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INTRODUCTION 

 

You would have become familiar with concepts of Statistics and 

Mechanicsas the prerequisite to this course as you are encouraged to 

develop an enquiring attitude towards the Mechanics of Statistics with 

which you interact every day. 

 

It is the objective of this course to build upon the lessons learnt in the 

prerequisite coursesMecanics(PHY211,MTH251 and MTH102). 

 

 

THE COURSE: PHY 311        KINECTIC THEORY AND STATISTICAL MECHANICS 

 

This course comprises four Units distributed across two modules as 

follows: 

 

Module 1 is composed of 2 Units 

Module 2 is composed of 2 units 

 

In Module 1 Probability Spaces, Measure and Distribution are treated in 

Unit 1 while Unit 2 explains Distribution Of Random X1 covers 

expectation of random variables and Unit 2 is devoted to limit theorem.  

 

COURSE AIMS AND OBJECTIVES 

 

The aim of STT311 is to further intimate you with probability stochastic 

processes; particularly the theorems, the rules and their application. The 

Random, Probability and Distribution functions and their relevance to 

actual physical observations in the real world. 

 

You are therefore required to reciprocate by studying and working through 

this course conscientiously, upon completion of which you should 

confidently be able to: 

 

- Understand the meaning of probability space and its notation. 

- Define Sample space and event, and Event Space. 

- Discuss Probability Measure and State its Theorems 

- Discuss Probability Distribution for Continuous Random Variables 

- Understand the meaning of random variables 

- Classify random variables into discrete and continuous random 

variable with example 



 
 

- Define and state the properties of distribution function 

- State the distribution function for discrete and continuous random 

variables and solve example on each 

 

- Show the graphical representation of random variables 

- State the joint distributions for two random variables which are 

either both discrete or both continuous 

 

- State the independent of random variables for independent and 

dependent events 

- State the conditional probability function for discrete and 

continuous random variables 

 

- Solve related problems on the distribution of random variables 

spaces 

- Define Expectation of random variable  

- Express mathematically the Expected Value of Mean for discrete 

and continuous random variables 

 

- State and prove Theorems on Expectation 

- State Variance and Standard Deviation for Discrete and 

Continuous Random Variables. 

 

- Find the Mathematical Expectation of Moments and Moments 

Generation Function for Discrete and Continuous random variables 

 

- Find the characteristic function of a given random variable 

- Solve related examples on the mathematical expectation of random 

variables 

- State   and prove Chebyshev’s  inequality 

- Define  Convergence  of  random  variables  

- State  and  prove  some  theorems  on  convergence  in  measure  

- State  and  prove  weak  law  of  large  numbers  

- State  the  strong  law  large  numbers  

And in addition you will know: 



 
 

 

 

- The  meaning  of  probability  space  and  its  notation 

- Important   definition  of  sample  space, Event and  event  space  

- Probability measure  and  its  properties 

- Part  of  probability  distribution  of  a  continuous random  

variables  

- Meaning of random variables and its classification 

- Distribution functions for discrete and continuous random 

variables 

- Graphical representation of random variables 

- Joint distribution for discrete and continuous random variables 

- Independence and conditional probability of random variables 

- Worked examples on each concept of random variables 

- Meaning of Expectation for Discreet and Continuous random 

variables 

- Mathematical Expectation for discreet and continuous random   

variables    

- Expected Value for  Variance  and   Standard Deviation 

- Theorems on the  Expectation of  Random  Variables  

- Moment, Moment Generating  Function for  Discrete  and 

Continuous Random  Variables  

 

- Characteristic Functions of   Random Variables  

- Working examples on the Mathematical Expectation of Random 

Variables 

- Chebyshev’s Inequality 

- Convergence of Random Variables  

- Demovre’s Theorem  



 
 

- Central  limit Theorem  

- Weak law of Large Numbers 

- Strong law of Large  Numbers 

- Relevant examples on the theorems are treated 

 

WORKING THROUGH THE COURSE 

 

This course requires you to spend quality time to read. Whereas the 

content of this course is quite comprehensive, it is presented in clear, 

illustrative language that you can easily relate to. The presentation style 

might appear rather qualitative and descriptive. This is deliberate and it is 

to ensure that your attention in the course content is sustained as a terser 

approach can easily “frighten” particularly when new concepts are being 

introduced. 

You should take full advantage of the tutorial sessions because this is a 

veritable forum for you to “rub minds” with your peers – which provides 

you valuable feedback as you have the opportunity of comparing 

knowledge with your course mates. 

 

 

COURSE MATERIAL 

 

You will be provided course material prior to commencement of this 

course, which will comprise your Course Guide as well as your Study 

Units. You will receive a list of recommended textbooks which shall be an 

invaluable asset for your course material. These textbooks are however not 

compulsory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

STUDY UNITS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

TEXTBOOKS 

 

There are more recent editions of some of the recommended textbooks and 

you are advised to consult the newer editions for your further reading. 

 

DR.  R. A. Kasumu (2003)  Probability  Theory  (first  edition) 

Published  by  Fatol ventures  Lagos.  

 

Alexander M.  Mood et al (1974) Introduction to the Theory of Statistics 

(third  edition) 

Published  by Mc Graw Hill.   

 

Marry R Spiegel etal (2009) Probability and Statistics (third edition) 

Published by Mc Graw Hill   

 

Dr S. A.  Okunuga (1998) Probability Distribution 2 lecture Materials 

Published by Murray R. Spiegel et al 

 

  



 
 

 

ASSESSMENT 

 

Assessment of your performance is partly trough Tutor Marked 

Assessment which you can refer to as TMA, and partly through the End of 

Course Examinations. 

 

 

TUTOR MARKED ASSIGNMENT 

 

This is basically Continuous Assessment which accounts for 30% of your 

total score. During this course you will be given 4 Tutor Marked 

Assignments and you must answer three of them to qualify to sit for the 

end of year examinations. Tutor Marked Assignments are provided by 

your Course Facilitator and you must return the answered Tutor Marked 

Assignments back to your Course Facilitator within the stipulated period. 

 

 

END OF COURSE EXAMINATION 

 

You must sit for the End of Course Examination which accounts for 70% 

of your score upon completion of this course. You will be notified in 

advance of the date, time and the venue for the examinations which may, 

or may not coincide with National Open University of Nigeria semester 

examination. 

 

 

SUMMARY 

 

Each of the two modules of this course has been designed to stimulate 

your interest in probability stochastic processes through the fundamental 

conceptual building blocks in the study and practical application of 

Statistical Mechanics. 
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Module 1 
Unit 1: Basic Concept of Statistical Mechanics. 
1.0 Introduction 
2.0 Objective 
3.0     Main Content 
3.1 Elementary Probability Theory 
3.2 Entropy and Probability 
3.3 Concept of Statistical Mechanics 
3.4 Statistical Ensembles 
3.5 Distribution Frictions 
 
1.0 Introduction 

This unit focuses on Statistical mechanics, elementary definition SE 
probability theory, entropy and probability are highlighted. The concept 
of statistical mechanics and statistical ensembles with the relevant 
working examples on each concept are treated to make the learning more 
meaningful. 

 
2.1 Objective 
 At the end of this unit student should be able to: 
 Define and Understand the Probability terms. 
 Differentiate Entropy and Probability 
 State the Basic Concepts of Statistical Mechanics 
 Discuss the three types of stated Ensemble 
 Derive the Distribution Function for a System Obeying Classical Statistics. 

 
3.0   Main Contents  
 
3.1   Elementary Probability Theory 

Statistical mechanics is a branch of physics that applies probability 
theory, which contains mathematical tools for dealing with large 
populations, to the study of the thermodynamic behavior of systems 
composed of a large number of particles. We invariably compute the 
averages of physical quantities of interest and then establish the 
connection between these values and the experimentally observed 
values. So it is essential to know the basic concepts of probability theory. 
 

3.1.1 Basic Terminology 
Suppose we toss two coins together the possible outcomes can be listed 
as follows: 

 
First Coin H T 
2nd Coin H HH HT 
T TH TT 
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That is, there are four outcomes of this statistical experiment, which may be 
listed as: Ω = *(H,H), (H,T), (T,H), (T,T)+ 
The set of all the possible outcomes is called the sample space of the 
experiment and each of the element or individual outcome like ( HH, HT, TH, 
TT) that make up a sample space (Ω) is called sample point. 
 
Thus, we have four sample points in the Ω which is known as cardinality of Ω 
and is denoted by n (Ω) i.e. n (Ω) = 4. 
 
An event is a possible outcome in a random experiment. It is thus the subset of 
the sample space and is usually associated with a specified rule, for example the 
event of getting an odd number in a throw of a die is (1,3,5) while the event of 
obtaining the same faces in a throw of two coins is {HH, TT}. 
We introduce the basic operations of Union and Intersection, which can be used 
to define new events. 
E1UE2  Either E1 or E2 occurs, or both occur (at least one of E1 or E2 occurs) 

E1nE2 Both E1 and E2 occur. If there are no sample points common to E1 

and E2, the E1 n E2 = Ø and the events are said to be disjoint or mutually 
exclusive. It can be shown below. 
 
 
 
 
 
 
                    Fig a                                            fig b                                     fig c 
 
 
From the fig (a) the shaded portion represent E1 u E2 (b) The Shaded portion 

represents E1nE2 and (c) There is no overlap between E1and E2 

From the figure (b), we have Ω = E1u E2 and from the first figure 
Ω =  𝐸1 𝑢 𝐸2 𝑢  𝐸3 𝑢 𝐸4 𝑢 𝐸5 
In general, if the distinct simple events are 𝐸1,− − −− −− 𝐸𝑛, we have  

Ω =  𝐸1𝑈𝐸2− −− −− − 𝑈𝐸𝑛 =  𝐸𝑖

𝑛

𝑖−1

 

Having introduced the concept of a sample space, we now define the probability 
of an event. 
Let us consider the simple case in which Ω has a finite number of points and all 
the outcomes are equally likely. Let A be any subset of Ω. Then we define the 
probability of the event A to be 
P (A) =  n(A) 
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  n(Ω) 
 
Example I: (a) An unbiased die is rolled write down the sample space for the 
experiment (ii) n coins are tossed, what is the sample space? 
Solution 
(i) Ω (Die) = { 1,2,3,4,5,6} 

n (Ω) = 6 
(ii) Ω(Coin) = *H,T+ 
 n(Ω) = n(2)=2n 
 
Example 2: Two coins are tossed. What is the probability that (a) two head 
appears (b) at least one tail appears. 
Solution 
Ω = *HH, HT, TH, TT+ 
n (Ω) = 4, n(HH) = 1 
P (HH) = 1/4 
It is easy to verify that: 
i. O ≤ P(A) ≤ = 1 and (ii) P(Ω) = 1, P (Ø) = 0 
E1 and E2 are called independent event. If P 𝑃(𝐸1 𝑛 𝐸2)  =  𝑃(𝐸1) 𝑃(𝐸2) 
In other words, if the probability of the simultaneous occurrence of two events 
is the product of their individual probabilities, then they are independent 
events. 
 
3.1.2 Elementary Combinatorial 
We begin by stating the multiplication rule. 
 
Multiplication Rule 

If there are mways in which an event U can take place, and  n ways in which an 
independent event V can occur, then there are mn ways in which the two events 
can occur jointly. An alternative formulation of this result is that if an operation 
can be performed in m ways and after it is performed in any one of these ways, 
a second independent operation can be performed in n ways. Then the two 
operations can be performed in m by n ways. 
Example 3: Four coins are flipped in succession. Find the total number of 
possible outcomes. 
 
Solution 
There are two possible outcomes head (H) or Tail (T) fit each case,Hence, the 
total number of possible outcomes=  2 × 2 × 2 × 2 = 16. 
When we are dealing with a large collection of objects, it is often necessary to 
complete the number of permutation and combinations of the objects. 
 
PERMUTATIONS 
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A permutation is any arrangement of a set of objects in a definite order. The 

number of permutation of n elements taken r at a time is   
𝑛 !

(𝑛−𝑟)!
 

It is denoted by the symbol 𝑃𝑛 𝑟Combinatorial. 

 
A combination is a selection of n distinct objects without regard to order. The 

number of combination of n element taken r at a time is 
𝑛 !

(𝑛−𝑟)! 𝑟!
it is denoted 

by 𝐶𝑛 𝑟or simply  𝑛
𝑟
  

These are just the binomial coelficients because they appear to newtons 
binomial expansion 

(𝑥1  +  𝑥2)𝑛 =  𝑥1  +  𝑛𝑥1
𝑛−1𝑥2  +  … . + 𝑥2

𝑛 =  .
𝑛

𝑟
/ 𝑥1

n−r𝑥2
r

𝑛

𝑟=0

 

     
Where n is a positive integer 
Example 4: Seven physicists assembled for a meeting shake hands with one 
another. How many handshakes take place? 
 
Solution 
This is equal to the number of ways of choosing two physicist from a set of 
Seven, which is  

𝐶7
2 =

 7!

2!  (7 − 2)!
=

7!

2!  5!
=

7 × 6 × 5!

2 × 1 × 5!
= 21 

 
3.2 Entropy and Probability 
 (A statistical view) 
 Entropy ~ a measure of the disorder of a system 
 A state of high order = low probability 
 A state of low order = high probability. 
In an irreversible process, the universe moves from a state of low probability to 
a state of higher probability. 
We will illustrate the concepts by considering the free expansion of a gas from 
volume 𝑉𝑖to volume𝑉𝑓 . The gas always expands to fill the available space. It 

never spontaneously compresses itself back into the original volume. 
First two definitions: 
 
Microstate: A description of a system that specified the properties (Position 
and/or momentum, etc) of each individual particle. 
 
Macrostate: A more generalized description of the system, it can be in terms of 
macroscopic quantities, such as P and V, or it can be in terms of the number of 
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particles whose properties fall within a given range. In general, each macrostate 
contains a large number of microstates. Examples: Imagine a gas consisting of 
just 2 molecules. We want to consider whether the molecules are in the left or 
right half of the container. 
 
 
 
 
 
 
 
There are 3 macrostates molecules on the left, both on the right, and one on 
each side. 
  

1 
2 
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There are 4 microstates: 
LL, RR, LR, RL 

How about 3 molecules? Now we have: 
 LLL,   (LLR, LRL, RLL),   (LRR, RLR, RRL),   RRR 
 
 (all L)       (2L, 1R)      (2R, 1L)   (all R) 
i.e.   8 microstates,,      4 macrostates. 
 
How about 4 molecules? Now there are 16 microstates and 5 macrostates. 

(all L)  (3L, 1R)  (4C, 2R) (1L, 3R) (all R) 
 
1   4           6  4  1 
Number of microstates. 

In general         N W M 
1 1         1 2 2 
1 2 1        2 4 3 
1 3 3 1       3 8 4 
1 4 6 4 1      4 16 5 
1 5 10 10 5 1     5 32 6 
1 6 15 20 15 6 1    6 64 7 
1 7 21 35 35 21 7 1   7 128 8 
1 8 28 56 70 56 28 8 1  8 256 9 
 
           2N N+1 
This table was generated using the formula # of permutations for picking n 
items from N total: 

𝑊𝑁.𝑛 =
𝑁!

𝑁! (𝑁 − 𝑛)!
 𝑖. 𝑒.𝑊6.2 =

6!

2! 4!
= 15 

 

“Multiplicity” 
Fundamental Assumption of Statistical Mechanic:  
All microstates are equally probable. 
 
Thus, we can calculate the likelihood of finding a given arrangement of 
molecules in the container. 
Thus, events such as the spontaneous compression of a gas (or spontaneous 
conduction of heat from a cold body to a hot body are not impossible, but they 
are so improbable that they never occur. We can relate the # of microstates W 
of a systems to its entropy S by considering the probability of a gas to 
spontaneously compress itself into a smaller volume. If the original volumes is 
𝑉𝑖 , then the probability of finding N molecules in a smaller volume 𝑉𝑓  is  
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑊𝑓

𝑊𝑖
 =  

𝑉𝑓
𝑉𝑖

  

𝑁

 

𝑙𝑛  
𝑊𝑓

𝑊𝑖
  = 𝑁𝐼𝑛  

𝑉𝑓
𝑉𝑖

  = 𝑛𝑁𝐴  𝑙𝑛  
𝑉𝑓

𝑉𝑖
   

We have seen for a free expansion that ∆𝑆 = 𝑛𝑅𝐼𝑛  
𝑉𝑓

𝑉𝑖
   

So 

∆𝑆 =  𝑅 𝑁𝐴
  𝑙𝑛  

𝑊𝑓
𝑊𝑖

  = 𝐾𝑙𝑛  
𝑊𝑓

𝑊𝑖
   

Or 
𝑆𝑓 − 𝑆𝑖 = 𝐾 𝑙𝑛  𝑊𝑓 − 𝐾𝑙𝑛 (𝑊𝑖) 

 
Thus, we arrive at an equation first deduced by Ludwig Boltzmann, relating the 
entropy of a system to the number of microstates. 

𝑆 =  𝐾𝑙𝑛 (𝑊) 
He was so pleased with this relation that he asked for it to be engraved on his 
tombstone. 
 
3.3 Concept of Statistical Mechanic 
Statistical mechanics provides a framework for relating the microscopic 
properties of individual atoms and molecules to the macroscopic bulk 
properties of materials that can be observed in everyday life, therefore 
explaining thermodynamics as a result of classical and quantum-mechanical 
description of statistics and mechanics at the microscopic level. 
 
Statistical Mechanicsprovides a molecular level interpretation of macroscopic 
thermodynamic quantities such as work, heat, free energy, and entropy. It 
enables the thermodynamic properties of bulk materials to be related to the 
spectroscopic data of individual molecule. This ability to make macroscopic 
predictions based on microscopic properties is the main advantaged of 
statistical mechanic over classical thermodynamics. Both theories are governed 
by the second law of thermodynamics through the medium of entropy. 
However, entropy in thermodynamics can only be known empirically, whereas 
in statistical mechanical, it is a function of the distribution of the system on its 
microstates. 
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The essential problem in statistical thermodynamic is to calculate the 
distinction of a given amount of energy E over N identical systems. The goal of 
statistical thermodynamics is to understand and interpret the materials in term 
of the properties of their constituent particles and the interactions between 
them. 
This is done by connecting thermodynamic functions to Quantum-Mechanical 
Equations. Two central quantities in statistical thermodynamic are the 
Boltzmann factor and the partition function. 
Lastly, and most importantly the formal definition of entropy of a 
thermodynamic system from a statistical perspective is called statistical 
entropy, and is defined as: 
  

𝑆 = 𝐾𝐵𝐼𝑛 Ω 
Where 
  𝐾𝐵  = Boltzmann’s constant 1.38066 𝑥 10−23  𝐽𝐾−1 𝑎𝑛𝑑 Ω  is the 
number of microstates corresponding to the observed thermodynamic 
macrostate. This equation is valid only if each microstate is equally accessible 
(each microstate has an equal probability of occurring). 
In conclusion the, concepts of statistical mechanics which are critically 
important and underline all other results in order of dependence are the 
following. 
1. Conservation of energy 
2. Equilibrium, Temperate and Entropy 
3. The Boltzmanndistribution 
4. Multiplicity defies energy (or entropy attracts heat) 
 
3.4 Statistical Ensembles 

The modern formulation of statistical mechanics is based on the 
description of the physical system by an ensemble that represents all 
possible configurations of the system and the probability of realizing each 
configuration. 
Each ensemble is associated with a partition function that, with 
mathematics manipulation, can be used to extract values of 
thermodynamic properties of the systems. According to the relationship 
of the system to the rest of the universe, one of the three general types of 
ensemble may apply in order of increasing complexity. 

- Micro canonicalEnsemble: This describes a completely isolated system, 
having constant energy as it does not exchange energy or mass with the 
rest of the universe. 

- Canonical Community: This describes a system in thermal equilibrium 
with its environment. It may only exchange energy in the form of heat 
with the outside. 

- Grand Canonical: Used in open systems which exchange energy and mass 
with the outside? 
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Summary of 
Ensembles us in 
statistical mechanics 

Ensembles 
Microcanonical Canonical Grand Canonical 

Constant Variable 𝐸,𝑁,𝑉°𝐵 𝑇,𝑁,𝑉°𝐵 𝑇, 𝜇,𝑉°𝐵 
Microscopic 
Features 

Number of 
Microstates 

Ω 

Canonical 
Partition 
Function 

𝑍 =  𝑒−𝛽∈𝐾

𝐾

 

Grand Canonical 
Partition Function 

≡ =  𝑒−𝛽(∈𝐾−𝜇𝑁𝐾)

𝑘

 

Macroscopic 
Function 

𝑆 = 𝐾𝛽𝐼𝑛𝛺 𝐹 = −𝐾𝛽𝑇 𝐼𝑛 𝑍 𝐹 − 𝐺 = −𝑃𝑣
= −𝐾𝛽𝑇 𝐼𝑛 ≡ 

 
Micro canonical Ensemble: In this ensemble N, V and E are fixed. Since the 
second law of thermodynamics applies to isolated systems, the first case 
investigated will correspond to the case of Micro canonical ensemble describes 
an isolated system. 
The entropy of sucha system can only increase, so that the maximum of its 
entropy corresponds to an equilibrium state for the system. Because an isolated 
system keeps a constant energy, the totalenergy of the system does not 
fluctuate. Thus, the system can access only those of its micro-states that 
correspond to a given value E of the energy. The internal energy of the system is 
then strictly equal to its energy. 
Let Ω (E) be the number of microstates corresponding to the value of the 
system’s energy. The macroscopic state of maximal entropy for the system is 
the one in which all micro-states are equally likely to occur with 
Probability I/Ω(E), during the system fluctuations. 

𝑆 = −𝐾𝐵   
1

𝛺(∈)
 𝐼𝑛 

1

𝛺(∈)
 

𝛺(∈)

𝑖=1

 

 

= 𝐾𝐵  𝐼𝑛  𝛺(∈)  

  
Where, S is the system entropy and 𝐾𝛽  is Boltzmann’s constant. 

Canonical Ensemble: Main article in canonical ensemble N,V and T are fixed. 
Invoking the concept of the canonical ensemble, it is possible to derive the 
probability Pi that a macroscopic system in thermal equilibrium with its 
environment, will be in a given microstate with energy Ei according to the 
Boltzmann distribution. 
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𝑃𝑖 =
𝑒−𝛽𝐸𝑖

 𝑒−𝛽𝐸𝑖
𝑗𝑚𝑎𝑥
𝑖

 

Where  

𝛽 =
1

𝐾𝐵𝑇
 

The temperature T arises from the fact that the system is in theronal 
equilibrium with its environment. The probabilities of the various microstate 
must add to one and the normalization factor in the denominator is the 
canonical partition function 

𝑍 =  𝑒−𝛽𝐸𝑖

𝑖𝑚𝑎𝑥

𝑖

 

where Ei are the energy of the ith microstate of the system. The partition 
function is a measure of the number of states accessible to the system at a given 
temperature. 
The article canonical ensemble contains a derivation of Boltzmann factor and 
the form of the partition function from first principles. 
To sum up, the probability of finding a system at temperature T is a particular 
state with energy Ei is 

𝑃𝑖 =
𝑒−𝛽𝐸

𝑍
 

Thus the partition function looks like the weight factor for the ensemble. 
 
3.5 The distribution function. 
 Consider an ideal monoatomic gas made up of N particles enclosed in a 
volume V and having total internal energy U. The state of the system at any time 
t is represented by a point in a 6N dimensional phase space. This means that 

every particle is associated with six dimensional phase space, also called the 𝜇 

space,𝜇Stands for the first letter of molecule. The particles are moving 

independently of each other and the contributions of individual particles 
remain separate. 

To give a microscopic description of the system, we divide the 𝜇-space into 

cells of volume 𝑕3 . Recall that in classical statistics, we can choose h as small as 
we like. Each particle will be found to occupy a cell in this network. Suppose the 
cells are numbered 1,2,…..let the energy of a particle in the ith cell be denoted 
by 𝜀𝑖 . Then, we have and  

𝑁 =  𝑛𝑖
𝑖

− −− −(5.6.1) 

𝑈 =  𝑛𝑖𝜀𝑖 −− −−

𝑖

 (5.6.2) 

The macrostate (𝑁,𝑉,𝑈) can be realized in a number of different ways. In order 
to proceed with our argument, we advance the hypothesis that all microstates 
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are equally probable. In other words, equal phase elements in phase space are 
associated with equal probabilities it corresponds to the assumption that the 
faces of a die are equally probable. 
 
This hypothesis is known as the postulate of equal a priori probabilities. 
The thermodynamic probability W is simply the number of ways of placing N 
distinguishable objects in cells such that there are no objects in the first cell, 𝑛2 
in the second and so on. This number is given by 
 

𝑊 =  
𝑛!

𝑛1!𝑛2! −−
=

𝑁!

 𝑛𝑖 !𝑖=1
− −− −(5.6.3) 

 

We can easily prove this result by noting that there are .𝑛
𝑛𝑖
/ number of ways of 

chossing ni objects that are to be placed in the first cell. Then we will be left 

with (N-ni) objects. Out of these (N-ni) objects there are .𝑛−𝑛𝑖
𝑛2

/ ways of 

chossing 𝑛2 objects to be placed in the second cell. We can continue in this 
fashion till all objects are placed in given cells. Then the total number of ways 
 

𝑊 =   
𝑁

𝑛𝑖
  
𝑁 − 𝑛1

𝑛2
  
𝑁 − 𝑛1 − 𝑛2

𝑛3
 − − − 1 − −− (5.6.4) 

 

 

𝑊 =
𝑁!

(𝑁 − 𝑛𝑖)!  𝑛𝑖 !

(𝑁 − 𝑛𝑖)!

(𝑁 − 𝑛𝑖 − 𝑛2)𝑛2!

(𝑁 − 𝑛𝑖 − 𝑛2)!

(𝑁 − 𝑛𝑖 − 𝑛2 − 𝑛2)! 𝑛3!

=
𝑁!

𝑛1!  𝑛2!
−− −−(5.6.5) 

Symbolically, we write this as . 𝑁
𝑛1 ,𝑛2

/ and call it a multinomial coefficient. We 

know that equilibrium corresponds to maxi maximum of the thermodynamic 
probability W. since 𝑆 =  𝐾𝐵𝑙𝑛𝑊, it is more appropriate to look at 𝑙𝑛𝑊 rather 
than W itself. 
(Since 𝑙𝑛𝑊 is a monotonically increasing function of W, its extreme point will 
coincide with those of W) 
By taking the loge (𝑙𝑛) of the least equation, we have 
 

 𝑔𝑒
0  𝑙𝑛𝑊 =

𝑙𝑛 𝑁!

𝑙 𝑛(𝑛1!𝑛!)
  

 

𝑙𝑛𝑤 = 𝑙𝑛𝑁! − 𝜀𝑙𝑛 𝑛𝑖 ! − −− −− (5.6.6) 
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For most systems of practical interest,  N is a very large number. By the same 
reasoning, most of the nis will be sufficiently large so that we can simplify the 
relation using stirling formular. 
 

𝑙𝑛𝑥!  = 𝑥(𝑙𝑛𝑥 − 1) − − − −(5.6.7) 

For small 𝑛𝑖 , 𝑙𝑛 𝑛𝑖 !will be small and hence not of any consequence. By inserting 
the stirling formula in eqn (5.6.7) into eqn (5.6.6) the result is 

𝑙𝑛𝑤 = 𝑁𝑙𝑛 𝑁 −𝑁 − (𝑛𝑖𝑙𝑛 𝑛𝑖 − 𝑛𝑖)

𝑖

 

= 𝑁𝑙𝑛𝑁 − 𝑛𝑖 𝑙𝑛 𝑛𝑖
𝑖

− −− (5.6.8) 

Since 𝜀𝑛𝑖 =  𝑁 

You would recall that we set our goal to determine the set (ni) which 
maximizes 𝑙𝑛𝑊. The condition for maximum probability is 𝛿𝑙𝑛𝑤 = 0 
We now calculate a small change in 𝑙𝑛𝑤and equate it to Zero. This gives  

𝛿𝑙𝑛 𝑊 = − 𝑛𝑖𝛿𝑙𝑛 𝑁𝑖 − (𝑙𝑛 𝑛𝑖) 𝛿𝑛𝑖 = 0 −− −−(5.6.9) 

This expression has been derived by assuming that N and U are constant 

𝛿𝑁 =  𝛿𝑛𝑖

𝑖

= 0 − − −− −−(5.7.0) 

𝛿𝑢 =   𝑖

𝑖

𝛿𝑛𝑖 = 0 − −− − − (5.7.1) 

By equating the RHS of Eqn (5.6.9) to zero we have. 

 𝑛𝑖𝛿

𝑖

(𝑙𝑛𝑛𝑖) =  𝑛𝑖

𝑖

 1
𝑛𝑖  𝛿𝑛𝑖 =  𝛿𝑛𝑖 = 0 

Then equation (5.6.9) reduces to 

 𝑙𝑛𝑛𝑖𝛿 𝑛𝑖 = 0 

 
To accommodate the conditions embodies in eqn (5.70) and (5.7.1) we employ 
the method of langrage multipliers by Xply (5.70) by ∝ and (5.71) by 𝛽and this 
will lead to 

 (𝑙𝑛  𝑛𝑖+∝ +𝛽𝜀𝑖)

𝑖

 𝛿𝑛𝑖 = 0 −− −− − (5.7.2) 

Since the variations 𝛿𝑛𝑖 are arbitrary, this relation will hold only if the 
coefficient of each term vanishes. Hence, we must have  

𝑙𝑛 𝑛𝑖+∝ +𝛽𝑒𝑖 = 0 
Or 

𝑛𝑖 = 𝑒−∝−𝛽𝑒𝑖 =
1

𝐴
𝑒−𝛽𝜀𝑖 −− −− − (5.7.3) 
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Where we have put A = 𝑒∝-------(5.7.4) equation (5.7.3) constitutes what is 
called the Maxwell – Boltzmann distribution. 
You will note that we wished to know the set (𝑛𝑖) which characterised the 
equilibrium state. But we find that eqn (5.7.3) contains two unknown langrange 
multipliers ∝ and 𝛽 We must now evaluate them in terms of known quantities. 
Evaluation of langrange multipliers: The partition function. 
The constant A (or ∝) is determined using the normalization condition. The 
probability that the state with energy 𝜀𝑖 isoccupied and is given by eqn (5.7.3) 
with A defined by eqn (5.7.4). Since 𝑛𝑖 =  𝑁,  
We can write. 

 𝑛𝑖

𝑖

= 𝑁 =
1

𝐴
 𝑒−𝛽𝐸𝑖

𝑖

 

Or 
1

𝑁𝐴
 𝑒−𝛽𝐸𝑖

𝑖

= 1 

If we now define 

𝑍 =  𝑒−𝛽𝜀 𝑖 −− −−(5.7.5) 

 
We can write the degeneracy parameter A as 

𝐴 =
𝑍

𝑁
− −− −− (5.7.6) 

 
The sum 𝑒𝑥𝑝 (−𝛽𝜀𝑖), denoted by Z, is called the single partition function. It is 

called the phase integral. 
 
The name partition function is due to Darwin and Fowler (1922) which arises 
from the observation that when systems 1 and 2 are in thermal contact, the 
partitioning of energy between them is determined by the corresponding 
partition functions Z1 and Z2. 
 
Planck (1921) called  𝑒−𝛽𝑒𝑖  Zustandssume (sum over states) and denoted it by 
Zwe shall follows Planck’s rotation here. It is important to remark that partition 
function occupies a pivotal position in statistical mechanics because all 
thermodynamics functions can be written in terms of Z and also important to 
remark that the partition function characterizes a sum over discrete spectrum. 
But in classical physics, the energy is taken to be continuous. 
 
However, if the levels are very closely spaced even the discrete sum becomes a 
continuum and it is possible to replace the summation, and it is possible to 
replace the summation by integration as illustrated in the following examples. 
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Example 5: Obtain Maxwell’s law of distribution of velocities from the 

distngiven in eqn (5.7.3) with 𝐴 =
𝑍

𝑁
 

 
Solution: 

𝑛𝑖 =
1

𝐴
𝑒 −𝛽𝜖𝑖  

𝐴 =
𝑒 −𝛽𝜖𝑖

𝑛𝑖
 𝑎𝑛𝑑  

𝐴 =
𝑍

𝑁
 

 

By comparism i.e(
𝑒−𝛽𝜖𝑖

𝑛𝑖
=

𝑍

𝑁
)
𝑛𝑖

𝑁
= exp .−𝛽𝜀𝑖 =

𝑍

𝑁
/ 

For an ideal monatomic gas 𝑍 =
𝑉

𝑕3
(2𝜋𝑚𝐾𝐵𝑇)

3
2  

Hence, using the normalization condition 
𝜀𝑛𝑖
𝑁

= 1  

We get 
1

𝑍
 𝑒 −𝛽𝜀𝑖 = 1

𝑖

 

If the energy states are very closely spaced, we can replace summation by 
integration: 
 

 𝑒−𝛽𝜀𝑖≡ ∫ ∫ ∫ ∫ ∫ 𝑒 −𝛽𝜀 𝑑𝑥  𝑑𝑦  𝑑𝑧  𝑑𝑝𝑦  𝑑𝑝𝑧 =

𝑖

𝑉

𝑕3
∫ ∫ ∫ 𝑒 −𝛽𝜀 𝑑𝑝𝑥  𝑑𝑝𝑦  𝑑𝑝𝑧  

Where we have replaced ∫ ∫ ∫ 𝑑𝑥  𝑑𝑦  𝑑𝑧by the ratio of volume in the cartesian 

space to the volume of one cell (= 𝑕3). Morever if we asume azimuthal 
symmetry, we can write ∫ ∫ ∫ 𝑑𝑝𝑥  𝑑𝑝𝑦  𝑑𝑝𝑧 = ∫ 4𝜋𝑝2𝑑𝑝  

Hence, 
1

𝑍
.
𝑉

𝑕3
/4𝜋∫ 𝑒 −𝛽𝜀 𝑃2𝑑𝑝 = 1 

 

On substituting for Z, we get 
4𝜋

(2𝜋𝑚𝐾𝐵𝑇)
3

2 
 𝐼 = 1____________ (1) 

Where  

I =  exp(−𝛽𝜀)𝑝2𝑑𝑝

∞

0

 

To evaluate this integral, we write p=mv so that dp=mdv. Also we knowthat 

𝜀 =  1
2  𝑚𝑣2. Hence 

v p p 
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𝐼 = 𝑚3  𝑒𝑥𝑝

∞

0

 −
𝑚𝑣2

2𝐾𝐵𝑇
 𝑉2𝑑𝑣 

 
Inserting this in eqn (1), we get 

4𝜋  
𝑚

2𝜋𝐾𝐵𝑇
 

3
2 

 𝑒𝑥𝑝

∞

0

 −
𝑚𝑣2

2𝐾𝐵𝑇
 𝑉2𝑑𝑣 = 1 

 
Hence, the number of molecules having speeds between V and V+dv is given by 

𝑑𝑁𝑉 = 4𝜋𝑁  
𝑚

2𝜋𝐾𝐵𝑇
 

3
2 

𝑒𝑥𝑝  −
𝑚𝑣2

2𝐾𝐵𝑇
 𝑉2𝑑𝑣________ (2) 

This is Maxwell’s law for distribution of speeds. 
 
We now proceed to express thermodynamic variables in terms of partition 
function. To this end, we substitute for 𝑛𝑖  from eqn (5.7.3) into eqn (5.6.8). 
 
This gives 

𝑙𝑛 𝑤 = 𝑁 𝑙𝑛 𝑁 − 𝑛𝑖
𝑖

(𝑙𝑛𝑁 − 𝑙𝑛 𝑍 − 𝛽𝜀𝑖 ) = 𝑁 𝐼𝑛 𝑍 + 𝛽𝑈 

Now use of Boltzmann relation gives 
𝑆 = 𝑁𝐾𝐵𝐼𝑛 𝑍 +  𝛽𝐾𝐵𝑈________ (5.7.7) 

We can use the relation to introduce the concept of temperature by relating 
entropy and internal energy of a system: 

1

𝑇
=  

𝜕𝑠

𝜕𝑢
 
𝑉

=
𝑁𝐾𝐵
𝑍

 
𝜕𝑧

𝜕𝛽
 
𝑉

 
𝜕𝛽

𝜕𝑢
 
𝑉

+ 𝐾𝐵𝛽 + 𝐾𝐵𝑈  
𝜕𝛽

𝜕𝑢
 
𝑉

_______ (5.7.8) 

From eqn (5.7.5), we note that 

 
𝜕𝑧

𝜕𝛽
 
𝑉

=  𝜀𝑖
𝑖

exp(−𝛽𝜀𝑖) _______ (5.7.9) 

On combining eqn (5.7.1) and (5.7.3), we get 

∪ =  𝑛𝑖𝜀𝑖
𝑖

= 𝑁/𝑍 𝜀𝑖
𝑖

exp(−𝛽𝜀𝑖) 

Using this result in eqn (5.7.9)we get,   

 
𝜕𝑧

𝜕𝛽
 
𝑉

=
𝑍𝑢

𝑁
____________ (5.8.0) 

Combining it with eqn (5.7.8), we get 

 
𝜕𝑆

𝜕𝑢
 
𝑉

= 𝐾𝐵𝛽_____________ (5.8.1) 

So that 𝛽 = (𝐾𝐵𝑇)
−1___________________ (5.8.2) 

 

From eqn (5.8.0), we have.
𝜕𝑧

𝜕𝑇
/
𝑉

= .
𝜕𝑧

𝜕𝛽
/
𝑉
.
𝜕𝛽

𝜕𝑇
/
𝑉

= −
1

𝐾𝐵𝑇
2
.
𝜕𝑧

𝜕𝛽
/
𝑉

=
𝑢

𝐾𝛽𝑇
2

𝑍

𝑁
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Hence,∪= 𝑁𝐾𝐵𝑇
2 1

𝑍
.
𝜕𝑧

𝜕𝑇
/
𝑉

= 𝑁𝐾𝐵𝑇
2 𝜕

𝜕𝑇
 (𝐼𝑛𝑍)___________ (5.8.3) 

 
The Helmholtz free energy, F, defined as 

𝐹 = 𝑈 − 𝑇𝑆 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝐹 = −𝑁𝐾𝐵𝑇 𝐼𝑛 𝑍 ________ (5.8.4) 
  
Since 

𝑆 = 𝑁𝐾𝐵  𝑙𝑛 𝑍 +
𝑈

𝑇
 ________ (5.8.5) 

 

The pressure exerted by a classical gas is related to Helmholtz free energy 

through the relation 𝑃 = −.
𝜕𝐹

𝜕𝑉
/
𝑇

 

So that 

 𝑃 =
𝐾𝐵𝑇𝑁

𝑍
 
𝜕𝑍

𝜕𝑉
 
𝑇

________ (5.8.6)  

 

We have now seen that all the thermodynamic functions can be related to the 
partition function Z. It means that once we evaluate Z, which of course may not 
always be easy, we can readily determine a thermodynamic function of interest 
which will be a subject of discussion of the next unit. 
 
 
4.0 SUMMARY 
 

From this unit the students have learnt the following concepts on statistical 
mechanics. 
- Basic definition of probability terms. 
- Differentiate between probability and entropy 
- State the basic concepts of statistical mechanics 
- Relate Entropy and Thermodynamic Probability by the Relation 
 𝑆 = 𝐾𝐵  𝑙𝑛 𝑤 
- State Maxwell Boltzmann Distribution Formula. 
- Express Thermodynamic Variables in Terms of Partition Function. 
- Evaluate Z from any Thermodynamic Function of Interest. 
 
 
5.0   CONCLUSION 
 
           As in summary 
 
Exercise  
1. Draw the phase space for a linear harmonic oscillator. What will happen if 

we consider the same problem from the point of view of quantum theory? 
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2. Consider two systems having 𝑁 and 𝑁′  particles, respectively. Let them be 
brought in thermal contact. Show that 𝛽 is the same for the two assemblies. 

 

3. Draw the phase space for a particle having energy 𝐸, constrained to move in 
one dimension. 

 
6.0Tutor Marked Assignment (TMA) 
 
1. Consider a system of N particles and a phase space consisting of only two 

cells with energies 𝑂 𝑎𝑛𝑑 ∈  (∈ >  𝑂) , respectively. Calculate the 
partition function and the internal energy. 

2. Consider a chain of N links, hanging vertically with a constant weight F 
pulling on the bottom. Each link in the chain has length L, and can be in 
one of 3 positions: left, right or down. Note that this system is simplified 
because it has no kinetic energy (which will leads to having a finite 
maximum energy, even at arbitrarily large temperature). 
Questions: (i) What is the low temperature average vertical length of the                

chain? 
(ii) What is the high temperature vertical length? 

3. What is the average length at temperature T? 
 
7.0 References/Further Reading 
1. Funky statistical mechanics concepts (3/8/2011) by Eric L. Michelson. 
 
2. Statistical Mechanics (1966) by Kerson Hung Published by John Wiley & 

Sons, Inc. New York, London Sydney. 
3. Statistical Mechanics Thermodynamics and Kinetics (1967) by Oscar Rice 

Published by W.H. Freeman & Company San Francisco, London. 
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Unit 2.0 The Partition Function 
1.0 Introduction 
2.0 Objectives 
3.0      Main Content 
3.1 The Partition Function of an ideal Monatomic Gas. 
3.2 The Sacker-Tetrode Formula 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment (TMA) 
7.0 References/Further Reading/Other Resources. 
 
 
Unit 2: The Partition Function 
 
1.0 Introduction. 
This unit concerns with the Partition Functions which has been previously 
explained in the last unit. Partition function as a normalization factor, 
computing average energy, everything about system. The partition function 
about an ideal Monoatomic Gas are also highlighted and the Sackur-Tetrode 
formaula. 
 
 
2.0 Objective 
At the end of this unit stardust should be able to 
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- Define Partition Function and its computation for Thermodynamic 
system. 

- Compute the Partition Function of an ideal Monatomic Gas and workout 
all the Thermodynamic functions. 

- Point out the flow in the expression for entropy. 
- calculate the Rotational and Vibrational contributions to heat capacities 

of diatomic gases. 
 
3.0     Main Content 
 
3.1 The Partition Function Z 
 
The Partition Function is defined for all systems for which the Boltzmann 
distribution applies from single atoms to macroscopic systems. In other words, 
the partition function can be defined for all systems in thermal equilibrium with 
a heat bath. 
i.e. 𝑍 =  𝑔𝑖𝑒 −

𝛽𝜖  
𝑔 = degenacy of the energy level  

𝛽 = 1
𝐾𝑇  (Adiabatic Bulk Modulus). 

In quantum mechanics𝐸𝑖 =energy. 
 
The probability P(𝐸𝑖) that a system will be in a state ith energy 𝐸𝑖  is given by 

𝑃 (𝐸𝑖) =
𝑛𝑖

𝑁
=

1

𝑍
𝑔𝑖𝑒 −

𝛽𝜖𝑖  

The mean energy Ē =   𝑃𝑖𝐸𝑖 =  𝜀𝑖
1

𝑍
𝑒 −𝛽𝜖𝑖  

Ē =
1

𝑍
 𝜀𝑖𝑒

−𝛽𝜖𝑖  

𝑃𝑟 = 𝐺𝑒
𝑆

𝐾(𝐸𝑜) − 𝛽(𝐸𝑖) 
 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 
 

𝜀 𝑃𝑟 =   𝐺𝑒𝑆/𝐴(𝐸𝑜)𝑒 −𝛽(𝐸𝑖)  =  1 
 

𝜀 𝑃𝑟 =   𝐺𝑒𝑆/𝐾(𝐸𝑜) 𝑒 −𝛽(𝐸𝑖)  =  1 
 

𝐺 =
1

𝑒𝑆/𝐾  𝑒−𝛽𝐸 𝑟

(𝑒𝑆/𝐾−𝛽𝐸𝑟 )

 
 

𝜀 𝑃𝑟 =
𝑒 −𝛽𝐸𝑟

 𝑒−𝛽𝐸𝑟
 

 

⇛   𝑃𝑟 =
1

2
𝑒−𝛽𝐸𝑟  
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The expression gives us the probability that a system when placed in a heat 
bath the system should be in a particular state 𝐸𝑖 . 
 
Recall that Boltzmann distribution gives the relative probability of a system in 
thermal equilibrium with a heat bath, to be in a single microstate of given 
energy 

Pr(𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸𝑖) = exp(−𝐸𝑖/𝐾𝑇) 
 
That is PF is the “sum of relative probabilities of all the microstates” and it is 
applicable as listed below: 
1. Partition function as a normalization factor. 
2. Using PF to compute average energy. 
3. Partition function tell us all 
4. Partition function and free energy. 
 
The Partition Function as a Normalization Factor: As it is shown on the 
Boltzmann distribution, Z (𝛽) is the sum of relative probabilities of all the 
microstates or equivalently, the sum of the relative probabilities of each energy 
value. It is defined only for a system in thermal equilibrium (which means it can 
endanger energy with a temperature bath). 
 

𝑍(𝛽) =  exp(−𝛽𝐸𝑠) =

𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠

𝑠=1

 gj exp −𝛽𝐸𝑗  

𝑎𝑙𝑙  𝑒𝑛𝑒𝑟𝑔𝑦
𝑙𝑒𝑣𝑒𝑙

𝑗=1

 

Where gj =multiplicity of even energy Ej  
 

Z(𝛽) =  Rel Fr 𝐸𝑗  

𝑎𝑙𝑙  𝑒𝑛𝑒𝑟𝑔𝑦
𝑙𝑒𝑣𝑒𝑙𝑠

𝑗=1

 

Note that for a system held in a heat both, the system energy is a variable (not a 
constraint). The system may have more energy than the average, or less, all the 
way down to zero. That is very unlikely for most systems, but for mathematical 
expedience it is still counted as a possibility in 𝑍(𝛽). 
Since the partition function is a sum of relative probabilities. 
 
The partition function includes an arbitrary multiplicative constant. 
 
This arbitrariness also reflects the arbitrary zero of energy. Changing the zero 
energy simply multiplies the PF by a constant with no effect on the physics. 
 
The PF serves as the (inverse of the) normalization factor to convert the 
relative probability of the system being in some microstate, or having some 
energy, into an absolute probability:  
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Rel Pr (𝐸𝑠)   exp (−𝛽𝐸𝑠) 
 
 
  
   

Rel Pr (E)     Rel Pr (E) 
 

 
 
 
But this is trivial, and simply uses the letter Z for something that is already well 
known. 
 
Partition Function For Average energy, and such: another use for Z(𝛽) is to 
compute average energy (this is also trivial and provides no new physical 
insight) Recall from basic statistics that for any discrete random variable, say E: 
(E) =   Pr (𝐸𝑖) 𝐸𝑖  ______________ (1) 
 

Therefore, for the energy of a system we have: 

  

Pr (State = S)    = 

Rel Pr (Stater) 
Z(𝛽) 

Pr (Energy = E)    

= 
Rel Pr  𝐸𝑗  

Z(𝛽) 

 

                   𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠                        =

𝑟=1

 

 

                   𝑎𝑙𝑙𝑒𝑛𝑒𝑟𝑔𝑦  𝑙𝑒𝑣𝑒𝑙                        =

𝑗=1
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                   𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠                       =

𝑛=1

 

 
But purely as a mathematical trick, with no deep physical meaning, we notice 
that the factor 

𝑒−𝛽𝐸𝐸𝑠 =
𝛿

𝛿𝛽
𝑒−𝛽𝐸 ⇨ (𝐸) =

1

2(𝛽)
 –

𝜕

𝛿𝛽
𝑒−𝛽𝐸  

=
−1

𝑍(𝛽)

𝛿

𝛿𝛽
 𝑒−𝛽𝐸

𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒

𝑆=1

=
−1𝛿

𝑍(𝛽)𝛿𝛽
𝑍(𝛽) 

    
But this gives us nothing new, since the partition function includes all the terms 
needed for the fundamental formula for average value. 
 
From eqn (1) above we could have more easily computed the average energy 
from the fundamental formular. 

− 1 𝛿

𝑍(𝛽)𝛿𝛽
 𝑍 (𝛽) =

𝛿

𝛿𝛽
 𝑙𝑛 𝑍 (𝛽) 

 
This has the advantage, however that  𝑙𝑛 𝑍(𝛽) ≡ free energy, so there is some 
physical significance to this and it leads directly to 

(𝐸) =
−𝛿

𝛿𝛽
 𝑙𝑛 𝑍 (𝛽) =

𝛿

𝛿𝛽
 𝐴 (𝛽) 

 Where A (𝛽) free energy of the system. 
 

Example: Average energy 

Pr(𝐸 =  𝐸𝑗) =  
𝑔𝑗𝑒𝑥𝑝𝛽𝐸𝑗

 𝑔𝑗𝑒𝑥𝑝 (𝛽𝐸𝑗)
𝑎𝑙𝑙  𝑒𝑛𝑒𝑟𝑔𝑦  𝑙𝑒𝑣𝑣𝑒𝑙
𝑗=1

=
𝑔𝑗𝑒𝑥𝑝(−𝛽𝐸𝑗)

𝑍 (𝛽)
 

 

(𝐸) =   𝐸

𝑎𝑙𝑙  𝑒𝑛𝑒𝑟𝑔𝑦  𝑙𝑒𝑣𝑒𝑙𝑠

𝑗−1

𝑗 Pr(𝐸 =  𝐸𝑗) =
𝐸𝑗𝑔𝑗𝑒𝑥𝑝 (−𝛽𝜖)

𝑍 (𝛽)
                                             

=  
−1𝛿

𝑍(𝛽) 𝛿𝛽
 𝑍(𝛽) =  −

𝛿

𝛿𝛽
 𝑙𝑛 𝑍(𝛽)  

 
Partition Function Tells All: 
In the end, given the partition function 𝑍(𝛽) for all values of 𝛽, we can compute 
every (thermodynamic) thing that is to know about the system. That is a system 
is fully characterized by its partition function and by its energy density of 
states. 
 

(E)    =    
Pr (𝐸𝑠)𝐸𝑠  

               𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠                      

𝑠=1

 
Rel Pr(𝐸𝑠) 

Z(B) 
𝐸𝑠  

 =    
 

                   𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠                     

𝑗=1

 

 

1 

Z(𝛽)  
 

Rel Pr(𝐸𝑠) 
 

𝜖𝑠  
e -𝐵𝜀𝑠  = 
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Therefore, knowing the partition function and knowing the density of states are 
equivalent. 
How are the two related? 
Recall the PF for continuous systems: - 
 

𝑍 (𝛽) ≡ ∫ 𝑑𝐸𝑔(𝐸) exp(−𝛽𝐸)
∞

𝐸𝑚𝑖𝑛
Where 

𝑔 (𝐸) ≡Energy density of states. But this is the definition of the Laplace 
transform of 𝑔(𝐸), with transform variable 𝛽. Recall the Laplace transform is 
uniquely related to the original function. Therefore the 𝑃𝐹 𝑍(𝛽)is the Laplace 
transform of the density of states 𝑔(𝐸)so knowledge of one is equivalent to 
knowledge of the other. But in practice, you usually need to know 𝑔 (𝐸) to find 
the partition function. 
Example: A zipper has 𝑁 ≫ 1 links. Each link has two states: closed with energy 
O, and open with energyℇ. The zipper can only unzip from the left and the 5th 
link cannot open unless all of the links to its left (1, 2,− −− −− −  𝑆 −  1) are 
already open. 
(a) Find the partition function for the zipper. 
(b) Find the mean number of open links. 
Evaluate your result in both the high and low temperature limit. 
 

a. 𝑍 (𝛽) =  
 
 
Use 
 

 
 

(𝑆) =
(𝐸)

𝜀
=
−1

ℇ

𝜕

𝜕𝛽
ln 𝑍(𝛽)  

=
−1

 

𝜕

𝜕𝛽
− [𝑙𝑛(1 − exp(𝑁 + 1)𝛽𝜖) − 𝑙𝑛 (1 − exp(−𝛽𝜖))]  

 

=
−(𝑁 + 1) exp(−(𝑁 + 1)𝛽ℇ)

1 − exp(−(𝑁 + 1)𝛽ℇ)
+

exp(−𝛽ℇ)

1 − exp(−𝛽ℇ)
 

 
Free Energy and the Partition Function: 
When considering the possible macrostate of a system, what really matters is 
the most probablemacrostate of a system, and to be meaningful, it must be the 
only macrostate with any significant chance of occurring. 
 
To compute free energy from the PF, we use the general conclusion that, for 
macroscopic systems, the partition function is dominated by the one most 
probable macrostate. 
 

 exp(−𝛽𝐸𝐾) =   exp(−𝛽𝐸) =   [exp(−𝛽𝜀)]S

𝑁

𝑠=0

𝑁

𝑠=0

𝑎𝑙𝑙  𝑠𝑡𝑎𝑡𝑒𝑠

𝑘

 

 𝑎𝑟𝑖 = 𝑎 =
1 − 𝑟𝑛

1 − 𝑟

𝑛−1

𝑖−0

 → 𝑍 (𝛽) =
1 − 𝑒𝑥𝑝((−𝑁 + 1)𝛽𝜀)

1 − 𝑒𝑥𝑝(− 𝛽𝜀)
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Mathematically, compute the compute sum  
Z ≡ sum of all state relative probabilities. 
 
Since the most probable state and the complete sum are equivalent, we do 
whatever easier. The equilibrium microstate of a system is simply the most 
likely macrostate in thermal equilibrium; this in turn is that microstate with the 
largest number of likely microstates. i.e. largest product of (Boltzmann factor) x 
(#microstates). 

𝜖𝑚𝑜𝑠𝑡  𝑙𝑖𝑘𝑒𝑙𝑦 = 𝑚𝑎𝑥 𝑔𝑗  𝜖−𝛽𝜖𝑗   

𝑗 = 𝑎𝑙𝑙 𝑒𝑛𝑒𝑟𝑔𝑖𝑒𝑠 
Therefore in principle, we can find the equilibrium macrostate by first 
identifying all the macrostates, their probabilities, and the macrostate for each, 
and pick that microstate with the largest number of likely microstates. This is 
only meaningful if the most likely microstate has probability near 1, so that all 
other macrostates are so unlikely they can be ignored. For systems with a large 
number of subsystems, N (e.g. large number of particles), this condition is true 
only one macrostate has any reasonable chance of occurring. 
 
We can now show that for systems with a large number of component 
subsystems (system of large N) there is a single approximation to the 
Helmholtz free energy of the system from the partition function. 
 
𝐴 (𝛽) ≈ −𝐾𝑇 𝑙𝑛 𝑍 (𝛽) (Large System) 
 
Here’s why: for large N, there will be only a few terms in the partition function 
which dominate not only all the other terms, but all the other terms combined. 
 
These few terms all have very nearly the same energy, so they can be lumped 
together as a single multiplicity for that energy. 
 

𝑍(𝛽) =   𝑔𝑗  𝑒𝑥𝑝(−
𝐸𝑗

𝐾𝑇
)

𝑎𝑙𝑙  𝑒𝑛𝑒𝑟 𝑔𝑦
𝑙𝑒𝑣𝑒𝑙

𝑗=1

≈   𝑔𝑚 𝑒𝑥𝑝(−
𝐸𝑚𝑎𝑥
𝐾𝑇

)

𝑠𝑡𝑎𝑡𝑒  𝑛𝑒𝑎𝑟
𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑚

 

 
Where 𝐸𝑚𝑎𝑥  is the dominant energy in the sum. This means that the probability 
of the system being at 𝐸𝑚𝑎𝑥  is essentially 1: 
 

Pr(𝐸𝑚) =
 𝑔𝑚 exp(𝐸𝑚𝑎𝑥 /𝐾𝑇)

𝑍(𝛽)
=
𝑍(𝛽)

𝑍(𝛽)
 = 1 

 

This is as we expect for systems of large N in thermal equilibrium, there is only 
1 realistic macrostate. Now if Z(𝛽) has only one significant energy 𝐸𝑚𝑎𝑥  than 
we can rewrite Z(𝛽) is Z(T) to follow the reasoning of free energy. We can 
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replace the sum of the few 𝑔𝑚  near 𝐸𝑚𝑎𝑥  with a single geff, since they all have 
essentially the same energy, 𝐸𝑚𝑎𝑥 . 
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𝑍(𝑇) ≈ 𝑔𝑒𝑓𝑓 𝑒𝑥𝑝 .−𝐸𝑚𝑎𝑥

𝐾𝑇
/𝑤𝑕𝑒𝑟𝑒 𝐸𝑚𝑎𝑥  𝑖𝑠 𝑡𝑕𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 𝑡𝑕𝑒 𝑠𝑢 𝑛. 

        = 𝑒𝑥𝑝 𝑙𝑛 𝑔𝑒𝑓𝑓  𝑒𝑥𝑝(−𝐸𝑚𝑎𝑥 / 𝑘𝑇) 

       = 𝑒𝑥𝑝  𝐾𝑇 𝑙𝑛
𝑔𝑒𝑓𝑓

𝐾𝑇  𝑒𝑥𝑝(= 𝐸𝑚𝑎𝑥 /𝐾𝑇) 

      

=𝑒𝑥𝑝(−𝐸𝑚𝑎𝑥 −𝑇𝑆  (𝐸𝑚𝑎𝑥 )

𝐾𝑇

)WhereS(𝜖𝑚𝑎𝑥 ) ≡

 𝐾𝑙𝑛 𝑔𝑒𝑓𝑓  𝑖𝑠 𝑡𝑕𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡𝑕𝑒 𝑚𝑎𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒 𝑤𝑖𝑡𝑕 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸𝑚𝑎𝑥 . 

 

= 𝑒𝑥𝑝  −
𝐴(𝑇)

𝐾𝑇
  

where A(T)is the free energy of the macrostate at temprature T. 
 
Once again, we are simply quantifying how multiplicity defies energy, as before, 
and measuring multiplicity, in units of energy. 
Solving for A(T) yields the result above. 
𝐴(𝑇) ≈  −𝐾𝑇 𝑙𝑛 𝑍(𝑇) (large system). 
 
Note that since Z is defined only up to a multiplicative constant, A(T) is defined 
only up to an additive constant, which is always true for energy (free or 
otherwise). Note that for small systems, such as atoms, “temperature” is not 
defined, and therefore, neither is free energy. The above approximation only 
works for large systems, where the thermal equilibrium macrostate is sharply 
defined. 
 
The partition function is calculated for a given set of constraints, just like the 
various kinds of free energies. 
 
For a system constrained as for Helmholtz free energy (fixed T. no work done) 
we compute Z(T) within those constraints, and 𝐴 =  − 𝐾𝑇 𝑙𝑛 𝑍 gives Helmholtz 
free energy. If the system had different constraints such as those of Gibbs free 
energy (fixed T and P) then Z(T) is different and 𝐺 =  − 𝐾𝑇 𝑙𝑛 𝑍 gives Gibbs 
free energy. 
 
3.2 The Partition Function of an Ideal Monoatomic Gas 
 Consider an ideal monoatomic gas consisting of N particles, each of mass 
m and occupying a volume V. 
 
This means that the energy of the system is wholly translational. That is, the 
potential energy is zero since intermolecular forces are absent. 
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The energy of a particle in the ith cell is given by  
 

ℇ𝑖 =
𝑃2

2𝑚
 

and the single particle partition function is  
 

𝑍 =   𝑒−𝛽ℇ𝑖 =  𝑒𝑥𝑝

𝑖

 −
−𝛽𝑃𝑖

2

2𝑚
 

𝑖

− −− −− (6.2.1) 

 
If energy is a continuous variable, we can rewrite it as 
 

𝑍 =
1

𝑕3
      𝑒𝑥𝑝  −

𝛽

2𝑚
 𝑃𝑥

2 + 𝑃𝑦
2 + 𝑃𝑧

2  𝑑𝑥 𝑑𝑦 𝑑𝑧  𝑑𝑝𝑥 𝑑𝑝𝑦 𝑑𝑝𝑧 − −(6.2.2) 

 
Integration over the space variable, gives V so that 

𝑍 =
𝑉

𝑕3    𝑒𝑥𝑝

∞

−∞

 −
𝛽

2𝑚
 𝑃𝑥

2 + 𝑃𝑦
2 + 𝑃𝑧

2   𝑑𝑃𝑥𝑑𝑃𝑦𝑑𝑃𝑧 = (6.2.3) 

 
Note that the three integrals are identical and it is sufficient to evaluate any one 
of them. 
 Let us consider  

I𝑥 ≡  𝑒𝑥𝑝

∞

−∞

 −
𝛽𝑃𝑥

2

2𝑚
 𝑑𝑃𝑥  

 

=  𝑒𝑥𝑝  −
𝛽𝑃𝑥

2

2𝑚
 

∞

−∞

𝑑𝑃𝑥 +  𝑒𝑥𝑝  −
𝛽𝑃𝑥

2

2𝑚
 

∞

0

 𝑑𝑃𝑥
2 = (6.2.4). 

 
By putting 𝑃𝑥 = −∝ in the first integral, you can easily show that both integrals 
are alike and we can write 
 

𝐼𝑥 = 2 𝑒𝑥𝑝
∞

0

 
−𝛽𝑃𝑥

2

2𝑚
 𝑑𝑃𝑥 = (6.2.5) 

 

If we now introduce a charge of variable by writing
𝛽𝑃𝑥

2

2𝑚
= 𝑟 

We find that 

𝑃𝑥  𝑑𝑃𝑥 =
𝑚

𝛽
 𝑑𝑟  

Or  

 𝑑𝑃𝑥 =   
𝑚

2𝛽
 𝑟 1

2 𝑑𝑟 
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and the integral 

𝐼𝑥 =   
2𝑚

𝛽
 𝑒−𝑟𝑟−

1
2 

∞

0

𝑑𝑟 − − −− −−(6.2.6) 

 

is a standard gamma function of order  1
2   if value is  𝜋sothat  

𝐼𝑥 ≡  𝑒𝑥𝑝

∞

0

 
−𝑃𝑥

2

2𝑚
𝛽  𝑑𝑃𝑥 =  

2𝑚𝜋

𝛽
 

1/2

−− −− − −− (6.2.7) 

 
You will obtain the same expression for 𝐼𝑦𝑎𝑛𝑑 𝐼𝑧 hence Eqn (6.2.2) gives 

𝑍 =
𝑉

𝑕3  
2𝑚𝜋

𝛽
 

3/2

=
𝑉

𝑕3
(2𝑚𝜋 𝐾𝐵𝑇)

3/2 − −− −(6.2.8) 

This is the partition function in 𝜇 space for individual particles. Since we are 
discussing a monoatomic gas consisting of N particles the N-particles partition 
function 

𝑍𝑁 =   𝑒−𝛽𝐸 𝑖

𝑖

 

Where 
𝐸𝑖 = 𝐸1 + 𝐸2 − −− +𝐸𝑁  

Thus 
 

𝑍𝑁 =   𝑒−𝛽(𝐸1 + 𝐸2 + −− − + 𝐸𝑁)

𝑖

 

=   𝑒−𝛽𝐸𝑖   𝑒𝛽𝐸2 − − − (𝑒−𝛽𝐸𝑁) 

 
Within the framework of classical statistics we assume that these particles are 
distinguishable and independent. So we can rewrite it in a compact form as 
 

𝑍𝑁 =   𝑒−𝛽  𝐸𝑖

𝑖

 

𝑁

=  𝑍𝑁  

Where Z is given by E (6.2.1), Hence 

𝑍𝑁 =  𝑍𝑁 =  
𝑉𝑁

𝑕3𝑁
 

2𝑚𝜋

𝛽
 

3𝑁
2 

−− −− −−( 6.2.9) 

Having got an expression for the partition function for a N-particle ideal gas, we 
can now calculate for others. 
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3.2.1 Thermodynamic Functions. 
 You will recall that all thermodynamic functions are related to the P.F via 
equations (5.8.3) to (5.8.6). To proceed with calculation of these functions, we 
first take natural login both sides of eqn (6.2.9).  
 

And this gives 
 

𝐼𝑛 𝑍𝑛 = 𝑁 𝑙𝑛 𝑉 +
3𝑁

2
𝑙𝑛  

2𝜋𝑚

𝑕2  −
3𝑁

2
𝑙𝑛 𝛽 − − −−(6.3.0) 

 

From eqn (5.8.3), we recall that 𝑈 =  −.
𝑑  𝑙𝑛  𝑍𝑁

𝑑𝛽
/
𝑉,𝑁

 Hence, internal energy of 

a N-particle gaseous system is given by 

𝑈 =
3𝑁

2𝛽
=

3

2
𝑁𝐾𝐵𝑇 − − −− −− − (6.3.1) 

The heat capacity at constant volume is 

𝐶𝑉 =  
𝛿𝑢

𝛿𝑇
 
𝑉

=
3

2
𝑁𝐾𝐵 −− −− −−(6.3.2) 

We can calculate the average pressure exerted by the gas using the relation. 

𝑃 =
𝑁

𝛽
 
𝛿𝑙𝑛𝑍

𝛿𝑉
 
𝛽 ,𝑁

 

From eqn (6.3.0), we have  

𝑃 =
𝑁

𝛽
 

1

𝑉
  

 

=
𝑁𝐾𝛽𝑇

𝑉
=

2

3

𝑈

𝑉
 

This is the familiar ideal gas equation. You will note that neither 
thermodynamics nor kinetic theory of gases enables us to establish its exact 
form. It means that natural explanation of molecular chaos lies in statistical 
arguments, which are more profound. 
 
The Helmholtz free energy expressed in terms of Z is  

𝐹 = −𝑁𝐾𝛽  𝑇 ln𝑍 

=  −𝑁𝐾𝐵𝑇 𝑙𝑛  
𝑉

𝑕3
(2𝜋𝑚𝐾𝐵𝑇)

3
2  − − − −− −(6.3.3) 

From the previous limit, you would recall that entropy and partition function 
are connected by the relation 

𝑆 = 𝑁𝐾𝐵  𝑙𝑛 2 +
𝑈

𝑇
 

On substituting for in Z and U from eqns (0.2.8) and (6.3.1), we get 

𝑆 = 𝑁𝐾𝛽  𝐼𝑛 𝑉 − 3 𝑙𝑛 𝑕 +
3

2
𝑙𝑛 (2𝜋𝑚𝐾𝐵𝑇) +

3

2
𝑙𝑛 𝑇 +

3

2
 𝑁𝐾𝐵  
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  = 𝑁𝐾𝐵𝑙𝑛  
𝑉(2𝜋𝑚𝐾𝐵𝑇)

𝑕3

3
2 
𝑒

3
2  − − −− − (6.3.4) 

This is the classical expression for the entropy of an ideal monoatomic gas. 
 
3.2.2 Gibbs Paradox 
  
From eqn (6.3.4), we note that entropy of an ideal gas depends on V, T and N. 
moreover, the functional dependence on volume and temperature is the same 
as obtained from thermodynamic considerations. But we note that as T→S 𝑂𝑘, 
S→ −∞. Thus is not physically meaningful and contradicts the third law of 
thermodynamic (which states that S→ 𝑂as T→ 𝑂). 
 
However, you should not be unduly concerned but you should have expected 
this result because classical statistics is a good description only at high 
temperatures. The explanation has genesis in quantum mechanics which you 
will learn in detail in the next unit. 
 
A more serious objection against eqn (6.3.4) is its implication that entropy does 
not behave as an extensive quantity. Let us increase both V and N by a factor ∝ 
eqn (6.3.4) contains a term N 𝑙𝑛 V. Hence, S will not increase in the same 
proportion. This can be clearly understood by considering intermixing of two 
ideal gases. 
 
The entropy of a system of N particles occupying a volume V is given by 

𝑆 = 𝑁𝐾𝐵  𝐼𝑛 𝑉 − 3 𝑙𝑛 𝑕 +
3

2
𝑙𝑛 (2𝜋𝑚𝐾𝐵) +

3

2
𝑖𝑛 𝑇 +

3

2
𝑁𝐾𝐵  

  = 𝑁𝐾𝐵 .𝑙𝑛 𝑉 +
3

2
𝑙𝑛 𝑇 + 𝜎/ − − − −− −− (6.3.5) 

With 
   

𝜎 =
3

2
ln(2𝜋𝑚𝐾𝐵) − 𝐼𝑛 𝑕3 +

3

2
 

= 𝑙𝑛   
2𝜋𝑚𝐾𝐵
𝑕2

 

3
2 

𝑒
3

2   

= 𝑙𝑛   2𝜋𝑚
𝐾𝐵

𝑕2  

3
2 

𝑒
3

2   

Let us now consider two ideal gases contained in two chambers of volumes 
𝑉1and 𝑉2 and separated by a rigid partition as shown from the figure below 
suppose that the gases are in equilibrium at temperature T. Then the entropy of 
each gas is given by 
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𝑆1 = 𝑁1 𝐾𝐵  𝑙𝑛 𝑉1 +
3

2
𝑙𝑛 𝑇 + 𝜎1  

and 
  

𝑆2 =  𝑁2𝐾𝐵  𝑙𝑛 𝑉2 +
3

2
𝑙𝑛 𝑇 + 𝜎2  

 
 
 
 

(a)                                                            (b) 
Fig. (a) The system divided by partition 1 and 2. 
Fig. (b) A system of N-particles in a volume V. 
So, the total initial entropy of these gases is  

𝑆𝑖 = 𝑆1 + 𝑆2 = 𝑁1𝐾𝐵  𝑙𝑛 𝑉1 +
3

2
𝑙𝑛 𝑇 + 𝜎1 + 𝑁2𝐾𝐵  𝑙𝑛 𝑉2 +

3

2
𝑙𝑛 𝑇 + 𝜎2  

Now we remove the partition and these gases mix by diffusing into one another. 
We can regard it as free expansion of each gas to volume 𝑉 = 𝑉1 + 𝑉2. Then final 
entropy of the system is  

𝑆𝑓 = 𝑁1𝐾𝐵  𝑙𝑛 𝑉 +
3

2
𝑙𝑛 𝑇 + 𝜎1 + 𝑁2𝐾𝐵  𝐼𝑛 𝑉 +

3

2
𝑙𝑛 𝑇 + 𝜎2  

You would recall that diffusion is an irreversible process which implies that the 
entropy will increase and to discover that it is actually so, we compute the 
difference ∆𝑆= 𝑆𝑓 − 𝑆𝑖  

𝑆𝑓 − 𝑆𝑖 ≡ ∆𝑆= (𝑁1 + 𝑁2)𝐾𝐵  𝑙𝑛 𝑉 +
3

2
𝑙𝑛 𝑇  

   −𝑁1𝐾𝐵 0𝑙𝑛 𝑉1 +
3

2
𝐼𝑛 𝑇1 − 𝑁2𝐾𝐵 0𝑙𝑛 𝑉2 +

3

2
𝑙𝑛 𝑇1 

   = 𝑁1𝐾𝐵  𝑙𝑛 .
𝑉

𝑉1
/ + 𝑁2𝐾𝐵  𝑙𝑛 .

𝑉

𝑉2
/ − − − −− −(6.3.6) 

 

Obviously, ∆𝑆 is greater than zero. For the special case, 𝑁1 = 𝑁2 =
𝑁

2
𝑎𝑛𝑑 𝑉1 =

𝑉2 =
𝑉

2
we find that ∆𝑆= 𝑁𝐾𝐵  𝑙𝑛2 −− − −− (6.3.7) 

This is in conformity with thermodynamic results. 
 
Let us consider that the same gas is put in the two chambers show is fig. (a) and 
(b). We expect that removal or subsequent insertion of partition is a completely 
reversible process. It should not influence the macroscopic behaviour of the gas 
and distribution of particles over accessible microstates. Therefore the entropy 
of mixing should be zero. But this contradicts eqn (6.3.6) since its derivation 
does not depend on the identity of the gases. That is, even for self-mixing eqn 
(6.3.6) gives the same increase in entropy which is certainly not tenable. It 
implies that S depends on the history of the system and cannot be a function of 
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the thermodynamic state only. That is, we can manage to change entropy by 
factors extraneous to the system. This is known as the Gibbs paradox. 
 
If we carefully re-examine our analysis, we can identify the root cause of this 
trouble in that we have treated all N particles as distinguishable. This amount to 
tacitly assuming that interchange of two particles leads to a physically distinct 
state of the gas. This of course, is not correct and eqn (6.3.6) over estimates the 
number of accessible states. You would recall that the number of permutations 
of N particles among themselves is N! For identical particles, these 
permutations lead to the same physical situation. 
 
3.3 The Sacker - Tetrode 
 The correct way to treat a system of indistinguishable particle is to use 
quantum statistics. 
 
However, we can use an ad-hoc procedure suggested by Gibbs. This is known as 
correct Boltzmann counting. We begin by looking at eqn (5.6.3) for the 
thermodynamic probability W. Treating the particles as indistinguishable 
amounts to dividing W by N!. Hence,  

𝑊 =
1

 𝑛𝑖!𝑖=1
 

 

In the P function for an ideal gas made up of N indistinguishable particles, it is 
reflected in the form. 

𝑍𝑁
𝐶 ≡ (𝑍𝑁)𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =

𝑍𝑁
𝑁!

=
𝑉𝑁

𝑁!
 

2𝜋𝑚𝐾𝐵𝑇

𝑕2  
3𝑁/2

−− −−(6.3.8) 

Take cogentof both sides, we get 
 

𝐼𝑛 𝑍𝑁
𝐶 = 𝑁  𝑙𝑛 𝑉 +

3

2
𝑙𝑛  𝐾𝛽𝑇 +

3

2
𝑙𝑛  

2𝜋𝑚

𝑕2
  − 𝑙𝑛 𝑁!  

 
For large 𝑁1we can use stirlings approximation 𝑙𝑛 𝑁! = 𝑁 𝑙𝑛 𝑁 −𝑁 to obtain  
 

𝑙𝑛 𝑍𝑁
𝐶 = 𝑁  𝑙𝑛  

𝑉

𝑁
 +

3

2
𝑙𝑛 (𝐾𝐵𝑇) +

3

2
𝑙𝑛  

2𝜋𝑚

𝑕2  + 1  

 
Since U and P depend on the derivative of Z, the presence of the factor N! leaves 
their expression unchanged. However, for entropy, the expression is modified 

to𝑆 = 𝑁𝐾𝐵  𝐼𝑛  
𝑉𝑇

𝑁

3
2 
 + 𝛿0 − − − −(6.3.9) 

With 

𝛿0 = 1 + 𝛿 = 𝐼𝑛   
2𝜋𝑚𝐾𝛽

𝑕2
 

3
2 

𝑒
5

2  − − − −(6.4.0) 

Hence 
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𝑆 = 𝑁𝐾𝐵𝐼𝑛   
𝑉

𝑁𝜆𝑑𝛽
3  𝜋

3
2 𝑒

5
2  − − − − −−(6.4.1) 

 
Where 𝜆𝑑𝐵  is 𝑑𝑒 Broglie Wavelength associated with the gaseous particles at 
temperature T. 
 
This eqn is known as sacker - Tetrode Equation. It has been established 
experimentally that this is the correct expression for the entropy of an ideal 
monoatomic gas at high temperature. 
Example 6.3.1 shows that sacker-Tetrode eqn is free from Gibbs paradox. 
 
Solution 
The Helmholtz energy is given by 

𝑓 = 𝑈 − 𝑇𝑆 =
3

2
𝑁𝐾𝛽𝑇 − 𝑁𝐾𝛽𝑇 𝑙𝑛   

𝑉

𝑁𝜆𝑑𝐵
3  𝜋

3
2 𝑒

5
2   

= −𝑁𝐾𝐵𝑇 𝑙𝑛   
𝑉

𝑁𝜆𝑑𝛽
3  𝜋

3
2  𝑒  

 

Example 6.3.2: = Consider a system of N classical linear harmonic oscillators. 
Calculate (i) the partition function (ii) the free energy (iii) entropy (iv)Cv and 
Cp. 
  
 
Solution 
1. We have 

   𝑆 = − 
𝛿𝐹

𝛿𝑇
 
𝑉

= 𝑁𝐾𝐵  𝑙𝑛  
𝑉

𝑕3
(2𝜋𝑚𝐾𝐵𝑇)

3
2  + 𝑁𝐾𝐵𝑇  

3

2𝑇
  

  

= 𝑁𝐾𝐵𝑙𝑛  
𝑉

𝑕3
(2𝜋𝑚𝐾𝐵𝑇)

−3
2 𝑒

3
2   

 

Similarly,       𝑃 = −.
𝛿𝑓

𝛿𝑉
/
𝑇

=
𝑁𝐾𝐵𝑇

𝑉
3 

2.  𝑙𝑛𝑊 = − 𝑙𝑛  𝑛𝑖! = − (𝑛𝑖𝑙𝑛 𝑛𝑖 − 𝑛𝑖)𝑖 = 𝑁 −  𝑛𝑖 𝑙𝑛 𝑛𝑖 − − − −(𝑖)𝑖  

and from Maxwell Boltzmann’s distribution 𝑛𝑖 =
𝑁

𝑍
𝑒𝛽𝜖𝑖 − −− −(𝑖𝑖) 

Substitute the value of ni into eqn (i) 
We have 

𝑙𝑛 𝑊 = 𝑁 −
𝑁

𝑍
 𝑒−𝛽𝜀𝑖 ,𝑙𝑛 𝑁 − 𝑙𝑛𝑧 − 𝛽𝜀𝑖-

𝑖

= 𝑁 − 𝑁𝑙𝑛𝑁 + 𝑁𝐼𝑛𝑍 + 𝛽 ∪ 

Therefore, 𝑆 = 𝐾𝐵𝑙𝑛 𝑤 = 𝑁𝐾𝐵𝐼𝑛𝑍 + 𝐾𝐵𝛽𝑈 + 𝑁 (1 − 𝑙𝑛𝑁)𝐾𝐵 − −− (𝑖𝑖𝑖) 

in other words   (𝑍𝑁) 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑍𝑁

𝑁!
− −− −− −(𝑖𝑣) 

3. we have𝑆1 = 𝑁1𝐾𝐵 0𝐼𝑛 .
𝑉1

𝑁1
/ +

3

2
𝐼𝑛 𝑇 + 𝛿01 
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𝑆2 = 𝑁2𝐾𝐵  𝐼𝑛  
𝑉2

𝑁2
 +

3

2
𝐼𝑛 𝑇 + 𝛿0  

 

∴ 𝑆1 + 𝑆2 = 𝑆1 = 𝑁1𝐾𝐵  𝑙𝑛  
𝑉1

𝑁1
 + 𝑁2𝐾𝐵  𝑙𝑛  

𝑉2

𝑁2
 +

3

2
𝑁𝐾𝐵  𝑙𝑛 𝑇 + 𝑁𝐾𝐵𝛿0 

On removing the partition, there will be N particles in space V and the final 

entropy of the system is𝑆𝑓 = 𝑁𝐾𝐵 0𝑙𝑛 .
𝑉

𝑁
/ + 𝛿01 

Hence, change in entropy 𝑆𝑓 − 𝑆𝑖  is 

∆𝑆 = 𝐾𝐵(𝑁1 + 𝑁2)𝑙𝑛  
𝑉1 + 𝑉2

𝑁1 + 𝑁2
 − 𝑁1𝐾𝐵  𝑙𝑛  

𝑉1

𝑁1
 − 𝑁2𝐾𝐵 𝐼𝑛  

𝑉2

𝑁2
  

The densities of the two samples must be equal if the gases are at the same 
temperature and pressure. 

𝑁1

𝑉1
=
𝑁2

𝑉2
=
𝑁

𝑉
= 𝑃 

Thus, we have 

∆𝑆 = 𝐾𝐵  𝑁 𝑙𝑛  
1

𝑃
 − 𝑁1 𝑙𝑛  

1

𝑃
 − 𝑁2  𝑙𝑛  

1

𝑃
  = 0 

Thus, in distinguish ability of particles of an ideal monoatomic gas is the key to 
the resolution of Gibbs paradox. 
 
3.4 Diatomic Gases 
 Consider a diatomic molecule like HCL. It may be treated as a two particle 
(atom) system hold by inter-atomic forces along the line joining the particles. 
Let the masses of atoms be 𝑚1 and 𝑚2 (assumed to be point like) and separated 
by a distance r. 
 
This is known as the dumb-bell model of a molecule and is depicted in the 
figure below: 
 
 
 

The figure above shows dumb-bell model of diatomic molecule. 
 

Let us choose 𝑥 -axis along the line joining the masses. The moments of inertia 
about the two axes at right angles to the line connecting 𝑚1 and 𝑚2 and passing 
through the centre of gravity 𝐶2 is given by 
 

𝐼𝑦 = 𝐼𝑧 = 𝐼 =
𝑚1𝑚2

𝑚1+ 𝑚2
𝑟2 = 𝜇𝑟2 𝑤𝑕𝑒𝑟𝑒 𝜇 =

𝑚1𝑚2

𝑚1+𝑚2
 

Is the reduced mass of the molecule. The moment of inertia about the line 
joining the molecule is taken to be equal to zero. The kinetic energy of the 
molecule is 

𝑚1 𝑚2 
𝑟1 𝑟1 

𝑟2 
𝑟2 

𝑟 
C 𝑥 
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𝐸 =
1

2
𝐼𝑦𝑤

2
𝑦 +

1

2
𝐼𝑧𝑤

2
𝑧 = 1

2 𝐼 𝑤2
𝑦 + 𝑤2

𝑧 − − − (6.4.1.1) 

 
If the bonding is not perfectly rigid, these atoms can vibrate about their 
respective equilibrium positions. The simplest assumption is that each atom 
executes simple harmonic motion. The motion of these atoms can be reduced to 
the harmonic vibration of a single point mass 𝜇 about an equilibrium position. 
Thus, for a diatomic molecule, we can have two vibrational degrees of freedom, 
apart from translational and rotational degrees of freedom. 
The total number of degrees of freedom 

𝑓 = 𝑓𝑡𝑟𝑎𝑛 + 𝑓𝑟𝑜𝑡 + 𝑓𝑣𝑖𝑏 −− −− − (6.4.1.2) 
= 3 + 2 + 2 = 7 = (6.4.1.2) 

 
Since each degree of freedom in classical physics is associated with energy 
(𝐾𝛽𝑇/2). We find that 

Ē =
7

2
𝐾𝐵𝑇 

So that heat capacity for the gas made of ℵ particles is 𝐶𝑉 =
7

2
𝑅 and the ratio of 

head capacities 

𝛾 =
9

7
= 1.29 

. 
 
It shows that heat capacity of a gas is constant; independent of temperature and 
same for all gases. And 𝛾, for a diatomic gas is less than the value for a 
monatomic gas. In the table below, we have listed the values of 𝛾, obtained by 
measurements of the velocity of sound at room temperature for some diatomic 
gases of interest. 
 

Gas 𝜸 
𝐻2 
𝑂2 
𝑁2 
𝐶𝑂 
NO 

1.410 
1.401 
1.404 
1.404 
1.400 

 
You will note that 𝛾 is close to 1.4 and agreement with theoretical value is not 
very good. However, if we take 𝑓 = 5, we find that 

𝛾 =
7

5
= 1.4 

 
This suggests that around room temperature, either relational or vibrational 
degree of freedom, not both, contribute to mean energy. It is as if, some degrees 
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of freedom are ‘frozen’ and hence do not show up in experiments. This led 
Summerfield to remark that ‘Degrees of freedom should be weighted not 
counted’. 
 
SAQ 
Calculate 𝛾 for a polyatomic gas having 𝑓 degrees of freedom. 
 
As the number of atoms increases, 𝑓 also increases  and 𝛾 decreases. This is well 
borne out by experiments. In fact, 𝛾 is found to satisfy the inequality. 

𝐼 < 𝛾 < 1.67 −− − −− −(6.4.1.3) 
It may be remarked here that qualitative features of heat capacity of diatomic 
gases predicted by theory are borne out by experiments. However, if we look at 
its temperature variation, we find that the agreement is very poor. In most 
cases, heat capacity increases as temperature is raised and decreases as 
temperature is lowered. For examples, the heat capacity of hydrogen at 20𝑘 is 

𝑗𝑢𝑠𝑡 
3

2
𝑅.𝑇𝑕𝑎𝑡 𝑖𝑠, 𝑖𝑡 𝑏𝑒𝑕𝑎𝑣𝑒𝑠 𝑙𝑖𝑘𝑒 𝑎 𝑚𝑜𝑛𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑎𝑠 𝑎𝑛𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠  

vibrational degrees of freedom are effectively ‘frozen’. 
A correct explanation is provided by quantum statistics. The basic argument is 
very simple and can be introduced without a detailed discussion of the basic 
features of quantum statistics. In the quantum description of a system, we have 
a set of allowed discrete energy levels. 
 
Let the separation of the levels around the mean energy be denoted by ∆𝐸. If 
 ∆𝐸 << 𝐾𝐵𝑇__________ (6.4.1.4) 
The discrete nature of the spectrum is not and the equi-partition theorem 
should be a good approximation. This is certainly time at sufficiently high 
temperatures.If the discrete nature of the spectrum becomesimportant then 

∇𝐸 = 𝐾𝐵𝑇 − − − −− −(6.4.1.5) 
If we introduce a characteristic temperature, 𝛳, defined by 

𝛳 =
∆𝐸

𝐾𝐵
− −− − − (6.4.1.6) 

Eqs (6.4.1.4) and (6.4.1.5) respectively take the form  
𝑇 >> 𝛳 𝑎𝑛𝑑 𝑇 = 𝛳 − −− −− −− (6.4.1.7) 

We now turn to a calculation of rotational and vibrational partition functions.  
 
 
3.4.1 Rotational and VibrationPartition Functions. 
 
The rotational energy levels of a diatomic molecule are given by  

𝐸𝑗 =
𝑕2

8𝜋2𝐼
 𝐽 (𝐽 + 1), 𝐽 = 0,1,2,− −− −− − − (6.4.1.8) 

And each energy level is (2J+1) fold degenerate. 



53 
 

 
 

The partition function for rotational motion of a hetero-nuclear molecule - a 
molecule consisting of two different kinds of atoms such as HCL is given by 

𝑍𝑟𝑜𝑡 =  (2𝐽 + 1)

∞

𝐽=0

𝑒𝑥𝑝  
−(𝐽 + 1)

𝑇
 𝑂𝑟𝑜𝑡 − −− − − (6.4.1.9) 

= 1 + 3𝑒𝑥𝑝  −
20𝑟𝑜𝑡
𝑇

 + 5𝑒𝑥𝑝  
−6𝜃𝑟𝑜𝑡
𝑇

 + − −− −−(6.4.2.0) 

Where 

𝜃𝑟𝑜𝑡 =
𝑕2

8𝜋2𝐼𝐾𝐵
 defines the characteristic rotational temperature. You will note 

that 𝜃𝑟𝑜𝑡  is low for heavier molecules. For example, 𝜃𝑟𝑜𝑡=15.2k for HCL, 2.1k for 
O2 and 0.3k for C12. On the other hand, 𝜃𝑟𝑜𝑡 = 85.5k for hydrogen. When 

𝑇 << 𝜃𝑟𝑜𝑡 , the thermal energy of the system.  ~𝐾𝛽𝑇 is not sufficient to take the 

molecule to higher rotational levels so it is very likely that the hetero-nuclear 
diatomic molecule is in its ground state of rotational motion. When 𝑇 >> 𝜃𝑟𝑜𝑡 , 
the significant number of rotational states are excited and the spacing between 
consecutive levels is much smaller compared to 𝐾𝛽𝑇. 

 
Then, energy can be treated as continuous and we can replace the summation 
in eqn (6.4.1.9) by integration. 

𝑍𝑟𝑜𝑡 =  (2𝐽 + 1)

∞

0

exp  −𝐽 (𝐽 + 1)
𝛳𝑟𝑜𝑡
𝑇

 𝑑𝐽 − − −− −− (6.4.2.1) 

 
To evaluate this integral, we introduce a change of variable by defining𝑥 =

𝐽(𝐽 + 1)
𝛳𝑟𝑜𝑡

T
so that 𝑑𝑥 =  

𝛳𝑟𝑜𝑡

T
(2𝑗 + 1)𝑑𝐽. 

Substituting these in the above expression, we get  

𝑍𝑟𝑜𝑡 =  
𝑇

𝛳𝑟𝑜𝑡
  𝑒−𝑦𝑑𝑦 =

𝑇

𝛳𝑟𝑜𝑡
=

∞

0

8𝜋 𝐼𝐾𝐵  𝑇

𝑕2
− −− −− (6.4.2.2) 

 

Hence, 
 

𝑙𝑛 𝑍𝑟𝑜𝑡 = 𝑙𝑛  
8𝜋 𝐼𝐾𝐵
𝑕2  + 𝑙𝑛 𝑇 

For 𝑇 >> 𝛳𝑟𝑜𝑡 , the mean energy for rotational motion of a molecule is given 

by∪𝑟𝑜𝑡 = 𝑁𝐾𝐵𝑇
2 .

𝜕𝐼𝑛𝑍𝑟𝑜𝑡

𝜕𝑇
/
𝑉,𝑁

=
 𝑁𝐾𝐵𝑇

2

𝑇
= 𝑁𝐾𝐵𝑇 − − − −− −(6.4.2. )  

and 
(𝐶𝑉)𝑟𝑜𝑡

𝑅
=

𝑑

𝑑𝑇
∪𝑟𝑜𝑡 = 1________ (6.4.2.3) 

 

A somewhat more accurate expression for rotational, contribution to heat 
capacity is obtained by using Euler-Maclaurin formula in evaluating the integral 
contained in eqn (6.4.2.2) we will just quote the result: 
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(𝐶𝑉)𝑟𝑜𝑡
𝑅

= 1 +
1

45
 
𝛳𝑟𝑜𝑡
𝑇

 
2

+ _________ (6.4.2.4) 

You will note that as 𝑇 → ∞, (𝐶𝑉)𝑟𝑜𝑡 → 𝑅 
 
Since (𝐶𝑉)𝑟𝑜𝑡  must approach zero at 𝑇 → 0, eqn (6.4.2.3) suggested that (𝐶𝑉)𝑟𝑜𝑡  
versus T curve should show a maximum. 
 
Low Temperature Limit  
For low temperatures, the series in eqn (6.4.2.0) can be used directly to 
calculate (𝐶𝑉)𝑟𝑜𝑡 . To do so, we note that  
 

𝑑𝑍𝑟𝑜𝑡
𝑑𝑇

=  
𝑑𝑍𝑟𝑜𝑡
𝑇2

  6 exp  −
2𝛳𝑟𝑜𝑡
𝑇

 + 30 exp  −
6𝛳𝑟𝑜𝑡
𝑇

 + −− −  

So that  
1

𝑍𝑟𝑜𝑡

𝑑𝑍𝑟𝑜𝑡
𝑑𝑇

=
𝑑

𝑑𝑇
ln𝑍𝑟𝑜𝑡

=
𝛳𝑟𝑜𝑡
𝑇2

 6 𝑒𝑥𝑝  −
2𝛳𝑟𝑜𝑡
𝑇

 + 6𝑒𝑥𝑝  −
2𝛳𝑟𝑜𝑡
𝑇

 

+ 30 𝑒𝑥𝑝  −
6𝛳𝑟𝑜𝑡
𝑇

 + 1 + 3 𝑒𝑥𝑝  −
2𝛳𝑟𝑜𝑡
𝑇

 + 5 𝑒𝑥𝑝  −
6𝛳𝑟𝑜𝑡
𝑇

 + − −  

 
Hence, mean rotational energy at low temperature is 

∪𝑟𝑜𝑡= 𝑁𝐾𝐵𝑇
2  

1

𝑍𝑟𝑜𝑡

𝑑𝑍𝑟𝑜𝑡
𝑑𝑇

 =
6𝑁𝐾𝐵𝛳𝑟𝑜𝑡  𝑒

−2𝛳𝑟𝑜𝑡
𝑇 + 5𝑒

−2𝛳𝑟𝑜𝑡
𝑇 + −− −− 

1 + 3𝑒
−2𝛳𝑟𝑜𝑡

𝑇 + 5𝑒
−2𝛳𝑟𝑜𝑡

𝑇
+

 

= 6𝑁𝐾𝛽𝛳𝑟𝑜𝑡 𝑒
−2𝛳𝑟𝑜𝑡

𝑇 − −− −− −(6.4.2.5) 

Hence, 
(𝐶𝑉)𝑟𝑜𝑡

𝑅
= 12  

𝛳𝑟𝑜𝑡
𝑇

 
𝑒

2

 −
2𝛳𝑟𝑜𝑡
𝑇

− − −− − (6.4.2.6)  

Vibrational Partition Function. 
 
The vibrational partition function can be written as  

𝑍𝑣𝑖𝑏 =  𝑒−𝛽𝜖𝑅 =  𝑒−𝛽ћ𝑤  𝑛 +
1

2
 = 𝑒−𝛽ћ𝜔/2  𝑒−𝛽ћ𝑤𝑛

∞

𝑛−0

∞

𝑅=𝑂𝑅

 

Since 

 𝑒−𝑛𝑥 = 1 + 𝑒−𝑥 + 𝑒−2𝑥 + − −−−=
1

1 − 𝑒−𝑥

∞

𝑛−𝑜

 

We find that  

𝑍𝑣𝑖𝑏 =
𝑒−

𝛽ћ𝜔
2 

1 − 𝑒−𝛽ћ𝑤
= 𝑒

−𝛳𝑣𝑖𝑏
2𝑇  1 − 𝑒

−𝛳𝑣𝑖𝑏
𝑇  

−1

− −− −− − (6.4.2.7)  
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Where 𝛳𝑣𝑖𝑏 =
ћ𝜔

𝐾𝐵
 defines the characteristic vibrational temperature. For an HCL 

molecule. 𝜃𝑟𝑖𝑏 = 4130𝑘,  whereas for Hz, 𝛳𝑣𝑖𝑏 = 6130𝑘.  This show that 
vibrational states of diatomic molecules are not excited around room 
temperature. 
 
4. For a system with f degrees of freedom 

𝑈 =
𝑓

2
𝑁𝐾𝐵𝑇 =

𝑓

2
𝑅 𝑇 

∴ 𝐶𝑉 =  
𝜕 ∪

𝜕𝑇
 
𝑉

=
𝑓

2
𝑅 

and  

𝐶𝑃 = 𝐶𝑉 + 𝑅 =
𝑓 + 2

2
𝑅 

Hence, 

𝛾 =
𝐶𝑃
𝐶𝑉

=
𝑓 + 2

2
= 1 +

2

𝑓
 

 
Clearly 𝛾 decreases as 𝑓 increases. 
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4.0 Summary 
 From this unit you have learned 
 - Definition of partition function 

- Ways of expressing partition function as a normalization factor,          
Compute Average energy and free energy 

- The partition function of an ideal monoatomic gas is given by 

 𝑍𝑁 =
𝑉𝑁

𝑕3𝑁
(2𝜋𝑚𝐾𝐵𝑇)

3𝑁
2  

  The internal energy ∪=
3

2
𝑅 𝑇 𝑎𝑛𝑑 𝑕𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶𝑉 =

3

2
𝑅 

- The classical expression for the entropy of an ideal monoatomic gas 

is 𝑆 = 𝑁𝐾𝐵  𝑙𝑛  
𝑉(2𝜋𝑚𝐾𝐵𝑇)

3
2 

𝑕2
𝑒

3
2   

- The sacker-tetrode formula accounts for indistingquishability of 

molecules and is given by𝑆 = 𝑁𝐾𝐵  𝑙𝑛  
𝑉

𝑁
.

2𝜋𝑚𝐾𝐵𝑇

𝑕2
/

3
2 
𝑒

5
2   

- The Rotational Partition Function 

𝑍𝑟𝑜𝑡 =
𝑇

𝛳𝑟𝑜𝑡
                𝑇 ≫ 𝛳𝑟𝑜𝑡  

= 1 + 3𝑒−2  
𝛳𝑟𝑜𝑡
𝑇

 + 5𝑒−6  
𝛳𝑟𝑜𝑡
𝑇

 + − −−𝑇 << 𝛳𝑟𝑜𝑡  

  Where 𝛳𝑟𝑜𝑡 =
𝑕2

8𝜋𝐾𝐵 𝐼
 

 - The Vibrational Partition Function 

𝑍𝑣𝑖𝑏 =
1

2𝑆𝑖𝑛𝑕 .
𝛳𝑣𝑖𝑏

2𝑇
/

 

Where 𝛳𝑣𝑖𝑏 =
ћ𝑤

𝐾𝐵
 

 
6.0   Tutor Marked Assignment (TMA) 
(1) Obtain the entropy and pressure of Helmholtz energy. 
(2) Consider a classical ideal gas consisting of N particles. The energy 𝜀of a 

particle is given by 𝜀 = 𝑐𝑝.where C is a constant and P is the magnitude of 
the momentum. Calculate (i) the partition function of the system (ii) 
internal energy and (iii) CV. 

(3) Show that the change in entropy of an ideal gas in two chambers doubles 
its volume without change in temperature (i.e. ∆𝑆 = 𝑁𝐾𝐵  𝑙𝑛 2) 

 
7.0 References/ Further Reading/Other Resources. 
(1) Thermodynamics and statistical mechanics by Indira Gandhi National 

Open University (1999). 
(2)  Funky Statistical Mechanics Concept Eric L. Michelson (2002-2009). 
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MODULE 2 
 
Unit 1: Equi-partition of Energy and Classical Statistics 
1.0 Introduction 
2.1 Objective 
3.0      Main Content 

3.1 Equipartition Theorem 
3.2 Classical Statistics 
3.3 Probability and Distribution Function 
3.4 Ideal Gases of Atoms and Electrons 
3.5 Maxwell Velocity Distribution 
3.6 The Boltzmann Factor 

4.0 Summary 
5.0     Conclusion 
6.0 Tutor Marked Assignment (TMA) 
7.0 References. 
 
1.0 Introduction 
The equal partition theorem on energy is stated and the theorem is used to 
derive the Average-Translational Kinetic Energy of a particle in a gas and the 
use of standard equations from statistical mechanics to derive the internal 
energy of the system. 
 
The basic concept of classical mechanics like the fundamental of ideal gases and 
statistical distributions are highlighted. 
 
2.0 Objective 

At the end of this unit student should be able to 
- State and use Equipartition theorem on energy to prove translational kinetic 

energy of particle and internal energy of the system. 
- Explain Classical mechanics. 
- State the basic concepts of classical mechanics. 
- State and apply all the formulas on classical mechanics. 
 
3.0 Main Content 
 
3.1 Equipartition Theorem 
The equilpartitionl theorem states that energy is shared equally amongst all 
energetically accessible degrees of freedom of a system. This is a system that 
will generally try to maximize its entropy (i.e. how ‘spread out’ the energy is in 
the system) by distributing the available energy evenly amongst all the 
accessible modes of motion. 
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To give a rather contrived example, consider a container in which we have 
placed a number of ping-pong balls. Initially the balls are stationary. Imagine 
we now throw some energy randomly into our box, which will be shared out 
amongst the ping-pong balls in some way such that they begin to move about. 
While you might not realize it, intuitively you know what this motion will look 
like. For example you would be very surprised if the particle motion looked like 
this: 
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You would probably predict something more like this: 
 
 
 
 
 

i.e. completely random motion of the ping-pong  balls. This is exactly the same 
result as predicted by the equipartition theorem - the energy is shared out 
evenly amongst the X, Y and Z translational degrees of freedom. 
 
The equipartition theorem can go further thansimply predicting that the 
available energy will be shared evenly amongst the accessible modes of motion, 
and can make quantitative predictions about how much energy will appear in 
each degree of freedom. Specifically, it states that each quadratic degree of 
freedom will on average process an energy ½KT. A quadratic degree of freedom 
is one of which the energy depends on the square of some property.Consider 
the kinetic and potential energies associated with translational, rotational and 
vibrational energy. 
 

 Translational degrees of freedom K = ½Mv2 
 Rotational degrees of freedom K = ½I𝜔2 
 Vibrational degrees of freedom K = ½Mr2 
       V = ½Kx2 
These three types of degrees of freedom all have a quadratic dependence on the 
velocity (or angular velocity in the case of rotation) and therefore all follow the 
equipartition theorem. 
 
Note that when considering vibration in a harmonic oscillator potential (V, 
above) we consider both the kinetic energy and the potential i.e. the P.E. counts 
as an additional degree of freedom. All the point about vibrations is that 
vibrational motion in molecules is highly quantized, and at room temperature 
most molecules are in their vibrational state and higher levels are not thermally 
accessible. As a consequence, equipartition contributions from vibrational 
degrees of freedom need only usually be considered at very high temperatures. 
Conversely, at room temperature many rotational and translational states are 
occupied, and they can be treated classically (i.e. as if their energy levels were 
not quantized) to a very good approximation. 
 
A simple derotation of the equipartition result for translational motion. 
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We can use the Maxwell Boltzmann distribution of moleculer speeds to 
determine the average kinetic energy of partition in a gas, and show that it 
agrees with the equipartition result. 
 
The Maxwell Boltzmann distribution of molecule speeds is 

𝑓(𝑉) = 4𝜋 .
𝑚

2𝜋𝐾𝑇
/

3
2 

𝑉2 exp −
𝑚𝑣2

2𝐾𝑇
  

The average kinetic energy of a particle in the gas is their 

𝐾 =
1

2
𝑚𝑣2 =  

1

2

∞

0

 𝑚𝑣2 𝑓(𝑣)𝑑𝑣 

Substituting for 𝑓(𝑣) and taking the constant terms outside the integrals gives  

𝐾 =
1

2
𝑚 4𝜋 .

𝑚

2𝜋𝐾𝑇
/

3
2 

 𝑉2
∞

0

exp −
𝑚𝑣2

2𝐾𝑇
 𝑑𝑣 

We can evaluate the integral by using the general result that  

 𝑋2𝑠
∞

0

exp(−𝑎𝑥2) =
(2𝑠 − 1)

2𝑆+1𝑎𝑠
.
𝜋

𝑎
/

1
2 

 

Where n!!  indicates on double factorial, 𝑛(𝑛 − 2)(𝑛 − 4)_______ 𝑒𝑡𝑐. Identifying 
X=Vand𝑎 = 𝑚

2𝐾𝑇  in our integral above gives 

 𝑉4
∞

0

exp 
−𝑚𝑣2

2𝐾𝑇
 𝑑𝑣 =  

3‼

8 𝑚 2𝐾𝑇  
2  

2𝜋𝐾𝑇

𝑚
 

1
2 

=
3

2
 
𝐾𝑇

𝑚
 

2

 
2𝜋𝐾𝑇

𝑚
 

1
2 

 

Substituting back into our expression for k gives 

𝑘 =
1

2
𝑚 4𝜋 .

𝑚

2𝜋𝐾𝑇
/

3
2 3

2
 
𝐾𝑇

𝑚
 

2

 
2𝜋𝐾𝑇

𝑚
 

1
2 

 𝐾 =
3

2
𝐾𝑇. 

The average translational 𝑘 . Energy of a particle in a gas is therefore 
3

2
𝐾𝑇,𝑜𝑟 1

2 𝐾𝑇 per translational degree of freedom. In agreement with the 

equipartition theorem, a more general derivation of the Equipartition theorem 
 requires statistical machanics which we have learnt in the previous unit. 
 
The partition function in statistical mechanics tells us the number of quantum 
state of a system that are thermally accessible at a give temperature. 
It is defined as:𝑞 =   𝑒𝑥𝑝 (−𝐸𝑖/𝐾𝑇)  
 
Where 𝐸𝑖  are the energies of the quantum states 𝑖. Once we know the partition 
function, we can calculate many of the macroscopic properties of our system 
using standard eqns from statistical mechanics. 
 
We will use the P function to calculate the internal energy u associated with a 
single degree of freedom of the system and we need to consider the difference 
between a quantum and a classical system. 
 

𝑖 
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If we are treating the particular motions classically, it doesn’t make sense to 
express the partition function as a sum of discrete terms as we have above but 
classically, the position and moment of a particle can vary continuously and the 
energy levels are also continuous. As a result, the classical partition function 
takes the form of an integral rather than a sum. 

𝑞 =  𝑒𝑥𝑝  
−𝐸(𝑋1𝑋2 − −− − 𝑃1𝑃2 −− −)

𝐾𝑇
 𝑑𝑥1 𝑑𝑥2 − − − 𝑑𝑃1𝑑𝑃2 −− − − 

Where the energy 𝐸can be a function of the particle positions 𝑋𝑖  and momenta 
𝑃𝑖 . 
If we assume that we can write the energy as a sum of contributions from each 
degree of freedom, then the exponential functional dependence on the energy 
means that we can separate the integral into the product of integrals over each 
degree of freedom i.e. 
𝐸(𝑋1 ,𝑋2 −− −  𝑃1𝑃2 −− −) =  𝐸(𝑋1) + 𝐸(𝑋2) + −− +𝐸(𝑃1) + (𝑃2) + − − − 

 

So 

𝑒𝑥𝑝 
− 𝐸(𝑋1𝑋2 − −−  𝑃1𝑃2)

𝐾𝑇
 = 𝑒𝑥𝑝  

−𝐸(𝑋1).𝐸(𝑋2) − −𝐸(𝑃1).𝐸(𝑃2)

𝐾𝑇
 

= 𝑒𝑥𝑝  
−𝐸(𝑥1)

𝐾𝑇
 𝑒𝑥𝑝  

−𝐸(𝑥1).𝐸(𝑋2) − − − 𝐸(𝑃1).∈ (𝑃2)

𝐾𝑇
 

= 𝑒𝑥𝑝  
−𝐸(𝑥1)

𝐾𝑇
 𝑒𝑥𝑝  

−𝐸(𝑥2)

𝐾𝑇
 − −𝑒𝑥𝑝  

−𝐸𝑝1

𝐾𝑇
  𝑒𝑥𝑝  

−𝐸𝑝2

𝐾𝑇
  

 
And the integral may be written 

𝑞 =  𝑒𝑥𝑝  
−∈ (𝑥1)

𝐾𝑇
 
𝑑𝑋1

 𝑒𝑥𝑝  
−∈ (𝑥2)

𝐾𝑇
 𝑑𝑋2 − −− − 

 𝑒𝑥𝑝  
−∈ (𝑃1)

𝐾𝑇
 
𝑑𝑝1

 𝑒𝑥𝑝  
−∈ (𝑃2)

𝐾𝑇
 
𝑑𝑝2

 

= 𝑞(𝑋1) 𝑞(𝑋2) − − −  𝑞(𝑃1) 𝑞(𝑃2) 
 
The consequence of this is that we here separated the partition into the product 
of partition functions for each degree of freedom. In general, we may write the 
𝑃.𝑓 for a single degree of freedom in which the energy depends quadratically  

on the coordinate 𝑥 𝑖. 𝑒.  ∈ (𝑥) = 𝐶𝑋2 𝑤𝑖𝑡𝑕 𝐶 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)  as  

𝑞(𝑥) =   𝑒𝑥𝑝
∞

−∞

 
−𝐸(𝑥)

𝐾𝑇
 𝑑𝑥 =  𝑒𝑥𝑝

∞

−∞

 
−𝐶𝑋2

𝐾𝑇
 𝑑𝑥 =  

𝜋𝐾𝑇

𝐶
 

1
2 

 

Where we have used the standard integral 
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 𝑒𝑥𝑝
∞

−∞

 (𝑎𝑥2)𝑑𝑥 = .
𝜋

𝑎
/

1
2 

 

Once we know the 𝑃. 𝑓, we can calculate the internal energy of the system 
according to the standard result from statistical mechanics∴ 

∪= 𝐾𝑇2
𝑑(𝑙𝑛 𝑞)

𝑑𝑇
 

Substituting in an 𝑃. 𝑓, the internal energy associated with one degree of 
freedom is therefore  

∪= 𝐾𝑇2
𝑑

𝑑𝑇
 𝑙𝑛  

𝜋𝐾𝑇

𝐶
 

1
2 

=
1

2
𝐾𝑇2

𝑑

𝑑𝑇
 𝑙𝑛  

𝜋𝐾𝑇

𝐶
 (𝑠𝑖𝑛𝑐𝑒 𝐼𝑛 𝑥𝑛 = 𝑛 𝑙𝑛 𝑥)

=
𝐾𝑇2

2

𝐶

𝜋𝐾𝑇

𝜋𝐾

𝐶
 𝑠𝑖𝑛𝑐𝑒 

𝑑𝑙𝑛𝑦

𝑑𝑥
=

1

𝑦

𝑑𝑦

𝑑𝑥
 =

1

2
 𝐾𝑇 

 
The energy appreciated with each quadratic degree of freedom is therefore 
1/2KT, and we have proved the equipartition theorem. 
 
3.2. Classical Statistics 
Classical Maxwell Boltzmann statistics is introduce to calculate the occupancy 
of states. 
 
It is derived on the basis of purely classical physics arguments. The basic 
concepts of classical statistics will be derived and the fundamentals of ideal 
gases and statistical distributions are summarized since they are the basis of 
semi conductor statistics. 
 
3.3 Probability of Distribution Function: 

Consider a large number N of free classical particles such as atoms, 
molecules or electrons which are kept at a constant temperature T, and which 
interact only weakly with one another. The energy of a single particle consists 
of kinetic energy due to translatory motion and an internal energy for example 
due to rotations, vibrations, or orbital motions of the particle. In the following, 
we consider particles with only kinetic energy due to translator motion. 
 
The particles of the system can assure an energy E, where E can be either a 
discrete or a continuous variable. If 𝑁𝑖  particles out of N particles have an 
energy between ∈𝑖 𝑎𝑛𝑑 ∈𝑖+ 𝑑𝜖, the probability of any particle having any 
energy within the interval ∈𝑖  and ∈𝑖+ 𝑑 ∈, is given by 
 

𝑓(∈𝑖)𝑑𝜖 =
𝑁𝑖
𝑁

 −− − −− −(7.4.1) 

Where 𝑓(∈)the energy distribution function of a particle system in statistics 
is𝑓(∈) is frequently called the probability density function. The total number of 
particles is given by  
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 𝑁𝑖
𝑖

= 𝑁 −− −− −−(7.4.2) 

Where the sum is over all possible energy intervals. Thus, the integral over the 
energy distribution function is 

 𝑓
∞

0

(𝐸)𝑑𝐸 =   
𝑁𝑖
𝑁

𝑖

= 1 −− −− −− − (7.4.3) 

In other words, the probability of any particle having an energy between zero 
and infinity is unity.Distribution functions which obey  

 𝑓
∞

0

(𝐸)𝑑𝐸 =  1 −− −− −− − (7.4.4)  

are called normalized distribution functions 
 
The average energy or mean energy Ē of a single particle is obtained by 
calculating the total energy and dividing by the number of particles, that is  

Ē =
1

𝑁
 𝑁𝑖𝐸

𝑖
=  𝐸

∞

0

 𝑓(𝐸)𝑑𝐸 − − −− −−(7.4.5) 

In addition to energy distribution functions velocity distribution functions are 
valuable. Since only the kinetic translatory motion (no rotational motion) is 
considered, the velocity and energy are related by 

𝐸 =
1

2
𝑚𝑣2 −− −− −−(7.4.6) 

The average velocity and the average energy are related by 

Ē =
1

2
 𝑚 ⊽2−− − −− (7.4.7) 

𝑉𝑟𝑚𝑠 =  ⊽2−− −− −−(7.4.8) 
And the velocity corresponding to the average energy 

Ē =
1

2
 𝑚𝑣𝑟𝑚𝑠

2 − −− −− −(7.4.9) 

 
In analogy to the energy distribution we assume that 𝑁𝑖  particles have a 
velocity within the interval 𝑉𝑖  and 𝑉𝑖 + 𝑑𝑣. Thus,  

𝑓(𝑣)𝑑𝑣 =
𝑁𝑖
𝑁
−− −−(7.5.0) 

 
Where 𝑓(𝑣)does the normalized velocity distribution know𝑓(𝑣), relations allow 
one to calculate the mean velocity, the mean square velocity, and the root mean 
square velocity. 

⊽ =   𝑣
∞

0

 𝑓(𝑣)𝑑𝑣 − − −− − (7.5.1) 

 

⊽2 =   𝑣2
∞

0

 𝑓(𝑣)𝑑𝑣 − − −− − (7.5.2) 
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𝑉𝑟𝑚𝑠 =  ⊽2 =   𝑣
∞

0

 𝑓(𝑣)𝑑𝑣 

1
2 

− −− − − (7.5.3) 

Up to now we have considered the velocity as a scalar. A more specific 
description of the velocity distribution is obtained by considering each 
component of the velocity 𝑉 = (𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧). If 𝑁𝑖  particles out of N particles have a 

velocity in the value element 𝑉𝑥 + 𝑑𝑉𝑥 ,𝑉𝑦 + 𝑑𝑉𝑦 , and 𝑉𝑧 + 𝑑𝑉𝑧 , the distribution 

function is given by 

𝑓(𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧) 𝑑𝑉𝑥  𝑑𝑉𝑦  𝑑𝑉𝑧 =
𝑁𝑖
𝑁
−− −−(7.5.4) 

Since  𝑁𝑖𝑖 = 𝑁, the velocity distribution function is normalized, i.e. 

   𝑓(𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧) 𝑑𝑉𝑥  𝑑𝑉𝑦  𝑑𝑉𝑧

∞

−∞

∞

−∞

∞

−∞

= 1 − −− −− −(7.5.5) 

 
The average of a specific propagation direction, for example 𝑉𝑥  is evaluated in 
analogy to eqn (7.5.1 - 7.5.3).One obtains  
 

⊽𝑥=    𝑉𝑥𝑓(𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧) 𝑑𝑉𝑥  𝑑𝑉𝑦  𝑑𝑉𝑧

∞

−∞

∞

−∞

∞

−∞

−− −− −−(7.5.6) 

 

⊽𝑥
2  =    𝑉𝑥

2𝑓(𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧) 𝑑𝑉𝑥  𝑑𝑉𝑦  𝑑𝑉𝑧

∞

−∞

∞

−∞

∞

−∞

−− −− − −(7.5.7) 

 

𝑉𝑥 ,𝑟𝑚𝑠 =  ⊽𝑥
2 =     𝑉𝑥

2𝑓(𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧) 𝑑𝑉𝑥  𝑑𝑉𝑦  𝑑𝑉𝑧

∞

−∞

∞

−∞

∞

−∞

 

1
2 

− − −− − (7.5.8) 

 
In a closed system the mean velocities are zero, that is ⊽𝑥=⊽𝑦=⊽𝑧= 0. However, 

the mean square velocities are, just as the energy not equal to zero. 
 
3.4 Ideal gases of Atom and Electrons 
 The basis of classical semi conductorstatistics is ideal gas theory. It is 
therefore necessary to make a small excursion into this theory. The individual 
particles in such ideal gases are assumed to interact weakly, that is collisions 
between atoms or molecules are a relatively seldom event. It is further assumed 
that there is no interaction between the particles of the gas (such as 
electrostatics interaction), unless the particles collide. The collisions are 
assumed to be (i) elastic (i.e. total energy and momentum of the two particles 
involved in a collision are preserved) and (ii) of very short duration. 
 
Ideal gases follow the universal gas equation 

𝑃𝑣 = 𝑅𝑇 − −− −(7.5.9) 
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Where P is the pressure, V the volume of the gas, T its temperature, and R is the 
universal gas constant. This constant is independent of the species of the gas 
particles and has a value of 𝑅 = 8.314 𝐽𝐾−1𝑚𝑜𝑙−1 
 

 
 
 
 
 
 
 
 
 
Next, the pressure P and the kinetic energy of an individual particle of the gas 
will be calculated. For the calculation it is assumed that the gas is confined to a 
cube of volume 𝑉1 as shown in the figure above. The quantity of the gas is 
assumed to be 1 mole, that is the number of atoms or molecules is given by 
Avogadros number, 𝑁𝐴𝑉𝑂 = 6.023 × 1023  particles per mole. 
 
Each side of the cube is assured to have an area A = V2/3. If a particle of mass in 

and convention MVx (along the x direction) is elastically reflected from the 

wall, it provides a convention 2MVx to reverse the particle momentum. If the 

duration of the collision with the wall is dt, then the force acting on the wall 

during the time dt is given by 

𝐹 =
𝑑𝑝

𝑑𝑡
− − − −− −(7.6.0) 

where the momentum charge is 𝑑𝑝 =  2𝑚𝑣𝑥 , the pressure P on the wall during 

the collision with one particle is given by  

𝑑𝑝 =
𝐹

𝐴
=

1

𝐴

𝑑𝑝

𝑑𝑡
− − −− − (7.6.1) 

where A is the area of the cubes walls. Next we calculate the total pressure P 

experienced by the wall if a number of 𝑁𝐴𝑉𝑂particles are within the volume V. 

for this purpose we first determine the number of collisions with the wall 

during the time dt. If the particles have a velocity Vx, then the number of 

particles hitting the wall during dt is (𝑁𝐴𝑉𝑂/V) 𝐴𝑣𝑥 𝑑𝑡. The fraction of particle 

having a velocity Vx is obtained from the velocity distribution function and is 

given by 𝑓(𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 . Consequently, the total pressure is obtained by 

integration over all positive velocities in the 𝑥 – direction. 

 

𝑥 

𝑧 

𝑦 

The figure show the cubic volume confining 

one mole (𝑁𝐴𝑉𝑂 = 6.023 × 1023  𝑎𝑡𝑜𝑚𝑠/

𝑚𝑜𝑙𝑒) of an ideal gas exerted in side of the 

cube. (shaded area) is calculated in the text. 
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𝑃 =     
∞

0

∞

−∞

∞

−∞

𝑁𝑎𝑣𝑜

𝑉
𝐴𝑣𝑥𝑑𝑡 𝑓 𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧

2𝑚𝑣𝑟

𝐴𝑑𝑡
− − − −− (7.6.2) 

 

Since the velocity distribution is symmetric with respect to positive and 

negative 𝑥-direction, the integration can be expanded from −∞ 𝑡𝑜 + ∞ 

𝑃 =  
𝑁𝑎𝑣𝑜

𝑉
𝑀   𝑉𝑥

2 𝑓 𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧 =  
𝑁𝑎𝑣𝑜

𝑉
𝑀 ⊽𝑥

∞

−∞

∞

−∞

∞

−∞

 

Since the velocity distribution is isotropic, the mean square velocity is given by 

⊽2=⊽𝑥
2+⊽𝑦

2 +⊽𝑧
2  𝑜𝑟 ⊽𝑥

2 =
1

3
⊽𝑦

2−−− − −−(7.6) 

The pressure on the wall is then given by 

𝑃 =
1

3
⊽2 

𝑁𝐴𝑉𝑂
𝑉

𝑚 − −− − −−(7.6.5) 

Using the universal gas equation (Ē =  ½ 𝑚𝑣2
𝑟𝑚𝑠 ) one obtains. 

𝑅𝑇 =
2

3
𝑁𝐴𝑉𝑂

1

2
𝑚 ⊽2−− −− −− − (7.6.6) 

The average Kinetic Energy of one mole of the ideal gas can then be written as  

Ē =  Ē𝐾𝑖𝑛  = 3
2 𝑅𝑇 − − −− −− − (7.6.7) 

The average K.E of one single particle is obtained by division by the number of 

particles i.e 

Ē =  Ē𝐾𝑖𝑛 = 3
2 𝑅𝑇 − − − − −−(7.6.8) 

Where K = 
𝑅

𝑁𝐴𝑉𝑂
 is the Boltzmann constant. The preceding calculation has been 

carried out for a three dimensional space. In a one-dimensional space (One 

degree of freedom), the average velocity is ⊽2= ⊽𝑥
2  and the resulting kinetic 

energy is given by  

Ē𝐾𝑖𝑛  =  ½ 𝐾𝑇 (𝑃𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚) − − − −− (7.6.9) 

Thus the kinetic energy of an atom or molecule is given by (1/2) KT. Equation 

(7.6.9) is called the equipartition law, which states that each degree of freedom 

contributes (1/2) KT to the total kinetic energy. 
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Let us focus on the energetic distribution of electrons. The properties which 

have been derived in this section for atomic or molecular gases will be applied 

to free elections of effective mass in a crystal. To do so, the interaction between 

the electrons and the lattice must be negligible and election – election collision 

must be a relatively seldom event. Under these circumstance we can treat the 

election system as a classical ideal gas. 

3.5 Maxwell velocity Distribution 

The Maxwell velocity distribution describes the distribution of velocities 

of the parties of an ideal gas. It will be shown that the Maxwell velocity 

distribution is of the form. 

𝑓𝑚 (𝑉)      𝐹𝑚 (𝑣) = 𝐴𝑒𝑥𝑝  −  
.

1

2
/MV2

KT
 −−− −− −(7.7.0) 

Where (½)𝑚𝑣2 is the kinetic energy of the particles,if the energy of the 

particles is purely kinetic? 

If the energy of the particles is purely kinetic, the Maxwell distribution can be 

written as 𝑓𝑚(𝐸) =  𝐴𝑒𝑥𝑝 .
− 𝐸

𝐾𝑇
/ − − − − − (7.7.1) 

The proof of the Maxwell distribution of equation (7.70) is conveniently done in 

two steps. In the first step, the exponential factor is demonstrated, i.e. 

𝑓𝑚 (𝐸)  =  𝐴𝑒𝑥𝑝 (−∝ 𝐸). In the second step it is show that ∝ =  1/(𝐾𝑇) 

In the theory of ideal gas it is assured that collisions between particles are 

elastic. The total energy of two electrons before and after a collision remains 

the same, that is 𝐸1  +  𝐸2  =  𝐸1
1 +  𝐸2

1 − −− −− −(7.7.2) 

Where E1 and E2 are the electron energy before the collision and E11 and E21 are 

the energies after the collision. The probability of a collision of an election with 

energy E1 and of an election with energy E2 is proportional to the probability 

that there is an election of energy E1 and a second election with energy E2. If the 

probability of such a collision is P, then 

𝑃 =  𝐵𝑓𝑚 (𝐸1)𝑓𝑚 (𝐸2) − − − − − (7.7.3) 

where B is a constant. The same consideration is valid for particles with 

energies E1 and E2. Thus, the probability that two electrons with energies E1
1 

and E21 collide is given by  
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𝑃1  =  𝐵 𝑓𝑚 (𝐸1
1)𝑓𝑚 (𝐸2

1) − − − −− (7.7.4) 

If the change in energy before and after the collision is 𝛥𝐸, 

then   𝛥𝐸 =  𝐸1
1 –  𝐸1 𝑎𝑛𝑑 𝛥𝐸 =  𝐸2 –  𝐸2

1 . 

Furthermore, if the electron gas is in equilibrium, then 𝑃 = 𝑃1 and one 

obtains𝑓𝑚 (𝐸1)𝑓𝑚 (𝐸2) =  𝑓𝑚 (𝐸1 + 𝛥𝐸)𝑓𝑚  𝐸2– 𝛥𝐸 − − − − −−(7.75) 

Only the exponential function satisfies this condition, that is 

𝑓𝑚 (𝐸) =  𝐴𝑒𝑥𝑝 (−∝ 𝐸) − − − −− −(7.76) 

Where ∝ is a positive yet undetermined constant.The exponent is chosen 

negative to assure that the occupation probability decreases with higher 

energies. It will become obvious that ∝ is a universal constant and applies to all 

carrier systems such as electron, heavy or light hole systems. 

Next, the constant ∝ will be determined it will be shown that ∝ = 1/KT using 

the results of the ideal gas theory. The energy of an election in an ideal gas is 

given by 

𝐸 =  ½ 𝑚𝑣 2 =  ½ 𝑚  𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2 − − − − − (7.7.7)  

The exponential energy distribution of (7.7.6) and the normalization condition 
of eqn (7.5.5) yield the normalized velocity distribution. 

𝑓 𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 = .
𝑚 ∝

2𝜋
/

3/2

𝑒𝑥𝑝  −
1

2
𝑚 ∝  𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2  − − − −(7.7.8)  

The average energy of an electron is obtained by (First) calculating the mean 
spare velocities ⊽𝑥

2 ,⊽𝑦
2 ,⊽𝑧

2 from the distribution and (second) using eqn (7.7.7) 

to calculate E from the mean square velocities. One obtains  

𝐸 =   3
2  ∝−1− −− −− (7.7.9) 

We now use the result from classic gas theory which states accordingly to eqn 
(7.6.8) that the kinetic energy equals E = (3/2) KT. Comparison with eqn 
(7.7.9) yields. 

 ∝ =  (𝐾𝑇)−1 − −− −− −(7.80) 
Which concludes the proof of the Maxwell distribution of Eqn(7.70) and (7.7.1). 

Having determined the value of ∝, the explicit form of the normalized 

Maxwellian velocity distribution in Cartesian co-ordinates is 

 𝑓𝑚 𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 = .
𝑚

2𝜋𝐾𝑇
/

3/2
𝑒𝑥𝑝  

− 
1

2
𝑚   𝑉𝑥

2+𝑉𝑦
2+𝑉𝑧

2 

𝐾𝑇
 − − − −− (7.8.1) 
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Due to the spherical symmetry of the Maxwell velocity distribution, it is useful 

to express the distribution in spherical coordinates. For the coordinate 

transformation we note that 𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 𝑑𝑣𝑥,𝑑𝑣𝑦 ,𝑑𝑣𝑧 = 𝑓𝑚 (𝑣)𝑑𝑣, and that a volume 

element 𝑑𝑣𝑥 ,𝑑𝑣𝑦,𝑑𝑣𝑧  is given by 4𝜋𝑣2𝑑𝑣 in spherical coordinate. The Maxwell 

velocity distribution in spherical coordinates is then given by 

𝑓𝑚 (𝑣) = .
𝑚

2𝜋𝐾𝑇
/

3
2 

(4𝜋𝑣2)𝑒𝑥𝑝  
−

1

2
𝑚𝑣2

𝐾𝑇
 − −− − − (7.8.2) 

The Maxwellain velocity distribution is shown in the figure below. The peak of 

the distribution, that is the most likely velocity is 𝑉𝑃  =  (2𝐾𝑇/𝑚)
1

2 . The mean 

velocity is given by ⊽ =  (8𝐾𝑇)/(𝜋𝑚)
1

2 . 

The root mean square velocity can only be obtained by numerical integration. 

  

 

 

 

 

 
 
 
3.5.1  The Boltzmann Factor: 

The Maxwellain velocity distribution can be changed to an energy 
distribution can be changed to an energy distribution by using the substitution 
𝐸 =  (1/2) 𝑚𝑣2. Noting that the energy internal and the velocity internal are 
related by 𝑑𝐸 =  𝑚𝑣 𝑑𝑣 and that the number of electrons in the velocity 
internal, 𝑓𝑚 (𝑣) 𝑑𝑣, is the same as the number of electrons in the energy 
internal 𝑓𝑚𝐵 (𝐸 𝑑𝐸), then the energy distribution is given by 

𝑓𝑚𝐵 (∈) =
2

 𝜋

 ∈

(𝐾𝑇)
3

2 
𝑒−

∈
𝐾𝑇 − −− −− (7.8.3) 

which is the Maxwell Boltzmanndistribution.For large energies,the exponential 
term in the Maxwell Boltzmann distribution essentially determines the energy 
dependence. Therefore, the high energy approximation of the Maxwell-
Boltzmanndistribution is 

𝑓𝐵(𝐸) = 𝐴𝑒−
𝐸
𝐾𝑇 − −− −− (7.8.4) 

The figure shows the schematic 

Maxwellian velocity distribution 

𝑓𝑚 (𝑣) of an ideal electron gas. The 

velocity with the highest probability, 

𝑉𝑃  is lower than the mean velocity ⊽ 

and the root mean square velocity, 

𝑉𝑟𝑚𝑠  

𝑓𝑚  (𝑣) 𝑣𝑝  
⊽ 

𝑉𝑟𝑚𝑠  

𝑉𝑝  𝑉 
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which is the Boltzmann distribution.The exponential factor of the 
distribution𝑒𝑥𝑝 (− 𝐸/𝐾𝑇) is called the Boltzmann factor or the Boltzmann 
tail.TheBoltzmann distribution does not take into account the quantum 
mechanical properties of an electron gas. The applicability of the distribution is 
therefore limited to the classical regime i.e. for E >> KT. 
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7.7 Summary 
 This unit has covered the following: 
- Equipartition theorem, kinetic energy = 3/2 KT or ½ KT. 
- Probability of any particle having an energy between 0 and infinity is 

unity i.e. 

 𝑓
∞

0

(𝐸)𝑑𝐸 = 1 

- Average energy or mean energy  

𝐸 =
1

𝑁
 𝑁𝑖𝐸

𝑖
=   𝐸 𝑓

∞

0

(𝐸)𝑑𝐸 

- The average kinetic energy of one mole of an ideal gas is given by 

Ē = Ē𝑘𝑖𝑛 =
3

2
𝐾𝑇                 (𝑓𝑜𝑟 𝑡𝑕𝑟𝑒𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒) 

Ē = 1
2 𝐾𝑇              (𝑓𝑜𝑟 𝑜𝑛𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 𝑝𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚) 

- Maxwell velocity distribution 

𝑓𝑚 𝑉𝑥 ,𝑉𝑦 ,𝑉𝑧 = .
𝑚

2𝜋𝐾𝑇
/

3
2 

 𝑒𝑥𝑝 

 
 
 
 −

1
2 𝑚 𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2 

𝐾𝑇
 
 
 
 
 

(𝑚𝑣 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑜𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) 
 

- 𝑓𝑚 (𝑣) = .
𝑚

2𝜋𝐾𝑇
/

3
2 
(4𝜋𝑣2) 𝑒𝑥𝑝  

−1
2 𝑚𝑣2

𝐾𝑇
  

(𝑚. 𝑣. distribution for spherical coordinates) 
 

- Boltzmann Factor  

𝑓𝑚𝐵 (𝐸) =
2

 𝜋

 𝐸

(𝐾𝑇)
3

2 
𝑒−

𝐸
𝐾𝑇  

(𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 
 

𝑓𝐵(𝐸) = 𝐴𝑒−
𝐸
𝐾𝑇  

(𝐸𝑛𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡𝑕𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑡𝑕𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑓𝑎𝑐𝑡𝑜𝑟). 
 

7.9. Tutor Marked Assignment (TMA) 
1.      Consider a classical linear oscillator with 

𝐸 =
𝑃2

2𝑚
+ 𝑏𝑥4 

 
where b is a constant. Assuming that the oscillator is in thermal 
equilibrium with a heat reservoir at temperature T, calculate (i) The 
mean kinetic energy (ii) The mean potential energy and (iii) 𝐶𝑉 for an 
assembly of N such oscillators. 
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2. Prove that (i) 𝐾.𝐸 = 3/2 𝐾𝑇 (ii) ∪ = 1/2 𝐾𝑇 , Using equipartition 
theorem. 
 

7.10. References 
Thermodynamics and Statistical Mechanics by Indira Gandhi National Open 
University (1999). 
 
Funky Statistical Mechanics Concepts by Eric Michelson (2002 - 2009) 
 
 
 
MODULE 3 
 
Unit 1 Quantum Statistics 
1.0 Introduction 
2.0 Objective 
3.0     Main Content 
3.1 Towards Quantum Statistics 
3.2 Ideal Bose-Einstein Gas 
3.3 Ideal Fermi-Dirac Gas 
4.0  Summary 
5.0      Conclusion 
6.0 Tutor mark Assignments 
7.0 References and Further Readings 
 
1.0 Introduction 
Quantum Mechanic Fermi-Dirac statistics are introduced to calculate the 
occupancy of states. Special attention is given to analytic approximations of the 
Fermi-Dirac integral and to its approximate situations in the non-degenerate 
and the lightly degenerate regime.  
 
In addition, some numerical approximation to the Fermi-Dirac integral is 
summarized. 
 
Quantum statistics takes into account two results of quantum mechanics, 
namely (i) The Pauli exclusion principle which limits the number of electrons 
occupying a state of energy 𝐸 and (ii) The finiteness of the number of states in 
an energy interval𝐸𝑎𝑛𝑑 𝐸 + 𝑑𝐸. The finiteness of states is a result of the 
Schrodinger equation. Quantum statistics help us to correct all the inadequacies 
of classical theory like (i) Inability to correctly deal with indistinguishable 
particles led us to Gibbs paradox and this can be corrected by resorting to a 
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purely ad-hoc device of dividing the thermodynamic probability by 𝑁! (ii) 
Problem of black body radiation cannot be handled within the domain of 
classical method but max plank propose a remarkable idea for the resolution of 
the problem by deriving the Planck’s law of black body radiation. 
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2.0 Objective 
 After studying this unit the students should be able to  
- Point out the inadequacies of the classical theory. 
- Derive expressions for the Bose-Einstein and Fermi-Dirac distribution 

functions. 
- Apply Bose-Einstein statistics to an assembly of photons. 
- Explain the behaviour of liquid Helium at low temperatures 
- Explain the concept of zero point energy 
- Explain Temperature dependence of heat capacity of electrons and 
- Predict Thermodynamic functions of degenerate 𝐵.𝐸 and𝐹.𝐷 gases 
 
3.0     Main Content 
 
3.1    Towards Quantum Statistics 
             In classical physics we postulate that it is possible to determine the 
position and momentum coordinates of a gaseous molecule/atom 
simultaneously as precisely as we like. All that we have to do is to follow its 
trajectory as it moves in space. This means that these particles are 
distinguishable and can be labelled, but this is not true. 
 
You will recall that Heisenberg’s un-certainly principle forbids determination of 
the position. If the uncertainties in the measurements of q and p are ∆𝑞 𝑎𝑛𝑑 ∆𝑝, 
respectively, we have 

∆𝑞 ∆𝑝 ≥
𝑕

4𝜋
− − − − −−(8.1.1) 

Where (𝑕 = 6.63 × 10−34 𝐽𝑠) is Planck’s constant. That is, the product ∆𝑞 ∆𝑝 
cannot be made less than 𝑕/4𝜋. So it does not make much sense to talk about 
the trajectory of a particle. Moreover, the task of labeling particles is just 
impossible and when we study the behaviour of an assembly of identical 
particles statistically, we should treat it as a collection of indistinguishable 
particles. 
 
Lord Kelvin spoke about two dark clouds on the horizon of classical physics, the 
heat capacity of solids and the black body radiation and this shook the edifice of 
classical physics to its very foundations. The paragraphs that follow are devoted 
to these two aspects. 
 

Heat capacity of solids 
You would recall that solids behave as a collection of independent harmonic 
oscillators, and energy associated with them is equal to 3𝑁𝐴𝐾𝐵𝑇, where 𝑁𝐴  is 
Avogadros number. Hence, heat capacity at constant volume is constant, equal 
to 3𝑅 regardless of the substance. 

𝐶𝑉 =  
𝜕𝑢

𝜕𝑇
 
𝑉

= 3𝑅 = 24.9 𝐽 𝑚𝑜𝑙−1𝑘1 −− −− − (8.1.2) 
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The famous Dulang and Petit’s law does not exhibit what experiments reveal 
about temperature variation of heat capacity. 
 
The deviations from this law, particularly in the low temperature region are 
striking, as shown in the figure below. 
 
As T decreases below room temperature, 𝐶𝑉 also decreases and becomes zero 
at absolute zero. 
𝐶𝑉 
3𝑁𝑘𝐵  
 
 
 
 
 
 
(Temperature variation of constant volume lent heat capacity of a solid) 
A qualitative theoretical explanation was provided by Einstein, using Planck’s 
idea on quantization of energy. 
 
The key to Einstein’s success was that he discarded the law of equipartition of 
energy. The mean energy of a classical oscillator is given by Ē = 𝐾𝐵𝑇. 
In the quantum theory, we have 

Ē =  
1

2
+

1

𝑒𝑥𝑝 .
ћ𝜔

𝐾𝐵𝑇
/ − 1

 ћ𝜔 − − −− − −(8.1.3) 

 Where ћ = 
𝑕

2𝜋
 

For a system of 𝑁𝐴  oscillators vibrating with Einstein frequency 𝜔𝜖, this gives 

𝑈 = 3𝑁𝐴  ћ𝜔𝐸  
1

2
+

1

𝑒𝑥𝑝 .
ћ𝜔𝜖

𝐾𝐵𝑇
/ − 1

 − − − −− (8.1.4) 

So that  

𝐶𝑉 =
3𝑁𝐴 ћ𝜔𝜖 𝑒ћ𝜔𝜖 /𝐾𝐵𝑇

{𝑒𝑥𝑝 (ћ𝜔𝜖/𝐾𝐵𝑇) − 1}2  
ћ𝜔𝜖

𝐾𝐵𝑇
2  

 

= 3𝑅  
ћ𝜔𝜖

𝐾𝛽𝑇
 

2
𝑒ћ𝜔𝜖 /𝐾𝐵𝑇

[𝑒ћ𝜔𝜖 /𝐾𝐵𝑇 − 1]2
 

 

= 3𝑅  
𝛳𝐸
𝑇
 

2 𝑒𝛳𝐸/𝑇

[𝑒𝛳𝐸/𝑇−1]2
− − −− − (8.1.5) 

 

100 200 300 
T 
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Where we have introduced Einstein temperature 𝛳𝐸 = ћ𝜔𝜖/𝐾𝐵. For Copper, a 
plot of this equation is shown in the figure below. 
 
You will note that this relation reproduces all the general features of the 
observed curve at least qualitatively. However, there are disagreements in 
details, particularly near absolute zero. 
 
 
 
 
 
 
 
 
 
 
 

𝑟/𝛳 
The figure above shows the plot of eqn (8.1.5) for cooper. 
 
Debye (1912) subsequently refined Einstein’s theory and obtained an excellent 
agreement with experiments. 
 
The heat capacities of metals also pose an interesting puzzle, in fact a challenge, 
to the classical physicists. You know that every metal contains free electrons. If 
we assume that these electrons constitute a monoatomic gas, they should 

contribute an amount 
3

2
𝑅 𝑡𝑜 𝐶𝑉 . Hence, the heat capacity of a metal should be 

3𝑅 +
3

2
𝑅 = 9/2 𝑅 . However, we experimentally find that metal obey the 

Dulong-Petit’s law as good as do insulators. This raises the question: Why do 
electrons not contribute to thermal processes? The fact is that we should not 
analyze this problem on classical arguments. 
 
- Electrons obey Fermi-Dirac Statistics. 
A satisfactory explanation was given by Summerfield in 1928 on the basis of 
quantum statistics. 
 

The Problem of Black Body Radiation 
We now consider the common place phenomenon of black body radiation. It 
deserves a unique place in physics because it gave birth to the quantum theory. 
 
When a body is heated, it emits electromagnetic waves (from its surface) in all 
directions over a broad range of frequencies. The spectrum of radiated 
frequencies from 𝑜 to 𝜔 peaks at a frequency which is proportional to the 

6 

4 

3 

2 

1 

0 

0.5 1.0 1.5 2.0 

𝐶
𝑉

 𝐶
𝑎
𝑙𝑚
𝑜
𝑙𝑒

 𝐾
−

1
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absolute temperature of the body. Suppose that such thermal radiation is 
contained in side a hollow cavity whose walls are opaque to radiation and 
maintained at a constant temperature. 
 
The radiation in the interior must, therefore have exactly the same spectral 
distribution as that of black body radiation. In other words, the energy 
distribution over various wave lengths becomes a function of temperate, 
independent of the shape and size in one of the walls enables us to study 
experimentally the emerging radiation. 
 
Such experiments were carried out by a large number of investigators in the 
period 1895 - 1900. We may make particular mention of Rubens and Kurlbaum. 
The results of these experiments established beyond doubt the inability of 
classical theories to reproduce experimental curves. 
 
Let ∪𝑉 𝑑𝑉  denote the energy density (energy per unit volume) between 
𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣 as shown in (fig b) shows the experimental curves for 𝑢 at two 
different temperatures. 
 
 
 
 
 
 
 
 
 
 
 
(a) The electromagnetic radiation insidean oven is treated as a photon gas in 

equilibrium with the oven walls. 
 
(b) Spectral distribution of energy in black body radiation. 
 
Lord Rayleigh studied the problem using ideas of classical physics and obtained 
an expression for ∪𝑉 𝑑𝑉 , Jeans discovered a numerical error in his formula and 
subsequently corrected it. This so called Rayleigh Jean Law is of the form. 

∪𝑉 𝑑𝑉 =
8𝜋𝑣2

𝐶3
 𝑑𝑣𝜀 − − −− −−(8.1.6𝑎) 

 
Where 𝜀 is the mean energy of an oscillator, Lord Rayleigh and Sir James Jean 
used the law of equipartition of energy and used 𝜀 = 𝐾𝐵𝑇 using this result in 
the above equation, we obtain 

2 4 6 8 
𝐾𝐵𝑇 

𝑕𝑉  

∆𝑢𝑉
∆𝑉

 
Plank 

Rayleijh Jeens 

Wien 

(b) 

(a) 
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∪𝑉 𝑑𝑉 =
8𝜋𝑣2

𝐶3
𝐾𝐵𝑇 𝑑𝑣 −− −− − (8.1.6𝑏) 

 
For small values of 𝑉, it reproduces the experimental curve very well. However, 
for 𝑣 → ∞, eqn (8.1.6b) has a serious flaw: it predicts that the total energy 
density will be infinite. 

∪=  ∪𝑉

∞

0

𝑑𝑉 = ∞− −− −− (8.1.7) 

This unphysical situation was termed the ultraviolet catastrophe by P. 
Ehrenfest. Wien carried out thermodynamic analysis of blackbody radiation 
spectrum and showed that ∪𝑉 , is of the form 

∪𝑉 𝑑𝑉 = 𝑉3𝐹  
𝑉

𝑇
 − − − −− −− (8.1.8) 

You can easily verify that this result gives a finite ∪ which varies as𝑇4 , in 
accordance with Stefan’s law. 
Moreover, the frequency at which ∪𝑉 , is maximum is directly proportional to T. 
 
3.4 Ideal Bose-Einstein Gas. 
 We shall first derive the Bose-Einstein distribution law, and this will pave 
the way for Bose’s derivation of Planck’s law. When Planck was not convinced 
of the physical basis of his derivation, Bose proposed the correct method for 
treating a system on the basis of quantum statistics. Einstein extended his ideas 
to the case of materials particles obeying Bose statistics. 
 
During his investigations, Einstein came to the remarkable conclusion that Bose 
Einstein Gas can tend to a highly ordered state. This phenomenon, known as 
Bose-Einstein condensation, was invoked by F. London to explain the 
superfluidity exhibited by liquid 4He. 
 
3.4.1 Bose-Einstein Distribution Function 
 Consider a system of N non-interacting bosons occupying a volume V and 
sharing a given energy U levels of the system are very closely spaced. 
 
In the limit of large V, the energy levels of the system are very closely spaced. 
 
Hence, we can bracket the energy levels into groups, which may be called the 
energy cells. 
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This is known schematically in the figure below. 
 
 
 
 
 
 
 
 
 
 

 
(Energy level of a system bracketed into cells). 

We assume, without any loss of generality, that the number of levels in the 
𝑖𝑡𝑕 𝑐𝑒𝑙𝑙,𝑔𝑖 , is very much greater than one (𝑔𝑖 ≫ 1). 
 
It is still reasonable to talk about the energy of the level in the 𝑖𝑡𝑕 𝑐𝑒𝑙𝑙 as 𝜀𝑖 , 

since they are lying very close to each other. Let Ω𝑖  denote the number of ways 
in which 𝑁𝑖  particles can be distributed amongst the 𝑔𝑖𝑖  levels of the 𝑖𝑡𝑕 𝑐𝑒𝑙𝑙. 
This number is already available to us from eqn 

 Ω = 𝑁𝑖 +
𝑔𝑖
𝑁𝑖

− 1  

. 
We have 

Ω =  𝑁𝑖 +
𝑔𝑖
𝑁𝑖
− 1 =

(𝑔𝑖 + 𝑁𝑖 − 1)!

𝑁𝑖 ! (𝑔𝑖 − 1)!
−− −− −−(8.1.9) 

Denoting by 𝑤(𝑁1 ,𝑁2 − −− − 𝑁2 ,− −−) = 𝑤(,𝑁𝑖-), the number of ways in 
which we can put 𝑁1 particles in group 𝑔1,𝑁2  particles in group 𝑔2 ,−−,𝑁𝑖  
particles in group 𝑔𝑖 , we have 
 

𝑤(*𝑁𝑖+) = п 𝛺𝑖 =  
(𝑔𝑖 + 𝑁𝑖 − 1)!

𝑁𝑖 ! (𝑔𝑖 − 1)!
− − −− − (8.2.0) 

 
We maximize 𝑤 subject to the conditions 

 𝑁𝑖
𝑖

= 𝑁 −− −− −− − (8.2.1𝑎) 

 

𝑔𝑗𝑁𝑗 − 𝜀𝑗  

𝑔𝑖𝑁𝑖 − 𝜀𝑖  

𝑖𝑡𝑕 𝑐𝑒𝑙𝑙 

1𝑠𝑡 𝑐𝑒𝑙𝑙 

𝑖 
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 𝑁𝑖
𝑖

𝜀𝑖 = 𝑈 −− −− −− − (8.2.1𝑏) 

 
Then eqn (8.2.0) gives 

𝑙𝑛 𝑤 =   ,𝑙𝑛 (𝑔𝑖 + 𝑁𝑖 − 1)! − 𝑙𝑛 (𝑔𝑖 − 1)! − 𝑙𝑛 𝑁𝑖 !- 

Using stirling formula, we have 

𝑙𝑛 𝑤 =  ,(𝑔𝑖 + 𝑁𝑖 − 1)𝑙𝑛 (𝑔𝑖 + 𝑁𝑖 − 1) − (𝑔𝑖 + 𝑁𝑖 − 1) − (𝑔𝑖 − 1)𝑙𝑛 (𝑔𝑖 − 1)

+ (𝑔𝑖 − 1) − 𝑁𝑖  𝑙𝑛 𝑁𝑖 + 𝑁𝑖- 
 

=  [(𝑔𝑖 + 𝑁𝑖 − 1)𝐼𝑛 (𝑔𝑖 + 𝑁𝑖 − 1) − (𝑔𝑖 − 1)𝑙𝑛 (𝑔𝑖 − 1) − 𝑁𝑖  𝑙𝑛 𝑁𝑖 ]

𝑖

 

 

=  ,(𝑔𝑖 + 𝑁𝑖)𝑙𝑛 (𝑔𝑖 + 𝑁𝑖) − 𝑔𝑖 𝑙𝑛𝑔𝑖 −𝑁𝑖 𝑙𝑛𝑁𝑖 - − − − −(8.2.2)

𝑖

 

 
Since 𝑁𝑖  and 𝑔𝑖 >> 1 
 
The condition for maximum probability is 𝛿 𝐼𝑛 𝜔 = 0 
On combining this with eqn (8.2.2), we get 

𝛿𝑙𝑛𝑤 =   (𝑔𝑖 + 𝑁𝑖)
1

(𝑔𝑖 + 𝑁𝑖)
𝛿𝑁𝑖 + 𝑙𝑛(𝑔𝑖 + 𝑁𝑖)𝛿𝑁𝑖 − 𝛿𝑁𝑖 − 𝛿𝑁𝑖 𝑙𝑛𝑁𝑖 = 0

𝑖

 

 
Or  

 ,𝑙𝑛 (𝑔𝑖 + 𝑁𝑖) − 𝑙𝑛 𝑁𝑖 -

𝑖

𝛿𝑁𝑖 = 0 −− − −(8.2.3) 

Since 𝑁 𝑎𝑛𝑑 ∪ are fixed, we have from eqn (8.2.1a) and (8.2.1b) 

𝛿𝑁 =  𝛿𝑁𝑖 = 0 − − −−(8.2.4𝑎) 

and  

𝛿 ∪=  𝜀𝑖
𝑖

𝛿𝑁𝑖 = 0 −− −− −−(8.2.4𝑏) 

 
Multiplying eqns (8.2.4a) and (8.2.4b) by ∝ 𝑎𝑛𝑑 𝛽, respectively and adding to 
eqn (8.2.3), we obtain 

 ,𝑙𝑛 (𝑔𝑖 + 𝑁𝑖) − 𝑙𝑛 𝑁𝑖+∝ −𝛽𝜀𝑖 -

𝑖

 𝛿𝑁𝑖 = 0 − −− −(8.2.5) 

Since the variations 𝛿𝑁𝑖  are arbitrary, the coefficient of each term in eqn (8.2.5) 
must vanish. Hence we have 

𝑙𝑛  
𝑔𝑖 + 𝑁𝑖
𝑁𝑖

 = −∝ +𝛽𝜀𝑖  
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Or 
𝑁𝑖
𝑔𝑖

=
1

𝑒−∝+𝛽𝜀 − 1
−− −− − (8.2.6) 

 
As before, we put 𝑒∝ equal to A. Then eqn (8.2.6) take the form 

𝑁𝑖
𝑔𝑖

= −
1

𝐴−1𝑒𝛽𝜀𝑖 − 1
− −− −− −− (8.2.7) 

 
  
Yet another way of rewriting eqn (8.2.6) is to define a parameter called the 

fugicity as𝑍 = 𝑒−∝ = 𝑒−𝛽𝜇 −− −− −−(8.2.8) 
 
Where N is the chemical potential, eqn (8.2.7) becomes 

𝑁𝑖
𝑔𝑖

=
1

𝑒𝛽(𝜀𝑖−𝜇) − 1
−− −− − (8.2.9) 

 

If we treat energy as a continuous variable, the number of particles with energy 
𝜀 is given by 

𝑁(𝜀)

𝑔(𝜀)
=  

1

𝑒𝛽(𝜀−𝜇) − 1
=  

1

𝐴−1𝑒𝛽𝜀 − 1
− −− −− (8.3.0) 

 

This is known as the Bose-Einstein distribution. 
 

3.4.2     Bose Derivation of Planck’ Law. 

 S.N Bose and Indian Physicist gave a very elegant derivation of Planck’s 
law in 1924. He communicated his work to Einstein, who immediately 
recognized its significance. 
 
He translated its findings into German language, got it published and his paper 
marks the birth of quantum statistics. 
 
We consider the equilibrium properties of electromagnetic radiation enclosed 
in a cavity of volume V at temperature T. You should recall that the distribution 
of energy among the various frequencies is independent of the nature of the 
walls of the container; it is a function of T and V only. We now wish to 
determine the form of this function. From a quantum mechanical point of view, 
the radiation in the cavity can be considered as a collection of photons of 
different frequencies moving with speed of light completely randomly. The 
photons of the same frequency are indistinguishable. 
 
This is a perfect example of a system of non-interacting, indistinguishable 
particles. 
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The energy of a photon of frequency 𝑣 is taken to be 𝑕𝑣. We should also 

remember that photons are particles with zero rest mass and spin ћ. Each 
photon can have two kinds of polarization. There are the two transverse modes, 
which have no longitudinal photons. 
 
In other words, the propagation vector and the polarization vector (giving the 
direction of polarization of the electric field associated with the photon) are 
normal to each other. (This is a consequence of the transversality of the electric 
field, i.e. 𝑉 .𝐸 = 0). 
 
You would also appreciate the fact that atoms can emit or absorb photons and 
the total number of photons is not constant. 
 
In other words, we have only one constant, namely ∪= constant. This 
essentially means that in eqn (8.3.0), we need only one langrage multiplier 
𝛽 𝑎𝑛𝑑 ∝ = 0 𝑜𝑟 𝐴 = 1. 
 
Then eqn (8.3.0) reduces to  

𝑁𝑉
𝑔𝑉

=  
1

𝑒𝛽𝑕𝑣 − 1
−− − −− (8.3.1) 

Let 𝑔𝑉  𝑑𝑉 denote the number of quantum states between 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣. We can 
derive an expression for this using the principles of quantum mechanics. 
However, a simple argument can be used to get the result. 
Let us first calculate𝑔𝑃  𝑑𝑃 , the number of quantum states between 𝑃 𝑎𝑛𝑑 𝑃 +
𝑑𝑃 . 
 
The volume of phase space occupied by a particle in a box of volume V and with 
momentum between 𝑃 𝑎𝑛𝑑  𝑑𝑃  𝑖𝑠 𝑉𝑑3𝑃. 
Since 𝑑3𝑃 = 𝑃2𝑑𝑝 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑∅, integration over 𝛳 𝑎𝑛𝑑 ∅ gives 4𝜋. Since each cell 
has volume 𝑕3 , we have 

𝑔𝑃  𝑑𝑃 =
4𝜋𝑃2𝑑𝑝

𝑕3  𝑉 − − −− − (8.3.1) 

 
From the Brag lie’s relation 

𝑃 =
𝑕

𝜆
=  

𝑕𝑣

𝐶
 

 
and 

𝑃2𝑑𝑝 =  
𝑕

𝐶
 

3

𝑉2𝑑𝑣 

 
Inserting this result in eqn (8.3.1) we get 
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𝑔𝑉𝑑𝑣 =
4𝜋𝑉

𝐶3 𝑉2𝑑𝑣 

 
Since photons can have two kinds of polarization, we have 

𝑔𝑉𝑑𝑣 =
8𝜋𝑉

𝐶3 𝑉2𝑑𝑣 

 
So that  

𝑁𝑉 =
8𝜋𝑉

𝐶3

𝑉2𝑑𝑣

𝑒𝛽𝑕𝑣 − 1
−− −−(8.3.2) 

 
Let 𝐸𝑉𝑑𝑣  denote the energy lying in the frequency range 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣 . 
Combining eqns (8.3.0) and (8.3.2), we obtain 

𝐸𝑉𝑑𝑣 = 𝑁𝑉  𝑕𝑉𝑑𝑉 =
8𝜋𝑕𝑉

𝐶3

𝑉3𝑑𝑉
𝑒𝛽𝑕𝑣 − 1

 

 
We prefer to speak of energy density rather than total energy because the total 
energy of photons depends on the size of the oven but the energy density does 
not. If we let U, represent energy density, we have 

∪𝑉  𝑑𝑉 =
𝐸𝑉  𝑑𝑉
𝑉

=
8𝜋𝑕

𝐶3

𝑉3𝑑𝑣

𝑒𝑥𝑝 .
𝑕𝑣

𝐾𝐵𝑇
/ − 1

− −− − − (8.3.3) 

 
It is important to note that Planck had derived the law by combining classical 
electromagnetic theory and the quantum hypothesis. On the other hand, Bose in 
a manuscript to Einstein in 1924 treated electromagnetic radiation as a system 
of indistinguishable particles which have the same properties as particles of 
light that we now call photons. Subsequent investigations led Einstein to the 
concept of stimulated emission, which culminated in the development of 
masers and lasers devices finding use in medicine, industry, energy production 
in fusion reactors, and military application. 
 
Limiting cases 
Let us now discuss limiting cases of Planck’s radiation law. At short frequencies 

(long wavelengths) we note that if 
𝑕𝑣

𝐾𝐵𝑇
<< 1, the exponential term 

𝑒𝑕𝑣/𝐾𝐵𝑇 ≡ 1 +
𝑕𝑣

𝐾𝐵𝑇
 

So that  

𝑒𝑕𝑣/𝐾𝐵𝑇−1 =
𝑕𝑣

𝐾𝐵𝑇
 

Hence, eqn (8.3.3) reduces to  

∪𝑉  𝑑𝑉 =  
8𝜋

𝐶3 𝐾𝐵𝑇 𝑉
2𝑑𝑣 − − − −− (8.3.4) 
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This is the Rayleigh Jean law. 

For 
𝑕𝑣

𝐾𝛽𝑇
>> 1, we can neglect T in comparison with the exponential term in the 

denominator. Then we find that  

∪𝑉  𝑑𝑉 =
8𝜋𝑕𝑉3

𝐶3
𝑒− 𝑕𝑣/𝐾𝐵𝑇𝑑𝑣 − − − −(8.3.5) 

 
This is Wien’s law, it is straight forward to calculate the total area under the 
Planck or the Wien curve. 
 

These are given by 
𝜋4

15
≡ 6.49 𝑎𝑛𝑑 6 respectively. It is obvious that the area 

under the Rayleigh Jeans curve from eqn(8.3.4), will be infinite! 
 
Thus, you will recall, is Ehrenfestis ultraviolet catastrophe. 
 
It is also possible to relate Stefan’s constant 𝜎 and Wien’s constant 𝑏 to Planck’s 
constant. To illustrate this we calculate the total energy density, U, in the 
cavity.From eqn (8.3.3), we have 

∪=  𝑈𝑉

∞

0

𝑑𝑣 =
8𝜋𝑕

𝐶3  
𝑉3𝑑𝑣

𝑒𝑕𝑣/𝐾𝐵𝑇 − 1

∞

0

− −− −− (8.3.6) 

 
To evaluate this integral, we change the variable of integration by defining 

𝑕𝑣

𝐾𝐵𝑇
= 𝑥 

 
So that  

𝑉3𝑑𝑣 =  
𝐾𝐵𝑇

𝑕
 

4

𝑥3𝑑𝑥. 

Substituting this result in eqn (8.3.6), we get 

∪ =  
8𝜋(𝐾𝐵𝑇)4

(𝐶𝑕)3  
𝑥3

𝐶𝑥 − 1

∞

0

 𝑑𝑥 

Using method of integration 

 
𝑥3

𝑒𝑥 − 1

∞

0

 𝑑𝑥 =  
𝜋4

15
 

So that  

∪=
8𝜋5

15(𝐶𝑕)3
(𝐾𝐵𝑇)

4 = 𝑎𝑇4 − −− −− (8.3.7) 

Where 

𝑎 =
8𝜋5𝐾𝐵

4

15𝑕3𝐶3 = 7.56 × 10−16𝐽𝑚−3𝐾4 
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If we consider the sun as blackbody whose interior consists of photon gas at 
constant temperature of 3 × 106 𝑘, we find that energy density 

𝑈 = (7.56 × 10−16𝐽𝑚 − 3𝑘 − 4) × (3 × 106𝑘)4 = 6.1 × 1010𝐽𝑚−3 
 
The total volume of the sun is nearly 1.4 × 1027𝑚3 
So that 

𝑈 = 𝑢𝑉 = (6.1 × 1010  𝐽𝑚−3) × (1.4 × 1027𝑚3) = 8.6 × 1037𝐽 
 
If we assume that photons effuse out of a small hole in the blackbody (sun), the 
net rate of flow of radiation per unit area 
 

𝑅 =
1

4
𝑈𝐶 =

2𝜋5𝐾𝐵
4

15𝑕3𝐶2 𝑇
4 = 𝜎 𝑇4 −− −− −−(8.3.8) 

Where 

𝜎 =
2𝜋5𝐾𝐵

4

15𝑕3𝐶2 = 5.67 × 10−8𝐽𝑚−2𝑆−1𝐾−4 
 

is Stefan Boltzmann constant 
 
3.4.3  Radiation Pressure and Entropy of Photons 
We can write the partition function for photons as (Eqn 8.3.1) 

𝑍𝑃𝑕 = 𝜋 
1

1 − 𝑒−𝛽𝜀𝑉
−− −− − (8.3.9) 

 

∴ 𝑙𝑛 𝑍𝑃𝑕 = − 𝑙𝑛 ,1 − 𝑒𝑥𝑝 (−𝛽𝜀𝑉)- 

 
We replace the summation by integration. This gives 
 

𝑙𝑛 𝑍𝑃𝑕 = − 𝑙𝑛  [1 − 𝑒𝑥𝑝 (−𝛽𝜀𝑉)] 

We replace the summation by integration. This gives 
 

𝑙𝑛 𝑍𝑃𝑕 = −  
8𝜋

𝐶3
 𝑉 𝑉2

∞

0

 𝑙𝑛 ,1 − 𝑒𝑥𝑝 (−𝛽𝑕𝑉)-𝑑𝑣 

Hence, Helmholtz free energy is given by 

𝐹 = −𝐾𝐵𝑇 𝐼𝑛 𝑍𝑃𝑕 =  
8𝜋𝐾𝐵𝑇

𝐶3   𝑉 𝑉2
∞

0

 𝐼𝑛 ,1 − 𝑒𝑥𝑝 (−𝛽𝑕𝑉)-𝑑𝑣 

To simplify this expression, we introduce a change of variable by defining 
𝑥 = 𝛽𝑕𝑉  

So that 𝑉2𝑑𝑣 =
𝑥2  𝑑𝑥

𝛽3𝑕3
On substituting it in the above integral, we obtain 

 

𝐹 =  
8𝜋𝐾𝛽

4𝑇4

𝑕3𝐶3   𝑉 𝑥2
∞

0

 𝑑𝑥 𝑙𝑛 (1 − 𝑒−𝑥) 

On integrating by parts, we get 
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 𝑥2
∞

0

𝑙𝑛 (1 − 𝑒−𝑥)𝑑𝑥 =  −
1

3
 

𝑥3𝑒−𝑥

1𝑒−𝑥

∞

0

𝑑𝑥 = −
1

3
 

𝑥3

𝑒𝑥 − 1

∞

0

𝑑𝑥 = −
1

3
г(4)Ϛ(4)

= −𝜋4/45 

Hence, the expression for Helmholtz free energy reduces to  

𝐹 = − 
8𝜋5𝐾𝐵

4

45𝑕3𝐶3
  𝑉 =

1

3
𝑢𝑉 

 
 
The radiation pressure, defined as  

𝑃 = − 
𝜕𝐹

𝜕𝑣
 
𝑇

 

Is given by 

𝑃 =
8𝜋5𝐾𝐵

4𝑇4

45𝑕3𝐶3
=
𝑢(𝑇)

3
 

It is interesting to note that for photon gas, 𝑃𝑉 =
∪

3
 and the pressure exerted by 

ideal gas, 𝑃 =
2

3
𝐸. So can draw a useful analogy that radiation behaves like 

particles. 
 
Now, entropy of an assembly of photons is given by 

𝑆 = − 
𝜕𝐹

𝜕𝑇
 
𝑉

 

=  − 
32𝜋5𝐾𝐵

4

45𝑕3𝐶3 𝑉𝑇
3 − −− (8.4.0) 

and  

𝐶𝑉 = 𝑇  
𝜕𝑆

𝜕𝑇
 
𝑉

= 3𝑆 − − − −− −(8.4.1) 

 
This shows that entropy of the system is proportional to 𝑉𝑇3 . 
If radiation undergoes an adiabatic change (S=constant), we find that 
𝑉𝑇3 = Constant. 
 
In terms of pressure and volume, the equation for the adiabatic of the system 
takes the form P𝑣4/3 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − − −− − (8.4.2). 
 
From this, you may conclude that the ratio of specific heats at constant pressure 
to that at constant volume for a photon gas is 4/3. Actually, this ratio is infinite! 
Bose Statistics finds useful application in explaining the remarkable 
phenomena exhibited by liquid helium, particularly at low temperature. 
 
3.4.4 Liquid 4He and Bose-Einstein Condensation 
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 Hydrogen, the first element in the periodic table, has contributed in a 
large measure to the development of new concepts and theories in physics. The 
second element, Helium is still more remarkable because of its existence from 
the sum which was discovered during a solar ellipse in India in 1868. Helium 
derives its name from the Greek word Helios, which means the sun. Among all 
the elements, helium has the unique distinction of not solidifying even at the 
lowest attainable temperatures. 
 
It is due to very weak forces between helium atoms. (Its solid phase can be 
obtained only under an external pressure of about 25 atmosphere). The P-T 
diagram, shown in the next figure indicates the absence of a triple point. At 
atmospheric pressure, helium condenses into a normal liquid at 4.2k. As the 
temperature is lowered further, liquid helium exhibits another phase transition 
at 2.18k. 
 
You may expect helium to solidify. Instead it changes into another liquid very 
surprising, in fact unique properties. The new phase is called liquid HeII to 
distinguish it from the phase above 2.18k, which is termed liquid HeI. You may 
recall that helium transition is a second order phase transition. The point at 
which the phase transition occurs is called the λ point. This nomenclature is 
used because the shape of heat capacity curve resembles the Greek letter 
‘Lambda’ 
 
4 
 
 
 
 
  
 
 
 
 
From the figure above (a) P-T diagram of 4He,(b) temperature variation of heat 
capacity of helium near λ – point. 
 
A more dramatic manifestation of the unusual properties of liquid HeII is its 
ability to flow through very narrow channels with zero viscosity. This property 
is known as super fluidity. 
 
A series of beautiful experiments have been designed to illustrate the 
consequences of this property. Here, we shall discuss only one of them, viz, the 
fountain effect. 
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We take a U – tube and immerse it in a bath of liquid He II as shown in the figure 
below. The lower portion of the tube is filled with emery powder. On shining a 
beam of light on the powder heat is absorbed and the super fluid tends to flow 
from the bath to the hotter region. 
 
The motion is so violent that a jet of helium is forced up through the vertical 
tube and emerges as a fountain going as high as 30cm. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

F. London (1938) suggested that the λ – transition should be identified with 
Bose Einstein condensation. Einstein proposed a simple model that allows us to 
apply 𝐵𝐸 statistics to liquid helium in order to gain insight into its peculiar 
behaviour. Following him, we assume that the distribution of excited states 
accessible to the atoms of liquid helium is that of a quantum gas and treat the 
ground state separately. If there are N atoms in all, let 𝑁𝑔  be in the ground state 

and 𝑁𝑒𝑥  in the excited state. 
 

Then 
𝑁 = 𝑁𝑔 + 𝑁𝑒𝑥 −− − −− −− (8.4.3𝑎) 
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Or 

𝑁 −𝑁𝑔 = 𝐶𝑣 
𝜀

1
2 𝑑𝜀

1

𝐴
𝑒
𝜀
𝐾𝐵𝑇 − 1

∞

0

−− −−(8.4.3𝑏) 

and 

𝐶 =
2𝜋

𝑕3
(2𝑚𝐾𝐵𝑇)

3
2  

 

To evaluate this integral, we make the substitution 𝜀 𝐾𝐵𝑇 = 𝑥 . Then 

𝜀
1

2 𝑑𝜀 = (𝐾𝐵𝑇)
3

2 𝑥
1

2  𝑑𝑥 so that for a completely degenerate gas (A = 1), we 
get 

𝑁 −𝑁𝑔 = 𝐶𝑣 (𝐾𝐵𝑇)
3

2 г 3
2  Ϛ 3

2  − − −−(8.4.4) 

 

Where г .3
2 /

 𝜋

2
=  is gamma function and Ϛ(3/2) = 2.612  is the 

Riemann Zeta function of order (3/2). 
 
It shows that number density of excited particles is a function of temperature. 
As 𝑇 → 0,𝑁𝑒𝑥→0 𝑎𝑛𝑑 𝑁 → 𝑁𝑔  i.e. all particles condense into ground state. This 

phenomenon is referred to as Bose-Einstein condensation. However, as T 
increases 𝑁𝑒𝑥  also increase, it may become arbitrarily large. But N is finite and 
𝑁𝑒𝑥  has to be necessary less than (at best equal to) N. We therefore postulate 
that eqn (8.4.4) holds only as long as 𝑁𝑒𝑥 ≤ 𝑁. 
 
If 𝑇𝑐 is the maximum temperature which satisfies it, then  

𝑁𝑒𝑥 = 𝐶𝑣 Ϛ 3
2  г  3

2  (𝐾𝐵𝑇)
3

2  𝑓𝑜𝑟 𝑇 ≤ 𝑇𝑐 = 𝑁 

𝐹𝑜𝑟 𝑇 > 𝑇𝑐 −− −− −−(8.4.5) 
That is, at low temperature, the number of atoms in excited states increases as 

𝑇
3

2  until all atoms are in the excited state at temperature 𝑇𝑐 . So we can write  

𝑁 = 𝐶𝑣 г(3/2)Ϛ(3/2) (𝐾𝐵𝑇𝐶) 2/3 

Or 

𝑇𝐶 =
1

𝐾𝐵

 
 
 
 
 

𝑁

𝐶𝑣г 3
2  Ϛ 3

2  
 
 
 
 
 

2/3

=
𝑕2

2𝜋𝑚𝐾𝐵
 

𝑁

2.612𝑣
 

2/3

− −− −− −(8.4.6) 

 
𝑇𝐶  is known as the Bose Einstein condensation temperature. 
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In the framework of this model, we can write 𝑁𝑔  𝑎𝑛𝑑 𝑁𝑒𝑥  in terms of N. 

To do so, we note that 

𝑁𝑒𝑥
𝑁

=  
𝑇

𝑇𝐶
 

3
2 

 

Or 

𝑁𝑒𝑥 = 𝑁  
𝑇

𝑇𝐶
 

3
2 

− −− − − (8.4.7)  

 
Hence, 

𝑁𝑔 = 𝑁 − 𝑁𝑒𝑥 = 𝑁 1 −
𝑁𝑒𝑥
𝑁
 = 𝑁  1 −

𝑇

𝑇𝐶
 

3/2

−− −− − −(8.4.8) 

It shows that at 𝑇 = 𝑜, all particles condense into the lowest energy state. 
 

The figure below shows how 
𝑁𝑒𝑥

𝑁
 and 

𝑁𝑔

𝑁
 vary with temperature. 

 

If you use 𝑁 𝑉 = 2.2 ×  1028𝑚−3 𝑎𝑛𝑑 𝑚 = 6.65 × 10−27𝑘𝑔. in this expression 

for 𝑇𝐶 , you will get 
𝑇𝐶 = 3.13𝑘 

 

Which is close to the observed value of 2.18k for the onset of condensation in 
liquid helium 
 
 
 
 
 
 
 
 
 
 
 
The figure above shows the plot of 𝑁𝑒𝑥  𝑎𝑛𝑑 𝑁𝑔  as a function of temperature 

according to Einstein model. 
 
We can now say that helium II consists of two components, a normal fluid 
component and a superfluid component, which is characterized by remarkable 
properties like apparently zero viscosity and infinite thermal conductivity. This 
means that irrespective of where you heat the liquid, it will evaporate from the 

All in excited 
States for 𝑇 > 𝑇𝐶 

𝑁𝑒𝑥  

𝑁𝑔  

𝑁𝑕  

𝑇 𝑇𝐶  
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top surface (on the contrary, fluids such as water vaporize from wherever the 
heat input is).  
 
The HeI → HeII phase transition is visually characterized by the disappearing of 
bobbles and boiling. 
 
The 2.18k phase transition from HeI to HeII can be explained, at least 
qualitatively, using Bose-Einstein statistics. 
 
It tells us that condensation into the ground state is a necessary condition for 
the occurrence of super fluidbehavior. 
 
 
3.4.5  Ideal Fermi-Dirac Gas 
We have seen that the wave function of a system of indistinguishable particles 
possesses definite symmetry properties. For bosons, the wave function is 
symmetric whereas for fermions it is asymmetric. 
 
You may now ask, can it be a combination of symmetric and anti-symmetric 
wave function? It cannot be so. To determine the thermodynamic properties of 
an ideal Fermi-Dirac Gas. Let us first obtain the distribution function. 
 
3.4.5.1 Fermi-Dirac Distribution Function 
 We can subject fermions equation to Pauli’s principle and not more than 
one particle can occupy a state. 
 
You would recall that the number of ways in which we can distribute 

𝑁𝑖particles into𝑔𝑖states (cells) of level 𝑖 is given by .
𝑔𝑖

𝑁𝑖
/. The total number of 

ways whereby we can put N particles into the various levels are 
 

𝑊(𝑁𝑖) =   
𝑔𝑖
𝑁𝑖
 

𝑖

=  
𝑔𝑖

(𝑔𝑖 − 𝑁𝑖)!  𝑁𝑖 !
−− −− −−(8.4.9) 

This distribution is subject to the conditions that total number of particles in 
the system and the energy of the system remain constant. That is 

𝛿𝑁 =  𝛿𝑁𝑖 = 0 −− −− − (8.5.0𝑎) 

And 

𝛿𝑢 =  𝛿𝑁𝑖 𝜀𝑖 = 0 −− −− − (8.5.0𝑏) 

As before, we wish to know the most probable distribution by finding the set of 
numbers which maximize 𝑊. By maximizing the logsithum of 𝑊, rather than 𝜔 
itself, using the method for Maxwell Boltzmann and 𝐵𝐸 distributions. Thus we 
set 
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𝛿𝐼𝑛𝑤 = 0 
By taking the logarithm of both sides of eqn (8.4.9), we obtain  
 

 ,𝑙𝑛 𝑔𝑖 ! − 𝑙𝑛 (𝑔𝑖 −𝑁𝑖)! − 𝑙𝑛 𝑁𝑖 !- − − − −− (8.5.1) 

Using stirlings approximation, we get 

𝑙𝑛 𝜔 =  [𝑔𝑖
𝑖

𝑙𝑛 𝑔𝑖 − 𝑔𝑖 − (𝑔𝑖 − 𝑁𝑖)𝑙𝑛 (𝑔𝑖 − 𝑁𝑖) + (𝑔𝑖 − 𝑁𝑖) − 𝑁𝑖 𝑙𝑛𝑁𝑖 + 𝑁𝑖] 

 

=  [𝑔𝑖
𝑖

𝑙𝑛 𝑔𝑖 − (𝑔𝑖 −𝑁𝑖)𝑙𝑛 (𝑔𝑖 −𝑁𝑖) − 𝑁𝑖 𝑙𝑛𝑁𝑖  

Hence, 

𝛿𝐼𝑛𝜔 =   (𝑁𝑖 − 𝑔𝑖)
1

(𝑔𝑖 − 𝑁𝑖)
(−𝛿𝑁𝑖) + 𝛿𝑁𝑖 𝑙𝑛 (𝑔𝑖 − 𝑁𝑖) − 𝑁𝑖

1

𝑁𝑖
 𝛿𝑁𝑖

𝑖

− 𝑙𝑛 𝑁𝑖𝛿 𝑁𝑖 =    𝑙𝑛  
𝑔𝑖
𝑁𝑖
− 1  

𝑖

𝛿𝑁𝑖  

Equating 𝛿𝐼𝑛𝜔 to zero, we obtain 

 𝑙𝑛  
𝑔𝑖
𝑁𝑖
− 1 𝛿𝑁𝑖 = 0 −− −−(8.5.2) 

This expression is subject to the conditions given by eqns (8.5.0a) and (8.5.0b). 
To incorporate these and obtain a general expression we multiply eqn (8.5.0a) 

by ∝ and eqn (8.5.0b) by – 𝛽 and add to eqn (8.5.2). This gives 

  𝑙𝑛  
𝑔𝑖
𝑁𝑖
− 1 + ∝ −𝛽𝜀𝑖 

𝑖

𝛿𝑁𝑖 = 0 

Since the 𝛿𝑁𝑖  are arbitrary and can be varied independently, we can set the 
coefficient of each 𝛿𝑁𝑖  equal to zero. This gives 

𝑙𝑛  
𝑔𝑖
𝑁𝑖

− 1 + ∝  −𝛽𝜀𝑖 = 0 

Or 
𝑁𝑖
𝑔𝑖

=
1

𝑒−∝+𝛽𝜀𝑖+1
 

Using the same notation as in𝐵𝐸 distribution, we can rewrite it as 
𝑁𝑖
𝑔𝑖

=
1

𝐴𝑒𝛽𝜀𝑖 + 1
=

1

𝑒𝛽 (𝜀𝑖−𝜇) + 1
− −− −− (8.5.3) 

This defines the Fermi-Dirac distribution for continuous distribution, the Fermi 
function 

𝑓(𝜀) =
1

𝑒𝛽(𝜀−𝑢) + 1
−− −− −−(8.5.4) 

Let us pause for a moment and compare it with expressions for 𝐵𝐸 and 𝑚𝐵 
distribution functions: 

𝑓𝑚𝐵 =
1

𝑒𝛽(𝜀−𝑢)
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𝑓𝐵𝐸 =
1

𝑒𝛽(𝜀−𝑁) − 1
 

 

𝑓𝐹𝐷 =
1

𝑒𝛽(𝜀−𝑢) + 1
 

A close examination of these expressions reveals that inspite of the great 
differences in the assumptions used to arrive at these expressions, they have a 
similar appearance. In fact, we can combine them into just one expression: 

𝑓 =
1

𝑒𝛽(𝜀−𝜇) + 𝑘
 

 
 
Where 

𝐾 =      0         𝑀𝐵   𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
              1        𝐹𝐷   𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑡𝑖𝑜𝑛 
          −1        𝐵𝐸    𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑡𝑖𝑜𝑛 

 

This logically raises the question: what are its manifestations in describing 

the behaviour of a system? To discover the enormous consequences of 𝑘under 
the comparison of 𝐵𝐸,𝑎𝑛𝑑 𝐹𝐷 𝑎𝑛𝑑 𝑀𝐵 distributions in diagram, you willnote 
that 𝐵𝐸 distribution is skewed towards highly occupied low energy states FD 
distribution is skewed to high energy states composed with classical (𝑀𝐵) 
distribution. 
 
You will note that at 𝑇 = 0 (𝛽 = ∞), the exponent becomes −∞ for 𝜀 < 𝜇, 
whereas for 𝜀 < 𝜇, the exponent becomes infinite so that 

𝑓 (𝜀) = 1   𝑓𝑜𝑟    𝜀 < 𝜇 
                                                    0   𝑓𝑜𝑟   𝜀 < 𝜇− −− −− −(8.5.5) 

Mathematically speaking, it defines a step function. Physically, it implies that at 
absolute zero, up to certain energy all levels are occupied and higher energy 
states are empty. This energy is known as Fermi energy, 𝜀𝐹 . You will know 
about it in the next section. The figure (a) and (b) below shows the effect of 
raising the temperature. The curve develops a tail, which is symmetrical about 
𝜀 = 𝜀𝐹 .  
Moreover, at this energy 𝑓(𝜀) = 1/2 
 
  
 
 
 
 
 

𝑓(𝜀) 𝑓(𝜀) 

𝜀 
𝜇 𝑜 𝜀 

𝜀=N 

𝑇1 

𝑇2(> 𝑇1) 
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(a) The Fermi function at 𝑇 = 0: complete Degeneracy 
(b) 𝑇 > 0 (𝜀 − 𝜇 ≫ 1):Strong Degeneracy. 
 

For 𝜀 ≫ 𝜇,𝛽 𝜀 − 𝜇 ≫ 1𝑎𝑛𝑑 𝑦𝑜𝑢 𝑐𝑎𝑛 𝑖𝑔𝑛𝑜𝑟𝑒 𝑜𝑛𝑒.𝑇𝑕𝑒𝑛 𝑓(𝜀) = 𝑒−𝛽(𝜀−𝜇)  and 

the distribution behaves like a classical (𝑀𝐵) distribution. 
 
If the temperature is finite, above absolute zero, the fermions in region I shift to 
region II, bringing about deviations in the step function. 
 
It means that as we increase temperature, fermions below the Fermi energy 
jump to energy states above Fermi energy. 
 
However, the width of this region is of the order of 𝐾𝐵𝑇. Normally deviations 
from the step function (𝑇 = 0)are important only forthose values of 𝜀 for which 

 𝛽 𝜀 − 𝜇   is of the order of one. 

 
For large values, the exponential term will either be zero or one. Thus a thermal 
reshuffling of the particles is confined to 𝐾𝐵𝑇around𝜀 = 𝜀𝑓 . That is, the number 
of electrons which contribute to thermal processes is proportional to T. 
However, the major proportion of distribution is not influenced by the rise in 
temperature. 
 
3.4.6  Fermi Energy 
 Consider a system of N fermions enclosed in volume V. We know that 
because of Pauli’s principle, only one fermions can be accommodated in a given 
state. You have already learnt that the highest energy possessed by a fermions 
at 𝑇 = 0 is called the Fermi energy, 𝜀𝐹 , let us now derive an expression for 𝜀𝐹 . 
 
We know that the number of quantum states of a particle with momentum in 

the interval 𝑃 𝑎𝑛𝑑 𝑃 + 𝑑𝑝 𝑖𝑠 
4𝜋𝑉

𝑕3
𝑃2𝑑𝑝. We have to multiply this number by 

(2S+1). 

For electrons, S = ½ so that the required number of states is 
8𝜋𝑉

𝑕3
𝑃2𝑑𝑝. Denoting 

the highest momentum by Pv, we have 

𝑁 =
8𝜋𝑉

𝑕3  𝑃2𝑑𝑝
∞

0

=
8𝜋𝑉

𝑕3

𝑃𝐹
3

3
−− −− − (8.5.6) 

This yield an expression for Fermi momentum, Pv: 

𝑃𝑣 =  
3𝑁

8𝜋𝑣
 

1/3

𝑕 − − −− −−(8.5.7) 

and the Fermi energy 

𝜀𝐹 =
𝑃𝐹

2

2𝑚
=

𝑕2

2𝑚
 

3𝑁

8𝜋𝑣
 

2/3

−− −− − (8.5.8) 
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If we draw a sphere with radius 𝑃𝐹 , all the particles will be found inside the 
sphere. This is called the Fermi surface. In the case of alkali and the noble 
atoms, the surface is a sphere. 
 
In other cases, the shape can be quite complicated. We define what is known as 
Fermi temperature, 𝑇𝐹, through the relation 

𝑇𝐹 =
𝜀𝐹
𝐾𝐵

− −− − − (8.5.9) 

 
The values of 𝜀𝐹  range from about 2𝑒𝑉 𝑡𝑜 15𝑒𝑉. It is the lowest for 𝐶𝑆  (1.58𝑒𝑉) 
and highest for 𝐵𝑒 (14.14𝑒𝑉). The corresponding Fermi temperatures are of 
order 104𝑘 − 105𝑘. To get exact ideas about these values, you should solve the 
following 
 
Example II: - Calculate 𝐶𝐹 for copper, given density= 9𝑔𝑐𝑚

−3, atomic weight = 

63.5 and valency equal to one. 
 
The ground states energy is given by 

𝐸0 =
8𝜋𝑉

𝑕3  
𝑃2

2𝑚

𝑃𝐹

0

𝑃2𝑑𝑝 

 

=  
8𝜋𝑉

𝑕3

𝑃𝐹
5

10𝑚
 

 

=
8𝜋𝑉

5𝑕3 𝑃𝐹
3𝜀𝐹  

 
Using eqn (8.5.7), we obtain  

 

𝐸0 =
3

5
𝑁𝜀𝐹  

The mean energy per fermions for a completely degenerate electron gas is 
given by 

⋶=  
𝐸0

𝑁
=

3

5
𝜀𝐹  

For conduction electron in copper 

⋶=  
3

5
× (7.0𝑒𝑉) = 4.2𝑒𝑉 

 
This energy corresponds to several thousand Kelvin of temperature to which an 
electron, if treated classically, would have to be raised. This shows that unlike a 
classical particle, fermions have appreciable energy even at absolute zero! That 
is, a fermions system is quite alive. This is a quantum effect arising out of the 
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Pauli principle and brings out the inadequacy of classical statistics in describing 
the behaviour of systems at extremely low temperatures. 
 

Since 𝐶𝑣 = .
𝜕𝜖

𝜕𝑇
/
𝑉

, eqn (8.5.9) implies that heat capacity of a fermions system 

drop to zero at absolute zero. Similarly, we can show that entropy of a F.D 
system also vanishes at 0 𝑘𝑒𝑙𝑣𝑖𝑛. This is consistence with the third law of 
thermodynamics. 
 

Now you may ask: Is it true for pressure also? We know that 𝑃 =
2

3

∈

𝑉
. So we find 

that pressure exerted by a fermion system at 𝑂 𝑘𝑒𝑙𝑣𝑖𝑛 is equal to 
2

5
.
𝑁

𝑉
/
𝜀𝐹

. This 

shows that if electron in a metal were neutral they would exert a pressure of 
almost 106  𝑎𝑡𝑚𝑜𝑠𝑝𝑕𝑒𝑟𝑒! Does it make we experience this enormous pressure? 
If not, why? Do electrons evaporate spontaneously? Actually this pressure is 
counter balanced by coulomb attraction of electrons by ions. 
 
The Fermi energy is the kinetic energy of electrons in the highest occupied 
state. We can relate it to the work function of a metal. According to the diagram 
shown below, it shows a potential well in which the electrons reside and the 
filled states up to 𝜀𝐹 . If the well is 𝜀𝐹 = 𝑤 − ∅. So once we know ∅ 𝑎𝑛𝑑 𝑤, we 
can get estimate of 𝜀𝐹 . 
 
We have so far considered a FD system at absolute zero. To know the behaviour 
of its heat capacity and entropy, we must extend this study to temperatures 
above absolute zero. In particular, we will confine ourselves to electrons. 
However, it is important to note that for 𝑇 << 𝑇𝐹 , the mean occupation number 
does not differ much from the value at 𝑂𝑘𝑒𝑙𝑣𝑖𝑛. Such a fermion system is said to 
be strong by degenerate. We know that for conduction electrons are in 
extremely degenerate condition even under normal conditions. 
 
Very few of these are free. By far most of them are trapped in low lying states 
with nowhere to go. 
 
3.4.7  Electronic Heat Capacity 
 You will recall that correct explanation of heat capacity of metals 
remained a puzzle for a long time.Of course, it should be no surprise to you that 
classical statistics fails to give the right answer because an assembly of 
electrons (electron gas) obeys F.D. statistics. 
 
We can easily show, using F.D statistics, that electronic heat capacity varies 
linearly with temperature. Moreover, heat capacity of a metal at low 
temperatures is the sum of an electronic contribution which is proportional to 
T, and the lattice contribution which is proportional to T3. 

𝑤 

𝐸 

𝜀𝑉  

The figure shows the relationship 
between well depth Fermi energy, 
and work function for electrons in a 
metal. 
Horizontal lines indicate filled 
energy levels. 
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Experiments reveal that the contribution of electronic heat capacity is about 1% 
of the total. 
 
To show this we assure that only those electrons which occupy energy states up 
to 𝐾𝐵𝑇 of Fermi level participate in thermal processes. Hence, the fraction of 
particles thermally excited is proportional to 𝐾𝐵𝑇/𝜀𝐹 . Since the thermal energy 
per excited particles is 𝐾𝐵𝑇. 

∪≈ (𝐾𝐵𝑇)
𝐾𝐵𝑇

𝜀𝐹
 𝑁 =

𝑁𝐾𝐵
2𝑇2

𝜀𝐹
 

Hence, 

(𝐶𝑉)𝜀𝑖 =  
𝜕 ∪

𝜕𝑇
 
𝑉

𝑁𝐾𝐵
2𝑇

𝜀𝐹
= 𝑁𝐾𝐵  

𝑇

𝑇𝐹
 − − −−(8.6.0) 

 
That is, for 𝑇 << 𝑇𝐹 , the electronic heat capacity of fermions varies linearly 
with temperature. At room temperature, 

𝑇

𝑇𝐹
=

300

104  ~0(10−2) 

 

A more exact, but somewhat difficult, calculation gives the following result: 

(𝐶𝑉)𝜀𝑖 =
𝑁𝐾𝐵𝜋

2

2𝑇𝐹
 𝑇 = 𝑎𝑇 − − − −− (8.6.1) 

Where 

𝑎 =
𝑁𝐾𝐵𝜋

2

2𝑇𝐹
=
𝑁𝐾𝐵

2𝜋2

2𝜀𝐹
 

 

is known as the Summerfield constant. The total heat capacity of a metal is 
made up of two parts. The electronic contribution dominates at low 
temperatures. 
 
But around room temperature, the electronic contribution is a small fraction of 
the total 

(𝐶𝑉)𝑇𝑜𝑡𝑎𝑙 = 𝑑𝑇 + 𝑏𝑇3 − −− − − (8.6.2𝑎) 
Or 

(𝐶𝑉)𝑇𝑜𝑡𝑎𝑙
𝑇

= 𝑎 + 𝑏𝑇2 − −− −− (8.6.2𝑏) 
 

A plot of eqn (8.6.2b) is shown below as a function of 𝑇2 for potassium, sodium 
and copper the typical values are 2.08, 1.38 and 0.695, respectively. 
 

These are a variety of other F.D. systems which are of great interest. Examples 
are the protons and neutrons in nuclear matter, electrons in white dwarf stars. 
3He, etc. 
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The figure above shows the plot of eqn (8.6.2b) as a function of T2. 
 
5.0  Summary 

- The Bose-Einstein distribution function is given by 
𝑁𝑖
𝑔𝑖

=  
1

𝑒𝑥𝑝  𝛽 𝜀𝑖 − 𝜇  − 1
 

 
For continuous distribution, we can write 

𝑁(𝜀) =
𝑔(𝜀)

𝑒𝑥𝑝  𝛽 𝜀 − 𝜇  − 1
 

 
- Planck’s law of blackbody radiation tells us that the spectral energy 

density is given by 

𝑈𝑉𝑑𝑉 =  
8𝜋𝑕

𝐶3  
𝑉3

𝑒𝑥𝑝  
𝑕𝑣

𝐾𝛽𝑇
 − 1

 𝑑𝑣 

 
In the limit𝑕𝑣 << 𝐾𝐵𝑇, we obtain the Rayleigh Jeans law: 

𝑈𝑉𝑑𝑉 =
8𝜋2

𝐶3
(𝐾𝐵𝑇)𝑑𝑣 

 
On the other hand, 𝑕𝑣 >> 𝐾𝐵𝑇, we obtain Wien’s law: 

𝑈𝑉𝑑𝑉 =
8𝜋𝑕𝑣3

𝐶3
 𝑒𝑥𝑝  −

𝑕𝑣

𝐾𝐵𝑇
 𝑑𝑣 

 
The total energy density 

𝑈 =
8𝜋5

15(𝑐𝑕)3
(𝐾𝐵𝑇)

4 

 

And Stefan’s constant𝜎 =
2𝜋5𝐾𝐵

4

15𝐶2𝑕3 

- Radiation Pressure 

1-0 

0-8 

0-6 

0-4 

0-2 

1 2 3 4 5 6 
X 

𝑦 =
𝑥

5
 

𝑦 = 1 − 𝑒−𝑥  

𝑦 
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𝑃 =
8𝜋5

45(𝑐𝑕)3
(𝐾𝐵𝑇)

4 =
𝑈

3
 

 

-       Liquid 4He undergoes a phase transition, the so called λ transition, at 
     𝑇𝐶 = 2.18𝑘. 

The phase below 𝑇𝐶 , HeII, exhibits superfluidity. Some of its properties can 
be explained on the basis of Bose-Einstein condensation. 
 

-  The Fermi-Dirac distribution function is given by 
𝑁𝑖
𝑔𝑖

=
1

𝑒𝑥𝑝  𝛽 𝜀𝑖 −𝜇 + 1 
 

 
For continuous distribution, we can write 

𝑓(𝜀) =
1

𝑒𝑥𝑝  𝛽 𝜀 − 𝜇 + 1 
 

 

-  The Fermi energy 𝜀𝐹 =
𝑕2

2𝑚
.

3𝑁

8𝜋𝑉
/

2/3
 

 

-       The pressure exerted by a F.D. gas at 𝑇 = 0 𝑖𝑠 𝑃𝐹 =
2

5
.
𝑁

𝑉
/ 𝜀𝐹  

 

-       The electronic contribution to the heat capacity of a metal is given by 
(𝐶)𝑐𝑙 = 𝑎T 

 

Where the Somerfield constant 𝑎 =
𝑁𝐾𝛽

2𝜋2

2𝜀𝐹
 

 
Exercises 
1. Rewrite equation (3.4.3) in terms of energy; integrate the resulting 

expression to compute the average number of photons in an enclosure. 
 
2. Calculate the Fermi temperature for (i) liquid 3He and (ii) electrons in a 

white dwarf star using the known experimental data on the two systems. 
 
3. Helium has two isotopes, viz, 3Heand 4He. Classify these as fermions and 

bosons. Justify your conclusion. 
 
6.0 Tutor Marked Assignment (TMA) 

1. Using 𝐹 .
𝑉

𝑇
/ =  𝑒−𝐶2𝑉/𝑇, where 𝐶2 is a constant, calculate U from eqn  

𝑈𝑉𝑑𝑉 = 𝑉3  𝐹  
𝑉

𝑇
  

2.    In classical statistics, the numbers of ways in which 𝑁𝑖  particles can be 
distributed among 𝑔𝑖  states is 𝑔𝑖

𝑁𝑖dividing this by 𝑁𝑖 ! and obtain the 
Maxwell Boltzmann distribution. 
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(b) Calculate the number of way in which 𝑁𝑖  fermions can be 
accommodated in 𝑔𝑖𝑐𝑒𝑙𝑙 𝑖𝑓 𝑁𝑖 < 𝑔𝑖 . 

 

3. Calculate 𝜀𝐹  for copper, given density= 9𝑔𝑐𝑚−3 , atomic weight = 6.3.5 and 
valiancy equal to one. 
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