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OPTICS II 
 
COURSE GUIDE 
Course Introduction 
In Optics I you studied the nature of light. There you studied that light is a wave motion. A very 
important characteristic of wave motion is the phenomenon of interference. 
 
The term interference refers to the phenomenon that waves, under certain conditions, intensify or 
weaken each other. The phenomenon of interference is inseparably tied to that of diffraction. In 
fact, diffraction is more inclusive; it contains interference and, in a sense, even refraction and 
reflection. It is only because diffraction is mathematically more complex that we treat 
interference and diffraction in separate Blocks, and discuss interference first. 
 
The prerequisite of all interference is the superposition of waves. If light from a source is divided 
by suitable apparatus into two beams and then superposed, the intensity in the region of 
superposition is found to vary from point to point between maxima, which exceed the sum of the 
intensities in the beams, and minima, which may be zero. This phenomenon is called interference. 
There are two general methods of obtaining beams from a single beam of light, and these provide 
a basis of classifying the arrangements used to produce interference. In one method, the beam is 
divided by passage through apertures placed side by side. This method, which is also called 
division of wave front, is useful only with sufficiently small sources. Alternatively, the beam is 
divided at one or more partially reflecting surfaces, at each of which, part of the light is reflected 
and part transmitted. This method is called division of amplitude. It can be used with extended 
sources, and so effects may be of greater intensity than with the division of the wavefront. In 
either case, it is convenient to consider separately the effects which result from the superposition 
of more than two beams (multiple beam interference). 
 
The phenomenon of interference, is explained on the wave model of light. What may puzzle you 
is the fact that light casts shadows of objects, i.e., light appears to travel in straight lines rather 
than bending around obstacles. This apparent contradiction was explained by Fresnel. You will 
learn that the ease with which a wave bends around corners is determined by the size of the 
obstacle relative to wavelength of light. The wavelength of light is about 710 10 m and the 
obstacles used in ordinary experiments are about 510 times bigger. However, a large number of 
obstacles, whose sizes are comparable to the wavelength of light, do exhibit diffraction of light. 
 
The phenomenon of diffraction was first observed by Grimaldi and a systematic explanation is 
due to Fresnel. According to him, in diffraction phenomenon, interference takes place between 
secondary wavelets from different parts of the same wavefront. Diffraction is classified in two 
categories: Fresnel diffraction and Fraunhofer diffraction.  
 
Unit 1 begins with the study of wave motion. Being familiar to most students from their study of 
Oscillations and Waves, it will serve primarily as a review. With the help of the principle of 
superposition, we have explained the phenomenon of interference. In this unit, we discuss in 
detail the phenomenon of interference produced by the division of the wavefront of light wave.  
 
In Unit 2, we will consider the formation of interference pattern by the division of amplitude. 
Such studies have many practical applications. Finally we briefly mention these applications.  
 
Unit 3 is devoted to interferometry. It deals with Michelson interferometer, which is an example 
of two beam interference and Fabry-Perot interferometer which is an example of multiple beam 



interference. Finally, an appendix given at the end of the unit provides a brief introduction to 
complex amplitudes. You might like to read it to enrich your knowledge. However, you will not 
be examined on it.  
 
For Fresnel diffraction, discussed in Unit 4, the experimental arrangement is fairly simple. The 
source or the observation screen or both are at a finite distance from the obstacle. But theoretical 
analysis of Fresnel diffraction, being essentially based on geometrical construction, is somewhat 
cumbersome. Nevertheless, Fresnel diffraction is more general; it includes Fraunhofer diffraction 
as a special case. 
 
In Fraunhofer diffraction, the source of light and the observation screen (or human eye) are 
effectively at infinite distance from the obstacle. The Fraunhofer diffraction from a single slit is 
of particular interest in respect of the general theory of optical instruments. This is discussed in 
detail in Unit 5. You will learn that when a narrow vertical slit is illuminated by a distant point 
source, the diffraction pattern consists of a series of spots along a horizontal line and situated 
symmetrically about a central spot. For a circular aperture, the diffraction pattern consists of 
concentric rings with a bright central disc. 
 
In Unit 6 you will learn about double slit and N -slit diffraction patterns. A distinct feature of 
double slit pattern is that it consists of bright and dark fringes similar to those observed in 
interference experiments. The N -slit diffraction pattern shows well-defined interference 
maximum. The sharpness of interference maximum increases as N increases. For a sufficiently 
large value of N, interference maxima become narrow lines. This is why diffraction gratings are 
an excellent tool in spectral analysis. 
 
An important point to learn is that fringed (diffracted) image of a point source is not a 
geometrical point. And diffraction places an upper limit on the ability of optical devices to 
transmit perfect information about any object. That is, all optical systems are diffraction limited. 
In Unit 7 you will learn to characterise the ability of an optical instrument to distinguish two close 
but distinct diffraction images of two objects or wavelengths based on the Rayleigh criterion.



UNIT 1   INTERFERENCE BY DIVISION OF WAVEFRONT 
Structure 
1.1 Introduction 

Objectives 
1.2      Wave Motion 
1.3       Principle of Superposition 
1.4 Young's Double-slit Experiment  

White Light Fringes  
Displacement of Fringes 

1.5  Fresnel’s Biprism 
1.6  Some Other Arrangement for Producing Interference by Division of Wavefront 
1.7  Summary 
1.8  Terminal Questions 
1.9 Solutions and Answers 
 
1.1   INTRODUCTION 
Anyone with a pan of water can see how the water surface is disturbed in a variety of 
characteristic patterns, which is due to interference between water waves. Similarly, interference 
occurs between sound waves as a result of which two people who hum fairly pure tones, slightly 
different in frequency, hear beats. But if we shine light from two torches or flashlights at the same 
place on a screen, there is no evidence of interference. The region of overlap is merely uniformly 
bright. Does it mean that there is no interference of light waves? The answer is 'No.' 
 
The interference in light is as real an effect as interference in water or sound waves, and there is 
one example of it familiar to everybody — the bright colours of a thin film of oil spread out on a 
water surface. There are two reason why the interference of light is observed in some cases and 
not in others? Firstly, light waves have very short wavelengths — the visible part of the spectrum 
extends only from 400 mm for violet light to 700 mm for red light. Secondly, every natural 
source of light emits light waves only as short trains of random pulses, so that any interference 
that occurs is averaged out during the period of observation by the eye, unless special procedures 
are used. 
 
Like standing waves and beats, the phenomenon of interference depends on the superposition of 
two or more individual waves under rather strict conditions that will soon be clarified. When 
interest lies primarily in the effects of enhancement or diminution of light waves, these effects are 
usually said to be due to the interference of light. When enhancement (or constructive 
interference) and diminution (or destructive interference) conditions alternate in a spatial display, 
the interference is said to produce a pattern of fringes as in the double slit interference pattern. 
The same condition may lead to enhancement of one colour at the expense of the other colour, 
producing interference colours as in the case of oil slicks and soap film about which you will 
study in next unit. 
 
In this unit, we will consider the interference pattern produced by waves originating from two 
point sources. However, in the case of light waves, one cannot observe interference between the 
waves from two independent sources, although the interference does take place. Thus, one tries to 
derive the interfering waves from a single wave so that the constant phase difference is 
maintained between the interfering waves. This can be achieved by two methods. In the first 
method a beam is allowed to fall on two closely spaced holes, and the two beam emanating from 
the holes interfere. This method is known as division of wavefront and will be discussed in detail 
in this unit. In the other method, known as division of amplitude, a beam is divided at two or 
more reflecting surfaces, and the reflected beams interfere. This will be discussed in the next unit. 



As the phenomenon of interference can be successfully explained by treating light as a wave 
motion, it is necessary to understand the fundamentals of wave motion. We shall therefore begin 
this unit with the study of wave motion which will serve as a recapitulation. 
 
In the next unit we will study how interference takes place by division of amplitude of light wave. 
 
Objectives 
After studying this unit, you should be able to 

 use the principle of superposition to interpret constructive and destructive interference, 
 distinguish between coherent and incoherent sources of light, 
 describe the origins of the interference pattern produced by double slit, 
 describe the intensity distribution in interference pattern, 
 express the fringe-width in terms of wavelength of light, 
 describe various arrangements for producing interference by division of wavefront, 
 appreciate the difference between Biprism and Lloyd's mirror fringes. 

 
1.2 WAVE MOTION 
 
Study Comment 
 
You may find it useful to go through the Unit 6 of the course "Oscillations and Waves." 
 
Simple Harmonic Motion 
A simple harmonic motion is defined as the motion of a particle which moves back and forth 
along a straight line such that its acceleration is directly proportional to its displacement from a 
fixed point in the line, and is always directed towards that point. 
 
The best and elementary way to represent a simple harmonic motion is to consider the motion of 
a particle along a reference circle (See Fig. 5.1). Suppose a particle P travels in a circular path, 
counterclockwise, at a uniform angular velocity  . The point N is the perpendicular projection of 
P on the diameter AOA' of the circle. When the particle P is at point B, the perpendicular 
projection is at 0. As the particle P starts from B, and moves round the circle, N moves from 0 to 
A, A to A' and then returns to O. This back and forth motion of N is simple harmonic. Let us 
obtain expressions for displacement, velocity and acceleration and define few terms. 

 

 
Fig. 5.1. Reference Circle (Left) and Simple Harmonic Motion (Right) 



 
Displacement 
Suppose the particle P starts from B and traces an angle   in time t. Then its angular velocity   
is 
 

 
t
   

 
where the angle   is measured in radians. The displacement, y, of N from O at time t, is thus 
given by 
 NPOOPONy sin  

 
  = sina   [  POBNPO ] 

 

But 
t
  , so that t   

 
 tay sin          (1.1) 
 
This is the equation of simple harmonic motion. 
 
SAQ 1 
See Fig. 1.1. If you have studied the motion of the point M, which is the foot of the perpendicular 
from the point P on the x -axis, then write down the equation of simple harmonic motion. 
 
Velocity: The velocity of N is given by 
 

 22cos yata
dt
dy

        (1.2)  

 
Acceleration: The acceleration of N is 
 

 yta
dt

yd 22
2

2

sin          (1.3) 

 
Periodic Time: The periodic time, T, of N is time taken by N to make one complete vibration. 
Thus 


2

T          (1.4) 

 
Amplitude: Amplitude of vibration is equal to the radius of the reference circle i.e., a. 
 
SAQ 2 
A particle is executing simple harmonic motion, with a period of 3s and an amplitude of 6 cm. 
One-half second after the particle has passed through its equilibrium position, what is its (a) 
displacement, (b) velocity, and (c) acceleration? 
 



Phase: The phase of a vibrating particle represents its state as regards 
 
(i)      the amount of displacement suffered by the particle with respect to its mean position, and 
 
(ii)      the direction in which the displacement has taken place. 
 
In Fig. 1.1, we have conveniently chosen t = 0 as the time when P was on the x-axis. The choice 
of the time t = 0 is arbitrary, and we could have chosen time t = 0 to be the 
instant when P was at 'P (see Fig. 1.2). If the angle P'OX =  , then the projection on the y-axis 
at any time t would be given by  
 

 
 

Fig. 1.2 At t = 0, the point P  is at 'P  and, therefore, the initial phase is   
 
 )sin(   tay         (1.5) 
 
The quantity )(  t is known as the phase of the motion and   represents the initial phase. It 
is obvious from the discussion that the value of   is quite arbitrary, and depends on the instant 
from which we start measuring time. 
 
We next consider two particles, P and Q rotating on the circle with the same angular velocity   
and P' and Q' are their respective positions at t = 0. Let the angle  P'OX and Q 'OX be   and 
  respectively (see Fig. 1.3). 
 

 
Fig.1.3:  The points N and N' execute simple harmonic motion with the same frequency  . The  

 initial phases of N and N' are   and   respectively 



 
Clearly at an arbitrary time t  the distance of the foot of perpendiculars from the origin would be 
 
 )sin(   tayP         (1.6a) 
 
 )sin(   tayQ         (1.6b) 
 
The quantity 
 
   )()( tt        (1.7) 
 
represents the phase difference between the two simple harmonic motions and if   = 0 (or an 
even multiple of  ) the motions are said to be in phase, and if   =   (or an odd multiple of 
 ), the motions are said to be out of phase. If we choose a different origin of time, the quantities 
  and   would change by the same additive constant; consequently, the phase difference 
(   ) is independent of the choice of the instant t = 0. 
 
Energy: A particle performing simple harmonic motion possesses both types of energies: 
potential and kinetic. It possesses potential energy on account of its displacement from the 
equilibrium position and kinetic energy on account of its velocity. These energies vary during 
oscillation; however, their sum is conserved provided no dissipative forces are present. Since the 
acceleration of vibrating particle is y2 , the force needed to keep a particle of mass m at a 
distance y from O is m y2 . If the particle is to be displaced through a further distance dy, the 
work to be done will be m y2 dy. Now the potential energy of the particle at a displacement y is 
equal to the total work done to displace the particle from O through a distance y. 
 

 P.E. = 22

0

2

2
1 ymdymyy

y
        (1.8) 

 
Using Eq. (1.2), the kinetic energy of the particle is given by 
 

 K. E. = )(
2
1

2
1 222

2

yam
dt
dym 






        (1.9) 

 
The total energy of the particle at any distance y from 0  is given by  

 

Total energy = K.E. + P.E. = 22222

2
1)(

2
1 ymyam    

 

    = 22

2
1 am      (1.10) 

 
Therefore, the total energy (intensity) is proportional to (amplitude)2, and, since f 2 , 
f being the frequency, the energy is also proportional to (frequency)2. 



 
If I  represents the intensity associated with a light wave then 
 
 2aI   
 
where a represents the amplitude of the wave.  
 
Wave-motion 
So far we considered a single particle, P, executing simple harmonic motion. Let us consider a 
number of particles which make a continuous elastic medium. If any one particle is set in 
vibration, each successive particle begins a similar vibration, but a little later than the one before 
it, due to inertia. Thus, the phase of vibration changes from particle to particle until we reach a 
particle at which the disturbance arrives exactly at the moment when the first particle has 
completed one vibration. This particle then moves in the same phase as the first particle. This 
simultaneous vibrations of the particles of the medium together make a wave. Such a wave can be 
represented graphically by means of a displacement curve drawn with the position of the particles 
as abscissa and the corresponding displacement at that instant as ordinate. If the particles execute 
simple harmonic motion, we obtain a sine curve as shown in Fig. 1.4. 
 

 
 
 

Fig. 1.4. Graphical representation of a wave 
 

It will be seen that the wave originating at a repeats itself after reaching i. The distance ai, after 
travelling which the wave-form repeats itself, is called the wavelength and is denoted by  . It is 
also evident that during the time T, while the particle at a makes one vibration, the wave travels a 
distance  . Hence the velocity v of the wave is given by 
 

 
T

v 
   

 
If n  is the frequency of vibration then f  = 1/T. Hence, we have 
 
 nv            (1.11) 
 
Particles in Same Phase 
Particles a and i have equal displacements (= zero) and both are tending to move upwards. They 
are said to be in the same phase. The distance between them is one wavelength. Hence, 
wavelength is the distance between two nearest particles vibrating in the same phase. Two 
vibrating particles will also be in the same phase if the distance between them is n , where n is 
an integer. 
 



Particles in Opposite Phase 
Particles a and e both have the same displacement (= zero), but while a is tending to go up, e is 
tending to move downwards. They are said to be in opposite phase. The distance between them is 

2/ . The particles are out of phase if the distance between them is 2/)12( n , where n  is an 
integer. 
 
Equation of a Simple Harmonic Wave 
Fig. 1.5 shows the wave travelling in the positive x -direction. The displacement y of the particle 
at 0 at any time t  is given by  
 

tay sin          (5.1) 
 

 
 

Fig. 1.5 A simple harmonic wave travelling towards right 
 

Let v be the velocity of propagation of the wave. Then the wave starting from 0 would reach  
point A, distant x from 0 in vx /  seconds. Hence, the particle at A must have started its vibration 

vx /  seconds later than the particle at 0, Consequently, the displacement at A at the time t would 

be same as was at O at time vx /  seconds earlier, i.e., at time 
v
xt  . Substituting 

v
xt   for t  in 

Eq. (1.1) we obtain the displacement at A at time t, which is given by 
 

 





 

v
xtay sin  

 
Using the relation T/2  and Tv / , we get 
 

)(2sin xvtay 



        (1.12) 

 
This equation represents the displacement of a particle at a distance x from a fixed point at a time 
t. This is, therefore, the equation of the wave. The wave shown in Fig. 1.5 is generated along a 
stretched string and in a rope. Such types of waves are called transverse waves. From Unit 4 of 
Optics I, you already know that light travels in the form of transverse waves, therefore Eq. (1.12) 
represents a light wave. 
 
Relation between Phase Difference and Path Difference 
The equation of simple harmonic wave is given by Eq. (1.12). If there are two particles 1P  and 

2P  at distance 1x  and 2x  from the origin, then,  



 

the phase angle of 1P  at a time t  equals )(2
1xvt 




 

 

the phase angle of 2P  at a time t  equals )(2
2xvt 




 

 
 
 phase difference between 1P  and 2P equals  

)(2)(2
21 xvtxvt 







= )(2
12 xx 




     

 
But )( 12 xx   is the path difference between 2P  and 1P . 
 

 Phase difference = 

2

(path difference) 

 
When two or more sets of waves are made to overlap in some region of space, interesting effects 
are observed. For example, when two stones are dropped simultaneously in a quiet pool, two sets 
of waves are created. In the region of crossing, there are places where the disturbance is almost 
zero, and others, where it is greater than that given by either wave alone. These effects can be 
explained using a very simple law known as the principle of superposition. We will use this 
principle in investigating the disturbance in regions where two or more light waves are 
superimposed. Let us now briefly study this principle. 
 
1.3   PRINCIPLE OF SUPERPOSITION 
In any medium, two or more waves can travel simultaneously without affecting the motion of 
each other. Therefore, at any instant the resultant displacement of each particle of the medium is 
merely the vector sum of displacements due to each wave separately. This principle is known as 
"the principle of superposition." It has been observed that when two sets of waves are made to 
cross each other, then after the waves have passed out of the region of crossing, they appear to 
have been entirely uninfluenced by the other set of waves. Amplitude, frequency and all other 
characteristics of the waves are as if they had crossed an undisturbed space. 
 
As a simple example, we consider a long stretched string AB (see Fig. 1.6). The end A of the 
string is made to vibrate up and down. This vibration is handed down from particle to particle of 
the string. Let the string be vibrating in the form of a triangular pulse, which propagates to the 
right with a certain speed v. We next assume that from the end B an identical pulse is generated 
which starts moving to the left with the same speed v. 
 

The expression 

2

(path difference) can be obtained in a less formal manner by remembering 

that a difference in phase of 2  corresponds to a path difference of one wavelength and 
calculating the required phase difference by proportion. 
 



 
 
Fig. 1.6 The propagation of two triangular pulses in opposite directions in a stretched string. The  

solid line gives the actual shape of the string; (a), (b), (c), (d) and (e) correspond to 
different instants of tune. 

 
Fig. 1.6(a) shows the position of pulse at 0t . At a little later time, each pulse moves close to 
the other as shown in Fig. 1.6(b), without any interference. Fig. 1.6(c) represents the position at 
an instant when the two pulses interfere; the dashed curves represent the profile of the string, if 
each of the impulses were moving all by itself, whereas the solid curve shows the resultant 
displacement obtained by the algebraic addition of each displacement. Shortly later in Fig. 1.6(d) 
the two pulses overlap each other and the resultant displacement is zero everywhere. At a much 
later time, the impulses cross each other (Fig. 1.6(e)) and move as if nothing had happened. This 
could hold provided the principle of superposition is true. 
 
Let us consider the following case of superposition of waves. 
 
Superposition of Two Waves of Same Frequency but having Constant Phase Difference 
Consider two waves of same frequency but having constant phase difference, say  . Since they 
have same frequency, i.e., the same angular velocity, we write 
 
 tay sin11   
and  
 )sin(22   tay  
 
where 1a  and 2a  are two different amplitudes, and   is the common angular frequency of the 
two waves. By the principle of superposition, the resultant displacement is 
 
 y  = 21 yy   
  = )sin(sin 21   tata  
  =  sincoscossinsin 221 tatata   
  = )sin(cos)cos(sin 221  ataat   
 



Let us write 
 
  coscos21 Aaa         (1.14a) 
and 
  sinsin2 Aa          (1.14b) 
 
where A  and   are new constants. This gives 
 
  sincoscossin tAtAy   
or 
 )sin(   tAy  
 
Hence the resultant displacement is simple harmonic and of amplitude A . Squaring and adding 
Eq. 1.14a and 1.14b, we get 
 
 2

2
2

21
2222 )sin()cos(sincos  aaaAA   

 
or 
 
 cos2 21

2
2

2
1

2 aaaaA   
 
Thus, the resultant intensity I  which is proportional to the square of the resultant amplitude, is 
given as 
 
 cos2 21

2
2

2
1

2 aaaaAI        (1.15)  
 
(Here we have taken the constant of proportionality as 1, for simplicity). 
 
Thus, we find that the resultant intensity is not equal to the sum of the intensities due to separate 
waves i.e., )( 2

2
2
1 aa  . Since the intensity of wave is proportional to square of amplitude, 2

11 aI   
and 2

22 aI  . As before, taking the proportionality constant as 1 , we can rewrite Eq. (1.15) as 
 
 cos2 2121 IIIII         (1.16) 
 
In Example 1, see how Eq. (1.16) has been used to find the resultant intensity. 
 
Example 1 
Consider interference due to two coherent waves of the same frequency and constant phase 
difference having intensities I  and I4 , respectively. What is the resultant intensity when the 
phase difference between these two waves is 2/  and  ? 
 
Solution 
According to Eq. (1.16) 
 
 I  = cos2 2121 IIII   
  



Given: 
 II 1  and 2I = I4 , so 

 I  = cos425 II   
  = cos45 II   
Hence 
 
 2/I  = 090cos45 II  = I5  
  
 I  = cos45 II     = I  
  
Thus there is a variation of intensity due to interference phenomenon. 
 
Refer again to Eq. (1.16). The intensity I  is maximum when 1cos  , that is, when phase 
difference is given by 
 
  n2  (even multiple of  ) 
 
From Eq. (1.16) 
 
 2121max 2 IIIII   
 
The resultant intensity is, thus, greater than the sum of the two separate intensities. If 
 
 21 II  , then, 1max 4II   
 
The intensity I  is minimum when 1cos  , i.e., when   is given by 
 
  )12(  n  (odd multiple of  ) 
 
We have from Eq. (1.16) 
 
 2121min 2 IIIII   
 
The resultant intensity is thus less than the sum of two separate intensities. If 21 II  , then minI = 
0, which means that there is no light. 
 
SAQ 3 
Two waves of same frequency and constant phases difference have intensities in the ratio 81:1. 
They produce interference fringes. Deduce the ratio of the maximum to minimum intensity. 
 
 
In general, for the two waves of same intensity and having a constant phase difference of  , the 
resultant intensity is given by 
 
 I  = cos22 11 II   
  = )cos1(2 1 I  



  = 
2

cos4 2
1

I  

 
Therefore, we find that when two waves of the same frequency travel in approximately the same 
direction and have a phase difference that remains constant with the passage of time, the resultant 
intensity of light in not distributed uniformly in space. The non-uniform distribution of the light 
intensity due to the superposition of two waves is called interference. At some points the 
intensity is maximum and the interference at these points is called constructive interference. At 
some other points the intensity is minimum and the interference at these points is called 
destructive interference. 

 
 
SAQ 4 
Fig. 1.7 shows two situations where waves emanating from two sources, A and B, arrive at point 
C and interfere. Which of the two situations indicate constructive interference and destructive 
interference? Give reasons. (Eq. (1.13) will help you in answering this question.) 
 

 
 

Fig. 5.7 
 
 
After solving the above SAQ one can infer that: for constructive interference, 

 
path difference = n , where n = 0, 1, 2, 3, …     (1.18) 
 

for destructive interference, 
 

path difference = 
2
m , where m  =1, 3, 5, 7, …     (1.19) 

 
For the production of stationary interference patterns, i.e. definite regions of constructive and 
destructive interference, the interfering waves must have (1) the same frequency, and (2) a 
constant phase difference (and they must be travelling in the same or nearly the same direction). 

Usually, when two light waves are made to interfere, we get alternate dark and bright 
bands of a regular or irregular shape. These are called interference fringes. 

 

 



If these conditions are satisfied, we say the wave sources and the waves are coherent. Sources 
can readily be found with the same vibrating frequency; however, the phase relationship between 
the waves may vary with time. In the case of light, the waves are radiated by the atoms of a 
source. Each atom contributes only a small part to the light emitted from the source and the waves 
bear no particular phase relationship to each other; the atoms randomly emit light, so the phase 
"constant" of the total light wave varies with time. Hence, light waves brought together from 
different light sources are coherent over very short periods of time and do not produce stationary 
interference patterns. Light from two lasers (about this you will study in Optics III) can be made 
to form stationary interference patterns, but the lasers must be phase-locked by some means. 
How, then, was the wave nature of light originally investigated, since lasers are a relatively recent 
development? In the following sections we will discuss the various arrangements, which provide 
coherent sources and enable us to observe interference phenomenon. Thomas Young had first 
demonstrated the interference of light. In the next section we will describe the experiment done 
by him. 
 
1.4   YOUNG'S DOUBLE-SLIT EXPERIMENT 
One of the earliest demonstrations of such interference effect was first done by Young in 1801, 
establishing the wave character of light. Young allowed sunlight to fall on a pinhole 0S , punched 
in a screen A as shown in Fig. 1.8. The emergent light spreads out and falls on pinholes 1S  and 

2S , punched in the screen B. Pinholes 1S  and 2S act as coherent sources. Again, two overlapping 
spherical waves expand into space to the right of screen B, Fig. 1.8 shows how Young produced 
an interference pattern by allowing the waves from pinholes 1S  and 2S  to overlap on screen C. 
 

 
 
Fig.1.8 Young's double slit experiment. The pinholes S, and S2 act as coherent sources and an  

interference pattern is observed on the screen C. 
 
Fig. 1.9 shows the section of the wavefront on the plane containing 0S , 1S  and 2S . Since the 
waves emanating from 1S  and 2S  are coherent, we will see alternate bright and dark curves of 
fringes, called interference fringes. The interference pattern is symmetrical about a bright central 
fringe (also called maximum), and the bright fringes decrease in intensity, the farther they are 
from the central fringe. 
 



 
 

Fig. 1.9 Sections of the spherical wavefronts emanating from 0S , 1S  and 2S  
 
 

 
 

Fig. 1.9: Sections of the spherical wavefronts emanating from 0S , 1S  and 2S  

 
To analyse the interference pattern and investigate the spacing of the interference fringes, 
consider the geometry in Fig. 1.10. Let S be a narrow slit illuminated by monochromatic light, 
and 1S  and 2S  two parallel narrow slits very close to each other and equidistant from S. The 
light waves from S arrive at 1S  and 2S  in the same phase. Beyond 1S  and 2S , the waves 
proceed as if they started from 1S  and 2S  with the same phase because the two slits are 
equidistant from S. 
 



 
 
Fig. 1.10 The geometry of Young's experiment: The path difference of the light from the slits  

  arriving at P on the screen is sind  
 
It is assumed that the waves start out at the same phase, because the two slits 1S  and 2S  are 
equidistant from S. Furthermore, the amplitudes are the same, because 1S  and 2S  are the same 
size slits and very close to each other. (So the amplitude does not vary very much.) Hence these 
waves produce an interference pattern on a screen placed parallel to 1S  and 2S . 
 
To find the intensity at a point P on the screen, we join PS1  and PS2 . The two waves arrive at P 
from 1S  and 2S  having traversed different paths PS1  and PS2 . Let us calculate this path 
difference PSPS 12  . Let  
 

y  = distance of P from P0, the central point on the screen  
 
d  = separation of two slits S} and S2  
 
D  = distance of slits from the screen 
 

The corresponding path difference is the distance S2A in Fig. 1.10, where the line AS1  has been 
drawn to make S1 and A equidistant from P. As Young's experiment is usually done with 

dD  , the angles   and ''  are nearly same and they are small. 
 
Hence, we may assume triangle S1A S2 as a right-angled triangle and S2A = d sin '  = d sin   = d 
tan , as for small  , sin  = tan  . As can be seen from the Fig. 1.10, tan   = y/D. 
 

 
D
ydASPSPS  212        (1.20) 

 
Now the intensity at the point P is a maximum or minimum according as the path difference 

PSPS 12   is an integral multiple of wavelength or an odd multiple of half wavelength (See Eq. 
1.18 and Eq. 1.19). Hence, for bright fringes (maxima), 
 



 012 
D
ydPSPS ,  , 2 , 3 , … = m  

 
where m = 0, 1, 2, ..... 
 
 dmDy /      (bright fringes)       (1.21) 
 
The number m is called the order of the fringe. Thus the fringes with m = 0, 1, 2,.... etc. are called 
the zero, first, second....etc. orders. The zeroth order fringe corresponds to the central maximum, 
the first order fringe (m = 1) corresponds to the first bright fringe on either side of the central 
maximum, and so on. For dark fringes (minima), 
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where m = 0, 1, 2, … 
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 (dark fringes)      (1.22) 

 
Eq. (1.21) or Eq. (1.22) can be used to find out the distance v« of the nth order bright (or dark) 
fringe. Try to solve the following SAQ. 
 
SAQ 5 
Monochromatic light passes through two narrow slits 0.40 mm apart. The third-order bright 
fringe of the interference pattern, observed on a screen 1.0 meter from the slits, is 3.6 mm from 
the centre of the central maximum. What is the wavelength of the light ? 
 
 
Fringe Width 
If ny  and 1ny  denote the distances of the nth and the )1( n th bright fringes, then 
 

 n
d
Dyn   

and 

 dn
d
Dyn )1(1   

 
The spacing between the nth and the )1( n th fringes (bright) is given by 
 

 dDn
d
Dn

d
Dyy nn /)1(1    

 
It is independent of n. Hence, the spacing between any two consecutive bright fringes is the same. 

Similarly, it can be shown that the spacing between two dark fringes is also 
d
D

. The spacing 



between any two consecutive bright or dark fringes is called the fringe-width, which is denoted 
by  . Thus 
 

 
d
D

  

 
One also finds, by experiment, that fringe-width 
 
(i)    varies directly as D, 
 
(ii)    varies directly as the wave-length of the light used, and  
 
(iii)    inversely as the distance d between the slits. 
 
The fringe-widths are so fine that to see them, one usually uses a magnifier or eyepiece. 
 
To make certain that you really understand the meaning of the fringe width, try the following 
SAQs. 
 
 
SAQ 6 
In a two-slit interference pattern with  = 6000 Å, the zero order and tenth order maxima fall at 
12.34 mm and 14.73 mm respectively. Find the fringe width. 
 
 
 
SAQ7 
If in the SAQ 6, A is changed to 5000 A, deduce the positions of the zero order and twentieth 
order fringes, other arrangements remaining the same. 
 
 
Shape of the Interference Fringes 
In Fig. 1.11, suppose 1S  and 2S  represent the two coherent sources. At the point P, there is 
maximum or minimum intensity according as 
 

nPSPS  12  
or 
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Thus for a given value of n, the locus of points of maximum or minimum intensity is given by 
 
 PSPS 12  = constant 
 
which is the equation of a hyperbola with 1S  and 2S  as foci. In space, the locus of points of 
maximum or minimum intensity for a particular value of n will be a hyperboloid of revolution, 
obtained by revolving the hyperbola about the line 21SS . 
 



 
 

Fig. 1.11 Shape of the fringes 
 
In practice, fringes are observed on a screen XY in a plane normal to the plane of the figure and 
parallel to the line joining 21SS . Hence the fringes that are observed are simply the sections of 
the hyperboloids by this plane, i.e., they are hyperbolae. Since the wavelength of light is 
extremely small (of the order of 510 cm), the value of )( 12 PSPS   is also of that order. Hence 
these hyperbolae appear, more or less, as straight lines. 
 
Intensity Distribution in the Fringe-System 
To find the intensity, we rewrite Eq. (1.15), taking 21 aa  , as follows 
 
 2AI   = )cos1(2 2 a  
 

  = 
2

cos4 22 a  

    
If the phase difference is such that  = 0, 2 , 4 , …, this gives 24a  or 4 times the 
intensity of either beam. If   , 3 , 5 , …, the intensity is zero. 
 
In-between, the intensity varies as 2/cos2  . Fig. 1.12 shows a plot of intensity against the 
phase difference. When the two beams of light arrive at a point on the screen, exactly out of 
phase, they interfere destructively, and the resultant intensity is zero. One may well ask what 
becomes of the energy of the two beams, since the law of conservation of energy tells us that it 
cannot be destroyed. The answer to this question is that the energy, which apparently disappears 
at the minima, is actually still present at the maxima, where the intensity is greater than would be 
produced by the two beams acting separately. In other words, the energy is not destroyed, but 
merely redistributed in the interference pattern. The average intensity on the screen is exactly 
what would exist in the absence of interference. Thus, as shown in Fig. 1.12, the intensity in the 
interference pattern varies between 4A2 and zero. Now each beam, acting separately, would 
contribute 2A , and so, without interference, we would have a uniform intensity of 22A , as 
indicated by the broken line. Let us obtain the average intensity on the screen for n fringes. We 
have 
 



 
 
Fig. 1.12 Intensity distribution for the interference fringes from two waves of the same frequency 
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Thus, the average intensity is equal to the sum of the separate intensities. That is whatever energy 
apparently disappears at the minima is actually present at the maxima. There is no violation of the 
law of conservation of energy in the phenomenon of interference. 
 
Till now we have considered interference pattern produced when a monochromatic light from a 
narrow slit falls on two parallel slits. What happens if white light is used to illuminate slits? Read 
the following sub-section. 
 
1.4.1   White-Light Fringes 
If white light is used to illuminate the slits we obtain an interference pattern consisting of a 
central 'white' fringe, having on both sides a few coloured fringes and then a general illumination. 
 
A pair of white light coherent sources is equivalent to a number of pairs of monochromatic 
sources. Each monochromatic pair produces its own system of fringes with a different fringe-

width  , since   depends on   





 

d
D

 . 



 
At the centre of the pattern, the path difference between the interfering waves is zero. Therefore, 
the path difference is also zero for all wavelengths. Hence, all the different coloured waves of the 
white light produce a bright fringe at the centre. This superposition of the different colours makes 
the central fringe 'white'. This is the 'zero order fringe'. 
 
As we move on either side of the centre, the path difference gradually increases from zero. At a 
certain point it becomes equal to half the wavelength of the component having the smallest wave-
length, i.e., violet. This is the position of the first dark fringe of violet. Beyond this, we obtain the 
first minimum of blue, green, yellow and of red in the last. The inner edge of the first dark fringe, 
which is the first minimum for violet, receives sufficient intensity due to red, hence it is reddish. 
The outer edge of the first dark fringe, which is minimum for red, receives sufficient intensity due 
to violet, and is therefore, violet. The same applies to every other dark fringe. Hence, we obtain a 
few coloured fringes on both sides of the central fringe. 
 
As we move further away from the centre, the path difference becomes quite large. Then, from 
the range 7500 - 4000 Å, a large number of wavelengths (colours) will produce maximum 
intensity at a given point, and an equally large number will produce minimum intensity at that 
point. For example, at any point P, we may have 
path difference 
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Thus, at P, we shall have 11th, 12th, 13th, etc., bright fringes of 1 , 2 , 3 , etc., and 11th, 12th, 

13th, etc., dark fringes of '
1 , '

2 , '
3 , etc. Hence, the resultant colour at P is very nearly white. 

This happens at all points, for which the path difference is large. Hence, in the region of large 
path difference uniform white illumination is obtained. 
 
 
 
 
 
 
 
SAQ 8 
Let the path difference 5

21 1030  PSPS  cm What are the  ’s for which the point P is a 
maximum? 
 
In the usual interference pattern with a monochromatic source, a large number of interference 
fringes are obtained, and it becomes extremely difficult to determine the position of the central 
fringe. Hence, by using white light as a source the position of central fringe can be easily 
determined. 
 
 
 

For maxima, path difference = n , where n = 0, 1, 2, ….  

For minima, path difference = 

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1.4.2    Displacement of Fringes 
We will now discuss the change in the interference pattern produced when a thin transparent 
plate, say of glass or mica, is introduced in the path of one of the two interfering beams, as shown 
in Fig. 1.13. It is observed that the entire fringe-pattern is displaced to a point towards the beam 
in the path of which the plate is introduced. If the displacement is measured, the thickness of the 
plate can be obtained provided the refractive index of the plate and the wavelength of the light are 
known. 
 

 
 
Fig. 1.13: If a thin transparent sheet (of thickness t ) is introduced In one of the beams, the fringe  

   pattern gets shifted by a distance dtD /)1(   
 
Suppose a thin transparent plate of thickness t and refractive index   is introduced in the path of 
one of the constituent interfering beams of light (say in the path of PS1 , shown in Fig. 1.13). 
Now, light from 1S  travels partly in air and partly in the plate. For the light path from 1S  to P, 
the distance travelled in air is ( tPS 1 ), and that in the plate is t. Let c and v be the velocities of 
light in the air and in the plate, respectively. If the time taken by light beam to reach from 1S  to P 
is, T, then 
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Thus the effective path in air from 1S  to P is ])1([ 1 tPS   , i.e., the air path PS1  is increased 
by an amount t)1(  , due to the introduction of the plate of material of refractive index,  . 
 
Let O be the position of the central bright fringe in the absence of the plate, the optical paths 

OS1 and OS2  being equal. On introducing the plate, the two optical paths become unequal. 
Therefore, the central fringe is shifted to 'O  such that at 'O  the two optical paths become equal. 
A similar argument applies to all the fringes. Now, at any point P, the effective path difference is 
given by 
 
 ])1([ 12 tPSPS    = tPSPS )1()( 12    
 

From Eq. (1.20), y
D
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If the point P is to be the centre of the nth bright fringe, the effective path difference should be 
equal to n , i.e., 
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In the absence of the plate (t = 0), the distance of the nth bright fringe from O is n
d
D

. 

 Displacement 0y  of the nth bright fringe is given by 
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The shift is independent of the order of the fringe, showing that shift is the same for all the bright 
fringes. Similarly, it can be shown that the displacement of any dark fringe is also given by Eq. 

(1.25). Thus, the entire fringe-system is displaced through a distance t
d
D )1(   towards the side 

on which the plate is placed. The fringe-width is given by 
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which is the same as before the introduction of the plate. 
 
Eq. (1.25) enables us to determine the thickness of extremely thin transparent sheets (like that of 
mica) by measuring the shift of the fringe system. 
 
Now, apply this strategy yourself to SAQ 9. 
 
SAQ 9 
In a double slit interference arrangement one of the slits is covered by a thin mica sheet whose 
refractive index is 1.58. The distances 21SS  and AO (see Fig. 1.13) are 0.1 cm and 50 cm, 
respectively. Due to the introduction of the mica sheet, the central fringe gets shifted by 0.2 cm. 
Determine the thickness of the mica sheet. 
 
 
1.5   FRESNEL'S BIPRISM 
With regard to Young's double-slit experiment, objection was raised that the bright fringes 
observed by Young were probably due to some complicated modification of the light by the 
edges of the slits and not due to interference. Soon after, Fresnel devised a series of arrangements 
to produce the interference of two beams of light which was not subject to this criticism. One of 
the experimental arrangements, known as Fresnel's Biprism arrangement, is shown in Fig. 1.14. 
 

 
 

Fig. 1.14: Diagram of Fresnel's Biprism experiment 
 

S is a narrow vertical slit illuminated by monochromatic light. The light from S  is allowed to fall 
symmetrically on the Biprism P, placed at a small distance from S and having its refracting edges 
parallel to the slit. The light emerging from the upper and lower halves of the prism appears to 
start from two virtual images, 1S  and 2S  of S , which act as coherent sources. The cones of light 

ebS1 and caS2 , diverging from 1S  and 2S , are superposed and the interference fringes are 
formed in the overlapping region be. 
 
If screens M and N are placed as shown in the Fig. 1.14, interference fringes are observed only in 
the region be. When the screen ae is replaced by a photographic plate, a picture like the upper 
one, in Fig. 1.15, is obtained. 
 



The closely spaced fringes in the centre of the photograph are due to interference, while the wide 
fringes at the edge of the photograph are due to diffraction. These wider bands are due to the 
vertices of the two prisms, each of which acts as a straight edge, giving a pattern of diffraction 
(about this you will learn in Optics III). When the screens M and N are removed from the light 
path, the two beams overlap over the whole region ae. The lower photograph in Fig. 5.15 shows 
for this case the equally spaced interference fringes superimposed on the diffraction pattern, of a 
wide aperture. 
 

 
 
Fig. 1.15 Interference and diffraction fringes produced in the Fresnel Biprism experimental  

  arrangement 
 
With such an experiment, Fresnel was able to show the interference effect without the diffracted 
beams through the two slits. Just as in Young's double slit experiment, this arrangement can also 
be used to determine the wavelength of monochromatic light. The light illuminates the slit S and 
interference fringes can be easily viewed through the eyepiece. The fringe-width   can be 
determined by means of a micrometer attached to the eyepiece. If D is the distance between 
source and screen, and d the distance between the virtual images 1S  and 2S , the wave-length is 
given by 
 

D
d

           (5.26) 

 
The distances d and D can easily be determined by placing a convex lens between the Biprism 
and the eyepiece. For a fixed position of the eyepiece, there will be two positions of the lens, 
shown as 1L  and 2L  in Fig. 1.16 where the images of 1S  and 2S  be seen at the eyepiece. Let 1d  
be the distance between the two images, when the lens is at the position 1L  (at a distance 1b  from 
the eyepiece). Let 2d  and 2b  be the corresponding distances, when the lens is at 2L . Then it can 
easily be shown that 
 
 21ddd           (1.27a) 
and  

21 bbD           (1.27) 
 



 
 
Fig. 1.16 Fresnel's biprism arrangement. C and L represent the position of cross wires and the 

eyepiece, respectively. In order to determine d a lens is introduced between the biprism 
and cross wires. 1L  and 2L  represent the two positions of the lens where the slits are 
clearly seen. 

 
Use Eq. (1.26) and (1.27) to solve the following SAQ. 
 
SAQ 10 
In a Fresnel's Biprism experiment, the eyepiece is at a distance of 100 cm from the slit. A convex 
lens inserted between the Biprism and the eyepiece gives two images of the slit in two positions. 
In one case, the two images of the slit are 4.05 mm apart, and in the other case 2.10 mm apart. If 
sodium light of wavelength 5893 Å is used, find the thickness of the interference fringes. 
 
 
1.6 SOME OTHER ARRANGEMENT FOR PRODUCING INTERFERENCE BY  
         DIVISION OF WAVEFRONT 
Two beams may be brought together in several other ways to produce interference. In Fresnel's 
two-mirror arrangement, light from a slit is reflected in two plane mirrors slightly inclined to 
each other. The mirror produces two virtual images of the slit, as shown in Fig. 1.17. 
 

 
 

Fig. 1.17 Fresnel's two mirror arrangement. 
 
They are like the images in Fresnel's biprism, and interference fringes are observed in the region 
bc, where the reflected beams overlap. 



 
Even a simpler mirror method is available. This is known as Lloyd's mirror. Here the slit and its 
virtual image constitute the double source. 
 
Lloyd's Mirror 
It is a simple arrangement to obtain two coherent sources of light to produce a stationary 
interference pattern. It consists of a plane mirror MN (Fig. 1.18) polished on the front surface and 
blackened at the back (to avoid multiple reflection). 1S  is a narrow slit, illuminated by 
monochromatic light, and placed with its length parallel to the surface of the mirror. Light from 

1S  falls on the mirror at nearly grazing incidence, and the reflected beam appears to diverge from 

2S , which is the virtual image of 1S . Thus, 1S  and 2S  act as coherent sources. The direct cone 
of light EAS1  and the reflected cone of light BS2C are superposed, and the interference fringes 
are obtained in the overlapping region BC on the screen. 
 

 
 

Fig. 5.18 Lloyd's mirror 
 

Zero-Order Fringe 
The central zero-order fringe, which is expected to lie at 0 (the perpendicular bisector of 21SS ) is 
not usually seen since only the direct light, and not the reflected light, reaches O. It can be seen 
by introducing a thin sheet of mica in the path of light from 1S , when the entire fringe system is 
displaced in the upward direction. (You could see this yourself while solving SAQ 11.) 
 
 
SAQ 11 
Interference bands are obtained with a Lloyd's mirror with light of wavelength 51045.5  cm. A 
thin plate of glass of refractive index 1.5 is then placed normally in the path of one of the 
interfering beams. The central dark band is found to move into the position previously occupied 
by the third dark band from the centre. Calculate the thickness of the glass plate. 
 
 

At grazing incidence, almost the entire incident light is reflected so that the direct and 
the reflected beam have nearly equal amplitudes. Hence the fringes have good contrast. 



With white light the central fringe is expected to be white, but actually it is found to be 'dark'. 

This is because the light suffers a phase change of   or a path-difference of 
2


 when reflected 

from the mirror. Therefore, the path difference between the interfering rays at the position of 

zero-order fringe becomes 
2


 (instead of zero), which is a condition for a minimum. Hence the 

fringe is dark. 
 
Determination of Wavelength 
Let d be the distance between the coherent sources 1S  and 2S , and D the distance of the screen 
from the sources. The fringe-width is then given by 
 

 
d
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Thus, knowing  , D and d, the- wavelength   can be determined. 
 
Acromatic Fringes and their Production by Lloyd's Mirror 
A system of white and dark fringes, without any colours, obtained by white light are known as 
'achromatic fringes'. 
 
Ordinarily, with white light, we obtain a central white fringe, having on either side of it a few 
coloured fringes (as you have studied in subsection 1.4.1). This is because the fringe-width 

d
D   is different for different wavelengths (colours). If however, the fringe-width is made 

the same for all wavelengths, the maxima of each order for all wavelengths will coincide, 
resulting into achromatic fringes. That is, for achromatic fringes, we must have 
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or 
d
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We can easily realise this condition with a Lloyd's mirror by using a slit illuminated by a narrow 
spectrum of the white light as shown in Fig. 1.19. The narrow spectrum 11VR  is produced by a 
prism, or, preferably, by a plane diffraction grating. The Lloyd's mirror is placed with its surface 
close to the violet end of the spectrum and such that 11VR  is perpendicular to its plane. 

 
Fig. 1.19 Achromatic fringes produced by Lloyd's mirror 



 
11VR , and its virtual image, 22VR , formed by the mirror act as coherent sources. They are 

equivalent to a number of pairs of sources of different colours. Thus, the pair 21RR  produces a set 
of red fringes, and the pair 21VV  a set of violet fringes. The intermediate pairs produce the sets of 
fringes of intermediate colours. The red and violet fringes will be of the same width if 
 

d


= constant 

 

i.e., 
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where rd  is the distance 21RR , and vd  the distance 21VV .  
 
Hence, the last expression gives 
 

 
v
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



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Therefore, if the distance of the violet end 1V  from the surface of the mirror is so adjusted by 
displacing the mirror laterally that the above condition is satisfied, the red and violet fringes will 
have the same width, and will exactly be superposed on each other. Since, in a grating spectrum, 
the dispersion is accurately proportional to the wavelength, the condition )/( d = constant is 
simultaneously satisfied for all the wavelengths. Thus, when this adjustment is made, fringes of 
all colours are superposed on one another. Hence, achromatic fringes are observed in the eyepiece 
E placed in the over-lapping region. 
 
Difference between Biprism and Lloyd's Mirror Fringes 
The following are the main points of difference between the biprism and Lloyd's mirror fringes. 
 
(1)        In biprism, the complete pattern of fringes is obtained. In Lloyd's mirror, ordinarily, only 

a few fringes on one side of the central fringe are visible, the central fringe itself being 
invisible. 

 
(2)       In biprism the central fringe is bright, while in Lloyd's mirror it is dark. 
 
(3)       The central fringe in biprism is less sharp than that in Lloyd's mirror. 
 
The coherent sources in the biprism are 11BA  and 22 BA  (Fig. 1.20a) the virtual images of a slit 
AB. In Lloyd's mirror, the coherent sources are a slit 11BA  itself and its virtual image 22 AB  (Fig. 
1.20 b). In both cases, 1A  and 2A  form one extreme pair of coherent point-sources, and 1B  and 

2B  another extreme pair. In the biprism, the zero-order fringes corresponding to 11BA  and 22 BA  



are formed at A0 and B0, which lie on the right bisectors of 21 AA  and 21BB , respectively. Hence, 
the zero-order fringe extends from 0A  to 0B . In Lloyd's mirror, on the other hand, all pair of 
coherent sources have a common perpendicular bisector, so that zero-order fringes due to all of 
these are formed in one and the same position. Hence the zero-order fringe is sharp in this case. 

 

 
 

Fig. 1.20 Showing the difference between biprism and Lloyd's mirror fringes 
 

(4) In biprism dBBAA  2121 . Hence, the fringe-width 
d

D   is the same for 

all pairs of coherent sources. In Lloyd's mirror arrangement d is different for different 
pairs of coherent sources, e.g., 2121 BBAA  . Hence, the fringe-width is different for 
different pairs of coherent sources. 
 

1.6   SUMMARY 
 The relationship between phase difference and path difference is:  

 

phase difference = 

2

(path difference) 

 If two waves of same frequency and of amplitudes 1a and 2a  and phase difference   are 
superposed then, according to principle of superposition, the amplitude A of the resultant 
wave is given by 

 
  cos2 21

2
2

2
1

2 aaaaA   
 

 Two sources are said to be coherent if they emit light waves with constant or no phase 
difference. 

 When two waves of the same frequency travel in approximately the same direction and 
have a phase difference that remains constant with time, the resultant intensity of light is 
not distributed uniformly in space. This non-uniform distribution of the light intensity is 
due to the phenomenon of interference. 

 
 For constructive interference 

 
path difference = n , where n = 0, 1, 2, ...  

 
and for destructive interference 



 

path difference = 
2
m , where m  = 1, 3, 5, 7, … 

 
 In an interference pattern, the distance between any two consecutive maxima or minima 

is given by 
 

 
d

D   

 
where   is called the fringe-width, A is the wavelength of light used, d is the distance 
between the two coherent sources, and D is the distance between the sources and the 
screen. 

 
 When a thin transparent plate of thickness t and refractive index   is introduced in the 

path of one of the constituent interfering beams of light, the entire fringe system is 

displaced through a distance t
d
D )1(  . 

 
 Just as in Young's double slit experiment, the wavelength of light can be determined from 

measurement of fringe-width produced by the biprism by the following relation: 
  

  
D
d

   

 
where 21ddd   and 21 bbD   

 
id  is the distance between the two images, when the lens is at the position 1L  at a 

distance 1b  from the eyepiece. d2 and b2 are the corresponding distances when the lens is 
at 2L . 

 
 

 Some other devices for producing coherent sources are: Fresnel's two-mirror arrangement 
and Lloyd's mirror. 

 
 Lloyd's mirror produces achromatic fringes. 

 
5.7   TERMINAL QUESTIONS 
(1)         Young's experiments is performed with light of the green mercury line. If the fringes are 

measured with a micrometer eyepiece 80 cm behind the double slit, it is found that 20 of 
them occupy a distance of 10.92 mm. Find the distance between two slits. Given that the 
wavelength of green mercury line is 5460 Å. 

 
(2)         In a certain Young's experiment, the slits are 0.2 mm apart. An interference 

pattern is observed on a screen 0.5m away. The wavelength of light is 5000 Å. Calculate 
the distance between the central maxima and the third minima on the screen. 



 
(3)         A Lloyd's mirror, of length 5 cm, is illuminated with monochromatic light (  = 5460 Å) 

from a narrow slit 0.1 cm from its plane, and 5 cm, measured in that plane, from its near 
edge. Find the separation of the fringes at a distance of 120 cm from the slit, and the total 
width of the pattern observed. 

 
5.8 SOLUTIONS AND ANSWERS 
 
SAQs 
 
(1) The distance OM is given by cosa . Hence the equation is cosax   or 

tax cos . 
 

(2) t
T

atay  2sinsin   

 If we replace   by 180°, and put a = 6 cm = 0.06 m, and T = 3 s, we get 
 

  ty
3
1802sin)06.0(

0
  

 
(a) Thus displacement after 0.5 sec is,  

y  = t
3
1802sin06.0

0
 

 = 0.06 060sin  
 

 = 0.052 m 
 
 (b) velocity v  = ta  cos  

    = t
TT

a  2cos2
 

    = 0.06 5.0
3
1802cos2 0





T


 

    = 0.06 060cos2


T


 

    = 0.063 m/s  

(c) acceleration = y2   = ta
T


 sin2 2







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           = t
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    = 0.228 2ms  
 
(3) We have  
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(4) The phase difference is related to the path difference by Eq. (5.13) as follows 
 

phase difference = )(2 BCAC 



 

   = 

 )34(2

  

   = 2  
  

This is the condition of maximum intensity. So the waves interfere, constructively, in Fig. 
1.7(a). 
 
In the case of Fig. 1.7(b) 

 

phase difference = )(2 BCAC 



 

   = 

 )5.23(2

  

   =   
 
This is the condition of minimum intensity. 
 
Here the waves are completely out of phase and destructive interference occurs.  
 

(5)        Given: d = 0.40 mm, D = 103 mm, y = 3.6 mm, and m = 3. Using Eq. (1.21), we get 

  4
3 108.4

103
)40.0)(6.3( 




mD
yd mm = 5108.4   cm 

 
Hence, the light is in the blue-green region of the visible spectrum. 
 

6. With  = 6000 Å, the distance between zero-order and tenth order fringe is  
14.73 mm – 12.34 mm = 2.39mm, so that the fringe width is 2.39 mm/10 = 0.239 mm. 

 

7. 
d

D  . Therefore 

   



  
5
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5000

)(
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6000 
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  239.0
6
5)(

6
5)( 60005000   = 0.199 mm 

 
Thus, with  = 5000 Å, the zero-order fringe will still be at 12.34 mm, while the 
twentieth order fringe will be at  

 
12.34 mm + (0.199 mm 20) = 16.32 mm  

 
(8) For maxima, the path difference = n  
 

or  51030   cm  

 
n

51030 
 cm 

where n = 1,2,3,4 ... 
 

(9)        0y = 0.2 cm; d = 0.1 cm; D = 50 cm 

Hence 
58.050
2.01.0

)1(
0








D
yd

t  

  
= 4107.6  cm 

 
(10)      The fringe-width is given by 
 

  
d

D
2
  , where 21 ddd   

 
 Here, 05.41 d  mm = 0.405 cm and 2d = 2.10 mm = 0.210 cm 
 

  210.0405.0 d = 0.292 cm 
 

 Also, D = 100 cm and  = 5893 Å = 5893 810  cm. 

  
292.0

105893100 8
 = 0.0202 cm 

 
(11)      By introducing a glass plate of thickness t in one of the interfering beams, t cm of air  

( = 1) are replaced by t cm of glass ( = 1.5). t cm of glass are optically equivalent to 
t  or 1.5 t cm of air. The, increase in the length of the path = ttt 5.0 . This 

produces a shift of 2 in the interference bands 
 
  51045.5225.0  t  

 and 5
5

108.21
5.0

1045.52 





t  cm  



 
TQs 
 (1) The fringe width   in Young's experiment is dD /  . 

Since 20 fringes occupy a distance of 10.92 mm, the fringe width   is 
)20/92.10( mm = (10.92/20) mm « (10.92 310 /20) m.  

Also      D = 80 cm = 0.8 m, and   = 710460.5  m 

  3

7

1092.10
208.010460.5








d m = 4107912.0  m 

  
2. See Fig. (1.10). Suppose the required distance on the screen is y.  
 

Here       4102 d  m (slit separation) 
 

7105  m (wavelength) 
 

1105 D  m (distance between slit to screen) 
 

The minima is observed when the phase difference between the two waves is an odd 
multiple of  , i.e., when 
 

    , 3 , 5 , 7 , … 
 

At the third minimum,  5  
 

From Eq. (1.13), path difference = )5(22 






  

 
But from Fig. 1.10, the path difference between the waves arriving at P is sind  
 

Hence,  )sin(25 

 d  
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                    = 6.25 310  
 

From Fig. 1.10, the required distance on the screen tanDy   
 = 31 1025.6105sin  D    sintan   
 = 3.1 m 
 

3) Let MM´ (Fig. 1.21) the Lloyd's mirror be 5 cm long. The source 1S  is as shown in the 
figure. The interference pattern is observed in the region AB. 

 



The fringe width   is given by 
d
D   

 

 
 

Fig. 1.21 
 

Given   = 5460 Å = 5.460 710  m; D = 120 cm = 1.20 m and d = 0.2 cm =                
2 210  m 

   

3

7

102
12010460.5








 m = 3.276 410 m 

 
          = 0.3276 mm.  
 

The total width of interference pattern is obviously AB. From Fig. (1.21), 
 
  5/1.0tan 1   and 10/1.0tan 2   
 

Also from right angled CBM ' , 
  

2tan'/ CMBC  or )10/1.0(110BC = 1 cm 
 
 BCACAB  = 2.3 – 1.1 = 1.2 = 1.2 310 cm 



UNIT 2 INTERFERENCE BY DIVISION OF AMPLITUDE 
Structure 
2.1         Introduction 

Objectives 
2.2  Stokes' Analysis of Phase Change on Reflection 
2.3  Interference in Thin Films 
2.4  Interference by a Wedge-shaped Film 
2.5  Newton's Rings 
2.6  Applications of the Principle of Interference in Thin Films 
2.7  Summary 
2.8  Terminal Questions 
2.9 Solutions and Answers 
 
2.1   INTRODUCTION 
We have all seen the marvellous rainbow colours that appear in soap bubbles and thin oil films. 
When a soapy plate drains, coloured reflections often occur from it. A similar effect occurs when 
light is reflected from a wet pavement that has an oil slick on it. Have you ever wondered what 
causes the display of colours when light is reflected from such thin oil film or soap bubble? 
 
All these effects are due to interference of light reflected from the opposite surfaces of the film. 
Thus the phenomenon owes its origin to a combination of reflection and interference. 
 
In the last unit, we discussed the interference of light, but there, the two interfering light waves 
were produced by division of wavefront. For example, in Young's double slit experiment, light 
coming out of a pin hole was allowed to fall into two holes, and the light waves emanating from 
these two holes interfered to produce the interference pattern. But the interference of light waves, 
which is responsible for the colour of thin films, involves two light beams derived from a single 
incident beam by division of amplitude of the incident wave. When a light wave falls on a thin 
film, the wave reflected from the upper surface interferes with the wave reflected from the lower 
surface. This gives rise to beautiful colours. However, one must initially consider how the phase 
of a light wave is affected when it is reflected. 
 
In the last unit, you noted that in Lloyd's mirror, the interference takes place between waves 
coming direct from the source and those reflected from an optically denser medium. As a 
consequence of this, the central fringe is found to be 'dark' instead of 'bright'. This was explained 
by assuming the fact that a phase change of   takes place when light waves are reflected at the 
surface of a "denser" medium. We will begin this unit by giving proof of the statement made 
above; this proof will be based on the principle of reversibility of light. 
 
It is also possible to observe interference using multiple beams. This is known as multiple beam 
interferometry, and it will be discussed in the next unit. It will be shown there that multiple beam 
interferometry offers some unique advantages over two beam interferometry. 
 
Objectives 
After studying this unit, you should be able to: 

 prove that when a light wave is reflected at the surface of an optically denser medium, it 
suffers a phase change of n. 

 
 describe the origin of the interference pattern produced by a thin film, 



 describe the formation, shape and location of interference fringes obtained from a thin 
wedge-shaped film, 

 describe how Newton's rings are used to determine the wavelength of light, 
 explain why a thin coating of a suitable substance minimizes the reflection of light from a 

glass surface. 
 distinguish between fringes of equal inclination and fringes of equal thickness. 

 
2.2   STOKES' ANALYSIS OF PHASE CHANGE ON REFLECTION 
To investigate the phase change in the reflection of light at an interface between two media, Sir 
G.C. Stokes used the principle of optical reversibility. This principle states that a light ray, that is 
reflected or refracted, will retrace its original path, if its direction is reversed, provided there is no 
absorption of light. 
 
Fig. 2.1 (a) shows the surface MN separating media 1 and 2, the lower one being denser. Suppose 
medium 1 is air and medium 2 is glass. 
 

 
 

Fig. 2.1 (a) A ray is reflected and refracted at an air-glass interface, (b) The optically reversed 
situation; the two rays in the lower left must cancel. In both cases, 12 nn   ( 1n  and 2n  are the 
refractive indices of the media). 
 
An incident light wave, AB, is partly reflected along BC and partly transmitted (refracted) along 
BD. Let a  be the amplitude of the incident wave AB, r be the fraction of the amplitude reflected, 
and t be the fraction transmitted when the wave is travelling from medium 1 to 2. Then the 
amplitudes along BC and BD are ar and at, respectively. 
 
Now, suppose the directions of the reflected and transmitted (refracted) waves are reversed. As 
shown in Fig. 2.1(b), the wave BC, on reversal, gives a reflected wave along BA, and a 
transmitted (refracted) wave along BE. The amplitude of the reflected wave along BA is ar.r = ar2 
and the amplitude of transmitted wave along BE is art. Similarly, the wave BD, on reversal, gives 
a transmitted wave along BA and a reflected beam along BE. Let r' and 't  be the fractions of 
amplitude reflected and transmitted when the wave is travelling from medium 2 to medium 1. 
Then the amplitude of the transmitted wave along BA is 'att  and the amplitude of reflected wave 



along BE is 'atr . But, according to the principle of reversibility of light, the reflected and 
transmitted waves BC and BD, when reversed, should give the original ray of amplitude a along 
BA only. Hence, the component along BE should be zero and that along BA should be equal to a. 
That is, 
 
 0' atrart          (2.1) 
and 
 aattar  '2          (2.2) 
 
From Eqs. (2.1) and (2.2), we get 
 
 rr '           (2.3) 
and 
 
 21' rtt           (2.4) 
 
Eqs. (6.3) and (6.4) are known as Stake's relations. 
 
You must be aware that a transverse wave in a spring undergoes a 180° phase change when 
reflected from a rigid support. A similar phase change occurs for the reflection of a light wave 
from the boundary of a medium having a greater index of refraction. The optically denser 
medium corresponds to a rigid support. A light wave reflected from the boundary of a medium 
whose index of refraction is greater than that of the medium in which the incident wave travels 
undergoes a 1800 phase change. 
 
Now, observe carefully Eq. (2.3). Here r is the fraction of amplitude reflected when the incident 
wave is travelling from a rarer to denser medium, and r' when incident wave is travelling from a 
denser to a rarer medium. The two fractions are numerically equal but have opposite signs. 
Hence, they are exactly out of phase with each other, i.e., their phase difference is '' . If no 
phase change occurs when a light wave is reflected by a denser medium then there must be a 
phase change of   when a light wave is reflected by a rarer medium—and conversely, if no 
phase change occurs when a light wave is reflected by a rarer medium then there must be a phase 
change of   when a light wave is reflected by a denser medium. Now, out of the two alternatives 
mentioned above, the second one is correct because it has been experimentally observed (See 
Section 1.6 in connection with Lloyd's mirror) that the phase change of   occurs when the light 
strikes the boundary from the side of rarer medium. Hence, light reflected by a material of higher 
refractive index than the medium in which the rays are travelling undergoes a 180° (or  ) phase 
change. 
 
Reflection by a material of lower refractive index than the medium in which the rays are 
travelling causes no phase change. 
 
The following SAQ will provide a useful check of your understanding of this section. 
 
SAQ 1 
In Fig. 2.2, we have illustrated four situations. In the two examples on the left, the refractive 
index between the surfaces is higher than that outside; in the two examples on the right, it is 
lower. This determines whether or not there is a phase change. In Fig. 2.2(a) and (b), we have 
indicated the phase change taking place at the points marked by an arrow. Redraw the Fig. 2.2(c) 
and (d), indicating the phase change taking place at the points marked by an arrow. 



 

 
 

Fig. 2.2 
 
2.3   INTERFERENCE IN THIN FILMS 
Suppose a ray of light from a source S strikes a thin film of soapy water, at A, see Fig. 2.3(a). Part 
of this will be reflected as ray (1) and part refracted in the direction AB. Upon arrival at B, part of 
the latter will be reflected to C, and part refracted along BT1. At C, the ray will again get partly 
reflected along CD and refracted as ray (2) along CR2. A continuation of this process yields two 
sets of parallel rays, one on each side of the film. In each of these sets, of course, the amplitude 
decreases rapidly from one ray to the next. Considering only the first two reflected rays (1) and 
(2) we find that these two rays are in a position to interfere. This is because, if we assume S to be 
a monochromatic point source, the film serves as an amplitude-splitting device, so that ray (1) 
and (2) may be considered as arising from two coherent virtual sources S' and S" lying behind the 
film, that is, the two images of S formed by reflection at the top and bottom surfaces of the film, 
as shown in Fig. 2.3 (b). If the set of parallel reflected rays is now collected by a lens, and 
focussed at P, each ray has travelled a different distance, and the phase relationship between them 
may be such as to produce destructive or constructive interference at P. It is such interference that 
produces the colours of this film when seen by naked eyes. 
 

 
Fig. 2.3:   (a) Multiple reflection in a soap film, (b) The interference pattern produced due to rays  

(1) and (2) is approximately the same as would have been produced by two coherent 
point sources S' and S" 



 
Now, we know that the two rays reinforce each other, if the path difference between them is an 
integral multiple of  , where   is the wavelength of light, which is being used to illuminate the 
film. Hence, let us first find out the path difference between the reflected rays (1) and (2). 
 
Path Difference in Reflected Light 
Let the ray of light falling on the thin film of soapy water at A be incident at an angle i, as shown 
in Fig. 2.4. Let the thickness of the film be t and refractive index be )1( . At A it is partly 
reflected along AR1 giving the ray (1) and partly refracted along AB at an angle r. At B it is again 
partly reflected along BC and partly refracted along BT1, Similar reflections and refractions occur 
at C. Since, the rays AR1 and CR2, i.e. ray (1) and ray (2) have been derived from the same 
incident ray, they are coherent and in a position to interfere. Let CN and BM be perpendiculars to 
AR1 and AC. As the paths of the rays AR1 and CR2 beyond CN are equal, the path difference 
between ray (1) and (2) is given by 
 
 (path ABC in film-path AN in air) 
 
  path difference = ANBCAB  )((      (2.5) 
 

Here  
r
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r
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Fig. 2.4 Optical path difference between two consecutive rays in a multiple reflection 
 
and AN  = iAC sin  
 
Now, AC  = MCAM   
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  = rt tan2  
 
 AN  = irt sintan2  
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Substituting these values of AB, BC and AN in Eq. (2.5) we get, 
 

path difference   = 
r
rt

r
t
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 path difference = rt cos2        (2.6) 

 
However, we must take account of the fact that ray (1) undergoes a phase change of  at 
reflection while ray (2) does not, since it is internally reflected (See SAQ 1). The phase change of 

  is equivalent to a path difference of 
2


. Hence, the effective path difference of between ray (1) 

and rays (2) is 
 

 
2

cos2  rt          (2.7) 

 
The sign of the phase change is immaterial. Here we have chosen the negative sign to make the 
equation a bit simpler in form. 
 

As you know from Unit 1, if this path difference is an odd multiple of 
2


, we might expect rays 

(1) and (2) to be out of phase, and produce a minimum of intensity. Thus the condition 
 

 
2

cos2  rt = 
2

)12( 
n , where n = 1, 2, … 

or  nrt cos2         (2.8) 
 
becomes a condition for destructive interference as far as rays (1) and (2) are concerned. 

At A, the ray is reflected while going from a rarer to a denser medium and suffers a phase 
change of  . At B,  the  reflection takes place when the ray is going from a denser to a rarer 
medium, and there is no phase change. 
 



 
Next, we examine the phases of the remaining rays, (3), (4), (5), ... Since the geometry is the 
same, the path difference between rays (3) and (2) will also be given by Eq. (2.6). But, here, only 
internal reflections are involved, so the effective path difference will still be given by Eq. (2.6). 
Hence, if the condition given by Eq. (2.8) is fulfilled, ray (3) will be in the same phase as ray (2). 
The same holds true for all succeeding pairs, and so we conclude that, under the condition given 
by Eq. (2.8), rays (1) and (2) will be out of phase, but rays (2), (3), (4),....., will be in phase with 
each other. Now, since ray (1) has considerably greater amplitude than ray (2), we might think 
that they will not completely annul each other, that is, the condition given by Eq. (6.8) may not 
produce complete darkness. But it is not so. We will now prove that the addition of rays (3), (4), 
(5), ... which are all in phase with ray (2), will give a net amplitude, just sufficient to make up the 
difference and to produce complete darkness. Fig. 2.5 shows the amplitude of successive rays in 
multiple reflection. 
 

 
 

Fig. 2.5 Amplitude of successive rays in multiple reflection 
 

Adding the amplitudes of all the reflected rays but the first, on the upper side of the film we 
obtain the resultant amplitude: 
 

 A  = ...'''' 753  tatrtatrtatratrt  
  = ...)1(' 642  rrratrt   

Since r is, necessarily, less than 1, the geometrical series in parentheses has a finite sum equal to 
)1/(1 2r , giving 

 

 21
1'
r

atrtA


  

 
But from Stoke's treatment, Eq. (2.4), f 21' rtt  , we obtain  

 
arA           (2.9) 

 
This is just equal to the amplitude of the first reflected ray, hence, we conclude that under the 
condition of Eq. (2.8), there will be complete destructive interference. On the other hand, if the 
path difference given by Eq. (2.7) is an integral multiple of  , i.e., when 
 

 
2

cos2  rt = n , where n = 0, 1, 2, etc.,  



or 

 
2

)12(cos2   nrt         (2.10) 

 
then ray (1) and (2) will be in phase with each other and gives a condition of constructive 
interference. But rays (3), (5), (7), ... will be out of phase with rays (2), (4), (6), ... Since (2) is 
more intense than (3), (4) is more intense than (5), etc., these pairs cannot cancel each other. As 
the stronger series combines with ray (1), the strongest of all, there will be maximum of intensity. 
 
Thus, when a thin film is illuminated by monochromatic light, and seen in reflected light, it 
appears bright or dark according as rt cos2  is an odd multiple of 2/  or an integral multiple 
of  , respectively. 
 
 

 
 

 
 
 
 
Before moving further, answer the following SAQ. 
 
SAQ 2 
Using Eq. (2.7), state whether the following statement is true or false. Give reasons. "An 
excessively thin film seen in reflected light appears perfectly black". 
 
Now we are in a position to know the reason of the production of colours in thin film of soap 
water. 
 
Colours in Thin Films 
The eye looking at the film receives rays of light reflected at the top and bottom surfaces of the 
film. These rays are in a position to interfere. The path difference between the interfering rays, 
given by Eq. (2.7), depends upon t (thickness of the film) and upon r, and, hence, upon 
inclination of the incident rays (the inclination is determined by the position of the eye relative to 
the region of the film, which is being looked at). The sunlight consists of a continuous range of 
wavelengths (colours). At a particular point of the film, and for a particular position of the eye 
(i.e., for a particular t and a particular r), the rays of only certain wavelengths will have a path 
difference satisfying the condition of maxima. Hence, only these wavelengths (colours) will be 
present with the maximum intensity. While some others, which satisfy the condition of the 
minima will be missing. Hence, the point of the film being viewed will appear coloured. 
 
We are working out an example so that the phenomenon of production of colours in thin film is 
clear to you. 
 
Example 1 
A thin film of 5104  cm thickness is illuminated by white light normal to its surface )0( 0r . 
Its refractive index is 1.5. Of what colour will the thin film appear in reflected light? 
 
 

2
)12(cos2   nrt   (condition of maxima) 

 nrt cos2    (condition of minima) 



 
Solution 
The condition for constructive interference of light reflected from a film is 
 

 
2

)12(cos2   nrt , where n = 0, 1, 2, ... 

Here,  = 1-5; t = 5104  cm and r = 0° (since light falls normally) so that 1cos r . 
 

 
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Taking n = 0, 1, 2, 3, …, we get 
 

 = 24000 Å, 8000 Å, 4800 Å, 343l Å, ... 
 
These are the wavelengths reflected most strongly. Of these, the wavelength lying in the visible 
region is 4806A (blue). 
 
 
So far we nave considered viewing of thin film in reflected light. Suppose the eye is now situated 
on the lower side of the film, shown in Fig. 2.3 and Fig. 2.5. The rays emerging from the lower 
side of the film can also be brought together with a lens and made to interfere. 
 
Let us find out what colours will arise, when the film is viewed in this position. For this, we have 
to first calculate the path difference between the rays in transmitted light. 
The path difference between the transmitted rays BT1 and DT2 is given by Eq. (2.6), i.e.,  
 

rtBLCDBC cos2)(   
 

In this case, there is no phase change due to reflection at B or C, because in either case the light is 
travelling from denser to rarer medium (See SAQ 1). Hence, the effective path difference 
between BT1 and DT2 is also  
 

 nrt cos2  (condition for maxima)     (2.12a) 
 
where n = 1, 2, 3, … 
 
In this case, the film will appear bright in the transmitted light. 
  
The two rays BT1 and DT2 reinforce each other, if 
 

 
2

)12(cos2   nrt  (condition of minima)     (2.12b) 



 
where n = 0, 1, 2, ... and the film appears dark in transmitted light. 
 
A comparison of Eqs. (6.11a), (6.11b), (6.12a) and (6.12b) shows that the conditions for the 
maxima and minima, in the reflected light are just the reverse of those in transmitted light. 
Therefore, only those colours will be visible in the transmitted light, which were missed in 
reflected light. Hence, the film which appears bright in reflected light will appear dark in 
transmitted light and vice versa. In other words, the appearances of colours in the two cases are 
complimentary to each other. 
 
Interference fringes produced by thin films can be classified into two: Fringes of equal inclination 
and fringes of equal thickness. 
 
Fringes of Equal Inclination 
If the lens used in Fig. 2.3 to focus the rays has a small aperture, interference fringes will appear 
on a small portion of the film. Only the rays leaving the point source that are reflected directly 
into the lens will be seen (see Fig. 2.6a). For an extended source, light will reach the lens from 
various directions, and the fringe pattern will spread out over a large area of the film, as shown in 
Fig. 2.6b. 
 

 
 
Flg. 2.6 (a) Fringes seen In a small portion of the film,  

(b) Fringes seen on a large region of the film 
 

The angle i  or equivalently r, determined by the position P, will, in turn, control the path 
difference. The fringes appearing at points P1 and P2 in Fig. 2.7 are, accordingly, known as 
fringes of equal inclination. 
 
Notice that as the film becomes thicker, the separation AC in Fig. 2.4 between ray (1) and (2) also 
increases, since AC = 2t tan r. When only one of the two rays is able to enter the pupil of the eye, 
the interference pattern will disappear. The larger lens of a telescope could then, be used to gather 
in both rays, making the pattern visible. The separation can also be reduced by reducing r, and, 
therefore, i, i.e., by viewing the film at nearly normal incidence. 
 



 
 

Fig. 2.7 All rays inclined at the same angle arrive at the same point 
 
The equal inclination fringes that are seen in this manner for thick plates are known as Haidinger 
fringes. With an extended source, the symmetry of the set up requires that the interference pattern 
consists of a series of concentric circular bands centred on the perpendicular drawn from the eye 
to the film, as shown in Fig. 2.8. 

 
Fig. 2.8 Circular Haidinger fringes centred on the lens axis 



 
Such fringes are formed at infinity, and are observed by a telescope focussed at infinity. These 
fringes are observed in Michelson interferometer, about which we will study in next unit. 
 
Fringes of Equal Thickness 
Interference fringes, for which thickness t is the dominant parameter rather than r, are referred to 
as fringes of equal thickness. Each fringe is the locus of all points in the film for which thickness 
is a constant. Such fringes are localised on the film itself, and are observed by a microscope 
focussed on the film. Fringes due to the wedge-shaped film belong to this class of fringes, which 
you will study in the next section. 
 
Fringes of equal thickness can be distinguished from the circular pattern of Haidinger's fringes by 
the manner in which the diameters of the rings vary with order n. The central region in the 
Haidinger pattern corresponds to the maximum value of n, whereas just the opposite applies to 
fringes of equal inclination. 
 
2.4   INTERFERENCE BY A WEDGE-SHAPED FILM 
So far, we have assumed the film to be of uniform thickness. We will now discuss the 
interference pattern produced by a film of varying thickness, i.e., a film which is not plane-
parallel. Such a film may be produced by a wedge, which consists of two non-parallel plane 
surfaces, as shown in Fig. 2.9a and 2.9b. Observe that the interfering rays do not enter the eye 
parallel to each other but appear to diverge from a point near the film. 
 

 
 
Fig. 2.9 Fringes of equal thickness: (a) method of visual observations,  

     (b) a parallel beam of light incident on a wedge 
 

Let us consider a thin wedge-shaped film of refractive index  , bounded by two plane surfaces 
AB and CD, inclined at an angle   as shown in Fig. 2.9b. Let the film be illuminated by a 
monochromatic source of light from a slit held parallel to the edge of the wedge (the edge is the 
line passing through the point O and perpendicular to the plane of the paper). Interference occurs 
between the rays reflected at the upper and lower surfaces of the film. In this case the path 
difference for a given pair of rays is practically that given by Eq. (2.6). But, if it is assumed that 
light is incident almost normally at a point P on the film, the factor cos r may be considered equal 
to 1. Thus, the path difference between the rays reflected at the upper and lower surfaces is t2 , 
where t is the thickness of the film at P, An additional path difference of 2/  is introduced in 
the ray reflected from the upper surface. The effective path difference between the two rays is 
 



 
2

2  t          (2.13) 

 
Hence the condition for bright fringes becomes 
 

 
2

2  t = n   

or 

 
2

)12(2   nt         (2.14) 

 
The condition for dark fringe is  
 
  nt 2          (2.15) 
 
It is clear that for a bright or dark fringe of a particular order, t must remain constant. Since in the 
case of a wedge-shaped film, t remains constant along lines parallel to the thin edge of the wedge, 
the bright and dark fringes are straight lines parallel to the thin edge of the wedge. Such fringes 
are commonly referred to as "fringes of equal thickness". At the thin edge, where t = 0, path 
difference = 2/ , which is a condition for minimum intensity. Hence, the edge of the film is 
dark. The resulting fringes resemble the localized fringes in the Michelson interferometer (this 
you will study in next unit) and appear to be formed in the film itself. 
 
Spacing between Two Consecutive Bright (or Dark) Fringes 
For the nth dark fringe, we have  
 

 nt 2  
 

Let this fringe be obtained at a distance nx  from the thin edge. Then  nn xxt  tan  (when 
  is small and measured in radians). 
 
  )1(tan2  nxn         (2.16) 
 
Similarly, if the )1( n th dark fringe is obtained at a distance 1nx  from the thin edge, then 

 
 nxn 2          (2.17) 

 
Subtracting Eq. (2.16) from Eq. (2.17), we get 
 
   )(2 1 nn xx  
 
Hence the fringe width   is 

 




21   nn xx         (6.18) 

 



where   is measured in radians. 
 
Similarly, it can be shown that the spacing between two consecutive bright fringes (fringe width) 

is 



2

. 

 
SAQ 3 
Using sodium light ( = 5893 Å), interference fringes are formed by reflection from a thin air 
wedge. When viewed perpendicularly, 10 fringes are observed in a distance of 1 cm. Calculate 
the angle of the wedge. 
 
 
If the fringes of equal thickness are produced in the air film between a convex surface of a long-
focus lens and a plane glass surface, the fringes will be circular in shape because the thickness of 
the air film remains constant on the circumference of a circle. The ring-shaped fringes, thus 
produced, were studied by Newton. In the next section, we will study Newton's ring. 
 
6.5   NEWTON'S RINGS  
When a plano-convex lens of large radius of curvature is placed with its convex surface in contact 
with a plane glass plate, air-film is formed between the lower surface of the lens )'(LOL  and the 
upper surface of the plate )(POQ , as shown in Fig. 2.10. The thickness of the air film is zero at 
the point of contact O, and it increases as one moves away from the point of contact. If 
monochromatic light is allowed to fall normally on this film, reflection lakes place at both the top 
and the bottom of the film. As a result of interference between the light waves reflected from the 
upper and lower surfaces of the air film, constructive or destructive interference takes place, 
depending upon the thickness of the film. The thickness of the air film increases with distance 
from the point of contact, therefore, the pattern of bright and dark fringes consists of concentric 
circles. In Fig. 2.10, 1 and 2 are the interfering rays corresponding to an incident ray AB. As the 
rings are observed in reflected light, the effective path difference between the interfering rays 1 
and 2 is practically that given by Eq. (2.13). 

 

 
 

Fig. 2.10: An arrangement for observing Newton's rings 
 

As we have considered an air-film,   = 1. The condition for the bright ring which is given by 
Eq. (2.14), is 



 

 
2

)12(2 
 nt         (2.19) 

 
and the condition for the dark ring which is given by Eq. (2.15) is 
 
 nt 2          (2.20) 
 
Let us find out the relationship between the radii of the rings and the wavelength of the light. 
Consider Fig. 6.11, where the lens LOL' is placed on the glass plate POQ. Let R be the radius of 
curvature of the curved surface of the lens. Let rn be the radius of the nth Newton's ring 
corresponding to point P, where the film thickness is t. Draw perpendicular PN. Then, from the 
property of a circle, we have 
 
 NEONPN 2  
or 
 )2(2 tRtrn   

 

 
 
 

Fig. 2.11 nr  represents the radius of the nth dark ring, the thickness of air film (where the nth  
  dark ring is formed) is L 

 
Since t is small compared to R, we can neglect t2.  
 
Hence,  Rtrn 22   

or 
R
rt n

2

2           (2.21) 

 
The condition for a bright ring is 
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But from Eq. (2.21),  
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

  (Bright ring) 

 

If Dn be the diameter of the nth bright ring, then nn rD 2  or 
2

n
n

Dr  . Substituting this in the 

last expression, we get 
 
 RnDn )12(22   
or 
 122  nRDn   
or 
 12  nDn   (  and R  being constant) 
 
This shows that the radii of the rings vary as the square-root of odd natural numbers. Thus the 
rings will be close to each other as the radius increases, as shown in Fig. 2.12. 
 

 
 

Fig. 2.12 Newton's rings as observed in reflected light 
 

Between the two bright rings there will be a dark ring whose radius will be proportional to the 
square-root of the natural numbers. Attempt the following SAQ and prove the above statement 
yourself. 



 
SAQ4 
Using Eqs. (2.20) and (2.21), prove that the radius of the dark ring is proportional to the square-
root of the natural numbers. 
 
The ring diameters depend on wavelength, therefore, the monochromatic light will produce an 
extensive fringe system such as that shown in Fig. 2.12. 
 
When the contact between lens and glass is perfect, the central spot is black. This is direct 
evidence of the relative phase change of   between the two types of reflection, air-to-glass 
and glass-to-air, mentioned in Sec. 2.2. If there were no such phase change, the rays 
reflected from the two surfaces in contact should be in the same phase, and produce a 
bright spot at the centre. However, the central spot can be made bright due to slight 
modification. In an interesting modification of the experiment, due to Thomas Young, if the 
lower plate is made to have a higher index of refraction than the lens, and the film in between is 
filled with an oil of intermediate index, then both reflections are at "rare-to-dense" surfaces. In 
this situation, no relative phase change occurs, and the central fringe of the reflected system is 
bright. 
 
If nD is the diameter of the nth bright ring, then 

 
RnDn )12(22          (2.23) 

 
If pnD   is the diameter of the )( pn  th bright ring, then 
 

RpnD pn ]1)(2[22         (2.24) 
 
Subtracting Eq. (2.23) from Eq. (2.24), we get 
 
 RnRpnDD npn  )12(2]1)(2[222        
  

        =  Rp4  
 

 
pR

DD npn
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22 
          (2.25)  

 
It may be mentioned here, that the point of contact may not be perfect. As such the nth ring may 
not be the nth fringe but Eq. (2.25) is almost always valid. On measuring the diameters of the 
rings and the radius of curvature R, the wavelength   can be calculated with the help of the Eq. 
(2.25). In laboratory, the radius of curvature can be accurately measured with the help of a 
spherometer. 
 
If a liquid of refractive index   is introduced between the lens and the glass plate, then the 
expression for path difference between two interfering rays will also include  . Then the radii of 
the dark rings would be given by 
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Thus, when a little water is introduced between the lens and the plate, the rings contract according 
to the relation 
 

 

1

film-airin  ring same  theofdiameter 
film-in water ring a ofdiameter 

      (2.27) 

      
where   is the refractive index of water. 
 
A ring system is also observed in the light transmitted by Newton's ring plates. There are two 
differences in the reflected and transmitted systems of rings, (i) The rings observed in transmitted 
light are exactly complementary to those seen in the reflected light, so that the central spot is now 
bright, (ii) The rings in transmitted light are much poorer in contrast than those in reflected light. 
 
Before moving to the next section, solve the following SAQ. 
 
SAQ5 
If in a Newton's ring experiment, the air in the interspace is replaced by a liquid of refractive 
index 1.33, in what proportion would the diameters of the ring change? 
 
 
6.6   APPLICATIONS OF THE PRINCIPLE OF INTERFERENCE IN THIN FILM 
1.     An important and simple application of the principle of interference within film is in the 

production of coated surfaces. To accomplish this, the glass lens is coated with the film 
of a transparent substance that has an index of refraction between the refraction indices 
for air and glass (See Fig. 2.13). The thickness of the film is one quarter of the 
wavelength of light in the film so that 

 

  
14


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If we assume normal incidence, then the path difference between the light wave reflected 
from the upper surface of the film and the light wave reflected from the lower 

surface of the film is 
24

22
1

11



 t . Both waves undergo a phase change of 

180° as reflections at both surfaces are from "rare-to-dense". Thus, the two reflected 
waves are out of phase because of path difference and, therefore, these interfere 
destructively. Such a film is known as non-reflecting film, because it gives zero 
reflection. However, this does not mean that a non-reflecting film destroys light, but it 
merely redistributes light so that a decrease of reflection is accompanied by a 
corresponding increase of transmission. 
 



 
 
Fig. 2.13 A film coating on a glass lens makes the lens "non-reflecting" when the film 
thickness is 4/  for normal incidence. The total path difference of the reflected rays is 
then 2/ , and the waves interfere destructively, i.e., the incident light is totally 
transmitted. 
 
The practical importance of these films is that by their use one can greatly reduce loss of 
light by reflection at the various surfaces of lenses or prisms used in binoculars, cameras, 
etc. Usually, glass is coated with a very thin layer of magnesium fluoride, the refractive 
index of which (   = 1.38) is intermediate between those of glass and air. 
 

2.    Another important application of thin film interference phenomenon is the converse of 
the procedure just discussed, viz., the glass surface is coated by a thin film of suitable 
material to increase the reflectivity. The film thickness is again f 4/ , where f  
represents the refractive index of the film. The film is such that its refractive index is 
greater than that of the glass. This is because an abrupt phase change of   occurs only at 
the air-film interface and the beams reflected from the air-film interface and the film-
glass interface constructively interfere. 

 
3.     The fringes obtained by a wedge-shaped film has important practical applications in the 

testing of optical surfaces for flatness. An air-film is formed between a perfectly plane 
surface and the surface under test. If the latter surface is plane, the fringes will be straight 
and parallel, and, if -not, these will be irregular in shape. 

 
4.    The accuracy of the grinding of a lens surface can be tested by observing the shape of 

Newton's rings formed between it and an accurately flat glass surface, using 
monochromatic light. If the rings are not perfectly circular, the grinding is imperfect. 

 
2.7   SUMMARY 

 When the light wave is reflected from a boundary, there is an abrupt change of phase. 
When the light ray is reflected while going from a rarer to a denser medium, it suffers a 
phase change of  . But there is no phase change when the light ray is reflected while 
going from a denser to a rarer medium. 

 
 Length l  in a medium of refractive index   is optically equivalent to length l in a 

vacuum. l  is called the optical path-length of distance l  in the medium. 
 

 



 For a thin film in reflected light, the conditions for constructive and destructive 
interference are: 

2
)12(cos2   nrt   (maxima) 

 nrt cos2    (minima) 
where  , is the refractive index of the film, t is its thickness and r is the angle of 
refraction in the film. 

 
 For a thin film in transmitted light, the conditions for constructive and destructive 

interference are: 
 

 nrt cos2  (maxima)      

2
)12(cos2   nrt  (minima) 

 
 The basic formula for the path difference between the interfering rays, obtained due to 

division of amplitude by a film of thickness t and refractive index  , is rt cos2 , 
where r is the inclination of the ray inside the film. If the thickness of the film is uniform, 
the path difference rt cos2  varies only with inclination r, and gives rise to the "fringes 
of equal inclination". On the other hand, if the thickness of the film is rapidly varying, the 
path difference rt cos2  changes mainly due to changes in  . This gives rise to the 
"fringes of equal thickness." 

 
 The spacing p between two consecutive bright (or dark) fringes produced by wedge-

shaped film is given by 
 




2
  

 
where   is the wavelength of light being used for illuminating the film,   the refractive 
index of the film, and   (measured in radians) the angle between the two plane surfaces, 
which form the wedge-shaped film. 
 

 The diameters of the bright rings are proportional to the square-roots of the odd natural 
numbers, whereas the diameters of dark rings are proportional to the square-roots of 
natural numbers, provided the contact is perfect. 

 
 On measuring the diameters of Newton's rings and the radius of curvature R, the 

wavelength can be calculated with the help of the following relation: 
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 The phenomenon of interference is used in the testing of optical surfaces and producing 

non-reflecting glasses of reflective coatings. 
 



2.8   TERMINAL QUESTIONS 
(1)        White light is reflected normally from a uniform oil film (  = 1.33). An interference 

maximum for 6000 Å and a minimum for 4500 Å, with no minimum in between, are 
observed. Calculate the thickness of the film. 

 
(2)         Light ( = 6000 Å) falls normally on a thin wedge-shaped film (   = 1.5). There are ten 

bright and nine dark fringes over the length of the film. By how much does the film 
thickness change over this length? 

 
(3)         Two glass plates 12 cm long touch at one end, and are separated by a wire 

0.048 mm in diameter at the other. How many bright fringes will be observed over the 12 
cm distance in the light ( = 6800 Å) reflected normally from the plates? 
 

(4)         Newton's rings are formed in reflected light of wavelength 8105895   cm with a liquid 
between the plane and curved surfaces. The diameter of the fifth ring is 0.3 cm and the 
radius of curvature of the curved surface is 100 cm. Calculate the refractive index of the 
liquid, when the ring is (i) bright, (ii) dark. 

 
(5)        A Newton's rings arrangement is used with a source emitting two wave-lengths  

 
5

1 100.6   cm and 5
2 105.4   cm 

 
and it is found that the nth dark ring due to 1  coincides with the )1( n th dark ring due 
to 2 . If the radius of curvature of the curved surface is 90 cm, find the diameter of the 
nth dark ring for 1 . 

 
2.9   SOLUTIONS/ANSWERS 
SAQs 
 
(1)         See Fig. 2.14. 
 

 
 

Fig. 2.14 
(2)         According to Eq. (2.7) the path difference between the interfering rays in reflected light is 

2
cos2  rt . When the film is excessively thin, t is very small, and rt cos2  is 

almost zero. Hence the path difference, in such a case  becomes 2/ . 



 
(3) Let   radian be the angle of the air-wedge. For normal incidence, the fringe-width is  

given by 

 


2

  ( 1  for air) 

 
Here 8105893  cm and  = 1/10 cm. 
 

 



2
 = 4

8

1095.2
10/12
105893 







radian 

 
(4) According to Eq. (2.20), the condition for the dark ring is 
 

 nt 2  
 

But from Eq. (2.19), 
R
rt n

2

2   

  n
R
rn 

2

 

If Dn be the diameter of the nth dark ring, 
2

n
n

Dr   

  n
R

Dn 
4

2

 

or nRDn 4  
 
or nRDn 4   
 
or nDn   

 
Thus, the diameters of the dark rings are proportional to the square root of the natural 
number. 

 

(5) 
33.1

11
)(
)(
2

2


liquidn

airn

D
D

= 0.867 

 
The rings are contracted to 0.867 their previous diameters. 
 

(6)    In this case of interference in thin films, the situation is somewhat different. The 
reflections at both the upper and lower surfaces of the material (  =1.25) film take place 
under similar conditions, i.e., when light is going from a rarer to a denser medium. Thus, 
there is a phase change of  at both reflections, which means no phase difference due to 
reflection between the two interfering beams. 

 



The path difference between the two interfering beams is t2  for normal incidence, 
where t is the thickness and   the refractive index of the film. 

 
The two beams will destroy each other, if the path difference is an odd multiple of 2/ , 
i.e., when  

 
2

)12(2   nt ,  where n = 1, 2, 3, ... 

 
This is the condition of minima.  
Here   = 1.25 and  = 6000 Å. 
 

 
2

6000)12(25.12  nt Å 

Hence the required thickness is given by 

 t   = 
25.122

6000)12(


n  Å 

 
   = 1200)12( n  Å, where n = 1, 2, 3, … 
 
TQs 
 
(1)        The condition for an interference maximum in the light reflected normally from an oil 

film of thickness t is 

   





 

2
12 nt , where n = 0, 1, 2, … 

and that for an interference minimum is 
   nt 2 , where n = 1, 2, 3, … 

 
Here   = 1.33. Now there is a maximum for  = 6000 Å 
 
We can write 







 

2
133.12 nt 6000 Å      (i) 

 133.12  nt 4500 Å      (ii) 
 

In view of eq. (i) we have taken the integer )1( n  rather than n in eq. (ii). Comparing 
eq. (i) and (ii), we get 

 

  4500)1(6000
2
1







  nn  

 
  1n  
 

Substituting n = 1 in eq. (i), we get 
 



  
2
333.12 t 6000 Å      

  
33.122

60003



t = 3383 Å 

 
(2)         The condition of destructive interference in light reflected from a film is 

 nrt cos2  
 
Suppose the film thickness changes over this length by t . Let n be the order of the dark 
fringe appearing at one end of the film. The order of the dark fringe at the other end will 
be (n + 9). We, therefore, have 

 nrt cos2  
and  )9(cos)(2  nrtt  

 
Subtracting, we get 

 
   9cos)(2  rt  

  
r

t
cos2

9



  

 
If the fringes are seen normally, then 1cos r . 

 

  
5.12

63009
2
9







t = 18900 Å 

    = 41089.1   cm 
 
(3) Let t be the thickness of the wire and l  the length of the wedge, as shown in Fig. 2.15.  

The wedge angle is 
 

 
 

Fig. 2.15 

 
l
t

  radian 

 

Now, fringe-width 


2

 . 

 
Putting value of   from above, we get 

 



t
l
2
   

 
Since N fringes are seen; Nl  . Thus 

  
t

N
2
   

  

tN 2

  

  
But  = 6800 Å = 8106800  cm and t = 0.048 mm = 0.0048 cm. 

 8106800
0048.02




N = 141 

 
4.(i)  The diameter Dn of the nth bright ring is given by  
 


RnDn

)12(22 
  

  

 2

)12(2

nD
Rn 




  

 
Here n = 5,   = 8105895  cm, R  = 100 cm and Dn = 0.3 cm  

 

  2

8

)3.0(
100105895)110(2 




 = 1.18 

 
  (ii) The diameter of the nth dark ring is given by 
 

  

 RnDn

42     

  

  2

8

2 )3.0(
100105895544 




nD
Rn

 = 1.31 

 
(5)         nRDn 42   

where nD = diameter of nth ring, R = the radius of curved surface and  = the 
wavelength of light. 
 
If nD  and 1nD  be two diameters. 
 
  

1
2 4 nRDn          (i) 

 



1
2

1 )1(4 RnDn         (ii) 
 

But 1 nn DD  
 
 21 )1(44  RnnR   
 
or 221 4)(4  RnR   
 

or 
)(4

4

21

2






R

Rn  

 

     =
21

2





 

        = 3
10)5.46(

105.4
5

5









 

 
Putting n = 3 in (i) 

  5
3 1069034 D  

         = 410648   
         = 21045.25   cm 
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3.1    INTRODUCTION 
An instrument designed to exploit the interference of light and the fringe patterns that result from 
optical path differences, in any of a variety of ways, is called an optical interferometer. In this 
unit, we explain the functioning of the Michelson and the Fabry-Perot interferometers, and 
suggest only a few of their many applications. 
In order to achieve interference between two coherent beams of light, an interferometer divides 
an initial beam into two or more parts that travel diverse optical paths and then superpose to 
produce an interference pattern. One criterion for broadly classifying interferometers 
distinguishes the manner in which the initial beam is separated. Wavefront division 
interferometers sample portions of the same wavefront of a coherent beam of light, as in the case 
of Young's double slit, Lloyd's mirror or Fresnel's biprism arrangement. Amplitude-division 
interferometers, instead, use some type of beamsplitter that divides the initial beam into two parts. 
The Michelson interferometer is of this type. Usually the beam splitting is managed by a semi-
reflecting metallic film. In this interferometer, the two interfering beams are widely separated, 
and the path difference between them can be varied at will by moving the mirror or by 
introducing a refracting material in one of the beams. Corresponding to these two ways of 
changing the optical path, there are two important applications of this interferometer, which we 
will study in this unit. 
 
There is yet another means of classification that distinguishes between those interferometers that 
function by the interference of two beams, as in the case of the Michelson interferometer, and 
those that operate with multiple beams, as in the Fabry-Perot interferometer. In this unit, we will 
show that the fringes so formed are sharper than those formed by two beam interference. 
Therefore, the interferometers involving multiple beam interference have a very high resolving 
power, and, hence, find applications in high-resolution spectroscopy. 
 
Objectives 
After studying this unit, you should be able to 

 understand how Michelson interferometer produces different types of fringes, viz., 
circular, localised (or straight) and white light fringes, 

 describe few applications of Michelson interferometer, 
 relate the intensity of the transmitted light to the reflectance of the plate surface in Fabry-

Perot interferometer, and 



 understand the difference between Michelson interferometer and Fabry-Perot 
interferometer. 

 
3.2   MICHELSON INTERFEROMETER 
It is an excellent device to obtain interference fringes of various shapes, which have a number of 
applications in optics. It utilizes the arrangements of mirrors and a beam splitter. 
 
Construction: Its configuration is illustrated in Fig. 3.1. 
 

 
 

Fig. 3.1: Michelson interferometer 
 

Its main optical parts are two plane mirrors 1M  and 2M  and two similar optically-plane parallel 
glass plates 1P  and 2P . The plane mirrors 1M  and 2M  are silvered on their front surfaces and 
are mounted vertically on two arms at right angles to each other. To obtain fringes, the mirrors 

1M  and 2M  are made exactly perpendicular to each other by means of screws shown on mirror 

1M . The mirror 2M  is mounted on a carriage which can be moved in the direction of the arrows. 
The plates 1P  and 2P  are mounted exactly parallel to each other, and inclined at 45° to 1M  and 

2M . The surface of 1P  and 2P  is partially silvered. The plate 1P  is called beam splitter. 
 
Working: An extended source (e.g., a diffusing ground glass plate illuminated by a discharge 
lamp) emits light waves in different directions, part of which travel to the right and fall on 1P . 
The light wave incident on 1P  is partly reflected and partly transmitted. Thus, the incident wave 
gets divided into two waves, viz., the transmitted wave 1 and the reflected wave 2. These two 
waves travel to 1M  and 2M  respectively. After reflection at 1M  and 2M  the two waves return 
to 1P . Part of the wave coming from 2M  passes through 1P   going downward towards the 
telescope, and part of the wave coming from 1M  gets reflected by 1P  toward the telescope. Since 
the waves entering the telescope are derived from the same incident wave, they are coherent, and, 
hence, in a position to interfere. The interference fringes can be seen in the telescope. 
 
You must be eager to know the purpose of the plate 2P , because till now we have not mentioned 
anything about it. 
Function of the plate 2P : Note that if reflection at 1P  occurs at the rear surface at point O, as 
shown in Fig. 3.1, the light reflected at 2M  will pass through 1P  three times while the light 



reflected at 1M  will pass through only once. Thus, the paths of waves 1 and 2 in glass are not 
equal. Consequently, each wave will pass through the same thickness of glass only when a 
compensator plate 2P , of the same thickness and inclination at 1P , is inserted in the path of wave 
1. The compensator plate is an exact duplicate of 1P  with the exception that it is not partially 
silvered. With the compensator in place, any optical path difference arises from the actual path 
difference. 

 
Form of fringes: The form of the fringes depends on the inclination of 1M  and 2M . To 
understand how fringes are formed, refer to the Fig. 3.2, where the physical components are 
represented somewhat differently. An observer at the position of the telescope will, 
simultaneously, see both mirrors 1M  and 2M  along with the source L formed by reflection m 
the partially silvered surface of the glass plate 1P . Accordingly, we can redraw the interferometer 
as if all the elements were in a straight line. Here '

1M  corresponds to the image of mirror 1M , 
formed by reflection at the silvered surface of the glass plate 1P , so that '

1OMOM  . 
Depending on the positions of the mirrors, image '

1M  may be in front of, behind or exactly 
coincident with mirror 2M . The surfaces 1L  and 2L  are images of the source L  in mirrors 

1M and 2M  respectively. If we consider a single point S on the source L , emitting light in all 
directions, then on reaching O, it gets split, and thereafter its segments get reflected by 1M  and 

2M . In Fig. 3.2 we represent this by reflecting the ray off both 1M  and 2M . Thus, the 
interference fringes may be regarded to be formed by light reflected from the surface of '

1M  and 

2M . Here 1S  and 2S  act as coherent point sources, because to an observer at D  the two 
reflected rays will appear to have come from the image points 1S  and 2S . The mirror 2M  and 
the virtual image of 1M  play the same roles as the two surfaces of the thin film, discussed in Unit 
2, and the same sort of interference fringes result from the light reflected by these surfaces. 
 
Now, let us discuss the various types of fringes, viz., circular fringes, localised fringes and white 
light fringes. 
 

 
 

In contrast to the Young double slit experiment, which uses light from two very narrow 
sources, the Michelson interferometer uses light from a broad spread out source. 
 



Fig. 3.2 A conceptual rearrangement of the Michelson Interferometer 
3.2.1 Circular Fringes 
These fringes are observed when 1M  is exactly perpendicular to 2M . In this situation the 
distance of the minors 1M  and 2M  from the plate 1P  can be varied. 
 
Let us consider the various possible positions of the mirrors 1M  and 2M , and eventually see 
how it gives rise to circular fringes. 
 
(i)  If the two mirrors have the same axial distance from the rear face of 1P , and if they are 

perpendicular to each other, the image '
1M  is coincident with 2M . At the coincidence 

position, the two paths are of equal length. Thus, we expect the waves to reinforce each 
other and to form a maximum. But this is not so, because of the  phase change, which 
occurs on external (air-to-glass) reflection only. No phase change occurs on internal 
(glass-to-air) reflection, and none occurs on transmission or refraction. Look again at Fig. 
3.1 and note that it is the light that comes from 1M  and goes to the observer that is 
reflected, air-to-glass, at O, and undergoes the   change. This means that at the 
coincidence position, there will be a minimum: the centre of the field will be dark. 

 
(ii) Now, we move one of the mirrors. If the mirror is moved through a quarter of 

wavelength, 4/d , the path length (because if d  is separation between 1M  and 

2M , then d2  is the separation between 1S  and 2S ) changes by 2/ , the two waves 
getting out of phase by 180°, the phase change compensates, and we have a maximum. 
Moving the mirror by another 4/ , gives minimum, another 4/  another maximum 
and so on. Thus, 

 
  md 2 , where m = 0, 1, 2, …     (3.1) 
 

 
 

Fig. 3.3 Looking off-axis into the Michelson interferometer 
 



(iii) Next, we assume that we look obliquely into the interferometer and that our line of sight 
makes an angle   with the axis. Ordinarily, the two planes 1M  and 2M  are at a distance 
d apart, and the two virtual images, I  and 'I  separated by 2d. But for oblique incidence, 
as we see from Fig. 3.3, the path difference between the two lines of sight becomes less 
and instead of Eq. (3.1), we get 

 
   md cos2 , where m = 0, 1, …     (7.2) 
 

For a given mirror separation d, and a given order m, wavelength   and angle   is 
constant. The maxima will lie in the form of circles about the foot of the perpendicular 
from the eye to the mirrors. These circular fringes will look like the ones shown in Fig. 
3.4. Fringes of this kind, where parallel beams are brought to interfere with a phase 
difference determined by the angle of inclination  , are referred to as fringes of equal 
inclination. These fringes are also known as Haidinger fringes. They differ from the 
fringes of equal inclination considered in Unit 2, only in that, here there are no multiple 
reflections so that the intensity distribution is in accordance with Eq. (1.17) 
 

 
 
Fig. 3.4  Fringes observed using (a) Michelson Interferometer,  (b) Fabry-Perot Interferometer 

 

 
 
Fig. 3.5 Appearance of the various types of fringes observed in the Michelson Interferometer. 
Upper row shows circular fringes whereas lower row shows, localized fringes. Path difference 
increases outward, hi both directions, from the centre 
 
The upper part of the Fig. 3.5 shows how the circular fringes look under different conditions. 
When M2 is few centimetres beyond 1M , the fringe system will have the general appearance 



shown in (a) with the rings very closely spaced. If 2M  is now moved slowly toward 1M , so that 
d is decreased, Eq. (3.2) shows that a given ring, characterized by a given value of the order m, 
must decrease its radius, because the product cos2d  must remain constant. The rings, 
therefore, shrink and vanish at the centre; a ring disappearing each time d2  decreases by  , or d 
by 2/ . This follows from the fact at the centre cos = 1, so that Eq. (3.2) becomes 
 
 md 2  
 
which is Eq. (3.1). 
 
To change m by unity, d must change by 2/ . Now as 2M  approaches 1M  the rings become 
more widely spaced as indicated in Fig. (3.5b), until we reach a critical position, where the central 
fringe has spread out to cover the whole field of view, as shown in Fig. 3.5 (c). This happens 
when 2M  and 1M  are exactly coincident, for it is clear that under these conditions the path 
difference is zero for all angles of incidence. If the mirror is moved still farther, it effectively 
passes through 1M , and new widely spaced fringes appear, growing out from the centre. These 
will gradually become more closely spaced, when the path difference increases, as indicated in 
(d) and (e) of the Fig. 3.5. 
 
3.2.2   Localized Fringes (Straight Fringes) 
If the mirrors 1M  and 2M  are not exactly parallel, the air film between the mirrors is wedge-
shaped, as indicated in Fig. 3.6. 
 

 
 

Fig. 3.6 The formation of fringes with inclined mirrors in the Michelson interferometer 
 
The two rays reaching the eye from point P on the source are now no longer parallel, but appear 
to diverge from point P' near the mirrors. For various positions of P on the extended source, the 
path difference between the two rays remains constant, but the distance of P' from mirrors 
changes. If the angle between the mirrors is not too small, the latter distance is never great, and 
hence, in order to see these fringes clearly, the eye must be focused on or near the rear mirror 

2M . The localized fringes are, practically, straight, because the variation of the path difference 
across the field of view is now due primarily to the variation of the thickness of the "air film" 
between the mirrors. With a wedge-shaped film, the locus of point of equal thickness is a straight 
line, parallel to the edge of the wedge. The fringes are not exactly straight, if d has an appreciable 
value, because there is also some variation of the path difference with angle. They are, in general, 
curved and are always convex toward the thin edge of the wedge. Thus, with a certain value of d, 



we might observe fringes shaped like those of Fig. 3.5(g). 2M  could then be in position such as g 
of Fig. 3.6. If the separation of the mirrors is decreased, the fringes will move to the left across 
the field, a new fringe crossing the centre each time d changes by 2/ . As we approach the zero 
path difference, the fringes become straighter until the point is reached where 2M  actually 
intersects 1M , when they are perfectly straight, as in Fig. 3.5(h). Beyond this point, they begin to 
curve in the opposite direction, as shown in Fig. 3.5 (i). The blank fields shown in Fig. 3.5 (f) and 
(j) indicate that this type of fringe cannot be observed for large path differences. As the principle 
variation of path difference results from a change of the thickness d, these fringes have been 
termed fringes of equal thickness. 
 
3.2.3   White Light Fringes 
If a source of white light is used, no fringes will be seen at all except for a path difference so 
small that it does not exceed a few wavelengths. In observing these fringes, the mirrors are tilted 
slightly as for localized fringes, and the position of 2M  is found where it intersects 1M . With 
white light there will then be observed a central dark fringe, bordered on either side by 8 or 10 
coloured fringes. This position is often rather troublesome to find, using white light only. It is 
best located approximately before hand by finding the place where the localized fringes in 
monochromatic light become straight. Then, a very slow motion of 1M  through this region, using 
white light, will bring these fringes into view. 
 

 
 

Fig. 3.7: The formation of white light fringes with a dark fringe at the centre 
 
The fact that only a few fringes are observed with white light, is easily accounted for when we 
remember that such light contains all wavelengths between 400 and 750 mm. The fringes for a 
given colour are more widely spaced, the greater the wavelength. Thus, the fringes in different 
colours will only coincide for d = 0, as indicated in Fig. 3.7. The solid curve represents the 
intensity distribution in the fringes for the green light, and the broken curve for the red light. 
Clearly, only the central fringe will be uncoloured, and the fringes of different colours will begin 
to separate at once on either side. After 8 or 10 fringes, so many colours are present at a given 
point that the resultant colour is essentially white. While light fringes are, particularly, important 
in the Michelson interferometer, where they may be used to locate the position of zero path 
difference, as we shall see later. 
 
3.2.4    Adjustment of the Michelson Interferometer 
(i) For Localised fringes: The distance of the mirrors 1M  and 2M  from the silvered surface of 

1P  are first made as nearly equal as possible by moving the movable mirror 2M . A pinhole is 
placed between the lens and the plate 1P  (Fig. 3.8). If 1M  is not perpendicular to 2M , four 



images of the pinhole are obtained, two by reflection at the semi-silvered surface of 1P  and the 
other two by reflection at the other surface of 1P . 
 

 
 

Fig. 3.8: Adjustment of Michelson interferometer 
 
The former pair is, naturally, brighter than the latter. The small screws at the back of the mirror, 

1M  are then adjusted until the two bright images appear to coincide. The pinhole is now 
removed. If the coincidence of the images was apparent, the air-film between 1M  and 2M  would 
be wedge-shaped, and the localised fringes would appear. 
 
(ii) For White light Localised Fringes: First, the localised fringes with monochromatic light are 
obtained. The mirror 2M  is then moved until the fringes become straight. Monochromatic light is 
replaced by white light. 2M  is further moved in the same direction until the central achromatic 
fringe is obtained in the field of view. 
 
(iii) For Circular Fringes: After localised fringes are obtained, the screws of 1M  are adjusted so 
that the spacing between these fringes increases. This happens when the angle of the wedge 
decreases. If this adjustment be continued, at one stage, the angle of the wedge will become zero, 
and the film will be of constant thickness. At this stage, circular fringes will appear. Finer 
adjustment is made until on moving the eye sideways or up and down, the fringes do not expand 
or contract. 
 
3.2.5    Applications 
There are three principal types of measurement that can be made with Michelson interferometer: 
(i) wavelengths of light (ii) width, and fine structure of spectrum lines (iii) refractive indices. As 
explained in the sub-section 3.2.3, when a certain spread of wavelengths is present in the light 
source, the fringes become indistinct and, eventually, disappear as the path difference is 
increased. With white light they become invisible when d is only a few wavelengths, whereas the 
circular fringes obtained with the light of single spectrum line can still be seen after the mirror 
has been moved several centimetres. Therefore, for making these measurements with this 
interferometer, it is adjusted for circular fringes. 



 
 
 
(a) Determination of Wavelength of Monochromatic Light 
After having adjusted interferometer for circular fringes, adjust the position of 2M  to obtain a 
bright spot at the centre of the field of view. If d be the thickness of the film and n the order of the 
spot obtained, we have 
 
  nd cos2          (3.3) 
 
But at the centre   = 0, so that 1cos  . Therefore 
 
 nd 2          (3.4) 
 
If now 2M  be moved away form 1M  by 2/ , 2d increases by  . Therefore n + 1 replaces n in 
Eq. (3.4). Hence, (n + l)th bright spot now appears at the centre (see sec. 3.2.1). Thus, each time 

2M  moves through a distance 2/ , the next bright spot appears at the centre. Suppose, during 
the movement of 2M  through a distance x, N new fringes appear at the centre of the field. Then 
we have 
 

 
2
Nx   

 

 
N
x2

          (3.5) 

 
Thus, by measuring the distance x with the micrometer and counting the number N, the value of 
  can be obtained. 
 
The determination of   by this method is very accurate, because x can be measured to an 
accuracy of 410 mm, and the value of N can be sufficiently increased, as the circular fringes can 
be obtained up to large path differences. 
 
SAQ 1 
When the movable mirror of Michelson's interferometer is shifted through 0.0589 mm, a shift of 
200 fringes is observed. What is the wavelength of light used? Give the answer in Angstrom 
units. 
 
 
(b)   Determination of difference in Wavelength: When the source of light has two 
wavelengths 1  and 2  very close together (like 1D  and 2D  lines of sodium), each wavelength 
produces its own system of rings. Let 21   . When the thickness of the film is small, the rings 
due to 1  and 2  almost coincide, since 1  and 2  are nearly equal. The mirror 2M  is moved 
away. Then, due to different spacing between the rings of 1  and 2 , the rings of 1  are 
gradually separated from those of 2 . When the thickness of the air-film becomes such that dark 
rings of 1  coincide with bright rings of 2  (due to the closeness of 1  and 2 , the dark rings 



due to 1  will practically coincide with bright rings due to 2  in the entire field of view), the 
rings have maximum indistinctness. 
 
The mirror 2M  is moved further away through a distance, say, x until the rings, after becoming 
most distinct, once again become most indistinct. Clearly, during this movement, n fringes of 1  

and (n + 1) fringes of 2  have appeared at the centre (because then the dark rings of 1  will 
again coincide with the bright rings of 2 ). Now, since the movement of the mirror 2M  by 2  
results in the appearance of one new fringe at the centre, we have 
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Since 1  and 2  are close together, 21  can be replaced by 2 , where   is the mean of 

1  and 2   

 
x2

2

21


           (7.6) 

 
Thus if we measure the distance moved by 2M  between two consecutive positions of 
disappearance of the fringe pattern and the mean wavelength is known, we can determine the 
difference )( 21   . 
 
SAQ 2 
In Michelson's interferometer, the reading for a pair of maximum indistinctness were found to be 
0.6939 mm and 0.9884 mm. If the mean wavelength of the two components of light be 5893Å, 
deduce the difference between the wavelengths of the components. 
 
(c)       Determination of Refractive Index of a Thin Plate 
If a thickness t  of a substance having an index of refraction   is introduced into the path of one 
of the interfering beams in the interferometer, the optical path in this beam is increased because 
of the fact that light travels more slowly in the substance, and consequently, has a shorter 
wavelength. The optical path is now t  through the medium, whereas it was practically t 



through the corresponding thickness of air ( = 1). Thus, the increase in the optical path due to 
insertion of the substance is t)1(  . 
 
In practice, the insertion of a plate of glass in one of the beams produces a discontinuous shift of 
the fringes so that the number of fringes cannot be counted. With monochromatic fringes, it is 
impossible to tell which fringe in the displaced set corresponds to one in the original set. With 
white light, the displacement in the fringes of different colours is very different. This illustrates 
the necessity of adjusting the interferometer to produce straight white light fringes. After having 
adjusted so, the cross-wire is set on the achromatic fringe, which is perfectly straight. The given 
plate is now inserted in the path of one of the interfering waves. This increases the optical path of 
the beam by t)1(  . Since the beam traverses the plate twice, an extra path difference of 

t)1(2   is introduced between the two interfering beams. The fringes get shifted. The movable 
mirror 2M  is moved till the fringes are brought back to their initial positions so that the 
achromatic fringe again coincides with the cross wire. If the displacement of 2M  is x. then 
 
 tx )1(22    
or tx )1(            (3.7) 
 
Alternatively, if N be the number of fringes shifted then 
 
  Nt  )1(2         (3.8) 
 
Thus, after measuring x, t, we may calculate   may be calculated if   is known, or   may be 
calculated if t is known. 
 
This method can be used to find the refractive index of a gas. The gas is introduced into an 
evacuated tube placed along the axis of one of the interfering beams, and the experiment is 
carried out as described above. 
 
SAQ3 
A transparent film of glass of refractive index 1.50 is introduced normally in the path of one of 
the interfering beams of a Michelson's interferometer, which is illuminated with light of 
wavelength 4800Å. This causes 500 dark fringes to sweep across this field. Determine the 
thickness of the film. 
 
There is yet another type of interferometer, called the Fabry-Perot interferometer, which produces 
fringes much sharper than those produced by Michelson interferometer. In the next section, let us 
study this interferometer and see how it is used as a powerful spectrometer. 
 
3.3    FABRY-PEROT INTERFEROMETER 
It is based on the principle of multiple beam interference. It is a high resolving power instrument, 
which makes use of the 'fringes of constant inclination' produced by the transmitted light after 
multiple reflections between two parallel and highly-reflecting glass plates. 
 
It consists of two optically-plane glass plates A and B (Fig. 3.9) with plane surfaces. The inner 
surfaces are coated with partially transparent films of high reflectivity and placed accurately 
parallel to each other. Screws are provided to secure parallelism if disturbed. The two uncoated 



surfaces of each plate are made to have a slight angle between them in order to avoid unwanted 
fringes formed due to multiple reflections in the plate itself. 
 
One of the two plates is kept fixed, while the other can be moved to vary the separation of the two 
plates. In this configuration, the instrument is called a Fabry-Perot interferometer. Sometimes 
both the plates are at a fixed separation with the help of spacers. The system with fixed spacing is 
known as Fabry-Perot etalon. The Fabry-Perot interferometer (or etalon) is used to determine 
wavelengths precisely, to compare two wavelengths, to calibrate the standard metre in terms of 
wavelength, etc. 
 

 
 

Fig. 3.9 Fabry-Perot interferometer. S is part of an external light source 
 

1S  is a broad source of monochromatic light and 1L  a convex lens which makes the beam more 
collimated. An incident ray suffers a large number of internal reflections successively at the two 
silvered surfaces, as shown. At each reflection a small fractional part of the light is also 
transmitted. Thus, each incident ray produces a group of coherent and parallel transmitted rays 
with a constant path difference between any two successive rays. A second convex lens, 2L , 
brings these rays together at a point P in its focal plane, where they interfere. Hence, the rays 
from all points of the source produce an interference pattern on a screen 2S  placed in the focal 
plane of L2. 
 
Formation of the Fringes: Let d be the separation between the two silvered surfaces, and   the 
inclination of a particular ray with the normal to the plates. Then the path difference between any 
two successive transmitted rays corresponding to the incident ray is cos2d . The medium 
between the two silvered surfaces is usually air. As you saw, while solving SAQ 1 in Unit 2, that 
  phase changes occur on both of these (air-to-glass) surfaces, hence, the condition 
 
  nd cos2  
 
holds for maximum intensity. 
 
Here, n is an integer, called the order of interference, and   the wavelength of light. The locus of 
points in the source which give rays of a constant inclination   is a circle. Hence, with an 
extended source, the interference pattern consists of a system of bright concentric rings on a dark 
background, each ring corresponding to a particular value of  . Fig. 3.4(b) shows the fringes 
obtained using a Fabry-Perot interferometer. Also shown, in the figure for comparison, are fringes 
obtained by using Michelson interferometer (see Fig. 3.4a). It can readily be seen that the Fabry-
Perot interferometer, which employs the principle of multiple beam interference, produces much 



sharper fringes, and could, hence, be used to study hyperfine structure of spectral lines. The 
intensity distribution of the circular fringes of Fig. 3.4b is not in accordance with Eq. (1.17). To 
determine how much light is reflected and transmitted at the two surfaces, let us read the 
following section. 
 
3.3.1 Intensity Distribution 
Comment: You are advised to go through the Appendix given at the end of this unit carefully. 
 
We return now to the problem of reflections from a parallel plate, already considered in a two-
beam approximation in Unit 2. Fig. 3.10 shows the multiple reflections and transmissions through 
a plane parallel plate of "air" enclosed between two glass plates of Fabry-Perot interferometer. 
Here, n' is the refractive index of the glass plate and n the refractive index of the air enclosed. 
Suppose a wave is incident at an angle  , as shown in Fig. 3.10. This incident wave will suffer 
multiple reflections. Let the reflection and transmission amplitude co-efficient be r and t at an 
external reflection and r' and t' at an internal reflection. 
 
If the amplitude of the incident ray is expressed as tiae  , the successive transmitted rays can be 
expressed by appropriately modifying both the amplitude and phase of the initial wave. Referring 
to Fig. 3.10, these are 
 
 tieattA )'(1   
 )(2

2 )''(   tiearttA  
 )2(4

3 )''(   tiearttA  
 
A little inspection of these equations shows that 
 

 )1()1(2''  NitiN
N eaerttA  

 
The quantities r , 'r , t , 't , are given in terms of n, n',  , '  by the Fresnel formulae. For our 
present purpose we do not need these explicit expressions but only relations between them. We 
have 
 
 Ttt '           (3.9a) 
 
and  Rrr  22 '          (3.9b) 
 
 where R and T, respectively are the reflectivity and transmissivity of the plate surfaces. Then, 
using Eq. 3.9, we have 
 
 tiaTeA 1  
 )(

2 Re   tiaTA  
 )2(2

3
  tieaTRA , and so on. 

 
By the principle of superposition, the resultant amplitude is given by  
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Here, we have ignored tie  , as it is of no importance in combining waves of the same frequency.  
Hence, 
 
 ...)1( 3322    iii eReReRaTA  
 
The infinite geometric series in the parentheses has the common ratio iRe and has a finite sum 
because 2r < 1. Summing up the series, we obtain 
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The complex conjugate of A is therefore 
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Hence the resultant intensity I  is given by 
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Fig. 3.10 Multiple reflection  in a parallel "air" plate enclosed between the two plates of  

  Fabry-Perot interferometer 
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The intensity will be a maximum when 0
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Similarly, the intensity will be a minimum when 1
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Eq. (3.10) can now be written as 
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Here, 2)1(
4

R
RF


  is called the coefficient of finesse. Eq. (3.14) is the intensity expression for 

the Fabry-Perot fringes. 
 
If we plot I  against   for different values of R (the reflectivity of the plates), a set of curves is 
obtained (Fig. 3.11). They show that the larger the value of R, the more rapid is the fall of 
intensity on either side of a maximum. (That is, the higher the reflectivity of the plates, the 
sharper the interference bright fringes.) Further, as Eq. (3.11) and (3.12) show, the larger the 
value of R, the greater is the difference between maxI  and minI . In fact, we obtain a system of 
sharp and bright rings against a wide dark background. 
 
As mentioned in the beginning of the sec. 3.3, Fabry-Perot interferometer is a high resolving 

power instrument. Its resolving power 




 is given by 
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where h  is the thickness of the film enclosed between the two silvered surfaces, r  is the angle of 
refraction inside the film,   the wavelength of the incident light and F is the coefficient of 
finesse.  
 

 
 
Fig. 3.11: The transmitted intensity as a function of   showing how the sharpness depends on  

   reflectance. Percentages refer to reflectance of surfaces 
 

To have an idea of the numerical value of resolving power, let us consider a Fabry-Perot etalon 
with h = 1 cm and F = 80. The resolving power for normal incidence in the wavelength region 
around  = 5000 Å would be 
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That is, two wavelengths separated by 0.0092 Å can be resolved at  = 5000 Å 
 
3.3.2   Superiority over Michelson's Interferometer 
When the light consists of two or more close wavelengths (such as the 1D  and 2D  lines of 
sodium), then in a Fabry-Perot interferometer each wavelength produces its own pattern, and the 
rings of one pattern are clearly separated from the corresponding rings of the other pattern. Hence 
the instrument is very suitable for the study of the fine structure of spectral lines. In Michelson's 
instrument separate patterns are not produced. The presence of two close wavelengths is judged 
by the alternate distinctness and indistinctness of the rings when the optical path difference is 
increased. 
 
3.4   SUMMARY 

 The Michelson interferometer uses an extended monochromatic source. 
 
 When 1M  and 2M  are perpendicular to each other, i.e., when 1M  and 2M  are parallel, 

the fringes given by a monochromatic source are circular and localized at infinity. 
 

 



 When the mirrors of the interferometer are inclined with respect to each other, i.e., when 
1M  and 2M  are not perpendicular to each other, a pattern of straight parallel fringes is 

obtained. 
 
 Whether 1M  and 2M  are parallel or inclined, any fringe shift seen in an interferometer 

may be due to either a change in thickness or a change in refractive index. 
 

 As the movable mirror is displaced by 
2


, each fringe will move to the position 

previously occupied by an adjacent fringe. If N is the number of fringes that have moved 
past a reference point, when the mirror is moved a distance x, then  

 

 
2
Nx   

 
 Michelson interferometer can be used in the measurement of two closely spaced 

wavelengths. 
 
 Fabry-Perot interferometer, which employs the principle of multiple beam interference, 

produces much sharper fringes than those produced by Michelson interferometer. 
 

 In the Fabry-Perol interferometer it is the fringe pattern formed by transmitted light that 
is observed and as such that intensity distribution would be given by 
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 The resolving power of Fabry-Perot interferometer is given by 
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3.5   TERMINAL QUESTIONS 
(1)         When one leg of a Michelson interferometer is lengthened slightly, 150 dark fringes 

sweep through the field of view. If the light used has  = 480 mm, how far was the 
mirror in that leg moved? 

 
(2)   Circular fringes are observed in a Michelson interferometer illuminated with light of 

wavelength 5896 Å. When the path difference between the mirrors 1M  and 2M  is 0.3 
cm, the central fringe is bright. Calculate the angular diameter of the 7th bright fringe. 

 
3.6   SOLUTIONS AND ANSWERS 
 
SAQs 
 
(1)        The distance, x, moved by the mirror when N fringes cross the field of view is given by 



  
2
Nx   

 
N
x2

  

 
Here, x = 0.00589 cm, and N =200. 

 

 
200

00589.02
 = 0.0000589 = 5890 Å 

 
(2) If x be the distance moved by the movable mirror between two consecutive positions of 

maximum indistinctness (or distinctness), we have 
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 where   is the average of 1  and 2 . 
  
 Here  = 5893 Å = 8105893  cm and x = 0.9884 – 0.6939  = 0.2945 mm = 0.02945  

cm. 
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(3) Let t be the thickness of the film. When it is put in the path of one of the interfering 

beams of the Michelson's interferometer, an additional path difference of t)1(2   is 
introduced. If N be the number of fringes shifted, we have 

 
   Nt  )1(2  
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 Here, N = 500,  = 8104800   cm,  = 1.50. 
 

  
)150.1(2
104800500 8







t  

 

     = 
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     = 0.024 cm 



TQs 
(1) Darkness is observed when the light beams from the two legs are 180° out of phase. As 

the length of one leg is increased by
2


,  the path length increases by  , and the field of 

view changes from dark to bright to dark. When 150 fringes pass, the leg is lengthened by 
an amount 
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= (150) (240) = 36,000 nm = 0.036 mm 

 
(2) The expression for the bright circular fringe is 
 

nrd cos2  
 
At the centre r = 0, so that 

  
  nd 2         (i) 
  

n now stands for the order of the central bright fringe. The order of fringes decreases as 
we move outwards from the centre. Thus the second bright fringe is of )1( n th order, 
..., the seventh bright fringe is of )6( n th order. Hence if   be the angular radius of the 
7th bright fringe, we have 
 
  )6(cos2  nd        (ii) 
 
Eq. (i) and (ii) give 
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Putting the given values: 
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            = 1 – 0.0005896 = 0.9994 
   = )9994.0(cos 1 = 20 
 angular diameter = 40 
 

 
3.7    APPENDIX 
Method of Complex Amplitudes 
In place of using the sine or the cosine to represent a simple harmonic wave, one may write the 
equation in the exponential form as 
 



  itikxti eaeaey   )(  
 
where   = kx is constant at a particular point in space and represents the phase of the wave. The 
presence of 1i  in this equation makes the quantities complex. We can nevertheless use this 
representation, and at the end of the problem take either the real (cosine) or the imaginary (sine) 
part of the resulting expression. The time-varying factor )exp( ti  is of no importance in 
combining waves of the same frequency, since the amplitudes and relative phases are independent 
of time. The other factor, )exp( ia   is called the complex amplitude. It is a complex number 
whose modulus a is the real amplitude, and whose argument   gives the phase relative to some 
standard phase. Negative sign merely indicates that the phase is behind the standard phase. In 
general, the vector a is given by 
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Then it will be seen that 
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Thus, if a is represented as in Fig. (3.12), plotting horizontally its real part and vertically its 
imaginary part, it will have the magnitude a and will make the angle   with the x axis, as we 
require for vector addition. 
 
The advantage of using complex amplitudes lies in the fact that the vector addition of real 
amplitudes can be written more easily in the form of an algebraic addition of complex amplitudes. 
For example, consider the real parts of two waves that follow the equations 
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Adding these two equations gives 
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We can now take out the common exponent ti : 
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The square of the resultant, 2A , is found by multiplying the complex terms by their complex 
conjugates: 
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Then, from Euler's formula, 
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and therefore, Eq. (3.18) becomes 
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the same as Eq. (1.15).  
 

 
 

Fig. 3.12 Representation of a vector in the complex plane 
 

Thus, in obtaining the resultant intensity as proportional to the square of the real amplitude, we 
multiply the resultant complex amplitude by its complex conjugate, which is the same expression 
with i  replaced by i  throughout. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 4   FRESNEL DIFFRACTION 
Structure  
4.1       Introduction Objectives 
4.2       Observing Diffraction: Some Simple Experiments 
4.3       Producing a Diffraction Pattern 

Spatial Evolution of a Diffraction Pattern: Transition from Fresnel lo Fraunhofer Class 
4.4       Fresnel Construction 

Half-period Elements  
Rectilinear Propagation  
The Zone Plate 

4.5       Diffraction Patterns of Simple Obstacles 
A Circular Aperture  
A Straight Edge 

4.6  Summary 
4.7  Terminal Questions 
4.8  Solutions and Answers 
 
4.1 INTRODUCTION 
We know from our day-to-day experience that we can hear persons talking in an adjoining room 
the door of which is open. This is due to the ability of sound waves to bend around the corners of 
obstacles in their way. You are also familiar with the ability of water waves to propagate around 
obstacles. You may now ask: Does light, which is an electromagnetic wave, also bend around 
corners of obstacles in its path? Earlier in this course you have learnt the manifestation of wave 
nature of light in the form of interference: Light from two coherent sources interferes to form 
fringed pattern. But what may puzzle you is the fact that light casts shadows of objects, i.e. 
appears to travel in straight lines rather than bending around corners. This apparent contradiction 
was explained by Fresnel who showed that the ease with which a wave bends around corners is 
strongly influenced by the size of the obstacle (aperture) relative to its wavelength. Music and 
speech wavelengths lie in the range 1.7 cm to 17m. A door is about 1 m aperture so that long 
wavelength waves bend more readily around the door way. On the other hand, wavelength of 
light is about  710 m and the obstacles used in ordinary experiments are about 510 times bigger. 
For this reason, light appears to travel along straight lines and casts shadows of objects instead of 
bending around their corners. However, it does not mean that light shows no bending, it does so 
under suitable conditions where size of obstacles is comparable with the wavelength of light. You 
can get a feel for this by closely examining shadows cast by objects. You will observe that the 
edges of shadows are not sharp. The deviation of waves from their original direction due to an 
obstruction in their path is called diffraction. 
 
The phenomenon of diffraction finds great use in our daily life. You will learn that diffraction 
places a fundamental restriction on optical instruments, including the human eye, in respect of 
resolution of objects.  
 
The phenomenon of diffraction was first observed by Grimaldi, an Italian mathematician. And a 
systematic explanation of diffraction was given by Fresnel on the basis of Huygens' principle. 
According to him, diffraction is attributed to mutual interference of secondary wavelets from a 
single wave. (The interference phenomenon involves two coherent wave trains.) This means that 
in diffraction phenomenon, interference takes place between secondary wavelets from different 
parts of the same wavefront. 
 
 



 
For mathematical convenience and ease of understanding, diffraction is classified in two 
categories: Fraunhofer diffraction and Fresnel diffraction. In Fraunhofer class of diffraction, the 
source of light and the observation screen (or human eye) are effectively at infinite distance from 
the obstacle. This can be done most conveniently using suitable lenses. It is of particular practical 
importance in respect of the general theory of optical instruments. You will learn about it in the 
next unit. 
 
In Fresnel class of diffraction, the source or the observation screen or both are at finite distance 
from the obstacle. You will recognise that for Fresnel diffraction, the experimental arrangement is 
fairly simple. But its theoretical analysis is more difficult than that of Fraunhofer diffraction. 
Also, Fresnel diffraction is more general; it includes Fraunhofer diffraction as a special case. 
Moreover, it has importance in historical perspective in that it led to the development of the wave 
model of light. You will learn some of these details in this unit. 
 
Objectives 
After studying this unit you will be able to: 
 

 state simple experiments which illustrate diffraction phenomenon 
 describe an experimental set-up for diffraction at a circular aperture 
 explain that Fraunhofer diffraction is a special case of Fresnel diffraction 
 discuss the concept of Fresnel half-period zones and apply it to zone plate 
 discuss diffraction pattern due to a circular aperture and a straight edge, and 
 solve numerical problems. 

 
4.2   OBSERVING DIFFRACTION: SOME SIMPLE EXPERIMENTS 
As you know, the wavelength of visible light is very small (about 710 m). And to see diffraction, 
careful observations have to be made. We will now familiarise you with some simple situations 
and experiments to observe diffraction of light. The prerequisites for these are: (i) a source of 
light, preferably narrow and monochromatic, (ii) a sharp edged obstacle and (iii) an observation 
screen, which could be the human retina as well. 
 
1.      Look at a distant street light at night and squint. The light appears to streak out from the 

bulb. This is because light has bent around the corners of your eyelids. 
 
2.     Stand in a dark room and look at a distant light bulb in another room. Now move slowly 

until the doorway blocks half of the light bulb. The light appears to streak out into the 
umbra region of the dark room due to diffraction around the doorway. 

 
3. Take a piece of fine cloth, say fine handkerchief or muslin cloth. Stretch it flat and keep 

it close to the eye. Now focus your eye on a distant lamp (at least 100 m away) through 
it. Do you observe an enlarged disc surrounded by a regular pattern of spots arranged 
along a rectangle? On careful examination you will note that the spots on the outer part 
of the pattern appear coloured. Now rotate the handkerchief in its own plane. Does the 
pattern rotate? You will he excited to see that the pattern rotates about the central disc. 
Moreover, the speed of rotation of the pattern is same as that of the handkerchief. 

 

Fraunhofer diffraction and Fresnel diffraction are also called far field diffraction and near 
field diffraction, respectively. 
 



We are now tempted to ask: Do you know why this pattern of spots is obtained? You will 
agree that the handkerchief is a mesh (criss-cross) of fine threads in mutually 
perpendicular directions. Obviously, the observed pattern is formed by the diffraction of 
light from the lamp. 
 

4.     Take a pair of razor blades and one clear glass electric bulb. Hold the blades so that the 
edges are parallel and have a narrow slit in between, as shown in Fig. 4.1. Keep the slit 
close to your eye and parallel to the filament. (Use spectacles if you normally do.) By 
slightly adjusting the width of the slit, you should observe a pattern of bright and dark 
bands, which show some colours. Now use a blue or red filter. What do you observe? 
Does the pattern become clearer? 

 

 
 

Fig. 4.1 Observing diffraction using a pair of razor blades 
 
5.      Mount a small ball bearing carefully on a plate of glass with a small amount of beeswax 

so that no wax spreads beyond the rim of the ball. Place this opaque obstacle in a strong 
beam of light (preferably monochromatic) diverging from a pinhole. Under suitable 
conditions, you will observe a bright spot, called Poisson spot at the centre of the shadow 
cast by the ball bearing. This exciting observation proved unchallengeable evidence for 
diffraction of light. 

 
4.3  PRODUCING A DIFFRACTION PATTERN 
In the Fresnel class of diffraction, the source of light or the screen or both are, in general, at a 
finite distance from the diffracting obstacle. On the other hand in Fraunhofer diffraction, this 
distance is effectively infinite. This condition is achieved by putting a suitable lens between the 
source and the screen. A large number of workers have observed and studied Fresnel and 
Fraunhofer diffraction patterns. Recently a systematic study of Fresnel diffraction pattern from 
obstacles of different shapes e.g. small spheres, discs and apertures of circular, elliptical, square, 
triangular or parallelograms etc of different sixes was done by Indian physicist Y.V. Kathvate 
under the guidance of Prof. C. V, Raman. Their experimental set up for photographing these 
patterns is shown in Fig. 4.2. It consists of a light tight box (nearly 5 m long) with a fine pinhole 
at one end. The light on the pinhole from a 100 W lamp was focussed using a convex lens, A red 
filter was used to obtain almost monochromatic light of wavelength 6320 Å. 
 
The obstacle was placed at a suitable distance (about 2 m) from the pinhole. The photographic 
plate was mounted on a movable stand so that its distance from the obstacle could be varied. They 
used steel ball bearings of radii 1.58 mm, 1.98 mm, 2.37mm and 3.17 mm as spherical obstacles. 
 
(As such, you should not attach much significance to the exactness of these sizes.) These four 
spheres were mounted on a glass plate, which was kept at a distance of about 2 m from the 
pinhole. 
 



 
 
Fig. 4.2 Schematics of experimental arrangement used by Kathvate to observe Fresnel diffraction 
 

 
 
The photographic plate was kept at distances of 5cm, 10cm, 20cm, 40cm and 180 cm from the 
mounted glass plate (obstacle). For the last case, the diffraction patterns obtained from these 
spheres are shown in Fig. 4.3 (a). These patterns essentially characterize the distribution of light 
intensity in the region of geometrical shadow of the obstacles. 
 
 

Poisson was a member of the committee, which was appointed to judge Fresnel's dissertation. To 
disprove Fresnel, and hence the wave theory, Poisson argued that a central bright spot should 
appear in the shadow of a circular obstacle. His logic, called reductio ad absurdum goes as 
follows: Consider the shadow of a perfectly round object being cast by a point source (O) shown 
below. According to wave theory, all the waves at the periphery will be in phase. This is because 
they have covered the same distance from the source. So the waves starting from the rim 'PP  and 
reaching C should all be in phase at the centre of the shadow. This implies that there should be a 
bright spot at the centre of the shadow. This was considered absurd by Poisson; he was definitely 
not aware that the bright spot in question had already been discovered by Maraldi almost a century 
before. Soon after Poisson's objection, Arago carried out the experiment using a disk of 2mm 
diameter. To his surprise, he rediscovered the central bright spot. 
 

 
 

 
 



 
 

Fig. 4.3 Fresnel diffraction patterns: Kathvate experiments with (a) spheres and (b) circular discs  
of four sizes 

 
The diffraction patterns for circular discs of the same size are illustrated in Fig. 4.3(b). You will 
find that these patterns are almost similar to those for spheres. Moreover, the diffraction patterns 
on the left half of this figure, which correspond to bigger spheres and discs (radii 3.17 mm and 
2.37 mm), show the geometrical shadow and a central bright spot within it. On the other hand, in 
the diffraction pattern corresponding to the smaller sphere (or disc) of radius 1.98mm, the 
geometrical image is recognizable but has fringes appearing on its edges. The fringe pattern 
around the central spot becomes markedly clearer for the sphere of radius 1.58mm. An enlarged 
view of this pattern is shown in Fig. 4.4. The formation of the bright central spot in the shadow 
and the rings around the central spot are the most definite indicators of non-rectilinear 
propagation of light. Instead, light bends in some special way around opaque obstacles. These 
departures from rectilinear propagation come under the heading of diffraction phenomenon. 
 
Let us pause for a minute and ask: Are these diffraction patterns unique for a given source and 
obstacle? The answer to this question is: Fresnel patterns vary with the distance of the source and 
screen from the obstacle. Let us now learn how this transition evolves. 
 
 



 
 

Fig. 4.4 Enlarged view of fringe pattern for the sphere of radius 1.58mm 
 
4.3.1    Spatial Evolution of a Diffraction Pattern: Transition from Fresnel to Fraunhofer  

Class 
To observe transition in the Fresnel diffraction pattern with distance, we have to introduce a small 
modification in Kathvate's experimental arrangement, as shown in Fig. 8.5 (a). The point source 
is now located at the focal point of a converging lens L. The spherical waves originating from the 
source O are changed into plane waves by this lens and the wavefront is now parallel to the 
diffracting screen with a narrow opening in the form of a long narrow slit (Fig.8.5 (b)). These 
waves pass through the slit. The diffracted waves are also plane and may have an angular spread. 
You may now like to know the shape, size and intensity distribution in the diffraction pattern on a 
distant screen. 
 
1.     When the incident wavefront is strictly parallel to the diffracting screen, we get a vertical  

patch of light when the screen is immediately behind the aperture. That is, a region A'B' 
of uniform illumination on the screen. The size of this region is equal to the size of the 
slit both in width and height. The remaining portion of the screen is absolutely dark. A 
plot of this intensity distribution is shown in Fig. 4.6 (a). From P  to A', the intensity is 
zero. At A', it abruptly rises to 0I , and remains constant from A' to B'. At B', it again 
drops to zero. We can say that A'B' represents the edges of the geometrical shadow (and 
the law of rectilinear propagation holds). 



 

 
 
Fig. 4.5(a) Arrangement to observe transition In Kernel diffraction pattern (b) Cross-sectional 
view of the geometry shown in (a) above 

 
2.     As the screen is moved away from the aperture, a careful observation shows that the 

patch of light seen in (1) above begins to lose sharpness. If the distance between the 
obstacle and the observation screen is large compared to the width of the slit, some 
fringes start appearing at the edges of the patch of light. But this patch resembles the 
shape of the slit. The intensity distribution shows diffraction rippling effect somewhat 
like that shown in Fig. 8.6(b). From this we can say that the intensity distribution in the 
pattern depends on the distance at which the observation screen is placed. 

 
 
 
 

 

 
 

Fig. 4.6 Spatial evolution of a diffraction pattern 

A slit is a rectangular opening whose width (0.l mm or so) is much smaller than 
its length 1 cm or more. 
 



3.      When d (~ 1m) is much greater than the width of the slit (~ 0.1 mm), the fringes seen in 
(2) above – close to edge of the patch – now spread out and the geometrical image of the 
slit can no longer be recognized. As distance is increased further, diffraction effects 
become progressively more pronounced. 

 
4.     When d is very large, i.e., once we have moved into the Fraunhofer region, ripples no 

longer change character. You can observe this pattern by putting a convex lens after the 
slit. The observation screen should be arranged so that it is at the second focal plane of 
the lens. These variations in Fraunhofer diffraction are shown in Fig. 4.6(c). 

 
From this we may conclude that Fresnel diffraction can change significantly as the distance from 
the aperture is varied. 
 
You must now be interested in understanding the physical basis of these observations . The first 
systematic effort in this direction was made by Fresnel. Let us learn about it now. 
 
4.4  FRESNEL CONSTRUCTION 
Let us consider a plane wave front represented by WW propagating towards the right, as shown in 
Fig. 4.7(a). We want to calculate the effect of this plane wavefront at an external point 0P  on the 
screen at a distance d. Then we will introduce an obstacle like a straight edge and see how 
intensity at 0P  changes. 
 
We know that every point on the plane wavefront may be thought of as a source of secondary 
wavelets. We wish to compute the resultant effect at 0P  by applying Huygens-Fresnel principle. 
One way would be to write down the equations of vibrations at 0P  due to each wavelet and then 
add them together. This is a cumbersome proposition. The difficulty in mathematical calculation 
arises on two counts; (i) There are an infinite number of points which act as sources of secondary 
wavelets and (ii) Since the distance travelled by the secondary wavelets arriving at 0P  is 
different, they reach the point P0 with different phases. To get over these difficulties, Fresnel 
devised a simple geometrical method which provided useful insight and beautiful explanation of 
diffraction phenomenon from small obstacles. He argued that it is possible to locate a series of 
points situated at the same distance from 0P  so that all the secondary wavelets originating from 
them travel the same distance. We can, in particular, find the locus of those points from where the 

wavelets travel a distance 
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b , and so on. 

 
The Fresnel construction consists of dividing the wavefront into annular spaces enclosed by 
concentric circles (Fig. 4.7(b)). The net effect at 0P  will be obtained by summing contributions of 
wavelets from these annular spaces, called half period elements. When an obstacle is inserted in 
between the wavefront WW' and the point 0P , some of these half period elements will be 
obstructed depending upon the size and shape of the obstacle. The wavelets from the 
unobstructed parts only will reach 0P  and their resultant can be calculated easily by Fresnel's 
method. Let us now learn about Fresnel's construction, half period elements and the method of 
summation of the contributions of secondary wavelets. 
 



 
 
Fig. 4.7 Fresnel construction (a) Propagation of a plane wavefront and (b) division of wavefront  

into annular spaces enclosed by concentric circles 
 
4.4.1   Half Period Elements 
To discuss the concept of Fresnel's half-period elements we assume, for simplicity, that light 
comes from infinity so that the wavefront passing through the aperture is plane. Refer to Fig. 4.8. 
It shows a plane wavefront WWF'F of monochromatic light propagating along the z -direction. 
We wish to calculate the resultant amplitude of the field at an arbitrary point 0P  due to 
superposition of all the secondary Huygen’s wavelets originating from the wavefront at the 
aperture. To do so, we divide the wavefront into half-period zones using the following 
construction: From the point 0P  we drop a perpendicular 0P O on the wavefront, which cuts it at 
O. The point O is called the pole of the wavefront with respect to the point 0P . Suppose that b is 
the distance between the foot of the perpendicular to 0P , i.e., O 0P  = b. 
 

Now with 0P  as centre, we draw spheres of radii 
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b , and so on. You can 

easily visualise that these spheres will intersect the plane wavefront in a series of concentric 
circles with centre O and radii 1OQ , 2OQ , 3OQ , … as shown in Fig. 4.8. This geometrical 
construction divides the wavefront into circular strips called zones. The first zone is the space 
enclosed by the circle of radius 1OQ t the second zone is the annular space between the circles of 
radii 2OQ  and 1OQ . The third zone is annular space between the circles of radii 3OQ  and 

2OQ , and so on. These concentric circles or annular rings are called Fresnel zones or half 
period elements. This nomenclature has genesis in the fact that the path difference between the 
wavelets reaching 0P  from corresponding points in successive zones is 2/ . 
 



 
 

Fig. 4.8 Half-period zones on a plane wavefront: A schematic construction 
 
To compute the resultant amplitude at 0P  due to all the secondary wavelets emanating from the 
entire wavefront, we first consider an infinitesimal area dS of the wavefront. We assure that the 
amplitude at 0P  due to dS is (i) directly proportional to the area dS since it determines the number 
of secondary wavelets, (ii) inversely proportional to the distance of dS from 0P  and (iii) directly 
proportional to the obliquity factor )cos1(  , where   is the angle between the normal drawn 
to the wavefront at dS and the line joining dS to 0P .   is zero for the central point O. As we go 
away from O, the value of   increases until it becomes 90° for a point at infinite distance on the 
wavefront (Fig. 4.9). Physically, it ensures that wavefront moves forward. That is, there is no 
reverse (or backward) wave. 
 

 
 

Fig. 4.9 The obliquity factor for Huygens' secondary wavelets 
 



If we denote the resultant amplitudes at 0P  due to the first, second, third, fourth, ..., nth zone by 

1a , 2a , 3a , 4a , …, then we can write 
 

na const )cos1( 
n

n

b
A

       (4.1) 

 
where nA  is the area of the nth zone and nb  is the average distance of the nth zone from 0P . Eq. 
(4.1) shows that to know the amplitude of secondary wavelets arriving at 0P  from any zone, we 
must know nA . This in turn requires knowledge of the radii of the circles defining the boundaries 
of the Fresnel zones. To calculate the radii of various half period zones in terms of known 
distances, let us denote 11 rOQ  , 22 rOQ  , 33 rOQ  , …, nn rOQ  . From Pythagoras' 
theorem we find that the radius of the first circle (zone) is given by 
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The approximation b  holds for practical systems using visible light. Similarly, the radius of 
the nth circle (zone) is given by 
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where we have neglected the term 
4

22n
 in comparison to nb . This approximation holds for all 

diffraction problems of interest to us here. 
 
It readily follows from Eqs. (4.1) and (4.2) that the radii of the circles are proportional to the 
square root of natural numbers, i.e., 1 , 2 , 3 , 4 , … Therefore, if the first zone has radius 

1r , the successive zones have radii 1.41 1r , 1.73 1r , 2 1r , etc. For He-Ne laser light ( = 6328 Å). 
If we take 0P  to be 30 cm away (b = 30 cm), the radius of the first zone will 0.436 mm. 
 
Let us now calculate the area of each of the half-period zones. For the first zone 
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The area of the second zone, i.e. the annular region between the first and the second circles is 
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Similarly, you can readily verify that the area of the nth zone 
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That is, all individual zones have the same area. The physical implication of the equality of zone 
areas is that the secondary wavelets starting from every zone will be very nearly equal. You must 
however remember that the result contained in Eq.(4.3) is approximate and is valid for cases 
where nb  . A more rigorous calculation shows that the area of a zone gradually increases 
with n: 
 

 
 

Refer to figure above and consider the contributions from the (n - 1)th and nth 
zones. Firstly, the areas of the two annular regions are approximately equal, i.e., 
the secondary wavelets starting from both the zones are equal. Secondly, the 
points on the innermost circle of the (n - 1)th zone, e.g., points like R are 
situated at a distance of 2/)2(  nd  from 0P , whereas the points on the 
innermost circle of the nth zone e.g. points like S are situated at a distance of 

2/)1(  nd  from 0P . The difference in path between the secondary 
wavelets to reach 0P  from R and S is 2/ . This means that the waves reaching 

0P  are out of phase by   and cancel each other. Similarly for every point 
between R and S in the (n - 1)th zone we have a corresponding point between S 
and T in the nth zone with a path difference of 2/  or phase difference of   
and hence cancel each other. Since the areas of the two zones are approximately 
equal, we arrive at the result that for every point in the (n -1)th zone we have 
a point in the nth zone which is out of phase by  or half of a period. 
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However, the effect of this increase is almost balanced by the increase in the average distance of 
the nth zone from 0P . That is, the ratio nn bA /  in Eq. (4.1) remains  , which is a constant, 
independent of n. This means that the amplitude due to any zone will be influenced by the 
obliquity factor, which is actually responsible for monotonic decrease in the amplitudes of higher 
zones )...( 321 naaaa  . Also, it is important for our computation to note that 
consecutive zones differ by one-half of a wavelength. Therefore, the secondary waves from any 
two corresponding points in successive zones [nth and (n - l)th or (n + l)th] reach 0P  out of phase 
by   or half of a period. 
 
Suppose that the contribution of all the secondary wavelets in the nth zone at 0P  is denoted by an. 
Then, the contribution of (n - l)th zone 1na  will tend to annihilate the effect of the nth zone. 
Mathematically we write the resultant amplitude at 0P  due to the whole wavefront as a sum of an 
infinite series whose terms are alternately positive and negative but the magnitude of successive 
terms gradually diminishes: 
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There are several methods of arriving at this result. Here we will describe a simple graphical 
construction. (The mathematical method is given as TQ).  
 
Let us denote the amplitudes of resultant vectors AB, CD, EF, GH, ... respectively by 1a , 2a , 

3a , 4a , ... due to the first, second, third, fourth, ... zone. (We know that, 1a , 2a , 3a , 4a , ..., an 
are alternately positive and negative). These vectors are shown separately in Fig. 4.10(a) to show 
their magnitudes and positions. But their true positions are along the same line, as shown in Fig. 
4.10 (b). The resultant of the first two zones as will be the small vector AD. But the resultant of 
the first three zones is the large vector AF; of the four zones the smaller vector AH and so on. 
Refer to Fig. 4.10(a) again. You will note that the resultant of infinitely large number of zones is 
equal to 2/1a . 
If we consider a finite number of zones, say n, the resultant is given by 
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where n  is any number (odd or even). 
 



 

 
 
Fig. 4.10: Phasor diagram for Fresnel (half-period) zones. Individual amplitudes are shown in (a).  

So far we have considered the effect of a whole number of half period elements 
at a given point. The sum of the amplitudes due to all the secondary wavelets 
starting from the nth zone was represented by an. But so far we have not 
computed the magnitude and phase of the amplitude vector an. An obvious 
related problem is to calculate the effect at 0P  due to a fraction of a given half 
period element. We can do this easily by the following vector summation 
method. We divide a Fresnel zone into a series of n sub-zones of equal areas. 
Refer to figure below. It shows such a division for the annular space between 
the (n - 1)th and the nth circles. O is taken as centre and circles of slightly 
differing radii have been drawn such that the annular space between two 
consecutive circles encloses equal area. Now within the area covered by a sub-
zone, we can neglect variation in inclination factor. Since all these sub-zones 
have been drawn so that they have equal areas, the amplitude at 0P  due to these 
small equal areas will be the same. But the phases will change continuously 
from one sub-zone to the next sub-zone by n2/  since the phase difference 
between the secondary wavelets starting from the innermost sub-zone of any 
one Fresnel half period zone is 2/  or  . If we make n very large, we will 
have infinitesimally small but equal areas and phases of wavelets from these 
may be taken to vary continuously and uniformly. 

 

 
 

Thus we have a set of disturbances of equal amplitude but uniformly changing 
phase such that the phase difference between the two extreme disturbances is 
 . These extreme vectors are represented by AA' and BB' in the figure shown. 
We know that in such a case the vector diagram is a semicircle and the resultant 
of the summation of amplitudes is the diameter AB.  

 



Actually all vectors are along a line. This is shown in (b). The resultant amplitude due 
to n (= 2, 3, ...) zones is shown in (c) 

 
To see this, you closely re-examine Fig. 4.10(b). You will note that all vectors representing 1a , 

2a , 3a , 4a , ... are line segments whose midpoints coincides with the midpoint of 1a  (marked as 
—). (You must convince yourself about this.) In other words, the vector representing an is a line, 
half of which is above the horizontal line passing through the midpoint of 1a  and the other half is 
below this line. The resultant of n zones is a vector joining A to the end of the vector representing 
an. When n is odd, the end point of the vector representing an will be above the horizontal line by 

2/na , which proves the required result. 
 
If n is even, the end point will be below this horizontal line by 2/na . Added vectorially, we have 
the same result. We thus see that the resultant amplitude at 0P  due to n zones is half the sum of 
amplitudes contributed by the first and the last zone.   will be numerically greater than 2/1a  
when n is odd and smaller than 2/1a  when n is even. For example, the resultant contribution due 

to 7 zones is AO, which is equal to 
22

1 NOa
 . On the other hand, for 8 zones, the resultant is 
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It may be emphasized that in this graphical method of summation of the series, we have used 
three properties: (i) vectors representing 1a , 2a , ... are all along the same straight line               
(ii) alternate vectors are oppositely directed and (iii) the magnitudes of 1a , 2a , ... decrease 
gradually. 
 
We now consider a simple example to illustrate these concepts. 
 
Example 1 
Consider a series with n = 100 in which each term is equal to the arithmetic mean of the 
preceding and the following terms. Calculate the resultant. 
 
Solution 
As a special case, we can take the terms of the series as 100, 99, 98, ..., 3, 2, 1.  
 
   =  (100 – 99) + (98 – 97) + (96 – 95) + ... + (4 – 3) + (2 – 1) 

 
=  1 + 1 + 1 + ...  (50 terms) 
 
= 50  

 
which is half of the first term. Now consider the relation 
 

 
22

1 naa
  

 



and take different number of terms in this arithmetic series. If we have only one term, 1a = 100 
we take the first term as 100 and also the last term as 100. Then we get 
 

 
22

1 naa
 = 100 

 
Next we take two terms. Then 
 
  (100 – 99) = 1 
 
Also 
 

 
22

1 naa
  = 

2
99

2
100

  

 
      = 50 – 49.5 = 0.5 
 
For three terms,  = (100 – 99) + 98 = 99 

and   
22

31 aa
 = 50 + 49 = 99 

 
For four terms,  = (100 – 99) + (98 – 97) = 2 

and  
22

41 aa
 = 50 – 48.5 = 1.5 

 
For five terms  = (100 – 99) + (98 – 97) + 96 = 98 

and  
22

51 aa
 = 50 + 48 = 98 

 
For six terms  = (100 – 99) + (98 – 97) + (96 – 95) = 3 

and  
22

61 aa
 = 50 – 47.5 = 2.5 

 

and so on. Thus we see that   is given by 
22

1 naa
  to a fairly good degree of accuracy. 

 
4.4.2  Rectilinear Propagation 
Refer to Fig. 4.11. It shows several collinear apertures A, B, C, ... Light originates from a point 
source and propagates towards the right. Suppose that the source is 1m away. We may take the 
spherical wave falling on the obstacle as nearly a plane wave. (The radius of curvature of the 
incident spherical wave will not qualitatively change the argument.) Let us work out the sizes of 
Fresnel half period elements for the typical case where the screen is 30 cm away from the 
aperture. 
 
 



 
 
 

 
 

Fig. 4.11 Fresnel construction and rectilinear propagation of light 
 

Now we will compute magnitude and phase of the resultant at AB. If all the equal 
disturbances from the sub-zones were in the same phase, the resultant would have 
been a line along AA' and equal lo the length of the arc of the semicircle AB ( r ) 
of radius r. But we find that the actual resultant amplitude is AB = 2r. Thus the 

resultant amplitude is 

22


r
r

times the value which would be obtained if all the 

wavelets within a Fresnel half period element had the same phase. Since the line AB 
is parallel to the line MN, we see that the resultant phase of vector AB is the same as 
that of the vector MN representing the disturbance starting from the middle point 
(M) of the zone. In other words, AB is perpendicular to AA'. That is, it is a quarter-
period behind the wavelet starting from the innermost sub-zone. We can find, in a 
similar manner, the resultant contribution due to the next half-period zone. It is 
given by CD and differs from AB by  . The resultant of the sum of these two zones 
is the small vector AD. The magnitudes of vectors and their phases for succeeding 
zones are shown in the figure below. The resultant curve is the vibration spiral with 
gradually smaller and smaller semicircles until eventually it coincides with Z. The 
resultant when all the half-period elements are considered is AZ which is half of that 

which would be produced by the first zone alone. It is equal to 

12

2
1

 times 

that which would be produced by all the wavelets from the first zone acting together 
in the same phase. 

 

 
 



Taking 5105  cm, we get )105()30( 5
1 cmcmr  = 21087.3   cm. This means 

that the diameter of the first zone is less than 1 mm. Let us consider the 100th zone. Its radius 

cmcmr 5
100 10510030  = 11087.3   cm, so that the diameter will be a little less than 

1 cm. Therefore, if the aperture is about 1 cm in diameter, the amplitude at 0P  due to the whole 

wavefront is 
22
1001 aa

 . 100a  will be fairly small, so that the intensity is essentially half of that 

due to the first half period zone, which is the intensity expected at 0P  when the aperture is 
completely removed. We may say that light travels to 0P  from a region nearly 0.4 mm in radius 
around O. That is, light travels in a straight line. 
 
Let us now understand the formation of shadows and illuminated regions due to an obstacle (Fig. 
4.12). Consider the point P2 whose pole is O2. If the distance between O2 and the edge A of the 
obstacle is nearly 1 cm, over 100 half period elements will be accommodated in it. And as seen 

above, the intensity at P2 will be nearly equal to 
2

1a
. In other words, the obstacle T will have no 

effect at the point P2- Similarly, at P1, which is taken 1 cm inside the geometrical edge of the 
shadow, over 100  half period elements around O1 are obstructed and the intensity at P1 will be 

less than 
2
100a

, which is almost negligible. This implies almost complete darkness at P1. In other 

words, the obstacle has completely obstructed the light from the source and the region around 
point P1 is in the shadow. Only around P0, which signifies the geometrical edge of the shadow, 
we find fluctuations in intensity depending upon how many half period elements have been 
allowed to pass or have been obstructed. This explains the observed rectilinear propagation of 
light since Fresnel zones are obstructed or allowed through by obstacles of the size of a few mm 
for these typical distances. 
 

 
 

Fig. 4.12: Fresnel construction and formation of shadows/Illuminated regions 
 
A special optical device, designed to obstruct light from alternate half-period elements is known 
as Zone plate. It provides experimental evidence in favour of Fresnel’s theory. Let us learn about 
it now. 
 



4.4.3  The Zone Plate 
The zone plate is a special optical device designed to block light from every other half-period 
zone. You can easily make a zone plate by drawing concentric circles on a white paper, with their 
radii proportional to the square roots of natural numbers and shading alternate zones. Fig. 4.13 
shows two zone plates of several Fresnel zones, where all even numbered or odd numbered zones 
are blackened out. Now photograph these pictures. The photographic transparency (negative) in 
reduced size acts as a Fresnel zone plate. (Recently, Gabor has proposed a zone plate in which 
zones change transmission according to a sinusoidal wave.) Lord Rayleigh made the first zone 
plate in 1871. Today zone plates are used to form images using X-rays and microwaves for which 
conventional lenses do not work. 
 

 
 

Fig. 4.13 Zone plates: (a) positive (b) negative 
 

If you now pause for a while and logically reflect upon the possible properties of a Fresnel zone 
plate, you will arrive at the following conclusions: 
 
1.      A zone plate acts like a converging lens (see Example 2) and produces a very bright spot. 

To understand the formation of the spot let us suppose that the first ten odd zones are 
exposed to light. Then, Eq.(8.4) tells us that the resultant amplitude at P0 is given by 

 
1953120 ... aaaa         (8.5) 

 
If the obliquity factor is not important, we may write 120 10a , which means that the 
amplitude for an aperture containing 20 zones is twenty times and intensity is 400 times 
that due to a completely unobstructed wavefront. 
 

Example 2 
Show that a zone plate acts like a converging lens.  
 
Solution 
Refer to Fig. 4.14. It shows the section of the zone plate perpendicular to the plane of the paper. S 
is a point source of light at a distance u from the zone plate. A bright image is formed at P0 at a 
distance v from the plane of the zone plate. 

 



 
 

Fig. 4.14: Action of a Zone Plate as a converging lens 
 
 
You can easily write 
 

 011 PQSQ   = 
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 vu  
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By Pythagoras' theorem we can write 
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where nr  is the radius of the nth zone.  
 
Similarly, you can convince yourself that 
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If we identify 
n

rf n
n

2

  as the focal length of the zone plate, we find that 
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which is identical to the lens equation. 
 
 
2.      The zone plate has several foci. To understand this, we assume that the observation 

screen is at a distance of one focal length from the diffracting aperture. Then it readily 
follows from the above example that the most intense (first order) focal point is situated 
at /2

11 rf  . To give you a feel for numerical values, let us calculate 1f  for a zone 

plate with radii nrn 1.0  cm and illuminated by a monochromatic light of wavelength 
 = 5500 Å. You can easily see that 

 

  
cm

cmrf 8

22
1

1 105500
)1.0(





= 182 cm 

 
To locate higher order focal points, we note from Eq. (4.2) that for rn fixed, n increases as b 
decreases. Thus for 2/1fb  , n = 2. That is, as P0 moves towards the zone plate along the axis, 
the same zonal area of radius r encompasses more half-period zones. At this point, each of the 
original zones covers two half-period zones and all zones cancel. When 3/1fb  , n = 3. That is, 
three zones contribute from the original zone of radius 1r . Of these, two cancel out but one is left 
to contribute. Thus other maximum intensity points along the axis are situated at  
 

 
n

rf n

2
1  for n  odd        (4.9) 

 

For the numerical example above, 
3

182
3 f cm, 5f = 

5
182

cm , 
7

182
7 f cm and so on. 

Between any two consecutive foci, there will be dark points. 
 
4.5    DIFFRACTION PATTERNS OF SIMPLE OBSTACLES 
From Sec. 4.3 you will recall that by utilizing Kathvate's experimental arrangement, the Fresnel 
diffraction pattern of various apertures and obstacles could be photographed by varying distances 
between the source, the object and the photographic plate. We will now use results derived in 
Sec. 4.4 to explain the observed diffraction pattern of simple obstacles like circular aperture and 
straight edge. 
 
We begin by studying the Fresnel diffraction pattern of a circular aperture. 
 
4.5.1  A Circular Aperture 
Refer to Fig. 4.15. It shows a sectional view of the experimental arrangement in which a plane 
wave is incident on a thin metallic sheet with a circular aperture. You will note that the plane of 
the wavefront is parallel to the plane of the metal plate; both being perpendicular to the plane of 
the paper. 
 



Let us calculate the intensity at a point P0 lying along the line passing through the centre of the 
circular aperture and perpendicular to the wavefront. Assume that the distance between the point 
P0 and the circular aperture is b. As discussed earlier, the intensity at the observation point due to 
the entire uninterrupted plane wavefront is given by Eq. (4.4) where 1a , 2a , etc. give the 
contributions due to successive Fresnel zones. 

 
 

 
 

Fig. 4.15 Diffraction by a circular aperture: A cross-sectional view of the experimental  
  arrangement 

 
Our problem here can be solved by constructing appropriate Fresnel zones and finding out how 
many of these half period elements are transmitted by the aperture. However, it is important to 
note that for an aperture of a given size, the number of half period elements transmitted may not 
always be the same. This is because the radii of the Fresnel zones depend upon the distance of 
point P0 from O )( bnrn  . You can easily convince yourself that if the point P0 is far away 

from the aperture (b is very large), the radii of the first zone, equal to b , may be larger than 
the radius of the aperture. In such a situation, all the secondary wavelets starting even from the 
entire first zone alone may not be transmitted. That is, the wavelets from a small portion of the 
first Fresnel zone only are transmitted. 
 
The next question we have to address to is: How to calculate the amplitude at P0 when the 
aperture has transmitted only a fraction of the first Fresnel zone? As a first approximation, we 
assume that the wavelets arrive at P0 in phase. (This is quite justified because the path difference 
between the extreme wavelets within anyone half period elements is 2/ . If only a fraction of 
the first zone transmits here, the net phase difference will be correspondingly less.) Further, the 
inverse square law for intensity tells us that the amplitude at P0 will be inversely proportional to 
b. Hence, the effect at P0, which is at a large distance, will be small. 
 
As the point P0 moves towards the aperture (b becomes smaller), the zone size shrinks and a 
greater part of the central zone is transmitted. As a result, the intensity increases gradually. As the 
observation point comes closer and closer, with the shrinking of the sizes of zones, a stage may  
be reached when the first zone exactly fills the aperture. Then b , the radius of the first zone is 
also the radius of the aperture. We know that the first zone contributes 1a  to the amplitude at P0. 
Compare it with the situation where the obstacle with circular aperture is not present. The entire 



wave front contributes but the amplitude at P0 is 
2

1a
. Since intensity is proportional to the square 

of amplitude, the intensities at P0 with and without the aperture are respectively 2
1a  and 

4

2
1a

. 

That is, the intensity at a given point is four times as large when the aperture is inserted in the 
path than when it is completely removed. This surprising result is not apparent in the realm of 
everyday experience dominated by rectilinear propagation of light. 
 
As the observation point P0 comes still closer, the circular aperture may transmit the first two 
zones. The amplitude will then be )( 21 aa   which is expected to be very small. The additional 
light produces practically zero amplitude, hence darkness, at P0. Bringing the point P0 gradually 
closer will cause the intensity to pass through maxima and minima along the axis of the aperture 
depending on whether the number of zones transmitted is odd or even. If we continue to bring the 
point P0  closer to O, the number of Fresnel zones transmitted by the aperture goes on  increasing. 

The value 
2

1a
 is finally reached when the point P0 is so close that an infinitely large number of 

zones contribute to the amplitude. 
 
The same variation in intensity should be experienced if the point P0 is kept fixed 
and the radius of the aperture is varied continuously. This can be done experimentally but is 
somewhat more difficult. 
 
We have calculated the intensity at points on the axis but the above considerations do not give 
any information about the intensity at points off the axis. A detailed and complex mathematical 
analysis which we shall not discuss here, shows that P0 is surrounded by a system of circular 
diffraction fringes. Photographs of these fringe patterns have been taken by several workers and 
we referred to Kathvate's experiments earlier in this unit. 
 
We now illustrate the concepts developed here by solving an example. 
 
Example 3 
In an experiment a big plane metal sheet has a circular aperture of diameter 1 mm. A beam of 
parallel light of wavelength  = 5000 Å is incident upon it normally. The shadow is cast on a 
screen whose distance can be varied continuously. Calculate the distance at which the aperture 
will transmit 1, 2, 3, ... Fresnel zones. 
 
Solution 
Let 1b , 2b , 3b , …, nb  be the distances at which 1, 2, 3, …  zones are transmitted by an aperture 
of fixed radius r. From Eq. (4.2) we can write 
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Similarly, we find that 
 
 
 
 
 

 
2

50
2

2
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

rb cm = 25 cm, 
3

50
3 b cm = 16.7 cm, 

4
50

4 b cm = 12.5 cm,  

 5b = 10 cm, 6b = 8.3 cm, 7b = 7.1 cm, 8b = 6.2 cm. 
 
The amplitudes corresponding to these distances are plotted in Fig. 4.16. 
 

 
 
Fig. 4.16 Variation of amplitudes when a circular aperture transmits integral multiple Fresnel  

  zones 
 
 
Another conclusion of some historic interest follows if we substitute the aperture by a circular 
disc or a round obstacle just covering the first Fresnel zone. The light reaching the point of 
observation P0 will be due to all zones except the first. The second zone is therefore the first 
contributing zone and the intensity of light spot at the centre of the shadow of the obstacle will be 
almost equally bright as when the first zone was unobstructed. 
 
You may now ask: Why is the bright spot at the centre only? This is because there is no path 
difference and hence phase difference between waves reaching an axial point. At any other off-
axis point, waves will reach with different phases and may tend to cancel mutually. The existence 
of this spot was demonstrated by Arago, though Poisson gave his theoretical arguments to 
disprove wave theory of light. 
 
You may now like to answer an SAQ. 
 
SAQ1 
A 25 pence coin has a diameter of 2 cm. How many Fresnel zones does it cut off if the screen is 2 
m away? Do you expect to see a bright spot at the centre? If we move the screen to a distance of 4 



m, how many zones will it cut off? Will the bright spot now look brighter? Why? Take 
7105  m. 

 
 
So far we have discussed diffraction patterns which had axial symmetry: the object or aperture 
was circular and the plane wavefront originated from a point source. We now wish to consider the 
case wherein source is a slit source. This source will emit cylindrical waves with the slit as axis. 
Let us now study the diffraction pattern of a straightedge. 
 

 
4.5.2  A Straight Edge 
Let S be a slit source perpendicular to the plane of the paper. This sends a cylindrical wavefront 
towards the obstacle, which is a straight edge perpendicular to the paper. You can take a thin 
metal sheet or a razor blade with the sharp edge parallel to the slit. Fig. 4.17(a) shows a section 
perpendicular to the length of the slit. 
 

 
 

Fig. 4.17 (a) Cross sectional view of the geometry to observe diffraction due to a straight edge  
  and (b) Fresnel construction divides the cylindrical wavefront in half period strips 

 
The line joining S and E, the point on the wavefront, when produced meets the screen at P0, 
which is the geometrical boundary of the shadow. Consider any point P on the screen. A line 
joining it to S cuts the wavefront at R. We wish to know how intensity varies on the screen. This 
calculation is somewhat complicated because we now have a cylindrical wavefront. Moreover, 
the obstacle does not have an axial symmetry. 
 
For a plane wave and obstacles with axial symmetry you know how to construct Fresnel zones. 
To construct half period elements for a straight edge, we divide the cylindrical wavefront into 
strips. As before, we make sure in the construction that the amplitudes of the wavelets from these 
strips arrive at P0 out of phase by   so that alternate terms are positive and negative. This is 

achieved by drawing a set of circles with P0 as centre and radii b , 
2


b , 
2

2
b , etc., cutting 

The slit has a very small width compared to its length. Or we may say that in comparison to 
its width, it has an infinite length. 



the circular section of the cylindrical wave at points O, AA', BB', CC', ... Fig. (4.17b). If lines are 
drawn through A, A', B, B' , etc.  normal to the plane of the paper, the upper as well as the lower 
half of the wavefront gets divided into a set of half-period strips. These half period strips stretch 
along the wavefront perpendicular to the plane of the paper and have widths OA, AB, BC ...in the 
upper half and OA', A' B', B' C', ... in the lower half. You may recall that Fresnel zones are of 
equal area. For half period strips, this does not hold. The areas of half-period strips are 
proportional to their widths and these decrease rapidly as we go out along the wavefront from O. 
From the geometry of the arrangement it is obvious that on the screen there will be no intensity 
variation along the direction parallel to the length of the slit. Therefore, the bright and dark 
fringes will be straight lines parallel to the edge. 
 
A plot of theoretically calculated intensity distribution on the screen is shown in Fig. 4.18. You 
will note the following salient features: 

 

 
 

Fig. 4.18 Intensity distribution in the diffraction pattern due to a straight edge 
 

(i)     As we go from the point P' deep inside the shadow towards the point O defining the edge 
of the shadow, the intensity rises gradually. At P’ the intensity is almost zero. 

 
(ii)    At O, the intensity is one-fourth of what would have been the intensity on the screen with 

the unobstructed wavefront. 
 
(iii)  On moving further towards P, the intensity rises sharply and goes through an alternating 

series of maxima and minima of gradually decreasing magnitude and approaches the 
value for the unobstructed wave. This is expected since the effect of the edge at far off 
distances will be almost negligible. 

 
(iv)  The intensity of first maxima is greater than the intensity of unobstructed wave, i.e. it is 

greater than 4 times the intensity at O. Beyond these alternate maxima and minima, there 
is uniform illumination. 

 
(v)    The diffraction fringes are not of equal spacing (as in interference experiments); the 

fringes gradually come closer together as we move away from the point O. 
 
You may now like to know at least qualitative explanation of these results. To do so, we first 
consider the illumination at a point P outside the geometrical shadow. The line joining P and S 
cuts the wavefront at R so that the wavefront is divided in two parts. The amplitude of light at P is 
due to the part WE of the wavefront, which is completely unaffected by the straight edge. The 



amplitude at P will be maximum if RE contains odd number of half strips. This will happen if 
2/)12(  nRPEP . (When nRPEP  , the portion RE will contain even number of 

strips.) As pointed out earlier, the amplitudes due to strips are alternately positive and negative. 
Therefore, as point P moves away from O, the illumination on the screen will pass alternately 
through maxima and minima when the number of half period strips in RE is 1, 2, 3, 4, ... 
It is worthwhile to ponder as to what pattern the geometry of the experimental configurations 
throws? We expect dark and bright bands parallel to the edge. However, the dark bands will not 
be completely dark, since the upper half of the wavefront RW always contributes light to this part 
of the screen. 
 
Let us now consider the situation for the point P' inside the geometrical shadow. Refer to Fig. 
4.19. You will note that the corresponding point R is shifted below the edge so that the 
illumination at P' is due entirely to the wavelets from the upper half of the wavefront; the lower 
portion having been blocked by the edge. Even the upper half is exposed only in part. If the edge 
cuts off r strips of the upper half of the wavefront, the effect at P' will be due to (r + 1), (r + 2),  
(r + 3) etc. strips which may be taken to be equal to one-half of that due to the (r + l)th strip. This 
will rapidly diminish to zero as shown in Fig. 4.18, because the effectiveness of higher order 
strips goes on decreasing. 
 

 
 

Fig. 4.19 The observation point is in the geometrical shadow of the straight edge 
 
Let us now deduce the width of the diffraction bands. Again Refer to Fig. 4.17(a). Suppose that 
we have the nth dark band at P. Then 
 
 nRPEP           (4.6) 
 
From the EPO, we have 
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where we have retained only the first two terms in the binomial series. From the  SPO, we can 
similarly write 
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For the nth dark band, we get 
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or 
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         (4.10) 

 
We therefore find that the distances of the dark bands from the edge of the geometrical shadow 
are proportional to the square root of natural numbers. Consequently the bands will get closer 
together as we go out from the shadow. This fact distinguishes the diffraction bands from the 
interference bands, which are equidistant. 
 
To enable you to grasp these ideas, we now give a solved example. 
 
 
Example 4 
In the above experiment if a = 30 cm, b = 30 cm and 5105  cm, calculate the position of 
the 1st, 2nd, 3rd and 4th minima from the edge of the shadow. 
 
Solution 
From Eq. (4.10) we know that the distance of nth minima from the edge of the shadow is given 
by 
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If we substitute given values of a, b and  and take n = 1, 2, 3, 4, we find that 
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  = 21075.7   cm 
  
 2x  = 12x  = 11009.1  cm 
 
 3x  = 13x   = 11034.1   cm 
 
 4x  = 12x      = 11055.1  cm 

 
From these values we find that the distance between consecutive minima decreases continuously 
as we move away from the edge of the shadow. 
 
You may now like to answer an SAQ. 
 
SAQ 2 
Instead of the straight edge, we keep a narrow obstacle, say a wire of diameter 1 mm. What will 
be the intensity on the screen? 
 
Let us now summarise what you have learnt in this unit. 
 
4.6 SUMMARY 

 When the distance between the source of light and the observation screen or both from 
the diffracting aperture/obstacle is finite, the diffraction pattern belongs to Fresnel class. 

 
 When the screen is very close to the slit, the illumination on the screen is governed by 

rectilinear propagation of light. 
 

 The Fresnel diffraction pattern represents fringed images of the obstacle. Depending on 
the distance, there can be an infinite number of Fresnel diffraction patterns of a given 
obstacle/ aperture. 

 
 When plane wavefronts are incident on a diffracting slit and the pattern is observed on a 

screen effectively at an infinite distance, the diffraction pattern belongs to Fraunhofer 
type. Unlike the Fresnel diffraction, there is only one Fraunhofer diffraction pattern. 

 
 Fresnel construction for the diffraction pattern from any obstacle on which a plane 

wavefront is incident consists of dividing the wavefront into half period zones. 
 

 The area of each Fresnel half-period zone is equal to  b . 
 

 The resultant amplitude due to nth zone at any axial point is given by 
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 The magnitude of resultant amplitude AB due to the first half period element is 

2

 times 

the value which would be obtained if all the wavelets within the half- period element had 
the same phase. 

 

 The phase of the resultant vector of the first half period zone is 
2


 behind the phase of 

light from the centre of the zone. 
 

 A zone plate is an optical device in which alternate half-period zones are blackened. 
 

 The diffraction pattern due to a circular aperture consists of a central bright spot. 
 

 The diffraction pattern of a straight edge consists of alternate bright and dark bands. The 
spacing between minima (or maxima) decreases as we move away from the edge of the 
shadow: 


a

babnx )(2 
  

 
4.7  TERMINAL QUESTIONS 
1.      Starting from Eq. (4.4) establish Eqs. (4.6) and (4.7). Assume that the obliquity factor is 

such that each term in Eq. (4.4) is less than the arithmetic mean of its preceding and 
succeeding terms.) 

 
2.      The eighth boundary of a zone plate has a diameter of 6mm. Where is its principal focal 

point located for light of wavelength 5000 Å? 
 
3.      How many Fresnel zones will be obstructed by a sphere of radius 1 mm if the screen is 

20cm away? Take = 5000 Å. If the distance of the screen is increased to 200 cm, what 
will be the size of the sphere which will cut off 10 zones. 

 
4.8 SOLUTIONS AND ANSWERS 
 
SAQs 
 
1.     The radius of the coin is equal to 1 cm. To know the number of zones being obstructed, 

we use the relation 
   

  
b

rn n
2

  

 
 where nr = 1 cm, b = 200 cm and  = 5105   cm. 
 

You should definitely expect to see a dim spot at the centre because the eleventh zone is 
the first contributing zone. 
 
When the screen is 4 m away, the number of zones being obstructed is given by 
 



 n  = 
)105()400(

)1(
5

2

cmcm
cm


 

 
  = 5 
That is, only five zones are obstructed now and the first contributing term in Eq. (4.4) is 

6a , which will contribute more than 11a . Therefore, the central spot is expected to be 
brighter. Does it not contradict the inverse square law? 
 

2.      Refer to Fig. 4.20. A point 1P  outside the geometrical shadow is similar to such a point 
in the straight edge. So we will have unequally spaced bright and dark fringes parallel to 
the wire on each side of the shadow. What is the intensity at Q inside the shadow? It is 
simply half the effect of the first half period strip on either side of the thin wire. It will 
show equally spaced fringes inside the shadow. 

 

 
 
Fig. 8.20: A cross-sectional view of the arrangement for producing diffraction due to a narrow 
obstacle 
 
TQs 
1.     We rewrite Eq. (4.4) as 
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When n is odd, the last term would be 
2

na
. We are told that the obliquity is such that 

each term is less than the arithmetic mean of its preceding and succeeding terms i.e., 

)(
2
1

11   nnn aaa . Then, the quantities in the parentheses in (i) will be positive. So 

when n is odd, the minimum value of the amplitude of the fields produced by consecutive 
zones is given by 
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To obtain the upper limit, we rewrite Eq. (4.4) as 
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Following the argument used in obtaining the lower limit on the amplitude, we find that 
the upper limit is 
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Since the amplitudes for any two adjacent zones are nearly equal, we can take nn aa 1 . 
Within this approximation 
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The results contained in (ii) and (iv) suggest that when n is odd, the resultant amplitude at 

0P  is given by 

2
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Following the same method, you can readily show that if n were even, 
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2.     8D = 0.6 cm so that 8r  = 0.3 cm. We know that 
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       = 21025.2   cm 
       = 225 cm 
 
3a. The radius of a Fresnel zone is given by 
  bnrn   
 

Here we are told that rn = 0.1 cm, b = 20 cm and 5105  cm. 
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  b.    In this part we have to calculate nr  for given values of n = 10, b = 200 cm and 
5105  cm: 

 

  nr  = )105)200(10 5 cmcm   
   = 0.32 cm 
 
 



UNIT 5   FRAUNHOFER DIFFRACTION 
Structure 
5.1      Introduction 

Objectives 
5.2       Diffraction from a Single slit: Point Source 

Observed Pattern 
Calculation of Intensity Distribution 

5.3  Diffraction by Circular Aperture 
5.4  Summary 
5.5  Terminal Questions 
5.6  Solutions and Answers 
 
5.1   INTRODUCTION 
In the previous unit you studied Fresnel diffraction and learnt that the diffraction pattern depends 
on the distance between aperture and screen as well as the source. As the observation screen is 
moved away from the aperture, the diffraction pattern passes from the forms predicted in turn by 
geometrical optics, Fresnel diffraction and Fraunhofer diffraction. When plane wavefront is 
incident at the diffracting aperture, the transition from Fresnel to Fraunhofer pattern is determined 
by the ratio of the size of the diffracting obstacle to its distance from the source and/or the 
observation screen. You will now learn about Fraunhofer diffraction in detail. 
 
In Sec. 5.2 we have described the experimental arrangement and salient features of the observed 
Fraunhofer diffraction pattern from a single slit illuminated by a point source. This is followed by 
a simple discussion on theoretical analysis of the observed results. Since we deal with plane 
wavefronts, you will find that theoretical analysis is fairly simple. In Sec. 5.3 we have described 
Fraunhofer diffraction by a circular aperture because of its importance for optical devices. You 
will learn that the diffraction pattern consists of a central bright disc (called Airy disc) surrounded 
by concentric dark and bright rings. As a corollary, you will see that a random array of small and 
closely circular obstacles gives overlapping diffraction patterns called halos. You may have 
observed brilliant halos while deriving a car whose fogged window is illuminated by motorcycle 
at the back. We shall discuss the physical basis for diffraction halos at the end of this unit. 
 
Objectives 
After going through this unit you will be able to: 
 

 describe experimental arrangement for observing Fraunhofer diffraction pattern from a 
narrow vertical slit and a circular aperture 

 explain observed irradiance on the basis of simple theoretical analysis 
 solve numerical problems, and 
 explain formation of diffraction halos. 

 
5.2 DIFFRACTION FROM A SINGLE SLIT: POINT SOURCE 
From the previous unit, you may recall that to observe Fraunhofer diffraction pattern, we require 
a point source, which is far away (almost at infinity) from the diffracting aperture (a single slit in 
the present discussion). The wavefronts of light approaching the diffracting aperture can be 
assumed to be essentially plane. The observation screen should also be at infinite distance from 
the aperture. You may now like to ask: Is it practical to put the source of light and the observation 
screen at infinite distance from the diffracting aperture? This definitely is not practical because (i) 
the intensity of diffracted light reaching the observation screen would be reduced infinitesimally 
(inverse square law) and (ii) we will require infinitely big laboratory rooms. Do these limitations 



suggest that we cannot observe Fraunhofer diffraction? These difficulties are readily overcome by 
using converging lenses in an actual experiment. 

 

 
 

Fig. 5.1: Producing Fraunhofer diffraction pattern 
 

The experimental arrangement for producing Fraunhofer diffraction pattern is shown in Fig. 5.1. 
The source of light is placed in the focal plane of a converging lens 1L , so that a plane wave is 
incident on a long narrow slit. Another convergent lens 2L  is placed on the other side of the slit. 
The observation screen is placed at the second focal point of this lens. Then light reaching any 
point on the observation screen is due to parallel diffracted wavelets from different portions of the 
wavefront at the slit. You must note that the observation screen and diffraction screen are kept 
parallel. Moreover, both the screens are perpendicular to the common axis of 1L  and 2L . The slit 
is so adjusted that the common axis of these lenses is perpendicular to the length of the slit and 
passes through the middle of the slit both in height and width. 
 
In a physics laboratory this arrangement is easily achieved by using an ordinary spectrometer. We 
hope that you got an opportunity to work with a spectrometer in your second level laboratory 
course. To observe the diffraction from a point source, the slit of the collimator should be 
replaced by a fine pinhole, which should be carefully positioned at the focal point of the 
collimator lens. The observation screen can be placed at the second focal plane in the back focal 
plane of the telescope. Alternatively, we may observe the back focal plane of lens L2 with an 
eyepiece. The diffracting screen with slit aperture is placed between the two lenses suitably on the 
turn table. 
 
5.2.1   Observed Pattern 
Let us pause for a minute and think how would diffraction pattern of the vertical slit appear? Or 
what would be the distribution of intensity in this pattern? You may think that the diffraction 
pattern would be a single vertical line or a series of vertical lines on the observation screen. This 
line of thought is wildly off-target. The actual diffraction pattern is astonishingly different; it 
consists of a horizontal streak of light composed of bright elongated spots connected by faint 
streaks. In other words, after passing through the vertical slit, light spreads along a horizontal 
line. This means that the diffraction pattern is along a line perpendicular to the length of the 
diffracting slit. You may interpret this horizontal diffraction as a spread out image of the point 
source. The extent of horizontal spreading is controlled by the width of the slit; as the width 
increases, the spreading decreases. And in the extreme case of a very wide slit, the (horizontal) 



diffraction streak reduces to a bright point. Physically, very wide slit means that the slit has 
effectively been removed. 

 

 
 

Fig.  5.2: Observed Fraunhofer diffraction pattern of a diffracting silt 
 
The salient features of the observed Fraunhofer diffraction pattern of a single vertical slit from a 
point source are shown in Fig. 5.2. These are summarised below: 
 
(i)      The diffraction pattern consists of a horizontal streak of light along a line perpendicular 

to the length of the slit. 
 
(ii)     The horizontal pattern is a series of bright spots. The spot at the central point 0P , which 

lies at the intersection of the axis of 1L  and 2L  with the observation screen, is the 
brightest. On either side of the brightest spot we observe many more bright spots 
symmetrically situated with respect to 0P . 
 

(iii)    The intensity of the central spot is maximum. The peak intensities of other spots, on 
either side of the central spot, decrease rapidly as we move away from 0P . The central 
maximum is called principal maximum and the others as secondary maxima. 

 
(iv)    The width of the central spot is double of the width of other spots. 
 
(v)     A careful examination of the diffraction pattern shows that the central peak is 

symmetrical. But on either side of the central maximum, secondary maxima are 
asymmetrical. In fact, the positions of the maxima are slightly shifted towards the 
observation point 0P . 

 
Let us now learn the theoretical basis of these results.  
 
5.2.2 Calculation of Intensity Distribution 
The first step in the calculation of intensity distribution is to realise that the observed diffraction 
pattern is focussed on the observation screen placed at the back focal plane of lens L2. We know 
that only parallel rays are brought to focus in the back focal plane of the lens. The beam of rays 
parallel to the axis of the lens are focussed at the focal point. However, the beam inclined to the 



axis of the lens is brought to focus on the back focal plane but away from the focal point. We can 
as well describe this observation in terms of the wavefront, the two being perpendicular to each 
other. Since diffraction pattern lies on a horizontal line (which is at right angles to the common 
axis of 1L  and 2L , diffracted wavefronts will be vertical planes perpendicular to the plane of the 
paper. That is, after passing through the vertical slit, the incident plane waves are replaced by a 
system of vertical plane waves, which proceed in different directions. Therefore for our 
theoretical analysis it is sufficient to assume that when a plane wavefront falls on the diffracting 
slit, each point of the aperture such as AA1A2A3... B (Fig. 5.3) becomes a source of secondary 
wavelets, which propagate in the direction of the point 0P  under consideration. These are 
diffracted plane waves. (You should realize that diffracted waves have no existence in the domain 
of geometrical optics. The diffracted waves arise due to interaction between light and matter. In 
the present case, the interaction is between light and the jaws of the slit.) 
 

 

 

 

 
 

Fig. 5.3 Geometry of single silt diffraction 
 

Refer to Fig. 5.3 which shows the geometry for the irradiance at the point P (on the distant 
screen) which makes an angle   with the axis. In order to sum up the contributions of different 
wavelets at P, we must know their amplitudes and phases. The amplitudes of the disturbances 
from A, Al, A2, … will be very nearly equal. Do you know why? This is because the distance of 
point P from the diffracting screen is very large compared to the width (b) of the aperture. 
 
Now let us consider the phases of the disturbances reaching the point P0. You will agree that the 
points A, Al, A2, A3, … B within the aperture form a series of coherent sources since they have 
originated from the same point source. Also points A, Al, A2, … B are in the same phase since they 

The width of an image is specified by the distance between two consecutive minima. 
 

We take the plane of the paper as horizontal. The plane of the paper is defined by the 
diffraction streak and the axis of the lens L2. 

Two sources are^ said to be coherent if they emit in-phase waves of the same frequency. 
 



lie on the same plane wavefront The phase difference between different diffracted rays reaching 
0P  arises due to the difference in path lengths travelled by them to reach this point. To know the 

phase difference, we draw a plane normal to the parallel diffracted rays. The trace of this plane in 
the plane of the paper is AD (Fig. 5.3). Though the disturbances are in phase at points A, Al, A2, … 
B when they start, they reach the trace AD in different phases because of the unequal path lengths 
travelled by them. The optical paths of diffracted waves from the plane AD to the focal point P0  
are equal. The optical paths of all rays between perpendicularly intersecting planes containing the 
parallel beam of light and the point where rays converge after traversing the lens are equal. 
Therefore, the wavelets arrive at P0  with the same relative phase difference as the ones existing 
at the trace AD. 
 
Let us consider the aperture AB to be divided into n equal parts so that AA1 = A1A2 = A2A3 = 

nb /  =  . It means that the number of point sources is (n +1). Actually, the aperture contains a 
continuous distribution of points from A to B, and therefore in the limiting case, n  and 
 0, such that bn  . Consider two rays starting from two neighbouring points A and A1. 

The path difference between them is AA1 sin  where   is the angle between the diffracted rays 
and the normal to the slit. Hence the corresponding phase difference is given by 
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Let the field at P  due to the disturbance originating from A be ta cos0 . Then, the field due to 
the disturbance from A1 is )cos(0  ta . Here we have assumed that the amplitudes of 
disturbances from different points are equal. The fields due to disturbances from successive 
points A2, A3, ... B are )2cos(0  ta , )3cos(0  ta , …, )cos(0  nta  , respectively. 
The magnitude of resultant field E at P  is equal to the sum of these disturbances. Hence 
 
 )cos(...)2cos()cos(cos 0000  ntatatataE   
 
In Unit 2 of the course Oscillations and Waves, we summed up this series (Eq. (2.38)). We will 
just quote the result here: 
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where E  is the amplitude of the resultant field at P : 
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In the limit n  and  0, bn  . Then from Eq. (5.1) we have 
 

 







 sinsin)(sin2

22
bnnn

  

 

so that, 
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  will be very small for n . We may therefore write 
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Substitute this result in Eq. (5.3). On simplification you will find that 
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where we have written 
 
 0naA   
and 


 sinb

          5.5 

 
You will note that for a given wavelength,   signifies half of the phase difference between 
disturbances originating from the extreme points A and B. The expression for resultant field at P  
takes the form 
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The corresponding intensity distribution at P  is given by 
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Let us pause for a while and ponder as to what have we achieved. This result suggests that the 
intensity is maximum at 0 . This readily follows by noting that when we substitute   = 0 we 
have both   and sin sin p equal to zero, but 
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Therefore, 
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This result is expected on geometrical considerations. In the limits of a distant screen, the central 
point becomes equidistant from each point on the slit. All diffracted waves arrive in phase at P0 
and interfere constructively. A   is then the value of the maximum intensity at the centre of the 
pattern. This maximum is also termed principal maximum. 
 
For brevity we write 0

2
0 IAI  . Then the intensity at any point at an angle   with the 

horizontal axis, is given by 
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Positions of maxima and minima 
A plot of Eq. (5.7) for intensity distribution is shown in Fig. 5.4. You will note that the intensity 
is maximum for   = 0: 2

00 AII  . The intensity gradually falls on either side of the 
principal maximum and becomes zero when    or   , since sin  is zero. This is 
the first minimum. So we can say that the angular half width of principal maximum is from 0 to 
 . The second minimum on either side occurs at  2 . Thus we get the minima when 
 
   =  , 2 , 3 , … 
 
       = m , m =  1,  2,  3, …      (5.8) 
 
Note that the value m = 0 is excluded because it corresponds to the principal maximum (for   = 
0). Substituting the value of   from Eq. (5.8) in Eq. (5.5) we find that the condition for minima 
is given by 
 

sinb  =  , 2 , 3 , … 
 

  = m , m =  1,  2,  3, …      (5.9) 
 
You may now conclude that the angular width of the principal maximum (m = 1) is defined by 

sinb =   or 
b
  . That is,   depends upon the wavelength of light and the slit width. For a 

given slit width, the spread in diffraction pattern depends directly on the wavelength. Accordingly 
you should expect that red light would be diffracted through a larger angle than the blue or violet 
light. 
 
You may now like to know: What will happen when white light illuminates a single slit? We 
expect that each wavelength will be diffracted independently. This gives rise to a white central 



spot surrounded by coloured fringes. The outer part of this pattern would tend to be reddish. You 
can easily observe this diffraction pattern by looking through the tines of a dinner fork at a candle 
in a dimly illuminated room. On twisting the fork about its handle, you will observe the 
diffraction pattern as soon as the cross-sectional area becomes small enough. 
 

The expression 
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 II gives the diffraction intensity in different directions. In order to 

determine the directions (and positions) of secondary maxima, we differentiate this equation 
with respect to   and equate the result to zero. This gives 
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From this we get the conditions 0sin   and 0tan   . The condition 0sin   implies 
that  m , where m  is any integer. This is a trivial condition as it signifies minima and is 
of no interest. 
 
The condition  tan  therefore gives the positions of secondary maxima. This is a 
transcendental equation. The roots of this equation can be found by a graphical method. All you 
have to do is to recall that an angle equals its tangent at intersections of the straight line  
 
 y  
 
and the curve 
  
 tany          (5.10) 
  
Plots of these curves are also shown in Fig. 5.4. The points of intersection excluding 0  
(which corresponds to principal maximum) occur at   = 1.43 , 2.46 , 3.47 , etc. and give 
the position of the first, second, third maxima on either side of the central maximum. You should 
note that these maxjma do not fall midway between the two minima. For instance, the first 
maximum occurs at 1.43  rather than 1.50 . Similarly the second maxima occurs at 2.46  
rather 2.50 and so on. This means that the intensity curves are asymmetrical. The plot clearly 
shows that the positions of maxima are slightly shifted towards the centre of the pattern. You may 
recall that this is observed experimentally as well. 
 
Let us now calculate the intensities at these positions of maxima. The intensity of the first 
maximum is given by 
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Fig. 5.4 Amplitude and intensity contours for Fraunhofer diffraction of a single slit showing  
positions of maxima and minima 

 
This means that the intensity of the first secondary peak (nearest to the central peak) is about 
4.96% of the central peak. Similarly, you can calculate and convince yourself that the intensities 
of the second and third maxima are about 1.68% and 0.83% of the central maximum. We call 
these maxima the secondary maxima. 
 
The intensities of the secondary maxima can be calculated to a fairly close approximation by 
finding the values of   at halfway positions, i.e., at 
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very close to the above calculated values. From this you may conclude that most of the light is 
concentrated in the central maximum. 
 
Another important characteristic of the principal maximum is that its width is double of the width 
of secondary maximum. We have left its mathematical proof as an exercise for you. Before you 
proceed, you should solve SAQ 1. 
 
SAQ 1 
Show that the principal maximum is twice as wide as the secondary maxima. 
 
To give you a feel for numerical values and fix up the ideas developed in this section, we now 
give a few solved examples. You should go through these carefully. 
 
Example 1 
In the experimental set up used to observe Fraunhofers diffraction of a vertical slit (width 
0.3mm), the focal length of lens L2 is 30 cm. Calculate (a) the diffraction angles and positions of 



the first, second and third minima, and (b) the positions of the first, second and third maxima on 
either side of the central spot. The slit is illuminated with yellow sodium light which is a doublet. 
You may take  = 6000 Å. 
 
Solution 
You have seen that the conditions for minima are given by  mb sin ; m •= ± 1, ± 2, ± 3, ... 
For small values of  , we may write  sin . Then 
 

 
b

m    

 
and the distance PP0  is f , where f  is the focal length. Therefore, the diffraction angles 1 , 

2 , 3  for the first, second and third minima are 
b


, 
b
2  and 

b
3 , respectively. 

 
On substituting the numerical values of   and b we find that 
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cm
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 rad 

 
3

12 1042   rad 
 

3
13 1063    rad 

 
The distances 1d , 2d , 3d of these minima from the central spot are 
 
 cmcmfd 23

11 1060102)30(     = 0.06 cm 
  
 12 2 fd  = 20.06 cm = 0.12 cm 
 
 13 3 fd  = 30.06 cm = 0.18 cm 
 
You will note that these minima are separated by a distance of 0.06 cm on the focal plane of the 
lens. We know that the first three secondary maxima occur at  = 1.43 , 2.46  and 3.47 , 
respectively. The corresponding diffraction angles for these three maxima are 
 

 
b
 43.1)( max1  , 

b
 46.2)( max2   and  

 )102)(43.1()( 3
max1

 ,  
 
 )102)(46.2()( 3

max2
  

and 
 
 )102)(47.3()( 3

max3
  



 
and the corresponding distances from the central point (P0) are 
 
 3

max11 10243.1)30()(  cmfd  = 0.09 cm 
 
 3

max22 10246.2)30()(  cmfd  = 0.15 cm 
 
 3

max33 10247.3)30()(  cmfd  = 0.21 cm 
 
 
Example 2 
In the above experiment, we change slit widths to 0.2mm, 0.lmm, and 0.6mm. Calculate the 
positions of the first and second minima. 
 
Solution 
For slit width b = 0.2 mm, we have 
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cmcmfd 1
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11 102.0
106000)30( 






  = 0.09 cm 

Similarly 
 22 fd  = 20.09 cm = 0.18 cm 
 
These minima are separated by 0.09 cm. Recall that the corresponding value for a slit of width 
0.03 cm was 0.06 cm. This means that for a given wavelength, the spread of secondary maximum 
increases as slit width decreases. This conclusion is brought out in the following calculations as 
well. 
 
For a slit of width b = 0.1 mm, we have 
 

cm
cmcmd 1

8

1 101.0
106000)30( 






 = 0.18 cm 

and 
 2d 20.18 cm = 0.36 cm 
 
For slit width b = 0.06 mm, we have 
 

cm
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8

1 106.0
106000)30( 






 = 0.3 cm 

and 
 2d 20.3 cm = 0.6 cm 
 
We thus find that for slits of widths 0.3mm, 0.2mm 0.1mm, and 0.06mm, the first minimum on 
either side of the principal maximum occurs at distances of 0.06 cm, 0.09 cm, 0.18 cm, and 0.3 
cm. In these four cases, the corresponding principal maximum extends over 0.12 cm, 0.18 cm, 
0.36 cm, and 0.6 cm. 
 



This shows that as the slit becomes narrower, the spread of central maximum increases. 
Conversely, the wider the slit width, the narrower is the central diffraction maximum. 
 
 
We now consider an interesting case where the width of the slit is varied in comparison to the 
wavelength of light. 
 
Example 3 
Consider a slit of width b = 10 , 5 , and  . Calculate the spread of the central maximum. 
 
Solution 
From Eq. (5.9), we note that for a slit of width b = 10 , the first minimum is located at 
 

 sin10  =   
or sin   = 0.10 
 
and    = 5.7° 
 
For a slit of width 5 , we have 
 
  sin5  =   
or    = 90°  
 
That is, as the aperture of the slit changes from 10   to 5 , the diffraction pattern spreads out 
about twice as far. For b = , 
 
 sin   = 1 
or    = 90° 
 
The first minimum falls at 90°. That is, the central maximum spreads out and the diffraction 
pattern shows no ripple. These features are shown in Fig. 5.5. 
 
You may now like to answer an SAQ. 
 

 
 

Fig. 5.5 Single- slit diffraction irradiances as the silt width varies 



 
SAQ 2 
We illuminate the slit of Example 1 with violet light of wavelength 4358 Å from a mercury lamp. 
Show that the diffraction pattern shrinks correspondingly. 
 
Diffraction Pattern of a Rectangular Aperture 
So far we have described Fraunhofer diffraction pattern of a slit aperture. Let us now consider 
what will happen if both dimensions of the slit are made comparable. We now have a rectangular 
aperture of width b and height a as shown in Fig 5.6 (a). We expect that the emergent wave will 
spread along the length as well as the width of the slit. Can you depict the diffraction pattern? It is 

shown in Fig. 5.6 (b). Mathematically, the intensity is given by 22

22
0 sinsin


I

I   

where,  /sinb  and  /sina . 

 
Fig. 5.6 Single-slit diffraction. Both dimensions of the rectangular aperture are small and a two-  

dimensional diffraction pattern is discernible on the screen (b) Diffraction Image of a 
single square aperture. 

 
Slit Source 
The experimental arrangement shown in Fig. 5.1 is modified as shown in Fig. 5.7. Here instead of 
the point source we use a slit source (Fig. 5.7(a)). 

 
Fig. 5.7 (a) Experimental arrangement for diffraction from a vertical narrow single silt  

      Illuminated by a silt source (b) Experimental arrangement in a physics laboratory. 

(a) 

(b) 



 
As a matter of fact, the experimental arrangement, which is commonly employed in most 
experiments, uses a spectrometer (Fig. 5.7(b)). The slit of the collimator arm is illuminated so that 
each point of the slit source acts as an independent source. You know that a point source gives a 
horizontal streak of light as the diffraction pattern of a vertical slit. Now when we substitute a slit 
as a source, we can imagine a series of point sources O1, O2 , O3, etc, one above the other to form 
the slit source (Fig. 5.7(a)). Each point source will give its own diffraction pattern since each 
point is to be regarded as an independent point source. With the same diffracting slit and the same 
lenses L1 and L2, the central diffraction maximum due to all point sources will lie above one 
another and give a central bright vertical fringe. Similarly from secondary maxima and minima 
points, we will obtain a series of vertical fringes, which will be situated at equal intervals on 
either side of the central fringe. The resulting pattern arises by superposition of a series of 
horizontal diffraction streaks stacked on each other in a vertical direction. The intensity along any 
horizontal line will be the same as in Fig. 5.2. We should note that each point of the slit source 
acts as an independent and effectively as a non-coherent source. 
 
You will observe that clear fringes are obtained only when the width of the source slit is small. 
Suppose that the width of the source slit is gradually increased. This will lead to an increase in the 
width of its image on the observation screen. A stage will come when the width of the image, i.e., 
the fringe width, becomes comparable with the distances between successive vertical fringes. 
This will gradually make the vertical fringes less clear and indistinct. For a similar reason, we 
obtain clear fringes only when the source slit is parallel to the diffraction slit. 
 
9.3  DIFFRACTION BY A CIRCULAR APERTURE 
Fraunhofer diffraction by a circular aperture is of particular interest because a lens in an optical 
device (microscope, telescope, the eye) can be regarded as a circular aperture. For this case, the 
experimental arrangement is shown in Fig. 5.8(a). A plane wave is incident normally on the 
aperture and a lens whose diameter is much larger than that of the aperture is placed close to it. 
The Fraunhofer diffraction pattern is observed on the back focal plane of the lens. Because of the 
rotational symmetry of the system, we expect that the diffraction pattern will consist of concentric 
dark and bright rings. Fig. 5.8(b) shows the diffraction pattern, which is known as the Airy 
pattern. 

 

 
 
Fig. 5.8 (a) Experimental arrangement for observing the Fraunhofer diffraction pattern by a  

circular aperture, (b) The Airy pattern: The circle of light at the centre corresponds to the 
zeroth order, (c) The corresponding Intensity distribution 

 



The detailed derivation of the diffraction pattern for a circular aperture involves complicated 
mathematics. So we just quote the final result for the intensity distribution: 
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where 
 





 sinD
           (5.12) 

 
Here D is the diameter of the aperture,  is the wavelength of light and   is the angle of 
diffraction, 0I  is the intensity at   = 0 (which represents the central maximum) and )(1 J  is the 
Bessel function of the first order. (We know that you are not very familiar with Bessel functions.) 
We may just mention that the variation of )(1 J  is somewhat like a damped sine curve. 
Moreover, the intensity is maximum at the centre of the pattern since 
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similar to the relation 
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Other zeros of )(1 J  occur at   = 3.832, 5.136, 7.016, ... which correspond to the successive 
dark circles in the Airy pattern. Thus the first dark ring appears when 
 

DD



 22.1832.3sin          (5.13) 

 
Let us compare this result with the analogous equation for the narrow slit. We find that the 
angular half-width of the central disc, i.e., the angle between the central maximum and the first 
minimum of the circular aperture, differs from that for the slit pattern through the weird number 
1.22. The intensity distribution of Eq. (5.11) is plotted in Fig. 5.8(c). The pattern is similar to that 
for a slit, except that the pattern for circular apertures now has rotational symmetry about the 
optical axis. The central maximum is consequently a circular disc of light, which may be regarded 
as the diffracted "image" of the circular aperture. It is called the Airy disc. It is surrounded by a 
series of alternate dark and bright fringes of decreasing intensity. However, the pattern is not 
sharply defined. If you consider any section through the circular aperture, intensity distribution is 
very much the same as obtained from a point source with a single slit. Indeed, the circular 
aperture pattern will be obtained if you rotate the single slit pattern about an axis in the direction 
of the light and passing through the central point of the principal maximum. 
 
We now give an example to enable you to have a feel for the numerical values. 
 



Example 4 
Plane waves from a helium-neon laser with wavelength 6300 Å are incident on a circular aperture 
of diameter 0.5 mm. What is the angular location of the first minimum in the diffraction pattern? 
Also calculate the diameter of Airy disc on a screen 10m behind the aperture. 
 
Solution 
We know from Eq. (5.13) that 
 
  22.1sin D  
 
On substituting the given values, we get 
 
 93 1063022.1sin)105.0(   m m 
or 

 sin  = 3

9

105.0
1063022.1







 

  = 31054.1   
 
In the small angle approximation,  sin , so that 
 
 31054.1  rad = 0.087° 
 
On the screen placed 10m away, the linear location of the first minimum is 
 

 x =  DDD  sintan  
 
Hence 
 x  = )1054.1()10( 3 radm   
     = 3104.15  m = 1.54 m 
 
This value of x signifies the radius of the Airy disc so that the diameter is about 3 cm. 
 
 
You can observe a white light circular diffraction pattern by making a small pinhole in a sheet of 
aluminium foil. Then look through it at a distant light bulb or a candle standing in a poorly 
illuminated (dark) room. 
 
Another important result of the above analysis is that the angular width of a beam is diffraction-
limited. When a perfectly plane wave from a distant point source is incident on a diffracting 
aperture (of width or diameter b), the angular width of the diffracted beam is b/ . This is 
illustrated in Fig. 5.9. The angular width can be zero if b is infinite (1mm or so). At large 
distances from the diffracting aperture, beam width W = )/( bL  . It has important implications 
for laser beams, which are known to be highly directional. To have an idea about it, let us 
consider a diffraction-limited laser beam (  = 6000 Å) of 2 mm diameter. The angular spread of 
the beam is 
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Fig. 5.9 Schematics of a diffraction limited system 
 
It means that in an auditorium (of length 15 m), the spatial spread W = )103()1500( 4cm = 5 
mm, which is very small. For a typical penlight type flashlight, the transverse dimensions of the 
filament should be of the order of a micrometer, which is really hard to make. 
 
Imagine that a random array of small circular apertures is illuminated by plane waves from a 
white point source. We know that each aperture will generate an Airy type diffraction pattern. If 
the apertures are small and close together, the diffraction patterns are large and overlap. The 
overlapping diffraction patterns produce a readily visible halo, namely, a central white disc 
surrounded by circular coloured rings. Which colour do you expect to be at the outermost rim? 
Should it not be red? Similar halos are also observed when the diffraction is due to a random 
array of circular obstacles. 
 
Suspended water (n = 1.33) droplets in air ( n  = 1.00) give rise to diffraction halos. When 
observed through a light cloud cover around the sun or moon, these diffraction halos are referred 
to as coronas. We can distinguish between diffraction halos and ice crystal halos. Ice crystal halos 
are due to refraction and dispersion by the ice crystals; they have red on the inside of the rings. 
While driving a car at night, you may have seen brilliant halos through fogged up car windows on 
which light of a motorcycle following you is incident. These are diffraction halos. You can easily 
produce such halos by breathing on the side of a clear glass and then looking through the fogged 
area at a small source (e.g., match, penlight, or distant bulb). 
 
When the cornea swells (becomes oedematous), small droplets of fluid form randomly between 
the stromal fibres. These random droplets produce a diffraction halo that the person sees when 
looking at light. Such halos are one of the warning signs of high ocular pressures. These halos can 
also be produced by epithelial damage due to poorly fitting contact lenses. 
 
5.4  SUMMARY 

 To observe Fraunhofer diffraction pattern, the distance of the diffracting screen from the 
source and/or observation screen should be almost infinite. Experimentally this condition 
is achieved by using convergent lenses. 

 
 The diffraction pattern of a vertical slit consists of a horizontal streak of light. This 

horizontal diffraction pattern may be regarded as a spread out image of the point source 



and consists of a series of diffraction spots symmetrically situated with respect to the 
central point. 

 
 The central spot has a maximum intensity and its width is twice compared to other spots 

which are of equal width. Their intensities decrease rapidly. In fact, most of the light is 
concentrated in the central maximum. 

 
 The plane wavefront incident on the slit gives rise to a system of vertical plane 

wavefronts which originate from each point of the diffracting aperture. 
 

 The intensity at any point P  on the screen is computed by taking the phase difference 
between the successive diffracted waves into account. The intensity at a point P  is given 
by 
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where 

 sinb

  and b  is the width of the slit. 

 
 If the path difference b sin6 between waves diffracted by extreme ends of the slit is an 

integral multiple of  , we obtain zero intensity. 
 
 The diffraction pattern of a thin slit source consists of a series of vertical fringes. In this 

pattern, the central vertical fringe is the brightest and the intensity of other fringes 
decreases rapidly. The width of central fringe is double of that for other fringes. 

 
 The diffraction pattern of a circular aperture consists of concentric rings with a central 

bright disc. The first dark ring appears when D/22.1sin   . 
 
 
5.5 TERMINAL QUESTIONS 
1.     A single slit has a width of 0.03 mm. A parallel beam of light of wavelength 5500 Å, is 

incident normally on it. A lens is mounted behind the slit and focussed on a screen 
located in its focal plane, 100 cm away. Calculate the distance of the third minimum from 
the centre of the diffraction pattern of the slit. 

 
2.     A helium-neon laser emits a diffraction-limited beam ( = 6300 Å) of diameter 2 mm. 

What diameter of light patch would the beam produce on the surface of the moon at a 
distance of 310376 km from the earth? You may neglect scattering in the earth's 
atmosphere. 

 
5.6  SOLUTIONS AND ANSWERS 
 
SAQs 
 
1.      We know that angular spread of the central maximum is from  
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For small  , we have  sin  and we find that principal maximum is spread 

from 
b
   to 

b
  . 

 
Similarly, you can show that the first secondary maximum on the positive side 

extends from 
b
 1  to 

b
 21  and on the negative side from 

b
   to 

b
 2  

 
Thus we see that the central maximum is twice as wide as a secondary maximum 

 
2.     We know that 
 
   1sind  
  8

1
1 104358sin)103.0(   cm cm 

 
In the small angle approximation we can lake 

3
1 1045.1   rad  

and 
  3

2 1090.2   rad 
   

On comparing these values with those given in Example 1 for the first and second 
minima you will note that violet light is diffracted about 27% less. 
 

TQs 
1.     From Eq. (5.9) we know that the conditions for minima are given by 

 
 nb sin ; n =  1,  2, ... 

 
Here 03.0b  mm = 3103   cm  , n = 3 and  = 5500 Å 
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In the small angle approximation,  tansin  . 
 
 x  = )100(105.5 4 cm   
  = 2105.5   cm 

 
2.      Suppose that the light patch on the Moon is taken to be an Airy disc of diameter x of a 

diffraction limited beam of initial diameter 2 mm. Then using Eq. (5.13) we can write 
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   = 6103.384   
 

In the small angle approximation, 610384sin   rad. Since rx 2 , we find 
on substituting the numerical values that 

 
  x  = )103.384()10376(2 63  km  
 
   = 289 km 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 6   DIFFRACTION GRATING 
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6.1 INTRODUCTION 
You have learnt about Fraunhofer diffraction produced by a single slit aperture. When a narrow 
vertical slit is illuminated by a distant point source, the Fraunhofer diffraction pattern consists of 
a series of spots situated symmetrically about a central spot, along a horizontal line. The intensity 
of the central spot is maximum and it decreases rapidly as we move away from the central spot. 
For a circular aperture, the diffraction pattern consists of concentric rings with a bright central 
disc. You also learnt that diffraction phenomenon limits the ability of optical devices to form 
sharp and distinct images of distinct objects. This restriction at one time hampered the 
spectroscopic work, particularly for substances whose spectrum consisted of doublets. (Sodium 
doublet wavelengths correspond to 5890Å and 5896Å. Because of their proximity, these 
wavelengths seem to overlap.) But you will recall that diffraction pattern is sensitive to 
wavelength of light as well as the slit width. To take advantage of these, it was thought that the 
problem could be overcome by increasing the number of diffracting slits. And the idea really 
worked. For simplicity, we have first discussed diffraction pattern by a double slit. 
 
In Sec. 6.2 we have listed qualitative features of the observed double slit diffraction pattern and 
compared these with those of a single slit pattern. A distinct feature of double slit pattern is that it 
consists of bright and dark fringes similar to those observed in interference experiments. In Sec. 
6.3 we have derived the equation for the resultant intensity distribution. This mathematical 
analysis is an extension of what you have already learnt for the single slit. You will learn that the 
intensity of the central maximum is four times the intensity due to either slit at that point. 
However, the interference maxima are diffused (broader). These results are generalised for the 
case of N equally spaced, identical slits in Sec. 6.4. 
 
You will observe that as the number of slits increases, interference maxima get narrower 
(sharper). For sufficiently large value of N, interference maxima become narrow lines, For this 
reason, diffraction gratings are an excellent tool in spectral analysis. The occurrence of diffraction 
grating effects in nature is surprisingly common. Do you know that the green on the neck of a 
male mallard duck, blue appearance of wings of Morpho butterflies and the beautiful colours of 
the ‘eye’ of the peacock's feathers are also due to diffraction grating effects? The layered structure 
in cat's retina acts as reflection grating and is responsible for metallic green reflection at night. 



Objectives 
After studying this unit, you should be able to 

 state salient features of the double slit diffraction pattern 
 qualitatively compare single-slit diffraction 
 pattern with double and N-slit patterns 
 derive equation for the intensity distribution for the double slit pattern 
 extend the double-slit calculation for N equally spaced slits 
 describe the use of a diffraction grating in spectral analysis, and 
 solve numerical examples. 

 
6.2    OBSERVING DIFFRACTION FROM TWO VERTICAL SLITS 
Refer to Fig. 6.1. It shows the experimental arrangement for observing diffraction from two 
vertical parallel slit-apertures in an opaque screen. Both the slits have same width ( b ) and height 
( h ). The width of the intervening opaque space between the two slits is a. Therefore, the distance 
between two similar points in these apertures d = b + a. 
 

 
 

Fig. 6.1 Experimental arrangement for observing diffraction from two identical vertical slits 
 
Have you noticed that diffracting apertures are illuminated by a slit source rather than a point 
source of light? We have used this arrangement because this corresponds more nearly to the 
actual conditions under which an experiment is performed. That is, the diffraction pattern from a 
slit source is of greater practical importance than that from a point source. The ray geometry of 
Fig. 6.1 for observing Fraunhofer diffraction from a double slit illuminated by a slit source is 
shown in Fig. 6.2. The length of the source slit in the arrangement should be adjusted to be 
parallel to the lengths of the diffracting slits. 
 
Suppose we block one of the diffracting slits, say slit 1, shown in Fig. 6.1 and observe the 
diffraction pattern on the screen. Obviously, you should expect the single slit diffraction pattern 
(due to slit number 2 which has not been blocked). Next, uncover slit 1 and block the other. You 
should again expect single slit diffraction pattern with exactly the same intensity distribution. But 
what may surprise you at the first glance is that both diffraction patterns are not only identical, 
they are located at the same position. 
 

 

In a well-corrected lens consider parallel beams of light travelling in a direction inclined to the 
axis from different parts of the lens. They are all brought to focus on the back focal plane at a 
point which is located by the beam passing though the optical centre of the lens. 
 



 

 
 

Fig. 6.2 Ray geometry or experimental arrangement shown in Fig. 6.1 
 

Were you not expecting these diffraction patterns to be laterally displaced? These patterns are not 
laterally shifted with respect to one another because of the (well corrected) lens L2. This is true 
even for N identical vertical slits. The diffracted wavefronts originating from any slit, and 
travelling along the axis of lens L2 are focussed at P0, which forms the peak of the central spot. 
The diffracted wavelets moving at an angle   are focussed at P . 
 

 
 

 
Fig. 6.3 Observed double slit diffraction pattern 

 
Now uncover both the slits so that each slit gives its own diffraction pattern. The salient features 
of the resultant diffraction pattern, shown in Fig. 6.3, are summarised below: 
 
(i)    The double slit diffraction pattern consists of a number of equally spaced fringes similar 

to what is observed in interference experiments. 
 



(ii)    The intensities of all fringes are not equal. The fringes are the brightest in the central part 
of the pattern. 

 
(iii)  As we move away on either side of the central fringe, the intensity gradually falls off to 

zero. 
 
(iv)  The fringes reappear with reduced intensity three or four times and become too faint to 

observe thereafter. 
 
(v)    The intensity at the maximum of double slit pattern is greater than the intensity of 

principal maximum in single slit pattern. 
 
What is responsible for this pattern? How bright are double slit fringes compared to those in the 
single slit pattern? You will discover answers to these and other related questions in the following 
section. 
 
6.3  INTENSITY DISTRIBUTION IN DOUBLE SLIT PATTERN 
For calculating the intensity distribution for the arrangement shown in Fig. 6.1 it is sufficient for 
us to consider a point source. This is because a point source gives the intensity distribution along 
a section perpendicular to the vertical fringes formed from a slit source. For deriving the equation 
for intensity of double slit pattern, we extend the procedure used for the single slit (Unit 5). Slit 1 
acts as a source of diffracted plane wavefronts originating from points A1, A2, A3, ... in it. We 
represent these by ta cos0 , )cos(0  ta , )2cos(0  ta , …, where   is the constant 
phase difference. The magnitude of electric field 1E  produced by this slit at the point P  is given 
by (Eq. 5.6): 
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For every point like A1 in slit 1, we have a corresponding point B1 in slit 2 at a distance d. The 
phase difference between diffracted wavefronts reaching P  from A1 and B1 is given by 
 


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Therefore, the diffracted plane wavefronts starting from points B1, B2, B3, ... may be represented 
as )cos(0  ta , )cos(0  ta , )2cos(0  ta , … And the field E2 produced by 
slit 2 at P  is given by 
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Since the sources A1, A2, A3, ... and B1, B2, B3, ... are coherent, the magnitude of resultant field at 
P  due to the double-slit is obtained by the superposition of magnitudes of individual fields: 
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Using the trigonometric identity 
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the above expression as 
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where 

 sin

2
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The intensity is proportional to the square of the amplitude. So 
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For 0 , both   and   vanish so that 
 
 0

2
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and the expression for intensity of double slit diffraction pattern can be written as 
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Since the maximum value of I  is 04I , we see that the double slit provides four times as much 
intensity in the central maximum as the single slit. This is exactly what you should have expected 
since the incident beams are in phase and amplitudes superpose. 
 
If you closely examine Eq. (10.6) you will recognise that the term )/(sin 22   represents the 
diffraction pattern produced by a single slit of width b. The 2cos  term represents the 
interference pattern produced by two diffracted beams (of equal intensity) having phase 
difference  . That is, the intensity of double slit diffraction pattern is product of the irradiances 
observed for the double-slit interference and single slit diffraction. For ba  , the 2cos factor 
will vary more rapidly than the )/(sin 22  factor. Then we obtain Young's interference 



pattern for slits of very small widths. In general, the product of sine and cosine factors may be 
considered as a modulation of the interference pattern by a single slit diffraction envelope. We 
shall discuss it in detail a little later. 
 
Before we investigate the positions of maxima and minima, let us understand the physical 
phenomenon that takes place. Diffracted light emerging from these two slits constitutes two 
coherent beams. These interfere leading to the formation of fringes on the screen. But the 
intensity of a fringe depends upon the intensities of interfering beams and the phase difference 
between them when they reach the point under observation. We know that the intensities of 
diffracted beams are controlled by the diffraction conditions and the direction of observation. 
Consequently, the intensities of interference fringes are not the same at different points of the 
screen. In particular, in those directions in which the intensities of diffracted beams are large, the 
constructive interference will lead to brighter fringes whereas in directions where the two 
diffracted beams themselves have lower intensities, even their constructive interference will lead 
to faint fringes. 
 
You should note that we have described the phenomenon as interference between two 
diffracted beams. How do we distinguish between the two words interference and diffraction, 
which we have used? When secondary wavelets originating from different parts of the same 
wavefront are made to superimpose, we call it diffraction. Such a case arises when we consider 
all the wavelets arising from the various points situated in the aperture between the two jaws of a 
slit. But when two separate beams coming from two different slits are superimposed, we call it 
interference. It should be clear that in all cases where we apply the principle of superposition, the 
wavelets have to be coherent in nature to produce an observable pattern. 
 
Before you proceed, you may like to answer an SAQ. 
 
SAQ1 
If instead of a monochromatic source we use a source emitting two wavelengths, 1  and 

2 )( 1 , how will the double slit diffraction pattern get influenced? 
 
 
6.3.1  Positions of Minima and Maxima 
To study the position of minima and maxima in the double slit pattern, we use the equation 
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We note that the intensity I  will be zero when either 2)/(sin   or 2cos  is zero. From Unit 

5 you will recall that the factor 2)/(sin   will be zero for 
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sinb
 =  , 2 , 3 , …, m  , ( m 0) 

or 
 sinb =  , 2 , 3 , …, m        (6.7) 
 
This equation specifies the directions along which the available intensity of either beam is zero by 
virtue of diffraction taking place at each slit. 



 
The second factor ( 2cos ) will be zero when 
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This gives the angles for the intensity to be zero by virtue of destructive interference between two 
beams. You may recall that this is the same as the condition for the minimum of the interference 
pattern between two point sources. Eqs. (6.7) and (6.8) specify the direction where the intensity is 
zero. 
 
We cannot obtain the exact positions of the maxima by any simple relation. This is because we 
have to find the maximum of a function which is product of two terms. But we can find their 
approximate positions if we assume that )/(sin   does not vary appreciably over a given 
region. We are quite justified in making this approximation if the slits are very narrow. Note that 
we observe the maxima near the centre of the pattern. Under these conditions, the positions of 
maxima are solely determined by the 2cos  factor. You know that this factor defines maxima 
for 
 
  = 0,  , 2 , …, n   
or 
 sind = 0,  , 2 , …, n         (6.9) 
 
We know that sind  represents the path difference between the corresponding points in the two 
slits. When this path difference is a whole number of wavelengths, constructive interference 
occurs between the two beams. Then we get a maximum, which leads to the formation of a series 
of bright fringes. The central fringe corresponds to 00sin d . The nth fringe (on either side) 
occurs when  nd sin . We therefore say that n represents the order of interference. 
 
6.3.2 Missing Orders 

In the intensity expression 
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 . Thus we see that   and   are not independent. These are connected to each 

other through the relation 
 

  
b

ba
b
d

b
d 








sin
sin

     (6.10) 

 
Cases of special interest arise when d is an integral multiple of b, say it is an integer p so that 

pbd  . This will happen when the opaque portion a  is an integral multiple of the transparent 
part b. The possibilities are: a = b, a = 2b, or a = 3b etc, so that d/b = p = 2, 3, 4, ... etc in these 



cases. Under these conditions, the directions of diffraction minimum and interference maximum 
will necessarily coincide. To show this, let us assume that a direction of diffraction minimum is 
given by 
 
  mb sin  
 
We will automatically have the interference maximum in this direction since 
 
  sinsin)(sin pbpbd   
  =  npm   
 
where n = pm. The possible values of p are 2, 3, 4, ... and those of m are 1, 2, 3, ... Thus the nth 
order interference fringes for which n = pm will have zero intensity since the intensity of both 
beams is zero by virtue of the diffraction condition. As a result, their constructive interference 
also leads to net zero intensity. These are usually known as missing orders. For example, when    
p = 2, we will have 2, 4, 6, 8, ... orders missing for m values of 1, 2, 3, ... etc. Similarly, when      
p = 3, we will have 3, 6, 9, ... orders missing and so on. 
 
The special case when d/b = 1, means that the opaque part a = 0 and the two slits exactly join one 
another. Then we find that all the interference orders are missing. Actually this means that we 
now have a single slit of double width and what we get is a single slit diffraction pattern and 
(with no interference fringes). 
 
These ideas are illustrated in the following example.  
 
Example 1 
Consider a double slit arrangement with 3100.7 b  cm, 2105.3 d  cm and  = 6300 Å. 
How many interference minima will occur between the diffraction minima on either side of the 
central maximum? If a screen is placed at a distance of 5m from the diffracting aperture, what is 
the fringe width? 
 
Solution 
The first diffraction minima on either side will occur when  sinb . That is, for 

3109/sin  b . The interference b minima will occur when Eq. (6.8) is satisfied, i.e. 
when 
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On substituting the given values, we find that 
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 3109.0sin  , 7.2 310 , 4.5 310 , 6.3 310  and 8.1 310  
 



Thus, there will be ten minima between the two first order diffraction minima. If   is small we 
may write 1 = 0.9 310 rad, 2 = 2.7 310 rad, 3 = 4.5 310  rad, 4 = 6.3 310 rad, 5 = 
8.1 310 and the angle between successive minima is 1.8 310 rad. The angular separation 
between two interference maxima is given by 
 

 
cm
cm

d 2

5

105.3
103.6











 = 1.8 310  rad. 

 
Note that this is the same as the angle between successive minima. Thus the fringe width 

df   A8d is 
 
 (500 cm )1.8 310  = 0.9 cm 
 
 
6.3.3  Graphical Representation 
We will now plot 2cos , )/(sin 22  , and their product separately to study the double slit 
pattern. Before doing that we must decide on the relative scale of the abscissas   and   since 
the shape of the pattern will depend upon this choice. You already know that  /  is equal d/b. 
Let us say that in a particular case  / = d/b = 4. We must then plot the proposed curves for 

 4 . In Fig. 6.4, the curves (a) and (b) are plotted to the same scale of  . Fig. 6.4(a) depicts 
the curve for 2cos  which given a set of equidistant maxima of equal intensity located at  = 0, 
  ,  2 , 3 , ... 
 
In Fig. 6.4(b) we have plotted )/(sin 22   which gives a maximum at  = 0 and minima at 
 =   ,  2 , ... In Fig. 6.4(c) we have plotted their product. What do you observe? The 
intensity of the fringes in the resultant pattern is not the same as it was in Fig.6.4(a). It is 
modulated (reduced) by the factor )/(sin 22  . This means that the central fringe or the zeroth 
fringe is the brightest, and the successive three fringes are of decreasing intensity until we reach 
the point   , where the intensity is zero. Thus the fourth fringe corresponding to 

 4cos2  falls at    or  and their product is zero. Therefore, the fourth fringe on 
either side of the central maxima has zero intensity and its location at the angle satisfies 
simultaneously 
 
 B  and  4  
or 
  sinb  and  4sin d  
 
This fourth fringe will therefore be missing. We will observe the 5th, 6th and 7th fringes. We can 
argue in a similar manner that for 8th fringe 
 
  2  and  8  
 
which will therefore have zero intensity and thus be missing. You may now like to answer the 
following SAQ. 



 
 

Fig. 6.4 Intensity curves for double slit. We have  4  
 
SAQ2 
Write down the general condition for missing orders in terms of the ratio d/b. 
 
6.4 FRAUNHOFER PATTERN FROM N IDENTICAL SLITS 
You now know that interference of waves diffracted by individual slits determines the intensity 
distribution in the double slit pattern. Let us now consider the diffraction pattern produced by N 
vertical slits. We use the same experimental arrangement as shown in Fig. 6.1 for two slits. For 
simplicity we assume that (i) each slit is of width b and has the same length (ii) all slits are 
parallel to each other and (iii) the intervening opaque space between any two successive slits is 
the same, equal to a. Therefore the distance between any two equivalent points in two 
consecutive slits is a + b. Let us denote it by d which we call the grating element. As before, we 
take the source of light to be in the form of a slit and adjust the length of this source slit to be 
vertical and parallel to the length of N slits. As arrangement consisting of a large number of 
parallel, equidistant narrow rectangular slits of the same width is called a diffraction grating. As 
discussed in the double slit pattern, the diffraction pattern will consist of vertical fringes parallel 
to the slit source. Let us now study the intensity distribution in this pattern. 
 
6.4.1 Intensity Distribution 
To derive an expression for the intensity distribution we will follow the procedure and arguments 
similar to those used for the double slit. Consider a point source of light which sends out plane 
waves. That is, a plane wavefront is incident on the arrangement shown in Fig. 6.5. (Speaking in 



terms of ray-optics, we may say that light rays fall normally on the grating). You may recall that 
the intensity distribution along any section perpendicular to the vertical fringes formed from a slit 
source will be the same as obtained from a point source. Physically, light emerging from N slits 
after diffraction at each slit results in N diffracted beams. Since these are coherent, interference 
takes place between them resulting in the formation of fringes. It is important to note that 
diffraction controls the intensity from each slit in a given direction.  
 

 
 

Fig. 6.5 Fraunhofer diffraction of a plane wave Incident normally on a multiple slit aperture 
 
As before, we consider the diffracted rays proceeding towards P , where   is the angle between 
the diffracted rays and the normal to the grating. Let 1E , 2E , 3E , …, nE  denote the fields 
produced by the first, the second, the third, ... and the Nth slit at the point P . Then we have 
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Where various symbols have the same meaning as in Sec. 6.3. Also, we have assumed that the 
phase changes by equal amount 6 from one slit to the next. 
 
The field E  at P  is obtained by summing these N terms: 
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You can write it as 
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You have learnt to sum the series given here [Unit 2 of the course Oscillations and Waves 
Eq. (2.38)]: 
In complex notation,  
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This is a geometric series with common factor ie  and can be summed easily using 
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Hence, LHS of (iii) is recovered by the Real part, which is Eq. (6.12) 
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2
d . sin  is referred to as the grating term. 

 
The intensity of the resultant pattern is obtained by squaring the amplitude of the resultant field in 
this expression. Therefore, 
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Let us pause for a while and ask: What have we achieved so far? We have obtained an expression 
for the resultant intensity of diffraction pattern from N-slits. We expect it to be true for any 
number of slits. 
 
For a single slit, Eq. (6.13) reduces to 
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which is the same as Eq. (5.7). 
 
SAQ 3 
Show that for N = 2, Eq. (6.13) reduces to Eq. (6.6) for the double slit. 
 
6.4.2  Positions of Principal Maxima 
For obtaining the positions of maxima (as well as minima), let us re-examine Eq. (6.13). We note 
that the intensity distribution is a product of two terms; the first term )/(sin 22   represents 
the diffraction pattern produced by a single slit, whereas the second the term )sin/(sin 22 N  
represents the interference pattern of N slits. The interference term controls the width of 
interference fringes, while the diffraction term governs their intensities. 
As in case of the double slit, we cannot locate the exact positions of maxima; their approximate 
positions can however be obtained by neglecting the variation of )/(sin 22  . This is quite 
justified for very narrow slits. Therefore, for obtaining the positions of maxima we consider only 
the interference term. 
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 occurs for  = 0,  , 2 , …, n  . At first glance, you 

will note that the quotient becomes indeterminate at these values. In such a situation, we compute 
the first derivative of the numerator as well as the denominator separately before inserting the 
value of argument. Following this procedure you will readily obtain 
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The expression for intensity now takes the form 
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We therefore conclude that the positions of maxima are obtained when 
 
  = 0,  , 2 , …, n   or N = 0, N , 2 N , …, nN    (6.15) 
 
Physically, at these maxima the fields produced by each of the slits are in phase and the resultant 
field is N times the field due to each of the slits. 
 
When N is large, the intensity, being proportional to 2N , is very large and we will obtain intense 
maxima, if only 22 /sin   is not too small. Such maxima are known as principal maxima. 
 
We can rewrite the condition of principal maxima as 
 
  nd maxsin         (6.16) 
 
which is identical to Eq. (6.9). It implies that 
 
1.      The principal maxima in N-slit pattern correspond in position to those of the double slit. 
2.      The relative intensities of different orders are modulated by the single slit diffraction 

envelope. 
3.      n cannot be greater than /d since 1|sin|  . Can you imagine the implications of this 

condition? If you ponder for a while, you will realise that this condition suggests 
existence of only a finite number of principal maxima, which are designated as the first, 
second, third, . . . order of diffraction. Moreover, there will be as many first order 
principal maxima as the number of wavelengths in the incident wave. 

 
4.     The relation between   and   obtained for double slit in terms of slit width and slit 

separation does not change. That is, Eq. (6.10) hold for N-slits as well. 
 
6.4.3 Minima and Secondary Maxima 
To be able to find the minima in the diffraction pattern, we locate the minima of the interference 
term. We note that the numerator in  22 sin/sin N  will become zero more often than the 

denominator. The numerator becomes zero for N = 0,  , 2 , …, p , or 
N
p  . 

Therefore, 







N
p

 sinsin  will not become zero for all integral values of p . It will become 



zero only for special cases when p 0, N, 2N, . . . and   assumes values which are integral 
multiple of  . But you will recall that for these special values of  , both Nsin  and sin  
vanish and the interference term defines the positions of principal maxima already discussed. 
However, for all other values of p, the numerator vanishes but not the denominator. That is, 
intensity vanishes when p, though an integer, is not an integral multiple of N. Hence, the 
condition for minimum is Np /   except when p = nN; n being the order. These values 
correspond to 
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These values of   correspond to path difference 
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You should note that the values 0, 
N

N
, 

N
N2

, …, which correspond to  nd maxsin and 

represent principal maxima, are omitted. 
 
Let us now summarise what you have learnt in this unit so far. 
 
The condition for principal maxima: 

 
  = 0,  , 2 , …, n   

and therefore 
  N = 0, N , 2 N , …, nN  
 
We may write 

 



 nd
 maxsin   where n = 0, 1, 2, … 

 
In terms of path difference, 
  nd maxsin  
 
The conditions for minima: 
 

N =  nN ,  2nN , …,  qnN   
 
where q  is not an integral multiple of N . We can rewrite it as 
 

N = 
N

n   , 
N

n  2
 , … 



 
In terms of path difference 
  

 
N

nd  minsin , 
N

n  2
 , …, 

N
qn     

where q 0, N , N2 , … 
 
If you write all possible values of N , you will find that we have (N - 1) positions of minima 
between any two successive principal maxima. Further, we know that between any two 
consecutive minima, there has to be a maxima. Such maxima are said to be secondary maxima. 
There will be (N - 2) positions of secondary maxima between two consecutive principal maxima. 
The secondary maxima are not symmetrical, as in the two-slit pattern. Moreover, the intensity of 
secondary maxima is very small and are therefore of little practical importance. Typical 
diffraction patterns and the corresponding intensity distributions predicted by Eq, (6.13) for N = 4 
are shown in Fig. 6.6. 
 
You may now like to answer the following SAQ. 

 
Fig. 6.6: Fraunhofer diffraction pattern for four slits. For comparison, patterns for one and double 
slits are also shown. The intensity distribution predicted by Eq. (6.13) is also shown. 
 
SAQ 5 
Show schematically the positions of principal maxima, secondary maxima and secondary minima 
for a diffraction grating with 6 slits. 
 
Hint: We expect 5 minima between two consecutive principal maxima. Also we have 4 
secondary maxima between the two principal maxima. 
 
 
Example 2 
Calculate the maximum number of principal maxima that can be formed with a grating 5000 lines 
per cm for light of wavelength 5000 Å. 
 

Grating element d = 8105000
1


= 4102   cm 



 
The condition for the formation of principal maxima is  nd maxsin since 1|sin|  we 

cannot have n greater than 

d

. In this specific case 
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Therefore, it will be able to show 1st, 2nd, 3rd and 4th orders of principal maxima. 
 
If, on the other hand, we have a grating with 15000 lines 1cm  
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which is less than 2. Such a grating will show only 1st order of spectrum with  = 5000Å. You 
can verify this result while observing grating spectrum in your second level physics laboratory 
course. 
 
6.4.4 Angular Half- Width of Principal Maxima 
You now know that for N slits 
 
1.     The principal maxima occur when  n  and therefore  NnN  . 
 
2.     On either side of the principal maxima, we have a minimum when 

 

   nNN  or when 
N

n 
  . In terms of path difference and angle of 

diffraction, these conditions for principal maxima and the adjacent minimum can be 
rewritten as 
 
  nd maxsin        (6.16) 

 
and  

N
nd  minsin        (6.17) 

 
The angle between max and minQ is called the annular half width of principal maxima, let us 
denote it by  . We now proceed to calculate this angle. We can calculate |)|( minmax    
by computing max and min  from Eqs. (6.16) and (6.17). Alternatively, by choosing 

maxmin   , we substitute   maxmin  in Eq. (6.17) to obtain 
 
 
 



 
 

 
N

nd   )sin( max  

or 

 
N

ndd   sincoscossin maxmax  

 
For 0 , 1cos   and  sin . Hence,  
 

 
N

ndd   maxmax cossin  

You may now question as to why is   called angular half width. It is quite 
simple. You know that the principal maximum extends from minimum on one side 
to minimum on the other side and  is half of it. While solving SAQ 4 you have 
seen that for 6 slits the principal maximum extends from  

 5N  to  7N   
or  

 
6

5sin max
 d  to 

6
7

 

 
You must note that the term half width of a spectrum line (or a diffraction curve) 
has a slightly different meaning. The diagram below represents the intensity vs   
curve. The half width gives 

the width of the curve at 
2
maxI

. It is equal to AB in the diagram. The angular half 

width, on the other hand, is equal to CD. Obviously you can convince yourself that 
AB is not equal to CD. Only in the extreme case when the curve is a triangle, AB = 
CD. 

 

 
 



 
Using Eq. (6.16), we find that it takes a compact form: 
 

 
N

d  maxcos  

so that 

 
maxcos


Nd

         (6.18) 

 
which shows that the principal maximum becomes sharper as N increases. It is for this reason that 
grating spectrum is so sharp. You will now learn about it in detail. 
 
6.5  DIFFRACTION GRATING 
You have learnt about the diffraction pattern produced by a system of parallel equidistant slits. 
An arrangement of a large number of equidistant narrow vertical slits is known as diffraction 
grating. The first gratings were made by Fraunhofer. He stretched fine silver wire on a frame. His 
grating had nearly 200 wires to a centimetre. Afterwards, gratings were made by ruling fine lines 
with a diamond pen on a glass plate. The transparent part between the lines acted as a slit while 
the ruling itself acted effectively as the opaque part. Rowland was among the first to rule gratings 
on a metallic surface. He produced plane as well as concave gratings with nearly 5000 lines per 
centimetre. These gratings are difficult to make and are expensive but celluloid replicas can be 
made fairly cheaply and are commonly used in the physics laboratory for spectral analysis. You 
can make a simple coarse grating for demonstration purposes on a plate by drawing equidistant 
and parallel scratches on the photographic emulsion. Nowadays, it is possible to produce gratings 
holographically. Holographic gratings have greater rulings per cm and are definitely better than 
ruled gratings. You will get an opportunity to learn holographic details in Optics III. 
 
6.5.1   Formation of Spectra 
We have seen that for a monochromatic light of wavelength 1 , the principal maxima are given 
by the grating equation 
 
 11sin  nd  , n = 0, 1, 2, 3, … 
 
With the experimental arrangement described above we will get these principal maxima as one 
line in each order. Now if another source of light emits a longer wavelength 2 , we will get a 
corresponding line in each order at a larger angle 2 : 
 
 22sin  nd  , n = 0, 1, 2, 3, … 
 
However if the same source of light emits both the colours corresponding to wavelengths 1 and 

2 , we will get two lines simultaneously in each order. These two lines will be seen as two 
spectrum lines separated from each other. This is because except the central maximum (zeroth 
order), the angles of diffraction for 1 and 2  are different in various other orders. In the central 
maxima   = 0 for all wavelengths and this is why different colours are not separated from each 
other. What do you expect to observe when we have a white light source? The central image will 
be white while all other orders will show colours. 
 



We note that in the grating equation, if we know d,   and n, we can calculate the wavelength of 
light. Since the grating element (d) is known for a grating and   can be measured, this 
arrangement provides a simple and accurate method of measuring  . This is discussed in the 
following section. 
 
6.5.2  Observing Grating Spectra 
In your second level physics laboratory course, you must have observed grating spectra using a 
simple spectrometer. This arrangement is depicted in Fig. 6.7. The light from the given source is 
focussed (with the help of a lens) on the slit of the collimator, which sends out a parallel beam of 
light. 
 

 
 

Fig. 6.7 A schematic diagram of experimental arrangement for observing grating spectra 

 
The telescope arm is rotated and brought in line with the collimator. This ensures that the parallel 
beam of light falling on the objective of telescope is focussed at the crosswires, which is in the 
focal plane of the eyepiece. The position of the source of light should be adjusted to get the 
brightest image. We mount the diffraction grating on the turntable and adjust it so that the light is 
incident normally on the grating. Now we rotate the telescope arm to the left or right to get the 
first order spectrum in the field of view. If the source of light is a discharge tube containing 
sodium, mercury or argon the spectrum will consist of a series of spectrum lines. Each spectrum 
line is a diffracted image of the slit, formed by different wavelengths present in the source. To get 
sharp line images, we adjust the grating so that the diffracting slits are parallel to the collimator 
slit. This can be done by rotating the grating in its own plane. 
 
To measure the wavelength of each line, we set the vertical crosswires at the centre of each 
spectrum line and note the position of the telescope in each case. The difference between the 
position of the telescope and the direct position gives the angle of diffraction for each of the lines. 
To reduce error, the position of the telescope is noted on both sides of the direct position and half 
of this angle gives the angle of diffraction. 
You must have observed that 
 
1.     The spectrum exists on both sides of the direct beam. 

Light from a molecule gives a band like appearance and is often called band spectrum, 
while an incandescent lamp of similar sources will give a continuous spectrum, where 
various colours merge into one another. 
 



 
2.    Apart from the first order, the second or even third order spectrum (depending upon the 

grating element) are also present. 
 
3.      Different spectrum lines are not equally bright or sharp. This depends upon the energy 

levels and the transitions of the atom giving the spectrum. These concepts are further 
illustrated in the following example. 

 
 
Example 3 
Rowland ruled 14438 lines per inch in his grating, (i) Calculate the angles of diffraction for violet 
( = 4000 Å) and red ( = 8000 Å) colours in the first order of spectrum. What is the largest 
wavelength which can be seen with this grating in the third order? 
 
Solution 

(i)    The grating element d = 
14438

54.2
 = 0.0001759 cm 

      = 410759.1  cm 
 

Suppose that the violet colour ( = 4000 Å) is diffracted through angle v . Recall the 
condition for maximum: 

 
   nd v sin  
 

For first order on substituting the given values, you will get  
 

  4

5

10759.1
104sin 






v = 0.2274 

 
Therefore    v = 130 

 
Similarly, for red colour ( = 8000 Å), we have 

 

  4

5

10759.1
108sin 






r = 0.4548 

 
so that  

  r = 270 
 

This means that the entire visible spectrum in the first order extends from nearly   = 13° 
to   = 27°, i.e. covers an angle of about 14°. 

 
(ii)  max3sin  d  

According to the given condition,  = 90° so that sin = 1 and max3d  
or 



 
3
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3

4

max
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

d
 cm = 5860 Å 

 
This calculation suggests that in the third order spectrum, the sodium doublet consisting of 5890 
Å and 5896 Å will not be visible. Do you recall this from your observations on spectral analysis 
using a diffraction grating? If you have so far not opted for the second level physics, it will be 
worthwhile to verify this result. 
 
If you calculate vsin  and rsin , for 1st, 2nd and 3rd orders, you will find that for 
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    470 for 4000 Å - 6000 Å  

 
 1sin r  and cannot be observed    entire visible spectrum is not available 
 
Schematically it is shown below: 
 

 
 

Fig. 6.8 Schematics of angles for overall spread of various orders of spectrum 
 
Thus we find that in 1st order, red just touches second order violet. (This is because we have 
selected  = 4000 Å and   = 8000 Å). It means that there is essentially no overlapping of first 



and second order spectra. The third order v , begins at 043 . If you calculate wavelength x  
of 2nd order present there you will find that 
 

 vvd  2343sin 0     
2

1040003 10
x = 6000 Å 

 
Therefore  = 6000 Å of the 2nd order occurs at the same place as  = 4000 Å of third order. 
Therefore, from 6000 Å to 8000 Å will have overlapping colours. This difficulty is usually 
avoided by using suitable colour filters. 
 
We now summarise what you have learnt in this unit. 
 
6.6 SUMMARY 

 The double slit diffraction pattern consists of a number of equally spaced fringes similar 
to what is observed in interference experiments. These fringes are the brightest in the 
central part of the pattern. 

 
 In double slit pattern fringes reappear three or four times before they become too faint to 

observe. 
 

 The central maximum in double slit pattern is four times brighter than that in single slit 
pattern. 

 
 The intensity of double slit diffraction pattern at an angle 6 is given by 

 

 





2
2

2

0 cossin4II   

 

 Here, 2
0 AI  , 





sinb

  and 

 sind , where b is slit width and d is the 

distance between two similar points in these apertures. It is equal to a + b, where a is the 
width of the intervening opaque space between two slits. 

 
 The intensity of double slit diffraction pattern is product of the irradiances observed for 

the double slit interference and single slit diffraction. Physically, it arises due to 
interference between two diffracted beams. 

 
 For slits of very small widths, the double slit diffraction pattern reduces to Young's 

interference pattern. 
 

 The conditions of maxima and minima in double slit pattern are: 
 

  nd sin  (maxima) 
and 
  mb sin  (minima) 

 
 The intensity distribution in N-slit diffraction pattern is given by 

 



 

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
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2
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 The term sin  is referred to as the grating term. 
 As the number of slits increases, the maxima get narrower and for sufficiently large 

values of N, they become sharp lines. The angular half width of principal maximum   
is given by 

 

 
maxcos


Nd

  

 
 The principal maximum is sharp for large values of N. 

 
6.7  TERMINAL QUESTIONS 
1.      If we use a white light source in the arrangement shown in Fig. 6.6, how will if affect the 

fringes? 
 
2.      Can there be principal maxima of zero intensity because of diffraction at each slit? If yes, 

discuss. 
 
6.8  SOLUTIONS AND ANSWERS 
 
SAQs 
 
1.      1  will give its diffraction pattern within which we will get the interference fringes. The 

pattern for 2  will be smaller if 12   . They will both be superimposed on one 
another, coinciding at   = 0. 

 
2.      The general conditions for missing orders in terms of   and   are  m  or 

 md sin  and  p  or  pb sin . Therefore 
 

  
p
m

b
d
  

 
both m and p are integers, the missing orders occur when d/b is a ratio of two integers. 
When d/b = 1, i.e. the two slits exactly join, all the interference orders are missing. 
Physically it means that we have a single slit of double width and consequently no 
interference. 
 

For 
b
d

= 2, second, fourth, sixth,... orders will be missing. What do you say 

about 
b
d

= 3?  

 
3.      For N = 2, Eq. (6.13) takes the form 
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which is the required result for the double slit. 
 
 
4.     See figure given below: 
 

 
 
TQs 
1.     As before, each wavelength will give its interference fringes. The central fringe for all 

wavelengths will coincide and hence the central fringe will be white. Fringes of order n = 
1, 2, 3, ... located on either side of the central fringe, at different   values given by 

 nd sin  for different wavelengths will be coloured. 
 
2.     There can be a principal maximum whose intensity is zero because of the diffraction at 

each slit. There are called missing orders or absent spectra. We know that the 
relationship between   and   in terms of slit width and slit separation for N slits is the 
same as for the double slit. Therefore, the conditions for missing orders remain unaltered. 
And a particular maximum will be absent if it is formed at the same angle as the 
minimum of single slit diffraction pattern. This occurs at an angle which satisfies Eqs. 
(6.16) and (6.17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 7    DIFFRACTION AND RESOLUTION 
Structure 
7.1 Introduction  

Objectives 
7.2     Diffraction and Image Formation 
7.3     Resolving Power of Optical Instruments 

Astronomical Telescope  
Microscope  
Diffraction Grating 

7.4     Improving Resolution 
Michelson Stellar Interferometer 

7.5  Summary 
7.6  Terminal Questions 
7.7  Solutions and Answers 
 
7.1  INTRODUCTION 
In units 5 and 6 of this course you have learnt that due to diffraction, the image of an object is 
fringed even if an aberration-free converging lens is used. That is, the image of a point object is 
spread over a small area on the observation screen. Does this mean that no optical device can 
form a perfect image? The answer to this question is: The image of a point source is not a 
geometrical point. And diffraction does place a limit on the ability of optical devices to transmit 
perfect information (quality image) about any object. Such optical systems are said to be 
diffraction limited. 
 
Broadly speaking, diffraction limited systems can be classified into two categories: (i) human 
eye, microscope and telescope which enable us to see two objects (near or distant) distinct and (ii) 
Grating and prism which form a spectrum and enable us to see two distinct wavelengths 
(colours). In principle, in both types of instruments two close fringed (diffraction) images are 
formed on the screen. The question that should logically come to your mind is: How to 
characterise the ability of an optical instrument to distinguish two close but distinct diffraction 
images of two objects or two wavelengths? This ability is measured in terms of resolving power. 
You may now like to know: What criterion enables us to compute resolving power? The most 
widely used criterion is due to Rayleigh. According to this, two diffraction images are said to be 
just resolved when the first minimum of diffraction pattern of one object falls at the same position 
where the central maximum of the diffraction pattern of the other lies. When the patterns come 
closer than this, the objects are not resolvable. When the patterns overlap less than this, the 
images are distinct and hence objects are resolvable. It is also important to know whether the 
same criterion applies to both types of optical devices? How can we improve resolution and see 
deeper in space even during the day? We have addressed all these aspects in this unit. 
 
Objectives 
After studying this unit, you should be able to: 
 

 explain how diffraction limits image forming ability of optical devices 
 use Rayleigh criterion to compute expressions for resolving power of a telescope, a 

microscope and a diffraction grating 
 solve numerical problems based on resolution, and 
 describe how Michelson stellar interferometer helps in improving resolution. 

 
 



7.2   DIFFRACTION AND IMAGE FORMATION 
You may recall from Unit 5 that when the size of pupil is greater than 2.4 mm, the human eye 
does not form a perfect point image (due to aberrations). However, for pupil sizes smaller than 
2.4 mm, the human eye appears to be a diffraction-limited system. To gain some quantitative 
measure of visible acuity, let us estimate the size of image formed on our retina. If we 
approximate the pupil in human eye by a circular aperture, we have to consider how it influences 
the image formed by eye-lens on the retina (Fig. 7.1). From Unit 5 you may recall that the 
diffraction image of a point source due to a circular aperture is a bright central disc surrounded by 
a series of alternate dark and bright rings of decreasing intensity. 

 

 
 

Fig. 11.1 Visible acuity and image formation on retina 
 

The angular half-width of the central disc is given by D/22.1   , where D is the diameter of 
the aperture. And the lateral width of this image will be f , where f  is the focal length of eye-
lens. This means that the size of an image formed on the retina depends on the wavelength of 
light and diameter of the aperture. If we take the pupil diameter to be 2 mm, then for middle of 
visible spectrum (  = 5500 Å) 
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Thus if the object is at a distance of 2 m, the size of image formed in a normal unaided human eye 
should be 41035.32(  rad)2 m = 1.34 310  m. 
 
Now refer to Fig. 7.2. It shows the image of a point source, luminous star say, formed by an 
astronomical telescope whose objective acts as a circular aperture and produces Airy pattern. The 

image essentially is a bright circular disc of angular diameter 







D



44.22 , which depends on 

  and D. The larger the aperture, the truer the image, i.e., the smaller the Airy disc. On the other 
hand, if the aperture size is small, the size of the Airy disc increases. That is, no matter how free 
from aberrations an astronomical telescope objective is, what is observed at best is not a point 
image of a star. For similar reasons we find that the image of a point object formed by a 
microscope is of finite size. We may therefore conclude that diffraction constrains an optical 
device in the formation of a sharp point-like image of a point source due to the finite sizes of 
its components. 
 



 
 

Fig. 7.2: Image of a luminous star formed by an astronomical telescope 
 
An actual manifestation of this restriction arises in imaging when we observe two point sources 
or two spectrum lines. Since the objective of every optical instrument acts as a circular aperture 
and the point sources are mutually incoherent, the image consists of two independent Airy 
patterns. When the Airy discs are small and distinct, the two sources are said to be well resolved. 
The question now is how close can we bring these two discs so that they are just resolved. You 
will learn the answer to this question now. 
 
7.3    RESOLVING POWER OF OPTICAL INSTRUMENTS 
There are several criteria for the resolution limit. But we will confine ourselves to the 
conventional specification, the Rayleigh criterion, which however arbitrary, has the virtue of 
being particularly simple. According to this, the two patterns are resolved when the first 
minimum of the diffraction pattern of one coincides with the central maximum of the diffraction 
pattern of the other. In Rayleigh's own words: 
 

This rule is convenient on account of its simplicity and it is sufficiently accurate 
in view of the necessary uncertainty as to what exactly is meant by resolution. 

 
We will now consider the specific cases of an astronomical telescope, a microscope and a 
diffraction grating. 
 
7.3.1. Astronomical Telescope 
Imagine that a telescope points towards two close luminous stars, which subtend an angle   on 
the objective. The plane waves from these stars reach the objective and give rise to Airy 
diffraction patterns (Fig.7.3). Since the stars are effectively at an infinite distance from us, the 
diffraction patterns (images) are formed in the back focal plane of the telescope objective, where 
it is examined with the aid of the eyepiece. The angle between mid points of central discs is equal 
to the angle subtended by the stars at the objective. For these stars to be just resolved, Rayleigh's 
criterion demands that maximum (centre) of the Airy disc due to one star should fall on the 
minimum (periphery) of the disc due to the other star, as shown in Fig. 7.4. 
 



 
 

Fig. 7.3 Formation of Airy patterns In imaging of two stars by a telescope 
  

 
 

Fig. 7.4 Rayleigh criterion for Imaging of two stars of small angular separation 
 
(The corresponding intensity curves are also shown.) Mathematically, we demand that for the two 
stars to be just resolved, the angle subtended by the two stars at the objective should be equal to 
the angular half width of the Airy disc. Recall Eq. (5.13). It suggests that the minimum 
resolvable angular separation or angular limit of resolution for two close stars which can be 
resolved by a telescope is 
 

 
D
 22.1

min           (7.1) 

 
Two stars subtending an angle  at the objective will be resolved for min  and unresolved for 

min  . The intensity plot for more than resolved, just resolved (Rayleigh limit), and 
unresolved stars are shown in Fig. 7.5. 

 



 
 

Fig. 7.5: Plot of Intensities of two resolved, just resolved and unresolved stars 
 

The centre-to-centre linear separation of two just resolved stars, the limit of resolution, is given 
by 

 

D
ffs 
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22.1

min          (7.2) 

 
where f  is the focal length. 

 
The resolving power of an optical device is generally defined as the reciprocal of the resolving 
limit, i.e., as 1

min
Q  or 1s . This means that resolution ability of diffraction-limited systems 

depends on the size of the aperture and the wavelength. For a given wavelength, the resolving 
power of a telescope can be increased by using objectives of larger diameter. To give you some 
appreciation of numerical values, we now give a solved example. You should go through it 
carefully. 
 
 
Example 1 
An astronomical observatory has a 40 inch telescope. Calculate the minimum angle of resolution 
for this telescope. Take  = 6000 Å. 
 
Solution 
From Eq. (7.1) we recall that 
 
 D/22.1min    
 
On substituting the given data, you will find that 
 

 min  = 
cm

cm
54.240

)106(22.1 5


 

 

 

Before the S.I. system of units was adopted, the objective sizes were expressed in inches. 



  = 7102.7   rad 
 
  = 0.15 seconds of arc 
 
The diameter of the largest telescope is about 80 inch (~2m) and the corresponding angular 
separation of the objects it can resolve is 0.07 seconds of arc. This very low limit is not achieved 
in ground-based telescopes due to turbulence in the lower atmosphere. 
 
For the human eye, 4

min 1035.3   rad. Therefore, the actual lateral width of the image of a 
distant point formed on your retina is 
 
 minfs   
 
If we take f = 3 cm, we find that 
 
  s = (3 cm) 41035.3   
 
     = 10.05 410  cm 
 

   = 10 micron 
 
This is roughly three times the mean spacing between photoreceptors (cones) at the centre of the 
retina. Therefore, for a normal unaided human eye, the linear separation between two point 
objects at a distance of 3m subtending this angle will be equal to 34 10131035.3(   m m) 
= 1 mm. This means that the unaided eye will resolve two point objects 1mm apart at a distance 
of about 3 m. 
 
You can easily verify this result at least qualitatively. You should just draw two lines one 
millimetre apart and view these from a distance. (Alternatively, you can see marks on a 
millimetre scale or some newsprint). Move forward or backward till these become blurred and 
just merge into one another. Experience tells us that 1 mm is barely resolved at 2 m. The 
difference is due to optical defects in the eye or the structure of retina. 
 
You may now like to answer an SAQ.  
 
SAQ 1 
An astronaut orbiting at an height of 400 km claims that he could see the individual houses of his 
city as they passed beneath him. Do you believe him? If not, why? 
 
 
You now know that a 40 inch telescope has a minimum angle of resolution equal to 

7102.7  rad. The minimum angle of resolution of the eye is about 41035.3   rad. An 
important question that should come to our mind is: What should be the magnifying power of the 
telescope to take full advantage of the large diameter of the objective? The telescope must 

magnify about 7

4

102.7
1035.3








= 465 times. Note that any further magnification will only make the 

image bigger but it would not be accompanied by increase in details which are not available in 
the primary image. (The resolution is determined by diffraction at the objective, i.e., the 



magnitude of minQ ) To get some idea about these details, you should carefully go through the 
following example.  
 
Example 2 
Compare the performances of two telescopes with objectives of apertures 100 cm and 200 cm. 
Take their focal lengths to be equal. 
 
Solution 
We know that for a telescope, the minimum angle of resolution 
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For the first telescope 
cm100

22.1
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  , where   is in cm. Therefore, the radius of the central 

diffraction disc r = 
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The area of the telescope objective which collects light is 
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concentrated in the central maximum and gradually decreases as  
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. If we assume that 

light is uniformly distributed over the disc, its brightness, i.e., light per unit area  
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For the second telescope 
cm200

22.1
min

  . That is, the minimum angle of resolution for the 

second telescope is half of that for the first telescope. In other words, the R.P of 200 cm telescope 
is twice as large. To compare their relative performances, let us compare the brightness. As 
before, the area of central diffraction disc 
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  = 116I  
 
In words, the area of the central diffraction disc of second telescope is four times more. And the 
of the image of the star will be proportional to fourth power of its area. 
 
So we may conclude that 
 
(i)    The ability of a telescope to resolve two close stars depends on the diameter of its 

objective. 
 
(ii)    The intensity of the image is sixteen times since the objective collects four times more 

light and concentrates it over an area which is only one fourth. This means that a distant 
star, which is too faint to be observed by a smaller objective (of the first telescope), 
becomes visible by a larger telescope. That is, a bigger telescope can see farther in the 
sky. Therefore, the deeper we want to penetrate the space, the greater should be the 
aperture of the objective of the telescope. 

 
You may now like to pause and ponder for a while. Then you should answer SAQ 2. 
 
SAQ 2 
We can see the stars at night but as the sun rises they gradually fade away and are not visible 
during the day. What measure would you suggest to enable researchers to make astronomical 
observations in the daytime itself? 
 
Example 3 

Calculate the dip in the resultant intensity of two 
2

sin











curves according to Rayleigh's 

criterion, i.e., when the maximum of one curve falls on the minimum of the other curve. 
 
Solution 
We assume that the two curves have equal intensity. These curves are symmetrical and will cross 
at 2/  , as shown in Fig. 7.6. 
 
At the point of intersection, both curves have equal intensity: 
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Fig. 7.6: Resolution of two single slit patterns: Rayleigh's criterion 
 
At this point the resultant intensity will be equal to the sum of the two intensities and therefore 
equal to 0.8106. This means that according to Rayleigh's criterion, the resultant intensity will 
show a dip of about 20%. And this dip is easily visible to even unaided human eye. If these two 
curves are brought closer, the dip will gradually decrease and it becomes difficult to resolve the 
images. Moreover, if these intensities were unequal, the dip will not be 20%. 
 
In the above example we have taken the intensity of both the curves to be equal. This essentially 
means that in Rayleigh criterion we take both the stars to be equally luminous. Another important 
point to note is that the curves are of finite angular (or lateral) width. In the case of grating (or 
prism), two spectrum lines, though assumed to be of equal intensity, are very sharp. Now the 
question arises: Can we use the same criterion even for a grating? From your second level physics 
laboratory you may recall the answer to this question: we do use the same criterion. Is the dip 
20% or so even in this case? To discover, answer to this question, you should answer the 
following SAQ. 
 
SAQ 3 

What is the dip in the resultant intensity of two 
2
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

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 curves according to the Rayleigh 

criterion? 
A more realistic criterion for resolving power has been proposed by Sparrow. We know that at 
the Rayleigh limit there is a central dip or saddle point between adjacent peaks. As the distance 
between two point sources is less than the Rayleigh limit, the central dip will grow shallower and 
may ultimately disappear (Fig. 7.7) The angular separation corresponding to that configuration is 
said to be Sparrow's limit. Note that the resultant maximum has a broad flat top; there is no 
change in slope. However, we will not discuss it any further. 
 
Another useful image forming device is the microscope. Let us now learn to calculate its 
resolving power. 
 



 
 

Fig. 7.7 Sparrow's resolution criterion 
7.3.2 Microscope 
We know that an astronomical telescope is used to view far off objects the exact distances of 
which are usually unknown. However, we were chiefly interested in their smallest permissible 
angular separation at the objective. In the case of an optical microscope, the objects being 
examined are very close to the objective and subtend a large angle. For this reason by resolving 
power of a microscope we mean the smallest distance, rather than the minimum angular 
separation, between two point objects (O and O') when their fringed images ( I and 'I ) are just 
resolved. 
 

 
 
Fig. 7.8: The optical microscope, (a) Airy pattern images of two objects O and O' separated  

 through a distance s  (b) Ray diagram for computation of path difference O'B -O'A 
 
Each image consists of a central Airy disc (surrounded by a system of rings which are very faint 
and not considered.) According to the Rayleigh criterion, the first maximum of I  should be at 
the same position where the first minimum of 'I  lies. The angular separation between the two 

discs on the limit of resolution 
D
 22.1

min  . When two images are just resolved, the wave from 

O' diffracted to 'I  has zero intensity (first dark ring) and the path difference O'B - O'A = 1.22   
(Fig. 7.8 (a)). We show an enlarged part in Fig. 7.8 (b) from which we see that O'B is longer than 
OB by is sin , and O'A is shorter by the same amount. Here the point O subtends an angle 2 i at 
the objective of the microscope. Thus the path difference of the extreme rays from O' to the 
objective is is sin2 . Upon equating this to 1.22   we find that the minimum separation between 
two points in an object that can be resolved by a microscope is given by 

is sin2  = 1.22 
or 
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In high power microscopes, the space between the object and objective is filled with oil of 
refractive index  . For an oil-immersed objective, the above expression becomes 
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s
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


          (7.3) 

 
You may now like to answer an SAQ. 
 
 
SAQ4 
In the above discussion we assumed that the two point objects were self-luminous. Suppose two 
objects are illuminated by the same source. Will Eq. (7.3) still hold? 
 
Abbe investigated this problem of image formation in detail and found that the resolving power 
depends on the mode of illumination of the object. In the above treatment both O and O' were 
treated as self-luminous objects and thus the light given out by these had no constant phase 
relationship. For all practical modes of illumination, the resolving power may be taken simply as 
 

 R. P. = 
isin

61.0



 

 
The term isin  is termed the numerical aperture (NA) of the microscope objective. The 

maximum value of i  is 90°. This gives the microscopic limit on R.P approximately as 



2
. This 

shows that smaller the NA, greater will be the R.P. In practice, good objectives have N. A   1 so 
that the smallest distance that can be resolved by a microscope is of the order of the wavelength 
of light used. Obviously, with light of shorter wavelength, say ultraviolet rather than visible light, 
microscopy allows for perception of finer details. (We may have to take the photographs and then 
examine the images.) 
 
In your school physics curriculum you have learnt that electrons exhibit diffraction effects. The 
de Broglie wavelength of an electron is given by 
 

  (Å) = 
V
3.12

         (7.4) 

 
For electrons accelerated to 100 kV, the wavelength is 
 

 (Å) = 10

5
10039.0

10
3.12  m      (11.5) 

 
This wavelength is 510 times smaller than that for visible light. The resolving power of an 
electron microscope will therefore be very high. This makes it possible to examine objects that 



would otherwise be completely obscured by diffraction effects in the visible spectrum. In this 
connection we may mention tremendous utility of electron microscope in the study of minute 
objects like viruses, microbes and finer details of crystal structures. It is better than even 
ultraviolet microscope for high-resolution applications. 
 
7.3.3  Diffraction Grating 
You are familiar with a sodium lamp. It gives out two close spectral lines, the so-called D1 and D2 
lines with wavelengths 1  = 5890 Å and 2 = 5896 Å. For such lines, the resultant peak may 
become somewhat ambiguous. The problem we now wish to consider is: What is the smallest 
difference  , that a diffraction grating can resolve? The resolving power of a grating is defined 
as 
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where min)(   is the least resolvable wavelength difference or limit of resolution and   is the 
mean wavelength. It is sometimes also called chromatic resolving power. 

 
 
 
 
where min)(  is the least resolvable wavelength difference or the limit of resolution and   is 
the mean wavelength. It is sometimes also called the chromatic resolving power. 
 
We know that the grating forms a principal maximum corresponding to wavelength   at the 
diffraction angle  . Similarly, the principal maxima at corresponding to    will be at 

  . At first thought you may argue that the two colours will be separated and always appear 
to be resolved since the two angles are different. This could be so if the principal maxima, i.e. the 

The de Broglie wavelength of an electron is given by 
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where h  is Planck's constant, me is electronic mass and v is electron speed. When 
an electron beam is accelerated through a potential difference V, we can write 
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On combining these relations we find that 
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Substituting the values 
 Jsh 34106.6  , em = 311011.9  kg and Ce 19106.1  , you will find 
that 

  (Å) = 
V
3.12

  

 



spectrum lines in the experimental arrangement, were truly sharp like an ideal geometric line. But 
we know that the principal maximum has a finite angular width. Therefore, the question is: How 
close can these be brought so that they are seen distinct? Obviously, sharper the lines, the closer 
these can be brought and still be seen as two. 
 

 
 

Fig. 7.9 Resolution of two spectral lines 
 
This question was also carefully examined by Rayieigh. In Fig. 7.9 (a) we show plots of two 
widely separated principal maxima. In Fig. 7.9 (b) we have brought these closer so that the 
principal maximum of   , is situated at the position where the minimum of   falls. The 
dotted line defines resultant intensity, which shows a dip. You will recall that according to the 
Rayleigh criterion, this is the closest that we can bring these curves and still regard them as 
separate. If we bring them still closer as in Fig. 7.9 (c), the resultant intensity (shown by the 
dotted line) signifies a single enhanced principal maxima. 
 
According to the Rayleigh criterion, the condition for resolution of two spectral lines by a 
diffraction grating is obtained by noting that for the common diffraction angle  , the following 
two equations should be satisfied simultaneously: 
 
 )(sin   nd  
 
for principal maxima of   and 
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for first minimum adjacent to the principal maximum for wavelength  . On simplifying these we 
get 



 

 nN

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         (7.7) 

 
We note that in a given order n, the R.P is proportional to the total number of slits. Does this 
mean that R.P increases indefinitely with N? It is not so. Think why? Does it have some 
connection with the width of the grating? You will also note that the resolving power is 
independent of grating constant. It means that the resolving powers of two gratings having equal 
number of lines but different grating constants will be equal. 
 
To enable you to grasp these concepts and appreciate the numerical values, we now give some 
more solved examples. 
 
Example 4 
For 1D  and 2D  sodium lines, 

1D = 5890 Å and 
2D  = 5896 Å. Calculate the minimum number 

of lines in a grating which will resolve the doublet in the first order.  
 
Solution 
Let us take the average wavelength as 5893 Å. From Eq. (7.6) we find that the resolving power is 
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= 982.2 

 
Therefore, we must have a grating with more than 983 lines to resolve sodium doublet in first 
order. A grating of 1000 lines will serve the purpose. 
 
Example 5 
Suppose that to observe sodium doublet we use a grating having 310d cm and a lens of focal 
length 2 m. Let us calculate the linear separation of the two lines in the 1st and 2nd order. 
 
Solution 
We know that 
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For the 1D  line 
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Similarly for the D2 line 
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With a lens of focal length 200 cm, we find that linear separation between D1 and D2 lines is 
 
 
  fl  
 
    = (200 cm) ( 5106  rad) 
 
    = 31012   cm = 0.12 mm 
 
This shows that 6 Å are separated by 0.12 mm in 1st order. Alternatively we may say that 
linear separation is nearly 50 Å per millimetre in the first order. You can readily check 
that in the second order this linear separation will be 25 Å per millimetre. 
 
7.4  IMPROVING RESOLUTION 
You now know that with the help of a telescope, we can view a faint star, resolve two close stars 
and measure the angle subtended by the double star at the objective of the telescope. However, it 
is worth noting that based on Fraunhofer diffraction image of a star, we cannot measure its 
angular diameter. To overcome this limitation, Fizeau suggested a slight modification in that we 
should use a two slit adjustable aperture (with provision for lateral adjustment), in front of the 
objective of the telescope. As a result, the plane wavefront falling on the double slit is diffracted 
and collected by the objective. The Fraunhofer diffraction pattern of the double slit is formed in 
the back focal plane of the objective. The measurements to determine angular diameter are made 
from the observations on these interference fringes. 
 
Refer to Fig. 7.10. Two slit apertures S1 and S2 are at a distance d apart. The telescope is first 
pointed towards the double stars, which act as two point sources O and O'. The two point sources 
are separated by an angle   in a direction at right angles to the lengths of the slits. Such objects 
emit white light and because of intensity considerations, the observations have to be made with 
white light fringes. It is therefore customary to assume an effective value of the wavelength 
emitted by the source. This depends upon the distribution of intensity of the light and the colour 
response of the eye. The interference patterns due to O and O' have the same fringe spacing since 
this spacing depends upon separation between slit apertures and the focal length of the objective. 
Moreover, these fringe patterns are shifted with respect to each other by an angle  . Therefore, 
as shown in the figure the central maximum of the pattern due to O is at P and that due to O' is at 
P'. If O and O' are two incoherent sources, the combined pattern is formed by summing the 
intensities of these two patterns at each point. Assuming that both O and O' have equal 
brightness, we can plot two 2cos  curves on the same scale and shift them suitably to obtain the 
resultant curve. 
 
We can show graphically that if this shift is a small fraction of the angular separation  , the 
resultant intensity distribution resembles a 2cos  curve. However, the intensity does not fall to 
zero at the minimum. The net result is a fringe pattern (shown in Fig. 7.10(b)). By successive 
adjustments a stage can come when the maximum of one pattern, say due to O, coincides with the 

minimum of O'. Then we 
d22

1 
 . And the paths from the two sources differ by 

2


. We can 



show graphically that the resultant curve 2 shows a uniform intensity and the fringes have 
disappeared. If we displace the two curves further, the fringes reappear and become sharp when 
the fringes are displaced by a whole fringe width, i.e. 1  . They disappear again when                                                                     

2
3 1   or 

2
5 1 . Therefore, with two point sources subtending an angle   at the double slit, the 

condition for the disappearance of fringes is 
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Fig. 7.10 Principle of measurement of angular diameter of stellar objects by interferometry 
 

To measure the angular separation of a double star, the double slit is mounted in front of the 
objective of the telescope which points towards the double star. (We should remember that the 
line joining the stars should be perpendicular to the length of the slits.) We expect interference 
pattern due to the double slit. If on adjusting the separation between the slits, the interference 
fringes can be made to disappear, we can infer that the star is a double star. The first 

The intensity of the double slit pattern is given by 
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in which a is the slit width and d is the slit separation. The positions of the maxima 
are given by 
  nd sin  
where n = 0, 1,2,3, ... When   is small, the successive maxima occur at 
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so that the angular separation between successive maxima is given by 
d
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Further, if a is 
small, the interference pattern will be essentially a 2cos curve near the centre. 

 



disappearance should take place when the angular separation is 
d2


. Let us compare this with the 

expression for the resolving power of a telescope )/22.1( a  , where a is the diameter of the 
objective). If the double slits are a apart and the first disappearance occurs for ad  ,  the angle 

  between the double stars is 
ad 22
  . This angle is effectively half of the R.P of the 

telescope. It explains the genesis of the statement: The R.P of a telescope may be doubled by 
placing a double slit in front of it. You must however note that with a double slit, we can only 
infer the presence of a double star (from the disappearance of the fringes); we neither get the 
images of the stars nor resolve them. Indeed, even before the disappearance of the fringes, a 
blurring of fringes starts. This angle is only a small fraction of 1 . You may have realised that 
this method enables us to measure the angular diameter of the disc of the star and Michelson 
successfully used it in 1920. 
 
Angular Diameter of a Star 
For measuring the angular diameter of the disc of a star we should first know the condition for the 
disappearance of fringes for a double slit placed in front of a telescope. In contrast to two point 
sources, the disc of a star consists of a series of points extending from one end O1 to another end 
O2 In Fig. 7.10, we see that when Ol and the central point O satisfy the condition for 
disappearance of fringes, the point just next to Ol will have a similar point next to O and so on. 
Thus all the points between O1 and O will have corresponding points lying between O and O2 
satisfying the condition for disappearance of fringes. Since the angle between Ol and O for the 

first disappearance of fringes is 
d2


, the angle between (O1, and O2 (which is for the total disc) 

equals 
d


. Thus the angular disc   of the star, computed from the first disappearance of fringes, 

is given by 
d
  . For successive disappearance   is given by 

d
 2

 , 
d
3

, … If the source 

is a circular disc, the condition for the first disappearance is 
d
 22.1 . This method was 

successfully used to measure angular diameters of planetary satellites. But attempts to apply it for 
single stars failed because of their small angular diameters. Even with the largest slit separation 
possible with the available telescopes, the fringes remained distinct; no disappearance was 
achieved. To overcome this difficulty, Michelson devised the stellar interferometer in 1890. We 
will discuss it now. 
 
7.4.1   Michelson Stellar Interferometer 
The principle of Michelson's Stellar Interferometer is illustrated in the Fig. 7.11. The slit 
apertures S1 and S2 in front of the telescope are fixed. Light reaches them after reflection from a 
symmetrical system of mirrors 1M , 2M , 3M  and 4M  mounted on a rigid girder in front of the 
telescope. The inner mirrors 3M  and 4M  are fixed but the outer mirrors 1M and 2M  can be 
separated out symmetrically in a direction perpendicular to the lengths of the slit apertures. 
Therefore light from one edge of the star (shown as solid line) reaches the point P in the focal 
plane via the paths OM1 M3 S1 P and OM2 M4 S2 P. This will form interference fringes with the 

angular separation equal to 
d


.  



 

 
 

Fig. 7.11: Schematics of Michelson Stellar Interferometer 
 
The other edge of the star sends light along the dotted lines and produces a similar system 
displaced slightly with the central fringe at P'. You now know that when two extreme fringe 
systems are displaced by a whole fringe width, the resultant intensity pattern will show uniform 

intensity and the fringes will disappear. The angular diameter of the star   = 1.22
D


, where D is 

the separation of outer mirrors 1M  and 2M . You can easily convince yourself by noting that the 
optical paths 131 SMM  and 242 SMM  have been maintained equal so that the optical path 
difference for light from the two edges of the star is the same at 1S  and 2S  as at 1M  and 2M . If 
the path difference at 1M  and 2M  is one whole wavelength, the path difference at 1S  and 2S  is 
also one whole   and fringe shift is equal to one fringe width. This leads to disappearance of 
fringes. As shown in the diagram, the dotted lines inclined at an angle   will have a path 

difference of   when 
D
  . In this arrangement the smallest angular diameter that can be 

measured is determined by the separation of the outer mirrors 1M  and 2M  rather than the 
diameter of the objective of the telescope. Therefore, the stellar interferometer magnifies the 

effective resolving power of the telescope in the ratio 
d
D

. We may emphasize that for a circular 

star disc, the fringes will disappear when 
D
 22.1 . This implies that the outer mirrors have to 

be moved out somewhat. 
 
The interferometer was mounted on the large reflecting telescope (diameter 100 inch) of the 
Mount Wilson observatory, which was used because of its mechanical strength. The first star 
whose diameter was measured by this method was Betelegeuse ( -Orion) whose fringes 
disappeared when the separation between 1M and 2M  was equal to 121 inches. Assuming  = 
5700 Å, we find that 
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
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  

 
        = 8107.22   rad 
 
        = 0.047 seconds of arc 
 
The distance of Betelegeuse was measured by parallax method. Its linear diameter was then found 
to be 8101.4  km, which is about 300 times the diameter of the sun. The maximum separation of 
the outer mirrors was 6.1 m, so that the smallest measurable angular diameter with  = 5500 Å 
was about 0.02 seconds of arc. This is insufficient for most of the stars. The smallest star for 
which measurements were made was Arcturus. Its actual diameter is 27 times that of the sun. 
 
At the surface of the earth, the sun disc has an angular diameter of about 32' ~ 0.018 rad. If we 
imagine the sun to be at a distance of the nearest star, its disc would subtend an angle only 0.007 
seconds of arc. This will require a mirror separation of 20 m for disappearance of fringes. It is 
difficult to achieve this since we require a rigid mechanical connection between mirrors and the 
eyepiece. 
 
Let us now summarise what you have learnt in this unit. 
 
7.5  SUMMARY 

 Diffraction constrains an optical device in the formation of a sharp point-like image of a 
point source. 

 
 Rayleigh criterion for the resolution of two images demands that the first minimum of 

diffraction pattern of one object and the central maximum of the diffraction pattern of the 
other should fall at the same position. 

 
 The minimum resolvable angular separation or angular limit of resolution of two close 

objects by a telescope is given by 
 

D
 22.1

min   

 
where   is the wavelength and D is diameter of the objective of the telescope. 

 
 The resolving power of a telescope is the inverse of the angular limit of resolution. The 

deeper we want to penetrate the space, the greater should be the aperture of the objective 
of telescope. 

 
 The resolving power of a microscope is defined as the smallest distance between two 

point objects when their fringed images are just resolved: 
 

..
61.0
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where i is the angle of incidence, sin I is known as numerical aperture and is 
approximately equal to 1 for good objective. 
 

 The resolving power of a diffraction grating is defined as 
 

  nNPR 



min)(

.



 

 
where   is the least resolvable wavelength difference, n is the order of spectrum and N 
is the total number of slits. 

 
7.6  TERMINAL QUESTIONS 
1.      A diffraction limited laser beam ( = 6300 Å) of diameter 5 mm is directed at the earth 

from a space laboratory orbiting at an altitude of 500 km. How large an area would the 
central beam illuminate? 

 
2.      The resolving power of a prism is given by 
 

   






d
dt

d
  

 
where t is the length of the base of the prism,   is the refractive index of the material of 
prism for wavelength  . A prism is made of dense flint glass for which refractive indices 
for  = 6560 Å and 4860 Å are 1.743 and 1.773 respectively. Calculate the length of the 
base of the prism. 

 
7.7 SOLUTIONS AND ANSWERS 
 
SAQs 
 
1.     The minimum angle of resolution of eye 
 

  4
5

1036.3
2.0

)105.5(22.122.1 

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cm
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D


 rad 

 
The lateral width for resolution 
 

65 1036.3()104(  mrl  rad) = 1.34 m 
 

Since it is must less than the width of individual houses, it is not wise to believe the 
astronaut. 
 

2. As we increase the aperture of the telescope, the light collected by it from a star gradually 
increases and gets concentrated in the image (the diffraction disc). Ultimately a stage will 
come when the image of the star becomes brighter than the background and is visible 
(This is because the intensity of the image of a star is proportional to the fourth power 
while the background sky light increases as the square of the area of the aperture.) This 
means that you can see stars during the day by using a telescope of sufficient aperture! 



 
3.      The maximum is at Nn  and minimum at (Nn + 1) . The two curves are symmetrical 

and if they are of equal intensity, they will cross at 
2
  NnN . Therefore, if you 

evaluate the function 
2
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         = 2

24

N

 

 

Hence the required ratio is 2

4


= 0.4053 

 
Therefore the resultant intensity will show a dip of about 20% as in the case of a 
telescope. 

 
4.      The waves given out by each self-luminous object bear no constant phase relationship so 

that the intensities can be added up. The objects viewed with microscopes are illuminated 
by the same source and there will be some phase relationship between the waves 
emanating from these. Strictly speaking the intensities will not be additive. But Abbe 
found that Eq. (7.3) gives the correct order for the limit of resolution. 

TQs 
 
1.      We know that angular spread of light beam is given by 
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         = 41054.1   rad 
 

Since the diameter of light patch 
 
 rx 2  
 



the area of the earth illuminated by the beam focussed from the space laboratory at an 
altitude of 500 km is 

 

  A   = 22
2

4


 rx
  

   = 24210 )1054.1()1025(
7
22  m  

   = 10934 m2 = 0.01 km2 
 
2.  d = 1.773 – 1.743 = 0.03 
  

  d  = 6560 – 4860 = 1700 Å = 1700 810 cm 
 

Note that spectral spread is very wide whereas d  should be a small change. Assuming 
that   changes linearly between these two colours, we have 
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The negative sign signifies inverse value of relationship between   and  . The prism is 
made of dense flint glass and to just resolve 1D  and D2 lines find that 
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so that  
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and 
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