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DIGITAL ELECTRONICS 

Course Introduction  

In the previous two previous courses: Network Analysis and Devices; 

and Electronics I, we dealt with analogue electronics in which the inputs 

and output are analogue (continuously varying) signals.  In this course, 

we will be studying digital circuits where the signals are discrete. 

 

The origin of digit was in the caves, thousands of years before written-

history, when man learnt to count on the fingers (digits). The basic 

number names, are therefore, known as digits. There are different 

numbering systems followed in digital electronics. In Unit 1 you will be 

introduced to some of the important number systems used. We will learn 

how to convert numbers from one system to another. We will discuss 

binary number and some mathematical operations using them. 

In Unit 2 we will introduce some of the circuits that are able to operate 

on binary numbers to perform a logical function. These circuits are 

called electronic gates. Also you will be familiarised with Boolean 

algebra which is used in digital systems. After having learned about 

different types of gates you will be introduced to the flip-flop, which can 

be built using gates. 

 

In Unit 3 we will study counters which are used for counting the digital 

pulses and registers which are used to store binary information. Many 

digital systems include some form of memory, where data can be held 

on a permanent or a temporary basis. There are different types of 

memories used in a digital system. We will learn about semiconductor 

memories in this Unit. Data from the physical world are usually 

analogue in form and continuous in time. The digital computer or 

processor operates with numbers and discontinuous data. To utilize the 

digital processor in the solution or control of physical problems it 

requires devices to sample the analogue data and code it in digital form 

or to perform reverse processing and decoding in conversion of 

processed information back to analogue form. Therefore, in Unit 3 we 

have discussed analogue to digital converter and their counterpart digital 

to analogue converter. 

 

In Unit 4 we will come across many testing, measuring and indicating 

instruments like the CRO, electronic voltmeter, power meter etc. It 

would help the students to familiarise themselves with these 

instruments. 
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UNIT 1 NUMBER SYSTEM AND CODES 

Structure 
1.1     Introduction 

Objectives 

1.2    Binary Number System 

Binary to Decimal Conversion  

Decimal to Binary Conversion 

1.3    Octal Number System 

Octal to Decimal Conversion  

Decimal to Octal Conversion  

Octal to Binary Conversion  

Binary to Octal Conversion 

1.4 Hexadecimal (Hex) Number System  

Hex to Decimal Conversion  

Decimal to Hex Conversion  

Hex to Binary Conversion  

Binary to Hex Conversion  

Hex to Octal Conversion  

Octal to Hex Conversion 

1.5 Codes         

BCD Code  

ASCII Code 

1.6 Binary Arithmetic  

Addition  

Subtraction  

Multiplication and Division 

1.7  Summary 

1.8  Terminal Questions 

1.9 Solutions and Answers 

 

1.1     INTRODUCTION 
The aim of any number system is to deal with certain quantities, which 

can be measured, monitored, recorded, manipulated arithmetically, 

observed and utilised. Each quantity has to be represented by its value as 

efficiently and as accurately as is necessary for any application. The 

numerical value of a quantity can be basically expressed in either 

analogue (continuous) or digital (step by step) method of representation. 

 

In analogue method, a quantity is expressed by another quantity which is 

proportional to the first. For example, the voltage output of an amplifier 

is measured by a voltmeter. The angular position of the needle of the 

voltmeter is proportional to the voltage output of the amplifier. Yet 

another example is of a thermometer. The height to which the mercury 

rises is proportional to the temperature. In both these examples, the 

value of voltage and temperature can be anywhere between zero and the 

maximum limit. 
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In digital method, the value of a quantity is expressed by some symbols, 

which are called digits, and not by a quantity which is proportional to 

the first. In a digital watch, the time, which changes continuously, is 

expressed by digits which do not change continuously. The hour-digits 

change every hour, and the minute-digits change every minute. But there 

is no measurement of time lapsed between two successive minute-digits. 

If we want to measure time more accurately then use can be made of 

watches which have second-digits as well. The second-digits change 

every second. The time passed between two seconds is not measured. If 

this is to be measured, we have to use sports watches where the time is 

measured up to 2 decimal places. Thus the time can be expressed by 

digits which change step by step (discrete). This step, which is an 

interval of time, in this example, can be made by us as small as 

necessary. Hence, the analogue, quantities like time can be represented 

as digital approximations (e.g. 10 hour 40 minutes, or more accurately 

10 hour 39 minutes 50 seconds). As is clear from the examples above, 

the accuracy of the value of an analogue quantity generally depends 

upon the judgement of the observer. 

 

Many number systems are being used in digital technology. Most 

common amongst them are decimal, binary, octal, and hexadecimal 

systems. We are most familiar with the decimal number system, because 

we use it everyday. In this unit we shall describe these number systems, 

the conversion of a number from one system to another, and finally 

binary arithmetic. This unit is intended to provide the first step in our 

understanding of digital electronics. 

 

In the next unit you will be introduced to some of the gates, which are 

fundamental in digital electronics. There you will be familiarised with 

Boolean algebra which is a mathematical method used in the design of 

digital systems. 

 

Objectives 
After studying this unit, you should be able to: 

 

 write binary number and convert it into its decimal equivalent 

and a decimal number into its binary equivalent, 

 explain octal number system, understand octal counting, convert 

an octal number into its decimal and binary equivalents and 

decimal and binary numbers into their octal equivalents, 

 explain hexadecimal number system, understand hex counting, 

convert hex number into its decimal, binary and octal equivalents 

and decimal, binary and octal numbers into their hex equivalents, 

 write BCD code and convert a decimal number into its equivalent 

BCD code and vice versa, 



PHY 405             ELECTRONICS III 

4 

 understand ASCII code, 

 learn addition, subtraction, multiplication and division using 

;binary numbers. 

 

1.2     BINARY NUMBER SYSTEM 
First let us consider the familiar decimal system. In this system there are 

ten distinct and different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). For 

magnitudes greater than 9 the convention is to arrange digits in rows 

starting with the most significant on the left and concluding with the 

least significant on the right. The significance is determined by what is 

called the 'weighting' of a digit. Thus arises the concept of 'tens', 

'hundreds', 'thousands', etc. For example 3458 = ( 3103 ) + ( 2104 ) + 

( 1105 ) + ( 0108 ). Each digit is one of the symbols 0 to 9 and is 

multiplied by a power of ten, depending upon the position of the digit. 

Thus, decimal numbers are said to have a base of ten and the 

multiplying powers 010 , 110 , 210 , 310 , etc. are called 'weight' or 

'positional values'. 

 

In the binary number system (base of 2), there are only two digits: 0 and 

1 and the place values are 2°, 21, 22, 23 etc. Binary digits are abbreviated 

as bits. For example 1101 is a binary number of 4 bits (i.e., it is a binary 

number containing four binary digits.) 

 

A binary number may have any number of bits. Consider the number 

11001.011. Note the binary point (counterpart of decimal point in 

decimal number system) in this number. The bit on the extreme right is 

called least significant bit (LSB) and the bit on the extreme left is called 

most significant bit (MSB). Each bit has its positional value as shown in 

Fig. 1.1. 

 
42  32  22  12  02   12  22  32  Positional values or weight 

1 1 0 0 1 . 0 1 1  

 

 

            MSB   Binary point       LSB  

 

Fig. 1.1 Binary number: showing positional values (weight) of each bit 

 

The bits on the left of the binary point are positive powers of 2 and bits 

on the right of binary point are negative powers of 2. The decimal 

equivalent of this number is found by summing the products of each bit 

and its positional value as follows: 

 

I1001.0112 =  (124) + (123) + (022) + (02') + (120) + (0 -1) + 

(12-2) + (12-3) 

     =   16 + 8 + 0 + 0+1+0 + 0.250 + 0.125 = 25.37510. 
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Note that to avoid confusion the subscripts 2 and 10 are written with the 

numbers to indicate the base of the appropriate number system in which 

the number is expressed. 

 

Any number can be expressed in binary form in the usual way as shown 

in Table 1.1 

 

Table 1.1 Counting in Binary System 

 

23 22 21 2° Binary 

Number 

Decimal 

Number 

0 0 0 0 0000 

 

0 
0 

 

0 

 

0 

 

1 

 

0001 

 

1 

 0 

 

0 

 

1 

 

0 

 

0010 

 

2 

 0 

 

0 

 

1 

 

1 

 

0011 

 

3 

 0 

 

1 

 

0 

 

0 

 

0100 

 

4 

 0 

 

1 

 

0 

 

I 

 

0101 

 

5 

 0 

 

1 

 

I 

 

0 

 

0110 

 

6 

 0 

 

1 

 

I 

 

1 

 

0111 

 

7 

 1 

 

0 

 

0 

 

0 

 

1000 

 

8 

 1 

 

0 

 

0 

 

1 

 

1001 

 

9 

 1 

 

0 

 

1 

 

0 

 

1010 

 

10 

 1 

 

0 

 

1 

 

1 

 

1011 

 

11 

 1 

 

1 

 

0 

 

0 

 

1100 

 

12 

 1 

 

1 

 

0 

 

1 

 

1101 

 

13 

 1 

 

1 

 

1 

 

0 

 

1110 

 

14 

 1 

 

1 1 1 

 

1111 

 

15 

 

From this Table, note that 4 binary digits are required to do counting up 

to 15I0. Thus if the number of bits is n , then we can go up to n2  counts 

and the largest decimal number represented will be 12 n . For example, 

in the above case, 4n . Therefore, the largest decimal number 

represented is 24 - 1 = 1510. To write the next higher number in Table 

1.1, we need an additional column for the next power of the base, i.e., 

24. 

SAQ 1 

What is the largest decimal number that can be represented using 10 

bits? 

 

The advantage of binary system is that it has made the job of designing 

the digital circuitry very easy because only two distinct states or levels 

of voltages have to be handled. For example, 'ON' state of a bulb may be 

represented by the bit ‘1’ and 'OFF' state by '0'. In terms of voltages, 0 V 

or a 'LOW voltage may represent bit '0' and 5V or a 'HIGH' voltage may 

represent bit '1'. Actually, it is not necessary also to have precise 

voltages assigned to each bit. In analogue system the exact value of 

voltage is very important which makes the design of accurate analogue 
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circuitry very difficult. However, in digital systems exact value of 

voltage is not important because a voltage of 3.9 V means the same 

thing as a voltage of 4.4 V or 5 V. This aspect will be dealt with in Unit 

3. 

 

Let us now see how binary numbers can be converted into equivalent 

decimal form and vice-versa. 

 

1.2.1    Binary to Decimal Conversion 
From the example discussed above it is clear that a binary number can 

be converted into its decimal equivalent by simply adding the weights of 

various positions in the binary number which have bit 1. For example, 

consider the conversion of 100011.1012. 

 

1 0 0 0 1 1. 1  0 1  

 

25   +  0   +  0    +  0    +  21   +  20  +  2–1  +  0   +  2–3  

 

=   32 + 2 + 1 + 0.5 + 0.125  =   35.62510
 

 

Let us take up another example of conversion of 11100111.01013.  

1 1 1 0 0 1 1 1. 0 1 0

 1 

 

27   +  26   +  2s   +  0   +  0   +  22   +  21   +  20   +  0   +  2–2  +  0   

+  2–4 

  

=   128 + 64 + 32 + 4 + 2 + 1 + 0.250 + 0.0625 =  231.312510. 

 

Consider the following examples.  

 

1111.00  = 15  

11110.0  = 30  

111100.0 = 60 

 

From these examples it is clear that if the binary point is shifted towards 

the right side, then the value of the number is doubled. 

 

Now consider the following examples.  

 

111.100 = 7.5  

11.1100 = 3.75  

1.11100= 1.875 

 

From these examples it is clear that if the binary point is shifted towards 

the left side, then the value of the number is halved. 
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SAQ2 
Convert 1011.101 into its decimal equivalent. 

 

1.2.2    Decimal to Binary Conversion 
A decimal number is converted into its binary equivalent by its repeated 

divisions by 2. The division is continued till we get a quotient of 0. Then 

all the remainders are arranged sequentially with first remainder taking 

the position of LSB and the last one taking the position of MSB. 

Consider the conversion of 27 into its binary equivalent as follows. 

 

 
 

If the number also has some figures on the right of the decimal point, 

then this part of the number is to be treated separately. Multiply this part 

repeatedly by 2. After first multiplication by 2, either 1 or 0 will appear 

on the left of the decimal point. Keep this 1 or 0 separately and do not 

multiply it by 2 subsequently. This should be followed for every 

multiplication. Continue multiplication by 2 till you get all 0s after the 

decimal point or up to the level of the accuracy desired. This will be 

clear from the following example. Consider the conversion of 27.625]0 

into its binary equivalent. We have already converted 27 into its binary 

equivalent, which is 110112. Now for the conversion of 0.625, multiply 

it by 2 repeatedly as follows: 

 

 
 

Thus 27.62510 = 11011.1012. 
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Let us try another example, conversion of 58.072510 into binary. Split 

this number in two parts, i.e. 58 and .0725 and convert them into binary 

separately as described above. 

 

 
 

Now take up the conversion of .0725 

 

 
 

Thus 58.0725,0 = 111010.000102 

 

SAQ3 
What is the binary equivalent of 37.7510? 

 

Representing numbers in binary is very tedious since binary numbers 

often consist of a large chain of 0's and 1's. Imagine the length of the 

binary equivalent of a 10 digit decimal number! So, convenient 

shorthand forms for representing the binary numbers are developed such 

as octal system and hexadecimal system. With these number systems 

long strings of 0's and 1's can be reduced to a manageable form. Let us 

see what these systems are. 

 

10.3      OCTAL NUMBER SYSTEM 
The octal number system has base-8, that is there are 8 digits in this 

system. These digits are 0, 1,2, 3, 4, 5, 6, and 7. The weight of each octal 
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digit is some power of 8 depending upon the position of the digit. This is 

explained in Fig. 1.2. 

 
48  38  28  18  08   18  28  Weights 

1 0 6 2 7 . 4 5 Octal Number 

 

 

                MSB   Octal point     LSB  

Fig. 1.2 Octal number: showing positional values (weight) of each digit 

 

Octal number does not include the decimal digits 8 and 9. If any number 

includes decimal digits 8 and 9, then the number cannot be an octal 

number. 

 

Now let us see how counting is done in octal system. You are familiar 

with the counting in decimal system. In decimal system there are 10 

digits from 1 to 9 hence the counting in such system is done as in Table 

1.2. 

 

Table 1.2: Counting in decimal system 

 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

7

0 

 

100 

 

100 

 

… 170 
1 

 

11 

 

21 

 

31 

 

41 

 

51 

 

61 

 

7

1 

 

101 

 

111 

 

  
2 

 

12 

 

22 

 

32 

 

42 

 

52 

 

62 

 

7

2 

 

102 

 

112 

 

  
3 

 

13 

 

23 

 

33 

 

43 

 

53 

 

63 

 

7

3 

 

103 

 

113 

 

  
4 

 

14 

 

24 

 

34 

 

44 

 

54 

 

64 

 

7

4 

 

104 

 

114 

 

  
5 

 

15 

 

25 

 

35 

 

45 

 

55 

 

65 

 

7

5 

 

105 

 

115 

 

  
6 

 

16 

 

26 

 

36 

 

46 

 

56 

 

66 

 

7

6 

 

106 

 

116 

 

  
7 

 

17 

 

27 

 

37 

 

47 

 

57 

 

67 

 

7

7 

 

107 

 

117 

 

  
8 

 

18 

 

28 

 

38 

 

48 

 

58 

 

68 

 

7

8 

 

108 

 

118 

 

  
9 

 

19 

 

29 

 

39 

 

49 

 

59 

 

69 

 

7

9 

 

109 

 

119    

 

… 179 
 

In the same style, counting can be done in octal system as shown in 

Table 1.3 

 

Table 1.3: Counting in octal system 

 

0 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

100 

 1 

 

11 

 

21 

 

31 

 

41 

 

51 

 

61 

 

71 

 

101 

 2 

 

12 

 

22 

 

32 

 

42 

 

52 

 

62 

 

72 

 

102 

 3 

 

13 

 

23 

 

33 

 

43 

 

53 

 

63 

 

73 

 

103 

 4 

 

14 

 

24 

 

34 

 

44 

 

54 

 

64 

 

74 

 

104 

 5 

 

15 

 

25 

 

35 

 

45 

 

55 

 

65 

 

75 

 

105 

 6 

 

16 

 

26 

 

36 

 

46 

 

56 

 

66 

 

76 

 

106 

 7 

 

17 

 

27 

 

37 

 

47 

 

57 

 

67 

 

77 

 

107 
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In the octal counting, if n  is the number of digits then the total number 

of counts is n8 . The largest decimal number represented by an octal 

number having n  digits is 18 n . Thus with n  = 4, the total number of 

counts is 84 = 4096 and the largest decimal number represented is 4096 - 

1 = 409510. 

 

SAQ 4 
Can the number 128.96 be an octal number? 

 

SAQ 5 

What is the largest decimal number that can be represented by a three 

digit octal  number? 

 

1.3.1    Octal to Decimal Conversion 
As has been done in the case of binary numbers, an octal number can be 

converted into its decimal equivalent by multiplying the octal digit by its 

positional value. For example, 

126.258 = (183) + (281) + (680) + (28–1) + (58–2)  

= 64 + 16 + 6 + 0.25 + 0.078 

= 86.32810
 

 

Let us convert 36.48 into decimal number. 

 

36.48  = 381 + 68° + 48–1 

= 24 + 6 + 0.5 

= 30.510 

 

S4Q 6 
What is the decimal equivalent of 37.28? 

 

1.3.2    Decimal to Octal Conversion 
A decimal number can be converted by repeated division by 8 into the 

equivalent octal number. This method is similar to that adopted in 

decimal to binary conversion. If the decimal number has some digits on 

the right of the decimal point, then this part of the number is converted 

into its octal equivalent by repeatedly multiplying it by 8. The process is 

same as has been followed in the binary number system. Consider the 

conversion of 126.3810 into its decimal equivalent. Split it into two parts, 

that is 126 and .38 
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Now the conversion of .38 is as follows: 

 

 
 

Thus 126.3810 = 176.30248 

 

SAQ 7 
What is the octal equivalent of 15.25010? 

 

1.3.3   Octal to Binary Conversion   
In the octal number system the highest octal digit, i.e., 7 can be 

expressed as a 3-bit binary number. Therefore, all the octal digits have 

to be represented by a 3-bit binary number. The binary equivalent of 

each octal digit is shown in Table 1.4. The main advantage of the octal 

number system is the easiness with which any octal number can be 

converted into its binary equivalent. 

 

Table 1.4: Binary equivalent of each octal digit 

 

Octal digit 

 

3-bit binary equivalent 

 0 

 

000 

 1 

 

001 

 2 

 

010 

 3 

 

01l 
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4 

 

100 

 5 

 

101 

 6 

 

110 

 7 

 

111 

  

Using this conversion of octal digit into 3-bit binary number, any octal 

number can be converted into its binary equivalent by simply replacing 

each octal digit by a 3-bit binary number. For example, conversion of 

5678 into its binary equivalent is: 

 

5678 = 101 110 111  

 

        = 1011101112 

 

Thus  5678 = 1011101112 

 

Another example: 

 

Conversion of 672.278 into its binary equivalent.  

672.278 = 110 111 010.010 111 

 

= 110111010.010111 

 

SAQ 8 

Represent 10027.128 in binary number. 

 

1.3.4   Binary to Octal Conversion 
A binary number can be converted into its octal equivalent by first 

making groups of 3-bits starting from the LSB side. If the MSB side 

does not have 3 bits, then add 0s to make the last group of 3 bits. Then 

by replacing each group of 3 bits by its octal equivalent, a binary 

number can be converted into its binary equivalent. For example, 

consider the conversion of 11000110012 into its octal equivalent as 

follows: 

 

11000110012 = 1 100 011 001 

 

         = 001 100 011 001 

 

         =   1     4     3    1   

 

Thus  11000110012 = 14318 

 

[As the MSB side does not have 3 bits, we have added two 0's to make 

the last group of 3 bits] 

 

[As the MSB side does not have 3 bits, we have 

added two 0's to make the last group of 3 bits] 
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SAQ 9 

What is the octal equivalent of 100102? 

 

1.4      HEXADECIMAL NUMBER SYSTEM 
The hexadecimal number system has base-16, that is it has 16 digits 

(Hexadecimal means '16'). These digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 

B, C, D, E, and F The digits A, B, C, D, E, and F have equivalent 

decimal values 10, 11, 12, 13, 14, and 15 respectively. Each Hex 

(hexadecimal is popularly known as hex) digit in a hex number has a 

positional value that is some power of 16 depending upon its position in 

the number. This is illustrated in Fig. 1.3. 

 
416  316  216  116  016   116  216  Weights 

1 2 4 A F . B 9 Hex number 

 

 

                       MSB        Binary point    LSB  

 

Fig. 1.3: Hexadecimal number: showing positional values (weight) of 

each digit 

 

The relationship of hex digits with decimal and binary numbers is given 

in Table 1.5. Note that to represent the largest hex digit we require four 

binary bits. Therefore, the binary equivalent of all the hex digits have to 

be written in 4-bit numbers. 

 

Table 1.5: Binary and Decimal equivalent of each Hex Digit 

 

Hex digit 

 

Decimal equivalent 

 

4-bit Binary 

equivalent 

 

0 

 

0 

 

0000 

 1 

 

1 

 

0001 

 2 

 

2 

 

0010 

 3 

 

3 

 

0011 

 4 

 

4 

 

0100 

 5 

 

5 

 

0101 

 6 

 

6 

 

0110 

 7 

 

7 

 

0111 

 8 

 

8 

 

1000 

 9 

 

9 

 

1001 

 A 

 

10 

 

1010 

 B 

 

11 

 

1011 

 C 

 

12 

 

1100 

 D 

 

13 

 

1101 

 E 

 

14 

 

1110 

 F 

 

15 

 

1111 
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While doing counting in hex number system if n  is the number of hex 

digits then counting can be done up to n16  counts and the largest 

decimal number represented by a hex number is 116 n . The hex 

counting is shown in Table 1.6. 

 

Table 1.6: Counting in Hexadecimal system 

 

0 

 

10 

 

20 

 

10 

 

40 

 

… 90 

 

A0 

 

B0 

 

C0 D0 E0 F0 100 
1 

 

11 

 

21 

 

31 

 

41 

 

… 91 

 

Al 

 

Bl 

 

C1 D1 E1 F1  
2 

 

12 

 

22 

 

32 

 

42 

 

… 92 

 

A2 

 

B2 

 

C2 D2 E2 F2  
3 

 

13 

 

23 

 

33 

 

43 

 

… 93 

 

A3 

 

B3 

 

C3 D3 E3 F3  
: : : : : : : : : : : : :  
9 

 

19 

 

29 

 

39 

 

49 

 

… 99 

 

A9 

 

B9 

 

C9 D9 E9 F9  
A 

 

1A 

 

2A 

 

3A 

 

4A 

 

… 9A 

 

AA 

 

BA 

 

CA DA EA FA  
B 

 

IB 

 

2B 

 

3B 

 

4B 

 

… 9B 

 

AB 

 

BB 

 

CB DB EB FB  
C 

 

1C 

 

2C 

 

3C 

 

4C 

 

… 9C 

 

AC 

 

BC 

 

CC DC EC FC  
D 

 

ID 

 

2D 

 

3D 

 

4D 

 

… 9D 

 

AD 

 

BD 

 

CD DD ED FD  
E 

 

IE 

 

2E 

 

3E 

 

4E 

 

… 9E 

 

AE 

 

BE 

 

CE DE EE FE  
F 

 

IF 

 

2F 

 

3F 

 

4F 

 

… 9F 

 

AF 

 

BF 

 

CF DF EF FF  
 

SAQ 10 

What is the number next to 835F16? 

 

SAQ 11 

What octal number represented by a 3-digit hex number? 

 

1.4.1    Hex to Decimal Conversion 

Hex to decimal conversion is done in the same way as in the cases of 

binary and octal to decimal conversions. A hex number is converted into 

its equivalent decimal number by summing the products of the weights 

of each digit and their values. This is clear from the example of 

conversion of 514.AF16 into its decimal equivalent. 

 

514.AF16  = 5162 + 1161 + 4160 + 1016– 1  + 1516–2 

   = 1280 + 16 + 4 + 0.625 + 0.0586 

 = 1300.683610 

 

Another example: 

3BE.1A16  = 3162 + 11161 + 14160 + 116– 1 + 1016– 2 

 = 768 + 176 + 14 + 0.0625 + 0.0391 

 = 958.101610 

 

SAQ 12 

What is decimal equivalent of 1BE216? 

 

1.4.2    Decimal to Hex Conversion 
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A decimal number is converted into hex number in the same way as a 

decimal number is converted into its equivalent binary and octal 

numbers. The part of the number on the left of the decimal point is to be 

divided repeatedly by 16 and the part on the right of the decimal point is 

to be repeatedly multiplied by 16. This will be clear from the examples 

of conversion of 579.2610 into hex equivalent. Split the number into two 

parts 579 and .26. 

 

 
 

Thus 57910 = 24316. 

 

Now .26 is converted into hex number as follows: 

 

 
 

Thus 579.26IO = 243.42816. 

 

SAQ 13 

What is the hex equivalent of 3710? 

 

1.4.3    Hex to Binary Conversion 

As in octal number system, a hex number is converted into its binary 

equivalent by replacing each hex digit by its equivalent 4-bit binary 

number. This is clear from the following example: 

 

BA616  =  B  A 6  
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=  1011          1010      0110  

 

=   1011101001102 

 

SAQ 14 

What is the binary equivalent of 6F1016? 

 

1.4.4    Binary to Hex Conversion 

By a process that is the reverse of the process described in section 1.4.4 

above, a binary number can be converted into its hex equivalent. 

Starting from the LSB side, group the binary number bits into groups of 

four bits. If towards the MSB side, the number of bits is less than four 

then add zeros on the left of the MSB so that the group of four is 

complete. Replace each group by its equivalent hex digit. This is clear 

from the following example: 

 

10011011102  = 0010     0110    1110  

 

 =   2        6          E 

 

 = 26E16 

 

SAQ 15 

What is the hex equivalent of 1100101010011112? 

 

1.4.5    Hex to Octal Conversion 

Each digit of the hex number is first converted into its equivalent four 

bit binary number. Then the bits of the equivalent binary number are 

grouped into groups of three bits. Then each group is replaced by its 

equivalent octal digit to get the octal number. For example, 

 

5AF16  = 0101       1010      1111 

= 010110101111 

= 010        110        101        111 

=   2       6        5         7 

= 26578 

 

SAQ 16 

What is the octal equivalent of 5A916? 

 

1.4.6    Octal to Hex Conversion 

For octal to hex conversion, just reverse the process described in section 

1.4.6 above. This is clear from the following example: 

54578 = 101   100   101   111 

 

 = 1011 0010  1111 
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 =   B     2    F 

 

 = B2F16 

 

This method can also be applied to hex to decimal and decimal to hex 

conversions. For example consider the conversion of 3CI6 into its 

decimal equivalent: 

3C16 = 0011 1100 

 

 = 111 1002 

 

Check the conversion. 

3C16  = 3 l6l + C l60 

  

 = 316' + 12160 

 

= 48 + 12 

 

= 6010 

 

1111002   = 2s + 24 + 23 + 22 

 

= 32+16 + 8 + 4 

 

Thus  3C16  = 1111002 = 6010 

 

SAQ 17 

What is the hex equivalent of 3278? 

 

1.5     CODES 
So far you have learnt about binary, octal and hexadecimal number 

system. For any number system with a base B and digits N0 (LSB), N1, 

N2, ...... Nm (MSB), the decimal equivalent N10 is given by 

 

 0

0

1

1

2

2

3

310 ... BNBNBNBNBNN m

m  3

3 BN 

 (1.1) 

 

You have also observed that a number in any system can be written in 

the binary form. A number code is a relationship between the binary 

digits and the number represented. Thus, all number systems are codes 

and the decimal equivalent is given by Eq, (1.1). But there are other 

relationships or codes that relate decimal numbers and groups of binary 

digits that do not obey Eq. (1.1) These relationships are called codes. 

We will now discuss some of the important codes used in digital work. 
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10.5.1     BCD   Code 
In BCD (BCD stands for binary coded decimal) code, each digit of a 

decimal number is converted into its four bit binary equivalent. The 

largest decimal digit is 9; therefore the largest binary equivalent is 1001. 

This is illustrated as follows: 

 

95110    =    1001    0101    0001  

 

=      10010I010001BCD 

 

Remember that the conversion of a decimal number into its binary 

equivalent and BCD equivalent leads to two different numbers. For 

example: 

 

15810    =      0001    0101     1000  

 

=       10I011000BCD 

 

15810  =  100111102  (obtained by repeated division 

method). 

 

Thus we see that it is quite easy to convert from decimal to BCD and 

from BCD to decimal. It is much easier to convert from BCD to decimal 

than from straight binary to decimal, because we only have to count up 

to 9 in binary to do so. However, it takes more bits to represent a 

number in BCD than in binary. 

A BCD number is converted into its decimal equivalent by the reverse 

process. For example: 

 

10101011100IOBCD  =      0001 0101 0111 0010 

 

=         1    5    7    2 

 

=  157210 

    

Although the main function of a computer is to perform arithmetic 

operations, it also processes messages and information in a language that 

uses letters of the alphabet (e.g. English) and data of other kinds. 

Computers operate by coding letters of the alphabet, other symbols, and 

data into binary form. The code used for this purpose is the ASCII code, 

which you will study now. 

 

1.5.2    ASCII Code 
The word ASCII is an acronym of American Standard Code for 

Information Interchange. This is the alphanumeric code most widely 

used in computers. The alphanumeric code is one that represents 
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alphabets, numerical numbers, punctuation marks and other special 

characters recognised by a computer. The ASCII code is a 7-bit code 

representing 26 English alphabets, 0 through 9 digits, punctuation 

marks, etc. A 7-bit code has 27 = 128 possible code groups which are 

quite sufficient. A partial ASCII code listing is shown in Table 10.6. 

 

Table 1.6: Some of the ASCII codes for numbers, alphabets and 

other common symbols 

 

 

 

 

 

A6A5A4 

 

 

 

  

 

A3A2A1

A0 

 

010 

 

011 

 

100 

 

101 

 

110 111  

 SP 

 

0 

 

@ 

 

p 

 

 p 0000 

 1 

 

1 

 

A 

 

Q 

 

a q 0001 

 " 

 

2 

 

B 

 

R 

 

b r 0010 

 ' # 

 

3 

 

C 

 

S 

 

c s 0011 

 $ 

 

4 

 

D 

 

T 

 

d t 0100 

 % 

 

5 

 

E 

 

U 

 

e u 0101 

 & 

 

6 

 

F 

 

V 

 

f v 0110 

 ' 

 

7 

 

G 

 

w 

 

g w 0111 

 - ( 

 

8 

 

H 

 

X 

 

h x 1000 

 ) 

 

9 

 

I 

 

Y 

 

i y 1001 

 * 

 

 

 

J 

 

Z 

 

j z 1010 

 + 

 

; 

 

K 

 

 

 

k  1011 

 , 

 

< 

 

L 

 

 

 

l  iioo 

 - 

 

= 

 

M 

 

 

 

m  1!01 

  

 

> 

 

N 

 

- 

 

n  1110 

 / 

 

9 

 

O 

 

 

 

o  1111 

  

The code is A6A5A4A3A2A1A0. For example, A has A6A5A4 of 100 and 

an A3A2A1A0 of 0001. Therefore, its ASCII code is 

 

100 0001 = A  

 

The ASCII code for a is 110 0001. 

 

SAQ 18 

What is the ASCII code of SHARM? 

 

1.6      BINARY ARITHMETIC 
Digital computers can perform arithmetic operations using only binary 

numbers. We will learn how to add, subtract, multiply and divide binary 

numbers. We will first review this in the familiar decimal system and 

apply the same ideas to the binary system. 
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1.6.1   Addition 
Let us recall the addition in decimal numbers. Suppose we want to add 

563 and 146. We start adding the digits in the least significant column. 

We get, 

 

 
 

Next, the digits of the second column are added and we get, 

 

 
 

In this case 6 + 4 gives 0, with a carry 1 to the next column. Then the 

digits of the last column and the 'carry' from the previous column are 

added. We get, 

 

 
 

The addition of binary numbers can be carried out in a similar way by 

the column method. But before we do this, we need to discuss four 

simple cases. We known in the decimal number system, 3 + 6 = 9 

symbolizes the combining of ... with ...... to get a total of ............ Let us 

now discuss the four simple cases. 

 

Case 1: When nothing is combined with nothing, we get nothing. The 

binary representation of this is 0 + 0 = 0. 

 

Case 2:    When nothing is combined with ., we get . Using binary 

numbers to denote this gives 0 + 1 = 1. 

 

Case 3:    Combining . with nothing gives. The binary equivalent of this 

is 1 + 0 = 1. 

Case 4:     When we combine . with ., the result is .. Using binary 

numbers, we symbolize     

1 + 1 = 10.          
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The last result is sometimes confusing because of our long time 

association with decimal numbers. But it is correct and makes sense 

because we are using binary numbers. Binary number 10 stands for.. and 

not for .......... (ten). 

 

To summarize our results for binary addition, 

0 + 0 = 0  

 

0 + 1 = 1  

 

1 + 0 = 1  

 

1 + 1 = 10 

 

To add large binary numbers, carry into higher-order columns as is done 

with decimal numbers. As an example, add 10 to 10 as follows 

 

 
 

In the first column, 0 plus 0 is 0. In the second column, 1 plus 1 is 0, 

carry a 1. As another example, take 1+1 + 1. Add two of the 1's to get 10 

+ 1. 

 

Adding again gives 11 as follows: 

 

1 + 1 + 1 = 10 + 1 = 11  

 

See another example: 

 

 
 

 

Further examples are 

 

 
 

In all digital networks or computers only two binary numbers are added 

at a time. To add more than two numbers, first two numbers are added, 
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then to their sum the third number is added, and so on. Therefore, we 

should not worry about the addition of more than two numbers. The 

computer can add numbers in a few microseconds or even less. You will 

see that the multiplication, division and subtractions are actually done by 

the computers by way of addition. 

 

SAQ 19 

Add the following: 

 

(a)    1010 and 1101 

 

(b)    1011 and 1010 

 

1.6.2    Subtraction 

Binary subtraction is done in the same way as in decimal system. Let us 

recall the decimal subtraction, for example. 

 

 
 

In this example, a 1 is borrowed from the ten's position giving 16 in the 

LSD. Then 16-9 = 7. Borrowing a 1 from the ten's position leaves 4 in 

place of 5. Then 4 - 4 = 0. In the same way the binary subtraction can be 

done. 

 

To subtract binary numbers, we first need to discuss four simple cases.  

 

Case 1   0 – 0 = 0 

 

Case 2   1 – 0 = 1 

 

Case 3   1 – 1 = 0 

 

Case 4  10 – 1 = 1 

 

The last result represents .. –. = . which makes sense. To subtract large 

binary numbers, subtract column by column, borrowing from the 

adjacent column when necessary. For example, in subtracting 101 from 

111, we proceed as follows: 
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Here is another example: subtract 1010 from 1101. 

 

 
 

SAQ 20 

Subtract binary 100011 from 110011. 

 

1.6.3    Multiplication and Division 
The multiplication of binary numbers is also done in the same manner as 

in decimal system. It is rather easier, because the multiplication table for 

binary has only four cases. 

 

Case 1   00 = 0 

 

Case 2   01 = 0 

 

Case 3   10 = 0 

 

Case 4  11 = 1 

 

For example, in multiplying 1101 by 1001, we proceed as follows: 

 

 
 

In the beginning the first partial product is written. Subsequently, each 

partial product is written below the previous one by shifting one place 

towards the left relative to the previous place. However, the digital 

circuits or computers add only two binary numbers at a time. Therefore, 

to the sum of first two partial products is added the third partial product. 

To this sum is added the third partial product to give the final sum. 

 

The process of dividing a binary number is once again the same as 

followed in the decimal system. To divide 1100 by 10, we proceed as 

follows. 
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SAQ 21 
Multiply 10110 by 110. 

 

10.7     SUMMARY 
There are mainly four number systems namely, binary, octal, decimal 

and hexadecimal, which have 2, 8, 10 and 16 digits respectively. But it 

is the ease in applications that decides which kind of number system 

should be defined and used. Every computer uses two or more of the 

above mentioned number systems simultaneously. 

 

The binary number system has only two digits: 0 and 1. A binary digit is 

called bit. A binary number can be converted into its equivalent octal, 

decimal and hex numbers as described in the text. And also octal, 

decimal and hex numbers can be converted into equivalent binary 

numbers. 

The octal number system has 8 digits: 0 through 7. An octal number can 

be converted into its equivalent binary, decimal and hex numbers and 

vice versa as described in the text. 

 

The hex number system has 16 digits: 0 through 9, A (10) through F 

(15). As in the other systems, the hex numbers can be converted as 

described in the text into their binary, octal and, decimal equivalents and 

vice versa. 

 

It is possible to arrange sets of binary digits to represent numbers, letters 

of the alphabet or other information by using a given code. Some of the 

important codes are the BCD and the ASCII codes. 

 

In the BCD code, each decimal digit is replaced by its 4-bit binary 

equivalent. The conversion of BCD code into its decimal equivalent and 

vice versa is quite easy. Therefore, it is quite often used in computers. 

 

The ASCII code is the most widely used alphanumeric code. It is a 7-bit 

binary number and has 27 = 128 possible 7-bit binary numbers, which 

are quite sufficient to describe the capital and small letters of the 

alphabet, digits, punctuation marks, and other symbols. 

 

The fundamental arithmetic of binary addition is contained in four rules: 

1.  0  +  0 = 0 
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2.  0  +  1 = 1 

 

3.  1  +  0 = 1 

 

4.          1  +  1 = 0     but 1 must be carried over to next higher 

(more significant) bit. 

 

The fundamental arithmetic of binary subtraction is contained in four 

rules: 

1.  0 – 0 = 0 

 

2.  0 – 1 = 1 and borrow 1 from the next more significant bit 

 

3.  1 – 0 = 1 

 

4. 1 – 1 = 0 

 

The four rules for binary multiplication are: 

1  00 = 0 

 

2  01 = 0 

 

3  10 = 0 

 

4 11 = 1 

 

1.8     TERMINAL QUESTIONS 
(1)  In the binary sequence, what is number that follows 10111? 

 

(2)  What is the largest decimal number that can be expressed by 6 

bits? 

 

(3)  Convert 11011011010.11012 into its decimal equivalent. 

 

(4)  Convert 372.125,0 into its binary equivalent. 

 

(5)  Convert 89.87510 into its binary equivalent. 

 

(6)  What is the largest decimal number represented by a five digit 

octal number? 

 

(7)  Convert 77778 into its decimal equivalent. 

 

(8)  Convert 678910 into its octal equivalent. 
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(9)  Convert 23401g into its binary equivalent. 

 

(10)  Convert 110011011100I0102 into its octal equivalent. 

 

(11)  Add the following binary numbers 1110001 and 1010101 

 

(12)  Multiply 101.1 by 11.01 

 

(13)  Divide 11011 by 100 

 

1.9     SOLUTIONS AND ANSWERS 

SAQs 

1.       Largest decimal number = 12 n . With n = 10, 210 - 1 = 1024 - 1 

= 102310 

2. 11.62510 

3.        100101.11 

4.       No. Octal numbers do not have digits 8 and 9 

5.       The largest decimal number is 83 – 1 = 512 – 1 = 51110 

6.       31.25010 

7.        17.28 

8.        0010000000I0111.0010102 

9.       228 

10.      836016 

11.     Largest decimal number = 163 – 1 = 4096 – 1 = 409510. 

12.      1BE216  =   1163 + 11162 + 14161 + 2160 =  4096 + 2816 + 

224 + 2 

13.  2516 

14.  6F1016 = 0110   1111   0001   0000 = 1101111000100002 

15.  1100101010011112 = 0110   0101   0100   1111 = 654F16 

16.     5A916   = 0101    1010   1001  

= 010 110 101 001  

= 26518 

17.     3278     = 011   010   111  

= 0 1101   0111  

=  D716 

18.     SHARM = 1010011   1001000   1000001   1010010   1001101    

19.     (a)   10111 (b)   10101 

20.      10000 

21.      10000100 

 

TQs 

(1)       110002 

(2)       63I0 

(3)       1754.8125I0 

(4)       101110100.0012 

(5)       1011001.1112 
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(6)  3276710 

(7)  4095I0 

(8)  152058 

(9)  100 111 000000012 

(10)  11001101110010102 =  001     100    110    111   

 001   010 

=   1   4   6   7   1       2 

= 1467128 

(11)  11000110 

(12)  10001.111 

(13)  110.11 
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UNIT 2  FUNDAMENTALS OF BOOLEAN ALGEBRA AND 

FLIP FLOPS 

Structure 
2.1 Introduction  

Objectives 

2.2 Logic Gates  

AND Gate  

OR Gate  

NOT Gate  

Combination of Logic Gates 

2.3 Boolean Algebra  

Boolean Theorems 

Algebraic Method for Combinational Logic  

Obtaining a Truth Table from a Boolean Expression  

Obtaining a Boolean Expression from a Truth Table  

Exclusive-OR Gate  

Exclusive-NOR Gate 

Addition of Two One Bit Binary Numbers (Half Adder)  

Addition of Three One Bit Binary Numbers (Full Adder)  

Designing Circuits Using NAND Gates Only 

2.4 Flip-flops  

RS flip-flop  

Clocked RS Flip-flop  

Clocked D Flip-flop  

Clocked JK Flip-flop 

2.5  Summary 

2.6  Terminal Questions 

2.7 Solutions and Answers 

 

2.1     INTRODUCTION 
A digital circuit is designed for a desired application by a combination 

of several logic gates. This application involving several logic gates may 

be a simple or complex one. Different users may design digital circuits 

by using different combinations of logic gates for the same application. 

In selecting one of these digital circuits for that application, it is 

necessary to keep in mind that the chosen digital circuit should have a 

minimum number of logic gates. By seeing a digital circuit, it is not 

obvious that a circuit is minimal or certain gates may be removed from 

the circuit without changing its operation. Boolean algebra provides a 

means by which logic circuitry may be expressed symbolically, 

manipulated and reduced. 

 

In this Unit we shall learn about three basic logic gates: AND, OR, NOT 

and their various combinations. All digital (logic) circuits operate in the 

binary mode, where all the inputs and outputs are predefined voltages 

representing binary digit either 1 or 0. It is this characteristics of the 
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logic circuits that enables us to use Boolean algebra for designing and 

analysing digital systems. This area of digital circuitry is known as 

combinational (or combinatorial) logic, where the relationship between 

the inputs and outputs can be precisely defined by the logic summarised 

in a truth table. 

 

In the combinational logic circuit, there is no memory, i.e., the output of 

the digital circuit does not depend upon the occurrence of a previous 

event. But it is very essential for more advanced digital circuits meant 

for storing and manipulating information to have memory. The basic 

memory element is a flip-flop which is obtained by using NAND or 

NOR gates. In this Unit we shall learn about various kinds of flip-flops 

and their operation. This area of digital circuitry is known as sequential 

circuits. 

 

Objectives 

 After studying this unit, you should be able to 

 describe the operation of AND, OR and NOT Gates and write 

their truth tables, 

 describe the combination of gates and write the truth tables of 

NAND and NOR gates, 

 explain as to how a timing diagram of the output of all the logic 

circuits is obtained, 

 explain how the operation of three basic logic gates leads us to 

various theorems or rules used in Boolean algebra, 

 write Boolean theorems and use algebraic method for 

combinational logic, 

 obtain a truth table from a give Boolean expression, 

 describe the operation of exclusive-OR and exclusive-NOR gates, 

 design a half adder and describe its operation, 

 design a full adder and describe its operation, 

 design logic circuits using only NAND gates, 

 describe the construction and explain the operation of the RS flip-

flop, 

 describe the construction and explain the operation of clocked RS 

flip-flop, D flip-flop, and JK flip-flop,      . 

 obtain the timing diagrams of the outputs of flip-flops. 

 

2.2   LOGIC GATES 
A logic gate is a digital circuit which has logical relationship between 

input and output voltages. There are three basic gates: AND, OR and 

NOT (also called inverter) gates. We shall now learn these gates one by 

one.  

 

2.2.1    AND Gate 
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The AND gate can be understood by the circuit given in Fig. 2.1. In this 

circuit switch (s) is input and the bulb is output. Let us assign 0 to the 

event when the switch is open and 1 to the event when the switch is 

closed. Similarly when the bulb does not glow we call it 0 and when the 

bulb glows we call it 1. With both the switches (A and B) off, the bulb 

(Y) does not glow. 

 

 
 

Fig. 2.1 AND gate using switches 

 

With one of the switches off and another switch on, once again the bulb 

(Y) does not glow. However, with both the switches (A and B) on, the 

bulb (Y) glows. Thus there are four events which can be summarised in 

the form of a table which is called the truth table of this circuit. This is 

given in Table 2.1. The switches A and B, which control the input 

voltage are usually called the input of the truth table and Y as the output. 

 

Table 2.1: Truth Table of AND Gate 

 

Inputs 

 

Output 

 A 

 

B 

 

Y 

 0 

 

0 

 

0 

 0 

 

1 

 

0 

 1 

 

0 

 

0 

 1 

 

1 

 

1 

  

Fundamentals of Boolean Algebra and Flip flops 
From this table it is clear that the bulb glows (1) only when both the 

switches (A and B) are on (1). Stated in a different way, the output is 1 

when both the inputs A and B are 1. This state of the circuit is distinct 

from the other three states. This circuit is known as the AND gate. The 

symbol of AND gate is given in Fig. 2.2. It is clear from the Fig. 2.1 that 

if the circuit has any number of switches in series, then the output will 

be 1 if and only if all inputs are 1. Now for all times to come, you must 

remember that for an AND gate the output is 1 if and only if all the 

inputs are 1. 
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Fig. 2.2 Symbol of AND gate 

 

Electronically the AND gate can be realised by using two pn junction 

diodes as shown in the circuit of Fig. 2.3. The resistor R is used to 

control the current passing through the diodes. As slated above, a 0 bit is 

assigned 0V and a 1 bit is assigned 5V. However, such accurate values 

of voltage will not always be available at the output in electronic 

circuits. Therefore, a 0 bit is assigned a voltage range of 0 to 0.8V and a 

1 bit is assigned to a voltage range of 2.8 to 5.0V. Quite often these 

voltage ranges are referred to a LOW and a HIGH respectively. The 

voltages greater than 0.8V and less than 2.8 V are indeterminate and 

hence not used. 

 

 
 

Fig. 2.3 Realisation of AND Gate using diodes 

 

In the circuit of Fig. 2.3 when the inputs A and B are 0, i.e. when they 

are connected to the 0V or ground terminal, both the diodes are forward 

biased with a voltage drop of 0.7V across each diode if the diodes are of 

Si or of 0.3V if the diodes are of Ge. Hence the output voltage is a LOW 

or a 0 bit. If the input A is 0 and B is 1 (i.e. 5V), the diode A is forward 

biased with 0.7V drop across it (assuming diode to be of Si) while the 

diode B is not biased (because both p and n sides of the diode are at the 

same voltage, 5V). Therefore the output voltage is 0.7V, i.e. a LOW or a 

0 bit. Similarly, if the input A is 1 and input B is 0, the output is a 0. 

However, if both inputs are 1, i.e. connected to 5V, then both the sides 

of the diodes are at the same voltage and hence not conducting. 

Therefore, the output voltage is nothing but the battery voltage which is 

5V, i.e. a HIGH or a 1 bit. These four cases satisfy the truth table of 

Table 2.1. For more input AND gate, the number of diodes may be 

more. The input output relationship of the AND gate is written as A.B = 

Y and is read as A AND B equal to Y. 
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Example 2.1 
If the inputs A and B to the AND gate are as shown in Fig. 2.4, trace the 

output Y. 

 

 
 

Fig. 2.4 

 

Solution  
Recall that the output of an AND gate is 1 when all the inputs are 1. If 

any of the inputs is 0, then the output is 0. With this understanding, the 

output comes out to be as shown in the trace for Y. 

 

SAQ 1 
Trace the output of an AND gate, if the inputs A and B are as shown in 

Fig. 2.5. 

 

 
 

Fig. 2.5 

 

2.2.2    OR Gate 
The OR gate operation can be understood by the circuit of Fig. 2.4. If 

both the switches are off, (0), the bulb does not glow (0). If one of the 

switches is on (1) and other is off (0), the bulb glows (1). And if both the 

switches are on (1), then also the bulb glows (1). These events are 

summarised in the truth table given in Table 2.2. 
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Fig. 2.6 OR gate using switches 

 

Table 2.2: Truth Table of OR Gate 
A 

 

B 

 

Y 

 0 

 

0 

 

0 

 0 

 

1 

 

1 

 1 

 

0 

 

1 

 1 

 

1 

 

1 

  

It is clear from the truth table that the output of an OR gate is 0 if both 

the inputs are 0 and the output is 1 if any one of the inputs or both the 

inputs are 1. If a larger number of switches are used in parallel in the 

circuit, then the bulb does not glow if all the switches are off, and the 

bulb glows if any one of the switches is on. The symbol of OR gate is 

given in Fig. 2.7. The OR gate operation is expressed as A + B = Y and 

is read as A OR B = Y. 

 

 
 

Fig. 2.7 Symbol of OR gate 

 

Electronically OR gate can be realised by using two pn junction diodes 

as shown in the circuit of Fig. 2.8. If both the inputs are 0, that is 

connected to ground, then the diodes are not biased and hence no current 

flows through the diodes. The output is zero or a 0 bit. If the input to 

diode A is 0 and B   is 1 (i.e. 5V), then the diode A is not -biased and 

thus does not conduct, but the diode B is forward biased with a 0.7V 

drop across it and 4.3V drop across the resistor. Thus the output is a 

HIGH or a 1 bit. Similarly, if the inputs to the diode A is 1 and diode B 

is 0, the output is 1. When the inputs to both the diodes A and B are 1, 

both the diodes are forward biased, the voltage drop across the resistor R 

continues to be 4.3V. Hence, the output is a 1 bit. All these four cases 

satisfy the truth table of OR gate. A more input OR gate is obtained by 

using more diodes in the circuit. Analysing the truth table of OR gate, 

we learn that the output is 0 if both or all the inputs are 0, and the 

output is 1 if at least one of the inputs is 1. 
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Fig. 2.8 Realisation of OR gate using diodes 

 

Example 2.2 

If the inputs A and B to OR gate are as shown in Fig. 2.9, trace the 

output Y. 

 

Recall that the output of an OR gate is 1 if any of the input is 1, and the 

output is 0 if all the inputs are 0. With this understanding, the output 

comes out to be as shown in the trace for Y. 

 

 
 

Fig. 2.9 

 

SAQ 2 
Trace the output of an OR gate if the inputs A and B are as shown in 

Fig. 2.10. 

 

 
 

Fig. 2.10 
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2.2.3   NOT Gate 
The NOT gate can be understood by considering the electrical circuit 

shown in Fig. 2.11, Let us assign a 0 bit to the event when bulb does not 

glow and 1 bit to the event when bulb glows, and a 0 bit to switch off 

and 1 bit to switch closed. In Fig. 2.11, when switch is closed, no 

current will pass through the bulb and the bulb will not glow. This is 

because the current always flows through the path of least resistance. 

Similarly, when the switch is open then the whole current will flow 

through the bulb making it glow. 

 

 
 

Fig. 2.11 NOT gate using a switch 

 

If input to the circuit is 1, the output is 0 and if the input is 0 then the 

output is 1. This is the NOT gate operation which is summarised in the 

truth table given in Table 2.3. 

 

Table 11.3:  Truth table for NOT gate 

 

A Y 

0 1 

1 0 

 

The NOT gate is also known as the INVERTER. It has only one input. 

Its symbol is given in Fig. 2.12. The input-output relationship is 

expressed as A = Y. 

 

 
 

Fig. 2.12 Symbol of NOT gate 

 

The NOT gate can be realised using the circuit given in Fig. 2.13. The 

circuit uses the cut-off and saturation modes of the transistor. When the 
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input to the circuit is a 0 bit, i.e. zero volt, no base current, IB. flows. 

This means the collector current, IC is zero. This is cut-off mode of the 

transistor. 

 

Therefore, the output voltage is the bias voltage of 5V indicating the 

output to be a 1 bit. When the input to the circuit is a 1 bit, i.e. 5V, very 

large IB flows resulting in very large IC, in fact IC sat. This is the 

saturation mode of the transistor. This indicates that most of the bias 

voltage is dropped across CR , with output to be a 0 bit. 

 

 

 
 

Fig. 2.13 Realisation of NOT gate using a transistor 

 

Example 2.3 
If the input A to NOT gate is as shown in Fig. 2.14, trace the output Y. 

 

 
 

Fig. 2.14 

 

Solution 
Recall that the output of a NOT gate is 1 if the input is 0, and the output 

is 0 if the input is 1. With this understanding, the output comes out to be 

as shown in the trace for Y in Fig. 2.14. 

 

SAQ 3 
Trace the output of a NOT gate if the input is as shown in Fig. 2.15. 
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Fig. 11.15 

 

2.2.4   Combination of Logic Gates 

The AND, OR and NOT gates are the fundamental gates for all digital 

circuits. These gates can be combined with each other for a particular 

application. However, two types of combinations are very important as 

you will learn now. 

 

 

 

(i)  NAND Gate 

 

 
 

Fig. 2.16 Combination of AND and NOT gate 

 

 

 
 

Fig. 2.17 Symbol of NAND gate 

 

If the output of an AND gate is given to the input of a NOT gate, as 

shown in Fig. 2.16, the resulting circuit is known as NAND gate, the 

symbol of which is shown in Fig. 2.17. The truth table of this gate is 

obtained as follows: 

 

 

 

 

 

A 

 

B 

 

Y' (AB) 

 

Y 

 0 

 

0 

 

0 

 

1 

 0 

 

1 

 

0 

 

1 

 1 

 

0 

 

0 

 

1 

 1 

 

1 

 

1 

 

0 

  

Thus the truth table of NAND gate is shown in Table 2.4.  
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Table 2.4: Truth table for NAND gate 

 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

The input-output relationship of a NAND gate is expressed as A.B = Y. 

The NAND gate is known as the building block for the digital circuits 

because using NAND gates, one can obtain AND, OR and NOT gates. 

This aspect will be explained later. 

 

(ii) NOR gate 

 
Fig. 2.18 Combination of OR and NOT gate 

 

 
 

Fig. 2.19 Symbol of NOR gate 

 

If the output of an OR gate is given to the input of a NOT gate, as shown 

in Fig. 2.18, the resulting circuit is known as NOR gate, the symbol for 

which is shown in Fig. 2.19. The truth table of this gate is obtained as 

follows 

 

A 

 

B 

 

Y'(A + B) 

 

Y 

 0 

 

0 

 

0 

 

1 

 0 

 

1 

 

1 

 

0 

 1 

 

0 

 

1 

 

0 

 1 

 

1 

 

1 

 

0 

  

The truth table of a NOR gate is shown in Table 2.5.  

 

 

Table 2.5 Truth table for NOR gate 

 

A B Y 
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The input-output relationship of a NOR gate is expressed as A + B = Y, 

The NOR is also known as the building block for the digital circuits 

because using NOR gates one can obtain AND, OR and NOT gates. 

 

Example 11.4 
If the inputs A and B to NAND gate are as shown in Fig. 2.20, trace the 

output Y. 

 

 
 

Fig. 2.20 

 

Solution 

Recall that the output of a NAND gate is 0 only when all the inputs are 

1, and its output is 1 if any or all of the inputs is/are 0. With this 

understanding, the output comes out to be as shown in the trace for Y in 

Fig. 2.20. 

 

SAQ 4 
If the inputs A and B to a NOR gate are as shown in Fig. 2.21, trace its 

output Y. (Hint. Apply truth table 2.5). 

 

 
 

Fig. 2.21 

 

2.3     BOOLEAN ALGEBRA 
In this section we shall learn about the Boolean algebra, which provides 

the methodology for reducing a complex digital circuit into a simple 

one. This methodology includes the following: 

(1)       The logic operations are written in the form of a Boolean 

expression. 



PHY 405             ELECTRONICS III 

40 

 

(2)      From the given truth table, a Boolean expression can be obtained 

which may not represent a simple circuit having minimum 

number of gates. 

 

(3)      The Boolean expression may then be simplified to get a digital 

circuit having minimum number of gates. 

 

Consider the digital circuit given in Fig. 2.22. It has five logic gates of 

three types -  

 

 
 

Fig. 2.22: Digital circuit using five gates 

 

 
 

Fig. 2.23: Digital circuit having the same operation as that of the circuit 

given in Fig. 2.22 

 

three 2-input AND gates, one 2-input OR gate and one 3-input OR gate. 

Its logic table is given in Table 2.6. This circuit can be reduced to the 

one shown in Fig. 2.23, which has only two logic gates and is 

considerably cheaper and simple. It fully satisfies the logic Table 2.6. 

 

Table 2.6 

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

0 

 0 

 

1 

 

0 

 

I 

 0 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 1 

 

1 

 

0 

 

1 
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1 

 

1 

 

1 

 

I 

  

The root of its initial assumptions, known as Boolean postulates, lies in 

the truth tables of the logic gates described in the previous section: Let 

us recall that the AND operation has been described by the sign of 

multiplication (.), that is, logical multiplication. Most often we do not 

use this sign (.), e.g. A.B = AB. Similarly the OR Operation has been 

described by the sign of addition (+), that is, logical addition. And the 

NOT operation has been described as a bar )(  over the variable, that is, 

logical inversion or complementation. These three operations are the 

basic Boolean operations based upon which we shall develop the 

Boolean algebra. 

 

Since the number of bits used in binary system is only two, i.e. 0 and 1, 

there could be only four possible combination of inputs A and B to 2-

input AND and OR  gates, and two possible inputs to NOT gate. The 

logical tables of AND, OR and NOT gates are rewritten in Table 2.7. 

 

Table 2.7: Truth tables of AND, OR and NOT gates 

 

AND  OR  NOT 

X Y Z  X Y Z  0 1 

0 0 0  0 0 0  1 0 

0 1 0  0 1 0    

1 0 0  1 0 0    

1 1 1  1 1 1    

 

 

These logic tables lead to ten postulates of the Boolean algebra, each of 

which describes the input-output relationship of the concerned logic gate 

in the form of Boolean expression and is one of the truth table entries for 

AND, OR, NOT functions. These are: 

 

Table 2.8: Boolean expression for AND, OR and NOT gates 

AND operation         OR operation       NOT operation 

0 .  0 = 0   0 + 0 = 0             0 = 1 

0 .  1 = 0   0 + 1 = 1             1 = 0 

1 .  0 = 0   1 + 0 = 1 

1 . 1 = 1   1 + 1 = 1 

 

It is quite clear from these equations that all the four Boolean equations 

using AND operation satisfy the binary multiplication using bits 0 and 1. 

However, in the case of OR operation, the first three Boolean equation 

satisfy binary addition, but the last equation 1 + 1 = 1 does not. It is 

because in binary arithmetic 1 + 1 = 10. Despite this contradiction 

between Boolean and binary additions which will be settled later, the 
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Boolean operations are very helpful in digital circuits. The Table 2.8 

will lead us to various Boolean theorems, which will be described in the 

following section. 

 

For the moment let us see how Boolean equations are written and used 

for a digital circuit. Consider the circuit of Fig. 2.24 in which A and B 

are the inputs to AND-gate 

 

 
 

Fig. 2.24 Digital circuit for Y = A-B + C 

 

while C is one of the  inputs to OR gate. Another input to OR gate is the 

output of AND gate, i.e., 

AB. The output pf this combination is Y, which is 

 

Y = (A.B) + C = AB + C  

 

Let us find Y if, say, A = 0, B = 1, and C = 1. 

 

Y = 0 .  1 +1  

 

From Table 2.8, 0 . 1 = 0, so 

 

Y = 0 + l  

 

From Table 2.8.  

 

0 + 1 = 1 

 

Hence, 

 

Y = 1 

 

Let us now convert a given Boolean expression into a logic circuit. Say, 

Y = ( BA  ) + ( BA  ). The equation means that Y is the output of a 2-

input OR gate the inputs t0 which are BA   and BA   which in turn are 

the outputs of two AND gates. The inputs to these AND gates are A  

and B and A  and B respectively. The whole of this exercise is 

summarised in the Fig. 2.25. 
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Fig. 2.25 Conversion of a boolean expression Y = BABA   a digital 

circuit 

 

2.3.1   Boolean Theorems 
Recalling Table 2.8 we can now write several identities or theorems 

which are used in Boolean algebra. It is also worthwhile to recall that 

 

A.  (i)  The output of an AND gate is 1 only when all the inputs 

are 1. 

 

(ii) The output of an AND gate is 0 when all or any of the 

inputs is 0. 

 

B.  (i)  The output of an OR gate is 0 when all the inputs are 0. 

 

(ii) The output of an OR gate is 1 when either of the inputs or 

all the inputs are 1. 

 

C.  The output of a NOT gate is the inversion of its input. 

 

From these conclusions and postulates, we derive the following 

properties or rules/law/ theorems: 

From AND function, 

 

1.  X . 0  = 0           

                                                           

2.  0 . X  = 0 

 

3.  X . 1  = X 
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4.  1 . X  = X 

 

From OR functions, 

 

5.  X + 0  = X 

 

6.  0 + X  = X 

 

7.  X + 1  = 1 

 

8.  1 + X  = 1 

 

Combination variable with itself or its complement, 

 

9.  X . X   = X 

 

10.  X . X   =  0 

 

11.  X + X  = X 

 

12.  X + X  = 1 

 

From double complementation, 

 

13.    X  = X 

 

Commutative laws for multiplication and addition. These laws show that 

the order in which two variables are ORed or ANDed together makes no 

difference. 

 

14.    X . Y = Y . X 

 

15.    X + Y = Y + X 

 

Associative laws for addition and multiplication. These laws show that 

while ORing or ANDing several variables, it makes no difference in 

what order the variables are grouped. 

 

16.    X + (Y + Z) . (X + Y) + Z =  X + Y + Z 

 

17.    X (YZ) = (XY) Z = XYZ 

 

Distributive laws. 

 

18.  X .  (Y + Z) = (X . Y) + (X . Z) 
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19.  X + (Y . Z) = (X + Y) . (X + Z) 

 

20.  (W + X) . (Y + Z) = WY + XY + WZ + XZ              

 

Note here that commutative, associative and distributive laws are similar 

to ordinary algebra. 

Absorption laws. These have no counterpart in ordinary algebra. 

 

21.  X + X . Y = X 

 

22.  X . (X + Y) = X 

 

23.  X + XY = X + Y 

 

24.     X . ( X  + Y) = XY 

 

De Morgan's theorems. The first theorem says that the complement of a 

sum is equal to the 

product of complements: 

 

25.   YX   = YX   

 

The second theorem says that the complement of a product is equal to 

the sum of the complements. 

 

26.    YX   = YX   

 

These theorems are valid even when the variables are expressions. There 

is no algebraic proof of these theorems. However, each theorem/law can 

be proved by putting the values (0 or 1) of variables and applying 

Boolean postulates given in Table 2.8. 

 

2.3.2   Algebraic Method for Combinational Logic 

We have now known that a logic circuit can be expressed in the form of 

Boolean expression which, in turn, can be simplified using Boolean 

laws. We have also known that a Boolean expression can also be 

transformed into an equivalent logic circuit. 

 

Before we learn the simplification method and other techniques, let us 

understand the meaning of combinational logic. Whenever a logic 

circuit is explicitly defined by its truth table to provide a fixed, invariant 

relationship between input and output, the circuit is called the 

combinational circuit. A combinational circuit does not have a memory. 

It always operates in accordance with its truth table regardless of any 
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prior input which may have been given to the circuit. This will be 

further understood after we have taken up some examples. 

 

A Boolean expression can be simplified in either of the two forms - (a) 

Sum of Product (SOP), and (b) Product of Sum (POS). We shall limit 

ourselves to only SOP form, which is most commonly used. The object 

of simplification is to minimise the number of variables or occurrences 

of a variable in an expression. This means minimising operation 

symbols and hence the number of gates to be used in the circuit. Many a 

times we get more than one simplified form of an expression, each being 

equivalent in number of gates and variables to be used. In the final 

analysis, we shall use the Minimum Sum of Product (MSP) form which 

is written without brackets. Consider the reduced expression A (B + C) 

which is written in MSP form AB + AC. While the reduced expression 

requires one AND gate and one OR gate, the MSP expression requires 

one AND gates and one OR gate. Thus in this case MSP expression is 

not the simplest. The fundamental rule is that the expression must be (a) 

reduced as much as possible, and (b) written without brackets. For the 

simplification of Boolean expression, Boolean operations should be 

carried out in the following order: 

 

(1)  Inversion of single variables. 

(2)  All operations with brackets. 

(3)  AND operations before OR operations. 

(4)  OR operations. 

(5)  If an expression is with a bar, then before inverting, perform all 

operations. 

 

Example 11.5 

(1)     Find the MSP expression for 

Y  = ABCBA  )(  

= )()( BACBA    Using De Morgan’s theorem 

Th. 26 

= )1)((  CBA    Taking )( BA  common 

= 1)(  BA    Using Th. 7 

= )( BA     Using Th. 3 

= MSP expression 

 

The logic circuits for the given and the MSP expressions are shown in 

Figs. 2.26 and 2.27 respectively. 
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Fig. 2.26 Digital circuit for ABCBAY  )(  

 

 
 

Fig. 2.27 Digital circuit for BAY   

 

Example 2.6 

Find the MSP expression for Y = )( CBABCA   

 Y  = )( CBABCA   

  = ABCBABCA   

  = ABCACA  0   Using Th. 10 

  = ABCCA     Using Th. 1 

  = CABA )(     Taking C  common 

  = CBA )(     Using Th. 23  

  = BCCA   

  = MSP expression 

 

Using Th. 10 Using Th. 1 Taking C common Using Th. ?* 

 

The logic circuits for the given expression and the MSP expressions are 

shown in Figs. 2.28 and 2.29 respectively. 
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Fig. 2.28 Digital circuit for )( CBABCAY   

 

 
 

Fig. 2.29 Digital circuit for Y = BCCA   

 

Example 11.7 

Find the MSP expression for 

Y = AB + A (B + C) + B (3 + C) 

= AB + AB +AC + BB + BC 

= AB + AB + AC + B + BC Using Th. 9 

= AB + AC + B + BC  Using Th. 11  

= AB + AC + B(1 + C)  Taking B common 

= AB + AC + B . 1  Using Th. 8 

= AB + AC + B   Using Th. 3 

= (A + 1) B + AC 

= 1 . B + AC   Using Th. 7 

= B + AC   Using Th. 4  

= MSP expression 

 

The logic circuits for the given expression and the MSP expressions are 

shown in Figs. 2.22 and 2.23 respectively. 

 

SAQ5 

Find the MSP expression for ABCCABCBAY  . 
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11.3.3   Obtaining a Truth Table from a Boolean Expression 

A simple method of obtaining the truth table from a Boolean expression 

has already been mentioned. That is, substitute the values of variables in 

each possible combinations of values in the expression. Perform all the 

logic operations and get the result for each combination. For example, 

 

Y   = AB + A (B + C) + B (B + C)  

 

In this expression, say, A = 1, B = 0, and C = 0, then 

 

Y       = 1 . 0 + 1 . (0 + 0) + 0 (0 + 0) 

= 0 + 1 . 0 + 0 .  0 

= 0 + 0 + 0 

= 0 

Similarly, find Y for all combinations of values for A, B, and C, and 

complete the truth table which is given in Table 11.9. 

 

Table 2.9: Truth table for  Y = AB + A (B + C) + B (B + C)  

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

0 

 0 

 

1 

 

0 

 

1 

 0 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 1 

 

1 

 

0 

 

1 

 1 

 

1 

 

1 

 

1 

  

The alternative method of obtaining a truth table from a Boolean 

expression involves reasoning. Ask yourself: 

 

When shall the output of the expression be 1. Consider the expression  

 

 BCCAY  = MSP expression 

 

This expression is 1 so long as either CA  or BC is 1. Therefore, put Y = 

1 for all entries of CA  = 1 (i.e., entries 5 and 7). Then put Y = 1 for all 

entries of BC = 1 (i.e., entries 4 and 8). Now, Y for all other entries is 0. 

Table 2.10 is thus the truth table for the given expression. 

 

Table 2.10: Truth table for BCCAY   

 

 

 

A 

 

B 

 

C 

 

Y 

 1. 

 

0 

 

0 

 

0 

 

0 

 2. 

 

0 

 

0 

 

1 

 

0 
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3. 

 

0 

 

1 

 

0 

 

0 

 4. 

 

0 

 

1 

 

1 

 

1 

 5. 

 

1 

 

0 

 

0 

 

1 

 6. 

 

1 

 

0 

 

1 

 

0 

 7. 

 

1 

 

1 

 

0 

 

1 

 8. 

 

1 

 

1 

 

1 

 

1 

  

Hence, it is better to use the method of reasoning for obtaining the truth 

table. This method involves just two steps: 

(1)      Obtain the MSP form of the given Boolean expression, and 

(2)       Reason out which of the truth table entries should be 1 for each 

product in MSP form. 

 

Example 11.8 
Obtain the truth table for the Boolean expression Y = A + AB + BCD. 

 

Y       = A + AB + BCD 

= A (1 + B) + BCD 

= A . 1 + BCD 

= A + BCD 

= MSP expression 

 

Reasoning out we find that Y = 1 whenever A = 1 or the product BCD = 

1. Therefore, in the truth table for this expression, put Y = 1 for all 

entries of A = 1, (i.e., entries 9 to 16) and put Y = 1 for all entries of 

product BCD = 1 (i.e. entries 8 and 16). For all other entries put Y = 0 

(i.e. entries 1 to 7). The complete truth table is given in Table 2.11. 

 

Table 2.11: Truth table for Y = A + AB + BCD 

 

 

 

A 

 

B 

 

C 

 

D 

 

Y 

 1. 

 

0 

 

0 

 

0 

 

0 

 

0 

 2. 

 

0 

 

0 

 

0 

 

1 

 

0 

 3. 

 

0 

 

0 

 

1 

 

0 

 

0 

 4. 

 

0 

 

0 

 

1 

 

1 

 

0 

 5. 

 

0 

 

1 

 

0 

 

0 

 

0 

 6. 

 

0 

 

1 

 

0 

 

I 

 

0 

 7. 

 

0 

 

1 

 

1 

 

0 

 

0 

 8. 

 

0 

 

1 

 

1 

 

1 

 

1 

 9. 

 

1 

 

0 

 

0 

 

0 

 

1 

 10. 

 

1 

 

0 

 

0 

 

1 

 

1 

 11. 

 

1 

 

0 

 

1 

 

0 

 

1 

 12. 

 

1 

 

0 

 

I 

 

1 

 

1 

 13. 

 

1 

 

1 

 

0 

 

0 

 

1 

 14. 

 

1 

 

1 

 

0 

 

1 

 

1 

 15. 

 

1 

 

1 

 

1 

 

0 

 

1 

 16. 

 

1 

 

1 

 

1 

 

1 

 

1 
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SAQ 6 

Obtain the truth table for Y = AB + BC + CA 

 

2.3.4   Obtaining a Boolean Expression from a Truth Table 
Consider the truth table given in Table 2.12. 

 

Table 2.12: Given truth table 

 

 

 

A 

 

B 

 

C 

 

Y 

 1. 

 

0 

 

0 

 

0 

 

0 

 2. 

 

0 

 

0 

 

1 

 

0 

 3. 

 

0 

 

1 

 

0 

 

0 

 4. 

 

0 

 

1 

 

i 

 

0 

 5. 

 

1 

 

0 

 

0 

 

1 

 6. 

 

1 

 

0 

 

1 

 

0 

 7. 

 

1 

 

1 

 

0 

 

1 

 8. 

 

1 

 

1 

 

1 

 

1 

  

Note, that the entries 5, 7, and 8 contribute a logic 1 to the operation 

while all other entries give a logic 0. To obtain the Boolean expression, 

we need only write a product term for each entry that contribute a logic 

1, and then assemble the operations by connecting all the products with 

a logic OR. Do as follows: 

Entry 5:  Y    =    1 for A = 1, B = 0, C = 0  

=    CBA  

 

because the output of an AND gate will be 1 only if all the inputs are 1. 

Similarly, 

 

Entry 7:        Y     =    1 for A  = 1, B = 1, C = 0  

=    ABC 

 

Entry 8:        Y     =    1 for A = 1, B = 1, C = 1  

=     ABC 

Now connect all the three products with an OR logic. Hence Y    = 

ABCCABCBA  (Sum of Product), which can be simplified as 

 

Y     =  )( CCABCBA   

 = ABCBA   

 = )( BCBA   

 = )( CBA    

 = CAAB   

 

The procedure can be summarised as follows: 
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(1)      Combine with an AND operation all the input variables for the 

entries that contribute a logic 1. 

 

(2)      Select for each variable in the product an overbar or no overbar 

so that when the input values of the entries are substituted, the 

product gives a logic 1. These products are also known as 

fundamental products. 

 

(3)       The products are assembled with an OR operation. 

(4)      The sum of product expression thus obtained may not be 

minimal. Use Boolean algebra to bring an SP expression in an 

MSP form. 

 

SAQ 7 

Obtain the Boolean expression for the truth table given below: 

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

1 

 0 

 

0 

 

1 

 

0 

 0 

 

1 

 

1 

 

0 

 1 

 

0 

 

0 

 

1 

 1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

1 

  

2.3.5   Exclusive- OR (XOR) Gate 
An XOR gate gives a high output (i.e. 1) when an odd number of inputs 

is high. A two-input exclusive - OR gate has its output 1 if one of the 

two inputs is 1 and the other is 0, and if both the inputs are same then 

the output is 0. The truth table of an XOR gate is given in Table 2.13. 

 

Table 2.13: Truth table for XOR gate 

 

A 

 

B 

 

Y 

 0 

 

0 

 

0 

 0 

 

1 

 

1 

 1 

 

0 

 

1 

 1 

 

1 

 

0 

  

Its Boolean expression is obtained from the entries 2 and 3, that is 

BABAY  . This expression is in MSP form because it cannot be 

simplified further. Thus Y is the output of an OR gate the inputs to 

which are BA  and BA , which in turn are the outputs of two AND gates. 

The circuit thus obtained for an XOR gate is given in Fig. 2.30 and is 
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represented by the symbol shown in Fig. 2.31. The XOR operation is 

expressed by  . 

 

 
 

Fig. 2.30 Exclusive -OR (XOR) gate 

 

 

 

 
 

Fig. 2.31 Symbol of XOR gate 

 

2.3.6   Exclusive -NOR (XNOR) Gate 
An exclusive-NOR gate has its output 1 if both the inputs are same, and 

if both the inputs are different then the output is 0. The truth table of an 

XNOR gate is given in Table 2.14. 

 

Table 2.14: Truth table for XNOR gate 

 

A 

 

B 

 

Y 

 0 

 

0 

 

1 

 0 

 

1 

 

0 

 1 

 

0 

 

0 

 1 

 

1 

 

1 

  

Its Boolean expression is obtained from the entries 1 and 4, that is,  

 

 

ABBAY   

 

This expression is in MSP form because it cannot be simplified further. 

Thus Y is the output of an OR gate, the inputs to which are BA  and AB, 

which in turn are the outputs of two AND gates. The circuit thus 

obtained for an XNOR gate is given in Fig. 2.32 and is represented by 

the symbol shown in Fig 2.33. 
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Fig. 2.32 Exclusive-NOR (XNOR) gate 

 

 
 

Fig. 2.33: Symbol of XNOR gate 

 

11.3.7   Addition of Two One Bit Binary Numbers (Half Adder) 
Recall the binary addition learnt in Unit 10. The binary addition of two 

single bit binary numbers is as follows. 

 

 
 

In this example of addition, the bit on the right hand side is sum while 

the bit on the left hand side is carry. This can be put in a truth table as 

shown in Table 2.15. 

 

Table 2.15: Truth table for half adder 

 

A 

 

B 

 

Carry 

 

Sum 

 0 

 

0 

 

0 

 

0 

 0 

 

1 

 

0 

 

1 

 1 

 

0 

 

0 

 

1 

 1 

 

1 

 

1 

 

0 

  

This application has two outputs, one for 'sum' and another for 'carry'. 

Therefore, we have to obtain two Boolean expressions for the two 

outputs. 
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The expression for carry is 

 

Carry = AB 

 

that is, it is the output of an AND gate.  

 

The expression for sum is 

 

Sum = BABA   

 

that is, it is the output of an XOR gate described in the previous section. 

These two circuits are connected together as shown in Fig. 2.34. This 

circuit is known as half adder and its symbol is given in Fig. 2.35. 

 

 
 

Fig. 2.34 Half adder circuit 

 

 
 

Fig. 2.35 Symbol of half adder 

 

Recall the contradiction pointed out while describing addition by an OR 

gate. While it could justify addition in the case of its first three entries of 

inputs, it could not give correct result of addition of binary numbers in 

its last entry of inputs, i.e. it gave 1 + 1 = 1 (Boolean addition) rather 

than 1 + 1 = 10 (binary addition). This contradiction is now taken care 

of by the design of half adder. We can now say that the binary addition 

should be done using half adder or circuits described later in the Unit. 

But as far as Boolean postulates, including those based on OR gate, are 

concerned, they are helpful in designing circuits for binary arithmetic. 

 

2.3.8   Addition of Three One Bit Binary Numbers (Full Adder) 
The full adder can add three single-bit binary numbers. The binary 

addition three single-bit binary numbers is as follows: 
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The right hand bits of these additions represent the sum and the left hand 

bits represent the carry. These eight possible combinations of three 

single-bit binary numbers can be presented in the form of a truth table 

given in Table 2.16. 

 

Table 2.16: Truth table for full adder 

 

A 

 

B 

 

C 

 

Carry 

 

Sum 

 0 

 

0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

0 

 

1 

 0 

 

1 

 

0 

 

0 

 

1 

 0 

 

1 

 

1 

 

1 

 

0 

  

 

 

 

 

 

 

 

 

 1 

 

0    

 

0 

 

0 

 

1 

 1 

 

0 

 

1 

 

 

1 

 

0 

 1 

 

1 

 

0 

 

1 

 

0 

 1 

 

1 

 

1 

 

1 

 

1 

  

In order to design the logic circuit for a full adder, Boolean expressions 

have to be written and simplified in MSP form for both sum and carry, 

which are as follows: 

 

Sum     = ABCCBACBACBA  ABC + ABC + ABC + ABC 

= )()( BCCBACBCBA   

= )()( CBACBA   

= XAXA     where CBX   

= CBA   

=    MSP expression.  

 

This is the output of a 3-input XOR gate. 

Carry   = ABCCABCBABCA   

= CABCBAAABC  )( BC(A + A) + ABC + ABC 

= CABCBABC   

= CABBABC  )(  

= CABABC  )(  

= CABACBC   

= )( CBCABC   

= )( BCABC   
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= ABACBC   

= MSP expression. 

 

From these two MSP expressions, the logic circuit for a full adder can 

be obtained as described earlier. This circuit is given in Fig. 2.36 and its 

symbol is given in Fig. 2.37. 

 

 
 

Fig. 2.36: Full adder circuit 

 

 
 

Fig. 2.37: Symbol of full adder 
You would recall that a computer or a digital circuit can add only two 

binary numbers at a time. If a digital circuit has to add more than two 

binary numbers, as would mostly be the case, the circuit will add first 

two binary numbers and to the sum of these two numbers it will add the 

third binary number, and so on. But while adding two bits a carry is 

likely to appear as shown above. Therefore if the two binary numbers to 

be added are having more than one bit, then after the addition of first 

bits of the numbers the addition of second bits will also require the 

addition of any carry which appears from the addition of first bits. Thus 

the addition of first bits can be carried out by the half adder which has 

two inputs, but the addition of second bits require a 3-input adder which 

is realised by the full adder. There are eight entries to the truth table of a 

full adder, half of which are satisfied by the truth table of half adder 

ignoring carry bit (because the addition of first bits of two numbers do 

not have a carry to be added). For this reason, the adder described in the 

previous section is called the half adder and the one described in this 

section is called the full adder. 

 

Example 2.8 
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Addition of two 4-bit binary numbers. Let us say the numbers are 

A3A2A1A0 and B3B2B1B0.This addition requires one half adder to add A0 

and B0 and three full adders to add the rest of the bits as shown in the 

circuit of Fig. 2.30. The outputs of the half adder are sum )( 0S  and 

carry. The carry output of the half adder is given as the third input to the 

first full adder which has a carry output and a sum ( 1S ) output. The carry 

output of the first full adder is given to the second full adder, and so on. 

Thus for addition of two 4-bit binary numbers, we require one half adder 

and three full adders. For each additional bit in the numbers to be added, 

we require one more full adder. 

 

 
 

Fig. 2.38: A 4-bit binary adder 

 

SAQ 8 

Draw a digital circuit for a 2-bit binary adder. 

 

2.3.9   Designing Circuits Using NAND Gates Only 
Quite often it is required that only NAND gates should be used in 

designing digital circuits. The NAND gate being universal can be used 

to realise AND, OR and NOT gates. Therefore, wherever these gates are 

appearing, the equivalent NAND circuit is used. The realisation of 

AND, OR and NOT gates from NAND gates is shown in Fig. 2.39. 

 



PHY 405             ELECTRONICS III 

59 

 
 

Fig. 2.39: Realisation of (a) AND, (b) OR, and (c) NOT gates using 

NAND gates 

 

Example 2.9 

Design a circuit for Y = AB + CD using NAND gates only.  

 

The circuit for Y = AB + CD using AND and OR gates is shown in Fig. 

2.40.  

 

 
 

Fig. 2.40 Digital circuit for Y = AB + CD 
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Fig. 2.41 AND and OR gates in the circuit given in Fig. 2.40 replaced by 

their equivalents 

 

The AND gates and OR gate in Fig. 2.40 are replaced by equivalent 

NAND gate circuits from Fig. 2.39 as shown in Fig. 2.41. It requires two 

NAND ICs, Since the input and output of a combination shown as 

dotted of a NOT gate followed by another NOT gate are same, therefore 

such a combination is useless and it is hence eliminated. The final circuit 

after such elimination is shown in Fig. 2.42.  

 

 
Fig. 2.42 Circuit for Y = AB + CD using NAND gates 

 

Another method involves the use of De Morgan's theorems. Consider 

the example of XOR gate. It requires one NOT IC, one AND IC and one 

OR IC, i.e. three ICs in total. 

 

The MSP equation for XOR gate is BABAY  . Double complement 

the right hand side and solve using De Morgan's theorem. 

Y  = BABA   

 

Y  = BABA   

 

 = )()( BABA   
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The right hand side is the output of a NAND gate the inputs to which are 

the outputs of 

two NAND gates, i.e. )()( BABA  . The final circuit for XOR gate using 

NAND gates only is shown in Fig. 2.43. It requires two NAND ICs. 

 

 
 

Fig. 2.43 Circuit for XOR gate using NAND gates only 

 

SAQ9 
Design a digital circuit for Y = A + BC using NAND gates only. 

 

2.4     FLIPFLOPS 
We have learnt combinational logic circuits in the previous section. The 

combinational logic circuits operate strictly in accordance with their 

truth table. However, there are logic circuits which have feedback path 

and the operation of which is not strictly defined by their truth tables. 

Such circuits operate differently for a given input condition depending 

upon the prior input sequence applied to the circuit. Such circuits are 

known as sequential logic circuits. These circuits have memory element 

also. In addition to the logic gates, a computer requires memory 

element. The simplest memory element is a flip-flop. It has two stable 

states and remains in any one of these two stable states until triggered 

into the other state. Quite often the flip-flop is also known as a latch. 

 

 

 

2.4.1   RS Flip-flop 
The most basic flip-flop circuit is constructed using two NAND gates or 

two NOR gates. In NAND gate flip-flop, two NAND gates are cross-

coupled as shown in Fig. 2.44. It has two latched outputs Q  and Q . It 

has two inputs: SET (S)' and RESET (R) or CLEAR (C). The input 

names signify their actions as well. For the input names such a flip-flop 

is known as RS flip-flop. 
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Fig. 2.44 RS flip-flop 

 

Let us now understand the working of a RS flip-flop. Both the inputs, 

SET and RESET, are kept HIGH, i.e. at logic 1. In the beginning, let us 

say S = R = 1. With the outputs Q  = 0 and Q = 1, NAND-1 has the 

inputs 1 and 1 hence Q  = 0, and NAND-2 has inputs 1 and 0, hence Q = 

1. These outputs are latched or stuck with each other and continue to be 

latched until input conditions are changed. 

 

Second possibility with S = R = 1 is when Q = 1 and Q = 0. The NAND-

1 will have 1 and 0 inputs giving Q = 1. Likewise the NAND-2 will have 

1 and 1 inputs giving Q = 0. Once again the two outputs are latched 

together and they will continue to be latched until input conditions are 

changed. S and R both high means the two sets of possible outputs 

remains in its last state indefinitely because of the internal latching 

action. Thus, a high S and a high R gives us the inactive state; the circuit 

stores or remembers. When we want to change the flip-flop output one 

of the inputs will be pulsed LOW (i.e. logic 0). 

 

Setting the Flip-flop 

Let us say that the SET is momentarily pulsed LOW (i.e. S = 0 for a 

moment) while RESET continues to be 1. Now if Q = 0 and Q = 1 prior 

to the occurrence of a LOW pulse at SET, Q  goes 1 which in turn forces 

Q  to a 0. Thus when SET returns to 1, the NAND- 1 output remains 

HIGH which in turn keeps the NAND-2 output at 0. 

 

If prior to, the application of SET pulse, Q = 1 and Q = 0, then a LOW 

pulse at SET will not change anything because Q = 0 is already keeping 

the NAND-1 output to 1. Thus, when SET returns to 1, the outputs are 

still Q = 1 and Q = 0. 
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Thus a LOW on the SET input will always cause the flip-flop to end up 

in Q  = 1 state. Hence, this operation is called setting the flip-flop, and 

Q  = 1 state is known as SET state. 

 

Resetting or Clearing the Flip-flop 
The SET is kept at 1 and RESET is momentarily pulsed LOW (i.e. 0). 

Let us say that prior to the pulse, Q = 0 and Q = 1. Since Q = 0 is 

already keeping the NAND-2 output at 1, therefore the application of a 

LOW pulse at RESET will not change the situation. However, if prior to 

the application of a LOW pulse, Q = 1 and Q = 0 , then a LOW pulse at 

RESET will give NAND-2 output as 1, which in turn forces the NAND-

1 output to a 0. Thus a LOW at RESET always ends up in Q = 0. This 

operation is called clearing or resetting operation. And the Q = 0 state is 

known as CLEAR (or RESET) state. 

 

When SET and CLEAR are simultaneously pulsed LOW, it produces 1 

at both the outputs. There is a race to come to a 1 state. This is an 

undesired state-because Q  and Q are inverse of each other. When R and 

S return to 1, the race among the two will give unpredictable results. 

Therefore, R = S = 0 is not used. However, as described above, R = S = 

1 produces no change in the outputs. The entire operation of the RS flip-

flop is summarised in the truth table given in table 2.17. 

 

Table 2.17: Truth table for RS flip-flop 

 

S 

 

R 

 

Output 

 1 

 

1 

 

NC (No change) 

 0 

 

1 

 
Set ( Q  = 1) 

 1 

 

0 

 
Reset ( Q  = 0) 

 0 

 

0 

 

*(Race and 

invalid) 

 

 

The De Morgan equivalent of NAND gate is given in Fig. 2.45. Fig. 

2.45 (a) represents the left side of De Morgan's theorem. The right side 

of the theorem implies that the inputs are inverted before reaching an 

OR gate (see Fig. 2.45b). This combination is used so often that the 

abbreviated symbol shown in Fig. 2.45c has come into use. This symbol 

is called a bubbled OR gate. Fig. 2.45d is a graphic summary of De 

Morgan's theorem which shows that a NAND gate and a bubbled OR 

gate are equivalent. Therefore, we can replace one with the other 

whenever desired. 

 



PHY 405             ELECTRONICS III 

64 

 
 

Fig. 2.45: De Morgan equivalent of NAND gate 

 

Using De Morgan equivalent of a NAND gate, the NAND gate flip-flop 

can also be represented by the circuit shown in Fig. 2.46. The symbol of 

this flip-flop is shown in Fig. 2.47. The bubble at the S and R inputs 

indicate that the flip-flop can be set or reset by giving a LOW pulse. 

 

 
 

Fig. 2.46 De Morgan equivalent of NAND gate RS flip-flop 

 

 
 

Fig. 2.47 Symbol of RS flip-flop 

 

Example 2.10 
If the train of pulses given to the S and R inputs of RS flip-flop are as 

shown in Fig. 2.48(a) and (b) respectively, then trace its Q  output. 

Initial value of Q  is given to be 0. 
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Fig. 2.48 Set/Reset pulses and the output 

 

Solution 

Using Table 2.17, the Q  output of the RS flip-flop is as shown in Fig. 

2.48(c). 

 

SAQ 10 

What is the shape of the Q  output of RS flip-flop if the S and R inputs 

are as shown in Fig. 2.49? Initial value of Q  is given to be 1. 

 

 
 

Fig. 2.49 

 

2.4.2   Clocked RS Flip-flop 

Computers use thousands of flip-flops. To coordinate the overall action, 

a square wave signal called the clock is sent to each flip-flop. The clock 

is applied to all flip-flops simultaneously; this ensures that they all 

change states in unison. This synchronization is essential in many digital 

systems. 

 

In most of the synchronous systems the output can change only when 

the clock signal is making a transition from 0 to 1, i.e. positive going 

transition (PGT) or 1 to 0, i.e. negative going transition (NGT). These 

systems are known as edge triggered. The PGT and NGT are shown in 

Fig. 2.50. The symbols of edge triggered RS flip-flop which work with 

PGT and NGT are shown symbolically in Figs. 2.51(a) and (b) 

respectively, 

 

Note the difference in symbol of clock activated by a PGT and NOT. 

The change in the control inputs R and S to the flip-flop will not effect a 

change in the Q  output until an active clock (CLK) transition, i.e. a PGT 

in case of Fig. 2.51 (a) and a NOT in case of Fig. 2.51(b), occurs. The 

control inputs keep the flip-flop ready to change and the active clock 

transition at the CLK input actually triggers the change. To ensure that a 

clocked flip-flop responds properly when the active clock transition 

occurs, the inputs must he stable, i.e., unchanging. 
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Fig. 2.50 Positive and negative going transitions 

 

 
Fig. 2.51 Symbol of edge triggered flip-flop activated by a (a) PGT, and 

(b) NGT 

 

Consider the circuit given in Fig. 2.52 in which two additional NAND 

gates are used as the clock pulse steering circuit and is triggered by a 

PGT. A LOW (i.e. 0) clock CLK prevents S and R from controlling the 

flip-flop, because with whatever values of S and R the outputs of the 

NAND-1 and NAND-2 will be 1 which will not produce any change in 

the Q  output of the flip-flop. However, when the CLK is HIGH (i.e. 1) 

and S = R = 0, the outputs of the two NAND gates will be 1 and there 

would be no change in the Q  output. 
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Fig. 2.52 Circuit of edge triggered RS flip-flop 

 

Table 2.18 shows the truth table for a positive edge triggered RS flip-

flop. The Q = 0Q  is the output level before the arrival of the PGT of the 

CLK. The arrow directed upward )(  indicates that a PGT is required at 

the CLK. 

 

Table 2.18: Truth table for a positive edge triggered RS flip-flop 

 

Inputs 

 

Output 

 R 

 

S 

 

CLK 

 

Q  

 0 

 

0 

 
  

 
0Q (No change 

change) 

 

0 

 

1 

 
  1 

 

 

 1 

 

0 

 
  0 

 

 

 1 

 

1 

 
  *Race 

 

 

  

The inputs S and R, and corresponding Q  output, assuming the initial 

value of Q , i.e., 0Q , equal to 0, are as shown in Fig. 2.53. It is clear that 

at the arrival of the first clock transition both R and S are 0, therefore 

there is no change in the Q  output, which continues to be 0. But at the 

arrival of the second clock transition S is 1 and R is 0, this sets the flip-

flop with Q  = 1 which does not change till the third clock transition. At 

the time of the third clock transition R is 1 and S = 0 which resets the 

flip-flop with Q = 0. This is how the Q  output is traced. Note that 

between two PGTs of the CLK, the Q  output does not change. It must 

be remembered, that whenever tracing a Q  output corresponding to the 

inputs, you have to look for the active clock, note the values of inputs 

nand then decide the value of the Q  output. 
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Fig. 2.53: Inputs and output of a clocked RS flip-flop 

 

The truth table of an RS flip-flop triggered by a NGT is shown in Table 

2.19.  

 

Table 2.19: Truth table for a negative edge triggered RS flip-flop 

 

Inputs Output 

R 

 

S 

 

CLK 

 

Q  

 0 

 

0 

 
  0Q  (No change) 

 0 

 

1 

 
  1 

 1 

 

0 

 
  0 

 1 

 

1 

 
  *Race 

  

The PGT or NOT can be obtained by using a combination of gates or a 

differentiating circuit consisting of a capacitor and a resistor. 

 

SAQ 11 
If the train of pulses to S and R inputs of a clocked RS flip-flop are as 

shown in Fig. 2.54, and if the initial value of Q  is 0, trace its Q  output. 

 

 
 

Fig. 2.54 
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2.4.3   Clocked D Flip-flop 
The RS flip-flop has two inputs S and R. Generating two signals to drive 

a flip-flop is a disadvantage in many applications. Furthermore, the race 

condition of both S and R low may occur inadvertently. In order to 

eliminate the possibility of a race condition a new kind of flip-flop is 

designed. This is called a D flip-flop. The letter D stands for the data. 

The data input is given to S-input of the RS flip-flop while the same 

input goes to its R-input through an inverter as shown in Fig. 2.55. This 

symbol of the edge triggered D flip-flop activated by a PGT is shown in 

Fig. 2.56. Its truth table is given in Table 2.20 which shows that the Q  

output of D flip-flop follows the input data D. The D input and 

corresponding Q output, assuming initial Q  to be 1, are shown in Fig. 

2.57. 

 

 
 

Fig. 2.55 Circuit for D flip-flop 

 

 
 

Fig. 2.56: Symbol of D flip-flop 

 

 

Table 11.20: Truth table for a positive edge triggered D flip-flop 

 

D CLK Q  

0   0 

1   1 
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Fig. 2.57 Input and output of a D flip-flop 

 

D Latch 
Sometimes edge trigger detecting circuit (like RC combination) for D 

flip-flop is not used. In this case the D flip-flop functions slightly 

differently and is known as a D latch. Instead of edge triggering, level 

clock or an ENABLE (abbreviated as EN) signal is used as shown in 

Fig. 2.58. When EN/CLK is 1, D will produce a 0 at either SET or 

CLEAR inputs of the NAND latch to give a Q  output to be at the same 

level of D. 

 

 

 
 

Fig. 2.58 Circuit for D latch 

 

When EN/CLK is 1, if D changes, Q  will follow changes exactly like D 

as the Q  output does not have to wait for the clock transition to respond 

to changes in D. The D latch is thus 'transparent' to the input in this 

mode. When EN/CLK is at 0, D is inhibited from affecting NAND latch 

because the outputs of both steering NAND gates will be 1. Thus Q and 

Q  continue to stay wherever they were before EN/CLK became 0. In 

other words, the outputs are latched to their current level and cannot 
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change during the period EN/CLK is 0, even if D changes. The truth 

table of D latch is given in Table 2.21. 

 

Table 2.21: Truth table for D latch 

 

D 

 

EN/CLK 

 

Q 

 X 

 

0 

 

NC 

 0 

 

1 

 

0 

 1 

 

1 

 

1 

  

Quite often two AND gates are introduced between the pulse steering 

circuit and the NAND latch as shown in Fig. 2.59. One input each of 

these AND gates are known as RESET (direct SET) and CLEAR (direct 

RESET) and are kept at 1 so as to allow the output of the pulse steering 

circuit to pass through. However, if we want to set the flip-flop 

irrespective of the value of the D input, then we give a 0 to PRESET, 

which will set the flip-flop. Similarly, by giving a 0 to CLEAR will 

directly reset the flip-flop. The symbol for D flip-flop with PRESET and 

CLEAR is shown in Fig. 2.60 and its truth table is given in Table 2.22. 

 

 
 

Fig. 2.59 Edge triggered D flip-flop with preset and clear 

 

 
 

Fig. 2.60 Symbol of edge triggered D flip-flop with preset and clear 
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Table 2.22: Truth table for clocked D flip-flop with preset and clear 

 

Preset Clear CLK D Q  

0 

 

0 

 

X 

 

X 

 

*Race 

 0 

 

1 

 

X 

 

X 

 

1 

 1 

 

0 

 

X 

 

X 

 

0 

 1 

 

1 

 

0 

 

X 

 

NC 

 1 

 

1 

 

1  

 

X 

 

NC 

 1 

 

1 

 
  

 

X 

 

NC 

 1 

 

1 

 
  0 

 

0 

 1 

 

1 

 
  1 

 

1 

  

SAQ12 

The D input to a positive edge triggered D flip-flop is as shown in Fig. 

2.61. Trace the Q  output. 

 

 
 

Fig. 2.61 

 

2.4.4   Clocked JK Flip-flop 
In the next unit, we show you how to build a counter, a circuit that 

counts the number of positive or negative clock edges driving its clock 

input. When it comes to circuits that count, JK flip-flop is the ideal 

element to use. Therefore before ending this unit we will study about JK 

flip-flop. The circuit for an edge triggered JK flip-flop is shown in Fig. 

2.62 and its symbol is shown in Fig. 11.63. The working of JK flip-flop 

is same as that of RS flip-flop 

 

 

 
 

Fig. 2.62 Circuit for edge triggered JK flip-flop 

 



PHY 405             ELECTRONICS III 

73 

 

 
 

Fig. 2.63 Symbol of edge triggered JK flip-flop 

 

 

except that race condition is absent. That is, there is no ambiguous 

result. The outputs Q  and Q  of the NAND latch are fed back to NAND-

2 and NAND-1 respectively of the pulse steering circuit which gives 

toggle operation. With J = K = 1, assume that Q  is 0 when clock 

transition arrives. With Q  = 0 and Q = 1, NAND-1 will steer PGT to set 

the NAND latch to give Q  = 1. If we assume Q = 1 when PGT of the 

clock appears, NAND-2 will steer PGT to clear the NAND latch to 

produce Q = 0. Thus Q  always ends up in opposite state. This is known 

as the toggle mode of operation. If both J and K are left to a state of 1, 

the flip-flop will change state for each clock transition. The Q  output 

equal to 0Q  means that the new value of Q  will be inverse of the value it 

had prior to the PGT. The truth table of this flip-flop is given in Table 

2.23. Fig. 2.64 shows J and K inputs and the corresponding Q output. 

 

Table 2.23: Truth table for a positive edge triggered JK flip-flop 

 

J 

 

K 

 

CLK 

 

Q  

 0 

 

0 

 
  

 
0Q (No change) 

 1 

 

0 

 
  1 

 0 

 

1 

 
  0 

 1 

 

I 

 
  0Q (Toggle) 
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Fig. 2.64 Inputs and output of JK flip-flop 

 

The symbol for edge triggered JK flip-flop which is activated by an 

NGT of the clock is shown in Fig. 2.65 and its truth table is given in 

Table 2.24. 

 

 
 

Fig. 2.65 Symbol of edge triggered JK flip-flop activated by an NGT 

 

Table 2.24: Truth table for a negative edge triggered JK flip-flop 

 

J 

 

K 

 

CLK 

 

Q  

 0 

 

0 

 
  

 
0Q (No change) 

 1 

 

0 

 
  1 

 0 

 

I 

 
  0 

 1 

 

1 

 
  0Q  (Toggle) 

  

 

 

 

SAQ 13 
The J and K inputs to a JK flip-flop are as shown in Fig. 2.66. If the 

initial value of Q  output is 0, trace the Q output. 
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Fig. 2.66 

 

2.5      SUMMARY 

 There are three basic logic gates - AND, OR and NOT. The 

output of an AND gate is 1 only when all the inputs are 1. The 

output of an OR gate is 0 only when all the inputs are 0. The 

output of a NOT gate is complement of the input. 

 The AND and NOT gates are combined to get the NAND gate 

and OR and NOT gates are combined to get NOR gate. The 

NAND and NOR gates are known as building blocks in digital 

circuitry because AND, OR and NOT gates can be obtained using 

NAND and NOR gates only. 

 All logic gates and circuits work in binary mode, that is the inputs 

and outputs can have values either 1 or 0. Therefore, Boolean 

algebra is used to describe their input-output relationships, the 

basic Boolean rules or theorems are obtained from the truth tables 

of the three basic gates. 

 A digital circuit can be expressed as a Boolean expression and 

likewise a logic circuit can be obtained from a Boolean 

expression. A Boolean expression can be simplified, which gives 

us a simplified digital circuit. In all applications, first a Boolean 

expression is simplified to give a simpler circuit. 

 A Boolean expression can also be obtained from a truth table. 

And a truth table can be obtained from a Boolean expression 

without reference to its logic circuit. The Boolean expression is 

written in the Sum-of-the-Product (SOP) form, which is 

simplified to get the Minimum-Sum-of-the-Product (MSP) form. 

The   MSP expression is used to write the final digital circuit. 

 Exclusive-OR and exclusive-NOR gates are obtained by the 

combinations of three basic gates. The output of the XOR gate is 

0 if both the inputs are same and is 1 if both the inputs are 

different. The output of the XNOR gate is 1 if both the inputs are 

same and is 0 if both the inputs are different. 
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 A half adder adds two bits binary numbers while a full adder adds 

three bits. The half and full adders are combined to add two 

multi-bit binary numbers. 

 The combinational logic circuits do no have memory, that is, the 

outputs of such circuits do not depend on the previous occurrence 

of an event. The input-output relationship of the circuit is 

precisely defined by its truth table. 

 The RS flip-flop is the basic element which has memory, that is, 

its output depends on the previous occurrences of an event. The 

input of a RS flip-flop can also be triggered by a clock by using a 

pulse steering circuit. The other flip-flops are D and JK flip-flops. 

The output of the D flip-flop follows the input. The race 

condition of RS flip-flop is avoided in JK flip-flops. 

 The RS, D and JK flip-flop can be triggered by a positive going 

transition (PGT) or a negative going transition (NGT). These flip-

flops are used as memory devices. 

 

2.6     TERMINAL QUESTIONS 

1. Simplify the expression DBADBAY   

2. Simplify the expression CDBABCDY   and find its MSP 

form. 

3. Simplify the expression DCBADCBAY  . 

4. Simplify the expression )()( FGDBCAY  Y = (A + BC) • 

(D + FG) 

5. Write the Boolean expression for the truth table given in Table 

2.25. 

 

Table 2.25 

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

1 

 0 

 

0 

 

1 

 

0 

 0 

 

1 

 

0 

 

1 

 0 

 

1 

 

l 

 

1 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

1 

  

6. Write Boolean expression for the truth table given in Table 2.26 
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Table 2.26 

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

0 

 0 

 

1 

 

0 

 

1 

 0 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

1 

 1 

 

0 

 

1 

 

0 

 1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

1 

  

7. Write Boolean expression for the truth table given in Table 2.27 

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

1 

 0 

 

1 

 

0 

 

1 

 0 

 

1 

 

1 

 

0 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 1 

 

1 

 

0 

 

I 

 1 

 

1 

 

1 

 

0 

  

8.      Write Boolean expression for the truth table given in table 2.28. 

 

Table 2.8 

 

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

1  
0 

 

0 

 

1 

 

1 

 0 

 

1 

 

0 

 

1 

 0 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

0 

 1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

0 

  

9.  Write the truth table for the expression obtained in question No. 2 

above. 

 

10.  Write the truth table for the expression obtained in question No. 3 

above. 

 

11.  Write the truth table for the expression obtained in question No. 5 

above. 
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12.  Write the truth table for the expression obtained in question No. 8 

above. 

 

13.  Draw a digital circuit for a 5-bit binary adder. 

 

14.  Design a digital circuit for DACAY  . 

 

15.  Design a digital circuit for expression of question No. 14 using 

NAND gates only. 

 

2.7     SOLUTIONS AND ANSWERS 

SAQs 
1. 

 
 

Fig. 2.67 

2. 

 
 

Fig. 2.68 

3.       

 
  

Fig. 2.69 

 

4. 

 
 

Fig. 2.70 

 

5. Y  = ABCCABCBA   

  = )( CCABCBA   

  = ABCBA   

  = )( BCBA   

  = )( CBA     

  = CAAB   

 

6.    Using the reasoning method, Y = 1 when either or all of AB, BC, 

and CA are 1. Thus we get the truth table as follows: 
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Table 2.29: ABC 

 

A B C Y 
0 

 

0 

 

0 

 

0 

 0 

 

0 

 

1 

 

0 

 0 

 

1 

 

0 

 

0 

 0 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 1 

 

1 

 

0 

 

1 

 1 

 

1 

 

1 

 

1 

  

7.       ABCCBACBAY   

8. 

 
Fig. 2.71: A 2-bit binary adder 

 

9.       Digital circuit for Y = A + BC is as shown in Fig. 2.72. 

 

 
 

Fig. 2.72: Now replace OR and AND gates by their NAND equivalents 

as shown in Fig. 2.73 

 

 
 

Fig. 2.73 
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Removing the combination of a NOT gate followed by a NOT 

gate, we get the circuit as shown in Fig. 2.74. 

 

 
 

Fig. 2.74 

 

Alternatively, simplify the expression using De Morgan's 

theorem as follows: 

 

  Y  = BCA  

   = CBA    

  

This equation gives the circuit already obtained in Fig. 2.74.  

 

10. 

 
 

Fig. 2.75 

 

11. 

 
 

Fig. 2.76 

 

12.  

 
 

Fig. 2.77 
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13. 

 
 

Fig. 2.78 

TQs 

1.   Y  = DBADBA   

  = )( DDBA   

  = 1BA  

 

2.   Y  = CDBABCD   

  = )( BABCD   

  = )( ABCD   

  = CDACDB   

  

3.   Y  = DCBADCBA   

  = )( CCDBA   

  = DBA  

 

4.   Y  = )()( FGDBCA  Y 

  = FGDBCA   

= FGDBCA   

= )()( GFDCBA   

= DGDFACAB   

   

5.   Y  = ABCCBACBA   

  = )()( BBACBBCA   

  = ACCA   

 

6.   Y  = CBABCA   

  

7.   Y  = CABCBACBACBA   

  = )()( CBCBACBCBA   

  = ))(( CBCBAA   

  = CBCB   

   

8.   Y  = BCACBACBACBA   

= )()( CCBACCBA   

  = BABA   

  = )( BBA   

  = A  
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9.  

A 

 

B 

 

C 

 

D 

 

Y 

 0 

 

0 

 

0 

 

0 

 

0 

 0 

 

0 

 

0 

 

1 

 

0 

 0 

 

0 

 

1 

 

0 

 

0 

 0 

 

0 

 

1 

 

1 

 

0 

 0 

 

1 

 

0 

 

0 

 

0 

 0 

 

1 

 

0 

 

1 

 

0 

 0 

 

1 

 

1 

 

0 

 

0 

 0 

 

1 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

0 

 

0 

 1 

 

0 

 

0 

 

1 

 

0 

 1 

 

0 

 

1 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 

1 

 I 

 

1 

 

0 

 

0 

 

0 

 1 

 

1 

 

0 

 

1 

 

0 

 1 

 

1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

1 

 

1 

  

 

 

10. 

A 

 

B 

 

C 

 

D 

 

Y 

 0 

 

0 

 

0 

 

0 

 

0 

 0 

 

0 

 

0 

 

1 

 

0 

 0 

 

0 

 

1 

 

0 

 

0 

 0 

 

0 

 

1 

 

1 

 

0 

 0 

 

1 

 

0 

 

0 

 

0 

 0 

 

1 

 

0 

 

1  

 

0 

 0 

 

I 

 

1 

 

0 

 

0 

 0 

 

1 

 

1 

 

1 

 

0 

 1 

 

0 

 

0 

 

0 

 

0 

 1 

 

0 

 

0 

 

1 

 

0 

 1 

 

0 

 

1 

 

0 

 

0 

 1 

 

0 

 

1 

 

1 

 

0 

 1 

 

I 

 

0 

 

0 

 

0 

 1 

 

1 

 

0 

 

I 

 

1 

 1 

 

1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

1 

 

1 
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11.  

A 

 

B 

 

C Y 

 0 

 

0 

 

0 1 

 0 

 

0 

 

1 0 

 0 

 

1 

 

0 1 

 0 

 

1 

 

1 0 

 1 

 

0 

 

0 0 

 1 

 

0 

 

1    I 

 1 

 

I 

 

0    0 

 1 

 

1 

 

1 1 

 12.   

A 

 

B 

 

C 

 

Y 

 0 

 

0 

 

0 

 

1 

 0 

 

0 

 

1 

 

1 

 0 

 

1 

 

0 

 

1 

 0 

 

1 

 

1 

 

1 

 1 

 

0 

 

0 

 

0 

 1 

 

0 

 

1 

 

0 

 1 

 

1 

 

0 

 

0 

 1 

 

1 

 

1 

 

0 

  

13. 

 

 
 

Fig. 2.79 A 5-bit binary adder 

 

14. 

 
 

Fig. 2.80 Digital Circuit for DACAY   

 

15. 



PHY 405             ELECTRONICS III 

84 

 
 

Fig. 2.81: Digital circuit for DACAY   using NAND gates only 
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UNIT 3  REGISTERS, COUNTERS, MEMORY CIRCUITS 

AND ALOGUE/DIGITAL CONVERTERS 

Structure 

3.1    Introduction Objectives 

3.2    Registers 

Buffer Register  

Controlled Buffer Register  

Shift Registers  

Controlled Shift Register 

3.3    Counters 

Asynchronous (Pipple) Counter  

Synchronous Counter  

Controlled Synchronous Counter  

Ring Counter  

Mod 10 (Decade) Counter 

3.4 Semiconductor Memories  

What a Memory is  

Capacity of Memory  

Random-Access Memory (RAM)  

General Memory Operation  

Read Only Memory (ROM) 

3.5 A/D and D/A Converters  

Digital to Analogue Converter  

Analogue to Digital Converter 

3.6    Summary 

3.7    Terminal Questions 

3.8 Solutions and Answers 

 

3.1     INTRODUCTION 
In Unit 2, you learnt about the combinational logic circuits and adders. 

The operation of all such circuits is faithfully defined by the respective 

truth table and their outputs do not depend upon the previous input or 

output conditions. Hence they do not have memory. However, since the 

output of flip-flops depend upon the previous input or output conditions 

or sequence of input or output, therefore these circuits, called sequential 

circuits, give us a basic memory element. 

 

The registers and counters are combinations of several flip-flops and 

their use in digital circuits is very important. A register is a group of 

memory elements which stores a binary word and it may modify the 

stored word in a particular fashion as is desired by the application in 

which it is used. It is capable of shifting the stored binary word a step or 

more towards left or right. A counter is basically a register which counts 

the number of clock (CLK) pulses arriving at the input. In this unit you 

will learn about several types of registers and counters. 
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In a digital computer, the 'memory' is the key device. You often come 

across the terms RAM, ROM, floppy, and hard disk. The registers are 

memory devices. They are connected in different ways and are available 

as integrated circuits in the market. You know that the whole world is 

analogue. To use a digital circuit or computer, you have to convert an 

analogue quantity into a digital one so that the quantity can be acted 

upon or manipulated by the digital circuit or computer as per 

requirement. The output of the digital circuit is also in digital form, 

which cannot be perceived by you. For this purpose, you have to convert 

the digital output into analogue form. Therefore, it is necessary to have 

circuits which will convert an analogue quantity (such as voltage) into 

digital form and vice versa. Such circuits are analogue-to-digital (AD) 

and digital-to-analogue (DA) converters. In this unit, you will learn 

different kinds of memories, and AD and DA Converters also. 

 

Objectives 
After studying this unit, you should be able to: 

 explain the functioning of buffer and controlled buffer registers, 

 describe the functioning of the shift register, 

 describe the functioning of the shift left and shift right registers, 

 explain the functioning of the controlled shift register, 

 explain the construction and functioning of an asynchronous 

(ripple) counter, 

 describe the functioning of ring and mod 10 (decade) counters, 

 explain several memory terms used in digital circuits, 

 explain the capacity of memory and specify how many bits can 

be stored in a memory device,  

 describe general memory operation, 

 explain and distinguish between RAM and ROM, 

 describe the functioning of a digital-to-analogue and an analogue-

to-digital converters. 

 

3.2     REGISTERS 
A register is a group of memory elements which stores a binary word 

and it may modify the stored word in a particular fashion as is desired 

by the application in which it is used. It is capable of shifting the stored 

binary word a step or more towards left or right. In this section you will 

learn about registers. 

 

3.2.1    Buffer Register 

The simplest kind of register is a buffer register, which stores a binary 

word. It is made up of several D flip-flops, the number of which depends 

on the number of bits present in a binary word. A buffer register for 

storing a 4-bit word, X3X2X1X0 with Q 3 Q 2 Q 1Q0 as its output word is 

shown in Fig. 3.1. 
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Fig. 3.1 Buffer Register 

 

Each flip-flop is positive edge triggered. At every clock the output, Q  of 

each flip-flop is the same as the input X. For this 4-bit register, we can 

write 

 

 Q 3 Q 2 Q 1Q0  = X3X2X1X0  

 

In chunked notation, this expression is written as 

 

 Q X 

 

This circuit is very basic. We should have some method to hold the 

input word till such time we are ready to store it. This is achieved by a 

controlled buffer register. 

 

3.2.2   Controlled Buffer Register 

A controlled buffer register is shown in Fig. 3.2. All flip-flops are with 

CLEAR which resets flip-flops when HIGH. The CLEAR is inactive 

when LOW. The control LOAD terminal when HIGH allows input X to 

reach the flip-flop and does not allow when LOW. When CLEAR is 

HIGH, all flip-flops reset and the stored word is 

 

 Q = 0000 

 

When CLR returns. LOW, the register is ready for desired action. 
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Fig. 3.2 Controlled buffer register 

 

The control terminal LOAD determines the circuit function. When 

LOAD is HIGH, the data X is allowed to reach the flip-flop. 

 

However when LOAD is LOW, LOAD is HIGH, which allows the Q  

outputs to go to D inputs. It means that so long as the LOAD is LOW, 

the input data X is circulated or retained at the PGT of each CLK. That 

is, the contents of the register continue to remain unchanged so long as 

LOAD is LOW. 

 

When the LOAD is made HIGH, the word or data X is transmitted to the 

D inputs and the flip-flops are ready to change. When the PGT of the 

CLK arrives, the X input is loaded and is available at Q  outputs, and 

 

 Q 3 Q 2 Q 1Q0  = X3X2X1X0 

 

With LOAD returning to LOW, the input word is stored. That is, so long 

as the LOAD remains LOW, it is not affected even when X input is 

changed. In this kind of register, as is seen from the circuit, the input is 

given to all the flip-flops simultaneously and the output is also obtained 

from all the flip-flops simultaneously. This is quite often referred to as 

parallel-in/parallel-out register. 

 

3.2.3   Shift Registers 
The shift registers move the stored word towards left or right. Therefore 

there are two types of shift registers – Shift-left and shift-right registers. 

Shifting of bits of the stored word towards left or right is essential in 

arithmetical operations. 
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Shift Left Register 

A register which shifts the bits of the stored word towards left, called 

shift-left register, is shown in Fig. 3.3. As is clear from the circuit, the 

data input Djn sets up the first flip-flop, and the 0Q  output of this flip-

flop sets up the second flip-flop; 1Q  sets up the third and Q2 sets up the 

fourth; Sincere data is given to the input of the first flip-flop, i.e., Din 

and the output is obtained simultaneously from all the flip-flops, the 

circuit is known as serial-in/parallel-out. 

 

The working of shift-left registers can be understood by the following 

example: 

Consider that the input data Din is 1, i.e., the input to flip-flop-1, D0 = 1 

and the initial output 

 

Q = 0000 

 

That is, initially the inputs to all the other three flip-flops are 0. Now 

with the arrival of 

the PGT of the first CLK, the 0Q  output is 1, and the stored word 

becomes 

 

 Q = 0001 

 

Now with D1 = 1 and D0 = 1, when the PGT of the second CLK arrives 

then the first and the second flip-flops are set, making the register output 

to be 

 

 Q = 0011 

 

Now D2 = 1, D1 = 1, and D0 = 1. When the PGT of the third CLK arrives 

then the first, the second and the third flip-flops are set making the 

register output to be 

 

 Q = 0111 

 

Similarly when the PGT of the fourth CLK arrives, then output becomes  

 

Q = 1111 

 

The stored word is thus 1111 and it remains unchanged so long as Din = 

1. However, if Din = 0, then with successive CLK pulses the register 

output or content becomes 

 

 At 1st CLK  Q = 1110 

 At 2nd CLK  Q = 1100 
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 At 3rd CLK  Q = 1000 

 At 4th CLK  Q = 0000 

 

This word 0000 remains stored so long as Din = 0. The entire operation 

of the shift-left register in terms of its tuning diagram is shown in Fig. 

3.4. 

 

 
 

 
 

Fig. 3.4 Timing diagram of shift-left register 

Shift Right Register 
The circuit for a shift-right register is shown in Fig. 3.5. The data input, 

Din is given to the input of the fourth flip-flop as D3. The Q  output of 

each flip-flop is fed back to the D input of the previous flip-flop, i.e. 3Q  

is given to D2, 2Q  is given to D1 and 1Q is given to D0. When the PGT of 

the CLK arrives, the stored word shifts one step to its right. 
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Fig. 3.5 Shift-right register 

 

The operation of the shift-right register can be understood as follows. 

Consider that in the beginning Din = 1, and 

 

Q = 0000 

 

At the arrival of the PGT of the first CLK, D3 = 1, and all other D inputs 

are 0, Therefore, the fourth flip-flop is set and the stored word is 

Q = 1000 

Now D3 = 1 and D2 = 1. When the PGT of the second CLK arrives, the 

third and the fourth flip-flops are set, and the stored word becomes 

 

Q = 1100 

 

Similarly, with the arrival of the PGT of the third CLK, the stored word 

becomes 

 

 Q = 1110 

 

And with the arrival of the PGT of the fourth CLK, the stored word 

becomes 

 

Q = 1111 

 

3.2.4    Controlled Shift Register 

In general the operation of a shift register is controlled by some 

additional arrangement so that when the PGT of the CLK arrives the 

stored word should or should not change as desired by the application. 

Such a controlled shift-left register is shown in Fig. 3.6. 
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Fig. 3.6 Controlled Shift-left register 

 

Its operation is as follows: When the control input signal SHL is 0, the 

inverted signal SHL  is 1. In this condition, the Q  outputs of the flip-

flops are circulated back to their respective D inputs. It means that the 

data stored in the register remains stored even at the arrival of the PGT 

of the CLK. That is, the stored word is stored indefinitely. 

 

Let us now reverse the control signal. When the control input signal 

SHL is 1, the inverted signal SHL  is 0. In this condition, Din is available 

at the D0 input, and at the arrival of the PGT of the first CLK the first 

flip-flop is set by D0. With successive CLKs, 0Q sets the second flip-flop, 

1Q sets the third, and 2Q  sets the fourth flip-flop. At each PGT of the 

CLK, the stored word shifts a step towards the left. 

 

The loading of the word to be stored in this kind of register is done 

serially, that is the word is loaded by entering one bit per CLK. To store 

a 4-bit word we require four CLK pulses. For example, X = 1001 is 

loaded serially as follows: 

Keep SHL = 1, and make Din = 1. At the first CLK 

 

 Q = 0001 

 

Now keeping SHL = 1, make Din  = 0. At the second CLK 

 

 Q = 0010 

 

At the third CLK 

 

 Q = 0100 
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Now keeping SHL = 1, make Din = 1. At the fourth CLK 

 

Q = 1001 

 

The data is thus entered serially and the stored word is available parallel 

from all the Q  outputs. 

 

All the bits of a word can, however, be loaded simultaneously and it 

needs only one CLK pulse as is done in a buffer register. The circuit for 

this kind of loading is given in Fig. 3.7, which can be used for serial as 

well as parallel loading of a word to be stored. 

 

 
 

Fig. 3.7 Controlled shift register with parallel as well as serial loading 

arrangement 

 

If LOAD and SHL are 0, the output of the NOR gate is 1. With this 

condition the Q  outputs are circulated back to their respective D inputs. 

The previously stored word continues to be stored. The register, in this 

state, is known as inactive register. 

 

If the LOAD is 0 and SHL is 1, the register is used for serial loading as 

is done in the case of register shown in Fig. 3.6. If Load is 1 and SHL is 

0, then X bits set the D inputs simultaneously on the first CLK itself. 

This is the case of parallel loading. 

 

For a word of more bits to be stored, more flip-flops are required. 

Actually you require the same number of flip-flops as is the number of 

bits in the word to be stored. 
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3.3      COUNTERS 
A counter is an equivalent of binary odometer. It counts the number of 

CLK pulses which arrive at the CLK input. Basically, there are two 

types of counters, asynchronous (ripple) and synchronous. We shall 

learn about them in this section. 

 

3.3.1    Asynchronous (Ripple) Counter 

Fig. 3.8 shows a 4-bit binary counter circuit which is made by using JK 

flip-flops. All the JK inputs are kept at 1. The CLK signal is given to the 

CLK input of the first flip-flop. The 0Q  output is given to the CLK input 

of the second flip-flop, 1Q  output is given to the  CLK input of the third, 

and so on. The CLR input is activated when it is made 0. All CLR inputs 

have been joined together so that all the flip-flops could be reset 

simultaneously. Such a counter where each flip-flop output serves as the 

CLK input for the next flip-flop is known as asynchronous counter. This 

name is given because all the flip-flops do not change state in exact 

synchronism with the CLK pulses. Only the first flip-flop responds to 

the CLK pulse, while all others wait for the previous flip-flops to change 

state. Therefore, there is a delay between the responses of consecutive 

flip-flops. This type of counter is also known as ripple counter. 

 

 
 

Fig. 3.8 Asynchronous (ripple) counter 

 

Let us understand the operation of the ripple counter. The clock pulses 

are applied to the CLK input of the first flip-flop. Since the flip-flops are 

driven by the NGT of the CLK, with J = K = 1, the first flip-flop toggles 

when the CLK pulse goes form 1 to 0. The 1Q  output of second flip-flop 

toggles when 0Q  output of the first flip-flop goes from 1 to 0, and so on. 

With CLR = 0, all the flip-flops are reset to 

 

 Q = 0000 

After resetting keep CLR = 1. Now the counter is ready to count. The 

0Q  toggles for each NGT. Therefore, when the NGT of the first CLK 

arrives, then the Q output is 

 

Q = 0001 
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At the second CLK, 0Q  toggles from 1 to 0 which acts as a NGT for the 

CLK input of the second flip-flop, the 1Q  output of which toggles to 1. 

Therefore, 

 

 Q  = 0010 

 

At the third CLK, 0Q  toggles from 0 to 1, and there is no change in 1Q . 

Therefore,  

 

Q  = 0011 

 

At the fourth CLK, 0Q  toggles from 1 to 0, resulting in toggling of 1Q  

from 1 to 0. The 1Q  going from 1 to 0 acts as a NGT for the CLK input 

of the third flip-flop, the 2Q  output of which toggles from 0 to 1. 

Therefore, 

 

 Q = 0100 

 

The Q  output of the counter at each CLK is summarised in Table 3.1. 

 

Table 3.1: No. of CLK pulses 

 

0 

 

0000 

 1 

 

0001 

 2 

 

0010 

 3 

 

0011 

 4 

 

0100 

 5 

 

0101 

 6 

 

0110 

 7 

 

0111 

 8 

 

1000 

 9 

 

1001 

 10 

 

1010 

 11 

 

1011 

 12 

 

1100 

 13 

 

1101 

 14 

 

1110 

 15 

 

1111 

  

 

Next CLK resets alt the flip-flops and the Q  outputs on successive CLK 

would be 

 

16   0000 (recycles) 

17   0001           
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18 0010 

..  …. 

..  …. 

 

While analysing the Q  outputs, we find that whenever a flip-flop resets 

to 0, the output of the next flip-flop is 1. That is, the resetting of a flip-

flop sends a carry to the next higher flip-flop. Therefore, the counter acts 

like a binary odometer. The 0Q  output of the first flip-flop acts as a LSB 

and that of the last flip-flop as the MSB. This would now be clear as to 

why asynchronous counter is called a ripple counter. It is because the 

carry in the output moves like a ripple on water. 

 

Mod of a Counter       
The counter described above has 16 distinct states or outputs (0000 to 

1111). It is said that the Mod number of this counter is 16. The Mod 

number of a counter is equal to the number of states which the counter 

goes through in each complete-cycle before it recycles back to its 

starting state. The Mod number can be increased by increasing the 

number of flip-flops. If n is the number of flip flops used in a counter, 

then 

 

Mod Number = n2  

Frequency Division 
The output of each flip-flop and the CLK are shown in Fig. 3.9. It is 

clear that the frequency of 0Q  output is half the frequency of the CLK. 

The 0Q  output acts as a CLK to the second flip-flop, and the frequency 

of its 1Q  output is half the frequency of 0Q or one-fourth the frequency 

of the CLK. 

 

 
 

First flip-flop divides by  2 

Second flipflop divides by  4 

Third flipflop divides by  8 

Fourth flipflop divides by  16 

mth flipflop divides by  n2  
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SAQ 1 
If the frequency is 100 kHz, what will be the output frequency of the 

third flip-flop of a ripple counter? 

 

3.3.2   Synchronous Counter 

As stated in the previous section, there is a lot of time delay in a ripple 

counter because a carry has to pass through n  flip-flops. Therefore, the 

ripple counters are very slow. If Tpd is time delay for one flip-flop, then 

for n flip-flops the time delay is n Tpd. Therefore, there is a need for 

synchronous counter in which all the flip-flops respond on each CLK 

pulse simultaneously. The circuit for a synchronous counter is given in 

Fig. 3.10. 

 
Fig. 3.10 Synchronous counter 

 

The CLK inputs of all the flip-flops are connected with each other so 

that the CLK signal reaches them simultaneously. Similarly, the CLR 

inputs of all the flip-flops are connected with each other so that they can 

be reset simultaneously by making CLR = 0. All J and K inputs have not 

been connected to each other as is the ease in ripple counter. The JK 

inputs of the first flip-flop are always kept at 1. The flip-flops toggle at 

the arrival of the PGT of the clock pulse at their CLK inputs provided 

their JK inputs are at 1. The operation of this counter can be understood 

as follows: 

 

When reset in the beginning, the Q  output is  

  

 Q = 0000 

 

At the arrival of the PGT of the first CLK, 0Q toggles from 0 to 1 

bringing JK inputs of the second flip-flop also to 1. Now this flip-flop is 

also ready to toggle. However, by now the PGT of the CLK pulse has 

disappeared. It has to wait for the PGT of the second CLK. As is clear 

from the circuit, the JK inputs of third and fourth Flip-flops continue to 

be at 0, hence they are in no change condition. Thus, at the arrival of the 

first CLK, 
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 Q = 0001 

 

Now at the PGT of the second CLK, 0Q toggles from 1 to 0 and 1Q  

toggles from 0 to 1. However, the JK inputs of the third flip-flop 

continue to be at 0 because the inputs to the AND gate (the output of 

which is connected to these JK inputs) are 1Q = 1 and 0Q = 0. Therefore, 

it is in no change condition and hence 2Q  continues to be at 0. Similarly, 

the JK inputs of the fourth flip-flop are at 0 because 2Q = 0 and therefore 

3Q  continues to be at 0. Thus, at the arrival of the PGT of the second 

CLK, 

 

Q = 0010 

 

At the arrival of the PGT of the third CLK, the JK inputs of second, 

third and fourth flip-flops are at 0; therefore they are in no change 

condition. Only the first flip-flop is ready to toggle from 0 to 1. Thus at 

the third CLK, 

 

Q = 0011 

 

Now since 1Q  and 0Q are at 1, therefore JK inputs of the third flip-flop 

are at 1. However, the JK inputs of the fourth flip-flop are still at 0. 

Hence the first three flip-flops are ready to toggle at the arrival of the 

PGT of the fourth CLK. Thus 0Q  and 1Q  toggle from 1 to 0, and Q2 

toggles from 0 to 1. Therefore, at the fourth CLK,  

 

Q = 0100 

 

Successive, Q outputs are 0101, 0110, and 0111. At the arrival of the 

eighth CLK, the JK inputs of all flip-flops are at 1. The Q outputs of all 

the flip-flops toggle, and we have 

 

Q = 1000 

The successive CLK pulses change the Q  outputs in the same way as 

described above. The Q  output at each CLK is summarised in Table. 

3.2. 

 



PHY 405             ELECTRONICS III 

99 

Table 3.2 

 

No. of CLK pulses 

 

Q 

 0 

 

0000 

 1 

 

0001 

 2 

 

0010 

 3 

 

0011 

 4 

 

0100 

 5 

 

0101 

 6 

 

0110 

 7 

 

0111 

 8 

 

1000 

 9 

 

1001 

 10 

 

1010 

 11 

 

1011 

 12 

 

1100 

 13 

 

1101 

 14 

 

1110 

 15 

 

1111 

  

At the arrival of the PGT of the next CLK, the counter resets to Q = 

0000. 

 

A counter of any length can be built by adding more number of flip-

flops. The advantage of synchronous counter is that it requires only one 

propagation delay time in getting the Q  output. The Mod of this counter 

is also 16 )2( 4 . 

 

3.3.3    Controlled Synchronous Counter 
The circuit of the controlled synchronous counter is shown in Fig. 3.11. 

The COUNT is the control input. When the COUNT is at 0, the JK input 

of all the flip-flops are at 0 keeping the flip-flops in no change 

condition. When the COUNT is at 1, the circuit is the synchronous 

counter which works exactly in the same way as the counter of 

 
Fig. 3.11 Controlled synchronous counter 
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3.3.4    Ring Counter 

The ring counter does not count the binary number. The Q output of this 

counter has only a single 1 bit and all other bits are 0. At each CLK the 

bit 1 shifts a step to its left. The digital circuit of the ring counter is 

shown in Fig. 3.12. It is made up of D flip-flops. Note that the CLR 

inputs of second, third and fourth flip-flops are connected with the 

PRESET input of the first flip-flop. It means that when CLR is brought 

to 0, it presets the 0Q  to 1, and resets 1Q , 2Q  and 3Q  outputs to 0. 

 

 
 

Fig. 3.12 King Counter 

 

The working of the ring counter can be understood as follows. When the 

CLR is made active, i.e., when it is made 0, the first flip-flop is set and 

all others are reset. Therefore, Q  output is 

 

Q = 0001 

 

Now 3Q = 0 is fed back to D0 input of the first flip-flop. Therefore, at the 

arrival of the PGT of the first CLK, Q0 is 0 and 1Q  is 1, while 2Q  and 

3Q  continue to be 0. Thus, at the first CLK, 

 

Q = 0010 

 

At the time the PGT of the second CLK arrives, D0, D1 and D3 are at 0, 

and D2 is at 1. Therefore, the Q  output is, 

 

Q = 0100 

 

Similarly at the arrival of the PGT of the third CLK, .the Q output 

becomes, 

 

Q = 1000 

 

The PGT of the fourth CLK starts the cycle again, and 
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Q = 0001 

 

Thus we find that bit 1 shifts a step to its left and it rotates back to its 

initial position, and so on. It is because of this effect that it is known as 

ring counter. Instead of a ring of four bits, if you want a bigger ring then 

add more flip-flops. 

 

3.3.5   Mod 10 (Decade) Counter 

The Mod number of a Mod 10 counter is 10, i.e., it counts from 0 to 9 

and then resets to 0. This is an asynchronous counter and its digital 

circuit is given in Fig. 3.13. The circuit counts from 0000 to 1001 and 

then resets to 0000. As described in the section on ripple counter, the Q  

outputs of the counter at the arrival of the NGTs of the first nine CLK 

pulses are summarised in Table 3.3. 

 

 
 

Fig. 3.13: Mod-10 (Decade) counter 

 

Table 3.3 

 

No. of CLK pulses 

 

Q 

 

Decimal Equivalent 

 0 

 

0000 

 

0 

 1 

 

0001 

 

1 

 2 

 

0010 

 

2 

 3 

 

0011 

 

3 

 4 

 

0100 

 

4 

 5 

 

0101 

 

5 

 6 

 

0110 

 

6 

 7 

 

0111 

 

7 

 8 

 

1000 

 

8 

 9 

 

1001 

 

9 

 10 

 

0000 

 

0 (resets) 
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The circuit skips the states from 10 to 15, i.e., from 1010 to 1111. The 

circuit is made to skip these states by the combination of NAND and 

AND gates present in the circuit. The idea is that when Q = 1010 is 

expected at the tenth CLK, the flip-flops should be cleared to be reset to 

0000 which is done by bringing CLR input to 0. This is achieved by 

connecting 1Q and 3Q  to the inputs of a NAND gate which gives output 

0 when its inputs are 1 (which is the case when Q  = 1010 is expected at 

the tenth CLK). The output 0 of the NAND gate makes the AND gate 

output to be 0. This makes the CLR active and the flip-flops reset to 

 

Q  = 0000 

 

When the CLR is a made inactive, i.e., when CLR = 1, the counter 

becomes ready to count once again. 

 

Since it takes 10 CLK pulses to reset the counter, the frequency of the 

3Q  output is one-tenth of that of the CLK. It is therefore called a divide-

by-10 circuit. It is used in BCD applications and frequency counters. 

 

Example 3.1 
 

Design a Mod 5 counter. 

 

Recall that in a Mod 10 counter, the expected output of the counter on 

the arrival of the 10th CLK, i.e. 1010, was used to reset the counter so as 

to skip the states from 1010 to 1111. 

 

In this example a mod 5 counter which will count from 0 to 4 is to be 

designed. It means that at the arrival of the 5th CLK, the counter should 

reset. For counting up to 4, not more than three bits are required. 

Therefore, we require three JK flip-flops. The expected output at the 

arrival of 5th CLK is 101 which should be used to activate CLR to reset 

the flip-flops. The required circuit is given in Fig. 3.14. 
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Fig. 3.14 A Mod 5 counter 

 

SAQ 2 
What is the Mod of a counter which consists of six flip-flops? 

 

3.4      SEMICONDUCTOR MEMORIES 
The advantage of digital systems over analogue systems is their ability 

to store information for short as well as long periods which makes them 

versatile. A digital computer has a minimum amount of memory with 

the help of which it is able to manipulate information or data as desired 

by us. It also has memory which makes it capable of storing this 

information as long as we want and make it available to us whenever we 

want. 

 

We have already studied the basic memory element which stores a 

single bit, that is the flip-flop. We have also learnt about registers which 

store a word of any number of bits. The registers are very high-speed 

memory elements and are used extensively in the internal operation of a 

digital computer. With the advent of integrated circuit technology and its 

further advancement in LSI (Large Scale Integration) and VLSI (Very 

Large Scale Integration), a large number of registers can be obtained on 

a single chip. 

The cost of these semiconductor devices is also decreasing. However, 

the cost of these devices per bit of storage is very high, which prohibits 

their use as mass storage devices. A computer has internal memory 

which is constantly in communication with the central processing unit of 

the computer as a program of instructions is being executed. The 

program and any other information or data used by the program are also 

stored in the internal memory. 

 

The mass storage memory devices are external to the computer and are 

capable of storing millions of bits even without requiring any electrical 

power. The mass storage memory is generally very slow compared to 
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the internal memory and the information stored is the one which is not 

currently required by the computer. It is supplied to the computer only 

when required. The mass storage memory devices are floppies, magnetic 

tapes and disks, etc. The cost of per bit storage of these devices is much 

less compared to the internal memory. 

 

3.4.1    What a Memory is! 
A 'memory' is simply an array of registers, each register storing a word. 

Every register has an address number which identifies the location of a 

word in a memory. The location of a word is nothing but the register that 

stores the word to be identified. The address of each location is unique 

and is described by a binary number. To illustrate, let us consider that 

we have a memory which consists of eight registers. It is clear that this 

memory has eight memory locations. The unique addresses of the 

memory locations are given in Table 3.4. 

 

Table 3.4 

 

Address Location 

 000 

 

word 0 

 001 

 

word 1 

 010 

 

word 2 

 011 

 

word 3 

 100 

 

word 4 

 101 

 

word 5 

 110 

 

word 6 

 111 

 

word 7 

  

Each word in the memory is thus identified by an address. By a read 

operation, the binary word stored in a memory location is sensed and, if 

desired, it can be transferred to another device. For example, if we have 

to read word 6, then we have to do read operation on address 110. By a 

write operation, a new word can be placed or stored on a particular 

memory location. 

 

The memories are volatile and non-volatile. A memory is volatile if it 

requires electrical power to store information and if the power is 

removed then the stored information is lost. Many types of 

semiconductor memories are volatile. The non-volatile memory retains 

the stored information even when electrical power is removed. The mass 

storage memory devices fall into this category. The other types of 

memories like Random-Access Memory (RAM) and Read Only 

Memory (ROM) will be described in later sections. 
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3.4.2   Capacity of Memory 
Before understanding the meaning of capacity of memory let us know 

some of the memory terms. A device, such as a flip-flop, which can 

store a single bit (0 or 1) is called a memory cell. In a memory, a group 

of bits or cells which represents instructions or data is known as a 

memory word. A register consisting of four flip-flops is a memory 

which can store a 4-bit word. Similarly, a register having eight flip-flops 

is a memory which can store a 8-bit word. The size of the word in 

modern computers range from 4 to 64 bits. A 4-bit word is called a 

nybble and 8-bit word is called a byte. A byte is the most commonly 

used word size. 

 

The capacity of a memory is a term used to express how many bits can 

be scored in a particular memory device or in a complete memory 

system. For example, let us say that we have a memory which can store 

2048 eight-bit words. This memory can store 20488 = 16384 bits and 

we say that this memory can store 16384 bits. Another way to express 

this capacity is as 20488. This kind of expression of memory means 

that there are 2048 words and the size of the word is 8 bits. The number 

of words in a memory is generally a multiple of 1024. The figure of 

1024 = 210 is commonly represented as 'IK'. Thus memory capacity of 

20488 is also expressed as 2K8. For larger memories, '1M' or '1 meg' 

is used for 220 = 1,048,576. Therefore, a 4M8 memory has a capacity 

of 4,194,3048 or alternatively of 33,554,432 bits. 

 

Example 3.2 
A user has two memory devices. One of these stores 10M words of 8-bit 

size, while the other stores 2M words of 16-bit size. Which of the two 

stores most bits? 

 

Solution 
The two memories are of 10M8 and 2M16.  

 

10M8 = 101,048,5768 = 83,886,080 bits  

 

2M16 = 21,048,57616 = 33,554,432 bits.  

 

Therefore, the memory of 10M8 stores more bits. 

 

SAQ 3 
A certain memory is specified as 32K8. 

 

(a)       What is the size of the word? 

 

(b)       What is the total number of bits stored by the memory? 
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3.4.3    Random-Access Memory (RAM) 

A Random-Access Memory (RAM) is also known as read-write 

memory. It is a group of registers which have their unique addresses, 

and using an appropriate address the stored word on a memory location 

can be read and new contents, if desired, can be written on this location. 

Actual physical location of a stored word in RAM does not make any 

difference because the access time (which is the speed of a memory 

device, that is the time required to perform the read operation) is same 

for any address in the memory. The semiconductor RAMs are volatile, 

because when the electrical power is turned off the stored data is lost.  

 

While working with a computer when a user is giving instructions or 

doing some calculations using a program, it is the RAM that is being 

continuously used to read the stored information and write the new 

information. You might have heard the term being used that a particular 

computer has 1 or 4 MB (Mega Byte) RAM or so. 

 

3.4.4    General Memory Operation 
Despite the fact that the internal operation of each type of memory is 

different, the general memory operation remains the same for all. Every 

memory system will have terminals for data input, data output, address 

input, selecting read or write operation and for enabling or disabling the 

memory operation. 

 

In a general memory operation, first the address of a memory location is 

selected where the read or write operation is to be performed. Decide 

whether you want to perform read or write operation. If you want to 

write, then perform the write operation and supply the data to the 

memory. If you want to read, then perform the read operation and hold 

the output data coming from the memory. If you want that the memory 

should respond to the address and read/write operation, then enable the 

memory and if you do not want the memory to respond then disable the 

memory. 

 

To illustrate the aforesaid operation consider a 164 memory device 

shown in Fig. 3.15. Since the word size is 4 bit, it has four data input 

lines and four output data lines. It will also have four address lines 

because the given memory device has 16 memory locations which can 

be expressed by 4-bit addresses. It has one read/ write command 

terminal; it will read if kept at 1 and write if at 0. It has one enable/ 

disable terminal. In the diagram shown, if this terminal is kept at 1, it 

enables the memory and it disables if kept at 0. A virtual arrangement of 

memory cells into 4-bit words is shown in Fig. 3.16 along with their 

address. 
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Fig. 3.15 A 164 memory 

 

 

 

 

Memory cells Addresses 

0 

 

0 

 

1 

 

1 

 

0000 

 1 

 

0 

 

0 

 

1 

 

0001 

 0 

 

0 

 

0 

 

0 

 

0010 

 0 

 

1 

 

1 

 

1 

 

0011 

 1 

 

0 

 

1 

 

0 

 

0100 

 1 

 

0 

 

0 

 

0 

 

0101 

 1 

 

1 

 

1 

 

0 

 

0110 

 0 

 

0 

 

0 

 

1 

 

0111 

 1 

 

0 

 

1 

 

1 

 

1000 

 0 

 

0 

 

0 

 

0 

 

1001 

 1 

 

1 

 

0 

 

0 

 

1010 

 0 

 

1 

 

0 

 

1 

 

1011 

 1 

 

0 

 

0 

 

1 

 

1100 

 1 

 

1 

 

1 

 

1 

 

1101 

 0 

 

0 

 

0 

 

1 

 

1110 

 1 

 

0 

 

1 

 

0 

 

1111 

  

Fig. 12.16 Virtual arrangement of memory cells into sixteen 4-bit words 

 

As a further illustration, let us say that you want to change the word 

1111 stored in the fourteenth location to 0101. To do so, choose the 

address 1101, keep read/write terminal at 1 so that write operation is 

chosen, and then feed the desired word 0101 to the data input. Thus the 

new word is stored in place of the old one. 

 

3.4.5 Read Only Memory (ROM) 
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The Read-Only Memory (ROM) is a broad class of semiconductor 

memories which are designed for those kinds of applications where only 

read operation is required. These memories hold the data permanently. 

In general, no new data can be written on ROM but it can be read. The 

data to be stored permanently in ROM is selected and built in by the 

manufacturer at the time of 1C fabrication. However, there are some 

varieties of ROM in which data can be entered electrically once only. 

The process of entering the data is known as programming or burning 

the ROM. Such ROMs are called PROMs (Programmable-ROM). In 

some other ROMs the data stored can be erased and the ROM can be 

reprogrammed. Such ROMs are called EPROMs (Erasable-PROM). All 

ROMs are nonvolatile, that is, they keep storing the data even when 

electrical power is removed. 

 

A typical block diagram of a 168 memory is shown in Fig. 12.17. It 

has four address lines, eight terminals for data output and one terminal 

called chip select (CS) which enables or disables the memory. To read 

the data, say, at the location with address 1010, we have to apply 

A3A2A1A0 = 1010 to the address inputs and then select the chip select so 

as to enable the memory. The data output terminals will show the actual 

word stored in that location. 

 

 
 

Fig. 3.17 Block diagram of a 16 x 8 ROM 

 

3.5     A/D AND D/A CONVERTERS 
As pointed out in the introduction of this unit, digital systems or 

computers perform all of their functions and internal operations using 

digital circuits which require digital inputs. A digital quantity will have 

a value either 0 or 1, while an analogue quantity can take any value over 

a continuous range of values and its exact value is significant. Most 

physical variables are analogue in nature, such as temperature, pressure, 

light intensity, audio signals, position, speed, etc. Therefore, it is 
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essential to put an analogue quantity to be analysed using a digital 

system first in a digital form. The analogue-to-digital (A/D or ADC) 

converter is a digital circuit which converts an analogue quantity into 

digital form consisting of a number of bits that represents the value of 

the analogue input. This circuit is used as an interface between the 

digital system or computer and the analogue system of the input stage. 

The output of a digital system is digital and has to be converted back 

into analogue quantity. The digital-to-analogue (D/A or DAC) converter 

serves this purpose and its output is a proportional analogue voltage or 

current corresponding to an analogue quantity. This is used as an 

interface between the digital system or computer and the analogue 

system of the output stage. 

 

Pictorially this is summarised in Fig. 12.18. Let us say that in a physical 

system a quantity, such as temperature, is to be controlled using a 

computer. This physical quantity is first converted into a corresponding 

voltage or current with the use of a transducer. A transducer is a device 

which converts a physical variable into an electrical signal. Thermistors, 

bolometers, photocells, thermocouples are some of the commonly 

available transducers. Actuator used in this illustration is a device that 

controls the physical quantity, temperature, in a computer-controlled 

system. In this section, we shall learn about design and working of 

digital-to-analogue and analogue-to-digital converters. 

 
Fig. 3.18 ADC and DAC used as interfaces 

 

3.5.1    Digital-to-Analogue Converter 
We are first treating Digital-to-Analogue Converter (DAC) because the 

Analogue-to-Digital Converter (ADC) requires the use of DAC. The 

circuit for DAC takes the BCD or binary input and converts it to a 

voltage or current that is proportional to the digital value. The digital 

input is generally derived from an output register of the digital system 

which can theoretically be of any number of bits. In general, the 

registers used are 8-bit registers. For the purpose of an illustration, let us 

consider that the digital output from the digital system is of four bits. 

Therefore, we require a DAC that can convert a 4-bit digital output to a 

proportional analogue value. 

 

A block diagram of such a DAC is shown in Fig. 3.19. It has four binary 

input lines representing A3A2A1A0 and one output line representing 

corresponding proportional analogue quantity. Each 4-bit input has 

unique proportional output voltage. There are 42 = 16 states that the 
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binary input can have. Let us say that each input specifies a decimal 

number. Let us designate 1V output equivalent to decimal number 1, 2V 

as number 2, and so on. 

 

 
 

Fig. 3.19 Block diagram of DAC 

 

The digital input and the corresponding proportional voltage as the 

analogue output is summarised in Table 3.5 In this example, the 

analogue output voltage is equal in volts to the binary number. The 

output voltage could be twice the binary number or any multiple. We 

can, therefore, write 

 

Analogue output = k digital input     

  (3.1) 

 

where k is proportionality factor, a constant for a given DAC. 

 

The value of k  in the given example is 1V, therefore outV  is 1V times 

the digital input. For 01102 = 610, we get 
 

 outV = 1 V 6 = 6 V 

Table 3.5 

 

A3 

 

A2 

 

A, 

 

AO 

 
outV  

 0 

 

0 

 

0 

 

0 

 

0 

 0 

 

0 

 

0 

 

1 

 

1 

 0 

 

0 

 

1 

 

0 

 

2 

 0 

 

0 

 

1 

 

1 

 

3 

 0 

 

1 

 

0 

 

0 

 

4 

 0 

 

1 

 

0 

 

1 

 

5 

 0 

 

1 

 

1 

 

0 

 

6 

 0 

 

1 

 

1 

 

1 

 

7 

 1 

 

0 

 

0 

 

0 

 

8 

 1 

 

0 

 

0 

 

1 

 

9 

 1 

 

0 

 

1 

 

0 

 

10 

 1 

 

0 

 

1  

 

1 

 

11 

 1 

 

1 

 

0 

 

0 

 

12 

 1 

 

1 

 

0 

 

1 

 

13 

 1 

 

1 

 

1 

 

0 

 

14 

 1 

 

1 

 

1 

 

1 

 

15 
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Analogue Output 
The DAC output is technically not an analogue quantity. It can have 

only specific values. In the above example, it can have values only from 

0 to 15 in steps of 1, that is 1, 2, 3, ..., 15. Therefore, strictly speaking it 

is digital. By increasing the number of input bits, the number of possible 

output values can be increased and the difference between successive 

values decreased. Thus the output can be made more or less analogue. 

For the time being we can only say that the DAC output is pseudo 

analogue. 

 

Let us analyse the inputs and outputs given in Table 3.5 and consider 

only those digital inputs where one of the four bits is 1 and other three 

bits are 0. Such inputs and corresponding outputs are rewritten in Table 

3.6. 

 

Table 3.6 

 

A3 

 

A2 

 

A1 

 

A0 

 
outV  

 0 

 

0 

 

0 

 

1 

 

1 

 0 

 

0 

 

1 

 

0 

 

2 

 0 

 

1 

 

0 

 

0 

 

4- 

 1 

 

0 

 

0 

 

0 

 

8 

  

It is clear from the entries included in Table 3.6 that the contributions of 

1 are weighted according to their position in binary number. The bit A3 

has weight of 8, A2 has weight of 4, A1 has weight of 2 and A0 has 

weight of 1. Thus the weight of the LSB is the smallest change. To 

check,  

 

 1001 = 8 + 0 + 0 + 1 = 9 

 

Example 3.3 

A 5-bit DAC produces 0.5V for 00001. Find outV  for 11010. 

 

Solution 

In the example the smallest change is 0.5V. Therefore,  

 

11010  = 160.5 + 80.5 + 0 + 20.5 + 0 = 8 + 4 + 1  

= 13V 

 

Example 3.4 

A 5-bit DAC produces a 10 mV output for a digital input of 10100. 

What will outV  be for a digital input of 11101? 

 

Solution 

101002  = 2010  
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outV  = k digital input  

10 mV  = 20k 10 

k  = 0.5 mV 

 

Now outV  for 11101 is obtained as follows: 

101002  = 2910 

outV  = 0.5mV29 

= 14.5 mV 

 

SAQ4 

The smallest change in a 4-bit DAC is 0.25V. What is outV for a DAC 

input 1110? 

 

Resolution (Step Size) 

The resolution is the smallest change that can take place in the analogue 

output as a result of a change in the digital input. In the example of 

Table 3.5, the smallest change is 1 V. Therefore, the resolution in that 

example is 1 V. The resolution is also known as the step size. In the said 

example, the voltage rises in step of 1 V and goes up from 0 to 15 in 15 

steps. Pictorially, this can be represented as shown in Fig. 3.20. 

 

 
 

Fig. 3.20 Pictorial representation of outV  of the example given in Table 

3.5. 

 

It can easily be seen that there are 16 levels from 0 to 15V, but there are 

only 15 jumps. That is, the number of steps between 0 and 16 is 15. The 

number of steps in general can be calculated as 

Number of steps = n2 – 1. 

The resolution or step size is actually the constant k  in equation (3.1). 

The percentage resolution is defined as 
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 % resolution = 
(FS) scale full

size step
100     

 (12.2) 

 

Example 3.5 
What is resolution (step size) of the DAC of Example 3.4? Describe the 

staircase signal out of this DAC. 

 

Solution 
The LSB for this converter has a weight of 0.5 mV. This is the 

resolution (step size). A staircase waveform can be generated by 

connecting a 5-bit counter to the DAC inputs. The staircase will have 28 

= 32 levels from 0 mV up to a full scale output ( outV  for input 11111 = 

0.516 + 0.58 + 0.54 + 0.52 + 0.5 = 8 + 4 + 2 + 1 + 0.5 = 15.5mV 

and 31 steps of 0.5 mV each. 

 

SAQ 5 
What is the percentage resolution of the DAC of Example 3.5? 

 

DAC circuit 
There are several methods and circuits for digital to analogue conversion 

which need not be known. A basic DAC circuit is obtained using an op-

amp as a summing amplifier. A 4-bit DAC circuit is shown in Fig. 3.21. 

The input resistors are binary weighted, that is, they are in the ratio of 1 : 

2 : 4 : 8. The output voltage of this circuit is given as 

 

 







 0123

8

1

4

4

2

1
AAAAout VVVVV  

 

Negative sign indicates that it is an inverting amplifier. Note that the 

digital input bits can be either 0 or 1, therefore 3AV , 2AV , 1AV , 0AV . 

0AV will have values either 0 or 5V. 
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Fig. 3.21 A 4-bit DAC 

 

Therefore, outV for 0001 or LSB would be one-eighth of 5V, i.e. 0.625V. 

And this is the step size of this converter. Sixteen levels of the outV  are 

shown in Table 3.7. 

 

Table 12.7:  Ideal values of outV  for a 4-bit DAC 

 

A3 

 

A2 

 

A1 

 

A0 

 
outV  

 0 

 

0 

 

0 

 

0 

 

0 

 0 

 

0 

 

0 

 

1 

 

- 0.625 LSB 

 0 

 

0 

 

1 

 

0 

 

- 1.250 

 0 

 

0 

 

1 

 

1 

 

-1.875 

 0 

 

1 

 

0 

 

0 

 

- 2.500 

 0 

 

1 

 

0 

 

1 

 

-3.125 

 0 

 

1 

 

1 

 

0 

 

-3.750 

 0 

 

1 

 

1 

 

1 

 

-4.375 

 1 

 

0 

 

0 

 

0 

 

-5.000 

 1 

 

0 

 

0 

 

1 

 

- 5.625 

 1 

 

0 

 

1 

 

0 

 

- 6.250 

 1 

 

0 

 

1 

 

1 

 

-6.875 

 1 

 

1 

 

0 

 

0 

 

- 7.500 

 1 

 

1 

 

0 

 

1 

 

-8.125 

 1 

 

1 

 

1 

 

0 

 

-8.750 

 1 

 

1 

 

1 

 

1 

 

- 9.375 MSB Full 

Scale 

 

 

These values are ideal values. However, the actual values may not be 

same. There may be some error due to fluctuations in the voltages or 

inaccurate resistors. The error in a DAC is specified by a term called full 

scale error which is the maximum deviation of the DAC's output from 

its expected ideal value expressed as the percentage of the full scale 

(FS). Let us say that a DAC has an error of + 0.01 % FS in the example 

considered above. It means that error is 0.01 % of 9.375V, i.e., + 0.9375 

mV. 

 

SAQ 6 
What are the weights of each input bit of Fig. 3.21? 

 

Example 3.6 

If in the DAC circuit of Fig. 3.21, FR  is reduced to half, i.e. 500 , then 

what will outV  be for 1001? 

 

Solution 
The MSB passes with gain 0.5. Therefore, its weight is reduced to half 

of the previous case. That is, it is now 2.5V. Thus each input weight is 
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the half of the previous case, i.e., 1.25, 0.625 and 0.312V. The outV  for 

1001 is 

 

 2.5 + 0 + 0 + 0.312 = 2.812 V 

 

3.5.2    Analogue-to-Digital Converter 
The circuit of a counter type (or digital ramp) Analogue-to-Digital 

Converter (ADC) is shown in Fig. 3.22. It consists of an op amp as a 

comparator, a DAC, counter and a 3-input AND gate. The functioning 

of this type of ADC is as follows: 

 

 
 

Fig. 3.22 Counter type ADC 

 

Apply start pulse, i.e. make START input equal to 1. This resets the 

counter to 0 output. With 1 at START input, the AND gate is inhibited 

which does not allow the CLK from passing through the AND gate. The 

counter output is the input to the DAC. With counter reset, the DAC 

output axV = 0. AV  is the analogue input to be converted into its digital 

equivalent. Since Aax VV  , the op amp comparator output EOC is HIGH, 

i.e., 1. When the start pulse returns to 0, the AND gate allows the CLK 

to pass through and the CLK reaches the counter which starts counting. 

As the counter advances, the DAC output axV  advances step by step as 

shown in the figure. When axV    reaches a step that  exceeds AV , EOC 

goes low, i.e., 0, disabling the AND gate. Therefore, the CLK cannot 

pass through and the counter stops advancing further. The conversion of 

analogue input into its digital equivalent is complete. The contents of the 
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counter are the digital representative of AV . The counter holds the output 

until the next start pulse to initiate a new conversion is supplied. 

 

3.6      SUMMARY 
A register is a combination of D flip-flops and stores as many bits as the 

number of flip-flops. The register is the most commonly used memory 

device. The controlled register can retain the contents of the register as 

long as we want. It can shift the contents towards left (shift left register) 

or right (shift right register). The data can be supplied to and the output 

can be obtained from the register either serially or parallel fashion. The 

registers are, sometimes, classified as serial-in serial-out, serial-in-

parallel-out, parallel-in-parallel-out. 

 

A counter is like a register made of JK flip-flops and counts the number 

of clock pulses arriving at CLK input of the counter. The CLK input to 

asynchronous counter or ripple counter is given to the first flip-flop. The 

CLK signal to the other flip-flops is the output of the preceding flip-

flop. Therefore, it is very slow because of high propagation delay. In 

synchronous counter, the CLK input is supplied to all the flip-flops 

simultaneously. The synchronous counter is fast and there is only one 

propagation delay. 

 

The Modulus of a counter is the number of states of the output and it is 
n2 , where n  is the number of flip-flops used. A 4-bit counter having 

four flip-flops has a modulus of 16. A counter can be designed for a 

particular modulus. Mod 10 or decade counter has ten states of the 

output, i.e. it counts from 0 to 9 (or 0000 to 1001). 

 

A memory is a device made up of several registers. The contents of each 

register can be read or new contents can be stored in it. The computer or 

a digital system has internal memory which is used while entering data, 

etc. and is in constant communication with the central processing unit. 

Random Access Memory (RAM) is used as internal memory. It is 

volatile, that is, it requires the application of electrical power. If the 

electrical power is removed, then all information stored is lost. Its cost 

of storage per bit is very high. Read Only Memory (ROM) is used as 

mass storage device. Most ROMs are nonvolatile, i.e., the information 

stored is not lost when the electrical power is removed. The contents of 

this memory can only be read. However, several types of ROMs are 

available. The PROM can be programmed only once. The EPROM is an 

Erasable-PROM. 

The input to and output from a computer is digital. But the whole world 

is analogue. Therefore, every analogue signal to be processed or 

manipulated by a computer is first converted into a digital one using 

Analogue-to-Digital Converter (ADC). A counter type ADC is quite 

often used for this purpose. The digital output of a computer is 
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converted into an equivalent analogue voltage or current using a digital-

to-analogue (DAC) converter. The basic circuit of an ADC is like an 

inverting op amp amplifier used as an adder where the input resistors are 

binary weighted. The resolution of a DAC can be increased by 

increasing the number of bits. 

 

3.7     TERMINAL QUESTIONS 
(1)       Design a Mod 12 counter. 

 

(2) A computer X has memory 1M8 and computer Y has memory 

500K16. What are the word sizes of the memories of the two 

computers? Which of the two computers can store more bits? 

 

(3) A 4-bit DAC produces an output of 7V for 1110. What is the 

smallest change in its output voltage? Find the output voltage for 

1001. 

 

(4)       What is the largest value of output voltage from an 8-bit DAC 

that produces 1 V for a  

  digital input of 00110010? 

 

(5)       If the values of 1R s in the DAC circuit of Fig. 3.21 are reduced to 

half, then (a) what is the resolution, and (b) what is the output 

voltage for 1101? 

 

3.8     SOLUTIONS AND ANSWERS       

SAQs 
1.   The third flip-flop divides the CLK frequency by 8. Therefore, 

the output frequency will be 12.5 kHz. 

2.       The Mod of a counter is n2 , where n  is the number of flip-flops 

used. Therefore, 

the Mod of a counter consisting of six flip-flops is 26 = 64. 

 

3. (a)       The size of the word is 8-bit. 

 

(b)       The total number of bits that the memory stores is 

3210248 = 262,144 bits. 

 

4. 80.25 + 40.25 + 20.25 + 0 = 2 + 1 + 0.5 

 

     = 3.5 V 

 

5.      % resolution = %100
5.15

5.0


mV

mV
= 3.23% 

 

6.      The MSB passes with gain = 1, and so its weight is 5V. Thus, 
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MSB    - 5V 

2nd MSB   - 2.5V 

3rd MSB   - 1.25V 

4th MSB, i.e., LSB  - 0.625V 

 

TQs 
(1)      A Mod 12 counter counts from 0000 to 1011. When 1100 appears 

the counter should reset. Therefore, a circuit is to be made which 

will clear the flip-flops when 1100 appears. The circuit for Mod 

12 counter is shown in Fig. 3.23. 

 

 
 

Fig. 3.23: The Mod 12 counter. 

 

(2)      The word size of the computer X is 8 bits and that of computer Y 

is 16 bits.  

 

For computer X 

 

1M8 = 11,048,5768 = 8,388,608 bits  

 

For computer Y 

 

500102416 = 8, 192,000 bits  

 

Therefore, computer X can store more bits. 

 

(3)       Follow Example 3.4. Smallest change in the output voltage is 

0.5V. The output voltage for 1001 is 4.5V. 

 

(4)       001100102 = 5010 

1 V = K50  
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Therefore, K = 20 mV, The largest output will occur for 

111111112 = 25510. 

 

(max)outV = 20 mV 255 

= 5.10V 

 

5)       Follow the example 3.6. The resolution is 0.312V and the output 

voltage for 1101 is 4.062V. 
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UNIT 4   ELECTRONIC INSTRUMENTS 

Structure 
4.1       Introduction Objectives 

4.2 Cathode Ray Oscilloscope  

Cathode Ray Tube  

The Basic Oscilloscope  

Laboratory Oscilloscopes  

Measurement of Voltage, Current and Time  

Digital and Storage Oscilloscope 

4.3       Signal Generators 

4.4      Electronic Voltmeter 

4.5       Power Meter 

4.6       Magnetic Field Meter 

4.7       Summary 

4.8       Terminal Questions 

13.9 Solutions and Answers 

 

4.1   INTRODUCTION 
As you are aware, in practical applications of a system, we typically 

encounter a situation as shown in Fig. 4.1. In the study of Signal 

Processing Circuits we assume that we have the desired electrical signal 

and do not worry about input sensor. The performance of a circuit is 

displayed on an instrument which can be seen by us. The signals of 

different shapes and time duration are provided by signal generators and 

a general purpose oscilloscope is used to display them. 

 

 
 

Fig. 4.1 Situation encountered in practical applications of a system 

 

We know that all circuits are made up of some active components like 

transistors, FET, MOSFET etc. and passive components like resistors, 

inductors & capacitors. To measure values of passive components, we 

use the multimeter, bridges (for L&C) etc. In this unit, we will be 

studying Electronic Voltmeter (EVM), which is a more sensitive and 

hence, more accurate instrument as compared to the Multimeter. EVM 

can also be used for very low current measurements by using a standard 

resistance. The power consumed by these circuits is of vital importance 

and hence we will also study the power meter. While studying the 

construction of power meter, we will see that the necessary torque 

required for meter movement is generated with the help of interaction of 

magnetic field and current and hence we will also discuss the art of 

measurement of magnetic field. 
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Objectives 
After going through this unit, you will be able to understand 

 basic construction, working and some of the applications of 

Oscilloscope, 

 generation of various shapes of signals, 

 accurate measurement of voltage using Electronic voltmeter, 

 measurement of power, and 

 measurement of magnetic field. 

 

4.2   CATHODE RAY OSCILLOSCOPE 
The cathode ray oscilloscope, generally referred to as the oscilloscope or 

simple "scope", is probably the most versatile electrical measuring 

instrument available. Some of the electrical parameters that can be 

observed with the oscilloscope are ac or dc voltage, indirect 

measurement of ac or dc current, time, phase relationships, frequency, 

and a wide range of waveform evaluations such as rise time, fall time, 

ringing, and overshoot. The oscilloscope consists of the following major 

subsystems: 

 

 Cathode ray tube or CRT 

 Vertical amplifier 

 Horizontal amplifier 

 Sweep generator 

 Trigger circuit 

 Associated power supplies 

 

The heart of the instrument is the cathode ray tube. The remaining sub-

systems are necessary for signal conditioning so that a visual 

representation of the input signal will be displayed on the face of the 

CRT. 

 

4.2.1    Cathode Ray Tube (CRT) 
The cathode ray tube used in an oscilloscope is very similar to the 

picture tube in a television set. A cross sectional representation of a CRT 

is shown in Fig.13.2. Major components of a general purpose CRT are: 

 

 Evacuated glass envelope 

 Electron gun assembly 

 Deflection plate assembly 

 Phosphor coated screen 
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Fig. 4.2 Cathode ray tube with major components identified 

 

The glass envelope is evacuated to a fairly high vacuum to permit the 

electron beam to traverse the tube easily. Most laboratory quality 

oscilloscopes use a CRT, which has a circular screen approximately 5 

inch in diameter. All electrical connections except the high-voltage 

connection are made through the base of the CRT. 

 

The electron gun assembly consists of an indirectly heated cathode and 

the necessary heater, a control grid, focussing anode and accelerating 

anode. The purpose of the electron gun assembly is to provide a source 

of electrons, converged and focussed into a well-defined beam, which is 

accelerated towards the fluorescent screen. The electrons that make up 

the beam are given off by thermionic emission from the heated cathode. 

The cathode is surrounded by a cylindrical cap that is at a negative 

potential. This acts as a control grid. Because the control grid is at 

negative potential, electrons are repelled away from the cylinder walls 

and, therefore, stream through the hole where they move into the electric 

field of the focussing and accelerating anodes. The magnitude of the 

accelerating field is given by 

 

 
d

V
E a  

 

where, aV = accelerating anode voltage and d = distance between the 

cathode and the second anode, measured in meters. When electrons 

enter the electric field, which is assumed to be of uniform intensity, a 

force will be exerted on the electrons that will accelerate them along the 

axis of the tube. The magnitude of the force is given by 

 

 maEQF      
m

EQ
a    
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where E = electric field intensity and Q = electronic charge = 
19106.1  C, m = mass of electron, a = acceleration produced due to 

electric field. Using the expression for electric field in above equation, 

we obtain 

 

 
dm

QV
a a  

 

During the period of acceleration, the electrons are gaining kinetic 

energy as they gain velocities. If v  is the velocity acquired then,  

 

 QVmv a2

2

1
   

m

QV
v a2
  

 

After the electrons leave the electron gun assembly at a speed given by 

the above-mentioned equation, they enter and pass through a region 

controlled by the deflection plates. One pair of plates control the vertical 

motion of the beam while the other pair controls the longitudinal 

component of the electron velocity. The deflection plates are described 

by two geometric parameters of length )(L  of the plates and the plate 

separation )(d . The deflecting action of the plates is dependent on the 

intensity of the electric field )( dE  between the plates given by 

 

 
d

V
E d

d   

 

where dV = magnitude of the deflecting voltage. This field will exert a 

force = QEd  on the electrons, deviating the beam from a straight line 

trajectory. 

 

 y
d

dd maQ
d

V
QEF   

 

  
md

QV
a d

y  = acceleration along the y -axis 

 

It can be shown that the lateral distance travelled by an electron is given 

by 

 

 
dm

QtV
h d

2

2

  

 

where t  = time required for electrons to pass through the plates is given 

by 
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v

L
t   

 

Here, v  is the velocity of electrons when it comes out of electron gun 

assembly. Combining these equations, we get 

 

Combining these equations, we get 

 

 
dV

VL
h

a

d

4

2

  

 

 
 

Fig. 4.3 Deflection of electron beam in CRT 

 

 

From Fig. 4.3, 

 

   = 
R

y

L

h

L

h


2

2/
 

  y  = 
L

hR2
 

      = 
dV

RLV

a

d

2
 

  
y

Vd  = 
RL

fVa2
 

 

The term 
y

Vd  is referred to as "deflection sensitivity" and is defined as 

the voltage required per unit deflection. When the electron beam strikes 

the phosphor-coated face of the CRT, a spot of light is produced due to 

"fluorescence" as phosphor is a florescent material. The high velocity 

electrons that strike the phosphor-coated face of the CRT are either 

repelled by the collision or cause secondary emission of electrons to 
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maintain electrical the equilibrium of the screen. To provide a return 

path to ground for these electrons, the inside surface of the CRT is 

coated with graphite called "aquadag." 

 

4.2.2    The Basic Oscilloscope 
The CRT and the associated controls for accelerating, deflecting and 

focussing the electron beam, permit us to obtain a lighted spot on the 

screen. To be of practical use as a measuring instrument, we must 

connect additional electronic circuitry to the CRT to provide a means of 

very fast deflection and control of the electron beam. The purpose of the 

electronic circuits is to cause the beam to trace on the CRT screen a 

reproduction of the signal we apply to the input terminals of the 

oscilloscope. A block diagram of a basic oscilloscope is shown in Fig. 

4.4(a). 

 
Fig. 4.4 (a) Block diagram of a basic cathode ray oscilloscope (b) Input 

to amplifier of vertical  

Plate 

 

A signal to be displayed on the CRT screen is applied to the vertical 

input terminal where it is fed into the vertical amplifier. The signal is 

amplified and applied to the vertical deflection plates, which causes the 

beam to be deflected in the vertical plane. 

 

Input to the Amplifier of Vertical Plate 
The external signal is applied to the terminal marked x-input as shown 

in Fig. 4.4 (b). The select switch is put on the position ac or dc 

depending on the signal we are measuring. The input amplifier to the y-

plate is normally calibrated for a standard input range of amplifier A. 

For higher voltage measurement we have a range selector, which 
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basically attenuates the signal to the desired input at A (we have already 

studied filters and attenuators). 

 

Input to the Amplifier of Horizontal Plate 
As can be seen in Fig. 4.4 (a), the output of the vertical amplifier is 

connected to the internal sync position of switch S1. With the switch set 

to internal sync, as it is for normal operation of the oscilloscope, the 

output of the vertical amplifier is applied to the sweep generator. The 

input voltage waveform irrespective of shape at a particular value 

triggers the switch, which creates pulses and these pulses are then fed to 

the Sawtooth generator circuit, which provides the ramp signal. This 

signal triggers the sweep generator as shown in Fig. 4.5. 

 

 
 

Fig. 4.5 Simple sawtooth generator and associated waveforms 

 

The purpose of the sweep generator is to develop a voltage at the 

horizontal deflection plate that increases linearly with time. This linearly 

increasing voltage, called a 'ramp-stage' or a 'Sawtooth waveform', 

causes the beam to be deflected equal distances horizontally per unit 

time. The pulse for sawtooth generation can also be given by an external 

source to which the input is synchronized (the sawtooth signal at the x-

plate is generated at the same time the wave form at y-plate starts). 

Normally we use an oscilloscope in internal synchronization mode. The 

horizontal amplifier serves to amplify the signal at its input prior to the 

signal being applied to the horizontal deflection plate. 

 

The function of switch S2 is to either generate sawtooth wave in the x-

plate, or put a direct signal to the x-plate of the oscilloscope. The sine 

wave from two oscillators can be introduced in the x- and the y-plates of 

oscilloscope to get Lissajous figures, which allows measurement of 

frequency. The input signal to the horizontal amplifier depends on the 

position to which switch S2 is set. 
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4.2.3    Laboratory Oscilloscopes 

(i) Dual-trace Oscilloscope 
A dual trace is obtained by electronically switching the single electron 

beam. Fig. 4.6 shows a block diagram of the two vertical input channels 

and the electronic switch that alternately connects the two input 

channels to the vertical amplifier. There are generally at least four 

modes of operation with dual-trace oscilloscopes; they are labelled A, B, 

alternate, and chopped. 

 

 
 

Fig. 4.6 Block diagram of the input channels of a dual trace oscilloscope 

 

When set to A or B, only the input at that channel is displayed. In the 

alternate mode the inputs are displayed on alternate traces. Since the 

switching rate is synchronised with the sweep generator, switching 

occurs at the same rate as the output of the sweep generator. The 

"alternate mode" of operation is generally preferred when displaying 

relatively high-frequency signals. In the "chopped mode," electronic 

switching occurs at a rate completely independent of the sweep rate, and 

therefore each display has portions missing during which time the other 

signals is being displayed. The chopped mode is normally used at low 

sweep rates when the alternate mode would provide a display with 

appreciable flicker. 

 

(ii) Storage Oscilloscope 
There are many oscilloscope applications where the limited persistence 

of the CRT phosphor makes real time observation of one-time events 

nearly impossible. Although such events can he recorded 

photographically, this may prove to be fairly expensive and time 

consuming. The storage oscilloscope makes it possible to retain a CRT 

display for an extended period of time. The storage CRT uses two 

electron guns, the usual electron gun called a writing gun and a flood 

gun, which uniformly bombards the entire CRT screen with low-energy 

electrons. The phosphor particles struck by these low energy electrons 
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takes on a fairly low-level charge; however, unenergised particles 

remain in a no-change condition. When a trace is to be recorded, the 

writing gun is turned on and high-energy electrons strike the screen, 

forming an image. The screen is erased by grounding the phosphor 

screen, which removes excess charge. 

 

4.2.4    Measurement of Voltage, Current and Time 
The range of applications of oscilloscopes varies from basic voltage, 

time, frequency measurements and waveform observations to highly 

specialised applications in all areas of science, engineering and 

technology. 

 

Voltage measurements 
The most direct voltage measurement made with an oscilloscope is the 

peak-to-peak value. The rms value of the voltage can easily be 

calculated from the peak-to-peak measurements if desired. To arrive at a 

voltage value from the CRT display, one must observe the setting of the 

vertical attenuator, expressed in volts/div, and the peak-to-peak 

deflection of the beam. The peak-to-peak value of the voltage is then 

computed as (see Fig. 4.7) 

 

 
 

Fig. 4.7 Voltage measurement 

 

 divisionofno.
div

volts








ppV  

 

This can be easily explained with the example 4.1.  

 

Example 4.1 
Let the waveform shown in Fig. 4.8 be observed on the screen of an 

oscilloscope. If the vertical attenuator is set to 0.5 volts/div, find the 

peak-to-peak amplitude of the signal. 
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Fig. 4.8 

 

Solution: 

 ppV  = divisionofno.
div

volts








 

  = div3
div

5.0


V
 

 

Period and Frequency Measurements 
The period and frequency of periodic signals are easily measured with 

the oscilloscope. The waveform must be displayed in such a manner that 

one complete cycle is displayed on the CRT screen. Accuracy is 

generally improved if the single cycle displayed fills as much of the 

horizontal distance across the screen as possible. The period is 

calculated as follows: 

 

 

















cycle

div of no.

div

time
T  

 

The frequency is then computed as the reciprocal of the period. 

 

4.2.5    Digital and Storage Oscilloscope 
The storage oscilloscopes described in the earlier section are quite 

expensive and are now being replaced by digital oscilloscopes. In these 

oscilloscope the signal on the screen is sampled and digitised. The 

amplitude and time base per cm are displayed in numbers at a corner of 

the screen. The digitised signal can be put into a memory (like computer 

memory) and recalled (D/A converter ) to display when desired. Thus 

they also serve as storage oscilloscopes 

. 

SAQ 1 

Draw a pictorial representation of a general purpose CRT and label the 

components 

by name. 
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SAQ 2 
Describe the basic principle of operation of dual-trace/storage 

oscilloscope. 

 

SAQ 3 

If the time/div control is set to 2  s/div and the displayed signal covers 

4 div on the horizontal scale of the CRT screen, determine the frequency 

of the signal. 

 

SAQ 4 
Explain the principle of the Digital Oscilloscope. 

 

4.3   SIGNAL GENERATORS 
A signal source is a vital component of a test set up. Signal sources 

provide a variety of waveforms for testing electronic circuits, usually at 

low power. A function generator is an instrument that provides a variety 

of output waveforms over a wide range of frequency. The most common 

output waveforms are sine, pulse, triangular and ramp. The frequency 

range generally extends from a fraction of a Hertz to at least several 

hundred kilohertz. The different wave shapes are given in Fig. 4.9. 

 

 
Fig. 4.9 Different shapes of wave form, (a) Sinusoidal (b) Rectangular 

(e) Triangular  

(d) Ramp 

 

Definition of rise time )( rT : The time taken by the signal to rise from 

10% to 90% of the maximum value of the signal is called rise time.  

 

Fall time )( fT : The time taken by the signal to fall from 90% to 10% of 

the maximum value of the signal is called fall time. 

 

There are several circuits to provide such waveforms individually. For 

example, you are aware that an LC oscillator can provide sine wave 

while a multivibrator can provide pulses. However, by starting from any 

particular waveform we can, with proper circuitry, generate other 

waveforms. In a function generator, a simple instrument is capable of 

providing different types of waveform. The most commonly used circuit 

is described below. 

 

Function generator: 

The primary waveform in the circuit shown is a square wave. This is 

because some square wave generator circuits offer significantly better 
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amplitude and frequency stability characteristics with simpler circuits 

than sine wave generating circuits. 

 

 
 

Fig. 4.10 Circuit of a basic function generator 

 

Working of the Circuit 

The first stage A1, which is a voltage comparator, generates a square 

wave output. The output of A1 is driven to saturation; therefore the 

square wave is either at CCV  or CCV  as shown in Fig. 4.11. The 

second stage, A2, is an integrator that generates a triangular output at 02V  

as discussed later. 

 

The square wave is also applied to a square-to-sine wave converter that 

filters out the odd harmonics making up the square-wave while passing 

only the fundamental sine wave. You will learn later that the square 

waves are produced by the combination of several sine waves, and by 

differentiation and integration we can convert pulses to triangular waves 

and vice-versa. 

 

The operation of the circuit can be analysed by starting at the output of 

the comparator, which is either CCV  or CCV . Consider 01V  to be at 

CCV . The voltage 01V  will remain at CCV  until the voltage at the 

inverting input of A1 exceeds the voltage at the non-inverting input, 

which in this case is at zero volt. The non-inverting input voltage, xV , is 

due, in part, to the voltage 01V  and, in part, to the voltage 02V  and is 

given by 

 

 






















21

2
02

21

1

RR

R
V

RR

R
VV CCx  

 

The output 01V  changes state when xV = 0. Therefore 

 



PHY 405             ELECTRONICS III 

132 

 






















21

2
02

21

10
RR

R
V

RR

R
VCC

 

  2021 RVRVCC   

  









2

1
02

R

R
VV CC

 

 

The above expression determines the maximum amplitude of the 

triangular output, 02V . When output 02V  reaches the peak value, the 

output of the comparator changes states and the triangular wave begins 

to decrease linearly. The waveforms at 01V , 02V  and xV  are shown in Fig. 

4.11 for the case where 21 RR  . 

 

The frequency of the circuit is controlled by the RC time constant of the 

integrator. To obtain an expression for the frequency, we begin with the 

expression relating capacitor current: 

 

 q  = tic  

  dq  = dtic    
dt

dq
ic   

 

Also, q  = 02CV  

 ci  = 
dt

dV
CCV

dt

d 02
02 )(   

 

Since the input resistance of the operational amplifier is very high, the 

current through resistor R is approximately equal to the charging current 

of the capacitor, therefore, we can write 

 

 
dt

dV
Cii cR

02  
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Fig. 4.11 Output waveforms for function generator 

 

Also, since the voltage gain of the operational amplifier is very high, the 

voltage at the input of the amplifier is very nearly zero, therefore, 

 

 Ri  = 
dt

dV
C

R

V 0201 0



 

  02dV  = dtV
RC

01

1
 

 

Integrating both sides, 

 

  02dV =   t
RC

V
dtV

RC

01
01

1
 

  02V  = 
RC

tV 01  

 

We know, 

 

 02V  = 








2

1

R

R
VCC  

 
2

1

R

R
VCC = 

RC

tV01  
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  t  = 
2

1

R

R
RC  as CCVV 01  

 

The above equation has been deduced assuming no initial charge and 

therefore no initial voltage on the capacitor. Therefore, the time t  given 

above is the time for the capacitor to change from 0V until switching 

occurs, which is 1/4 cycle. Since 4/Tt  . 

 

Pulse Generators 
Pulse generators are instruments that produce a rectangular waveform 

similar to a square wave but of different duty cycle. Duty cycle is 

defined as the ratio of the pulse width to the pulse period, expressed in 

percent. 

 

 Duty cycle = 
period Pulse

 width Pulse
100 

 

The duty cycle of a square wave is 50% whereas the duty cycle of a 

pulse is generally from approximately 5 to 95%. 

 

The output of a stable multivibrator is a square wave. The duty cycle of 

the square wave can be varied by changing values of R and C. 

 

SAQ 5 
Describe the function generator. 

 

SAQ6 

What is difference between a square wave and a pulse? 

 

SAQ7 
Compute the frequency and the peak amplitude of the triangular output 

of the circuit shown in Fig 4.12. 
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Fig. 4.12 

 

4.4    ELECTRONIC VOLTMETER 
The volt-ohm-milliameter (VOM) is a rugged and accurate instrument, 

but suffers from certain disadvantages. The main problem is that it lacks 

both sensitivity and high input resistance. (A sensitivity of 20,000  /V 

with a 0 to 0.5 V range has an input impedance of only 0.520,000 = 10 

K . The electronic voltmeter (EVM), on the other hand, can have an 

input resistance ranging from 10 to 100 M , and the input resistance 

will remain constant over all ranges instead of being different on each 

range as in the VOM. The EVM presents less loading to a circuit under 

test than the VOM. The original EVMs used vacuum tubes, so they were 

called vacuum tube voltmeters (VTVM). With the introduction of the 

transistor and other semiconductor devices, vacuum tubes are no longer 

used in these instruments. We will discuss below in detail the 

differential amplifier type of EVM. 

 

The Differential-Amplifier type of EVM 
The field effect transistors (FET) can be used to increase the input 

resistance of a dc voltmeter. Fig. 4.13 shows the schematic of a 

difference amplifier using field-effect transistors. 

 

 
 

Fig. 4.13 Difference amplifier with balance adjustment 

 

This circuit also applies to a difference amplifier with bipolar junction 

transistors (BJTs). The circuit shown here consists of two FETs that 

should he reasonably matched for current gain to ensure thermal 

stability of the circuit. Therefore, an increase in source current in one 

FET is offset by a corresponding decrease in the source current of the 

other FET, The two FETs form the lower arms of the bridge circuit. 

Drain resistors RD together form the upper arms. The meter movement is 

connected across the drain terminals of the FETs, representing two 

opposite corners of the bridge. 
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The circuit is balanced when identical FETs are used so that for a zero 

input there is no current through the ammeter. If a positive dc voltage is 

applied to the gate of the left FET, a current will flow through the 

ammeter in the direction shown in Fig. 4.14. 

 

 
 

Fig. 4.14 The difference amplifier type EVM 

 

The size of the current depends on the magnitude of the input voltage. 

By properly designing the circuit, the ammeter current will be directly 

proportional to the dc voltage across the input. Thus, the ammeter can be 

calibrated in volts to indicate the input voltage. 

 

By using Thevenin's theorem, we can find the relation between the 

ammeter current and the input dc voltage, where the ammeter is 

considered as the load. To determine thV , we remove the ammeter and 

the output voltage is the voltage gain of a single FET times the 

difference of 1V  and 2V . Since 2V  is zero, the output voltage under open 

circuit condition is 

 

 11 )||( VRrgV
Rr

Rr
gV Ddm

Dd

Dd
mout 










  

 

where dr  is the ac drain resistance, gm= transconductance. To find the 

Thevenin resistance at terminals XY, we first set 1V  and DDV  equal to 

zero. Under this condition, both the FETs have a resistance of dr  as 

shown in Fig. 4.15.   Assuming SR  to be relatively large, 

 

thR  = )||(22||2 DdDd RrRr   

  = 
Dd

Dd

Rr

Rr


2  
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Fig. 4.15 Setting all voltages equal to zero to find thR  of EVM 

 

The Thevenin equivalent circuit with ammeter connected as a load is 

shown in Fig. 4.16. 

 

 
 

Fig. 4.16 Equivalent circuit of EVM 

 

 

From Fig. 4.16, the current through ammeter is found as: 

 

  

 1
)||(2

)||(
V

RRr

Rrg

RR

V
i

mDd

Ddm

mTh

out





  

 

where mR = meter resistance. 

 

If dD rR  , the above equation simplifies to 

 

 i 1
2

V
RR

Rg

mD

Dm


 

 

This equation relates ammeter current to the input dc voltage. 

 

SAQ8 
How does FET EVM differ from the VOM? 

 

SAQ9 

Give the circuit for the difference-amplifier type of EVM. 
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SAQ10 

Given a difference amplifier type of FET voltmeter, find the ammeter 

current under the following conditions: 

 

 1V  = 1 V  DR  = 10 k  

 dr  = 100 k  mR  = 50 M  

 mg  = 0.005 Siemens 

 

4.5      POWERMETER 
The wattmeter is an instrument used to measure the power or rate of 

consumption of electricity in a circuit in watts. The most commonly 

used powermeter is the Siemen's wattmeter shown in Fig. 4.17. 

 

 
 

Fig. 4.17 Siemen's Wattmeter 

 

The Siemen's Wattmeter is identical in principle with Siemen's 

electrodynamometer. It consists of two coils at right angles to each 

another. One coil C is movable and the other, V is fixed. The moving 

coil C is of low resistance and is inserted in the main circuit. The high 

resistance fixed coil V, is joined as a shunt (i.e., in parallel) to that part 

of the circuit for which the power consumption is required. In Fig. 4.17, 

this part is an electric lamp (L). On closing the circuit, the main current 

i  passes through the moving coil and a small current, proportional to the 

voltage E across the lamp terminals, passes through V, The turning 

moment is proportional to the product of these two, i.e., proportional to 

E i or the Watts used in L. When the moving coil is brought back to its 

normal position by turning the torsion head and its pointer through an 

angle say  , the turning moment is balanced by the torsional moment. 

Since torsional moment is proportional to   

 
 iE  



PHY 405             ELECTRONICS III 

139 

 

or Watt expended in L = K  

 

where the constant of proportionality K  is a constant of the instrument 

and must be determined experimentally. 

 

4.6     MAGNETIC FIELD METER 
There are several techniques for the measurement of magnetic field. 

These are based on the change in the resistance of a material (magneto-

resistance) under the application of magnetic field, or the voltage 

developed across a semiconductor under magnetic field (Hall effect). In 

this section we shall discuss a method which is based on electromagnetic 

induction or the voltage developed across a coil when flux changes 

through a coil. The change of flux can be produced by moving the coil 

across a magnetic field. This method is often called determination of 

magnetic field by search coil. 

 

A fluxmeter, an important instrument for measuring magnetic field 

strengths, has the same principle as that of a ballistic galvanometer. A 

Fluxmeter consists of a moving coil suspended by a single silk fibre 

without torsion, the upper end of the fibre being connected to a fixed flat 

spring as shown in Fig. 4.18 (a). 

 

 
 

Fig 4.18 (a) Construction of Fluxmetcr   (b) Fluxmeter in a circuit 

The coil is connected to the terminal X,X through two spirals C,C of 

thin silvered coil and is suspended in magnetic field of a permanent 

magnet NS. For direct measurement of the flux, a search coil is 

provided, which can be connected to the terminals X,X as shown in Fig. 

4.18 (b). 

 

The expression for the change in magnetic flux of a fluxmeter can be 

derived as follows: Let, 

fR  = Resistance of fluxmeter 

fL  = Sell Inductance of fluxmeter 
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sR  = Resistance of search coil 

iN  = No. of turns in search coil 

sL  = Self Inductance of search coil 

 

The emf induced in the search coil is 
dt

d
N


1 , where 

dt

d
 is the rate of 

change of flux 

in the search coil and the emf in the fluxmeter coil is  
dt

d
G


, where 

dt

d
 

is the angular velocity 

of the fluxmeter coil and G = NAB is a constant depending on the 

construction of the fluxmeter.   In addition, the emf produced in the 

circuit due to self inductances is 
dt

di
LL sf )(  or 

dt

di
L , where L is the total 

inductance of the circuit. The potential drop in the resistance is 

iRR sf )(   or iR , R  being the total resistance of the circuit. Using 

Kirchoffs law, we get 

 

 01  iR
dt

di
L

dt

d
G

dt

d
N


 

  iR
dt

di
L

dt

d
G

dt

d
N 


1   

 

In practical applications, the potential drop in resistances )( iR  is small 

and can be neglected in comparisons to other terms, giving 

 

 
dt

di
L

dt

d
G

dt

d
N 


1  

 

Integrating over time t , during which the flux change occurs, 

 

  
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000
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






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  )()()( 1212121 iiLGN    

 

Now, if we assume that the period in which the flux is changing is 

completely contained within the period )0( t  over which the 

integration is carried, both the initial and final currents are zero, giving 

 

 )()( 12121   GN  

   GN1     
G

N1  
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        

 

which suggests that the deflection in the fluxmeter accurately follows 

any change in flux in the coil. 

 

4.7 SUMMARY 

 A cathode ray oscilloscope is used for the measurement of 

electrical parameters like, ac and dc voltage, ac and dc 

current, time-phase relationship, frequency and for observing 

various waveforms. 

 Laboratory oscilloscopes can be classified into two categories: 

(i) Dual trace oscilloscope and (ii) Storage oscilloscope. 

 A signal generator provides a variety of output waveforms 

over a wide range of frequency. The most common output 

waveforms are: sine, pulse, square, triangular and ramp. 

 An electronic voltmeter is characterised by high input 

resistance. 

 A power meter is used to measure the power or rate of 

consumption of electricity in a circuit. 

 A magnetic field meter is an instrument for measuring 

magnetic field strengths. 

 

4.8 TERMINAL QUESTIONS 

(1) Explain the functioning of a general purpose CRO, giving the 

block diagram. 

(2) Explain the basic principle involved in the dual trace CRO. 

(3) How does storage CRO work? Explain. 

(4) Describe in detail the functions of a function generator. 

(5) Describe in detail, the functioning of the differential-amplifier 

type electronic voltmeter. 

(6) How does a Siemens power meter work? Explain. 

(7) Give in detail, how magnetic field can be measured with the help 

of a fluxmeter. 

 

4.9 SOLUTIONS AND ANSWERS 

SAQs 

 

1. See text 

2. See text 

3.  
cyc

sec8

cyc

div4

div

sec2 
T  

 
cycsec/8

11




T
f = 125 KHz 

4. See text 

5. See text 
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6. See text 

7. We know 

 

f   = 
1

2

4

1

R

R

RC
 

  = 
3

3

163 1060

10100

10004.0105004

1





 
 

 

  = 208 Hz 

Also,  02V  = 
2

1

R

R
VCC  

  = 











3

3

10100

1060
15  = 9 V 

8. See text 

9. See text 

10. 
mDd

Ddm

gRr

Rrg
i




)||(2

)||(
 

 

Substituting all the values, we get 

  i = 2.5 mA 

 

TQs 

1. See text 

2. See text 

3. See text 

4. See text 

5. See text 

6. See text 

7. See text 
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