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Introduction

Solid state physics is a very wide field, and itlinles many branches. It is
concerned with the physical properties of solidartipularly the special properties
exhibited by atoms and molecules because of tlssiocation in the solid phase. The
existence of powerful theoretical methods and cptscapplicable to a wide range of
problems has been an important unifying influemcthe field

Learning solid-state physics requires a certaimeg@f maturity, since it involves tying
together diverse concepts from many areas of ptiy§lee objective is to understand, in a
basic way, how solid materials behave. To do tine peeds both a good physical and
mathematical background. One definition of soliatestphysics is that it is the study of
the physical (e.g. the electrical, dielectric, metgp) elastic, and thermal) properties of
solids in terms of basic physical laws. In one sersolid-state physics is more like
chemistry than some other branches of physics Bedadiocuses on common properties
of large classes of materials. It is typical thaidsstate physics emphasizes how physical
properties link to the electronic structure. Thpidarise of interest in solid state physics
in recent years has suddenly presented universiiiesthe problem of offering adequate
instruction in the subject. For this reason, theheuld be an introductory or survey
course followed by, as a minimum program for graelséudents intending to do research
in the field, a course in x-ray crystallography amdaourse in the quantum theory of
solids. These two subjects are large, importard, \@ell-developed; it is not possible to
deal with them adequately in an introductory course

What You will Learn in this Course

The course consists of units and a course guide cobrse guide tells you briefly what
the course is about, what course materials yolbeilising and how you can work your' with
these, materials. In addition, it advocates somergeguidelines for the amount of time you are
likely to spend on each unit of the course in dwleomplete it successfully.

It gives you guidance in respect of your Tutor-MatrkAssignment which will be
made available in the assignment file. There wellregular tutorial classes that are related
to the course. It is advisable for, you to attéedé tutorial sessions. The course will prepare you
for the challenges you will meet in the field didstate physics.

Course Aim

The course aim to provide an understanding ofl Stdite physics

Course Objectives

To achieve the aim set out, the course has a sdijeftives Each unit has specific
objectives which are included at the beginninghef tinit. You should read these
objectives before you study the uriBelow are the comprehensive objectives of the

course as a whole. By meeting these objectivesshould have achieved the aim
of the course as a whole. After going through th&se, you should be able to:

» Explain crystal structure of solids



Explain Crystal binding

Explain X-ray diffraction in crystals

Explain Thermal properties of the crystal lattice
Explain Elastic properties of crystals

Explain Lattice vibration

Explain the concept of Free-electron theory of leeta
Understand Energy bands in crystals

Understand Semiconductors

Understand Superconductors

YVVVVVVVYVYYY

The course Materials
The main components of the course are:

The course Guide

Study units
References/Further Readings
Assignments

Presentation Schedule

abrwbdpE

Study Unit
The study units in this course are as follows:

Module 1 Property of Crystal

Unit 1 Crystal geometry

Unit 2 Crystal classification

Unit 3 Simple lattices

Unit 4 Crystal Diffraction (I)

Unit 5 Crystal diffraction ()

Unit 6 Experimental crystal structure determinatio

Module 2 Crystal Elastic Constants and Vibrations

Unit 1 Elastic Constants of Crystals (1)
Unit 2 Elastic Constants of Crystals (I1)
Unit 3 Crystals Binding



Unit 4 Lattice Vibration

Unit 5 Thermal Properties

Module 3 Free Electron Fermi Gas

Unit 1 Free Electron Theory of Metals

Unit 2 Electronic Transfer

Unit 3 Energy Band Theory

Unit 4 Electron Dynamics

Unit 5 Fermi Surfaces

Module 4 Semiconductors and Superconductors

Unit 1 Structure and Bonding in semiconductors
Unit 2 Semiconductor Statistics

Unit 3 Electrical Conductivity and Real Semicontius
Unit 4 Super Conductivity (I): The Basic Phenomeno
Unit 5 Superconductivity (I1): Experiments and ©hies

Module 1 which consists of six units deal with ¢aystructures and their determination.
Module 2 (five units) is devoted to fundamentaledigtination of elastic constants of
crystal. The free electron which discusses the iphlybasis of the formation of bands,
the most important concept in the band — Fermiased were treated in five units which
constitute model 3. Module 4 in five units providéiscussions on the properties of
semiconductors as well as discussions on basicopiemon of superconductors.

Each unit consists of either one or two weeks’ warkd include an introduction,

objectives, definition, conclusion, summary, tutmarked assignments (TMA) and
references. The TMA will help you in achieving thtated learning objectives of the
individual units and the course as a whole.

Presentation Schedule

Students are encouraged to complete and submitnen their TMAs and to
guard against falling behind in attending tutorials

Assessment

There are three aspects to the assessment of thieecdrhese are the self-
assessment exercises, tutor marked assignmentb@nditten examination/end
of course examination. The assignments must be w#&hl by applying the
knowledge and techniques gathered during the camdemust be submitted to
your facilitator for formal assessment in accoradandth the deadlines stated in
the presentation schedule. The assessment willuatdor 40% of the total
course work while the examination will count foettemaining 60%.

Tutor marked Assignment (TMA)

The TMA is a continuous assessment component afdhese work. It accounts
for 40% of the total score. You will be given si&) (TMAs to answer out of
which four must be answered before a student asvelll to sit for the end of the
course examination. Students are not allowed teemteother people’s work as
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their own (including copying another student's wWorklake sure that each
assignment reaches your facilitator on or befoee dbadline given. Extension
will not be granted after the due date unless thezeexceptional cases

Final Examination and Grading

The end of course examination for solid state ptsysiill be for three (3) hours
and it has a value of 60% of the total course waikareas of the course will be
assessed.

Course Marking Scheme

Assignment Marks

Assignment 1-6 Six assignments, best four marks at
10% each totaling 40% of the
course marks

End of course examination 60% of overall courseksar

Total 100% of course materials

Facilitators/Tutors and Tutorials

There will be tutorials provided in support of tlisurse at the end of each unit.
Students will be notified of the dates, times amzhtion of these tutorials as well as
the name and phone number of your facilitator. Y&agilitator will mark and
comment on your assignments and returned to yso@s as possible.
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1.0 Introduction

The physical definition of a solid has several edjents. We start by defining a solid as
a large collection of atoms that attract one arroee as to confine the atoms to a
definite volume of space. Additionally, in this ynthe termsolid will mostly be
restricted to crystalline solids. Arystalline solidis a material whose atoms have a
regular arrangement that exhibits translational ragtny. When we say that the atoms
have a regular arrangement, what we mean is tbadhilibrium positions of the atoms
have a regular arrangement. At any given tempexatie atoms may vibrate with small
amplitudes about fixed equilibrium positions. Elenseform solids because for some
range of temperature and pressure, a solid hasfiessenergy than other states of
matter. It is generally supposed that at low enotmyhperature and with suitable
external pressure everything becomes a solid. Ty sof crystal and electrons in
crystal is a division of physics known as solidetahysics. The solid state physics is an
extension of atomic physics following the discovefyX-ray diffractions of crystalline
properties.

2.0 Objectives
The candidates should be able to:

. Define crystals
. Explain the crystal structure
. Classify crystals

3.0 Definition of crystal

Crystal may defined on the macroscopic scale asogeneous solids, in which some of
the physical properties are function of directibticrospically, a crystal may be defined
as a solid having an arrangement of atoms (or ratdsf in which the atoms are
arranged in some repetitive pattern in three dinogss

3.1 Translational Symmetry

A solid is said to be a crystal if atoms are areghmn such a way that their positions are
exactly periodic This concept is illustrated in Fig.1.1 using ao{timensional (2D)
structure. A perfect crystal maintains this perodgiin both thex andy directions from

- to +. As follows from this periodicity, the atoms A, B, etc. areequivalent In
other words, for an observer located at any ofdgh@®mic sites, the crystal appears
exactly the same. The same idea can be expresssaylmg that a crystal possesses a
translational symmetryThe translational symmetry means that if thetatys translated

by any vector joining two atoms, s&yin Fig.1.1, the crystal appears exactly the same
as it did before the translation. In other words tinystal remaingvariant under any
such translation.
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Fig.1.1: Periodicity and concept of symmetry.
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3.2 Lattice and Unit cell

The structure of all crystals can be describeigims of dattice. A lattice can be
defined as a regular periodic array of points iacgp(Fig.1.2).Every lattice point can be
located as;
Tmpn=ma+nbhb (1.2)

Or in three dimensional case
Timn=la+mb+nc (1.2)

where a, b, c arecalled Lattice vectors andm andn are integers.

The network of lattice lines divide the space iilentical parts callednit cells.Hence,
because of inherent periodicity of space lattitean thus be represented by a unit cell.
A unit cell is a conveniently chosen fundamentalckl by repeating the entire space
lattice which is generated. The unit cell may bdamnm of a parallelogram (2D) or a
parallelepiped (3D) with lattice points at theirwers. The size and shape of the unit cell
are described by three lattice vectar$, c, originating from one corner of the unit cell.
The axial lengths, b, c and the inter axial angles s andy are lattice parameters of the
unit cell. Fig.1.3 shows the unit cell with the aXengths and inter axial angles while
Fig.1.4 shows the lattice and unit cells in 2-disien.
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Fig.1.2: Lattice point and Lattice vectors

a

e e

Fig.1.3: Unit cell showing axes lengths and ireial angles.

The convention for drawing the lattice parametsras follows:

a parallel tax-axis

b parallel toy-axis

c parallel taz-axis

a angle betweepandz

B angle betweemnandx

angle betweex andy

<

3.3  Primitive and Non-Primitive cells

The cell is said to bprimitive if the lattice points are at the corners of te# @ig. 1.5)
and if there are lattice points in the cell otheart the corners, the cell is said to be
nonprimitive(Fig.1.5)

11



L] - L ] L] L] -
1 square
a
1} -0 L J - L ] L] - u - - (]
b}y 3 " "
. . . * azb * a#h
- o - &
. . ™ . r=90 ™ * o 1= 90
- L] -
» L] - L] L] L] L] - . L]
2 (a) rectangular 2 (b) centred rectangular

a

i%*—,—“ L] L] - L] 5{’. . . » -
7 . . . bty

L] L L] L L] - L] L] L] L] L L]

3 oblique 4 hexagonal

~n e
nqu
;3‘
o
f=]

Fig.1.4: Lattice and unit cells in 2-Dimension(@&ftKittel,1979)
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Fig.1.5: Primitive and Non-primitive cells (AfterSihv. K Gupta,
www.4shared.com)

For a single atom, the single atom is placed onldtiee site and is known &ravais

lattice. On the other hand, if there are several atomapircell, we have &ttice with
a basis.
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3.4  Bravais Lattice

There are many ways in which an actual crystal meaybuilt, thus possible crystal

structures are unlimited. However, the possibleesws of space lattices are highly
restricted. Each space lattice has some convemsientof axes which need not be
necessarily orthogonal and chosen length alonghtiee axes may not be equal. Bravais
in 1848 proved that there are only fourteen spatteés in total which are required to

describe all possible arrangement of points in sgambject to the condition that each
lattice point has exactly identical environment.eTiourteen space environments are
called Bravais Lattices. The Bravais lattices dme distinct lattice types which when

repeated can fill the whole space. The lattice ttemmefore be generated by three unit
vectors,a, b andc and a set of integers k, | and m so that eadieégtbint, identified by

a vectorr, can be obtained from:

r=ka+Ib+mc (1.3)

Bravais showed that in two dimensions there are @istinct Bravais lattices, while in
three dimensions there exist no more than fourspace lattices.

3.5 Basis and Crystal structure.
The arrangement of atoms in a solid is termed ahytucture. In order to convert the
geometrical array of points in space (lattice) iate@rystal structure, we must locate
atoms or molecules on the lattice points. The r@pgaunit assembly of atoms or
molecules that are located at each lattice poirdalked thebasis. The basis must be
identical in composition, arrangement and orieatatsuch that the crystal appears
exactly the same at one point as it does not &r@tuivalent points. No basis contains
fewer atoms than a primitive basis contains.
The crystal structure is thus given by two speatfans:

I.  the lattice, and

[I.  The assembly that repeat itself.
Hence, the logical relation is

Space lattice + basis = crystal structure (1.4)

Equation (1.4) is illustrated in Fig.1.6

(0]
X

o)
b X
&
1
0 X
o X o

Fig.1.6: Two-dimensional lattices. (a) Bravaidita; a and a are basis vectors;
(b) Lattice with a basis of three atongg; o x
(After Kachhava, 1992)
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4.0

Conclusion

The fundamental feature of a crystal is the pecitglof the structure.

5.0

6.0

Q1.

Q2.

Summary

The size and shape of the unit cell are descrilyatiree lattice vectors, b, c,
originating from one corner of the unit cell. Tévaal lengths, b, ¢ and the inter
axial angles,,  andy are lattice parameters of the unit cell.

A cell is said to berimitive if the lattice points are at the corners of tak and
if there are lattice point in the cell other titae corners, the cell is said to be
nonprimitive

A lattice is any array of points related by thensiational operator

R,, = ma +mpb+nsc

The Bravais lattices are the distinct lattice typdxsch when repeated can fill the
whole space generated by three unit vectois andc and a set of integers k, |
and m

Tutor marked Assignment
A group is represented by three matrices

S I I

Wherer =sin 30° and S =cos 30°.
(a) Determine the multiplication tabte this group.
(b) Give an example of a 2-D crystal with thesapgroup symmetries.

(@) Filled circles in the tetragonal crystal in theuiig below represent copper
oxide atoms and the copper oxide layers are stagk@  spacing c. assume that
there are no other atoms in the crystal, sketoch Bravais lattice and
indicate a possible set of primitive vectors fustcrystal.

®e OeOeO0e
O @) O O
®e Oe Oe O
O O O OIa
e OeOeOe
O O O O
®e O CeOe

(b) Define the following terms
(i) Unit cell and

(i) Basis

14



7.0 Further reading/References
Ashcroft, N.W., Mermin, D.N, Solid state physicaufders College Publishing,
1976
Gupta, S. K, (www.4shared.com)
Kittel, C., Introduction to solid state physicsjl&y Eastern Limited, 1979
Kachhava, C.M., Solid State physics, Tata McGrailvfublishing Company
Limited, New Delhi, 1992
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1.0 Introduction

Crystal lattices are classified according to tlsgimmetry properties, such as inversion,
reflection and rotation. Also, it is sometimes moo&venient to deal with non-primitive

or conventional cells, which have additional |atgites either inside the cell or on its
surface. In three dimensions there are 14 diffeBeavais crystal lattices which belong

to 7 crystal systems. These systems are triclmmnoclinic, orthorhombic, tetragonal,

cubic, hexagonal and trigonal.

2.0 Objectives

. To revise the classification of crystal lattices
. To understand direction indices
. To understand miller indices

3.0 Definition of Crystal Lattice
Crystal lattice classification is the regular gedmgearrangement of points in the atom
of a crystal

3.1  Fundamental types of lattices

The most obvious feature of a crystal is its regiylaor symmetry. The basis of
classification of crystal is the symmetry exhibitgdthem. In a well defined crystal, the
various symmetry elements (rotation, reflectiowension etc.) intersect at a point. Each
set of symmetry elements intersecting at a poira ¢entre of unit cell) is calledpaint-
group. Since there are 32 point groups, there are equmabars of crystal classes, which
can be grouped together into seven groups knovenyatal systems. Table 1.1, consists
of the list describing the various systems. Figshaws how seven crystal systems can
be obtained by successive distortion of a cube.

Table 1.1: Seven Crystal Systems

Crystal System | Axial Lengths and Unit cell Number of
angles Lattices
Cubic a=b=co=pf=y= a cube 3
<oz
Tetragonal a=b#c,a=pf=y= a squared-based right | 2
o prism
Orthorhombic azb#c,a=p=y= a rectangular-based 4
o right prism
Rhombohedra | a=b=c,a=p=vy# a rhombohedron 1
90’
Hexagonal a=b#c,a=p=90, a rhombus-based right| 1
y=120 angles
Monoclinic azb#c,a=y=90+ A parallelepiped-based 2
B right prism
Triclinic a(;)éo b£c,a£p£y+# a parallelepiped 1
9
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3.2  Direction indices
To find the direction indices, the following rulase used:
I.  Find any vector in the desired direction.
[I.  Express this vector in terms of the basisly, 9.
[ll.  Divide the coefficient ofd, b, § by their greatest common divisor.
The resultant set of three integers u, v, w usuafijuded in parentheses [uvw] defines a

direction. <UVV\) means that all vectors are equivalent to [uvw]g&tevre sign in any of

the numbers are indicated by placing a bar oventimeber (1). Leta=2,b=3,c=4
units and the vector be

r=6i+12j +10k
Then r=3(2)i +4(3)j + 2.5(4)k
Thus, the coefficients ofa( b, § are 3, 4, 2.5. The relevant greatest common @ivs
0.5. Thus, the three numbers 6, 8, 5 are foundcéleior the example considered the
indices of direction are [685].
In the cubic system, u, v, w are proportional te thirection cosines of the chosen
vector. The cube edgewould be denoted by [100], that of directibrby [010], andc

by [001].The negative direction afwould be [L00]. When we speak of [200] plane, we
mean a plane parallel to [100] but cuttiagixis atl/,a. Fig 2.1 shows the indices of
some important planes and directions in crystatdeNhat:
I.  All parallel rows of atoms have the same [uvw].
[I.  The angled between two crystallographic directiopfuw;] and [wvows] in a
cubic system is given by

UiuUy +v1v2 +W1W2
)

cos O = (2.1)

)1/2

2
2,2, 2 2,2, 2
(uZ+v2+w? (us+vZ+w?2

3.3  Miller indices

Miller indices are the most commonly used notationspecifying points, directions,
and planes in crystal lattice systems. Not onlytldey simplify the description of
locations and directions within the lattice, bugythalso allow vector operations like dot
and cross productsMiller Indices are a symbolic vector representation for the
orientation of an atomic plane in a crystal lattaoed are defineds the reciprocals of
the fractional intercepts which the plane makedwiite crystallographic axe8efore
Miller indices can be used, a coordinate systemthercrystal structure must first be
selected. The right-hand Cartesian coordinateesysis the usual choice for this
(Fig.2.2). Points within the coordinate system gpecified by Miller indices as h, k, |,
where h, k, and | are fractions of the lattice paters a, b, and c. Recall that a, b, and ¢
are the lengths of the edges of the crystal'sagfiiin the x, y, and z directions.

18
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Fig.2.1: seven crystals in three dimensions
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A plane oriented with respect to the rectangulardmate system, which intercepts-
x-,y-and zeoordinates at distance a, b and c respectivegpiesented by the equat

- - - (2.2)

Denotingthe reciprocal of axial intercepts— — and-
Eq. (2.2) becomes

(2.3)

N

e 193 \
c N
T
%::;,f_—_fff\“}?‘

Fig.2.2 Construction for description of a plane. Thisn@antercepts tha, b, c
axes at @, 2b, 2c. (After Kittel, 1979)

3.4 Determination of Miller Indices
TheRules for Miller Indices ar

» Determine the intercepts of the plane along theetherystallographi
axes,jn terms of unit cell dimensioi Coordinates of the points
interception are expressed as integral multiplethefaxiallengths in the
respective directions. The integers p, q and rtheemultiples of axia
lengths a, b and c respectivi

» Take the reciprocals of the integers jand r

* The reciprocals are reduced to the smallest seteders h, k and | b
taking LCM

* The integers are written as (hkl) by enclosingangothesi

For example, if the x-, y-and - intercepts are 2, 1, and 3, the Miller indices
calculated as:

e Theintegersare 2,1

» Take reciprocals: 1/2, 1/1, :

» Clear fractions (multiply by 6): 3, 6
* Reduce to lowest terms (already th

20



Thus, the Miller indices are 3, 6, 2. If a planeparallel to an axis, its intercept is
infinity and its Millerindex is zero. A generic Miller index is denotec (hkl). If a plane
has negative intercept, the negative number istddrimy a bar above the numl Never
alter negative number&or example, do not divid-1, -1, -1 by 1 to get 1, 1, 1. Thi
implies ymmetry that the crystal may not ha

3.5 GeneralPrinciples of Miller Indices

. If a Miller index is zero, the plane is parallelttat axis

. The smaller a Miller index, the more nearly pataltee plane is to th
axis.

. The larger a Miller index, the more nearly perpentiir a plane is to thi
axis.

. Multiplying or dividing a Miller index by a constamas no effect on tr
orientation of the plar

. Miller indices are almost always sm

Fig.2.3 shows some planes for ic lattices with their Miller notations

: i ]
' B
! e
Ok e e 31 55
r, ¥ J" _".r
(100) (200)

/ (110) (1) (222)

Fig.2.3: Some of the prominent planes for cubitdas with their Miller indice:
(After Kachhava, 199.
Note that:

<> Miller indices are proportional to the directionsames of the normal to tt
correspondig plane. Direction cosines are giver

*
0.0

The normal to the plane with index numb is the directio
The purpose of taking reciprocals is to bringladl planes inside a single unit «

Assume representthe distance between two adjacent parallel plaagsg
miller indices , then

3

¢

R/
°
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a

dnit = e

Wheredy,; = distance between planes

(2.4)

a = lattice constant (edge of unit cell)
h, k,I = Miller indices of planes being considered

Figure 2.4 shows inter planer spacing in term$iefdube edge, a.
(110) plane 1

(110) plane 2

A (110} plane 3

dyg

Fig.2.4: inter planer spacing (After Kachhava92p

4.0 Conclusion

Miller indices are the most commonly used notationspecifying points, directions,

and planes in crystal lattice systems. Not onlytley simplify the description of

locations and directions within the lattice, bugytralso allow vector operations like dot
and cross products.

5.0 Summary

. In a well defined crystal, the various symmetryngdats (rotation, reflection,
inversion etc.) intersect at a point.

. Each set of symmetry elements intersecting at atfgthe centre of unit cell) is
called gpoint-group.

. The Miller indices are defined as the reciprocdlthe fractional intercepts which
the plane makes with the crystallographic axes.

. The angléd between two crystallographic directiopjuwi] and [bvawy] in a
cubic system is given by

cosf = uu, + ViV, + w,Ww,

2 2 2 1/2( 2 2 2)1/2
(u1 +V; +W1) uZ +v2 + W2
22



6.0.

Q1

Q2.

7.0

The distanced,;; between neighboring planes of the farfhliyl), is given in
terms of the cube edge a as

a
(h2 +K2 +|2)1/2
Tutor marked Assignment

dpg =

(a). Show that the perpendicular distance between tyacredt planes of a set
(hkl) in a cubic lattice of lattice constaats

a

(h2 +K2 +|2)1/2

(b). The Bragg angleorresponding to the first order reflection frorané
(111) in a crystal is 30vhen X-rays of wavelength 1.A5are used.

dpg =

Calculate the interatomic spacing

If X, y and z axes intercept 3, 4, and 2, calculla¢eMiller indices

Further reading/References
Ashcroft, N.W., Mermin, D.N, Solid state physicguders College Publishing,
1976.

Kachhava, C.M., Solid State physics, Tata McGraW#Miblishing Company
Limited, New Delhi, 1992 .
Kittel, C., Introduction to solid state physicsjl®y Eastern Limited, 1979.
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1.0: Introduction

The most highly symmetrical lattices which occutunally are cubic structure. The
are, therefore, of some practical interest and jatswide useful simple examples whi
help in visualizing thanore general cases. Abo90% of metdlc crystal structurs
crystallize into 3 densely packed crystal strud vis-a-vis Body€entered Cub cell
(BCC), Facecentered Cub cell (FCC) and Hexagonal Clo&acke: (HCP).

2.0 Objectives
The objectives are tonderstand metallic crystal struct such as:

. Simple cubic

. Body centered cub

. Face centered cul

. Hexagonal Close pack

3.0 Definition of Simple lattices
Simple latticesare crystalline solids that consist of a small groupatoms (unit
cells) thatcontains unique featur:
3.1 Simple lattices
Thesimple lattices have the following elementary praps:
I.  Effective no of atoms/ unit cell,, which definegshe number of atom pt
primitive cell
[I.  Atomic radius, F usually defines in terms of lattia®nstar (length of a
side of unit cell, a.
[ll.  Nearest neighbor distance which define«nearest distance betwe
atomic centel.
IV.  Coordinate numb which defines the number of nearest neighbor o
atom.
V. Atomic PackingFraction (APF) defined athe fraction of olume in a
crystal structur that is occupied by atoms.
3.2  The simple cubiclattice.
The simple cubic lattichas basis vectors
3.1

andthe unit cell is a simple cube. The simplest cilystesed on this lattice has sin
atoms at the lattice points, Fig. 3.1. Each atomdmaidenticanearest neighboil

Fig.3.1: Simple cubic lattice (After Kachhava, 1§
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3.2 Body-Centered cubic Lattice

The body-centered cubic (bcc) lattice may be regrhrals two interpenetrating simple
cubic lattices with atoms at the centre of eachecab well as at the corners. The space
lattice may be taken with the basis vectors

(3.2)

Wherea is the side of the cube ang, k are orthogonal unit vectors parallel to the cube
edges. The primitive cell of the bcc lattice hamlume one-half that of the unit cube.
By elementary vector analysis the volume is given b

V= | d;.dy X ag | (33)

3.3  Face- Centered Cubic Lattice

The face centered cubic lattice can be considesefdwa interpenetrating simple cubic
lattices giving a cubic unit cell with extra |lati points at the centers of the faces of the
fundamental cube. Each point has 12 nearest neighbdrhe full translational
symmetry has basis vectors.

—_— —_— — (3.4)

The primitive cell of the lattice is shown in Figd3and is a rhombohedron of
volume one quarter that of the unit cube. The tedios vectors;, & andag connect
the lattice point at the origin with the latticeipis at the face centers. The angles
between the axes are’60

Fig.3.2: Face- centered cubic lattice
3.4 Hexagonal Close-Packed (HCP)

In the hexagonal closed packed structure, Figl&%unit cell is a rhombic and
the basis vectors are
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, a
a; =at, a, = m, a; =k (3.5)
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Fig.3.3: Hexagonal Close-packed structure (Aftetdfi1979)

In this structure, there are two atoms per unitseparated by the vector

R = %(ai+ %j+ck) (3.6)

Here, as irfcc structure, each atom has twelve neighbours, buartfaagement is
slightly different.

3.5 Closed-packed Structures

If the atoms are considered as hard spheres, tieemast efficient packing in one plane
is theclosed—packedrrangement shown in Fig 3.6.There are two simflgs in which
such planes can be laid on top of one another o fo three-dimensional structures.
One leads to the face-centered cubic (cubic clest&gu) structure, while the other has
hexagonal symmetry and is called the hexagonaédlpsackedhcp) structure (Fig3.7).
The fraction of the total volume filled by the spéeis 0.74 for both thgcc and hcp
structures.

Fig.3.4: A closed- backed-layer of spherés (Atittel, 1979)
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Fig.3.6: The Hexagonal closed packed structurée(Kittel, 1979)

Spheres may be arranged in a single closest-pdeled by placing each sphere in
contact with six others. Such a layer can eithethieebasal plane of fecp structure or
the (111) plane of cc structure. A second similar layer is added by pig@ach sphere
in contact with three spheres of the bottom lageinarig.3.6. A third layer can be added
in two ways: in thefcc structure the spheres in the third layer are planesr the holes
in the first layer not occupied by the second layethe hexagonal structure the spheres
in the third layer are placed directly over theesgis in the first layer. We say that the
packing in thefcc structure is ABCABC. ..... , Whereas in thep structure the packing
is ABABAB..... The hcp structure has a hexagonal primitive cell; the dasntains two
atoms. Thefcc primitive cell contains one atom. The c/a ratio fexagonal closest-
packing of spheres is (8/%)= 1.633. We refer to crystals Asp even if the actual c/a
ratio departs somewhat from the theoretical valiis zinc with c/a = 1.86 is referred
to commonly ascp. Magnesium with c/a = 1.623 is close to ideap. Many metals
transform easily at appropriate temperatures betvwfee and hcp. The coordination
number, defined as the number of nearest-neighbaorsais 12.

A quantitative measure of the closeness of packirg crystal structure is provided by
thepacking fraction, fdefined as

volume occupied by atoms(hard spheres)

f= (35)

volume of the unit cell of the structure

The theoretical calculations dfequires the knowledge of number of atoms, N,ypetr
cell and atomic radius, RRin terms of a, the length of a side of a cubitida. Table 3.1
as reported by (Kachhava, 1992) displayed the sabfiédN, R, and f along with number
(Ny) of nearest neighbors and that,{Nfor next nearest neighbors for simple cubic (sc),
body centered cubidc), face-centered cuhifcc) and hexagonal close-packedyg)
structures.
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Table 3.1Data for common structures (modified after Kachha@9?2)

4.0

sc bcc fcc hep
N 1 2 4 2
N, 6 8 12 12
Nnn 12 6 6 6
Ra a a 4 a

2 2 2 V3 4 2

f n/6 = 0.52 2%: 0.74 V3 % =0.68| 0.74 (ideal)
Conclusion

The ideal crystal of classical structures is forrbgdhe repetition of identical units in
space. The most highly symmetrical lattices whicbup naturally are cubic structures
which help in visualizing the more general case.

5.0

6.0

Q1.

Q2

Q3.

Summary
The simple cubic lattice has basis vectors
a, =a a, = aj az= ak

Important simple structures are the bta; andhcp

The structures differ in the stacking sequencéefianes
fcc have the sequence ABCABC...

hcp have the sequence ABABAB...

Tutor Marked Assignment

Use elementary vector analysis to find the valuthefangle between the body
diagonals of a cube shown in the Figure Q1
Show that the c/a ratio for an ideal hexagonalezgsacked structure is

(8/3)? = 1.633.

Sodium transform frorbccto hcp at about T= 23K. Assuming that the density
remain fixed, and the c/a ratio is ideal, calaildiehcp lattice spacing a given
that the cubic lattice spacing=a4.23i.What is the difference in the cubic phase
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7.0 Further Reading/ References

Ashcroft, N.W., Mermin, D.N, Solid state physi&gunders College Publishing,
1976.

Kachhava, C.M., Solid State physics, Tata McGrailvfublishing Company
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Kittel, C., Introduction to solid state physicsjl®y Eastern Limited, 1979.
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1.0 Introduction

In order to explore the structure of crystals wguree waves which interact with atoms
and which have a wavelength comparable with ther iatomic spacing in crystals; that
is, we require a wavelength of the order of &A10~8 cm). The interaction should be
weak enough so that the wave can penetrate in @@ohfashion into the crystal for a
distance of the order of perhaps 1000 lattice @mst The most convenient waves
suitable for our purpose are those associated xvithys, while the waves associated
with neutrons and electrons have found importaatish applications. When an atom is
exposed to electromagnetic radiation, the atomectedns are accelerated, and they
radiate at the frequency of the incident radiatidhe superposition of the waves
scattered by individual atoms in a crystal resultthe ordinary optical refraction. If the
wavelength of the radiation is comparable with miaBer than the lattice constant, we
will also under certain conditions have diffractiointhe incident beam.

2.0 Objectives
. To study the use of X-ray as a tool for investigatihe structure of crystals.

3.0. Definition

When a monochromatic beam of x-rays is shone upeguar crystalline material then
the beam will be scattered from the material atinitef angles. This produced an
interference effect called diffraction between Kyeays from different layers within the
crystal.

3.1 Bragg formulation of diffraction by a crystal

W. L. Bragg (1913) found that one could account ttee position of the diffracted

beams produced by a crystal in an x-ray beam bgrg simple model according to

which x-rays are reflected from various planes tofres in the crystal. The diffracted
beams are found for situations in which the reitext from parallel planes of atoms
interfere constructively. The derivation of the Bgalaw is indicated in Fig. 4.1. We

consider in the crystal a series of atomic plankighvare partly reflecting for radiation

of wavelength X and which are spaced equal distamegart. The radiation is incident
in the plane of the paper. The path differencer&ys reflected from adjacent planes
is 2dsinf. Reinforcement of the radiation reflected from cassive planes will occur

when the path difference is an integral numbesf wavelengths. The condition for

constructive reflection is that

2d sinf = ni 4.1)
Equation (4.1) represents the Bragg law. The imtegerepresents the order of

corresponding reflection. It should be emphasited the Bragg equation results from
the periodicity of the structure, without referentcethe composition of the unit of

repetition

32



[ L @ 4 \ 4 L

Fig. 4.1: Derivation of the Bragg equatidd sinf = nA ; hered is the spacing of
parallel atomic planes (After Ashcroft and Mernii®,76).

Worked example:

@) State Bragg's law of diffraction and give two gednual facts that are
necessary for the derivation of the law.

(b)  An X-ray Diffractometer recorder chat for an elemewnhich has a cubic
crystal structure, shows diffraction peaks at thleowing 26:40, 58, 73, 86.8,
100.4 and 114.7. The wavelength of the incomingysused was540 A.

(1) determine the type of the cubic structure possesgéde element

(i) Determine the lattice constant of the element.

Solution:

(a) Bragg's law of diffraction states that the pathfefiénce between two X-rays
which are reflected from adjacent planes is aagral multiple of its wavelength
ie.,

2d sinf = na
Wherep = Bragg’s angle
d= interatomic plane spacing
A = Wavelength of the X-rays
n = order of diffraction
The two geometrical facts are:

(i) The incident beam, the normal to the diffractioana@ and the diffracted beam are
always coplanar.

(i) The angle between the diffracted beam is alwags this is known as the
diffraction angle.

(b) ().The values of the angles given 2fe Thereforeg is equal to the half the
26 values. The ratio of the square of the sine oflffiavo planes gives the
true structure of the element, i.e.,

sin?%6, _

m = Structure type

% If the ratio is 0.5, the structure bsc.

« If the ratio is 0.75, it igcc
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The F'two planes havé values being 20, and 29 and the sines of theskesaage
0.3420 and 0.4848 respectively, therefore,
sin*6; 0117 _

= ~ 0.5
sin?6, 0.235

Hence, the crystal structure is bcc.

(ii). The relationship between Miller indidgskl) of the Bragg plane and the Bragg

angle is given by
2

A
sin?0 = — (h? + k? + 1?)
_ _ 4q?
Where; a is the lattice constant.
For a bcc lattice, the suth+ k + 1 must be even, hence thé& get of principal
diffraction plane for the bcc structure{is10} and the corresponding value fin?6
is 0.117, then,

A R+ k2 12
a=5 |~y

sin2%0

I . 0.154 12+1%+0
This implies, a = Ly = 0.318 nm
2 0.117

~a=3.184A

3.2  Von Laue formulation of diffraction by a crystd

Considering the nature of the x-ray diffractiontpat produced by identical atoms
located at the corners (lattice points) of pringtigells of a space lattice to investigate
scattering from any two lattice point3, andP, (Fig. 4.2) separated by the vectoiThe
unit incident wave normal is, and the unit scattered wave normal is s. let asnaxe at

a point a long distance away the difference in plaighe radiation scattered by &d

P,. If P;B and BA are the projections afon the incident and scattered wave directions,
the path difference between the two scattered wisves

PB— PLA=1r-s—1-59-7"-(5s—5p) 4.2)

Fig.4.2: Calculation of the Phase difference of thaves scattered from two
lattice points (After Kittel, 1979)
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The vectors —s, = S has a simple interpretation (Fig. 4.3) as thedatioe of the
normal to a plane that would reflect the incideméction into the scattering direction.
This plane is a useful mathematical constructich thrs is called theeflecting planelf

20 is the angles makes witlsy, then@ is the angle of incidence, and from the figure
(4.3), we see thdf| = 2sinf , ass ands, are unit vectors.

Reflecting

Fig.4.3: Construction of the normal the reflectpigne (After Kittel, 1979)

The phase differencg is 27T//1 times the path difference. We have

¢ = (277//1)(1” ) (4.3)

The amplitude of the scattered wave is a maximuma iglirection such that the
contributions from each lattice point differ in @eaonly by integral multiplies 2fr.
This is satisfied if the phase difference betwedja@ent lattice points is an integral
multiple of 2m . If a, b, care the basis vectors, we must have for the diftra maxima

D= (2”/1)(41 -8) = 2mh;
5- (2/;)(b - 5) = 2mk; (4.4)
Ge= (2”/1)((: - 5) = 2ml;

whereh, k; | are integers.

If a, B,y are the direction cosines 8fwith respect t@, b, c, we have

a-s=2aasind = hA
b-s=2bp sinf = kA (4.5)
c-s=2cysind =11

Equations (4.4 & 4.5) are the Laue equations. Thaye solutions only for special
values off and the Wavelength. The Laue equations (4.5) have a simple geometrica
interpretation. The Laue equations state that idiffraction direction the direction
cosines are proportional bda, k/b, I/crespectively and the adjacent lattice plghé&s)
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intersect the axes at interval#h, b/k, c/lso that by elementary plane geometry the
direction cosines of the normal {&kl) are proportional td/a, k/b, I/c respectively
Therefore the lattice plan€éBkl) must be parallel to the reflecting planed{hkl) is
the spacing between two adjacent planes of éh&#}), we have by projection

d(hkl) = 2%/, =b/3/k — CV/l (4.6)
Then, from (4.5), we have
2d(hkl) sind = A 4.7)

We may interpret (4.7) by giving an extended meginthe spacing dkl) whenh, k, |
have a common factor n: the diffracted wave agfuaiises from the nth order reflection
from the true lattice planes, but we may as a nmathieal device think of the diffracted
wave as a first order reflection from a set of p&parallel to the true lattice planes but
with a spacingl(hkl) equal to I/n of the true spacing.

3.3  Diffraction of crystals by electrons
de Broglie in 1924 predicted thdahe wavelengthassociated with gparticle of
momentunp= mvis given by

= h/p (4.8)
where h is plank’s constant. One of the most dipetes of evidence of the wave
aspect of particles was provided by the electréinadition experiments of Davisson and
Germer in 1972. They concluded that if one assesiatwavelength with the electrons
given by (4.9), the diffraction pattern obtained dze interpreted in exactly the same
way as the X-ray diffraction patterns. As long ke velocity of the electrons is small
compared with the velocity of light, the wavelengftthe electrons may be expressed in
terms of the accelerating voltage V as follows

}émv2 =eV Or A= %Zmev)l’z = (15%)1/2 (4.9)

A is obtained in Angstroms if V is expressed in sollote that only 150 volts are
required to produce electrons of a wavelength afcbmpared with X-rays, which
require approximately 12,000 volts fai.1Electrons are scattered by the nucleus as well
as by the electrons in the atoms. For sphericaigehdistribution one can show that the
scattering factor is given by

E®) = mez/ Z - f)L (4.10)
2h? 57 sin20
Here f; is the scattering factor for X-rays, Z is the magl charge, ané is the Bragg
angle. As for X-rays the scattering factor decreasath increasing values 6t
However, there is a considerable difference betwXemys and electrons in that,
electrons are scattered much more efficiently loynastthan are X-rays. In fact, atoms
scattered electrons more strongly by several powktsn for the energy involved. At
normal incidence an electron of about 50 keV hapenetration depth for elastic

36



scattering of only about 500 while for the small angles of incidence usedeiftection
techniques this may be about&@neasured perpendicularly to the surface. It ide,
therefore, that electron diffraction is particwadseful in investigating the structure of
thin surface layers such as oxide on metals. Sayard would not be detected by X-rays
diffraction because the patterns obtained are cterstics for the bulk material.

3.4 Diffraction of crystals by neutrons

The mass of a neutron is about 2000 as large a®ftaa electron, so that according to
Eqn.(4.8) the wavelength associated with a neus@about 1/2000 that for an electron
of the same velocity. Thus the energy of a neutamuired to give A& is of order of
only 0.1eV. Such neutrons can be obtained fromaneteacting pile, and diffraction
from crystals may be observed. Neutrons are sedlttessentially by the nuclei of the
atoms, except when they are magnetic. The radias @tomic nuclei is of the order of
10%%m, and as a consequence, the atomic scatteritay famearly independent of the
scattering angle, because> 10~ 13c¢m. Also, the scattering power does not vary in a
regular manner with the atomic number, so thattlgements such as hydrogen and
carbon still produce relatively strong scatterifidhe scattering of X-rays by light
element is in contrast, of course, relatively wedkus the positions of such atoms in
crystalline solids may be determined from neutrdifrattion experiments. Another
important aspect of neutron diffraction is the faéleat scattering from neighboring
elements in the periodic system may differ apptagidor example, neutron diffraction
allows one to detect with relative ease ordereg@haf an alloy such as FeCo, whereas
their detection by X-rays is difficult. A particulg important aspect of neutron
diffraction is their use in investigating the matgiostructure of solids. This is a result of
the interaction between the magnetic moment ofrtbetron and that of the atoms
concerned. In a paramagnetic substance, in whighmiiignetic moments are randomly
oriented in space, this leads to incoherent s@agferesulting in a diffuse background.
This diffuse background of magnetic scattering hent superimposed on the lines
produced by the nuclear scattering mentioned ablove. ferromagnetic substance in
which the magnetic moments within a domain areding in parallel, this diffuse
background is absent. In an antiferromagnetic sthiel magnetic moments of particular
pairs of atoms are aligned antiparallel and hefroe) the point of view of the neutron,
such atoms would appear to be different.

4.0 Conclusions
From the discussions of the application of scattediffraction techniques to the study

of the structure of solid crystals that given Xgaf 1A it requires energy of the order
of 10* eV, for electrons of & it needs 19eV while the energy of a neutron required to
give 14 is of the order of 0.l eV. Thus the diffractiorcheique is a useful tool in the
investigation of the structure of solid crystalrfreurface thin layers to bulky materials.

5.0 Summary

. Bragg condition for crystal diffraction is givéy 2d sinf = ni
. Laue condition for diffraction is given by
. Do (Zﬂ/ﬂ)(a -§) = 2mh;
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5= (27/;) (b - 5) = 2mk;

De= (2”//1)((: -s) =2nl; and
a-s = 2aasinf = hA
b-s = 2bp sinf = kA
c-s=2cysinf =11
. de Broglie Wavelength equation is given by= h/p
. wavelength of electron associated with accelerateigcity is given by

150\ /2
= ()
\Y
. Scattering factor of electron by neutron is oladiby
2 212
E®) = me /th (Z - fS)m

6.0. Tutor Marked Assignment

Q1. (a) Discuss the major experimental differencaw/éen x-ray, electron, and
neutron diffraction from the standpoint of the eb®d diffraction patterns
(b) Show that the Laue equations for thédiexat beam parallel to treecube edge of
a simple cubic crystal give diffracted rays in ylz@lane when

A/a =2l(1? + k%) and f,- - kZ)/(lz + k2)

Where | and k are integers afiglis the direction cosine of the diffracted ray
relative to the z axis.

Q2. While sitting in front of a color TV with a 25Kpicture tube potential, you have an
excellent chance of being irradiated with X-rays.
(a) Calculate the shortest wavelength (maximum eneXgngy. (h = 6.6 X 1073%/s,
c=3x108m/s,1eV = 1.6 x 10719,
(b) For a rock sa(tNaCl) crystal placed in front of the tube, calculate Bnagg angle

for a first order reflection maximum at= 0.5 A. (pyyc; = 2.165 g/cm?)

7.0 Further readings / References
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1.0 Introduction
To explain the theory of X-ray diffraction by crgbtplanes, Ewald introduced the
concept of reciprocal lattice. According to this ncept, the description of
interpenetrating planes inside a crystal could Ib&ioed in space by means of a set of
points. Thus the properties of planes and points iaterchangeable. The space
constructed from these points is caltediprocal lattice
2.0  Objective
The objectives of this unit is to explain

% Reciprocal lattice

% Ewald’s construction

+ Brillouin zones

3.0 Definition

The reciprocal space lattice is a set of imagir@ints constructed in such a way that
the direction of a vector from one point to anotbeimcides with the direction of a
normal to the real space planes and the separmattittrose points (absolute value of the
vector) is equal to the reciprocal of the realnmti@nar distance

3.1 Reciprocal Lattice
For a perfect single crystal, the reciprocal lattis an infinite periodic three-

dimensional array of points whose spacing is irelgrproportional to the distances

between the planes in the direct lattice. The a&idors of the reciprocal lattice is given

by Eqgn. (5.1)

bxc

B =2m%: ¢ = 2p 222 (5.1)

a-b xc’ a-b xc a-b xc’

A =2mn

If a, b, care primitive vectors of the crystal lattice, th&enB, C are primitive vectors of
the reciprocal lattice. Each vector is orthogowaivwo of the axis vectors of the crystal
lattice. ThusA, B, C has property:

0,
2™,
1]

2m,
0, , (5.2)
0 T,

C- 0;
C-
C- 2

N
o S
Il
ww ™

o o~ K
Il

-a
b
- C

) )

Any arbitrary set of primitive vectois b, cof a given crystal lattice leads to the same
set of reciprocal lattice points.

G hA +kB+IC, (h,k, | are integers (5.3)

Any vectorG of the form in Eq. (5.3) is called a reciprocalitz vector. Every crystal
structure has two lattices associated with it,dhystal lattice and the reciprocal lattice.
A diffraction pattern of a crystal is a map of thexiprocal lattice of the crystal; a
microscopic image, if it could be resolved on afatale, represents a map of the crystal
structure in real space. When we rotate a lattigstal, we rotate both the direct lattice
and the reciprocal lattice. Vectors in the crysa#tice have the dimensions of [length];
vectors in the reciprocal lattice have the dimemsiof [length}-. In dealing with wave
properties of crystals, it is convenient to defiine reciprocal lattice vect@ as
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G =2m(hA + kB + IC) (5.4)
This in conjunction with equation (1.1) yields
Rp=2n(hn, + kn, + ln;)=2m X integer (5.5)
Thus every vector of the equation (5.3) satisfesdondition
expliG-R,] =1 (5.6)

Some of the elementary properties of the rec@lrlattice are as follows:
I.  The unit cell of the reciprocal lattice need notlgarallelepiped.
II.  Simple cubic lattice is its own reciprocal, sohe thcp. On the other hand,
bcc and fcc are reciprocal of each other.
lll.  The volume of a unit cell of the reciprocal lattiseinversely proportional to
the volume of a unit cell of the direct lattice.
IV. If Ais the matrix of the components Af, B;, C; and B for those of A,, By,
C,thenB =A™

The properties of the reciprocal lattice that miaké importance in the diffraction
theory are:
I.  The vectorG (hkl) from the origin to the point (h, k, ) ofagrocal lattice is
normal to the (hkl) plane of the crystal lattice.
ii.  The length of the vectd®(hkl) is equal to the reciprocal of the spacinghsf
planes(hkl) of the crystal lattice

Worked example:
Prove that the reciprocal lattice vectors as defineequation (5.1) satisfy:
8m3

a.bxc

A.BXxC=

Solution:
To solve the problem, we need to use the vectaottiiikes:
abXxc=b.cxa=caxbh
and ax(bxc)=(a.c)b—- (a.b)c
From Eq. (5.1)

(2m)?
ABXC=A m((hcx a)a— (a.cx a)b)
(2m)?
Py ((b.c x a)a—0)
(2m)3
=A m(ab X c)(a.bx C)
Then, A.BxC=-"
a.bxc
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3.2 Ewald’s Constructian the reciprocal lattice

For simplicity, we draw the Ewald construction tino dimensions. Ewald put the
information about the wavelength and direction fbe incident X-ray beam into
reciprocal lattice as follows (Fig.5.1). Draw a t@cAO in the incident direction of

length terminating at the origin O. Construct lei of radius (a sphere, called

reflex sphere, of radius in three dimensions) vaéimtre at A. Two possibilities

arise:
1. The circle does not pass through any reciprpeadt. This implies that the particular
wavelength in question would not be diffracted Ihgttcrystal in the orientation. Further,

if the magnitude of the vector wheegeis the lattice constant), the circle

would not pass through any point, showing that X-dé#fraction cannot occur if

. It may also be noticed that the longer the ve®Or (the shorter the wavelength),
the greater is the likelihood of the circle’s istecting a point, and hence of diffraction.
2. The circle passes through any point B of théprecal lattice. Join A and O to B.
Thus, OB is a reciprocal lattice vecto6 and is normal to some set of lattice planes,

e.g., AE. Hence, , d is the interplanar for the set

-

Origin of
raciprocal
{attice

Fig.5.1: Ewald’s construction in the reciprocdtitee (After Ashcroft & Mermin,
(1976)

Let k = OA andk’ = AB respectively be the incident wave vector and #flected wave
vector. Thus,
k'=k+G (5.7)

which shows that (i) scattering changes only tifiieadition of k and (ii) the scattered
wave differs from the incident wave by a reciprde#tice vectorG. for diffraction, it is
necessary that the vectdr, that is the vectoAB, equal in magnitude to the vectar

2= K2 (5.8)
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2kG+G>=0 (5.9)
(k+G/2yG=0 (5.10)

Equation (5.10) is Bragg'’s law in vector form. $tsalar form can be obtained by noting
thatAE =k + G/2) is perpendicular t®B. Thus OB = 20E = (2 si®)/ 1 . Also OB

=l 4 Hence,

(2sinoy A=1/,

2d sin =4
This shows that the Bragg equation has a simpleng&ecal significance in the
reciprocal lattice.

3.3 Brillouin Zones

For solid state physics the most important statéroérthe diffraction condition was
given by Brillouin. Fig. 5.1 shows that incidentwesand reflected wave make an equal
angle with the lattice plane AE, which is, therefoa reflecting plane. The reciprocal
lattice vectorG = OB is perpendicular to the reflecting plane AE. Thusresponding

to G = OB, the reflecting plane is AE (produced). From thatiehk’ = k + G, we see
that(AO +OE)-OB = 0. That isAE-OB = 0. Thus, AE is perpendicular to OB and also
bisects it, since E is the midpoint of OB by coustion. Hence, for a given reciprocal
lattice vector, its right bisector is the refle¢tiplane. One can extend the procedure for
finding the reflecting planes corresponding to peatal lattice vectors connecting the
reciprocal lattice point O (origin) with its neighlrs in reciprocal space. The volume
bounded by these planes is referred to as the geaoatelefinition of the firsBrillouin
zone BZ).

Figure 5.2 gives a portion of reciprocal space dotwo dimensional oblique lattice
showing the lines bisecting some reciprocal latfrcan O. The six shortest of these
vectors can be right bisected to produce the B&stentered on the reciprocal point O.

A

Fig.5.2: Construction of fiBZ for a two-dimensional oblique lattice
(After  Kittel.1979).

Mathematically the reflecting planes and henceBtikouin zones could be calculated
from equation (5.9). For the simple square lat{wielattice constang), the reciprocal
lattice vectors are

G = (nyi + nyj) (5.11)
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The wave vector for an X-ray measured from theiomd the reciprocal lattice is
k= kii+k,j (5.12)
Use of Eg. (5.11) and Eq. (5.12) in Eq.(5.9) gives
niky + nyky, = (nf + n%)g 5(3)

By assigning different value to, n,, we can obtain various reflection lines. Solall
vectors originating at the origin and ending orsthines, will produce Bragg reflection.

4.0 Conclusion
The reciprocal lattice explains the theory of X-thffraction by crystal planes while the
Brillouin zone gives a vivid interpretation of théfraction condition.

5.0 Summary
. A wavelength of the order of & (1A=10"% cm) is require to explore the
structure of crystals

. The concept of reciprocal lattice explained theotiieof X-ray diffraction by
crystal planes
. The reciprocal lattice is an infinite periodic terdimensional array of points

whose spacing is inversely proportional to theatise between the planes in the
direct lattice.
. Brillouin zone gives a vivid interpretation of tdéfraction condition.

6.0 Tutor marked assignment

Q1. Prove that the volume of the unit cell of theipeocal lattice is proportional to
that  of the corresponding direct lattice.

Q2. The primitive translational vectors of the hexagl space lattice may taken as

A=) ir (@i B=-(30p)i+ ()iic=ck
(@) Show that the volume of the primitive ceII(iS(E) a/z) a’c
(b)  Show thathe primitive translations of the reciprocal lattiare

4= (2n/31/2) i+ (Zn/a)j; B =- (zn/gl/z) i+ (zn/a)f , €= (zn/c)k
So that the lattice is its own reciprocal, buthaatrotation axes.

Q3. Show that the volume of the first Brillouin zoisegiven b&Z")Z/VC. Wherel, the

volume is is of a crystal primitive cell
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Gay, P., Crystalline State, Olover angydBd. 972

Stokes, H.T., Solid state physics, Algd Bacon, Inc, 1987
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1.0 Introduction

In practice, to satisfy Bragg’s law for-ray diffraction, it is necessary to vary either
angle of inclination of the specimen to the beantha wavelength of radiation. Tl
three standard methods o-ray crystallography to be discussed are the Lmethod,
the Rotating crystal technique and the Powder nakt

2.0 Objective
To explain experimental crystal structure determiameaccording tc
. Laue method
. Rotating crystal techniq
. Powder method

3.0 Definition

Experimental crystal structure determinatiis an experimental method to stu
scattering of crystal based on Ewald’s simple gaameonstructior

3.1 Laue method

In the Laue methoFig 6.1), a single crystal is mounted on a goneénethich enable
the crystal to be rotated through known angleswo perpendicular planes, a
maintained stationary in a beam c-rays ranging in wavelength from about 0.1 to
A. The crystal selects out and diffracts those &slof for which planes exits, ¢
spacingd and glancing angle , satisfying the Bragequation. A flat photographic filr
is placed to receive either the transmitted ditiedcbeam or the reflected diffract
beam.

As shown in the figure (6.1), the resulting Laudtgra consists of a series
spots. Sharp welllefined spots on the filmre good evidence of a perfect crys
structure, whereas diffuse, broken or extendedsspdicate lattice distortion, defects
other departures from the perfect crystal lattidee Laue pattern reveals the symme
of the crystal structure in the ontation used; for example, if a cubic crystal iepted
with a cube edge, i.e., a [100] axis, parallel igdent beam, the Laue pattern v
show the four fold symmetry appropriate to thiss:

Wtite X-ray beam

Collimator

Screen for back - reflec tion
pattern
Screen for transmission
pattern-chowing a lypxal
pattern.

Fig.6.1: Schematic representation of Laue techn(after Kacchava, 199
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3.2 Rotating Crystal Technique

A small single crystal (1 mm dimension) is mounted on ai@oeter which, in turn, i
rigidly fixed to a spindle so that the crystal danrotated about a fixed axis in a bear
monochromatic radiation. The specimen is usuallyeed with one of th
crystallagyraphic axes parallel to the axis of rotation. Tésulting variation ird brings
different lattice planes into position for reflemti and diffracted images are recordec
a photographic film placed cylindrically, coaxiaitlvthe rotating spindle (Fi6.2).

Photograph
= film

s |
Morochr matc S— | Single crys®

x-rgy beam —

L Gonmomeler

ARotating Spﬂ'if_nﬂ

A

Fig.6.2: Rotating crystal technique (after Kachha892

To explain the general nature of the diffractioongider a crystal mounted so that
of the axes (e.g. is parallel to the axis of rotation, then diffracticannot occur fror
theplanes of atoms parallel to this axis un

(6.1)

where n is an integer [Fig.6.2 (a)]. The diffracteebm will, therefore, be along t
surface of a family of cones wte vertices are at the crystal, and whose -vertical
angles are given by the above equation [Fig.6.R

(a)

Fig.6.2: Diffraction pattern in rotating crystatteique
(a)Diffraction condition (b) Cones of diffractioAfter Kachhava, 199.

The difracted beams will only occur along those spediii@ctions lying on the cont
for which the correct phase relationship also hdtdsplanes parallel to the other t
coordinate axes. When the film is flattened oueraffevelopment, these diffracti
images will lie on a series of lines called layees, as illustrated in Fig.6.3. All tt

48



images on the zero layer line come from planesllpait® the axis of rotation, i.e
planes withl = 0, and the other layer lines arise from plangbl . .... , etc.
diffraction images from planes with the same valoiels and k but different values I,

all lie on one of a series of curves known as rim@d which are transverse to the la
lines and in the particular case when A andB axes argerpendicular tC, they
intersect with the zero layer line at right anc

tayer line Row _line

..\... : 1,,-.“---1:2

o.-.\......._.-. = - —o- -

- a " a LE ] I:‘
cdma-=t—g-aw® 1=0

L . 8 e I:—]

oy - ‘___4_

-

i - 8 . = - - * o . & Y f‘—z

Fig.6.3: Typical Rotation photograph (After Kachhat992

If is the separation of these layer lines and R igddeis of the camera, then frc
Fig.6.2 (b),

(6.2)
From equation (6.1) and equation (!
R (6.3)
— (6.4)

By subsequent orientation of the crystal wA and B axes parallel to the axis
rotation, the other unit cell parameters may bemened

3.3:  Powder method

In this technique, a monochromati-ray beam is allowed to irradiate a small specil
of the substance grinded to a fine powder and awedan a thirwalled glass capillar
tube. Since the orientation of the minute crystagments is completely random.
certain number of them will lie with any set oftie¢ planes making exactly the corr
angle with the incident beam for reflection to acdturther, these planes in different
crystallites are randomly distributed about thesaai the incident beam so that 1
corresponding reflections from all the crystalliteghe specimen lie on a cone coa
with the axis and with a se-apex angle of twice the Bragg angle @). The specime
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is surrounded by a cylindrical film and two smadlrfoons of each cone are recordec
lines on the film (Fig.6.3). If the grain size &y large (> 1° m), there is insufficien
room within the irradiated volume for enough crllites to be in all possibl
orientations and the resultant powder lines wilrdkher ‘spotty’. This spottiness can
eliminated by rotating the specimen during expodhie considerably increases |1
number of crystallites which can contribute to ¢ powder line.

Diffraction

Colimator cone A B

Beam
stop
Specimen  (a)
A P 0 B amerg
INEIVEEENS rodus B
Coﬂrrr(t;l)a' hole Collimator” &
' Monocromatic X -ray beam
(b)

Fig.6.3: Schematic of powder method (a) experimartangemel
(b)Diffraction geometry (c) Developed films (Aft&achhava, 199.

The Bragg angled of the various reflections can be calculated byasneng the
separation of the |y of lines since, from the geometry of Fig.6.}

(6.5)

where R is the radius of the camera. The reflesticam be indexed and the unit «
parameters evaluated.

4.0 Conclusion
This unit showed thathe three methods discussed #@wels for bette understanding of
diffraction phenomenmn crystalline sample.

5.0 Summary

. Variation of the angle of inclination of the speeimto the beam or tf
wavelength of radiation allows better understandihBragg’s law

. In the Lauegtechnique , a single stationary crystal is irragtidby a range of -ray
wavelengths

. in the Rotational crystal method, a single crysfacimen is rotated in a beam
monochromatic xays wavelengt

. in the Powder technique, a polycrystalline powecimen is kept stationary ir

beam of monochromatic radiati
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6.0

Q1.
Q2.

7.0

Tutor marked Assignment

Find the Bragg angles and the indices of diffractior the three lowest angle
lines on the powder photographsfet crystal: a = 6.2 andA = 1.54A

Cobalt has two formsi-Co, with hcp structure (lattice spacing aF 2.15 ) and
S-Co, with fcc structure (lattice spacing af,,,;.= 3.554). Assume that thécp
structure has an ide&f ration. Calculate and compare the position offite
five X-ray powder diffraction peaks. The quantiy= 47T/ 1sin g can be used to

characterize the peak positions (hgres the wavelength of the X-ray radiation
and 26 is the scattering angle)

Further Reading/References

Kachhava, C.M., Solid State physics, Tata McGraW-Publishing Company
Limited, New Delhi, 1992

Carpenter, G.B., Principles of crystal structuegedmination, Benjamin, 1969
Brown, J.G., X-rays and their applicaipRlenum, 1975

Kittel, C., Introduction to solid statbysics, Wiley eastern limited, 1996
Stokes, H.T., Solid state physics, Alymd Bacon, Inc, 1987

Gay, P., Crystalline State, Olover angyd8d.972
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1.0 Introduction

The study of the elastic behavior of solids is venportant in the fundamental and

technical researches. In technology, it woulduslhbout the strength of the materials. In
fundamental research, it is of interest becaugbeinsight it provides in to the nature of
binding forces in solids. They are also of impoce&for the thermal properties of solids.

2.0 Objective

. To explain elastic constant in solids
. To explain strength of solid materials
. To understand fully the binding forces in solids

3.0 Definition
Elasticity is the study of the ability of crystatsincorporate changes or adapt to new
circumstances easily

3.1 Analysis of elastic strains and stresses

The local elastic strain of a body may be specitigdsix numbers. I, 5,y are the
angles between the unit cell axasb, c, the strain may be specified by the changes
Aa,AB,Ay; Aa,Ab,Ac resulting from the deformation. This is a good ptgls
specification of strain, but for non-orthogonal sxat leads to mathematical
complications. The strain may be specified in termsf the six
COMPONEeNt®y. , €y ,8,7, €xy, €y, €, Which are defined below. We imagine that three
orthogonalaxesf, g, h of unit lengthare embedded securely in the unstrained solid, as
shown in Fig. 1.1(a). We suppose that after a sorafbrm deformation has taken place
the axes, which we now labef, g’, h’, are distorted in orientation and in length, sd tha
with the same atom as origin we may write.

ff=0+e)f + Exyg T Exz Iy
g = gf+ (1 + syy)g + &l L.1)
h'= e, f + g9 + (1 +¢,)h

The fractional changes of length of thg, andh. axes are¢,, , ¢,,, &,, respectively, to
the first order. We define the strain componeats, ey, ,e,, by the relations

€xx = Exx €yy = Eyy s €2z = €zz; (1.2)

The strain components,,, e,, e,, may be defined as the changes in angle between
the axes, so that to the first order

Cxy = f’ : g’ = EyxtEyy

ey, =g -h' =¢g,+e,, ; 1.3)

€zx = h'- f’ = ExxtExz
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This completes the definition of the six strain gaments. A deformation igniform if
the values of the strain components are indeperaf¢he choice of origin.

o0

Ifil=lgli=|h]l=1
{a) (b)

Fig.1.1 Coordinate axes for the description ofdtage of strain; the
orthogonal unit axes in the unstrained state @paformed in the strained
state (b).

We note that merely rotating the axes does notgdhdime angle between them, so for a
pure rotation€yy = —&yy; €y = &y,;; E;5 = —E&y,. If we exclude pure rotations,
we may without further loss of generality tal®,, = €yy; €,y = €y, €5 =
&+ SO that in terms of the strain components we have
! 1 1 .
[ —f= ex +Eexyg +Eeth’
1 1
g —g= Eexyf +ey,9 + Eeyzh; (1.4)
p 1 1 _
h"—h = Eezxf + 5 yz9 +e,,h;

We consider under a deformation which is substipti@iform near the origin a particle
originally at the position
r =xf+yg+zh (2.5)

After deformation the particle is at
r =xf'+yg' +zh' (1.6)

so that the displacement is given by
e=r'-r =x(f'-f)+y @ —g)+zh'-h) .7

If we write the displacement as
e =uf +vg+wh (1.8)
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we have from El1.4)and Eq(1.7) the following expressions for the strain composent

Ju . _0v . _ 0w,
exx:a, eyy—ﬁ, eZZ— &, (19)
_0v  Ou _ 0w 0v _Ou  ow
Tt ey 2T 9yt T mTex

We have written derivatives for application to namform strain. The expressions (1.9)
are frequently used in the literature to define 8itmin components. Occasionally

definitions ofe,,,, e,,;, ande, are given which differ by a factor %2 from thoseegiv
here. For a uniform deformation the displacemgeritas the components

1 1
u = exxx+§exyy+zezxz;

1

HNlb—‘

1
W =~ €sX + S €yzY +e,,Z;

3.2 Dilation
The fractional increment of volume caused by a he&tion is called thdilation. The
unit cube of edgek g, andh. after deformation has a volume

Vi=f-gXh =1+ €xx + €yy + €2z (1.11)

where squares and products of strain componentsegtected. Thus the dilation is

3.3 Shearing strain
We may interpret the strain components of the type

e _6v+6u
XY T oax ady

as made up of two simple shears. In one of thershplanes of the material normal to
thex axis slide in the direction; in the other shear, planes normal stide in thex
direction.

3.4 Stress Components

The force acting on a unit area in the solid idraef as the stress. There are nine stress
componentsXy, X, Xz, Y, Yy, Yz, Zx, Zy, Zo. The capital letter indicates the direction of the
force, and the subscript indicates the normal ®pglane to which the force is applied.
Thus the stress componefitrepresents a force applied in thdirection to a unit area of

a plane whose normal lies in tRelirection; the stress componexitrepresents a force
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applied in thex direction to a unit area of a plane whose normed In they direction.
The number of independent stress components isceddto six by applying to an
elementary cube as in Fig. 1.2 the condition that angular acceleration vanish, and
hence that the total torque must be zero. It fadldmat

Y, =2, Z = Xy, X = Yy
and the independent stress components may be &R&nY,, Z, Y; Z, X, The stress
components have the dimensions of force per uaé ar energy per unit volume, which
the strain components are dimensionless

.‘_._._._X
y
Fig. 1.2: Demonstration that number of independéneiss componenté
= Xyorder that the body may be in equilibrium.

3.5  Elastic Compliance and Stiffness Constants
Hooke's law states that for small deformationsstingn is proportional to the stress, so
that the strain components are linear functionthefstress components:

exx = S11Xx + s12¥y + S13Z, + suu¥, + S15Z, + s16Xy;

e,, = S X, + SzzYy + So3Z,+ So4Y, + Sy5Z, + S06X,;

€, = S31Xx + S32Yy, + 8332, + S34Y, + s35Z, + 536X,;  (1.13)

ey, = Sy Xy + Sa2Yy + Su3Z, + 544Y, + SusZy + 546Xy,

€,x = S51X, + ssZYy + S53Z, + S54Y, + Ss5Z, + 556Xy;

exy = Se1Xx T+ Se2Yy + S63Z, + Sea¥,; + Se5Zx + Se6Xy
Conversely, the stress components are linear fumef the strain components

Xy = Cr1€xx + C12€yy + €138, + Cra€y;, + Ci5€, + C1p€yy;

Yy = €164 + S22€yy + C23€,;, + €246y, + C25€,5 + Ca6€yy;
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Z, = C31€xx + C33€yy, + C33€,, + C34€), + C35€,, + C36€xy ;

Y, = cg1€x + C42€yy T €43€,; + C14€y, + C45€5x + Che€yy,
Zx = C51€xyx + C'52eyy + C53€;; + C'54eyz + C55€,x + 056exy; (114)
Xy = C61€xx + C62eyy + C63€22 + C64eyz + C65€zx + C66exy
The quantitiessq; .....s12 are called theelastic constantsor elastic compliance
constantsthe quantitieg; ........cq1 are called thelastic stiffness constants moduli
of elasticity.Other names are also current. The S’s and C’s tievelimension of area
per unit force or volume per unit energy and fgeee unit area or energy per unit volume
respectively
3.6 Energy Density
We calculate the increment of wodk/ done by the stress system in straining a small

cube of sidd., with the origin at one corner of the cube and therdinate axes parallel
to the cube edges. We have

W =F - o (1.15)
whereF is the applied force and

do = féu + gév + héw (1.16)
is the displacement. X, Y, Zdenote the componentseiper unit area, then

SW = L*(X6u + Y6v + Zéw) (1.17)
We note that the displacement of the three cubesfaontaining the origin is zero, so that

the forces all act at a distancérom the origin. Now by definition of the strain
components

Su = L(8exy +18ey, + 28e,) (1.18)
etc., so that

SW = L3(X, ey + Y8y, + Z,,0e,, + Y,8e,, + Z, 86, + X, 0ey,) (1.19)
The incrementU of elastic energy per unit volume is
06U = X, 0exx +Y,bey, +Z,6e,, +Y,0e,,+Zb6e, + X, 0ey, (1.20)

We have5U/6exx =X, and 5U/<Seyy =Y, and on further differentiation
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5Xx/ _ 6Yy/
bey, ey

This leads from Eq. (1.14) to the relation
Ci2 = €21

and in general we have
Cij= Cji (121)

giving fifteen relations among the thirty non-diagbterms of the matrix of the Cs. The
thirty-six elastic stiffness constants are in thisy reduced to twenty-one coefficients.
Similar relations hold among the elastic compliancéhe matrix of the Cs or S's is
therefore symmetrical.

3.7 Cubic crystal

The number of independent elastic stiffness cotstanusually reduced if the crystal
possesses symmetry elements, and in the impordaet af cubic crystals there are only
three independent stiffness constants, as we now.sWe suppose that the coordinate
axes are chosen parallel to the cube edges. I(LEdl) we must have

C14 = C15 = C16 = Ca4 = (35 = C6 = C34 = C35 = C36 =10

Since the stress must not be altered by reveremditection of one of the other
coordinate axes. As the axes are equivalent, voehaige
C11 = C22 = (33,
and  c;; = €3 = €1 = C3 = C31 = (3,

so that the first three lines of Eq.(1.14) arecdesd by the two independent constants
c11 andcy,. The last three lines of Eq.(1.14) are describethb independent
constant,,, as

Ciq = C15 = Cep

by equivalence of the axes, and the other consédintanish because of their behavior on
reversing the direction of one or other axis. Thyaof values of the elastic stiffness
constant is therefore reduced for a cubic crystéhé matrix below:

Xy C1 C G 0 0 O

Y, Cp Cy Cp 0 0 0

|z c: ¢ i 0 0 0
lei| = Yy, 0 0 0 C, O 0 (1.22)

Z, 0 0 0 0 Cy O

X, 0 0 0 0 0 Cu

It is readily seen that for a cubic crystal
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U= 1/2 Cll(eagx + ejzzy + ezzz) + CIZ (eyyezz + €22€xx + exxeyy)
+ 1/2 C44(632/Z + ezzx + e;%y) (123)

satisfies the Eq.(1.19); for the elastic energysdgriunction.

For example, aU/aeyy = Cr1eyy t+ Cipez, + Cipexx = Y,

Using Eq. (1.22).
For cubic crystals the compliance and stiffnessstannis are related by

C :[ S11+512 .
1 (511=S12)(S11+2S12))’

C12 == (124)

[ —S12 .
(511=S12)(S11—-2514)1°

Cig = 1/544

A general review of elastic constant data and lattieships among various coefficients
for the crystal classes has been giverdbegrmon (1946).

4.0 Conclusion
The elastic properties of a crystal consideredoasdgeneous continuous medium rather
than a periodic array of atoms is obtained by Heddv and Newton second law.

5.0 Summary
* The local elastic strain of a body is specifiedsby component numbers:
€xx. eyy 1€22) exy» eyz,ezx
» There are nine stress componeMsX,, X, Yx, Yy, Y2, Zy, 2, Z;
* A deformation isuniformif the values of the strain components are independ
of the choice of origin
* The fractional increment of volume caused by a heédion is called thdilation
* Cubic crystals have only three independent stiremstants.

6.0 Tutor marked assignment
Q1. Show that the shear constéu@l:11 — (C;2) in a cubic crystals defined by

. 1 .
settinge,, = — ey, = e and all other strains equal to zero.

Q2. Prove that in a cubical, the effective elastinstant for a shear across the
(110) plane in thg110] direction is equalC;; — C;,)/2.
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1.0 Introduction

Theelastic properties of a homogeneous crystal arergéiy anisotropic. Even in a cubic
crystal, the relationship between stress and stiggends on the orientation of the crystal
axes relative to stress. In general, the numbetasttic constants characterizing a body is
large. However, this number is considerably reduheslto the symmetric nature of both
strain and stress tensors.

2.0  Objective
The objectives of this unit are to describe:

. Elastic waves in cubic crystals

. Elastic isotropy

. Cauchy relations

. Lattice theory of elastic coefficients

3.0 Definition

Same as in unit 1
3.1 Experimental determination of elastic constants.
The classic methods for the measurement of thetielasnstants of crystals are
described in the review by Hearmon (1964). In timethod, quartz transducer is
transmitted through the test crystal and refleétench the rear surface of the crystal back
to the transducerThe elapsed time between initiation and receiptth@ pulse is
measured by standard electronic methods. The ¥glisobbtained by dividing the round
trip distance by the elapsed time. In a represeetarrangement the experimental
frequency may be 15'sand the pulse length 1 psec. The wavelengthtiseobrder of 3
x 10% cm. The crystal specimen may be of the order ofnlir length. The elastic
stiffness constants;; ,C;,. C44 Of a cubic crystal may be determined from the
velocities of three waves. A longitudinal wave pagptes along a cube axis with

velocity(cll/p)l/z, where p is the densityA shear wave propagates along a cube axis
1/2 —
with Velocity (C‘*‘*/p) , While a shear wave with particle motion along1® direction

propagates along a 110 direction with veldéfty- ©2)/, p]l/z.

3.2 Elastic waves in cubic crystals
By considering the forces acting on an elementotdime in the crystal we find for the
equation of motion in the x direction

pii = Loy Hyy 2

2.1
dx ady 0z 1)

With similar equations for the and z directions; p is the density andi is the

displacement and is;iTzzu. From Eq. (1.21) in unit 1, it follows, taking thake edges as
thex, y, zdirections, that

- % dey,, % Oexy aezx)
pu = Cy dx + Clz(ax T 6x)+ C44(33’ T
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This reduces, using Eqg. (1.9) of unit 1, to
o*u u du o*w
pu = Cin 5+ Cu (; + ;) (Crp + Caa) ( + ) (2.2)

0xdy 0x0z

Here u, v and w are components of displacement
One solution is given by a longitudinal wave

U= uoei(wt—kx)

moving along the x cube edge; from (2.2)
—w’p = —k*Cyy

Herek = 27” whereA is wave vector an@d = 2nv is the angular frequency
So that the velocity is

1/2
v = a)/k — (Cn/p) (2.3)

Another solution is given by a transverse or skeare moving along the y cube edge
with the particle motion in the x direction:

v = voe[l(wt_ky)]
which gives, on substitution in Eq. (1.2)

_wzp = _kzc44

1/2
v = <C44/p) (2.4)

There is also a solution given by a shear wave ngpin thez direction with particle
motion in thex direction. In general there are three types of wantion for a given
direction of propagation in the crystal, but onty fa few special directions can the
waves be classified as pure longitudinal or puaedverse.

so that;

3.3  Elastic isotropy
By minor manlpulatlons We may rewrite Eq. (2.2) as

pou = (Cll C 2C44) + C44V2u + (C12 + C4-4-)_d”7 o (25)
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where the displacement = ui + vj + wk is not to be confused with density now
written asp,. if

Ci1— Ciz = 20y, (2-6)

the first term on the right in (2.5) drops out, amelcan write on summing with the
equations for thg andz motions:

é = C4_4_ VZQ + (Clz + C4_4_) gT‘ad dlv Q (27)

This equation has the important property that itingariant under rotations of the
reference axes, as each term in the equationirsvariant. Thus the relation (1.6) is the
condition that the crystal should be elasticallgtigpic; that is, that waves should
propagate in all directions with equal velocitiddowever, the longitudinal wave
velocity is not necessarily equal to the transveraee velocity.

The anisotropy factor A in a cubic crystal is defiras

2C.
A= " - ) 29)

and is unity for elastic isotropy.

3.4  Cauchy relation
There are among the elastic stiffness constantaiceelations first obtained by
Cauchy. The relations reduce to

Ci2 = Cyq

in a crystal of cubic symmetry. If this is satisfjehe isotropy condition (2.6) becomes

C11 = 3C,4. If then a cubic crystal were elastically isotiopnd the Cauchy relation is

satisfied, the velocity of the transverse waves ldvdae equal to the velocity of the

longitudinal waves.

The conditions for the validity of the Cauchy redat are:

I.  All forces must be central, i.e., act along lineming the centers of the atoms.
This is not generally true of covalent binding ¢ nor of metallic binding
forces.

[I.  Every atom must be at a center of symmetry; thae@acing every inter atomic
vector should not change the structure.

[ll.  The crystal should be initially under no stressmietallic lattices the nature of
the binding is not such that we would expect thedbs relation to work out
well. In ionic crystals the electrostatic interactiof the ions is the principal
interaction and is central in nature. It is notpsiging that the Cauchy relation is
moderately well satisfied in the alkali halides

Worked example:
Show that the velocity of a longitudinal wave iefttil 1] direction of a cubic

1/2
crystal is given by, = E (C11 + 2C1, + 4644)/p]
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Solution:
For a longitudinal phonon in tH&11]direction, u = v = w.
Letu = uoeik[x+3’+2]/\/§e—iwt

Wherek = 27” is the wave number and = 2mv is angular frequency. From Eq. (2.2),

w?p = [C1 + 2C44 + (C12C4a)] k?/3
Thus, the velocityv/k of the longitudinal wave in thig 11] direction is given by
vs = w/k = [(Ci1 + 2C1, + 4C4a/3p)]"/?

4.0 Conclusion
The existence of the centre of symmetry of a cuistal stable under the
central inters atomic forces leads to the well knd@»auchy relation;;, = Cyy.
This reduces the number of independent elastictantssof a cubic crystal to
two only.

5.0 Summary
» The longitudinal wave velocity along the x cubgeds given by

p = a)/k _ (C11/p)1/2

* The transverse wave velocity along the y cube edtethe particle motion in
the x direction is given by

o= = (o)

* The Cauchy relation i€, = Cy4

1/2

» Cauchy relation does not work well for metallidilzgs while it is moderately
well satisfied in the alkali halides.

6.0  Tutor marked assignment

Q1. Show that the velocity of a longitudinal wavettve[111] direction of a
cubic crystal is given by

1 1/2
v= [g (€1 — 2Cp + 4C44)/P]

Q2. Show that the velocity of a transverse wave in[tHd | direction of a
cubic crystal is given by

1 1/2
v = [g (Ci1— Ci2 + C44)/.0]
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1.0 Introduction

The attractive electrostatic interaction betweaennbgative charges of the electrons and the
positive charges of the nuclei is entirely respbolesfor the cohesion of solid. As the atoms
come close together their closed electron shells start to overlap. The Pauli principle
states that each electron state can be occupiedlipyone electron. In order to have overlap
of closed shells, electrons have to be excitedghbdn states. This costs energy and leads to a
repulsive interaction between the atoms. The remulinteraction dominates for short
distances between atoms, while the attractive antem dominates at large distances. The
actual atomic spacing in a crystal is defined g dguilibrium where the potential energy
exhibits a minimum.

2.0  Objective
To explain:
* Inter atomic forces
* Vander Waals bonding
* lonic bonding
» Covalent bonding
* Metallic bonding

3.0 Definition
Crystal binding is the attractive inter atomic fetbat hold atom together in a crystal.

3.1  Inter atomic forces

Solids are stable structures, and therefore theist steractions holding atoms in a
crystal together. For example a crystal of sodiumoride is more stable than a
collection of free Na and Cl atoms. This implieattthe Na and Cl atoms attract each
other, i.e. there exist an attractive inter atofoice, which holds the atoms together.
This also implies that the energy of the crystdbvger than the energy of the free atoms.
The amount of energy which is required to pull thgstal apart into a set of free atoms
is called thecohesive energgf the crystal.

Cohesive energy = energy of free atoms — crystatggn

Magnitude of the cohesive energy varies for diffiérsolids from 1 to 10 eV/atom,
except inert gases in which the cohesive energyf ihe order of 0.1leV/atom. The
cohesive energy controls the melting temperaturetlygical curve for the potential
energy (binding energy) representing the interacbhetween two atoms is shown in
Fig.1.1 It has a minimum at some distariReR,. For R>R, the potential increases
gradually, approaching 0 &- o, while for R<R, the potential increases very rapidly,
tending to infinity atR=0. Since the system tends to have the lowest llesshergy, it
is most stable at R=R which is the equilibrium inter atomic distanceThe
corresponding energy, is the cohesive energy. A typical value of the Houum
distance is of the order of a few angstroms (e-3AR so that the forces under
consideration are short range. The inter atomicefas determined by the gradient of the
potential energy, so that
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F(R) = —— (3.1)

If we apply this to the curve in Fig.3.1, we seatfiR) <0 for R>R,. This means that
for large separations the forceatiractive tending to pull the atoms together. On the
other, hand=(R)>0 for R<R, i.e. the force becomespulsiveat small separations of the
atoms, and tends to push the atoms apart. Thesrepw@nd attractive forces cancel each
other exactly at the poirf®, which is the point of equilibrium. The attractiveter
atomic forces reflect the presence loénds between atoms in solids, which are
responsible for the stability of the crystal. Thare several types dbnding depending
on the physical origin and nature of the bondingédnvolved.

U

repulsive energy

.....
....

_gv_

cohestve energy 1
UO / ‘
/
/
/

attractive energy

Fig.3.1. A typical curve for the potential energgn@ding energy)
representing the interaction between two atomse(Aittel.1979)

Although the nature of thattractive energys different in different solids, the origin of
the repulsive energys similar in all solids and it is mainly due tcetRauli Exclusion
Principle. The elementary statement of this principle i th@ electrons cannot occupy
the same orbital. As ions approach each other @asegh, the orbits of the electrons
begin to overlap, i.e. some electrons attempt toupg orbits already occupied by
others. This is, however, forbidden by the PaulicleEsion Principle. As a result,
electrons are excited to unoccupied higher endaes of the atoms. Thus, the electron
overlap increases the total energy of the systesngares repulsive contribution to the
interaction. The repulsive interaction is not edsy treat analytically from first
principles. In order to make some quantitativenestes it is often assumed that this
interaction can be described by a central fieldulgpe potential of the form exp ¢r
/p), whereA andp are some constants or of the faB\R», wheren is sufficiently large
andB is some constant.
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3.2  Vander Waals (Inter atomic) bonding

This type of binding is exhibited by solid noblesgaystals. The outermost electron shell is
completely filled and the electron distributiorsjgherically symmetric. Each atom is neutral
and has no permanent dipole moment. The attrafbhees between the atoms arise from
fluctuations in the electron distribution. Theseregian instantaneous fluctuating dipole
moment in the atom. Its interaction with inducedad moments in the neighboring atom
leads to a weak interactiohhe electron distribution in inert gases is veiysel to that in
free atoms. The noble gases such as neon (Ne)) é4gd, krypton (Kr) and xenonXe)

are characterized by filled electron shells andphescal distribution of electronic
clouds in the free atoms. In the crystal the igat atoms pack together within the cubic
fcc structure. Consider two inert gas atoms (1 andeparated by distance R. The
average charge distribution in a single atom issgphlly symmetric, which implies that
the average dipole moment of atom 1 is zéda) =0. Here the brackets denote the time
average of the dipole moment. However, at any mowietime there may be a non-zero
dipole moment caused by fluctuations of the eleitraharge distribution. We denote
this dipole moment bydi. From electrostatics consideration, this dipolenrant
produces an electric field, which induces a dipmlement on atom 2. This dipole
moment is proportional to the electric field whishin its turn proportional to theutRs

so that

d, < E oc% (3.2)

The dipole moments of the two atoms interact wabheother. The energy is therefore
reduced due to this interaction. The energy of ititeraction is proportional to the

product of the dipole moments and inversely prapoal to the cube of the distance
between the atoms, so that

X — —= (3.3)

and that the coupling between the two dipoles,caused by a fluctuation, and the other
induced by the electric field produced by the firssults in the attractive force, which is
called theVan der Waals forceThe time averaged potential is determined by the
average value di?)which is not vanish, even thougd:)is zero.

2
U x — (2_2) (3.4)

The respective potential decrease® @seduces with the separation between the atoms.
Van der Waals bondinig relatively weak; the respective cohesive enégyf the order

of 0.1eV/atom. This attractive interaction desedbby Eq. (3.4) holds only for a
relatively large separation between atoms. At siselarations a very strong repulsive
forces cause by the overlap of the inner electrshélls start to dominate. It appears that
for inert gases this repulsive interaction can ited quite well by the potential of the
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form B/R12 whereB is a positive constant. Combining this with Eq4§3wve obtain the
total potential energy of two atoms at separaavhich can be represented as

12 6
U = 4¢ [(5) — (2) l (3.5)
R R
where4ea® = A and4so26= B. This potential is known as Lennard-Jones potential.

3.3 lonic bonding
The ionic bond results from the electrostatic iatéion of oppositely charged ions. Let
us take sodium chloride as an example. In the @ltyst state, each Na atom loses its
single valence electron to a neighboring Cl atoredpcing Na and Cl~-ions which
have filled electronic shells. As a result an ioargstal is formed containing positive
and negative ions coupled by a strong electrostagcaction.

Na + 5.1eV (Ionization energy) - Na*e~

e~ + Cl - Cl™ + 3.6eV(electron af finity)

Na* + Cl= - NaCl + 7.9¢eV (electrostatic energy)
The cohesive energy with respect to neutral ataansbe calculated as 7.9eV - 5.1eV +
3.6eV, i.e. Na + Cl» NaCl + 6.4 eV (cohesive energy). The structuréVafCl is two
interpenetrating fcc lattices of NandCl~ ions as shown in Fig.3.2

N Na~

CI”

(L
Fig 3.2 structure BaCl(After Kachhava, 1992)

Thus each Naion is surrounded by 61~ ions and vice versa. This structure suggests
that there is a strong attractive Coulombic foreeseen nearest-neighbors ions, which
is responsible for the ionic bonding. To calculbteding energy we need to include
Coulomb interactions with all atoms in the solids@we need to take into account the
repulsive energy, which we assume to be exponeiitils the interaction between two
atomsi andj in a lattice is given by

Uy = 20 0) + qz/rij (3.6)

Herer;; is the distance between the two atoqis, the electric charge on the atom, the

(+) sign is taken for the like charges and thes(gi for the unlike charges. The total
energy of the crystal is the sum ovandj so that
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- (3.7)

In this formula %2 is due to the fact that each péiinteractions should be counted only
once. The second equality results from the fathén structure the sum ovedoes
not depend on whether the referenceiias positive or negative, which gives the total
number of atoms. The latter divided by two gives mlnmber of molecule¥, composed
of a positive and a negative ion. We assume fopltity that the repulsive interaction
is non-zero only for the nearest neighbors (becaus®ps down very quickly with the
distance between atoms). In this case we obtain

(3.8)

HereR is the distance between the nearest neighlmis;the number of the nearest
neighbors, and is theMadelung constant

(3.9)

where is defined by .The value of the Madelung tamisplays an
important role in the theory of ionic crystals.daneral it is not possible to compute the
Madelung constant analytically. A powerful methad €alculation of lattice sums was
developed by Ewald, which is call&vald summationThis method can be used for the
numerical evaluation of the Madelung constantsalds. Example considers a one-
dimensional lattice of ions of alternating sigrsaswn in Fig.3.3 below.

® 0 ® 0 6 0 6 O
R

Fig.3.3: 1-D lattice of ions of alternating sign.

In this case

Or
- - = (3.10)

The factor 2 occurs because there are two ionstootiee right and one to the left at
equal distances
we sum this series by the expansion
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[0
n

In(1 + x) = Z(—nn—l X?

n=1

Thus the Madelung constant for 1-dimensional cieain= 2 In2.

In three dimensions calculation of the series iscimmore difficult and cannot be
performed so easy. The values of the Madelung aatsstfor various solids are
calculated, tabulated and can be found in liteeafarg.Kittel, 1996).

3.4 Covalent bonding

The covalent bond is another important type of basich exits in many solids. The
covalent bond between two atoms is usually formgdwo electrons, one from each
atom participating in the bond. The electrons fomgnithe bond tend to be partly
localized in the region between the two atoms joibg the bond. Normally the covalent
bond is strong: for example, it is the bond, whicliples carbon atoms in diamond. The
covalent bond is also responsible for the bindihgilacon and germanium crystals a
two-atomic molecule (one electron per atom) therggnéevels are split into a binding and
an antibinding one. The two electrons are sharéddam the two atoms and fill the lowest,
binding, molecular orbital. In a solid the energydls are no longer discrete but the binding
and antibinding levels become broadergy bands The structure of covalent crystals is
determined by the direction of the bonds, they haften fewer nearest neighbor atoms
(lower coordination number).

Compounds where the atoms have different numbealeince electrons exhibit a mixture
of ionic and covalent binding. Ex.aAs. Ga has 3 valence electrons aAs has 5. On the
average we have 4 electrons per atom which canhbeed in tetrahedral bonds with
neighboring atoms. However if the bonds are toyensetrical theGa will be negatively
charged andis positively charged. Hence partial ionic binding mainbe avoided in this and
similar cases.

3.5 Metallic bonding

Metals are characterized by a high electrical ceotiditly, which implies that a large
number of electrons in a metal are free to movee Electrons capable to move
throughout the crystal are called tlenductions electronsNormally the valence
electrons in atoms become the conduction electiorsolids. The main feature of the
metallic bond is the lowering of the energy of Yadence electrons in metal as compared
to the free atoms. Below, some qualitative arguseme given to explain this fact.
According to the Heisenberg uncertainty principle indefiniteness in coordinate and in
the momentum are related to each other soAkAp = h.In a free atom the valence
electrons are restricted by a relatively small wodu ThereforeAp is relatively large
which makes the kinetic energy of the valence sd@stin a free atom large. On the other
hand in the crystalline state the electrons are foemove throughout the whole crystal,
the volume of which is large. Therefore the kinetimergy of the electrons is greatly
reduced, which leads to diminishing the total epenfj the system in the solid. This
mechanism is the source of the metallic bondinguftively speaking, the negatively
charged free electrons in a metal serve as gludtids positively charged ions together.
The metallic bond is somewhat weaker than the iantt covalent bond. For instance the
melting temperature of metallic sodium is about %@fich is smaller than 1180n
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Nacl and about 4dn diamond. Nevertheless, this type of bond shdieldegarded as
strong. In transition metals like Fe, Ni, Ti, C@tmechanism of metallic bonding is more
complex. This is due to the fact that in additionst electrons which behave like free
electrons we have 3d electrons which are more ilthl Hence the d electrons tend to
create covalent bonds with nearest neighbors. Thetectrons are normally strongly
hybridized with s electrons making the picture ohing much more complicated.

4.0 Conclusion
Solids are stable structures, and therefore thasg iateractions holding atoms in a
crystal together Depending on the distribution of the outer electrauith respect to the
ions, different binding types can occur.

5.0 Summary

» The cohesive energy the energy that must be added to the cryststparate it to
neutral free atoms at rest, at infinite separation.

» Crystals of inert gas atoms are bound by Vanderl$\iateraction.

* lonic crystals are bound by electrostatic attractbcharged ions of separate signs.

» A covalent bound is characterized by the overlaghairge distributions of
antiparallel spin.

* Metals are bound by reduction in kinetic energyhefvalence electrons in the metal
as compared with the free atom.

6.0 Tutor marked assignment
Q1. Repulsive potential between two atoms is represblbyA/ pns Where

constant®\ andn are phenomenological parameters.
(@) Show that the equilibrium inter atomic distancegiigen by

_n_
R - (6nA)n—1
0 — aqz

(b) Demonstrate that the cohesive energy per molet@@gualibrium is

aq? 1
= (1)
R, n

(c) Calculate the constantfor NaCl, taking into account that the lattice
constant isa=5.63A, a=1.75, g=e and the measured binding energy per
molecule for this crystal is —=7.94 eV.

2
Q2.  Using the Lennard-Jones potential wétkil.04y10 eV ands=3.40A and
taking into account only nearest-neighbor atomisutate the lattice
parameter and the cohesive energy of the fcc drybta.

7.0  Further reading/References.
C. Kittel, Introduction to solid state physics, @jilEastern Limited, 1979
Kachhava, C.M., Solid State physics, Tata McGraW#iblishing Company
Limited, New Delhi, 1992
R. F. S. Hearmon, "Elastic constants of anisotramaterials,” Revs. Modern
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1.0 Introduction

An important aspect of the study of solid state plsysscthe lattice dynamics, which

concerns itself with the vibrations of atoms abibgir equilibrium sites in a solid. These
vibrations occur at any temperature, even at absaero. They are responsible for the
thermal properties - heat capacity, thermal condiit thermal expansion, etc. of

insulators and contribute the greater part of & lsapacity of metals.

2.0  Objective
To describe:
* One-dimensional monatomic lattice.
* One-dimensional diatomic lattice
* Three- dimensional lattice.

3.0 Definition
Lattice vibration is a continuing periodic osciitat relative to a fixed reference point, or
a single complete oscillation.

3.1 One-dimensional monatomic lattice

Consider one-dimensional crystal lattice and asstivaethe forces between the atoms
in this lattice are proportional to relative disganents from the equilibrium positions.

This is known as thdnarmonic approximationwhich holds well provided that the

displacements are small. One might think abouttbens in the lattice as interconnected
by elastic springs (Fig.4.1).

lll;n—l !}f” 'h‘?’i'+1
“—p
n—1 i nt+1 a

Fig.4.1: Lattice vibration of monatomic lattice
(After www.pa.uk.edu/kwng/phy/525/lec

Therefore, the force exerted ot atom in the lattice is given by
E, = C(un+1 - un) + C(un—l - un) (4.1)

whereC is the interatomic force (elastic) constant. ApptyNewton’s second law to the
motion of then — th atom we obtain

d?un
dt?

M =F = C(un+1 - un) + C(un—l - un) = _C(Zun - Upy1 — un—l)(4-2)

whereM is the mass of an atom. Note that we neglectedthermteraction of the — th
atom with all but its nearest neighbors. A simimuation should be written for each
atom in the lattice, resulting iN coupled differential equations, which should besedl

78



simultaneously N is the total number of atoms in the lattice). Imiidn the boundary
conditions applied to the end atom in the lattivewdd be taken into account.
Now let us attempt a solution of the form

U, = Ae'(@¥n= D) (4.3)

wherex,, is the equilibrium position of the — th atom so thak,, = na. This equation

represents a traveling wave, in which all the atossllate with the same frequenay
and the same amplitudeand have wave vectay Note that a solution of the form Eq.
(4.3) is only possible because of the transnatisyahmetry of the lattice. Now
substituting Eq. (4.3) into Eq.(4.2) and canceling common quantities (the amplitude
and the time-dependent factor) we obtain

M(—w?)eitna = _C[Zeiqna — ela(n+a _ eiq(n—l)a] (4.4)

This equation can be further simplified by canagline common facta@d"¢ which
leads to

Mw? = (2 - e'% — e™14%) = 2¢(1 - cosqa) = 4Csin® L (4.5)

We find therefore the dispersion relation for thegtiency

4C . qa
w = —|sm—
M 2

which is the relationship between the frequencyilofations and the wave vectgrThis
dispersion relation has a number of important priogse

4.6)

(i) Reducing to the first Brillouin zon&he frequency (4.6) and the displacement of the
atoms (5.3) do not change when we chambg g+2rva. This means that these solutions
are physically identical. This allows us to de¢ range of independent valuesf
within the first Brillouin zone, i.e.

T T

. <q= . 4.7
Within this range ofg the w versusg is shown in Fig.4.2. The maximum frequency
is,/4C /M. The frequency is symmetric with respect to the sapange inq, i.e.
w(g)=w(—q)). This is not surprising because a mode with p@si corresponds to the
wave traveling in the lattice from the left to thght and a mode with a negatipe
corresponds to the wave traveling from the righthtoleft. Since these two directions are
equivalent in the lattice the frequency does naingie with the sign change gn At the
boundaries of the Brillouin zong=t1va the solution represents a standing wjye-
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A(—1)"e~@t: atoms oscillate in the opposite phases depenatinghethem is even or
odd. The wave moves neither right nor left.

1.0

0.0 _
-1t/a 0 m/a

q
Fig.4.2: Dispersion curve of a one-dimensional atomic lattice

representing the First Brillouin Zone.
www.pa.uk.edu/kwng/phy/525/Igc

(i) Phase and group velocitfhe phase velocity is defined by

w

vp = (4.8)
and the group velocity by
dw

The physical distinction between the two velocitissthat v, is the velocity of the

propagation of the plane wave, whereasufes the velocity of the propagation of the
wave packet. The latter is the velocity for thegamgation of energy in the medium. For
the particular dispersion relation Eq. (4.6) theugr velocity is given by

— CO0S — (4.10)

As is seen from Eg. (4.10) the group velocity iozat the edge of the zone where
g=t1a. Here the wave is standing and therefore the iineasson velocity for the energy
is zero.

(iii) Long wavelength limitThe long wavelength limit implies that>a. In this limit
qa<<l. We can then expand the sine in Eq. (4.6) dtaifor the positive frequencies:
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— (4.11)

We see that the frequency of vibration is propodido the wave vector. This is
equivalent to the statement that velocity is inaelemt of frequency. In this case

— — (4.12)

Worked example:
Atoms in crystals arbeld together by chemical bonds. Consider thesddtmbe elastic
springs of the same force constants for one-dimeasicrystal lattice. Suppose one of
the atoms is displaced from its mean position bgxdernal force and then released,;
(a) derive an expression for its periodic motion wigspect to its nearest
neighbours
(b) prove that these atoms can vibrate with a numbdrsafete frequencies up to a
maximum value given by

Solution:

(a) Consider a linear chain of atoms connecteddmstie springs, each of spring constants
B (Fig below).If the atoms are each of mass m and the distanteebe any two
consecutive atoms is ‘a’, then a small displacentgnsome external force on one of
them will result into an oscillatory motion?

Fle—Fr
n-1 | n I n+l

IUn-ll U, : Un :Un+1:
| !

| a :
The displacements of and atoms from their meantiposiat
any instant will be and respectively. Also, thdeasion of the spring
between and atoms will be and therefore, thereg

force k. on the atom due to the left spring will be

(i)
Similarly, the extension of the spring on the right  atom will be
and restoring force is given by

(i)
The net force on the atom will be
(iii)
Applying Newton'’s second law of motion to the deg#ment of the atom, we obtain
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d?Up .
FIC ﬁ(Un+1 +Up-1— ZUn) =0 (IV)

Hence, Eq.(iv) is the equation of periodic motiohtbe nth atom with respect to
(n — 1)th and(n + 1)th atoms.

(b)The general solution of Eq. (iv), if the amptieuof this motion is U, is given by

Un — Uei(a)t+an) (V)

WhereX,, is the distance of theth atom from the origin i.eX,, = na. Similarly, if X,,_;
and X,,, are the distances df — 1)th and (n + 1)th atom from the origin, then
Xp-1 = (m—1)a andX,,,; = (n + 1)a. Thus, we have

Un—l — Uei(wt+an_1)
(vi)
Un+1 o Uei(wt+an+1)
Wherew is the angular frequency akd= 27”
Substituting Eq.(v) and Eq.(vi) into Eq.(iv) witlf,, = na, X,-; = (n—1)a and
Xp+1 = (n + 1)a, gives,

_meUeiwteikna — ﬁUeiwteikna[eika + e—ka _ 2]
e ikay? _ikay? ka  _ika)?
—ma)te”"te‘k”a=ﬁ(eZ> +(e 2) -2 =ﬁ[62—e 2]

ika  _ka]? )
2_4_2e2—e2 B 4[_ka]
mw* = 4pi T = ﬁsm2

, 4[;[_ kay®
w” = —|SIn—
m 2

v W= /ﬂ sin %2 (vii)

m 2
E.(vii) gives a number of frequencies with whicle #toms of the 1-dimensional lattice
can vibrate. Whersin% =+1 i.e. When% = g the maximum frequency is obtained

from Eq.(vii) asw,, = + %

3.2 Diatomic one-dimensional lattice

Now we consider a one-dimensional lattice with tvam-equivalent atoms in a unit cell.
Fig.4.3 shows a diatomic lattice with the unit acgimposed of two atoms of mas#¢gs
andM, with the distance between two neighboring atems
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Fig.4.3: Lattice vibration of diatomic lattice (/Aift
www.pa.uk.edu/kwng/phy/525/I¢c

We can treat the motion of this lattice in a similashion as for monatomic lattice.
However, in this because we have two different &iod atoms, we should write two
equations of motion:

d*u
My—= = =CQUp = Unys = Un_a)
(4.13)
d?uy
M, dt2+1 = _C(ZUn+1 — Upyz — Un)

In analogy with the monatomic lattice we are logkiar the solution in the form of
traveling mode for the two atoms:

Un | _ Aleiqna —iwt
B il et @
2C —Myw? —2cosqa Ay
= =0 4.15
—2Ccosqa 2C— M,w? A, (4.15)

This is a system of linear homogeneous equatianghéunknown#\i andA2. A
nontrivial solution exists only if the determinaritthe matrix is zero. This leads to the
secular equation

(2C — M;w?*)(2C — M,w?) — 4C?cos?qa =0 (4.16)

This is a quadratic equation, which can be reasblyed

2 2
W =C(o+ =) £C [(-+ =) - Bmi (4.17)
1 M> My My MM,

Depending on sign in this formula there are twdedént solutions corresponding to two
different dispersion curves, as is shown in Fig.4.4
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Optical

//\

Acoustic

-m/2a 0 n/2a

q
Fig.4.4: Dispersion Curve for one-dimensional diatolattice.
(After www.pa.uk.edu/kwng/phy/525/1ec

The lower curve is called thecoustic branchwhile the upper curve is called tbptical
branch The optical branch begins @0 andw=0. Then with increasing the frequency
increases in a linear fashion. This is why thisblais called acoustic: it corresponds to
elastic waves or sound. Eventually this curve sadsrat the edge of the Brillouin zone.
On the other hand, the optical branch has a norimjaency at zerq

Wy = \/zc(Mil+ Miz) (4.18)

and it does not change much with

The distinction between the acoustic and opticahbines of lattice vibrations can be seen
most clearly by comparing them @0 (infinite wavelength). From Eq. (4.15), for the
acoustic branclko=0 andA4;=A4,. So in this limit the two atoms in the cell habhe same
amplitude and the phase. Therefore, the molecud#laises as a rigid body, as shown in
Fig.4.5 for the acoustic mode. On the other haadiife optical vibrations, substituting
Eq. (4.18) to Eqg. (4.15), we obtain fgr0:

M1A1 + M2A2 = 0 @-19)
It implies that the optical oscillation takes plagesuch a way that the center of mass of a
molecule remains fixed. The two atoms move in duptase as shown in Fig.4.5. The

frequency of these vibrations lies in infrared cggwhich is the reason for referring to
this branch as optical.
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Optical mode

Acoustical mode

Fig.4.5: Distinction between Acoustic and Opticave (After Kittel,
1976)

3.3  Three- dimension

The concept of the division of the vibrational medeto acoustic and optical branches
can be generalized to be applicable to three-dimapabkstructure. To avoid mathematical
details we shall present only a qualitative dismssConsider, first, the monatomic
Bravais lattice, in which each unit cell has a Bregom. The equation of motion of each
atom can be written in a manner similar to thaEqf (4.2). The solution of this equation
in three dimensions can be represented in termsrofal modes.

U, = Aei@= 0 4(20)

where the wave vectay specifies both the wavelength and direction of pggtion. The
vectorA determines the amplitude as well as the directfonbwation of the atoms. Thus
this vector specifies theolarizationof the wave, i.e., whether the wavelosgitudinal

(A parallel toq) or transversgA perpendicular t@). When we substitute Eq.(5.20) into
the equation of motion, we obtain three simultaseeqguations involvingx, Ay. andA,

the components dk. These equations are coupled together and argadeui to a 3 x 3
matrix equation. The roots of this equation leathtee different dispersion relations, or
three dispersion curves, as shown in Fig.4.6. Ad three branches pass through the
origin, which means all the branches are acoustits is of course to be expected, since
we are dealing with monatomidravais lattice.
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Fig.4.6: Dispersion curve.

The three branches in Fig.4.6 differ in their paation. Wherg lies along a direction of
high symmetry - for example, the [100] or [110] atitions —these waves may be
classified as either pure longitudinal or pure skarse waves. In that case, two of the
branches are transverse and one is longitudina. W@nally refers to these as the TA -
transverse acoustiand LA - longitudinal acousticbranches, respectively. However,
along non-symmetry directions the waves may notpbee longitudinal or pure
transverse, but have a mixed character.

|l |
N

o \\ | )
L
2 \ |

10 08 06 04 02 0 02 04 06 08 1.0
[110] [100]

- Uy q/(2w/a) —>

Fig.4.7: Dispersion curve for Al in the [100] antilD] directions (After
Kittel, 1979)

Figure 4.7 shows the dispersion curves for Al i [tt00] and [110] directions. Note that
in certain high-symmetry directions, such as tH#@]in Al, the two transverse branches
coincide. The branches are then said tddggenerate.

We turn our attention now to the non-Bravais thdeaensional lattice. Here the unit
cell contains two or more atoms. If there aratoms per cell, then on the basis of our
previous experience we conclude that there 3eispersion curves. Of thesthree
branches are acoustic, and the remaining €3) are optical. The mathematical
justification for this assertion is as follows: Weite the equation of motion for each
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atom in the cell, which results miequations. Since these are vector equations, tteey a
equivalent to 8scalar equations, which haver®ots. It can be shown that three of these
roots always vanish at = 0, which results in three acoustic branches. Theneing (3

-3) roots, therefore, belong to the optical branches stated above. The acoustic
branches may be classified, as before, by themrpaitions as TA TA,, and LA. The
optical branches can also be classified as longitudinatamsverse wheq lies along a
high symmetry direction, and one speaks of LO am@ Aranches. As in the one-
dimensional case, one can also show that, for inabpranch, the atoms in the unit cell
vibrate out of phase relative to each other. Aexample of a non-Bravais lattice, the
dispersion curves for Ge are shown in Fig.4.8. &there are two atoms per unit cell in
germanium, there are six branches: three acoustctlaree optical. Note that the two
transverse branches are degenerate along thedit86{ion, as indicated earlier.

2 S |

w, 10"

0 iy © [100]

q ]

Fig.4.8: Dispersion curve for Ge along [100] and(Ldirections
(After Kittel, 1979)

3.4 Phonons

So far we discussed a classical approach to thieelatibrations. As we know from
guantum mechanics the energy levels of the harmmstdlator are quantized. Similarly
the energy levels of lattice vibrations are quatiZlhe quantum of vibration is called a
phononin analogy with the photon, which is the quantunthef electromagnetic wave.
We know that the allowed energy levels of the hamimoscillator are given by

E=(n+ 1/))hw (4.21)

wheren is the quantum number. A normal vibration mode icrystal of frequencyis
given by Eqg. (4.20). If the energy of this modgiigen by Eq. (4.21) we can say that this
mode is occupied by phononof energyfw . The term YAw is the zero point energy of
the mode.

Let us now make a comparison between the clasaiélquantum solutions in one-
dimensional case. Consider a normal vibration
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u = Aei@x-wt) (4.22)

whereu is the displacement of an atom from its equilibripositionx andA is the
amplitude. The energy of this vibrational mode aged over time is

=1/, Mo?4? = (n+ 1/5)hw (4.23)

It is evident from Eq.(4.23) above that there ielationship between the amplitude of
vibration and the frequency and the phonon occapatf the mode. In classical

mechanics any amplitude of vibration is possiblagmas in quantum mechanics only
discrete values are allowed. This is shown in F83.4

A
Fig.4.9: Relation between amplitude and frequeidie( Kittel, 1979)

The lattice withs atoms in a unit cell is described by Bdependent oscillators. The
frequencies of normal modes of these oscillatotsbei given by the solution of 3s linear
equations as we discussed before. Theyvg(q) , wherep denotes a particular mode,
i.e.p=1,...3. The energy of this mode is given by

Eqp = (ngp + 5) hewp (@) (4.24)

wheren,,, the occupation is number of the normal mode arahigiteger. A vibrational

state of the entire crystal is specified by givihg occupation numbers for each of tise 3
modes. The total vibrational energy of the cryssathe sum of the energies of the
individual modes, so that

E=YwEp=Zap (nqp + %) hawp(q) 4(25)

Phonons can interact with other particles suchregms, neutrons and electrons. This

interaction occurs such as if photon had a momertgnHowever, a phonon does not
carry real physical momentum. The reason is thatcmter of mass of the crystal does
not change it position under vibrations (excgp0). In crystals there exist selection
rules for allowed transitions between quantum stafée saw that the elastic scattering of
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an x-ray photon by a crystal is governed by the eveector selection rulk’ =k +G,
whereG is a vector in the reciprocal latticke;is the wave vector of the incident photon
andk’ is the wave vector of the scattered photon. Thisgaggn can be considered as
condition for the conservation of the momentumheaf whole system, in which the lattice
acquires a momentumAG. If the scattering of photon is inelastic and iscapanied
by the excitation or absorption of a phonon thec@n rule becomes

k'=k +q+G (4.26)

where sign (+) corresponds to creation of phonahsagn (-) corresponds to absorption
of phonon. Phonon dispersion relationg, g can be determined by the inelastic
scattering of neutrons with emission or absorptbphonons. In this case in addition to

the condition of the momentum conservation we hHheerequirement of conservation of
energy. The latter condition can be written as

h%Kk?%  h%k?
= + hw (4.27)

whereM is the mass of the neutron afkl and 7ik’ are the momenta of the incident and
scattered neutron. Once we know in experiment thetik energy of the incident and
scattered neutrons from Eq. (4.27) we can deterrthieefrequency of the emitted or
absorbed phonon. Then experimentally we need term@te those directions, which
characterized by highest intensity of the scattebedm. For these directions the
conditions (5.26) are satisfied and therefore fiegq (4.26) we can find the wave vector
of the phonon. Therefore, this is the way to obttie dispersion conditions for the
frequency of phonons which we discussed before.

4.0 Conclusion
Lattice vibrations are elastic waves propagatinthmicrystals and the quantum unit of
vibration is a phonon. The general equation of aroprovides the phonon dispersion or
phonon spectrumy.

5.0 Summary
» All lattice waves can be described by wave vecthia lie within the first
Brillouin zone
» The quantum unit of vibration is a phonon.
* The energy of the phononisv

6.0  Tutor marked assignment
Q1. Consider a linear chain in which alternative ioagdimasselli andM:2
and only nearest neighbors interact.
(a) Discuss the form of the dispersion relation drednature of the
vibrational modes whekl1>> Ma2.
(b) Show that foM1=M2the dispersion relation becomes identical to that
for the monatomic lattice
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7.0

Q2. Consider the normal modes of a linear chain in tihie force constants
between nearest-neighbor atoms are alternativen@ 10C. Assuming
that the masses are equal and the nearest neigbparation is/2 find
w(q) at g=0 and g=1va. Sketch the dispersion curve. This problem
simulates a crystal of diatomic molecules such.as H
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1.0 Introduction

This unit is devoted to the description of certain tha&rmroperties of solid
materials. The properties considered on the bdseéamic point of view are specific
heat, thermal expansion, equation of state andmiderconductivity. The most
fundamental approach for the theoretical evaluabiotihese characteristics for a solid is
to relate them to the internal energy, the totaklc energy and potential energy of its
constituents.

2.0  Objective
To explain
» Lattice specific heats
* Debye model
» Einstein model
» Lattice thermal conductivity

3.0 Definition
Specific heat is a measure of the number of degrelgsedom of oscillating lattice.

3.1 Heat capacity
The heat capacit€ is defined as the healQ which is required to raise the temperature by
AT, i.e.

_ M
C = v (5.1)

If the process is carried out at constant volumnthenAQ = AE, whereAE is the increase in
internal energy of the system. The heat capacitpastant volumélvis therefore given by

- (Z) 52

The contribution of the phonons to the heat capadfitthe crystal is called thiattice heat
capacity

The total energy of the phonons at temperafurea crystal can be written as the sum of the
energies over all phonon modes, so that

E = (ng)ho (@) (5.3)
qp

Where(n,,,) is the thermal equilibrium occupancy of phononsvafre vectoiq and modep

(p = 1...3s, wheres is the number of atoms in a unit cell). The angbla@ckets denote the
average in thermal equilibrium. Note that we asgslimere that the zero-point energy is
chosen as the origin of the energy, so that thergt@nergy lies at zero. The average thermal
equilibrium can be calculated.
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Consider a harmonic oscillator in a thermal batie Pprobability to find this oscillator in
an excited state, which is characterized by aqadsr energ)Enis given by the

Boltzmann distribution

P, = Pyel"/kar) (5.4)

where the constalﬁ’c0 is determined from the normalization condition.

Z&=1 (5.5)

n=0

so that
(o) -1
P, - (Z e(‘"h‘“/ksT)> (5.6)
n=0

The average excitation number of the oscillatayiven by

[ee]

(n) = Z nk, = »o_ ne mhe/ksT -

© —nhw/kgT
En:oe /B

n=0
The summation in the numerator can be performeaugusie known property of geometrical
progression:

[oe]

Z =1 (5.8)

n=0

Using this property we find:

Z.o:nx”—xiix"—xi ! ad 5.9)
- Tdx T Tdx1l—x (1 —x)2 .

n=0 n=0

hw

Wherex = e &7, then we obtain

1 1
x~1-1 e(hw/kp)_4

(n) = 1:5 = (5.10)

The distribution given by Eq. (5.10) is known as Blanck distribution. Coming back to the
expression for the total energy of the phononsfimeethat
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ehw(@)
E= Z (5.11)

ehw(Q) -1

Usually it is convenient to replace the summatioera by an integral over frequency. In
order to do this we need to introduce thensity of modesr the density of stateB,(w).
D, (w)dw represents the number of modes of a given numbrethe frequency ranges( o
+dw . Then the energy is

hw
- E - 5.12
E= fda)Dp(a)) Gl — 1 ( )
P

The lattice heat capacity can be found by difféetioin of this equation with respect to

temperature, so that
hw
hw) e( /kBT>

— — (kBT
Cv—— kg2 [ dwDy (w) (i) 1)2 5(13

We see that the central problem is to find the idgi$ state®, (w), the number of modes
per unit frequency range.

3.2 Density of state

Consider the longitudinal waves in a long bar. Sbkition for the displacement of atoms is
given by
u = Ae'd* (5.14)

where we omitted a time-dependent factor it idexrant for the present discussion. We shall
now consider the effects of the boundary conditiomsthis solution. These boundary
conditions are determined by the external condsapplied to the ends of the bar. The most
convenient type of boundary condition is known lespteriodic boundary conditiorBy this

we mean that the right end of the bar is constdainesuch a way that it is always in the same
state of oscillation as the left end. It is ashié tar were deformed into a circular shape so
that the right end joined the left. Given that kegth of the bar i&, if we take the origin as
being at the left end, the periodic condition metias

u(x=0)=u (x=1) (5.15)

whereu is the solution given by Eq.(5.14). If we subsgt(.14) into (5.15), we find that

eldt =1 (5.16)
This equation imposes a condition on the admissihlees of:
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q=n— (5.17)

wheren = 0, + 1, £2, etc. When these values are plottedgatpaxis, they form a one-
dimensional mesh of regularly spaced points. Tlaeisg between the points ig/R. When
the bar length is large, the spacing becomes sanallthe points form a quasi-continuous
mesh. Eachy-value of Eq. (5.17) representsnaodeof vibration. Suppose we choose an
arbitrary intervaldq in g-space, and look for the number of modes whgselie in this
interval. We assume here thais large, so that the points are quasi-continuati;h is true
for the macroscopic objects. Since the spacing dé@twthe points is#2l, the number of
modes is

L dg (5.18)

2T

We are interested in the number of modes in thgu&acy rangelw lying betwew, v +
dw. Thedensity of stateg®(w) is defined such tha?(w)dw gives this number. Comparing
this definition with EQ.(5.18), one may wriKw)dw = (L/2r)dq,or D(w) =
(L/2m)/(dw/dq). We note from Fig.5.1, however, that in calculgtib(w) we must
include the modes lying in the negatiyeegion as well as in the positive region. The @ffe
is to multiply the above expression @(w) by a factor of two. That is,

L 1

D(w) = = 57— 5.19
We see that the density of staf®&v) is determined by the dispersion relation
w = w(q).

Now we extend these results to the 3D case. The walition analogous to (5.14) is

u = Aei(@xx+ayy+a;2) (5.20)

Fig.5.1: Density of state
where the propagation is described by the waveovegt= (qX qy qz), whose direction

specifies the direction of wave propagation. Hegaim we need to take into account the
boundary conditions. For simplicity, we assume dicusample whose edge Is By
imposing the periodic boundary conditions, one gintat the allowed values of must
satisfy the condition

95



equL :eiqu = eLqZL (521)
Therefore, the values are given by
21 2

21 T
(qx’ 9y a,) = (7. m—,n7) (5.22)
wherel, m, n are some integers

if we plot these values ingspace, as in Fig.5.2, we obtain a three-dimensimrac mesh.

3
The volume assigned to each point in tspace is (2/L) .

@ contour W
B

Fig.5.2:Three-dimensional cubic mesh (After KittE9,79)

Each point in Fig.5.2 determines one mode. We nash ¥ find the number of modes lying
in the spherical shell between the ragandqg + dq, as shown in Fig.2. The volume of this
3

shell is, 4g°dg and since the volume per point istfl?) , it follows that the number we seek

(L)34nq2dq= "_4nq2dgq (5.23)
2m (2m)3

3
whereV = L is the volume of the sample. By definition of thendity of modes, this quantity
is equal toD(w)dw . Thus, we arrive at

Vg® 1

(5.24)

We note that Eq. (5.24) is valid only for asotropic solid in which the vibrational
frequency,», does not depend on the direction gf Also we note that in the above
discussion we have associated a single mode with e&ue ofg. This is not quite true for
the 3D case, because for eadere are actually three different modes, one towgial and
two transverse, associated with the same value bf addition, in the case of non-Bravais
lattice we have a few sites, so that the numbenades is 8 wheresis the number of non-
equivalent atoms. This should be taken into accbyrnibdexp=1...3sin the density of states
because the dispersion relations for the longiidamd transverse waves are different, and
acoustic and optical modes are different.
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3.2.1 Debye model

The Debye model assumes that the acoustic modedhg dominant contribution to the heat
capacity. Within the Debye approximation the veipcof sound is taken a constant
independent of polarization as it would be in assieal elastic continuum. The dispersion
relation is written as

w =vq (5.25)
where v is the velocity of sound.
In this approximation the density of states is giby

Vw?
2m2p3

i.e. the density of states increases quadratieatty the frequency.

D(w) = (5.26)

The normalization condition for the density of sgatletermines the limits of integration over
. The lower limit is obviouslyp=0. The upper limit can be found from the conditibat the
number of vibrational modes in a crystal is fingled is equal to the number of degrees of
freedom of the lattice. Assuming that there Mranit cells is the crystal, and there is only
one atom per cell (so that there Aratoms in the crystal), the total number of phona@ies

is AN. Therefore, we can write

I D(w)dw = 3N (5.27)
2]

where the cutoff frequeno:yD is known as Debye frequency. Assuming that theciglamf

the three acoustic modes is independent of potaizaand substituting Eg.(5.26) in
Eq.(5.27) we obtain

1/3

6m2v3N
wp = ( ”];’ ) (5.28)

The cutoff wave vector which corresponds to thesjérency is given by

(5.29)

q w 2\ 1/3
_ wp _ (6m“N

so that modes of wave vector larger thaDrare not allowed. This is due to the fact that the
number of modes with < q, exhausts the number of degrees of freedom of ttieda
The thermal energy is given by Eq. (5.12), so that

Vw? hw
2m2p3 o(hw/kp) _4q

E=3["dw

580

where a factor of 3 is due to the assumption thatghonon velocity is independent of
polarization. This leads to

97



XD
3Vh [@p w3 3VkaT* x3
T on2y3 fo w o (ho/kgT) — 1 2712173713,[ Xox _1 (5.31)
0
— hw
Wherex = /kBT and
hwp Op
Xp = = 5.32
b [k, T /7 (5.32)
The latter expression defines the Debye temperature
o (en2n\ Y3
0p = 1 (%7) 6.33)
The total phonon energy is then
_ T 3 Xp x3
E = 9NkyT (g) [P dx—2— (5.34)

whereN is the number of atoms in the crystal anpe HD/T :

The heat capacity is most easily found by diffeegimtg the middle expression of Eq.(5.31)
with respect to the temperature so that

hw
_ 3Vh? wp wte /kBT . T\3 xp xheX
VT 2n2p3kgT2 fo w—hw/ > = 9Nkp (%) fo dx e —1)? (5.35)
<e kpT _1>
In the limit T>>0, we can expand the expression under the integthbhatainC, = 3Nkjg.

This is exactly the classical value for the hegiacity, which is known from the elementary
physics. Recall that, according to the elementaeyrhodynamics the average thermal energy
per a degree of freedom is equakte= kzT . Therefore for a system bfatomsE =3NkgT
which results irC,, = 3Nkpg. This is known as thBulong-Petitlaw.

Now consider an opposite limit, i.8<<0. At very low temperatures we can approximate
(5.34) by letting the upper limit go to infinity. &\bbtain

3 o x3 3n4 t 3
E= 9NkBT(%) [ dx = 9NkBT(%) L= %NkBT(%) (5.36)
and therefore
12m4 T\3
C, =2 NkyT (—) (5.37)
5 6p
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We see that within the Debye model at low tempeeatuhe heat capacity is proportional
toT3. The cubic dependence may be understood fronotleving qualitative argument. At
low temperature, only a few modes are excited. &lags the modes whose quantum energy

fo is less tharkBT. The number of these modes may be estimated yirdya sphere in the

g-space whose frequengy-= h/kBT, and counting the number of points inside, as shiown

Fig. 5.3. This sphere may be called thermal spherein analogy with the Debye sphere
discussed above. The number of modes inside them#hesphere is proportional
to g3 ~w3~T3. Each mode is fully excited and has an averageggregjual tok T. Therefore

the total energy of excitation is proportionallty, which leads to a specific heat proportional
toT3, in agreement with Eq. (5.37).
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Fig.5.3: The thermal sphere (After Kittel, 1979)
3.2.2 Einstein model

Within the Einstein model the density of statespproximated by a delta function at some
frequencyw; i.e.

D(w) = N§(w — wg) 5.88)
whereN is the total number of atoms (oscillator@)g is known as the Einstein frequency.
The thermal energy of the system is then

_ 3NhwWE
E= e(hwg/kpT) _1

where a factor of 3 reflects the fact that theeethree degree of freedom for each oscillator.
The heat capacity is then

(5.39)

eh(uE/kBT

_ 0E _ hwg
Cy = (E)V = 3Nks e tomrirn ) (5.40

The high temperature limit for the Einstein modethe same as that for the Debye model,

i.e. C, = 3Nkg, which is the Dulong-Petit law. At low temperatsifreowever Eq.(5.40)
hwp

decreases a§,~ e *B T, while the experimental form of the phonon is knotw beT °as
given by the Debye model. The reason for this desament is that at low temperatures only
acoustic phonons are populated and the Debye nwdealich better approximation that the
Einstein model. The Einstein model is often usedgproximate the optical phonon part of
the phonon spectrur@oncluding our discussion about the heat capac#ynete that a real
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density of vibrational modes could be much more giozated than those described by the
Debye and Einstein models.

3.3 Thermal conductivity
When the two ends of a given sample material atevatdifferent temperatureé’,l and T2
(T2>T1), heat flows down the thermal gradient, i.e. frélhe hotter to the cooler end.

Observations show that theeat current density amount of heat flowing across unit area
per unit time) is proportional to the temperaturadient @7 /dx). That is,

. dT
= —K— 5.41
J ™ (5.41)
The proportionality constaid, known as thehermal conductivityis a measure of the ease
of transmission of heat across the bar (the mings & included to make a positive
quantity).

Heat may be transmitted in the material by severdependent agents. In metals, for
example, the heat is carried by both electronspdrmhons, although the contribution of the
electrons is much larger. In insulators, on theepthand, heat is transmitted entirely by
phonons, since there are no mobile electrons isetlsibstances. Here we consider only
transmission by phonons.

When we discuss transmission of heat by phononis, @onvenient to think of these as
forming a phonon gas. In every region of spaceettaee phonons traveling randomly in all
directions, corresponding to all tig&s in the Brillouin zone (BZ), much like the moléesiin

an ordinary gas. The concentration of phonons ettiiter end of the sample is larger and
they move to the cooler end. The advantage of ugirgggas model is that many of the
familiar concepts of the kinetic theory of gases @so be applied here. In particular,
thermal conductivity is given by

K = ngvl (5.42)

WhereCV is the specific heat per unit volume, v the velpdt the particle, andl its mean

free path In the present case, v ahtkefer, of course, to the velocity and the mean frath

of the phonon, respectively. The mean free pattefsied as the average distances between
two consecutive scattering events, so thatvt, wheret is the average time between
collisions which is calledollision timeor relaxation time

Let us give a qualitative explanation for Eq. (5.4Bor simplicity we consider a one-
dimensional picture, in which phonons can move aibng thex axis. We assume that a
temperature gradient is imposed along xhaxis. We also assume that collisions between
phonons maintain local thermodynamic equilibriuro; that we can assign local thermal
energy density to a particular point of the samp|&(x)]. The phonons which originate
from this point have this energy on average. Atvary pointx half the phonons come from
the high temperature side and half phonons commn filee low temperature side. The
phonons which arrive to this point from the highmpeerature side will, on the average, have
had their last collision at point-l, and will therefore carry a thermal energy density
E[T(x — 1)]. Their contribution to the thermal current densitypointx will therefore be the
%vE[T(x — 1)]. The phonons arriving atfrom the low temperature side, on the other hand,
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will contribute —%vE[T(x + 1)], since they come from the positivedirection and are
moving toward negative Adding these together gives

Jj = woE[r(x - 1] + woe[r(x + 1)] (5.43)

Provided that the variation in the temperature dkiermean free path is very small we may
expand this about the poixto find:

j=vig(-5) = voa (-5 (544

This result can be easily generalized to the tdieensional case. We need to replace v by
the x-componenv,, and then average over all the angles. S{mge = (v)) = (v7) 1/3 v?

. dE . . :
and since C, = gl the heat capacity we obtain,

j=icul(-5) (5.45)

where v is the phonon velocity.

Let us now discuss the dependence of the thermadlumtivity j on temperature. The
dependence (ﬁv on temperature has already been studied in dethile the velocity v is

found to be essentially insensitive to temperatliree mean free pathdepends strongly on
temperature. Indeed,is the average distance the phonon travels betweensuccessive
collisions. Three important mechanisms may berdisished: (a) The collision of a phonon
with other phonons, (b) the collision of a phonothwmperfections in the crystal, such as
impurities and dislocations, and (c) the collisaira phonon with the external boundaries of
the sample.

Consider a collision of type (a). The phonon-phosoattering is due to thenharmonic
interaction between them. When the atomic displardésnbecome appreciable, this gives
rise to anharmonic coupling between the phononssieg their mutual scattering. Suppose
that two phonons of vectoq:‘i andq2 collide, and produce a third phonon of vecﬂgrSince

momentum must be conserved, it follows hqlgat q,+q, Although bothql andqzlie inside

the Brillouin zone Brillouin zones are primitive cells that arise ihettheories of
electronic levels - Band Theoryjé may not do so. If it does, then the momentum of the

system before and after collision is the same. Suphocess has no effect at all on thermal
resistivity, as it has no effect on the flow of thieonon system as a whole. It is called a
normal process. By contrast, id']3 lies outside the BZ, such a vector is not physycall

meaningful according to our convention. We reduds its equivalenq4inside the first BZ,
whereq3= q4+ G andG is the appropriate reciprocal lattice vector. Asegn from Fig.5.6,
the phonorq4 produced by the collision travels in a directiomast opposite to either of the
original phononsq1 andqz. The difference in momentum is transferred todémeter of mass

of the lattice. This type of process is highly @fnt in changing the momentum of the
phonon, and is responsible for phonon scatteringigtt temperatures. It is known as the
umklapp proceserman for "flipping over").
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Brillouin
Zone

Fig.5.6:Umklapp process(After Kittel, 1979)

Phonon-phonon collisions become particularly imgatrtat high temperature, at which the
atomic displacements are large. In this regionctireesponding mean free path is inversely
proportional to the temperature, thatlis; 1/T. This is reasonable, since the largés, the
greater the number of phonons participating inctblésion.

The second mechanism (b) which results in phonaitesting results from defects and
impurities. Real crystals are never perfect andetlage always crystal imperfections in the
crystal lattice, such as impurities and defectsictviscatter phonons because they partially
destroy the perfect periodicity of the crystal.u&ty low temperature (say beld°K), both
phonon-phonon and phonon-imperfection collisiongob®e ineffective, because, in the
former case, there are only a few phonons preseut,n the latter the few phonons which
are excited at this low temperature are long-wangtle ones. These are not effectively
scattered by objects such as impurities, whichnameh smaller in size than the wavelength.
In the low-temperature region, the primary scattgmechanism is the external boundary of
the specimen, which leads to the so-caléerk or geometrical effectsThis mechanism
becomes effective because the wavelengths of tlutedx phonons are very long -
comparable, in fact, to the size of the specimére mean free path herelis L, whereL is
roughly equal to the diameter of the specimen,iatiderefore independent of temperature.

4.0 Conclusion

There are two contributions to thermal propertiésalids: one comes fromphonons(or
lattice vibrations) and another froslectrons.In most solids, the energy given to lattice
vibrations is the dominant contribution to specifeat.

50  Summary
» Lattice heat capacity is the contribution of phonon tot lvapacity
« Debye model at low temperature is proportionalto T
» Dulong Petit law results iiv = 3Nk for N atoms
» Einstein model is used to approximate the optieal pf the phonon spectrum
* Changing the momentum of the phonon which is nesipte for phonon scattering at
high temperatures is known as timaklapp process
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6.0

7.0

Tutor marked assignment

Q1. Using the dispersion relation for the monatomiedinlattice oN atoms with
nearest neighbor interactions, show that the deosiibrational modes is given by

2N 1 . .
D(w) = ——=—= Werewy, is the maximum frequency

w2, —w?

Q2. Inthe Debye approximation, show that the meanreqdiaplacement of an
atom at absolute zero is

3hw? . . . :
(R?) = ——"D_ \where v is the velocity of souncEstimate this value
8m2pv2
how? 3
for Cu @) = k—D = 343K, p = 8920 kg/m, v = 3570 m/s).
B
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1.0 Introduction

The free electron theory of metals refers to thsega which the atomic valance electrons
are treated as if they are free rather than bemugd to the lattice points. Our assumption
amounts to supposing that the electrons move inifarm potential rather than the true

periodic potential provided by the positive ionfieTbasic assumption of the theory is
that a metal is equivalent to a gas of free elastio an otherwise empty box.

2.0  Objective
* To revise the free electron gas (FEG) model andmagsons made.
* To understand how this simple model can be usedetive equations heat
capacity of the free electron.

* To employ the time-independent Schrodinger equdtiaterive the electron wave
functions and energies.

3.0 Definition
A free electron model is the simplest way to repneéshe electronic structure of metals.

3.1 Free electron model

A free electron model is the simplest way to repnéshe electronic structure of metals.
Although the free electron model is a great ovepdifimation of the reality, surprisingly
in many cases it works pretty well, so that itldeato describe many important properties
of metals. According to this model, the valencectets of the constituent atoms of the
crystal become conduction electrons and travelyfrdfwoughout the crystal. Therefore,
within this model we neglect the interaction of doation electrons with ions of the
lattice and the interaction between the conducsiectrons. In this sense we are talking
about afree electron gasHowever, there is a principle difference betwékea free
electron gas and ordinary gas of molecules. Figtctrons are charged particles.
Therefore, in order to maintain tlolarge neutralityof the whole crystal, we need to
include positive ions. This is done within tledly mode] according to which the positive
charge of ions is smeared out uniformly throughbaetcrystal. This positive background
maintains the charge neutrality but does not exeytfield on the electrons. lons form a
uniform jelly into which electrons move. Second omjant property of the free electron
gas is that it should meet the Pauli Exclusion ddpie, which leads to important
consequences.

3.2 One-dimension

We consider first a free electron gas in one dinmensWe assume that an electron of
massm is confined to a lengtliL by infinite potential barriers. The wave function

Y, (x) of the electron is a solution of the Schrédingearatipn, Hy (x) = Ey(x) wherekEn

is the energy of electron in the orbital. Sinceam assume that the potential lies at zero,
the HamiltoniarH includes only the kinetic energy so that

Hpn(0) = L9, (0) = Ly (0 = Epu() 11
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Note that this is a one-electron equation, whichamsethat we neglect the electron-
electron interactions. We use the teorbital to describe the solution of this equation.
Since the is a continuous function and is equal to zero bdyte lengthL, the
boundary conditions for the wave function are . The solution of Eq.
(1.1) is therefore

1.2

whereAis a constant andis an integer. Substituting (1.2) into (1.1) weaibtthe
eigenvalues

These solutions correspond to standing waves wilifferent number of nodes within
the potential well as is shown in Fig.1.1

———Energy levels
— Wavelunctions,

relative scale

1
I

>
3

a

l

i
m

Eoergy in units =
Cuantum number, n

Fig.1.1First three energy levels and wave-functions ata tlectron of masa
confined to a line of length.(Kittel, 1979).

Now we need to accommodatevalence electrons in these quantum states. Acaptdin
the Pauli Exclusion Principle no two electrons bame their quantum number identical.
That is, each electronic quantum state can be aadupy at most one electron. The
electronic state in a 1D solid is characterizedvioy quantum numbers that areandmns,
wheren is the positive integer anmts is the magnetic quantum number such timat +%
according to spin orientation.

Therefore, each orbital labeled by the quantum rermb can accommodate two
electrons, one with spin up and one with spin dowentation.

Let denote the highest filled energy level, where veatdilling the levels from the
bottom(n = 1) and continue filling higher levels with electsoantil allN electrons are
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accommodated. It is convenient to suppose khigtan even number. The condition

= N determines the value oh for the uppermost filled level. The energy of thghest
occupied level is called tieermi energy . For one -dimensional systemgfelectrons
we can define , using Eq. (1.3),

In metals the value of the Fermi energy is of thtieoof 5 eV. The ground state of tRe
electron system is illustrated in Fig.1.2 a: Ak thlectronic levels are filled up to the
Fermi energy. All the levels above are empty.

f(E)

ol

(a) &)

Fig. 1.2(a) Occupation of energy levels according to thaliPa
exclusion principle, (b) The distribution functi(f), at T = 0°K
andT> 0°K.

3.3 Fermi distribution

This is the ground state of tiNelectron system at absolute zero. What happei if t
temperature is increased? The kinetic energy of dleetron gas increases with
temperature. Therefore, some energy levels becanga@d which were vacant at zero
temperature, and some levels become vacant whioh egeupied at absolute zero. The
distribution of electrons among the levels is ulgualescribed by thedistribution

function which is defined as the probability that the lefzels occupied by an
electron. Thus if the level is certainly empty,rthe 0, while if it is certainly full,
then In general, has a value between zero artg. unfollows from

the preceding discussion that the distribution fiams for electrons af = 0°K has the
form
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(1, E<Ej
f(E) = {O,E<EF

That is, all levels belovi are completely filled, and all those abdyeare completely
empty. This function is plotted in Fig. 1.2(b), whishows the discontinuity at the Fermi
energy.

When the system is heate@>0°K), thermal energy excites the electrons. Howeaér
the electrons do not share this energy equallywasld be the case in the classical
treatment, because the electrons lying well belbes Fermi levelEr cannot absorb
energy. If they did so, they would move to a higkmrel, which would be already
occupied, and hence the exclusion principle woeldiiblated. Recall in this context that
the energy which an electron may absorb thermallgfithe ordekzT (= 0.025eV at
room temperature), which is much smaller thanthis being of the order of 5 eV.
Therefore only those electrons close to the Feenellcan be excited, because the levels
aboveE are empty, and hence when those electrons movehighar level there is no
violation of the exclusion principle. Thus only sieeelectrons which are small fraction of
the total number - are capable of being thermallgited. The distribution function at
non-zero temperature is given by thermi distribution functionThe Fermi distribution
function determines the probability that an orbidélenergyE is occupied at thermal
equilibrium.

(1.5)

1
f(E) = o (E— 0)/kpT) 41

(1.6)

This function is also plotted in Fig.1.2(b), whishows that it is substantially the same as
the distribution afl = 0°K, except very close to the Fermi level, wheoene of the
electrons are excited from belok to above it. The quantity is called the chemical
potential. The chemical potential can be determimed way that the total number of
electrons in the system is equaNoAt absolute zer@l = Ef.

3.3  Three — dimension
The Schrodinger equation in the three dimensidkestghe form

h? (62 a2

HP() = L) = - V@) = — 0 (o + o+ 22 ) (@) = () (1.7)

2m

If the electrons are confined to a cube of edgine solution is the standing wave

_ . TNy . w . nny
Yyr)=A4 sm( - x) sm( - y) sm( - z) (1.8)
wheren, n, , andn, are positive integers.

In many cases, however, it is convenient to intoedperiodic boundary conditions, as
we did for phonons. The advantage of this desompis that we assume that our crystal
is infinite and disregard the influence of the oubeundaries of the crystal on the

109



solution. We require then that our wave functiorp&iodic inx, y, andz directions
with periodL, so that (1.9)

Yx+ Ly z) =9y 2),

and similarly for they andz coordinates. The solution of the Schrédinger equdq.
(1.7) which satisfies these boundary conditionsthagorm of the traveling plane wave:

Ui (r) = Aexp(ik.7), (1.10)

provided that the component of the wave vektare determined from

wheren, , n, andn, are positive or negative integers.

If we now substitute this solution to Eq. (1.7) ekgain for the energies of the orbital
with the wave vectok

212 2
E, = Rk _ :_m(k’z‘ + k2 +k§) (1.12)

2m

The wave functions equations (1.10) are the eigentions of the momentum
P = —ihV this can be readily seen by differentiating (1.10):

pY (r) = =iV, (r) = kY, (r) (1.13)

The eigenvalues of the momentunkis. The velocity of the electron is defined by p
/Im= hk /m.

In the ground state a systemMElectrons occupies states with lowest possiblegseer
Therefore all the occupied states lie inside a sp&cekz. The energy at the surface of
this sphere is the Fermi eneflyy The magnitude of the wave vectey and the Fermi
energy are related by the following equation:

h2k?
E. = F 1.14
F= (1.14)

The Fermi energy and the Fermi wave vector (monmepare determined by the number
of valence electrons in the system. In order td fime relationship betwedsandk, we
need to count the total number of orbitals in aesplof radiust; which should be equal
to N. There are two available spin states for a giatrogk,, k, andk,. The volume in

thek space which occupies this state is equédtg/ L)3. Thus in the sphere é?”"f"/3)
the total number of states is

47‘tk§~/3_ Vo, 3

Ly s F =N (1.15)
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where the factor 2 comes from the spin degeneidwn

1/3

kF=(3”2N) (1.16)

%4

this depends only of the particle concentration.db&in then for the Fermi energy:

2/3

h (3m?N
EF=%( v ) (1.17)
and the Fermi velocity
B /3m2N\ Y3 (1.18)
Vp = —
Fom\ v

An important quantity which characterizes electegmioperties of a solid is thtensity of
states which is thenumber of electronic states per unit energy rane find it we use
Eq.(1.17) and write the total number of orbitalenérgy< E :

N(E) = = (ﬂ)g/2 (1.19)

3m2 \ h2

The density of states is then

3/2
D(E) = = #(Zh—’?) E1/? (1.20)
or equivalently
3N
D(E) = Y= (1.21)

So within a factor of the order of unity, the numbé states per unit energy interval at
the Fermi energ¥ (Er), is the total number of conduction electrons didithy the Fermi
energy.

The density of states normalized in such a wayttietntegral

Ep

N = f D(E)dE (1.22)

0
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gives the total number of electrons in the sys#&tmon-zero temperature we should take
into account the Fermi distribution function sottha

(o]

N = f D(E)f(E)dE (1.23)

0
This expression also determines the chemical patent
3.5  Heat capacity

The question that caused the greatest difficultthan early development of the electron
theory of metals concerns the heat capacity of dbeduction electrons. Classical
statistical mechanics predicts that a free partstieuld have a heat capacity3gfi;,
where kg is the Boltzmann constant. N atoms each give one valence electron to the
electron gas and the electrons are freely molilen the electronic contribution to the
heat capacity should E,éZNkB, just as for the atoms of a monatomic gas. But the
observed electronic contribution at room tempegatigr usually less than 0.01 of this
value. This discrepancy was resolved only upondiseovery of the Pauli Exclusion
Principle and the Fermi distribution function. Whea heat the specimen from absolute
zero not every electron gains an energyzTas expected classically, but only those
electrons, which have the energy within an eneapgek;T of the Fermi level, can be
excited thermally. These electrons gain an enesch is itself of the order &;T, as

in Fig. 3. This gives a qualitative solution to theoblem of the heat capacity of the
conduction electron gas. N is the total number of electrons, only a fractiérih@ order

of kzT/E; can be excited thermally at temperatlirebecause only these lie within an
energy range of the order &fT of the top of the energy distribution. Each of thes
Nkg T/EF electrons has a thermal energy of the ordéetzdf. The total electronic thermal

kinetic energyU is of the order ot/ = (NkB T/EF) k,T. The electronic heat capacity is
Col =j—’T‘ = Nkg (kB T/EF)and is directly proportional toT, in agreement with the
experimental results discussed in the followingieac At room temperatur€ is smaller
than the classical valueNkj by a factor 0.01 or less, f@E~5 x 10%*k

We now derive a quantitative expression for theteb@ic heat capacity valid at low
temperaturegz T < Er. The total energy of a systemNElectrons at temperatufas

[oe]

U= f ED(E)f(E, T)dE (1.24)
0
Where f E, T) is the Fermi distribution function arial (E) is the density of states. The
heat capacity can be found by differentiating #ugiation with respect to temperature.
Since only the distribution function depends ongenature we obtain
_du df(E,T) p
et = gr = j ED(E)T E (1.25)

0
It is more convenient to represent this result diferent form:

C
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1.26
el—j(E Eon@® LD o (1.26)

Eq. (1.26) is equwalent to Eq. (1.25) due to thet fvhich follows from Eg. (1.22):
AN [ df(E,T) (1.27)
0=Ep—m = EFf D(E)TdE

Since we are interested only temperatures for whigh «< Erthe derivativedf /dTis
large only at the energies which lie very closah® Fermi energy. Therefore, we can
ignore the variation ob (E) under the integral and take it outside the irdadrat the
Fermi energy, so that

d
Cot = DEp) f (E — gy LET) (E D 4k (1.28)

We also ignore the variation of the chemical po&gnwith temperature and assume
thaty = Er , which is good approximation at room temperature lzelow. Then

df(ET) _ E-Ep el(E-EF)/kpT]

= 5 (2.29)
dT kg T? [e[(E—EF)/kBT]]
EqQ. (1.28) can then be rewritten as
w (E—Ep)?  e(E~Ep/kpT) x?(kpT)® _ e*
Cer = D(EF) [, - >dE = D(Ep) [ Ep/ksT k;z G dx (1.30)

kpT? [e(E— Ep)/kBT_I_l]

Taking into account thaz>>k; T, we can put the low integration limit to minusfirity
and obtain

2

For a free electron gas we should use Eq. (1.2Xh&odensity of states to finally obtain

2
Cop = %NkB T/TF’ (1.32)

where we defined the Fermi temperatiize= i—F . This is similar to what we expected to
B

obtain according to the qualitative arguments giwerthe beginning of this section.
Experimentally the heat capacity at temperatureschmbelow both the Debye
temperature and the Fermi temperature can be eageskin the form:
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C = Cel + Cph = aT + ﬁTB (133)

The electronic term is dominant at sufficiently ltemperatures. The constaatand
[3 can be obtained by fitting the experimental data.

4.0 Conclusion

The classical free electron theory is an attempégard the valence electrons in metal as
the non-interacting particles of an ideal gas. ©hé difference between this gas of

electrons and any other ideal gas defined by kint#teory is that the particles are

charged.

5.0 Summary
. The energy of the highest occupied level is cated-ermi energy
. Variouselectronics states of the crystals can be obtaimeadigh the application
of Schrodinger’s wave equation.
. The total energy of a systemléfelectrons at temperatufdas

[ee]

U= f ED(E)f(E, T)dE

0

6.0  Tutor marked assignment

Q1. Consider the free electron energy bands of an fgsta lattice in the
reduced zone scheme in which k¥ are transformed to lie in the first
Brillouin zone. Plot roughly in the [111] directidhe energies of all bands
up to six times the lowest band energy at the Zooendary atk =
(2n/a)(Y2,%2,%2). Explain what happens with these bandké presence of
a weak crystal potential.

Q2. Suppose that the crystal potential in a one-dinogvagilattice of lattice
constanta is composed of a series of rectangular wells whigihound the
atom. Suppose that the depth of each w&ﬂoiand its widtha/5.

a. Calculate the values of the first three energpsg Compare the
magnitudes of these gaps.
b. Evaluate these gaps for the c:aselocnE 5eV anda = 4A.

7.0 Further reading/ References

Kittel, C., Introduction to solid state physics, lé¥i Eastern Limited, 1979
Kachhava, C.M., Solid State physics, Tata McGraWiblishing Company
Limited, New Delhi, 1992.

W. A. Wooster A textbook on crystal physicSambridge University Press,
Cambridge, 1938.
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1.0 Introduction

In this unit we are going to study how the cladsfoee electron theory developed by
Lorentz, Drude and Debye uses kinetic theory toutate the transport properties of the
free electron of a gas including electrical andrtred conductivity.

2.0  Objective

* To explain the Drude model of the thermal conduisti of solid

* To explain motion in Magnetic field in terms of €gtron resonance and Hall Effect

3.0 Definition
Electronic transfer is the determination of therthe conductivity of electrons treated as
classical particles.

3.1 Drude model

The simplest treatment of the electrical conduttiwas given by Drude. There are four
major assumptions within the Drude model.

i. Electrons are treated as classical particles wighiinee-electron approximation.
Thus, in the absence of external electromagnetiddieach electron is taken to
move uniformly in a straight line, neglecting tmeractions with other electrons
and ions. In the presence of external fields edeltren is taken to move
according to Newton's laws of motion.

ii.  Electrons move free only between collisions witatring centers. Collisions, as
in kinetic theory, are instantaneous events thatgly alter the velocity of an
electron. Drude attributed them to the electroradtedng by ion cores. However,
as we will see later, this is not a correct pictofeslectron scattering on ordered
periodic structures. A particular type of scattgroenters does not matter in the
Drude model. An understanding of metallic conduttian be achieved by simply
assuming that there somescattering mechanism, without inquiring too closely
into just what that mechanism might be.

iii.  An electron experiences a collision, resulting imadrupt change in its velocity,
with a probability per unit timk/z. This implies that the probability of an
electron undergoing a collision in any infinitesiniane interval of lengthdt is
justdt/z. The timet is therefore an average time between the twoetutive
scattering events. It is known as, thalision time(relaxation time), it plays a
fundamental role in the theory of metallic condowti It follows from this
assumption that an electron picked at random atv@ngmoment will, on the
average, travel for a time t before its next cualhs The relaxation time t is taken
to be independent of an electron’s position anocvsi

iv.  Electrons are assumed to achieve thermal equilibnvith their surroundings
only through collisions. These collisions are assdrto maintain local thermo-
dynamic equilibrium in a particularly simple wayminediately after each
collision an electron is taken to emerge with sogy that is not related to its
velocity just before the collision, but randomlyredited and with a speed
appropriate to the temperature prevailing at thacel where the collision
occurred.
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Now we consider the application of the Drude mddeklectrical conductivity in a
metal. According t@dOhm's lawthe current flowing in a wire (Fig 2.1) is proportional
to the potential drofy=V2-V1 along the wireV = IR, whereR, the resistance of the
wire, depends on its dimensions. It is much moreveaient to express ti@hm's lawin
a form which is independent of the dimensions @& wire because these factors are
irrelevant to the basic physics of the conductioa &éfine the conductivity which is the
proportionality constant between the current dgrjsénd the electric fiel& at a point
in the metal:

v, I Vi
P = )
A - L
L

Fig. 2.1: Current flowing in a wire (After
www.pa.uk.edu/kwng.phy/525/lec/lecturg-8

j =oE (2.1)

The current density is a vector, parallel to the flow of charge, whosagnitude is the
amount of charge per unit time crossing a unit @@@endicular to the flow. Thus if a
uniform current flows through a wire of length and cross-sectional aréathe current
density will bej =/, Since the potential drop along the wire willbe= EL Eq. (2.1)
givesl/A=oV/L, and hencdk = L/0A =pL/A, here we have introduced resistivgyl/o.
Unlike R, 0 andp is a property of the material, since it does ngtestel on the shape and
size. Now we want to expressis terms of the microscopic properties using thader
model. Ifn electrons per unit volume all move with velocitythen the current density
they give rise to will be parallel o Furthermore, in a timét the electrons will advance
by a distancevdt in the direction of v, so that(vdt)A electrons will cross an area
perpendicular to the direction of flow. Since eabtdctron carries a charge, the charge

crossingA in the timedt will be - nevAdt and hence the current density is
Jj = nev. (2.2)

At any point in a metal, electrons are always mguim a variety of directions with a
variety of thermal energies. The net current dgnsithus given by Eqg. (2.2), whevas
the average electronic velocity drift velocity. In the absence of an electric field,
electrons are as likely to be moving in any onedtion as in any othey, averages to
zero, and, as expected, there is no net electrremmudensity. In the presence of a field
E, however, there will be a drift velocity directegposite to the field (the electronic
charge being negative), which we can compute #&»ael Consider a typical electron at
time zero. Let be the time elapsed since its last collision. #kgity at time zero will

be its velocity, immediately after that collision plus the additbrelocity — eEt/m it
has subsequently acquired. Since we assume tleéenon emerges from a collision in
a random direction, there will be no contributionh v, to the average electronic
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velocity, which must therefore be given entirely thye average of However,
the average dfis the relaxation tim&. Therefore

(2.3)
2.4
£ (2.4)
The conductivity is, therefore, given by
(2.5)

We see that the conductivity is proportional to tensity of electrons, which is not
surprising since the higher the number of carriéhe, more the current density. The
conductivity is inversely proportional to the masecause the mass determine the
acceleration of an electron in electric field. Tgreportionality tot follows because is
the time between two consecutive collisions. Theeefthe larger is, the more time for
electron to be accelerated between the collisioms @nsequently the larger the drift
velocity. The values of relaxation time can be ol#d from the measured values of
electrical conductivity. For example at room tengpere the resistivity of many metals
lies in the range of 1-1uQcm. The corresponding relaxation time is of theeord
of . In this discussion of electrical conductivityewreated electrons on a
classical basis. How are the results modified witenquantum mechanics is taken into
account? Let us refer to Fig.2.3. In the absencanoélectric field, the Fermi sphere is
centred at the origin (Fig. 2.3a). The various tetets are all moving - some at very high
speeds - and they carry individual currents. Bet tihtal current of the system is zero,
because, for every electron at veloaitihere exists another electron with velociyand
the sum of their two currents is zero. Thus thaltourrent vanishes due to pair wise
cancellation of the electron currents.

i Displaced T
Fermi
Ephare

s

| “- ] |
= e ./Jz" ;
N :.a-*’,.f/

(Y] {h}
Fig.2.2:(a) The Fermi sphere at equilibrium, (b) Displaceta# the

Fermi sphere due to an electric field (After
www.pa.uk.edu/kwng.phy/525/lec/lectur-8

118



The situation changes when a field is appliedh# field is in the positive-direction,
each electron acquires a drift velocity, as givenHg. (2.2). Thus the whole Fermi
sphere is displaced to the left, as shown in Rg(B). Although the displacement is very
small and although the great majority of the etawdrstill cancel each other pair wise,
some electrons - in the shaded crescent in theefigemain uncompensated. It is these
electrons which produce the observed current. Tdrg small displacement is due to a
relatively small drift velocity. If we assume thile electric field is 0.1V/cm, we obtain
the drift velocity of 1cm/s, which is by 8, ordenmsmagnitude smaller the Fermi velocity
of electrons.

Let us estimate the current density. The fractioh electrons which remain
uncompensated is approximatelyvr. The concentration of these electrons is therefore
n(v/vg)and since each electron has a velocity of appraeiyng., the current density is
given by

j= —en(v/vp)Vp = —nev (2.6)

This is the same expression we obtained beforerefdre, formally the conductivity is
expressed by the same formula (2.5). However, cheahbpicture of electrical conduction
is thus quite different from the classical onetHa classical picture, we assumed that the
current is carried equally by all electrons, eadvimg with a very small drift velocity.

In the quantum-mechanical picture the current i@ only by very small fraction of
electrons, all moving with the Fermi velocity. Tredaxation time is determined only by
electrons at the Fermi surface, because only tles&ons can contribute to the transport
properties. Both approaches lead to the same réstithe latter is conceptually the more
accurate. Since only electrons at the Fermi suréac¢ribute to the conductance, we can
define the mean free path of electron$ asrv,. We can make an estimate of the mean
free path for metal at room temperature. This esingives a value of 100A. So it is of
the order of a few tens inter atomic distanceslomt temperatures for very pure metals
the mean free path can be made as high as a few cm.

3.2 The origin of collision time

We see that between two collisions, the electravels a distance of more than 20 times
the inter atomic distance. This is much larger tbae would expect if the electron
really did collide with the ions whenever it passed them. Tailadox can be explained
only using quantum concepts according to whichlaot®n has a wave character. It is
well known from the theory of wave propagation ieripdic structures that, when a
wave passes through a periodic lattice, it con8npeopagating indefinitely without
scattering. The effect of the atoms in the latiecéo absorb energy from the wave and
radiate it back, so that the net result is thatwhge continues without modification in
either direction or intensity. Therefore we sed,ttighe ions form a perfect lattice, there
iIs no collision at all - that id, = o - and hencea = o, which in turn leads to infinite
conductivity. It has been shown, however, that dhservedl is about10? A. The
finiteness ofo must thus be due to the deviation of the latticenfiperfect periodicity;
this happens either because of (1) thermal vibmadibthe ions, or because of (2) the
presence of imperfections or foreign impurities.
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In order to consider their contribution we examthe temperature dependence of the
electrical conductivity. The electrical conductiiaf a metal varies with temperature in a
characteristic manner. This variation is usuallscdssed in terms of the behavior of the
resistivity p versusT. Figure 2.3 shows the observed curve for NaTAt 0°K, p has a
small constantvalue; above thatp increases withT, slowly at first, but afterward
p increases linearly witdl. The linear behavior continues essentially uritd melting
point is reached. This pattern is followed by mwmstals, and usually room temperature
falls into the linear range.
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Fig. 2.3The normalized resistivity (T)/p (290°K) versud for Na in the
low-temperature region (a), and at higher tempeeat(b) (After Kittel,
1979)

We want to explain this behavior in terms of theid® formula. Recalling that
we have

— (2.7

As we have discussed earlier Which enters equation (2.7), is the probabilityttoé

electron scattering per unit time. Thus, if , thee &lectron undergoes
collisions in one second. We found that the electindergoes collisions only because
the lattice is not perfectly regular. We group tewiations from a perfect lattice into
two classes. a) Lattice vibrations (phonons) ofitims around their equilibrium position
due to thermal excitation of the ions. (b) All gtamperfections, such as impurities or
crystal defects. Of this latter group we shall takgurities as an example. The total
probability for an electron to be scattered in & time is the sum of the probabilities of
scattering by phonons and by impurities. This isabse these two mechanisms are
assumed to act independently. Therefore we ma writ

(2.8)
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Where the first term on the right is due to impastand the second is due to phonons.
The scattering by impurities is essentially indejent of temperature, whereas the
scattering by phonons is temperature dependentubedhe number of phonons increases
with temperature. When equation (2.8) is substitutéo equation (2.7), we readily find

m

m
p = pi+pph=72'fi+m (2.9)

We see thap has split into two terms. A terp} due to scattering by impurities, which is
independent ofT, is called theresidual resistivity. Another term p,,(T)is due to
scattering by phonons; hence it is temperature ribpe. Sometimes it is called the
lattice resistivity

At very low T, scattering by phonons is negligible because thglitudes of oscillation
are very small; in that regiar},, > oo, p,,, > 0and hence = p; is a constant. This is in
agreement with Fig.2.3. AE increases, scattering by phonons becomes moreieffec
andppr(T),) increases; this is why increases. Whem becomes sufficiently large,
scattering by phonons dominates andppn(T). The statement thai can be split into
two parts, is known as thdatthiessen ruleThis rule is embodied in (2.9). In general, the
Matthiessen rulgredicts that if there are two distinguishable searof scattering (like
in the case above — phonons and impurities) thetgty is the sum of the resistivities
due to the first and the second mechanism of soajteThe Matthiessen rule is sort of
empirical observation which can be used for a d¢male understanding of the
contribution from different scattering mechanisrigwever, one must always bear in
mind the possibility a failure of this rule. In paular, in the case when the relaxation
time depends on the wave veckoithe Matthiessen rule becomes invalid.

Now let us derive approximate expressionstf@andt,; using arguments from the
kinetic theory of gases. Consider first the catlisof electrons with impurities. We write

7, = &L (2.10)

VF

Wherel; is the mean free path for collision with impuritiés order to find the mean free
path we shall assume, for simplicity, that the ismh is of the hard-spheres (billiard-
ball) type and introduce thseattering cross sectioof an impurityZi which is the area an
impurity atom presents to the incident electronef,hwe can argue that the product of
the mean free path and the cross section of implifit, is equal to the average volume
per impurity,l/nl,, wheren; is the impurity concentration, i.e.

LY = i (211
and therefore

[ = — (212)
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The scattering cross secti@nis of the same magnitude as the actual geometieal of
the impurity atom. That i< ~ IAz Calculations of the exact value Dfrequire quantum
scattering theory. By substituting Eqgs. (2.12) Bog. (2.10) into (2.9), we find

mvg

ne?

pi =

As expectedp; is proportional ta; the concentration of impurities. Calculatipg, is
much more difficult, but equations similar to (21 Hhd (2.12) still hold. In particular,
one may write
1 (2.14)
N2,

Iph =

wheren, is the concentration of the host atoms in thedattand>ais the scattering cross
section per atom. We should note here thabas no relation to the geometrical cross
section of the atom. Rather it is the area presebyethe thermally fluctuating atom to
the passing electron. Suppose that the distanckewéation from equilibrium i, then
the average scattering cross section is

Z x (x2) (2.15)

where(x?) is the average of>. We can easily estimate this value at high tenpess,
when the classical approach is valid. Since thés@harmonic oscillator, the val{e?)
is proportional to the average of its potential rggeis equal to half the total energy.
Thus,
2y kB

Ya X (x%) T (2.16)
whereC is inter atomic force constant introduced earlimt e used the formula for the
energy of a classical oscillator. We see theretioae at high temperatures the resistivity
is linear inT,

mvpn, kg (2.17)

OC —_—
Poh ne? 2C
which is in agreement with experiment.
In the low-temperature range the lattice resistivaries with temperature in a different

way. Using the Debye model at low temperature ramgecan find thamph~T5.

3.3  Thermal conductivity

When the ends of a metallic wire are at differemyperatures, heat flows from the hot to
the cold end. The basic experimental fact is that lteat current densityy i.e. the
amount of thermal energy crossing a unit area petr time is proportional to the
temperature gradient
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— (2.18)

whereK is the thermal conductivity. In insulators, heatasried entirely by phonons, but
in metals heat may be transported by both electrand phonons. The thermal
conductivityK is therefore equal to the sum of the two contrifmsi

(2.19°

where and  refer to electrons and phonons, respectively. Istmeetals, the
contribution of the electrons greatly exceeds tiidhe phonons, because of the great
concentration of electrons. Typically

The physical process by which heat conduction tpkese via electrons is illustrated in
Fig.2.4. Electrons at the hot end (to the leftyétan all directions, but a certain fraction
travel to the right and carry energy to the cold.eBimilarly, a certain fraction of the
electrons at the cold end (on the right) travethi left, and carry energy to the hot end.
Since on the average electrons at the hot end are emergetic than those on the right, a
net energy is transported to the right, resultingaicurrent of heat. Note that heat is
transported entirely by electrons having the Feenargy, because those well below this
energy cancel each other's contributions.

To evaluate the thermal conductivity quantitatively, we use the formula

here s the electronic specific heat per unit volumés the Fermi velocity

of electrons] is the mean free path of electrons at the Fermiggn&Jsing expression for
the heat capacity derived earlier, we find

o (2.20)

Noting that and that we can simplify this expression firto
(2.21)

This expresses thermal conductivity in terms ofdleetronic properties of the metal.
Many of the parameters appearing in the expregsiok were also included in the

expression for electrical conductivityRecalling that we find
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We see from here that the ratio of the thermal ootidty to the electrical conductivity
is directly proportional to the temperature. Thlisalled theNiedemann-Franz lawlhe
constant of proportionality, which is called the Lorentz number, is independdérthe
particular metal. It depends only on the univecsalstantscz ande, should be the same
for all metals. The Lorentz number numerical valu@.4s x 10~ 8WQ/K?. This
conclusion suggests that the electrical and thegoatluctivities are intimately related,
which is to be expected, since both electrical #twedmal current are carried by the same
agent: electrons.

Worked example
Solid Ar has anfcc structure with cubic lattice constamt= 5.264, atomic mass
mur = 6.67 X 1072 kg and a Debye temperatutg = 92°K.

a) Estimate the phonon velocity using the Young moslutd Ar, C;; = 1.6 X
10°N /m?2.

b) Using the expressiol = éCvl in which C is the phonon heat capacity per unit
volume. Find the thermal conductivity, K (in unitjon~1s1K~1) of a 1 mm?3

crystal of Ar at1°K, assuming that phonon scattering occurs only at th
boundaries of the sample.

Solution:
a) The phonon velocity is estimated from the velooitgound which is

v = Cll/ = a3C11/ since infcc structure there are 4 atoms in a cubic
- p- dmyp

m 4m
=—, then
3 1 ]
a /4 a3

b= \/5.263 x 10739 X 1.6 X 109Nm?

unit cell and henceg =

~ -1
/4% 6.67 x 10-26kgm3 ~ 934ms

b) SinceT = 1°K « 8, = 92°K, we can use the low temperature approximation
for heat capacity. Recall Eq.(5.37) in Module 2it Gnthe heat capacity of a solid
which contains N atoms is given,

12m? T
o= =5~k 5]
Dividing the expression by N, we obtain the hegbacity per unit atom and

3

dividing the latter bya3/4, we obtain the heat capacity per unit volume, C.

Therefore,

124



48m%kp ( T )3 48 x 3.14> x 1.38 x 1072 ( 1 )3]/ 114 x 107/
_ Ty _ _ =~ 1.14 X
v 543 \6, 5% 5.26% x 1073° 92) 'mK K

Since the scattering of phonons is determined kybtbundaries of the sample we can
assume that the mean free patlrid mm and the thermal conductivity is

1
K = 5Covl = 0.33 x 1.14 x 102934 10737/ o Mjgm =351/
3.4 Motion in a magnetic field

The application of a magnetic field to a metal givise to several interesting phenomena
due to conduction electrons. Tlgclotron resonancend theHall Effect are to be
considered

3.4.1 Cyclotron resonance
If a magnetic field is applied to a metal the LdpeiorceF = —e[E+(v % B)] acts on each
electron. For a perfect metal in the absence atritefield the equation of motion takes

the form
dv

m= =-evx B (2.23)

If the magnetic field lies along theedirection this results in

dvy
E = W0y, (2.24)
dv
d_ty = WUy
where
eB (2.25)
W, = —
m

is thecyclotron frequencyn Sl system of unit§in CGS w, = eB/mC). For magnetic
fields of the order of a fewG the cyclotron frequencies lie in the range of\wa @Hz.
For example foB=1kG, the cyclotron frequencyws - “)C/zﬂ = 2.8GHz. Therefore, the

magnetic field causes electrons to move in a cocdoiekwise circular fashion with the
cyclotron frequency in a plane normal to the field.

Suppose now that an electromagnetic signal is gagseugh the slab in a direction
parallel toB, as shown in figure 2.5. The electric field of #ignal acts on the electrons,
and some of the energy in the signal is absorbkd.rate of absorption is greatest when
the frequency of the signal is exactly equal to fteguency of the cyclotron (see
Fig.2.5b), i.e.
(2.26)

W= W,
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Fig. 2.5 (a) Cyclotron motion, (b) The absorption coeffidierersus
w(After www.pa.uk.edu/kwng.phy/525/lec/lecturg-8

This is so because, when this condition holds teaeh electron moves with the wave
throughout the cycle, and therefore the absorptmmtinues all through the cycle. Thus,
Eq. (2.26) is the condition fayclotron resonanceOn the other hand, when Eq. (2.26) is
not satisfied, the electron is in phase with theev@irough only a part of the cycle, during
which time it absorbs energy from the wave. Inrégmainder of the cycle, the electron is
out of phase and returns energy to the wave. Qgelatesonance is commonly used to
measure the electron mass in metals and semicamdudhe cyclotron frequency is

determined from the absorption curve, and this evéduthen substituted in Eqgs. (2.25) to
evaluate the effective mass.

3.4.2 Hall effect

First we derive an equation of motion of an elattioapplied magnetic and electric field
in the presence of scattering. Assume that thaihtbmentum of an electron is at
time t, let us calculate the momentum per electron anitesimal time
later. An electron taken at random at titneill have a collision before time with
probability and will therefore survive to time without suffering a collision
with probability If it experiences no collisionpWwever, it simply evolves under
the influence of the forcE (due to the spatially uniform electric and/or magnéelds)
and will therefore acquire an additional momentum The contribution of all those
electrons that do not collide betweeand to the momentum per electron at time
is the fraction they constitute of all electrotisjes their average
momentum per electron . Thus, neglecting the mortieatcontribution to
from those electrons thdb undergo a collision in the time betweeand
, we have

— (2.27)

Note that if the force is not the same for evegcebn it should be averaged.

The correction to (2.27) due to those electronstihge had a collision in the intentab
is only of the order of . To see this, first notattBuch electrons constitute a
fraction  f of the total number of electrons. Furthermore, sitiee electronic velocity
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(and momentum) is randomly directed immediatelgraét collision, each such electron
will contribute to the average momentum only to #dent that it has
acquired momentum from the forEesince its last collision. Such momentum is acquired
over a time no longer than and is therefore oéord . Thus the correction to (2.27)
is of order , and does not affect the terms of linealer in We may
therefore write

— N (2.28)

This simply states that the effect of individuakaton collisions is to introduce a
damping term into the equation of motion for thenmemtum per electron. We apply this
equation to discuss the Hall Effect in metals usanfyee electron model. The physical
process underlying the Hall Effect is illustrated Fig.2.6. Suppose that an electric
current is flowing in a wire in thex-direction, and a magnetic field is applied normal
to the wire in the z-direction. We shall show ttias leads to an additional electric field,
normal to both and , that is, in thg-direction. Before the magnetic field is applied,
there is an electric current flowing in the postix direction, which means that the
conduction electrons are drifting with a velocityn the negativex-direction. When the
magnetic field is applied, the Lorentz force cause electrons to bend
downward, as shown in the figure. As a result,tebexs accumulate on the lower surface,
producing a net negative charge there. Simultadg@uset positive charge appears on
the upper surface, because of the deficiency dftreles there. This combination of
positive and negative surface charges creates aawland electric field , which is
called theHall field.

e I/BH
FOEE R R F
| o
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Hall e e e e e e
field

Fig. 2.6: Origin of the Hall field and Hall Effect
(After www.pa.uk.edu/kwng.phy/525/lec/lecturg-8

Let us evaluate this Hall field. We start from tterentz force acting on each electi®n
= —e [E+ (v xB)]. According to (2.28) we find

_ _ (2.29)
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wheret is the relaxation time. Note that the Lorentz foscaot the same for all electrons
because they move with different velocities; thereit is averaged over ensemble. We
are looking for the solution of this equation ie $teady state when the current is

independent of time and therefoﬁié’/dt =0.

0= —eEy — eBv, — mvf
(2.30)
0= —eE, +eBv, — mv?y

We multiply these equations byet/mto introduce current densities components
Jx = —env, andj, = —enwv,, so that

oEy = W Ty + jx .31
ok, = —w.Tj; + j,

Whereo is the Drude conductivity in the absence of a magriield. In the steady state
there is no electric current flowing perpendicutathe wire. Therefore the Hall fiek,
=Ey can be determined by the requirement that therendodransverse curreit
Setting j,, to zero in the second equation of (2.31) we firat th

T\ . 1,
E, = — (‘*’GT) ju= = —JiB (2.32)

The proportionality constarntl/,e , is known as thelall constantand is usually
denoted byRy.. Therefore,

R, = —— (2.33)

This is a very striking result, which predicts thhe Hall coefficient depends on no
parameters of the metal except the density of@arriSinceRy, is inversely proportional

to the electron concentration it follows that we can determineby measuring the Hall
field. Since we have already calculatecassuming that the atomic valence electrons
become the metallic conduction electrons, a measemeof the Hall constant provides a
direct test of the validity of this assumption.

4.0 Conclusion
The electrical and thermal conductivity of theefrelectron were obtained through the
Drude model.

5.0 Summary
. Drude model provided the simplest treatment ofteleal conduction of a metal
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6.0

7.0

The splitting up of resistivity to two terms (dte impurities and phonon) is
known as Matthiessen rule

Resistivity ((pph) due to scattering of phonons which is independént o

temperature is known as lattice resistivity

Resistivity (p;,) due to scattering by impurities which is indegent of
temperature is known as residual resistivity

The cyclotron resonan@nd the Hall Effecare phenomena due to application of
a magnetic field to a metal.

Tutor marked assignment

Q1. A Cu wire of diameter 2mm carries 10A of currdfihd the drift velocity

Q2. If the Fermi energy of Na is 3.1 eV and the eleatrconductivity is
2.1x13" esu at OK, calculate the relaxation time.

Q3. Using the Drude formula, calculate the mean frath of K, if its lattice
parameter a = 4.2A. Also calculate the Hall cogdfit.
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Blakemore ,J.S., Solid State Physics, W.B. Saurderd 974

C. Kittel, Introduction to solid state physics, @jlEastern Limited, 1979
Hurd, C.M., The hall effect in metals and alloykeriim,1972

Kachhava, C.M., Solid State physics, Tata McGraW#iblishing Company
Limited, New Delhi, 1992.

W. A. WoosterA textbook on crystal physidgSambridge University Press,
Cambridge, 1938.
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1.0 Introduction

The free electron model gives us a good insigltt many properties of metals, such as
the heat capacity, thermal conductivity and eleatrconductivity. However, this model
fails to help us with other important propertiesr Fexample, it does not predict the
difference between metals, semiconductors and atmgl. It does not explain the
occurrence of positive values of the Hall coefintie Also the relation between
conduction electrons in the metal and the numbenlEnce electrons in free atoms is not
always correct. We need a more accurate theorychmvould be able to answer these
guestions.

2.0 Objective
The objectives of this unit is
* To explain the general features of band levels
* To explain the periodic potential of an electron
* To explain the properties of the Bloch electron
» To explain the difference between Metals and Irsuda

3.0 Definition

Energy band is the range of energies possessdeédiyoas in a solid

3.1 Energy band

It is customary to visualize the existence of baodsan energy scale of band structure
scheme, according to which, the energy bands mtbst tightly bound electrons lie at
the bottom, followed by the band of the second migstly bound electrons, and so on,
till we reach the top of the set of completely fetiergy bands. The top of the band of the
set is known as thealence bandNext higher energy band is referred tocasduction
band which might be completely empty. The characteriginergy that separate the
occupied from empty states is calleermi energy E and is characterized by Fermi level
existing between the conduction band and the valeaad. The two bands are separated
by energy gag,, defined by

E, = E.— E, (3.1

WhereE, and E,, are respectively the energy of the bottom of thiedaction band and
the top of the valence band. THg value for a semiconductor is typically of the ardé

1 eV and that for an insulator ise¥. based o the relative positions of conduction and
valence bands, metals may be classified into twegcaies. In one, valence band is
completely full and conduction band is partiallylefd, e.g., Na, 2p (valence) band is
completely full and conduction (3s) band is halfe@i. In the other, conduction and
valence bands overlap each other. For example(1b4g2s2, 2p®, 3s2), 3s?(valence)
and3p(conduction) bands overlap in energy.
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3.2 Periodic Potential
The potential seen by an electron due to the naabéwan isolated atom of valence z is

2 . . .
—ze /r, where e is the electronic charge and r the naclelectron distancélowever ,

the atom in a perfect crystal are arranged in alaegeriodic array, therefore, we are led
to consider the problem of an electron in a pog&briti(r) with the periodicity of the
under-lying Bravais lattice i.e.

u(r) = U@ +T) (3.2)

whereT is a lattice vector. Qualitatively, a typical cigine potential might be expected
to have a form shown in Fig.3.1, resembling thevinidial atomic potentials as the ion is
approached closely and flattening off in the redietween ions.

2274

Fig.3.1: The crystal potential seen by the electron (Aftatek 1979)

Since the scale of periodicity of the potentialUL0® cm) is the size of a typical de
Broglie wavelength of an electron, it is essentalse quantum mechanics in accounting
for the effect of periodicity on electronic motioFhus we consider the Hamiltonian.

H(r) = —% VZ+ U(r) (3.3)
Using Eq. (3.2) in Eq. (3.3) leads to
Hr+T)= H(r) (3.4)

This shows that the Hamiltonian also has the Efieriodicity. Hence, to predict the
physical properties of the crystal, one should sthe following Schrodinger equation
for a single electron

H@) = [~ v2 4+ U@)|wi) = Ep() (35)

in which s (r) is a wave function for one electron. Independsacttrons, which obey a
one electron Schrddinger equation (3.5) with aqakei potential, are known d&loch
electrons in contrast to "free electrons,” to which Blocleatrons reduce when the
periodic potential is identically zero.

Now we discuss general properties of the solutibrthe Schrodinger equation (3.5)
taking into account periodicity of the effectivetgotial (3.2) and discuss main properties

132



of Bloch electrons, which follow from this solutiollVe represent the solution as an
expansion over plain waves

W(r) = z cetkr (3.6)

k

This expansion in a Fourier series is a naturaég®ization of the free-electron solution
for a zero potential. The summation in (3.6) iS@ened over alk vectors, which are
permitted by the periodic boundary conditions. Adaog to these conditions the wave
function (3.6) should satisfy

Y(x,y,z) = P(x+L,y,z)= Y,y+Lz)= Py z+L) (3.7)

So that

2mny k. = 2nn,, k. = 2nn,
L ) y_ ) z

k. =
X L L

(3.8)

wheren,, n,,, andn, are positive or negative integers. Note that inegenp (r) is not
periodic in the lattice translation vectors. On ttker hand, according to Eg. (3.2) the
potential energy is periodic, i.e. it is invariaohder a crystal lattice translation.
Therefore, its plane wave expansion will only cantglane waves with the periodicity of
the lattice. Therefore, only reciprocal lattice togs are left in the Fourier expansion for
the potential:

U(r) — Z UGeiGT (39)
G
where the Fourier coefficientds are related tdJ(r) by

1 3
Ug = S cene™ T U@dr (3.10)

whereV, is the volume of the unit cell. It is easy to dea&t indeed the potential energy
represented by (3.9) is periodic in the lattice:

Ur+T) = Z UgelS0+D = eiGTZ UgelS™ = U(r) (3.11)
G G

where the last equation comes from the definitibthe reciprocal lattice vectoed®” =
1. The values of Fourier componerifg for actual crystal potentials tend to decrease
rapidly with increasing magnitude d&. For example, for a Coulomb potentidl};

decreases al;/G2 .Note that since the potential energy is real Ebarier components
should satisfy/_; = Ug.
We now substitute (3.6) and (3.9) in Eq. (3.5) ahthin:
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h? . . .
ﬁz k2Cet™ + Z Z UgCre'®+0T = Z Cre™ (3.12)
k k G K

changing the summation index in the second sunheteft fromk to k +G this equation
can be rewritten in a form:

e (k2 — E) 6 + £ UgCig) = 0 (3.13)

Since this equation must be satisfied for artihe Fourier coefficients in each separate
term of (3.13) must vanish and therefore

h? ) (3.14)
_kz—E CR+ZUGCR—G=O .
<2m =

This is a set of linear equations for the coeffitseG. These equations are nothing but
restatement of the original Schrodinger equatiothenmomentum space, simplified by
the fact that the potential is periodic. This seeguations does not look very pleasant
because, in principle, an infinite number of caméints should be determined. However,
a careful examination of Eq. (3.14) leads to im@atrconsequences.

First, we see that for a fixed value lofthe set of equations (3.14) couples only those
coefficients, whose wave vectors differ frdrby a reciprocal lattice vector. In the one-
dimensional case these are k2k/a, kt4rva, and so on. We can therefore assume that
the k vector belongs to the first Brillouin zone. Thegimal problem is decoupled té
independent problems\(s the total number of atoms in a lattice): forreaiowed value

of k in the first Brillouin zone. Each such problem Isatutions that are superposition of
plane waves containing only the wave vedt@nd wave vectors differing frok by the
reciprocal lattice vector.

Putting this information back into the expansior6}2f the wave functio) (r), we see that

the wave function will be of the form

(1) = Z Cp_peitk=0Or (3.15)
G

where the summation is performed over the recipiatizce vectors and we introduced
indexk for the wave function. We can rearrange this sbo tha

Pe@) = €Y G _geior (3.16)
G

Or
() = e (r) (3.17)

where u(r) = u,(r + T) is a periodic function which is defined by
(@) = ) Cge™ (3.18)
G
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Equation (3.17) is known as Bloch theorem, whiclyplan important role in electronic
band structure theory. Now we discuss a numbempbrtant conclusions which follow
from the Bloch theorem.

1.

Bloch's theorem introduces a wave vedtpwhich plays the same fundamental
role in the general problem of motion in a pertopotential that the free electron
wave vectok plays in the free-electron theory. Note, howevieat aalthough the
free electron wave vector is simpﬂyh, wherep is the momentum of the electron,
in the Bloch casé& is not proportional to the electronic momentum.sTisi clear
on general grounds, since the Hamiltonian doeshasé complete translational
invariance in the presence of a non-constant pateand therefore its eigenstates
will not be simultaneous eigenstates of the momanbperator. This conclusion
is confirmed by the fact that the momentum operagic= —ihv, when acting
onw (r) gives

—ihVi,(r) = —ihV[e* (1)) = hky, (r) — ihe™Vu(r)  (3.19)

Which is not, in general, just a constant tumgr); i.e., w,(r) is not a
momentum eigenstate. Nevertheless, in many whys a natural extension qf

to the case of a periodic potential. It is knownths crystal momentunor

guasimomenturof the electron, to emphasize this similarity, boe should not
be misled by the name into thinking th#tis a momentum.

The wave vectok appearing in Bloch's theorem can always be confioetthe
first Brillouin zone (or to any other convenienirpitive cell of the reciprocal
lattice). This is because akynot in the first Brillouin zone can be writtes

k' =k+G (3.20)

where G is a reciprocal lattice vector arid does lie in the first zone. Since
e =1 for any reciprocal lattice vector, if the Bloabrin Eq. (3.17) holds for
k', it will also hold fork. An example is given below for a nearly free elaat
model.
The energyE of free electrons which is plotted verskisn Fig 3.2a exhibits a
curve in the familiar parabolic shape. Figure 33Bbws the result of translations.
Segments of the parabola of Fig.3.2a are cut atdiges of the various zones, and
are translated by multiples & = 2rva in order to ensure that the energy is the
same at any two equivalent points. Fig.3.2c displthe shape of the energy
spectrum when we confine our consideration to tfs¢ Brillouin zone only.The
type of representation used in Fig.3.2c is refetceds thaeduced-zone scheme.
Because it specifies all the needed informatiofs the one we shall find most
convenient. The representation of Fig.3.2 a, knawrheextended-zone scheme
is convenient when we wish to emphasize the clazenection between a
crystalline and a free electron. Fig.3.2b empldysperiodic-zonescheme, and is
sometimes useful in topological considerations imwng the k space. All these
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representations are strictly equivalent; the usengf particular one is dictated by
convenience, and not by any intrinsic advantagkastover the others.

E

Third band

Second band

First band

k o

% 1"—F:il":l zone—*
Second  First zone  Second
zone Zone

(b) (c)

Fig.3.2Free electron bands withieduced (a), extended (b) andperiodic-
zone(c) scheméAfterwww.pa.uk.edu/kwng.phy/525/lec/lecturg-8

An important consequence of the Bloch theorem esappearance of the energy
bands. All solutions to the Schrodinger equati@b) have the Bloch form

wherek is fixed and has the periodicity of the Bravais
lattice. Substituting this into the Schrodingequation, we find that is
determined by the eigenvalue problem

— (3.21)

With boundary condition

(3.22)

Because of the periodic boundary condition we emard (3.21) as an eigenvalue
problem restricted to a single primitive cell oétbrystal. Because the eigenvalue
problem is set in a fixed finite volume, we expentgeneral grounds to find an
infinite family of solutions withdiscretelyspaced eigenvalues, which we label
with the band index. The Bloch function can therefore be denoted by
which indicates that each value of the band indexd the vectok specifies an
electron state, or orbital with energy . Note thmataerms of the eigenvalue
problem specified by (3.21) and (3.22), the wavetsek appears only as a
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parameter in the Hamiltoniad (k). We therefore expect each of the energy
levels, for givenk, to vary continuously ak varies. In this way we arrive at a
description of the levels of an electron in a paidgotential in terms of a family
of continuous functiong,,(r). For each, the set of electronic levels specified by
E,(r)is called arenergy bandThe information contained in these functions for
differentn andk is referred to as theand structureof the solid

4 Number of states in a band.
The number of orbitals in a band within the first Baillin zone is equal to the
number of unit cells N in the crystdlhis is much the same as the statement made
in connection with the number of lattice vibratibnades, and is proved in a like
manner, by appealing to the boundary conditionsnsicler first the one-
dimensional case. The allowed valueskoform a uniform mesh whose unit
spacing is #/L. The number of states inside the first zone, whesgth is21va,
is therefore equal to {Ra)/ (217L) = L/a = N, whereN is the number of unit cells,
in agreement with the assertion made earlier. Alairargument may be used to
establish the validity of the statement in two- #émee-dimensional lattices. It has
been shown that each band hestates inside the first zone. Since each such state
can accommodate at most two electrons, of oppspites, in accordance with the
Pauli Exclusion Principle, it follows that the maxim number of electrons that
may occupy a single band 2. This result is significant, as it will be used in a
later section to establish the criterion for prédg whether a solid is going to
behave as a metal or an insulator.

5. Now we show that an electron in a level spedifiy band inder and wave vectok
has a nonvanishing mean velocity, given by

dEp (k .
v, (k) = Ti) (3.23)

To show this we calculate the expectation valutefderivative of the Hamiltonian
H (k) in Eqg. (3.21) with respect ta

(1t |29 11, = (aty |~ G+ D) ) = W [ (—29) ) (B29)

Sincev = (—ih/m)V is the velocity operator, this establishes (3.23).

This is a remarkable fact. It asserts that theeestationary levels for an electron
in a periodic potential in which, in spite of thedraction of the electron with the
fixed lattice of ions, it moves forever without amjegradation of its mean
velocity. This is in striking contrast to the ide& Drude that collisions were
simply encounters between the electron and a stetic

3.3 Weak potential
When the potential is zero the solutions of ther&dimger equation (3.14) are plane waves

21,2
E® (k) = —hz:l , (3.25)
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— (3.26)

Where the wave function is normalized to the volwhanit cell . In the reduced-zone

representation shown in Fig.3.3, for e&cthere is an infinite number of solutions which
correspond to differer® (and can be labeled by indae as we have already discussed.
Each band in Fig.3.3 corresponds to a differenievalfG in the extended scheme.

Fig.3.3: Only those states which have the same k in thet Brillouin
zone are coupled by perturbation (Aftattel, 1979)

Suppose now that a weak potential is switched @coAling to the Schrddinger equation
(3.14) only those states, which differ 8y are coupled by a perturbation. In the reduced
zone scheme those states have s&nand differentn (see Fig.3.3). From quantum
mechanics, if the perturbation is small comparedht energy difference between the
states, which are coupled by the perturbation, e wse the perturbation theory to
calculated wave functions and energy levels. Asegrfor simplicity that we are looking
for the correction to the energy of the lowest band , the condition for using the
perturbation theory is

(3.27)

For anyG # 0. According to the perturbation theory the energgiven by

(3.28)

The first term in Eq. (3.28) is the undisturbecefdectron value for the energy. The second
term is the mean value of the potential in theestat

— (3.29)
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This term gives a constant independerit.dts effect on the spectrum is a rigid shift by a
constant value without causing any change in tapeiof the energy spectrum. This term
can be set equal to zero. The third term can bettewas

- — (3.30)

Finally we obtain for the energy:

(3.31)

The perturbation theory breaks down, however, as¢hcases when the potential cannot
be considered as a small perturbation. This hapywées the magnitude of the potential
becomes comparable with the energy separation battire bands, i.e.

(3.32)

In this case we have to include these levels irSitta@ddinger equation and solve it explicitly
There are specigk points for which the energy levels become degeeesad the
relationship (3.32) holds for any non-zero valu¢hef potential. For thesepoints

(3.33)
and consequently

(3.34)

The latter conduction implies thiatmust lie on a Bragg plane bisecting the line jainin
the origin ofk space and the reciprocal lattice pdtas is shown in Fig.3.4.

Fig. 3.4If |k| = k — G|, then the poink must lie in the Bragg plane
determined bys. (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecturg-8

Therefore, a weak periodic potential has its mafdect on those free electron levels
whose wave vectors are close to ones at which tagdgBreflection can occur. In order to
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find the energy levels and the wave functions ddrntese points we include to the
equation (3.14) only the two levels: one which esponds tdk and the other which
corresponds to assuming tlkdies near the Bragg plane:

(3.35)
These equations have the solution when the detannis equal to zero, i.e.
(3.36)
this leads to the quadratic equation
(3.37)
The two roots are
- - (3.38)

These solutions are plotted in Fig.3.4 kgparallel toG.
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Fig.3.4: Plotof the energy bands given by Eq. (3.38)Kqrarallel
to G. (Aftewww.pa.uk.edu/kwng.phy/525/lec/lecturg-8

This results is particularly simple for point lyileg the Bragg plane, since in this case
we find from (3.38) then that

(3.39)
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Thus, at all points in the Bragg plane, one lesalniformly raised by and the other
is uniformly lowered by the same amount. This metrat there are no states in the
energy interval between and which
implies the creation of the band gap. The magnitfdbe band gap is equal to twice the
Fourier component of the crystal potential. We siliate this behavior using a one-
dimensional lattice shown in Fig.3.5. We see thidtisyg of the bands at each Bragg
plane in the extended-zone scheme (Fig.3.5b). fdsslts in the splitting of the bands
both at the boundaries and at the centre of tisé Brillouin zone (Fig.3.5a). There are
two important points to note. First, since the ggdhere increases as , the higher the
band, the greater its width. Second, the higherethergy, the narrower the gap; this
follows from the fact that the gap is proportiomala Fourier component of the crystal
potential and that the order of the component emxs as the energy rises. Since the
Fourier components of the potential decrease rapislthe order increases, this leads to a
decrease in the energy gap. It follows therefoa, fis we move up the energy scale, the
bands become wider and the gaps narrower; i.eeléoeron behaves more and more like
a free particle.

(a)

Fig. 3.5 (a) Dispersion curves in the nearly-free-electroodat, in the
reduced-zone scheme; (b) The same dispersion cumvdee extended-
zone scheme. (Afterww.pa.uk.edu/kwng.phy/525/lec/lecturg-8

Now we discuss the origin of the appearance obtrel gaps at the Bragg planes. When
k lies on a Bragg plane we can easily find the fofrthe wave function corresponding to
the two solutions (3.39). Assuming for simplicibat the potential is real we obtain from
Eq. (3.35)

(3.40)

For simplicity we consider a one-dimensional l&ttifor which the Bragg reflection
occurs ak=%2G. We have then
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— (341)

We see that at the zone edge, the scattering $¢reog that the reflected wave has the
same amplitude as the incident wave. The elecsorepresented there bystanding
wave, very unlike a free particle

The distribution of the charge density is proparibto|¢{?, so that

(3.42)

Since the origin lies at the ion, thje— state distributes the electron so that it is piled
predominantly at the nuclei (see Fig.3.6). Sinaepbtential is most negative there, this
distribution has a low energy. The functign- therefore corresponds to the energy at the
top of band 1, that is, point;An Fig. 3.5a.

..‘._ — - - S

Fig.3.6: Spatial distributions of the charge density desdilby the
functionsy . andy - (Afterwww.pa.uk.edu/kwng.phy/525/lec/lecturg-8

By contrast, the functiop + deposits its electron mostly between the ions lfasva in
Fig.3.6), corresponds to the bottom of band 2 ig.¥ba, that is, point A The gap
arises, therefore, because of the two differerttidigions for the same value &f the
distributions having different energies.

Worked Example:

Consider two-dimensional electrons subjected teaknperiodic potential coming from a
square lattice of spacing . Fokaectors far away from the Brillouin zone
boundary, the wavefunction can be well describeglages waves. Assume we want to
write the wavefunction in the Bloch form, and calesing a state of

energyE and wavevector ,
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a) What will the three lowest energies be at this wawveber?
b) What are the correspondimgr) functions

Note that/t’/, . = 3.806 eVAZ.

Solution:

a) Recall Eq.(3.5), the Schrodinger equation is

h2 8% B
sz T V()Y = Ey(r)
529
Where —— = A?

If the potential is weak, the solutions will be dawaves:
From Eq. (3.25)

3 h2|k*|2
kT 2m
and Eq.(3.25)

) 1 ik'r
Y(k") N
where k™ extends over the entite space. We can transform tkéwavevector into the
first Brillouin zone by using Eq. (3.20) i.e.
kK"=k+G
Let k = nby + mb,,
Whereb; andb, are primitive reciprocal lattice vectors ancandm are integers. The
primitive reciprocal lattice vectors are given by

_(1.256 A—l) _ 0
by = ( 0 and b, = (1.256 A—l)'

With the value ok = 0.5 A=%, the length of thé&*vector for several values ofandm is
shown in the table below

n m |k
0 0 0.5

-1 0 0.756

1 0 1.756
0 1 1.351
0 -1 1.351

1 1 2.159

Since the energies increases Wikh|, the three lowest energies obtained using Eq5)3.2
are:
. E=095eV (n=0,m=0)
. E=217eV (n=-1,m=0)
. E=696eV(n=0, m+1)
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(b)  From
eik*r — eikru(r) ’ r = (X)
Solving foru(r), we have:
@ u@r) =1
(b) u(r) = e ib1x = —i1256x
(c) u(r) = etbh2y — pt1.256y
Note that from Eq. (3.2), the functiom(r) has the periodicity of the lattieg(r) =

u(r+T). The third energy level is degenerate; there am® torresponding
wavefunctions.

3.4  Metals and Insulators

Solids are divided into two major classegetals and insulatorsA metal — or a conductor
— is a solid in which an electric current flows endhe application of electric field. By
contrast, application of an electric field produoeselectric current in an insulator. There
is a simple criterion for distinguishing betweese tiwo classes on the basis of the band
structure. If the valence electrons exactly fileoor more bands, leaving others empty,
the crystal will be an insulator. An external etextield will not cause current flow in an
insulator. Provided that a filled band is separdigdenergy gap from the next higher
band, there is no continuowsy to change the total momentum of the electibesery
accessible state is filled. Nothing changes wherfitid is applied.

On the contrary if the valence band is not compldtibed the solid is a metal. In a metal
there are empty states available above the Fenmel lke in a free electron gas. An
application of an external electric field results the current flow. It is possible to
determine whether a solid is a metal or an insulayaconsidering the number of valence
electrons. A crystal can be an insulator only & thumber of valence electrons in a
primitive cell of the crystal is an even integerhi§ is because each band can
accommodate only two electrons per primitive deédic example, diamond has two atoms
of valence four, so that there are eight valeneetedns per primitive cell. The band gap
in diamond is 7eV and this crystal is a good insulaHowever, if a crystal has an even
number of valence electrons per primitive celiisihot necessarily an insulator. It may
happen that the bands overlap in energy. If thelbaverlap in energy, then instead of
one filled band giving an insulator, we can have partly filled bands giving a metal
(Fig.3.7b). For example, the divalent metals, sashMg or Zn, have two valence
electrons per cell. However, they are metals, alghoa poor ones — their conductivity is
small.
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Fig.3.7: Occupied
metal or a semimetal because of band overlap, @na hetal because of
electron concentration (After Kittel, 1979)

If this overlap is very small, we deal wigemimetalsThe best known example of a
semimetal is bismuth (Bi). If the number of valemtectrons per cell is odd the solid is
a metal. For example, the alkali metals and thdenotetals have one valence electron
per primitive cell, so that they have to be metalse alkaline earth metals have two
valence electrons per primitive cell; they couldibgulators, but the bands overlap in
energy to give metals, but not very good metalanizind, silicon, and Germanium each
have two atoms of valence four, so that there aylet &#alence electrons per primitive
cell; the bands do not overlap, and the pure ds/stt@ insulators at absolute zero. There
are substances, which fall in an intermediate mrsibetween metals and insulators. If
the gap between the valence band and the band imtekydabove it is small, then
electrons are readily excitable thermally from tbemer to the latter band. Both bands
become only partially filled and both contribute tiee electric condition. Such a
substance is known assamiconductorExamples are Si and Ge, in which the gaps are
about 1 and 0.7 eV, respectively. Roughly speakiagsubstance behaves as a
semiconductor at room temperature whenever the igapess than 2 eV. The
conductivity of a typical semiconductor is very $sintampared to that of a metal, but it
is still many orders of magnitude larger than tbétan insulator. It is justifiable,
therefore, to classify semiconductors as a newsctdssubstance, although they are,
strictly speaking, insulators at very low temperasu

4.0 Conclusion

Solution of Schrodinger equation for a single etactllows the prediction of the physical
properties of a crystal while the Bloch theorenyplan important role in electronic band
structure theory.

5.0 Summary
« Separation of the valence and conduction band= E. — E,
» Periodic potential of an electron is in the forbi:(r) = U(r + T)
* One electron Schrodinger equation with a periodiemptial, are known as Bloch
electrons
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6.0

7.0

From the Bloch theorem, The number of orbitals baad within the first
Brillouin zone is equal to the number of unit séll in the crystal

Solids are divided into two major classes: metat$ iasulators which can be
distinguished on the basis of band structure.

Tutor marked assignment

Q1. Using the solution for the energy bands near tme Zmundary in the
presence of a weak crystal potential. Show thaelbetron velocity is
parallel to the Bragg plane.

Q2. Prove that the current carried by Bloch electisrgiven by

2
j=- (hj:">k

Further reading/References
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1.0 Introduction

The Fermi surfaces (FS) concept enables to visu#tie relative fullness or occupation
of the allowed empty lattice bands geometricallykispace and thus helps in the
theoretical determination of the electronic progsrof a solid- metal, semiconductor or
insulator. In fact, the purpose of the FS constoncis to know about the details of the
motion of an itinerant electron in three-dimension.

2.0  Objective
* to understand the concept of Fermi surfaces
* to revise the concept of electron dynamic
* torevise the concept of effective mass
» to revise the concept of hole

3.0  Definition

Electron dynamics is using classical equationsation in a classical way to describe
electronic structure quantum-mechanically, i.enditag waves that distribute electrons to
different regions of the bands.

3.1  Electro dynamics
Given the functions€En(k) the semiclassical model associates with eachtretea
position, a wave vector and a band indexin the presence of applied fields the
position, the wave vector, and the index are tdkegvolve according to the following
rules:

0] The band index is a constant of the motiore $amiclassical model ignores
the possibility of interband transitions. This iep that within this model it
assumed that the applied electric field is small.

(i) The time evolution of the position and thewsavector of an electron with band
indexn are determined by the equations of motion:

dar 1 dE, (k)
ar = 0 =370 -
h% = F(r,t) = —eE(r, t) (42)

Strictly speaking Eq. (4.2) has to be proved. itlentical to the Newton’s second law if
we assume that the electron momentum is equidl. tbhe fact that electrons belong to
particular bands makes their movement in the ap@lectric field different from that of
free electrons. For example, if the applied elediald is independent of time, according
to Equation (4.2) the wave vector of the electrmreases uniformly with time

k(t) = k(0) — eTEt (4.3)
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Since velocity and energy are periodic in the nexgpl lattice, the velocity and the
energy will be oscillatory. This is in striking doast to the free electron case, wheiis
proportional tok and grows linearly in time. Thle dependence (and, to within a scale
factor, thet dependence) of the velocity is illustrated in Fify, 4vhere botle(k) and vk)
are plotted in one dimension. Although the velo@tliinear ink near the band minimum,
it reaches a maximum as the zone boundary is agpeda and then drops back down,
going to zero at the zone edge. In the region bmtwhe maximum of v and the zone
edge the velocity actually decreases with incregp&jnso that the acceleration of the
electron is opposite to the externally applied teledorce! This extraordinary behavior is
a consequence of the additional force exerted éy#niodic potential, which is included
in the functional form oE (k). As an electron approaches a Bragg plane, therreadt
electric field moves it in the opposite directiamedo the Bragg-reflection.

Fig.4.1.E(k) and vk) vs.kin one dimension (After
www.pa.uk.edu/kwng.phy/525/lec/lecturg-8

3.2  Effective mass
When discussing electron dynamics in solids it fiero convenient to introduce the
concept of effective mass. If we differentiate 1) with respect to time we find that

S (4.4)

Where the second derivative with respect to a vestiould be understood as a tensor.
Using Eq. (4.2) we find that

- - (4.5)

In one dimensional case this reduces to

- (4.6)
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This has the same form as the Newton’s seconddewjded that we defined an effective
mass by the relation:

I (4.7)

The massn* is inversely proportional to the curvature of tlem); where the curvature is
large - that is, is large - the mass is small; alsourvature implies a large mass

(Fig.4.2).

Small mass

Large mass

k
Q

Fig: 4.2. The inverse relationship between the mass and the
curvature of the energy band
(After www.pa.uk.edu/kwng.phy/525/lec/lecturg-8

In a general case the effective mass is a tenswhvudhdefined by

— _— (4.8)

Where and are Cartesian coordinates. The effective mass edlifterent
depending on the directions on the crystal.

3.3  Current density

The current density within a free electron mode$dafined as

wheren is the number of valence electrons per unit voluarelv is the velocity of
electrons. This expression can generalize to tee o&Bloch electrons. In this case the
velocity depends on the wave vector and we neesumo up ovelk vectors for which
there are occupied states available

(4.9)

Here the sum is performed within the extended mmieme and V is the volume of the
solid. It is often convenient to replace the sumomaby the integration. Because the
volume ofk-space per alloweki value is we can write the sum oueas
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|4
8m3

Yk=-—/dk (4.10)

Taking into account the spin degeneracy we obtaithie current density:

. dk (4.11)
j=e | o
Occupied

Using this expression we show now thampletely filled bands do not contribute to the
current For the filled bands Eq. (4.11) should be replage

dk dE(K)
4m3 dk

zone

This vanishes as a consequence of the theorerththattegral over any primitive cell of
the gradient of a periodic function must vanish.

3.4 Hole

One of the most impressive achievements of thedassical model is its explanation for
phenomena that free electron theory can accounority if the carriers have a positive
charge. We now introduce the concept of a hole.

The contribution of all the electrons in a givemtddo the current density is given by Eq.
(4.11), where the integral is over all occupiedelsevin the band. By exploiting the fact
that a completely filled band carries no curremistwe have

dk dk dk
0= jmv(k) = f ypeid O J el G (4.13)

zone occupied unoccupied

we can equally well write EqQ. (4.11), in the form

dk
j=te [ gmv@® 10

unoccupied

Thus the current produced by electrons occupyisgexified set of levels in a band is
precisely the same as the current that would bdumexd if the specified levels were
unoccupied and all other levels in the band werupied with particles of charge +e
(opposite to the electronic charge).

Thus, even though the only charge carriers aretreles; we may, whenever it is
convenient, consider the current to be carriedr@gtby fictitious particles of positive
charge that fill all those levels in the band taie unoccupied by electrons. The fictitious
particles are calletioles.It must be emphasized that pictures cannot be mixgdn a
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given band. If one wishes to regard electrons ayiog the current, then the unoccupied
levels make no contribution; if one wishes to regtre holes as carrying the current,
then the electrons make no contribution. One mawever, regard some bands using the
electron picture and other bands using the holéug@c as suits one's convenience.
Normally it is convenient to consider transporttbé holes for the bands which are
almost occupied, so that only a few electrons arssing. This happens in
semiconductors in which a few electrons are exdrteoh the valence to the conduction
bands. Similar to electrons we can introduce ttiecé¥e mass for the holes. It has a
negative sign.

4.0 Conclusion
The electron dynamics in metals is the electrotriecture described by quantum

mechanics based on semiclassical model

5.0 Summary
« Effective mass of an electron is defined by

1 _ 1 d?E
m*  h2 dk?
 Current density is defined by

, dk
J= _efoccupied mv(k)

6.0  Tutor marked assignment

Q1. Consider a slab of Cu 0.1mm thick, 10.0 mm v&dd 10.0mm long.

(a) If a current of 1A is driven down the length of tlab, what is the
current density?

(b) If we put the slab in the magnetic field of 1 T wihe field
perpendicular to the 1 mm x10 mm face, what Hai&fwill be
produced, if the Hall coefficient is -0.55x1bm?*/C.

(c) What Hall voltage will be observed across the slab?

7.0  Further reading/References
Animalu, A.O.E, intermediate quantum theory of taji;ne solids, Prentice-Hall
of India, New Delhi, 1978
Blakemore,J.S., Solid State Physics, W.B. Sawn@er,1974
Callaway, J., Energy band theory, Academic Pressy Xork, 1958
Kittel C., Introduction to solid state physics, @jilEastern Limited, 1979
Kittel, C., Quantum theory of solids, John Wilep6B
Hurd,C.M., The hall effect in metals and alloyssirim,1972
Kachhava, C.M., Solid State physics, Tata McGraW-Rublishing Company
Limited, New Delhi, 1992.
W. A. Wooster,A textbook on crystal physic§ambridge University Press,
Cambridge,1938.
www.pa.uk.edu/kwng.phy/525/lec/lecture-8
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1.0 Introduction

The Fermi surface is the surface of constant energyn k space. The Fermi surface
separates the unfilled orbitals from the filled itals, at absolute zero. Quantum
mechanics showed that the occupation of electratestis governed by the Pauli
exclusion and that the chemical potentiais equal tcez. The shape of the Fermi surface
may be very intricate but the constructions reqlitee applications of the reduced and
the periodic zone schemes. In the reduced zonersghieis always possible to select the
wavevector indeX of any Bloch function to lie within the first Blduin zone. This
procedure is known as mapping the band in the etlzone scheme. In the periodic
zone, a given Brillouin zone is repeated periodiyctrough all of the wavevector space.
This is achieved by translating the zone by a recil lattice.

2.0  Objective
* to understand Fermi surfaces
» to explain the Brillouin zone
» to explain effect of crystal potential
3.0 Definition
Fermi energy surface the energy distribution of particles that obey Bali Exclusion
Principle.

3.1 Fermi surface

The ground state dfl Bloch electrons is constructed in a similar fashasnthat for free

electrons, i.e. by occupying all one-electron epdegels with band energids, (k) less

thanEp , whereE is determined by requiring the total number of Iewsith energies
less thanE, to be equal to the total number of electrons. Tlawewectork must be
confined to a single primitive cell of the recipabdattice. When the lowest of these
levels are filled by a specified number of elec&ortwo quite distinct types of
configuration can result:

1. A certain number of bands may be completely filleitlothers remaining empty.
Because the number of levels in a band is equaleteumber of primitive cells in
the crystal (and because each level can accommoaatelectrons (one of each
spin), a configuration with a band gap can arisly @ the number of electrons
per primitive cell is even.

2 A number of bands may be partially filled. Whrs occurs, the energy of the
highest occupied level, the Fermi endfgylies within the energy range of one or
more bands. For each partially filled band thei# e a surface ink-space
separating the occupied from the unoccupied levdle set of all such surfaces is
known as the Fermi surface, and is the generaizdabd Bloch electrons of the
free electron Fermi sphere. The parts of the Feurface arising from individual
partially filled bands are known as branches efflermi surface.

Analytically, the branch of the Fermi surface i thth band is that surface kx
space determined by

En(k) = Ep (5.1)
Thus the Fermi surface is a constant energy si(Rafaces) ik-space.
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Since the are periodic in the reciprocal lattite complete solution to Eq. (5.1)
for eachn is a k-space surface with the periodicity of the recigfolattice. When a
branch of the Fermi surface is represented by ulepériodic structure, it is said to be
described in aepeated zone schentéften, however, it is preferable to take justieyio

of each branch of the Fermi surface so that evhygipally distinct level is represented
by just one point of the surface. This is achiebgdrepresenting each branch by that
portion of the full periodic surface contained witha single primitive cell of the
reciprocal lattice. Such a representation is deedrias areduced zone schem@&he
primitive cell chosen is often, but not always, tinst Brillouin zone

3.2 Brillouin Zone

We consider now an example of building of a Feruface. We start from considering
the Fermi surface for free electrons and then inya® the influence of the crystal
potential. The Fermi surface for free electrona sphere centered at k = 0. To construct
the Fermi surface in the reduced-zone scheme, andranslate all the pieces of the
sphere into the first zone through reciprocal dattvectors. This procedure is made
systematically through the geometrical notion @f igher Brillouin zones

Fig. 5.1: (a) Construction irk space of the first three Brillouin
zones of a square lattige) On constructing all lines equivalent by
symmetry to the three lines in (a) we obtain tigganes ink space
which form the first three Brillouin zones (Afteiitkel, 1979).

We llustrate this construction for the two dimemsl cubic lattice shown in Fig.5.1.
Recall that the boundaries of the Brillouin zones glanes normal t& at the midpoint

of G. The first Brillouin zone of the square lattice tlse area enclosed by the
perpendicular bisectors of and of the three recilr lattice vectors equivalent by

symmetry to in Fig. 5.1a. These four reciprocdlida vectors are and

The second zone is constructed from  and the treetrs equivalent to
it by symmetry, and similarly for the third zonehd pieces of the second and third zones
are drawn in Fig. 5.1b.
In general, théirst Brillouin zoneis the set of points in k-space that can be reatiogal
the origin without crossingny Bragg plane. Thesecond Brillouin zoneés the set of
points that can be reached from the first zone tmssing only one Bragg plane.
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Brillouin zoneis the set of points not in the zone that can
be reached from the zone by crossing only one @Bmgne. The free electron
Fermi surface for an arbitrary electron concertrais shown in Fig.5.2.

Fig.5.2: Brillouin zones of a square lattice in two dimemsig¢After Kittel,
1979).

Now we perform a transformation to the reduced zsctfeeme as is shown in Figs.5.3
and 5.4. We take the triangle labeled 2a (Fig &) move it by a reciprocal lattice
vector such that the triangle reappears in the afdhe first Brillouin
zone (Fig.5.3). Other reciprocal lattice vectordl shift the triangles g 2, 24 to other
parts of the first zone, completing the mappinghef second zone into the reduced zone
scheme. The parts of the Fermi surface fallindhs decond zone are now connected, as
shown in Fig. 5.4.

AN s
a
i
st zome dndl zone il sone
a b c
Fig.5.3 Mapping of the first, second, and third Brillouiores in
the reduced zone scheme. The sections of the secodin Fig.
5.1 are put together into a square by translatimough an
appropriate reciprocal lattice vector (After Kitt&B79).
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It zome Ind zone 3rd zone

Fig.5.4: The free electron Fermi surfaces of Fig.5.3, asv@ekin
the reduced zone scheme. The shaded areas repoeseipied
electron states. Parts of the Fermi surface falha second and
third zones. The first zone is entirely occupied€¢AKittel, 1979).

Construction of Brillouin zones and Fermi surfades three-dimensions is more
complicated. Fig5.5 shows the first three Brillomones for bcc and fcc structures.

Fig.5.5:Surfaces of the first, second, and third Brilloaomes for
(a) body-centered cubic and (b) face-centered autystals. (Only
theexteriorsurfaces are shown (After Kittel, 1979)..
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The free electron Fermi surfaces farc cubic metals of valence 2 and 3 are shown in

Fig.5.6.
First zone B ;-und zone Third zone ‘ | Fourth zone
Valence
2 | Mone
|
|
v | k r'll f
Valence ;‘I I ;"‘-_ *
3 i |; I“." \ | Ill
2 e ¥
i_“u.‘_?; o
Fig.5.6: The free electron Fermi surfaces for face-centeudyic metals of
valence 2 and 3(After Kittel, 1979).
3.3  Effect of a crystal potential

How do we go from Fermi surfaces for free electranBermi surfaces in the presence of
a weak crystal potential? We can make approximatstcuctions freehand by the use of
the following facts:

(i)
(ii)

(iii)
(iv)

v)

The interaction of the electron with the pelio potential of the crystal causes
energy gaps at the zone boundaries.

Almost always the Fermi surface will interéezone boundaries perpendicularly.
Using the equation for the energy near the zonendbary it is easy to show

that‘;—iz %z(k—%a) which implies that on the Bragg plane the gradieht

energy is parallel to the Bragg plane. Since ttaglignt is perpendicular to the
surfaces on which function is constant, the coristaergy surfaces at the Bragg
plane are perpendicular to the plane.

The crystal potential will round out sharpraers in the Fermi surfaces.

The total volume enclosed by the Fermi swefalepends only on the electron
concentration and is independent of the detaitb®fattice interaction.

If a branch of the Fermi surface consists efyvsmall pieces of surface
(surrounding either occupied or unoccupied levédspwn as "pockets of
electrons" or "pockets of holes"), then a weakqukc potential may cause these
to disappear. In addition, if the free electromniesurface has parts with a very
narrow cross section, a weak periodic potentialy ncause it to become
disconnected at such points.

Below we give a few examples for real metals
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3.3.1. Alkali metals

The radius of the Fermi sphere in bcc alkali metalsss than the shortest distance from
the center of the zone to a zone face and theréfier€ermi sphere lies entirely within

the first Brillouin zone. The crystal potential dorot distort much the free electron

Fermi surface and it remains very similar to a spheig 5.7 shows Fermi surface for

sodium.

Fig.5.7: Fermi surface of sodium (After WWW..pa.uk.edu/kwquhg'/525llec-8)

3.3.2. Noble metals

The Fermi surface for a single half-filled free atten band in fcc Bravais lattice is a
sphere entirely contained within the first Brillauzone, approaching the surface of the
zone most closely in the [111] directions, whenedches 0.903 of the distance from the
origin to the center of the hexagonal face. Fothakte noble metals therefore their Fermi
surfaces are closely related to the free electpbrere. However, in the [111] directions
contact is actually made with the zone faces, aedmeasured Fermi surfaces have the
shape shown in Fig.5.8. Eight "necks reach oubteh the eight hexagonal faces of the
zone, but otherwise the surface is not grosslydest from spherical.

2 N

Fig. 5.8: In the three noble metals the free electron sphalges
out in the [111] directions to make contact witk tlexagonal zone
faces.

3.3.3. Cubic divalent metals

With two electrons per primitive cell, calcium,@ttium, and barium could, in principle,
be insulators. In the free electron model, the Fesphere has the same volume as the
first zone and therefore intersects the zone faldes free electron Fermi surface is thus a
fairly complex structure in the first zone, and kets of electrons in the second. The

159



guestion is whether the effective lattice potengastrong enough to shrink the second-
zone pockets down to zero volume, thereby fillipgall the unoccupied levels in the first

zone. Evidently this is not the case, since theugrdl elements are all metals.

Calculations show that the first Brillouin zonecmmpletely filled and a small number of

electrons in the second zone determine the nonexerductance.

Fig.5.9: Fermi surface of calcium (Aftesvw.pa.uk.edu/kwng.phy/525/lec/lecturg-8

3.3.4. Trivalent metals

The Fermi surface of aluminum is close to thathef free electron surface for fcc cubic
monatomic lattice with three conduction electroes atom. The first Brillouin zone is
filled and the Fermi surface of free electronsnsrely contained in the second, third and
fourth Brillouin zones. When displayed in a reduzede scheme the second-zone
surface is a closed structure containing unocculgeels, while the third-zone surface is
a complex structure of narrow tubes (Fig.5.6). @ahmunt of surface in the fourth zone is
very small, enclosing tiny pockets of occupied Isv@he effect of a weak periodic
potential is to eliminate the fourth-zone pockett®lectrons, and reduce the third-zone
surface to a set of disconnected "rings" (Fig.5.18uminum provides a striking
illustration of the theory of Hall coefficients. &hhigh-field Hall coefficient should
beR,; = —1(n, — n,)e wheren, andn, are the number of levels per unit volume
enclosed by the particle-like and hole-like brarschéthe Fermi surface. Since the first
zone of aluminum is completely filled and accomnteddwo electrons per atom, one of
the three valence electrons per atom remains tapgcsecond- and third-zone levels.
Thus

n
nll + nlll = 3 (5.2)

wheren is the free electron carrier density appropriatedatence 3. On the other hand,
since the total number of levels in any zone isughao hold two electrons per atom, we
also have

nll + nll = 2% (5.3)
Subtracting (5.3) from (5.2) gives
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n
nit + nll = -3 (5.4)

Thus the high-field Hall coefficient should havepasitive sign and yield an effective
density of carriers a third of the free electrofueaThis is precisely what is observed.

N

Fig.5.10: Fermi surface of aluminum (After www.pu. uk.eduélevg.phys/525/lecture8)

4.0

Conclusion

The Fermi surfaces (FS) concept enables to visutie relative fullness or occupation
of the allowed empty lattice bands geometricallikispace and thus helps in the
theoretical determination of the electronic projsrof a solid.

5.0

6.0

Summary

The N Bloch electron is constructed when the waaaor k is confined to single
primitive cell.

In Alkali metals, the Fermi surface is very muiktela sphere

In Noble metals, the Fermi surface is a sphereanttontained within the first
Brillouin zone.

In Cubic divalent metals, the Fermi surface hasstimae volume as the first
Brillouin zone.

In Trivalent metals, the Fermi surface is entirebytained in the™ , 39 and the
4™ Brillouin zone.

Tutor marked assignment
Q1. A two-dimensional metal has one atom of valence am a simple
rectangular primitive cell od = 2A anda, = 4A.

(a) Draw the first and the second Brillouin zones.

(b) Calculate the radius of the free electron Fesphiere and draw this
sphere to scale on the drawing of the Brillouinemn

(c) Draw the Fermi surface in reduced zone schemd show
schematically the effect of a weak crystal poténtia

Q2 Suppose that some atoms in a Cu crystal, whishang cc lattice, are
gradually replaced by Zn atoms. Considering thatsZdivalent while Cu
is monovalent, calculate the atomic ratio of ZnQo in aCuZn alloy
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7.0

(brass) at which the Fermi sphere touches the fares. Use the free-
electron model. This particular alloy is interegtibecause the solid
undergoes a structural phase change at this caoatientratio.
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Kittel C., Introduction to solid state physics, @jilEastern Limited, 1979
Kittel, C., Quantum theory of solids, John Wilep6B
Hurd,C.M., The hall effect in metals and alloyssirim,1972
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Limited, New Delhi, 1992.
W. A. WoosterA textbook on crystal physidgSambridge University Press,
Cambridge, 1938.
www.pa.uk.edu/kwng.phy/525/lec/lecture-8
Ziman, J.M., Electrons and Phonons, Cambridge UsityePress, 1960

162



Module 4:

SEMICONDUCTORS AND SUPERCONDUCTORS




UNIT 1: STRUCTURE AND BONDING (SEMICONDUCTORS)page

1.0 Introduction - - - - - - - - 159
2.0 Objectives - - - - - - - - 159
3.0 Definition - - - - - - - - 159
3.1  Crystal structure and bonding - - - - - 159
3.2  Bonding structure - - - - - - 160
3.3 intrinsic semiconducter - - - - - 161
3.4 Impurities states - - - - - - 165
3.5  Acceptors - - - - - - - 167
4.0 Conclusion - - - - - - - - 168
5.0 Summary - - - - - - - - 168
6.0  Tutor Marked Assignment - - - - - - 169
7.0 Further Reading/References - - - - - 169

164



1.0 Introduction
In a semiconductor the valence band is almost cet@lyi filled while the conduction
band is empty. Thermal excitation or (energy) apson processes may cause some
electrons to cross the band gap, making it sinlaemimetals. Semiconductors tend to
be bonded tetrahedrally and covalently, althougiatyi semiconductors may have polar,
as well as covalent character.
2.0  Objective

* The objective of this unit is to

* Understand the structure and bonding in semicodsict

» Explain intrinsic semiconductors.

» Understand the importance of impurity states ofisenductors.

Definition

Semiconductors are electronic conductors with gtadtresistivity values generally in
the range of 16to 10 ohm-cm at room temperature, intermediate betweend g
conductors(18 ohm-cm) and insulators (1to 16> ohm-cm).

3.1  Crystal structure and bonding

Semiconductors include a large number of substaotevidely different chemical and
physical properties. These materials are grouptdseveral classes of similar behavior,
the classification being based on the positiomegeriodic table of the elements.

The best-known class is the Group IV semiconductdts (diamond), SiGe, - all of
which lie in the fourth column of the periodic tablThey have been studied intensively,
particularly Si and Ge, which have found many agtions in electronic devices. The
elemental semiconductors all crystallize in therbad structure. The diamond structure
has an fcc lattice with a basis composed of twatidel atoms, and is such that each
atom is surrounded by four neighboring atoms, fagra regular tetrahedron. Group IV
semiconductors are covalent crystals, i.e., thengtare held together by covalent bonds.
These bonds consist of two electrons of oppositessgiistributed along the line joining
the two atoms. The covalent electrons forming theds are hybridp® atomic orbitals.
Another important group of semiconductors is theur IlI-V compounds, so named
because each contains two elements, one from trek dhd the other from the fifth
column of the periodic table. The best-known memlwérthis group aréads and InSb
(indium antimonite), but the list also contains gmunds such a&aP, InAs, GaSh, and
many others. These substances crystallize in tieeltend structure which is the same as
the diamond structure, except that the two atommifgy the basis of the lattice are now
different. Thus, iGads, the basis of the fcc lattice consists of two ap@a and As.
Because of this structure, each atom is surrouhgefbur others of the opposite kind,
and these latter atoms form a regular tetrahegushas in the diamond structure.

The bonding in the IlI-V compounds is also primardovalent. The eight electrons
required for the four tetrahedral covalent bonds sampplied by the two types of atoms,
the trivalent atom contributing its three valentec&ons, and the pentavalent atom five
electrons. The bonding in this group is not enticdvalent. Because the two elements in
the compound are different, the distribution of thectrons along the bond is not
symmetric, but is displaced toward one of the atoAs a result, one of the atoms
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acquires a net electric charge. Such a bond ieddaditeropolar,in contrast to the purely
covalent bond in the elemental semiconductors, lwisicallechomopolar.

The distribution of electrons in the bond is displd toward the atom of higher
electronegativity In GaAs for instance, theAs atom has a higher electronegativity than
the Ga, and consequently tAs atom acquires a net negative charge, whose value i
-0.462 per atom (a typical value in Group llI-V compoundsjhe Ga atom
correspondingly acquires a net positive charge. 480 Charge transfer leads to an ionic
contribution to the bonding in Group IlI-V compowndTheir bonding is therefore
actually a mixture of covalent and ionic compongatthough covalent ones predominate
in most of these substances.

3.2 Bonding structure

A semiconductor is a solid in which the highestugsed energy band, thalence band,

is completely full afl = 0°K, but in which the gap above this band is aswll, so that
electrons may be excited thermally at room tempegafrom the valence band to the
next-higher band, which is known as tbhenduction band Generally speaking, the
number of excited electrons is appreciable (at reemperature) whenever the energy
gapEF is less than 2 eV. The substance may then be fidasas a semiconductor. When

the gap is larger, the number of electrons is gégdé, and the substance is an insulator.
When electrons are excited across the gap, therbadf the conduction band (CB) is
populated by electrons, and the top of the valdrarel (VB) by holes. As a result, both
bands are now only partially full, and would caaycurrent if an electric field were
applied. The conductivity of the semiconductorrisai compared with the conductivities
of metals of the small number of electrons and shateolved, but this conductivity is
nonetheless sufficiently large for practical pugmsThe simplest band structure of a
semiconductor is indicated in Fig.1.1. Since we iaterested only in the region which
lies close to the band gap, where electrons anesH@, we can ignore a more complex
variation of the energy bands far away from the. §éq@ energy of the CB has the form.

h2k?
2me

E.(k) = E. +

(1.1)

where k is the wave vector amrie the effective mass of the electron. The en&gy

represents the energy gap. The zero-energy leeabisen to lie at the top of the VB.
The energy of the VB (Fig.1.1) may be written as
h2K?
E,(k) =E, —— (1.2)

2mp

Wheremhis the effective mass of the hole which is positiBecause of the inverted shape

of the VB, the mass of an electron at the top ef\B is negative, but the mass of a hole is
positive).

166



Conduction
band
E
€ $
E'.'i'
E, = k
Valence
band

Fig. 1.1:Band structure in a semiconductor.

Within this simple picture of the semiconductore thrimary band-structure parameters
are thus the electron and hole masseeand m, and the band gaﬁg. Table 1.1 gives

these parameters for various semiconductors. Natethe masses differ considerably
from the free-electron mass. In many cases theynaich smaller than the free-electron
mass. The energy gaps range from 0.18 eVn§$b to 3.7 eV in ZnS. The table also
shows that the wider the gap, the greater the wia®e electronThe energy gap for a
semiconductor varies with temperature, but theatian is usually slight. That a variation
with temperature should exist at all can be apptedifrom the fact that the crystal, when
it is heated, experiences a volume expansion, andeha change in its lattice constant.
This, in turn, affects the band structure, whichaisensitive function of the lattice
constant. The band structure in Fig 1.1 is the Estpossible structure. Band structures
of real semiconductors are somewhat more compticatewe shall see later.

3.3 Intrinsic Semiconductors

In the field of semiconductor, electrons and halesusually referred to dee carriers,

or simply carriers, because it is these particles which are responsanlearrying the
electric current. The number of carriers is an ingo@ property of a semiconductor, as
this determines its electrical conductivitgtrinsic semiconductorare semiconductors in
which the number of carries and the conductivitgosinfluenced by impurities. Intrinsic
conductivity is typical at relatively high temparegs in highly purified specimens. In
order to determine the number of carriers, we rseede of the basic results of statistical
mechanics.
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Table 1.1 Band Structure parameters of Semiconductors

Group Crystal Eq(eV) m./m ny/m
IV C 5.3
IV Si 1.1 0.19 0.16
IV Ge 0.7 0.08 0.04
II-v GaAs 14 0.07 0.09
II-v GaP 23 0.12 0.50
II-v InSb 0.2 0.01 0.18
I-VI ZnS 3.6 0.40 5.41
I-VI ZnSe 2.7 0.1 0.6
II-VI CdSe 1.7 0.13 0.45

The most important result in this regard is thenkddirac (FD) distribution function.

f(E) = W (1.3)

+1

This function, gives the probability that an enetgyel E is occupied by an electron
when the system is at temperatiitel he function is plotted versdsin Fig.1.2. Here we
see that, as the temperature rises,unoccupied region below the Fermi IeEFerecomes

longer,which implies that the occupation of high energitest increases as the temperature is
raised a conclusion which is most plausible, since iasimeg the temperature raises the
overall energy of the system.

fE)

Fig. 1.2: The Fermi-Dirac distributions function (After Kitfe1979)
We will see later that the Fermi level in intrinsiemiconductors lies close to the middle

of the band gap. Therefore we can represent thebdison function and the conduction
and valence bands of the semiconductor as shoWwiy.ih.3.
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Fig.1.3: (a) conduction and valence bands (b) thibution function
(c) Density of states for electrons and holegdAKittel, 1979)

First we calculate the concentration of electranghe CB. The number of states in the
energy range (E, E + dE) is equaD{¢E)dE, where,(E) is the density of electron
states. Since each of these states has an ocougmbbability f (E), the number of
electrons actually found in this energy range isaédpf (E)D,(E)dE. The concentration
of electrons throughout the CB is thus given byititegral over the conduction band.

n= J f.(E)D, (E)dE (14

s

where E_ is the bottom the conduction band, as shown inlBg.

The band gap in semiconductors is of the ordeed, Wvhich is much larger than KT.
Therefore E—p) >> kBT and we can neglect the unity term in the denomimaitthe

distribution function Eq. (1.3), so that

fo(E) =~ e~ (E-#)/kpT (1.5)

The density of the conduction band is given by

me) 3/ .
(B = 5 () (BB oo

212 \ h?

Note thatD, (E) vanishes foE < E.and is finite only fofE > E. as shown in Fig.1.3.
When we substitute equations fdE) andD, (E) into Eq. (1.4), we obtain
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E,,'..! kT J (E_Ec)i :E'_E .'{ETd'E (17)

-

L(E;EJS 2

2wl

By changing the variable, and using the result

J x1e™¥dE =

(1]

=N

VT (1.8)

2
one can readily evaluate the integral in (1.7). &leetron concentration then reduces to
the expression

3/2 (1.9)
=2 (mekT) o (—EQ)/ksT
2mh?

The electron concentration is still not known egiplly because the Fermi energyis so
far unknown. Essentially the same ideas employedalmay also be used to evaluate
the number of holes in the VB. The probability thdtole occupies a levElin this band
is equal to 1f(E), sincef (E) is the probability of electron occupation. Assogithat the
Fermi level lies close to the middle of the bang,gee. (,L—E)>>kBT for the valence

band, we find for the distribution function of hsle

1 1
=1- = ~ p—(U—E)/kpT (1.10)
fu(E) =1 el(E-w/kpT] 1  el(u—E)/kpT] e g

The density of states for the holes is

Dy(E) = — (zﬂ)s/2 (E, — E)V/? (1.11)

22 \ h2

wherekE,, is the energy of the valence band edge. Proce@diagimilar fashion as we
did for electrons we find for the concentratiorhofes in the valence band

E.
=

p= J fa(E)D, (E)AE = 2 (

—oc

’mhkTJE 2

2mh?

o Ey—u) /kegT (1.12)

The electron and hole concentrations have thulsdan treated as independent quantities.
For intrinsic semiconductors the two concentratiams, in fact, equal, because the

electrons in the CB are due to excitations from W8 across the energy gap, and for

each electron thus excited a hole is created ivVBheTherefore,

n=p (1.13)
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(m,)3/2eW=E/KBT = (1, )3/2(Ev=it)/keT (1.14)

We obtain then, for the Fermi energy

E,—E. 3 m 1.15
p=-2—C4ZkyTln— (1.15)
2 4 me

The second term on the right of (1.15) is very $roampared with the first, and the
energy level is close to the middle of the energp.grhis is consistent with earlier
assertions that both the bottom of the CB and apeof the VB are far from the Fermi
level. The concentration of electrons may now be evaluaetdicitly by using the above
value of 1. Substitution of Eq. (1.15) into Eq9(lyields

3/2
n=2 (ZI(B}Z;) / (memh)3/4e—Eg/2kBT (1.16)
T

whereE,; = E, — E, is the band gap. The important feature of this exgion is thah
increases very rapidly - exponentially - with temgtere, particularly by virtue of the
exponential factor. Thus as temperature is raigadstly greater number of electrons is
excited across the gap. Our discussion of caroacentration in this section is based on
the premise of a pure semiconductor. When the anbstismpure,additional electrons
or holes are provided by the impurities. In thatde;ahe concentrations of electrons and
holes may no longer be equal, and the amount d¢f dapends on the concentration and
type of impurity present. When the substance isficsemtly pure so that the
concentrations of electrons and holes are equakpgek of arnntrinsic semiconductor.
That is, the concentrations are determined byrttransic properties of the semiconductor
itself. On the other hand, when a substance cantilarge number of impurities which
supply most of the carriers, it is referred to ag=#rinsic semiconductor.

3.4 Impurity states

A pure semiconductor has equal numbers of bothrstgpearriers, electrons and holes. In
most applications, however one needs specimenshwiaee one type of carrier only,
and none of the other. By doping the semicondusttir appropriate impurities, one can
obtain samples which contain either electrons onliyoles only. Consider, for instance, a
specimen of Si which has bedapedby As. TheAs atoms (the impurities) occupy some
of the lattice sites formerly occupied by the Sisthatoms. The distribution of the
impurities is random throughout the lattice. Bugithpresence affects the solid in one
very important respect. Th&s atom has valence 5 while Si has valence 4. Of ithee f
electrons ofds, four participate in the tetrahedral bond of Sishswn in Fig. 1.4. The
fifth electron cannot enter the bond, which is nsaturated, and hence this electron
detaches from the impurity and is free to migrdteugh the crystal as a conduction
electron, i.e., the electron enters the CB. Theunity is now actually a positive ion,
As*(since it has lost one of its electrons), and thusnds to capture the free electron,
but we shall show shortly that the attraction fasceery weak, and not enough to capture
the electron in most circumstances. The net rasulbhat theAs impurities contribute
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electrons to the CB of the semiconductors, andhisrreason these impurities are called
donors.Note that the electrons have been creatiéldoutthe generation of holes.

Fig.1.4:An As impurity in a Si crystal. The extra electnmigrates
through the crystal.

When an electron is captured by an ionized donarhits around the donor much like
the situation in hydrogen. We can calculate thelibigyenergy by using the familiar Bohr
model. However, we must take into account the tlaat the coulomb interaction here is
weakened by the screening due to the presenceeotdmiconductor crystal, which
serves as a medium in which both the donor andeside. Thus the coulomb potential is
now given by

2
V(T‘) — _Z_T (1.17)

whereg is the reduced dielectric constant of the medidrhe dielectric constamt= 11.7

in Si, for example, shows a substantial decreas¢héninteraction force. It is this
screening which is responsible for the small bigdemergy of the electron at the donor
site. Using this potential in the Bohr model, we find thieding energy, corresponding to the
ground state of the donor, to be

E, = e*me (1.18)

T 2e2p2

Note that binding energy of the hydrogen atom, Whicequal to 13.6 eV. The binding
energy of the donor is reduced by the factaf, and also by the mass factor
m./mwhich is usually smaller than unity. Using the tgli valuese ~ 10

-3
andm,/m ~0.1, we find that the binding energy of the donor oat 10 of the
hydrogen energy, i.e., about 0.01 eV. This issedithe order of the observed values.
The donor level lies in the energy gap, very slighelow the conduction band, as shown
in Fig.1.5. Because the level is so close to the GBmost all the donors are ionized at
room temperature, their electrons have been exiitedCB.
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Fig. 1.5: The donor level in a semiconductor

It is instructive to evaluate the Bohr radius ot tHonor electron. Straightforward
adaptation of the Bohr result leads to

m
ra=E€—ag (1.19)

e

wherea, is the Bohr radius, equal to 0.53 A. The radiughef orbit is thus much larger
thana, , by a factor of 100, if we use the previous valiees andm,. A typical radius is
thus of the order of 50 A. Since this is much gredihan the inter atomic spacing, the
orbit of the electron encloses a great many hashst and our picture of the lattice
acting as a continuous, polarizable dielectridissta plausible one. Since the donors are
almost all ionized, the concentration of electramsiearly equal to that of the donors.
Typical concentrations are abdut*>cm3. But sometimes much higher concentrations
are obtained by doping of the sample, for exant&8cm 3or even more.

3.5 Acceptors

An appropriate choice of impurity may produce hatedead of electrons. Suppose that
the Si crystal is doped witlka impurity atoms. TheGa impurity resides at a site
previously occupied by a Si atom, but sir&eis trivalent; one of the electron bonds
remains vacant (Fig.1.6). This vacancy may bedillsy an electron moving in from
another bond, resulting in a vacancy (or holehat fatter bond. The hole is then free to
migrate throughout the crystal. In this mannerjriigoducing a large number of trivalent
impurities, one creates an appreciable concentratidioles, which lack electrons. The
trivalent impurity is called amcceptor,because it accepts an electron to complete its
tetrahedral bond. The acceptor is negatively clihrigg virtue of the additional electron
it has entrapped. Since the resulting hole hassitipe charge, it is attracted by the
acceptor. We can evaluate the binding energy ofhtile at the acceptor in the same
manner followed above in the case of the donor.iAgas energy is very small, of the
order of 0.01 eV. Thus essentially all the accepéoe ionized at room temperature.
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Fig. 1.6: A Ga impurity in a Si crystal. The extra hole migratiesough the crystal

The acceptor level lies in the energy gap, slightipve the edge of the VB, as shown in
Fig.1.7. This level corresponds to the hole beiagtured by the acceptor. When an
acceptor is ionized (an electron excited from the df the VB to fill this hole), the hole
falls to the top of the VB, and is now a free aarriThus the ionization process, indicated
by upward transition of the electron on the enesggle, may be represented by a
downward transition of the hole on this scale.

4.0

5.0

Conduction

SRRt
i

l Acceptor

E
" T
Valence band
Fig.1.7: The acceptor level in a semiconductor.

Conclusion
Semiconductors include a large number of substarafe widely different
chemical and physical properties. The number afera (electrons and holes) is
an important property of a semiconductor, as ftitermines its electrical
conductivity.
Summary

The best-known class of semiconductors is the Gridugdiamond, Silicon,
Germanium).

The valence banid completely full afl = 0°K.

Electrons at room temperature may be excited thgrimam the valence band to
the next-higher band, known as ttenduction band.

The energy of the CB has the form.

Ec(k) =E;. +
The energy of the VB

h?Kk?
2mg’
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6.0

7.0

h2k?
2m,

In an intrinsic semiconductor the number of eletéres equal to the number of
holes.

E,(k) = E, —

Tutor marked assignment

Q1. For the nondegenerate case whHereu >> kT, calculate the number of
electrons per unit volume in the conduction biach the integral

n = f D(E) £ (E)dE
Ec
D (E) is the density of statefs(E) is the Fermi function
Q2. (a) Compute the concentration of electrons and holes imtrinsic
semiconductoinSh at room temperaturez=0.2eV,m, = 0.0Im
andmy, = 0.018m).
(b) Determine the position of the Fermi.
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1.0 Introduction

In this unit, we are going to study the concentratrf the carriers both in the conduction
and valence bands and the difference betweensitniagion and the extrinsic region.

2.0  Objective
The objective of this unit is to differentiate

. the intrinsic region from

. the extrinsic region
3.0  Definition
3.1  Semiconductor statistics
Semiconductors usually contain both donors andpoce Electrons in the CB can be
created either by thermal excitation or by therioalzation of the donors. Holes in the
VB may be generated by interband excitation orH®rrhal excitation of electrons from
the VB into the acceptor level. And in additioreatons may fall from the donor levels
to the acceptor level. Figure 2.1 indicates thes®us processes.

Fig. 2.1: The various electronic processes in a semiconductor

Finding the concentrations of carriers, both etatdrand holes, taking all these processes
into account, is quite complicated. We shall teeégw special cases, which are often
encountered in practice. Two regions may be distsiged, depending on the physical
parameters involved: Thatrinsic and theextrinsicregions.

3.1.1. Intrinsic region

The concentration of carriers in the intrinsic oegis determined primarilyby thermally

induced interband transitions. In this regiorp. The intrinsic region obtains when the
impurity doping is small. When we denote the cotragions of donors and acceptors by
N, andN, the requirement for the validity of the intrinsiendlition is

n = Nd.Na (2-1)

Since n increases rapidly with temperature, the intrinsandition becomes more
favorable at higher temperatures. All semicondwston fact, become intrinsic at
sufficiently high temperatures (unless the dopsignusually high).
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3.1.2 Extrinsic region

Quite often the intrinsic condition is not satisfié&-or the common dopings encountered,
about10'> cm™3, the number of carriers supplied by the  impusitie large enough to
change the intrinsic concentration appreciablyoanr temperature. The contribution of
impurities, in fact, frequently exceeds those easrithat are supplied by interband
excitation. When this is so, the sample is ingkg&insic region.

Two different types of extrinsic regions may betidiguished. The first occurs when the
donor concentration greatly exceeds the acceptocerdration, that is, whew; >

N,.In this case; the concentration of electrons mag\Jauated quite readily. Since the
donor's ionization energy (i.e. the binding energy)quite small all the donors are
essentially ionized, their electrons going into @& Therefore, to a good approximation,

n= Nyg R.2)

A semiconductor in whicm >> p is called ann-type semiconductgin for negative).
Such a sample is characterized, as we have seemn gbgat concentration of electrons.
The other type of extrinsic region occurs whén> N, that is, the doping is primarily
by acceptors. Using an argument similar to thevapone then has,

p= Ng 2.3

i.e., all the acceptors are ionized. Such a materiealled ap-type semiconductotft is
characterized by a preponderance of holes. In slteg ionization of donors (and
acceptors), we assumed that the temperature igisuffy high so that all of these are
ionized. This is certainly true at room temperatiet if the temperature is progressively
lowered, a point is reached at which the thermargyn becomes too small to cause
electron excitation. In that case, the electrofiisfiam the CB into the donor level, and
the conductivity of the sample diminishes dramdijcd his is referred to afeeze-out,

in that the electrons are now "frozen" at their umify sites. The temperature at which
freeze-out takes place B; ~ KT, which gives a temperature of about 100°K. The
variation of the electron concentration with tengtere in am-typesample is indicated
schematically in Fig. 2.2.

M

a4 =z

Freeze-out

{}l-——"_

|
I
——— Exirinsic - ) -Intrinsic——=
|
1
|
|
|

T

Fig.2.2: Variation of electron concentration nlwiémperature in an n-type
semiconductor.
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4.0 Conclusion
Both holes and electrons contribute to conductivity

5.0 Summary

. Thermal vibration or energy can be used to credtel@a by exciting an electron
from the valence band to the conduction band.

. In an intrinsic semiconductor (undoped), the nundfdroles in the valence band
is equals the number of electrons in the condndiend.

. an n-type semiconductor is one characterized byrematgconcentration of
electrons.

. a p-type semiconductor is onkaracterized by a preponderance of holes.

6.0 Tutor marked assignment
Q1.  Indium antimonide haB,= 0.23 eV, dielectric constant= 18;
electron effective mass_= 0.015m. Calculate

(@ the donor ionization energy and
(b)  the radius of the ground state orbit.

Q2. In a particular semiconductor there aréi6nor/cni with an ionization
energy Bof 1 meV and an effective mass 0.01 m.
Estimate the concentration of conduction electain K
What is the value of the Hall coefficient? Assumeeacceptor atoms are
present and thad,; > kpT.

7.0 Further readings/References
Kittel, C., Introduction to solid state physics, lé¥i Eastern Limited, 1979
Kachhava, C.M., Solid State physics, Tata McGraWiblishing Company
Limited, New Delhi, 1992.
Long, D., Energy bands in semiconductors, Wileyg8.9
Smith, R.A., Semiconductors, Cambridge, 1959
Wooster, W. A.A textbook on crystal physi@Sambridge University Press,
Cambridge, 1938.
www.pa.uk.edu/kwng.phy/525/lec/lecture-8
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1.0 Introduction

In this unit, we are going to study the electricahductivity and mobility which are the
primary interest in semiconductors, the band stinecso that the observed phenomenon
in the model structure can be used to obtain guzive agreement between experiments
and theoretical analysis.

2.0  Objective
The objectives of this unit is to
» Understand electrical conductivity which measurethlscattering and electron
concentration
* Understand electrical mobility which measures scaug)
* Understand band structure of real semiconductor

3.0  Definition
Electrical conductivity is the ability of a matdrta conduct electrical current.

3.1 Electrical conductivity

Electrical conductivity is, of course, the quantityprimary interest in semiconductors.
Both electrons and holes contribute to electriccantt Assume first that a sample is
strongly n-type and contains only one type of earrelectrons. The conductivity can be
treated according to the free- electron model:

ne’t,

O, = (3.1)

Mme

wherem, is an effective mass angis the lifetime of the electron. To estimate th&uea
for o,, we substitute =101* ¢m™3, which is eight orders in magnitude less thar tiha
metals, andm, = 0.Im. This leads to ¢,~1077(u ohm - cm)~! which is a typical
figure in semiconductors. Although this is manglers of magnitudemaller than the
value in a typical metal, wheres,~ 1(uohm-cm)~! the conductivity in a
semiconductor is still sufficiently large for pteal applications. Semiconductor
physicists often use another transport coefficientnobility. The mobilityu, is defined
as the proportionality coefficient between the ttat drift velocity and the applied
electricfield, i.e.

Vel = peE (3.2)
Where|V,| is the absolute value of the velocity. Taking iat@wount that
je= —en,V.and j, = o.E we find that
€‘L'e
He = — (3.3)

me
As defined, the mobility is a measure of the rapgidi the motion of the electron in the
field. The longer the lifetime of the electron atiee smaller its mass, the higher the
mobility. We can now express electrical conducyivit terms of mobility. We can write
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o, = nep, (3.4)

Indicating thato, is proportional tq,. A typical value foru, may be obtained by
substitutings, = (u ohm - cm)~t andn = 10 ¢m™3 in Eq. (3.4). This yield

te~103cm3y—ts7! (3.5)
What we have said about electrons in a stronglpe-substance can be carried over to

a discussion of holes in a strongly p-type subs&taibe conductivity of the holes is
given by

Op = —— = D€y (3.6)

wherely, is the hole mobility.
Let us now treat the general case, in which batlatedns and holes are present. When a

field is applied, electrons drift opposite to thedd and holes drift in the same direction as
the field. The currents and conductivities of the tarriers are both additive. Therefore

o =0, + oy (3.7)

i.e., both electrons and holes contribute to theetiis. In terms of the mobilities, one
may write

o = ney, + peuy (3.8)
The carriers' concentrationsandp may be different if the sample is doped, as disiss
before. And one or the other of the carriers magnidate, depending on whether the

semiconductor ig — or p —type. When the substance is in the intrinsic region,
howevern = p,and Eq. (3.8) becomes

o =ne(Ue + pp) (3.9)
where n is the intrinsic concentration. Even now the two @gido not contribute

equally to the current. The carrier with the greateobility usually the electron
contributes the larger share.
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3.1.1 Dependence on temperature

Conductivity depends on temperature, and this d#grese is often pronounced. Consider
a semiconductor in the intrinsic region. Its corduty is expressed by (3.9). But in this
situation the concentratianincreases exponentially with temperature, as magbtalled
from Eqg. (1.16). We may write the conductivitythe form

6=F(T)e(~Eg/2kT) (3.10)

whereF(T) is a function which depends only weakly on th@perature. (This function
depends on the mobilities and effective masseshef darriers.) Thus conductivity
increases exponentially with temperature as shovng.3.1.
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Fig. 3.1:Conductivity of Si versus T/in the intrinsic range.

This result can be used to determine the energy magemiconductors. In the early days
of semiconductor this was the standard procedurériding the energy gap. Nowadays,
however, the gap is often measured by optical nisthd/hen the substance is not in the
intrinsic region, its conductivity is given by tigeneral expression (3.8). In that case the
temperature dependence of the conductivityTois not usually as strong as indicated
above. To see the reason for this, suppose thauib&tance is extrinsic and strongly
type.The conductivity is

o = ney, (3.112)

But the electron concentratiornis now a constant equal My, the donor (hole)
concentration. And any temperature dependencergresest be  due to the mobility of
electrons or holes.
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3.1.2 Mobility versus temperature
Mobility of electrons (or holes) varies with tematire. In n-type semiconductor

_ et elg 312
He = Mme B MmeVe (3.12)
Since the lifetime of the electron, or its collisibme, varies with temperature, its

mobility also varies with temperature. Normally thbdifetime and mobility diminish as

the temperature rises. The relaxation time ismylwer, = 1,/V, wherel, is the mean
free path of the electron amgis the drift velocity. The velocity of electrons different
depending on their location in the  conduction bdfldctrons at the  bottom of the
conduction band in a semiconductor obey the daksstatistics and not the highly
degenerate Fermi statistics prevailing in metakse Migher electrons are in the band, the
greater their velocity. We can evaluate the conditigty assuming thak, is the average
velocity. The average velocity can be estimatedgudie procedure of the Kkinetic
theory of gases:

1/om vz = 3/, kT (3.13)
- - —1/2 - g
This introduces a factor of T dependence in the mobility:
ele
= — 5 3.14
nl’le m;/2(3kT)1/2 ( )

The mean free path also depends on the temperature, and in much the say as it
does in metalsl, is determined by the various collision mechanisroBng on the
electrons. These mechanisms are the collisionslagftrens with thermally excited
phonons and collisions with impurities. At high tenatures, at which collisions with
phonons is the dominant factdg is inversely proportional to temperature, that is,
l, < T~1. In that case, mobility varies as o« T3/2. Figure 3.2 shows this fofe.
Another important scattering mechanism in semicotais is that ofonizedimpurities.
When a substance is doped the donors (or accepises)heir electrons (or holes) to
the conduction band. The impurities are thus iahized are quite effective in scattering
the electrons (holes). At high temperatures tbadtering is masked by the much stronger
phonon mechanism, but at low temperatures thisrlatechanism becomes weak and the
ionized-impurity scattering gradually takes over.
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Fig.3.2: Electron mobility versud in Ge. The dashed curve represents pure phonon
scattering; numbers in parentheses refer to damrentrations

3.2 Band structure of real semiconductor

So far, we have assumed the simplest possible stamncture, namely, a conduction
band of a standard form, centered at the origm0kand a valence band of a standard
inverted form, also centered at the origin. Sucbimple structure is applicable for
elucidating many observed phenomena, but it dods represent the actual band
structures of many common semiconductors. Only wbee uses the actual band
structure is it possible to obtain a quantitatigreament between experiments and
theoretical analysis.

A material whose band structure comes close tadéal structure igrads (Fig. 3.3).
The conduction band has a minimum at the originGkamd the region close to the origin

is well represented by quadratic energy dependEfkE= h;kz, whereme= 0.072m.

Since the electrons are most likely to populate tbgion, one can represent this band by
a single effective mass. Note, however, thdtiasreases, the energyk) is no longer
guadratic irk, and those states may no longer by representad bingle, unique
effective mass. In particular that the next-higleergy minimum occurs along the [100]
direction. The dependence of energykonthe neighborhood of theecondaryminimum

is quadratic, and hence an  effective mass mafeed locally, but its value is much
greater than that of the primary minimum (at tleater). The actual value is 0.86
Due to cubic symmetry there are six equivalent séan/ minima, or  valleys in all
along the [100] directions.

185



E eV

Conduction
band

[ (0.0.0) [100]

Valence
band

Fig. 3.3Band structure of GaAs plotted along the [100] Hrid ] directions.

These secondary valleys do not play any role unaest circumstances, since the
electrons usually occupy only the central or prinaalley. In such situations, these
secondary valleys may be disregarded altogetheherel are also other secondary
valleys in the [111] directions, as shown in F83. These are higher than the [100]
valleys, and hence are even less likely to be @dpdlby electrons. The valence band is
also illustrated inFig.3.3. Here it is composedtote closely spaced subbands. Because
the curvatures of the bands are different, soteretfective masses of the corresponding
holes .One speaks bfht holesandheavy holesOther IlI- V semiconductors have band
structures quite similar to that 6tiAs.

Figure 3.4a shows the band structure of Si. Arrésténg feature is that the conduction
band has its lowest (primary) minimum notka0. The minimum lies along the [100]
direction, at about 0.85 the distance from  thdereto the edge of the zone. Note that
the bottom of the conduction does not lie direathpve the top of the valence band. This
type of semiconductors is known asdirect gap semiconductarsThese should be
distinguished frondirect gap semiconductossich asiaAs. Because of the cubic
symmetry, there are actually six equivalent primaalfeys located along the [100]
directions. These are illustrated in Fig. 3.4b. Bmergy surfaces at these valleys are
composed of elongated ellipsoidal surfaces of rdiwh, whose axes of symmetry are
along the [100] directions. There are two differeffective masses which correspond to
these surfaces: thiengitudinal and thetransverseeffective masses. The longitudinal
mass ign; = 0.97m, while the two identical transverse massesngre 0.19m. The mass
anisotropy ratio is about 5. The valence bandlinogi is represented by three different
holes (Fig.3.4a). One of the holes is heawy € 0.5m), and the other two are light. The
energy gap in Si, from the top of the valence banthe bottom of the conduction band,
is equal to 1.08 eV. The fact that the bottom ef¢bnduction does not lie directly above
the top of the valence band, is irrelevant to thinition of the band gap.

3.3  Excitons
An electron and a hole may be bound together lgyr thttractive coulomb
interaction, just as an electron is bound to atgoroto form a neutral
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hydrogen atom. The bound electron-hole pair idedabn Excitons Fig.3.5.
Excitons can move through the crystal and transpoetgy; it does not transport charge
because it is electrically neutral. It is similar gositronium, which is formed from an
electron and a positron. Excitons can be formeeviery insulating crystal. All Excitons
are unstable with respect to the ultimate recontlmnaprocess in which the electron
drops into the hole. The binding energy of the Exxs can be measured by optical
transitions from the valence band, by the diffeeebetween the energy required to create
an Excitons and the energy to create a free eleetnd free hole, Fig.3.6

Conduction

L5ev hand

{a) (b}

Fig.3.4(a) Band structure of Si plotted along the [10Q] &tl1] directions, (b)
Ellipsoidal energy surfaces corresponding to primalleys along the [100] directions
(After Kittel, 1979)

Fig.3.5: An Excitons, a bound electron-hole pair.
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Fig.3.68 Energy levels of Excitons.

Energy levels of Excitons can be calculated asoWasdl Consider an electron in the
conduction band and a hole in the valence band.eldatron and hole attract each other
by the Coulomb potential

62
Vir) = — p (3.15)
where ris thedistance between the particles anid the appropriate dielectric constant.
There will be bound states of the Excitons systawvirty total energies lower than the
bottom of the conduction band. The problem is tydréigen atom problem if the energy
surfaces for the electron and hole are spherichlnmmdegenerate. The energy levels are
given by

_ ety
En = EC - m (3.16)
Heren isthe principal quantum number apds the reduced mass:
1141 (3.17)
u Me mp

formed from the effective masses of the electrahlarie. The Excitons ground state
energy is obtained on settimg= 1 in Eq. (316); this is the ionization energythé
Excitons.

Worked example:
At room temperaturgzT /e = 26 mV. A sample of cadmium sulfide displays a mobile
carrier density o10¢ cmi® and a mobility coefficient = 102 cm? /volt sec

(@) Calculate the electrical conductivity of this saepl

(b) If the charge carriers have an effective mass egu@ll times the mass of a

free electron, what is the average time betweeoessive scatterings

Solutions:

@) From Eq. (3.4), the electrical conductivity in terwf mobility is given by
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Oe = Nel,
Withn = 102m™3,e = 1.6 x 1071, u, = 102m?V 1571,

we haves, = 160" 1m™1

(b) From EQ.(3.6), the free electron model of metalegy

2
o="0 wherem” is the effective mass of an electron is, then theamesr

« 1

time between successive scattering is

1_%(6)_57“0—15

4.0 Conclusion

The number of carriers (electrons and holes) isrgortant property of a semiconductor,
as this determines its electrical conductivity. lBBotconductivity and mobility (a measure
of the rapidity of the motion of the electron iretfield) depend on temperature.

5.0 Summary

2

. O, = % defines electrical conductivity according to fedectron model.
e
. te = ¢ defines mobility
Mme
. electrical conductivity in terms of mobility defined asr, = ney,
. o = neyu, + pey, definesContribution to the currents by both electrond an
holes in terms of the mobilities
. A material whose band structure comes closkdadeal structure iGaAs
. The bound electron-hole pair is calledexeitons

6.0  Tutor marked Assignment
Q1. A sample of Si contains Ihatomic per cent of phosphorous donors that
are all singly ionized at room temperature. Tleeteon mobility is 0.15
m’V~ s Calculate the extrinsic resistivity of the samfite Si, atomic
weight = 28, density = 2300 kg/r)n3

Q2. Given the data for Sji, = 1350 cm/V ‘S, Up = 475 cm/V -s,m, = 0.19m,
my = 0.16nandE, = 1.1 eV, calculate
(a) The lifetimes of electrons and holes.
(b) The intrinsic conductivity at room temperature

7.0  Further readings/References
Kittel, C., Introduction to solid state physicsjl&y Eastern Limited, 1979
Kachhava, C.M., Solid State physics, Tata McGraW#iblishing Company
Limited, New Delhi, 1992.
Long, D., Energy bands in semiconductors, Wileyg89
Smith, R.A., Semiconductors, Cambridge, 1959
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1.0 Introduction

Superconductivity was first discovered and so nalmeamerlingh Onnes in 1911. In the
course of an investigation of the electrical resise of various metals at liquid helium
temperatures, he observed that the resistanceahple of mercury dropped from 0.08

at about 4 K to less than 3xR® over a temperature interval of 0.01K. Subsequent
attempts showed that the width of the transitiagiae in a particular specimen depends
on a number of factors, such as the purity andllaegecal history and can be as sharp as
one millidegree or spread over several degreesleWe breadth of the transition may
increase if the sample is metallurgically imperfabie extraordinary smallness of the
resistance in the superconducting state appedrsldofor all superconductors. Thus, the
first characteristic property of a superconducsrthat its electrical resistance, for all
practical purposes, is zero, below a well-definechderature J called the critical, or
transition temperature. Thus, the conductivityhiis range of temperature is infinite; hence
the nomenclature of superconductivity.

Figure 4.1 shows how the electrical resistivity @ superconductor becomes
immeasurably small at the transition temperatuhe flgure also contrasts the behaviour
of a normal metal for which at very low temperagjréhe remanent resistivity is
characteristic of residual impurities. The resis&anf a superconductor is believed to be
zero rather than just very small.

Normal m

Superconductor

R Rynok

) 70
Temperature T (K)

Fig.4.1: Temperature dependence of the resistaf@normal
and superconducting material (After Kachhava, 1992)

2.0  Objective
The objective of this unit is to revise the basitSuperconductors in terms of:
» Empirical criteria
» Transition temperature
* Energy gap

3.0 Definition
Superconductivity is the phenomenon on which teetaktal resistivity of metals or
alloys drop to zero (infinite conductivity) whenated into its critical temperature.
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3.1  Empirical criteria

There are found to be a number of regularitiebégippearance of superconductivity,

the principal of which are the following:

I.  Superconductivity has been observed only for thesellic substances for which
the number of valence electrons Z lies betweerdBa

II.  Inall cases involving transition metals, the viaoiaof T, with number of valence
electrons shows sharp maxima for Z = 3, 5 and g8hawn in Fig. 4.2.

lIl. A rather striking correlation (a straight line gnexists between 3 and Zor
elements along given rows of periodic table (¥ig).

IV.  For a given value of Z, certain crystal structis®sm more favourable than others.
For example,p-tungsten anda-manganese structure are conductive to the
phenomenon of superconductivity

V. Ferromagnetic and ferroelectric ordering are fatandhibit superconductivity.

VI. T increases with a high power of the atomic volume iaversely as the atomic
mass.

VII.  Superconductivity occurs in materials having highhmal resistivities. The condition
np > 16 is a good criterion for the existence of supercatidity, where n is the
number of valence electrons per c.c. and p isdistivity in electrostatic units at
20°C.

These empirical rules have played an importantindliee discovery of new
superconductors.
A
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Fig 4.2: Variation of transition temperature with
number of valence electron
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Fig 4.3: Empirical correlation between transition
temperature and’ZAfter Kachhava, 1992)
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3.2 Transition Temperature

The temperature at which the normal metal pasdessuperconducting state is called the
transition temperature,..TThe transition temperature is generally affettgdhe application of
pressure though no specific regularity in the beliahas been found. The value gfdf most of
the metals lies below 4K; e.g., for Al it is 1R0For C-15 structure (e.g., V2 Hf), itis 10K; 1Bf

1 structure (e.g., NbN), it is near 13 K, wheredZi\and NbT1 [BCC (A-2) structure] have the
values of T as 11.0 and 10.0 K respectively. For A-15 stracthe highest = 23.2 K has been
observed in NBGe.

3,3 Energy Gap

Experiments have shown that in superconductorstemperatures in the vicinitpf
absolute zero, a forbidden energy gap just abavd-¢nmi level is observed. Figure 4.4(a)
shows the conduction band in the normal state.ewhil depicts an energy gap equat4o

at the Fermi level in the superconducting stateus;Tthe Fermi level in a superconductor is
midway between the ground state and the first exdtate so that each lies an energy dis-
tance =4 away from the Fermi level. Electrons in exciteated above the gap behave as
normal electrons. At absolute zero, there are ectelns above the gaMis typically of

the order of 17 eV.
-

—

Filed. Filled.
E Eeeru
Normal Superconducting

(a) (b)
Fig.4.4: (a) Conduction band in the normal metaEbergy gap at
the Fermi level in the superconducting state (Altechhava,
1992)

A is found to be a function of temperature T. ThUiyrépresents energy gap at temperature T.
Figure 4.5 shows reduced values of observed emmagy (T)/& (0) as a function of the
reduced temperature T/ Elementary theory predicts that

:—D' =1.74(1- l)1 (4.1)

We observe that the energy gap decreases contintmuasro as the temperature is incredsed
T . Numerically, experiments show that for most ltd metals.The transition from the
superconducting state to the normal state is obdeixy be a second-order phase transition.
In such a transition, there is no latent heat, thetre is a discontinuity in the heat
capacity.
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Fig. 4.5: Temperature dependence of the
superconducting energy gap (After Kachhava, 1992)

3.4 Properties Dependent on Energy Gap

3.4.1 Microwave and Infrared Absorptions

The response of a metal to electromagnetic radiasodetermined by the frequency
dependent conductivity. This in turn depends on dhailable mechanisms for energy
absorption by the conduction electrons at the gifrequency. Because the electronic
excitation spectrum in the superconducting statéh&acterized by an energy Gap one
would expect the AC conductivity to differ substally from its normal state form at

frequencies small compared witi/., and to be essentially the same in the

superconducting and normal states at frequenaigs mpared witt ﬂl,-*'ﬁ The value of

Eﬂl,-“'h, is typically in the range between microwave anttared frequencies. In the

superconducting state, an AC behaviour is obsemrech is indistinguishable from that in
the normal state at optical frequencies. Deviatibosn normal state behaviour first
appear in the infrared, and only at microwave fegmies does AC behaviour fully
displaying the lack of electronic absorption cheeastic of an energy gap becomes
completely developed.

3.4.2 Density of States

The three parts of Fig. 4.6 give a highly exaggetgicture of the difference between the
spectrum and occupancy of states in a normal raethlthose in a superconductor. Part
(a) considers the density of states at T = O imatheence of superconductivity (which can
be arranged by applying a suitable magnetic fifltie superconducting ground state for
zero temperature is pictured in part (b). This shavwero density of states for energies within
+ A(0) on either side of the Fermi energy, and a pilingptifhe displaced states on either
side of the gap. At T — 0, no electrons are exditetiigher states. Part (c) of the figure
imagines the consequences of a finite temperatgeethan J.The superconducting energy
gap A(0)is now smaller thark(0). Fractions of number of electrons are in stateweb
E. + AT leaving behind some unoccupied states b&Epw- AT. Finally, the gap decreases to
zero when T reaches @nd the corresponding density of states is thelepieted in part (a).
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Fig. 4.6: Density and occupancy of states (D.O.S) for a noramal a
superconductor (After Kachhava, 1992)

34.3 Specific Heat

There is no heat of transformation associated thighsuperconducting-normal transition
in a metal, but there is an anomaly in the electroomponent of the specific heat. An
example of this is illustrated in Fig. 4.7. Theodistinuity in the specific heat reflects the
second-order transition from a relatively disordef@ormal) state to a more highly ordered

(superconducting) state of lower entropy. At lomperatures, the specific heat of a normal
metal has the form

€, = AT + BT? 4.2)

where the linear term is due to electronic exadteti and the cubic term is due to lattice
vibrations. Below the superconducting critical temgture, this' behaviour is substantially
altered. As the temperature drops belgythe specific heat jumps to a higher value and then
slowly decreases, eventually falling well below adue one would expect for a normal metal.
By applying a magnetic field to drive the metabimihe normal state, one can compare the
specific heats of the superconducting and norratdstbelow the critical temperature.
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Fig.4.7: Specific heat of normal and supercondétiter Kachhava, 1992)

Such an analysis reveals that in the supercondustate, the linear electronic contribution
to the specific heat is replaced by term that vessmuch more rapidly at very low
temperatures, having dominant low-temperature betaof the form exp—A/kgzT). This

is the characteristic thermal behaviour of a systdtose excited levels are separated from the
ground state by energy2thus, the total specific heat of the supercomalystate is

C, = AT3C,, 4.3

f_* = aqexp ( —b (T'{f'r) j 4.9

where yT is the low-temperature electronic specific heathef normal state (obtained by
applying suitable magnetic field), amnd* 9 andb * 1.5.These parameters are themselves
weakly temperature dependent. In Fig.4.7 the ditleeodiscontinuity in specific heat at=T,

is 2.5 in units o¥ T..The exponential decrease in specific heat belpeaill be interpreted as
follows. Because, of the energy gap, the numbesleatrons excited across the gap is given
roughly by a Boltzmann factor, expA/ksT). Hence, the heat capacity varies exponentially
with temperature.

Where

3.4.4 Acoustic Attenuation

When a sound wave propagates through a metal, itvesoopic electric fields due to the
displacement of the ions can impart energy to elachear the Fermi level, thereby
removing energy from the wave. This is expressedhieyattenuation coefficienty, of
acoustic waves. The ratio effor superconducting and normal state is given by

-
(i &

- (4.5)
iy 1+oxplA/kgT)
At low temperatures
Z_-:: = 2 EKI} (_ &-'III:.;.-ST__-:I (46)
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The exponential decay ratio is represented in4Rg).

T ——

Fig.4.8 Ratio of attenuation coefficients for acoustiocves
in superconducting and normal metal as a functfon o
temperature (After Kachhava, 1992).

3.4.5 Thermal Conductivity

In normal metals, the heat current is predominacdiyried by the conduction electrons
and at low temperatures, the electronic contriloutio the thermal conductivity df is
given by the Wiedemann-Franz law. In a supercomdud¢towever, the electron pairs
have zero energy so they cannot contribute to gneempsport and hence to the heat
current (but being charged, they can still contebto the electric current). Hence, the
electronic contribution to the heat current depemdghe number of normal electrons and
like the electronic specific heat represented by EH4), we have the ratio of
superconducting to normal phase conductivities as

Rer oAy D
exp ( -"kgT,:l 4.7)

N

B

carried by the phonons (as in insulator). Undetable conditions,f—j’-’ may be very large

This is illustrated in Fig.4.9. When<@ T., K.. — 0 and the only thermal current will be

(~10%) and this property can be used to make a heatlswthe heat flow being
controlled by a magnet. The phonon contributiorthermal conduction will actually
increase in the superconducting state since thttedog of phonons by electrons is
reduced by the formation of pairs. In extreme cagsken K_,, is made small by the
introduction of impurities, the increase in the pbo contribution to the thermal
conductivity belowT, may outweigh the reduction in the electronic dbuottion so that
the total conductivity increases in the supercotidgcstate. To achieve this condition, an
impurity of similar mass but different valence, wainiwill reducek,,, without greatly
affecting phonon transport, should be used. An gtams Bi in Pb.
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Fig.4.9: Ratio of the electronic contribution te@ tthermal
conduction of Al (After Kachhava, 1992)

4.0 Conclusion
At a critical temperatur@., many metals and alloy undergo a phase transitmm a
state of normal electrical resistivity to a sup@mhacting state.

5.0 Summary

» Superconductivity has been observed only for tinostallic substances for which the
number of valence electrons Z lies between 2 and 8.

* The temperature at which the normal metal pastesiumperconducting state is called
the transition temperature, T

* In superconductors, for temperatures in the vigimoft absolute zero, a forbidden
energy gap just above the Fermi level is observed.

» The ratio of attenuating coefficient for supercattthg and normal state is given by

o 2

5

@n 14+ ecp [a."lfl.:'.-g?_\]

. ~

The ratio of superconducting to normal phase cotindties is given as

6.0  Tutor marked assignment
Q1. Prove that the Meissner effect is consistent tithdisappearance of
resistivity in a super conductor.
Q2. Show thatvhen superconductivity is destroyed by dfien magnetic
field, the magnet will cool.

7.0  Further readings/References
James, D.P., Bernard, C.B., Solid state physi¢soduction to the theory,
Springer, 2005
Kittel, C., Introduction to solid state physics, &y Eastern Limited, 1979
Kachhava, C.M., Solid State physics, Tata McGraWiblishing Company
Limited, New Delhi, 1992.

199



Wooster, W. A.A textbook on crystal physid@Sambridge University Press,
Cambridge, 1938.

200



UNIT 5: SUPERCONDUCTIVITY (II) EXPERIMENTS AND THO ERIES page

1.0 Introduction - - - - - - 196
2.0 Objectives - - - - - - - - 196
3.0 Definition - - - - - - - - 196
3.1 Meissner effect - - - - - 196
3.2  Critical field - - - 197
3.3 Typel & Type ll Semlconductors - - - 197
3.4  Critical Currents - - - - 198
3.5 London equation - - - 199
3.6  Thermodynamics of Superconducting transition - - 203
3.7 Isotope effect- - - - - - - 205
40 Conclusion - - - - - - - - 206
5.0 Summary - - - - - - - - 206
6.0 Tutor Marked Assignment - - - - - - 207
7.0 Further Reading/References - - - - - - 207

201



1.0 Introduction

In this unit, we are going to study both the exmemtal and theoretical situations
concerning superconductivity. The experimental syrwncludes the effects of magnetic
field on superconductivity(the Meissner effect)e tminimum magnetic field (critical

field) necessary to destroy superconductivity a8l @& the minimum current (critical
current) that can be passed without destroying reopductivity. Thermodynamics,
London equation and type | and Il of semiconductarsstitute the theoretical surveys.

2.0  Objective
The objectives of this unit are:

» To survey the central experimental facts concegrauperconductivity

» Todiscuss the theoretical situations of superaotity
3.0 Definition
Superconductivity is the phenomenon on which teetaktal resistivity of metals or
alloys drop to zero (infinite conductivity) whenated into its critical temperature.
3.1 Meissner effect
Meissner and Ochsenfeld (1933) showed that, ifrg Isuperconductor is cooled in a
longitudinal magnetic field from above the trar@mititemperature, the lines of induction
are pushed out (Fig. 5.1) at the transition. Thashteer effect shows that a super-
conductor behaves as if inside the specinier= O ory = _l.*'tl.-r; that is, a
superconductor exhibits perfect diamagnetism. Masy important result cannot be
derived merely from the characterization of a sopeductor as a medium of zero
resistivityo: from E =pj we see that, ip is zero while j is finite, then E must be zero and
with it curl E must be zero. Therefore from Maxve#quations

.a'lﬂrr = —curlE=10 (5.1)

so that the flux through the metal cannot changeomting through the transition. The
Meissner effect contradicts this result and suggestt perfect diamagnetism and zero
resistivity are two independent essential propeuiethe superconducting state.

Fig.5.1: Meissner effect in a sphere cooled inr@stant applied magnetic
field; on passing below the transition temperatheelines of induction are
ejected from the sphere. (After Kittel,
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3.2  Critical Field

The minimumapplied magnetic field necessary to destroy supelactivity and restore
the normal resistivity is called theritical field, H.. H. depends on the temperature.
Fig.5.2 shows the critical field as a function efiperature. The curve is nearly parabolic
and can be reasonably well represented by thearlat

H, = o[- (Z)] (52)

Where H, is the critical field at absolute zero. This edquatis really the equation of
phase boundary between the normal and supercondgttite. The typical value &f, is
5000A/m.

H(T)

A
Normal

Superconducting

»T

Tc
Fig.5.2: Critical magnetic field as a function efrtperature (After
James and Bernard, 2005).

3.3 Type |l and Type Il Superconductors

Superconductors may be divided into two classeshwtepend on the way in which the
transition from the superconducting to the norntatesproceedsvhen the applied field
exceedd$l.. In typed materials, adi, is reached entire specimen enters the normal state
practically simultaneously, the resistance retutresdiamagnetic moment becomes zero and

Binternai = Bexternai (FIgSZa)

B A
yd

Y

S
J( ,
|

e |
/ o |
o - ﬂf / i
_ P |
1
2> H Hey Hep Hes
a b

Fig.5.2: Flux penetration as a function of magnied in

(a) type-l superconductor and (b) type-ll supercmhor
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In type-Il superconductors, the transition to a ptately normal specimen is much more
gradual. As shown in Fig. 5.2b, there is a papigdetration of the magnetic field between the
critical field He; andHc,. Small surface super currents may still flow upriapplied fieldHgs.

3.4 Critical Currents

The minimum current that can be passed in a samitileut destroying its superconductivity
is calledcritical current ;.. If a wire (radiug) of a typel superconductor carries a current |,
there is a surface magnetic figf= 1/2zr associated with the currentHf exceeddi ., the
material will go normal. If in addition, a transgermagnetic fieldH is applied to the wire,
the condition for the transition to the normal estat the surface is that the sum of the
applied field and the field due to the current stiaqual the critical field. Thus, as seen
from Fig. (5.3b), we have

H.. H + 2H
le - £ _— H,._ EH
2T :
Hence 1I,= 2mr(H.— 2H) %3

The critical currents, will decrease linearly with increase of the appfieltl until it reaches
zero atH = H./2. If the applied field is zerd. = 2mrH.. similar considerations apply to
typedl superconductor fad == H_, thatis when the superconductor is not in the thstate.

Seclion®x —-x*

(b)

Fig.5.3 :(a) wire carrying current | subjectedransverse field H.(b) Cross-
section of wire showing fields at equatorial pasiton the surface(After
Kachhava,1990)
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3.5 London Equations

In 1935, two brothers F. and H. London, proposed tquations to govern the
microscopic electric and magnetic fields (two badiectrodynamics properties) which
give superconductivity its unique interest. The don theory is based on rather old ideas
of the two —fluid model according to which a supsuctor can be thought to be
composed of both normal and superfluid electrome$xl,,», and =, v. be respectively
the density, and velocity of the normal and supeifelectrons. Ifii; is the number of
electrons per unit volume, then on the average

'?‘1,3, = n]: + ns
The equation of motion for the superfluid electrans

drs
dt

= —eFE (5.4)
The density of the superfluid electrons is
.is = —EN,U; (5-5)

Then Eq. (5.4) and (5.5) yield

djs 1:8°
L (5.6)

dat T

This is the first London equation.
Taking curl of Eq. (5.6)

dj nee”
vxds =52 curlE
ot m

and using Maxwell’s equation

3B
curl E = ——
we get
dj 2 5
Ux—==-_m 8 (5.7)
ar m ot

Integrating this equation with respect to time, ahdosing the constant of integration to
be zero consistent with the Meissner effect, weshav

-

Vxj, == p (5.8)

This is the second London equation.
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We may derive the Meissner effect from the secomdion equation by using the
Maxwell equation

VXB =pu,j. (5.9)
Taking curl of this equation

Curl curl B=p, VX j, (5.10)
Then using the condition dB = 0 of a superconductor in the identity

Curl curl B = grad divB —V°B

We get
Curl curl B= —V°B (5.11)

Oncombining Eg. (5.10) and (5.11),
—V'B = wa VX . (5.12)
This along with Eq. (5.8) gives

V'B= 5B (5.13)

Where is called the London penetration depth artkfined by

- m

1/2
~= (,1.!,31:5»52) (5.14)

For a superconductor to the right of the planeG Eq. (5.13) has the solution

B(x) = B(0)exp (— f) (5.15)

This equation indicates that B does not penetratg deeply into superconductor, and
therefore it implies the Meissner effect. The fipkehetrates only a distandewithin the
surface.4 is typically of the order of 1000A. The graphicath of Eq. (5.15) is shown
in Fig.5.4. The penetration depth is also foundeépend strongly on temperature and to

become much larger as T approacfiesThe observation can be fitted extremely well by
a simple expression of the form

‘T' [1— z ] (5.16)

z'G-l Te

This equation implies that
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n, =n, [1 - [;l]"l] (5.17)

.

A 2A 304X SA T
R .
Fig.5.4: Magnetic field penetration at surface of a supedoator (After
Kachhava, 1992).

The density superconducting electrons increase #rera atT. to #n, at absolute zero as

shown in Fig.5.5, which also depicts the tempeeatariation of.. ». is called theorder
parameterbecause it characterizes treler in the superconducting state.

-3

T
Fig.5.5: Density of superconducting electrons amation of temperature
(After Kachhava, 1992)
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Worked example:

The London equation for simple superconductorpe@enomenological equation relating
the supercurrerjt; to the magnetic vector potentral

—nee?

Js = Mgt
Wherem, is the electron mass. Using the appropriate Maxeegglation, show how the
above equation leads to Meissner effect.

Solution:

The Meissner effect refers to the fact that inghperconducting state magnetic induction
vanishes and materials become strongly diamagreten London equation (Eq.58),

-

Vxj, =-2 B ()

m

27

Sincel? = = we get
nge

. 1 ..
Vixj. = —-—B (i)
Inside a superconductor, the electrical field viaessand we have the Maxwell equation

Error! Bookmark not defined. VX B = %"js
. c2a?
Hence B =—c?VXjs= —?[v(v -B) — V?B],

. , . 1
Or, using Maxwell's equatiod’B = =B

m 1/2

Wherel = (uonsez)

For a superconductor to the right of x= 0, Eq.Has the solution
B = Boe(_z)

This shows thaB decays exponentially such tht= §B° at x =4.

Forx >» A, B— 0, indicating that the magnetic field exists only anthin layer of
thickness: 4 beneath the surface of the superconductor. Thrugndignetic field inside a
superconductor is zero. This is the Meissner effect
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3.6  Thermodynamics of Superconducting transition

It has been demonstrated experimentally that thasition between the normal and
superconducting states is thermodynamically relgkrsin the same sense that with slow
evaporation the transition between liquid and vapuases of a substance is reversible.
The Meissner effect also suggests that the transisi reversible and would not subsist if
the superconducting currents die away with the getdn of Joule heat when
superconductivity is destroyed. As the transition frieversible we may apply
thermodynamics to the transition, obtaining an egpion for the entropy difference
between normal and superconducting states in tefrtige critical field curveH , versus
T..

The Gibbs free energy per unit volume in a magrfedid

MH

G=U-—-TS+PV— — (5.18)
Hao
Then the differential Gibbs free energg is
MdH
dG = —=5dT + PdV — (5.19)

ta
At constant T and P, the free energy differenceabse of the presence of a magnetic
field, is found by integration. Thus

T.H HM
J. o dG = — [ E.-_a.fH (5.20)
HM
G(T,H)— G(T,0)= — [y —dH (5.21)
Ho
For superconductof, = —Hor M = —VH and
GAT,H) — G.(T,0) = — Lgm;.—“rdH
Ho
G6.(T H) — 6.(T,0) = —VH? (5.22)

<Hn
HereG. is the free energy of a superconducting phase
Along the phase boundary between normal and supgucting state, the normal phase
must have a free energy indistinguishable from thlatthe superconducting phase.
Therefore

6,(T,H,) — G.(T,0) = —VH? (5.23)

=Hn

Where G, is the free energy of the normal phase. Fig.5dwshthe variation ofr, and
G. belowT,, where the normal phase is obtained by applyieditid in excess of..
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Free energy—»

Tc=H8 K

Temperature ——»
Fig.5.6: Experimental values of free energy of iAthe normal

and superconducting state as a function of tempergffter
Kachhava, 1992)

Let us now calculate the difference in entropyha two phases. For solids, the entropy S
is given by ¢ /dT. Hence, differentiating Eq. (5.23) with respecTtave have

S,— S, = — S (2wn?)

ar z_ll.ﬂr_\

VH, dH
=— — — (5.24)
fog 4T
Where the entropie$, and 5, refer to normal and superconducting phases respbct

ThusS,, = 5, as illustrated in Fig.5.7.

Te
Sn
Ss

Entropy

——T
Fig.5.7: Entropy S of Al in the normal and superdacting state
as a function of temperature (After Kachhava, 1992)

As 2££ s always negatives, — S, is always positive and the superconducting sste i

observed to be more ordered than the normal fathe transition temperatuis, —
= 0 becaus®, = 0, and at OK§,, — 5, = 0 from the third law of thermodynamics, WhICh

is satisfied, becaus%— tends to zero. At some intermediate temperatites, 5. has a
maximum. The Iatent heat absorbed when supercorndyds destroyed is
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Q= T(SJ: _ 55)

VT dH
== H. mf (5.25)

In the absence of a magnetic field, the transitiocurs ai", and the latent heat is zero. If
U, and U, are respectively the normal and superconductiag shternal energies, then
from Eq. (5.25)

U]! - Us =T (511 - 55)

VTH, dH,
fo dT

(5.26)

From experimeng,, — 5.)® 107 el’, which is extremely small compared to the band
energies. For a unit volume, the difference ofdahéhe heat capacities, from Eq. (5.26),
will be

(Cs - C]:) = T% (55 — 511)

TH.d?H, T (dHﬁ)E

The dT? | up \arT (5.27)
On substitutingr = T, H. = Oin this equation, we get tiRugers formula
(C.— C) —E(HHC)E (5.28)
3 n/ - g \ dT Jp_y :

This equation reproduces the experimental datawety
3.7 Isotope effect
It has been found by early experimentalists that tdansition temperature is strongly

dependent on the average isotopic mass, M, of dhstituents of a superconductor. In
particular

T. oc M~1/2 (5.29)
More recent experiments have suggested the follpgéneral form

T. o M~ (5.30)
In which e is called the isotope effect coefficient and ifirded by

o — _ dlnT; 531
- dlnM (5:31)
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Recent theories lead to the result
a = 0.5[1 — 0.01{N(0IV}?] (5.32)

where the paramete¥ (0] is the density of single states for one spin atRermi level
andV is the model potential between the electrons. ffaesition temperature can be
connected to the Debye temperatéige because?, ° sound velocityx M~1/2. Hence,
from Eq. (5.30),

T
i.e.—— = constant (5.33)
fp

The constant of;—-r implies that the lattice vibrations have an impottbearing on

superconductivity? and gives a clear guide to tteoty that electron-phonon interaction
must be the basis of the existence of superconditycti

4.0 Conclusion

The magnetic properties exhibited by supercondacioe as dramatic as their electrical
properties. The magnetic properties cannot be ateduor by the assumption that the
superconducting state is characterized properyeny electrical resistivity.

5.0 Summary

* A bulk specimen of metal in the superconducting satebits perfect diamagnetism,
with the magnetic inductioB = 0.This is Meissner effect.

» There are two types of superconductorandll

* In typel, the superconducting state is destroyed and thmaicstate is restored by
application of critical valué;...

* Atype Il superconductor has two critical fieltfs, < H, < H_,

« The London Tand 2 equations

i: nz& E Ol‘ v}(] :_H;E': B

dt m

Leads to the Meissner effect through the penetraﬁ'qnation"?.*rE B= J_%B
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6.0 Tutor marked assignment

Q1. A superconducting tin has a critical temperaturd.@fK in zero magnetic
fields and a critical field of 0.0306 T at 0 KnHithe critical field at 2 K.
Q2. Estimate the London penetration depth from thefaihg data:
Critical temperature = 3.7 K

Density =7.3gch
Atomic weight =118.7
Effective mass* = 1.9m, where m is the nafss free electron
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