattering problem  
� obtain the differential cross-section for a given scattering 

problem  
� find the total cross-section for a given scattering process  
� write the partial-wave amplitudes in terms of the phase-shifts 
� calculate the phase shift for a given scatterer. 
 
3.0 MAIN CONTENT 
 
3.1 Partial Wave Analysis 
 

Spherical harmonics are of the form, . We recall that the solution 
of the Schroedinger equation in spherical-polar coordinates,  
is, 

  
We have seen that, 

  

As we often do in Quantum Mechanics, we first consider r very large. 
Then,  in this limit, and, 

       

  5.1 
or,  

      

  5.2 

where . 
 
Therefore, 

        
  5.3 
We set D equal to zero as the second term on the right represents an 
incoming spherical wave. Therefore, 
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  5.4 
an outgoing spherical wave. 
 
Let us now consider the intermediate region in which  is important, 
but  is still effectively zero. 

     

  5.5 

     

  5.6 
This equation can easily be transformed to: 

     

  5.7 
The solution of this equation is of the form, 

       
  5.8 

where  and  are the spherical Bessel functions, generalized sine 
and cosine functions: 

 ;   

  5.9 

In the limit ,  exists, as the limit  exists, but  

becomes inadmissible. 
 
In the limit ,  

      

  5.10 

      

  5.11 
We can also write, 
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and  
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which are the spherical Hankel functions. Respectively, they represent 
outgoing and incoming wave; generalized  and  waves. Yet 
again, we drop the incoming wave and therefore conclude that, 

     

  5.14 
If we align the incident ray with the z-axis,  is the incoming 
wave. 
In the case where , that is, the spherically symmetric case, the 

dependence on  becomes trivial (recall that the  part of  

involves m ( ), and 

  

  5.15 

In this case, m = 0, and , and we have set 

 

Hence, since  is a function of , 

       

  5.16 

Then we only need to calculate the �s. 
 
If we also write the incoming wavefunction as, 

      

  5.17 
Equation 5.15 becomes, 

   

  5.18 

There is no need to include  in the expansion for the incoming 

wavefunction as it tends to infinity as  tends to zero.  
 

, the complex parameter is needed in the partial wave method. In one-
dimension, when there is a reflection at an infinite potential, the incident 
wave suffers a phase shift as it is reflected, so that if the incident wave ~ 

 then the reflected wave ~ , where the factor 2 in the phase 
shift is out of convention.  
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In the case of three-dimensional scattering, and where the potential is 

spherically symmetric, the change due to scattering is a phase shift of 
. 
The l-component is  

       
  5.20 
For large ,  

     

  5.21 
and  

     

  5.22 

 

where  

        
  5.23 
and  

  

  5.24 

In the case where there is no flux loss, . If there is flux 
loss due to absorption of the incident beam, then, 

        
  5.25 

with . In the no-flux loss case, all the  are equal to unity. 
 

In case you find in the literature, , the 

partial wave amplitude is correspondingly defined as, 

  

   5.26 
Example 1 
 
In a purely elastic scattering process, only the s- and p-waves are 
involved. Both pure s-wave and p-wave scattering are symmetric, is it 
possible to for the scattering to be unsymmetric between the forward and 
the backward hemispheres? Under what condition will the differential 
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cross-section in the forward direction be less than in the backward 
direction? Define  

. 

 
Solution 1 
 
We know that, 

  

and  

  

If only s- and p-waves contribute, then, the  

  

  

Then, 
 

 

Since the s-wave which has  is isotropic (does not depend on ) 

and pure p-wave has  depends only on , both are 
symmetric. But the interference term depends on , and this is 
introduces asymmetry.  
 
The forward cross-section is, 

  

 
The backward cross-section is, 

  

For the backward cross-section to be larger than the forward cross-
section, 
  
 
4.0 CONCLUSION 
 
In this Unit, you have learnt we assumed that the potential is spherically 
symmetric, ensuring the conservation of the angular momentum of the 
incident particle. The angular momentum of the incoming particle is the 
same before and after scattering. Now a central potential problem, we 
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were able to take advantage of spherical harmonics once again. You 
were able to calculate the scattering amplitude for a given scattering 
problem, obtain the differential cross-section for a given scattering 
process. 
 
5.0 SUMMARY  
 
In this study session, you have learnt how to: 
 
� write the partial wave amplitudes for a given scattering problem. 
� calculate the scattering amplitude for a given scattering problem. 
� obtain the differential cross-section for a given scattering 

problem. 
� find the total cross-section for a given scattering process. 
� write the partial-wave amplitudes in terms of the phase-shifts. 
� calculate the phase shift for a given scatterer. 
 
 
SELF-ASSESSMENT EXERCISE 1 
 
What do you understand by partial-wave amplitude? 
 
Solution to Self-Assessment Exercise 1 
 
This is the complex number which multiplies the Legendre polynomial 

, and  in the expansion of the scattering amplitude over 
the angular number l. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. State the meanings of all the symbols in the expression for the 
 partial-wave expansion, 

  

 
2. At a certain energy in a scattering process there is a resonance in 
 the s-wave while the p-wave phase-shift is . Assuming the 

 scattering is purely elastic  for all and that there is no 
 significant scattering in any other partial wave, 
 
(a) Write the  and wave partial wave amplitudes. 
(b) Find the scattering amplitude. 
(c) Obtain the elastic cross-section by integrating over solid angle. 
(d) Find the total cross-section. 
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Take . 

 
3. In a scattering process, it is observed that there is significant 
 scattering only in the s-wave and one other partial wave, l. 
 Assuming that there is no scattering in any other partial wave and 
 that there is no loss of flux, 

(a) Write down, in terms of the partial wave amplitudes and , 
an expression for the differential cross-section as a function of 
. 

(b) Find the extrema of the differential cross-section, such that 

 remains unevaluated. Show that these occur at the 

turning points of  and at angles such that,  

  
 (i) 

(c) Write the partial-wave amplitudes in terms of the phase-shifts and 
prove that at the turning points satisfying equation (i),  

   

Take . 

 
4. Particles of a given energy scatter on an infinitely hard sphere of 
 radius a 
(a) Calculate the phase shift ��(k). 
(b) For s-waves (�=0), obtain the expression for the total cross-
 section.  
(c) Consider the case of low energies (ka<<1), show that the cross � 

section is four times the geometrical cross � secti on of  the rigid 
sphere. 
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Adding , 

 

  

 

 

   

   

Note that  

  

Hence, 

  

Finally, we can write 
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Let , so that . Then, we can write 

 

  

  

  

Hence,  

  

You can also show that (bearing in mind that the expression is 
symmetric for x and y) 

  

 

 

  

  

  

 

 

cos
r

z
,

9
�

9
2 2

1
2

tan
x y

x x z

, 
 � �9 9 �
� � �9 9 � �

2 2

2

x y
v

z

�
�

2 2

1 2

2

v x x

x z z

9
�  �

9
2 2

1 1 1
2

tan tan tan
x y v

v v
x x z x v x

, 
 
 
9 9 � 9 9 9
� � �

9 9 9 9 9

1/2 1/22 2 2 2 2 2 2
2 2

2 2 2

1

1
1

x x

v x y x y x y
z z

z z z

�  �
� � � � �� �� � �

�� � � �� �
� � � �� �

1/2 1/22 22 2 2 2
2 2 2 2

2 2

1

1 tan
( )

x x x

v rx y x y
z x y z

z z

,
�  � �
� � � � �� �

� �� � � �
� � � �

2

sin cos sin cos 1
cos cos

tan sin / cos

r

r r

, � , �
, �

, , ,
� � �

1
cos cos

x r

,
, �

9
�

9

2 2

sin sin 1
cos sin

tan sin / cos

y r

y r r r

, , �
, �

, , ,
9
� � �

9

1/ 2 1/ 22 2 2 2
1 2 2 1/ 2 2 2 1/2

2 2 2

1 1
( ) ( )

v x y x y
z x y x y

z z z z z z z

� � � �9 9 � 9 �

� � � � 
 � � 
� � � �9 9 9� � � �
2 2

1 1 1
2

tan tan tan
x y v

v v
z z z z v z

, 
 
 
9 9 � 9 9 9
� � �

9 9 9 9 9
1/2 1/22 2 2 2

1/2 2 22 2

2 2 2 2
2 2 2

22

1 1

1 ( )1

x y x y

z zx y
zv z z x y x y zz
zz

� � � �� �
� � � �� �� � � � ��  
 � 
 � 
� �� � ��� � � ��� �
� �

1/22 2

2

2 2 2 2

cos tan 1 1
cos sin / cos sin

( )

x y
z

z r

x y z r r r

, ,
, , , ,

� ��
� �
� �� 
 � 
 � 
  � 

� �

1
sin

z r

,
,

9
� 


9



PHY 309           QUANTUM MECHANICS I  
 

162 
 

 

  

  

 

 

 

  

  

 

 

 

 

 

 

 

 

 

     

1 1
2 2 22 2 2 2

2

1 1
tan tan

1

y y w y y y

x yx x x w x x x x x yy
xx

� 
 
9 9 9 9 
 
� �� � �  
 � �� � �9 9 9 9 �� �� �� � �
� �

2 2 2 2 2 2 2 2 2 2

sin sin sin sin

sin cos sin sin sin (cos sin )

r r

r r r

, � , �
, � , � , � �

 


� �
� �

2 2

sin sin 1 sin

sin sin

r

r r

, � �
, ,



� � 


1 sin

sinx r

� �
,

9
� 


9

1 1
2 2 2 2 2

2

1 1 1 1
tan tan

1

y y w x

x yy y x w x y x x x yy
xx

� 
 
9 9 9 9 � �� � �  � �� � �9 9 9 9 �� �� �� � �
� �

2 2 2 2 2 2 2 2 2 2

sin cos sin cos

sin cos sin sin sin (cos sin )

r r

r r r

, � , �
, � , � , � �

� �
� �

2 2

sin cos 1 cos

sin sin

r

r r

, � �
, ,

� �

1 cos

siny r

� �
,

9
�

9

0
z

�9
�

9

r

x r x x x

, �
, �

9 9 9 9 9 9 9
� � �

9 9 9 9 9 9 9
1 sin

sin cos cos cos
sinr r r

�
, � , �

, , �
9 9 9

� � 

9 9 9

r

y r y y y

, �
, �

9 9 9 9 9 9 9
� � �

9 9 9 9 9 9 9
1 cos

sin sin cos sin
sinr r r

�
, � , �

, , �
9 9 9

� � �
9 9 9

1
cos sin

z r r
, ,

,
9 9 9
� 


9 9 9

1 sin 1 sin
sin cos cos cos ,sin sin cos sin ,

sin sinr r r r r r

� �
, � , � , � , �

, , � , , �
� 9 9 9 9 9 9

. � � 
 � �� 9 9 9 9 9 9�
1

cos sin
r r

, ,
,

9 9 �
 �9 9 �



PHY 309                    MODULE 4 
 

163 
 

+ 

 

     

Expanding and rearranging, we arrive at, 

  

Rearranging, 
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 Appendix 2 
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Adding equations ( ) and (  ), 
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