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1.0 Introduction 

PHY 301 Classical mechanics is a first semester course. It is a three(3) credit course 
available to all students and learners offering Bachelor of Science (B.Sc.) Physics. 

 
The course comprises of 11 study units (4 modules) which involve basic principles of 
classical mechanics.  
Classical mechanics is the study of the motion of bodies (including the special case in 
which bodies remain at rest) in accordance with the general principles  first enunciated by 
Sir Isaac Newton in his Philosophiae Naturalis Principia Mathematica (1687), 
commonly known as the Principia. Classical mechanics was the first branch of Physics 
to be discovered, and is the foundation upon which all other branches of Physics are built. 
Moreover, classical mechanics has many important applications in other areas of science, 

such as Astronomy (e.g., celestial mechanics), Chemistry (e.g., the dynamics of 
molecular collisions), Geology (e.g., the propagation of seismic waves, generated by 
earthquakes, through the Earth's crust), and Engineering (e.g., the equilibrium and 
stability of structures).  
Classical mechanics is also of great significance outside the realm of science. After all, 
the sequence of events leading to the discovery of classical mechanics-starting with the 
ground-breaking work of Copernicus, continuing with the researches of Galileo, Kepler, 
and Descartes, and culminating in the monumental achievements of Newton-involved the 
complete overthrow of the Aristotelian picture of the Universe, which had previously 
prevailed for more than a millennium, and its replacement by a recognizably modern 
picture in which humankind no longer played a privileged role. 

 
This course has a compulsory pre-requisite of PHY 201 So the learners are strongly 
advised to have adequate knowledge of analytical mechanics. 

 
This course guide tells you briefly what the course is all about, what course materials you 
will be using and how to work your way through these materials. It suggests some 
general guidelines for the time to complete it successfully. It gives you some guidance on 
your tutor marked assignments. 

 
There are regular tutorial classes that are linked to the course. You are linked to the 
course. You are advised to attend these sessions regularly. Details of time and locations 
of tutorials will be given to you at the point of registration for the course. 

 
2.0 What You Will Learn In This Course 
 

The overall aim of PHY 301 is to introduce and to explain the concept of constraints, 
generalized coordinates, motion under central conservative forces, scattering, Kepler’s 
law, Motion in non-inertia frames of reference, the Lagrange and Hamilton’s formulation 
of mechanics. 
The course consists of units and a course guide. This course guide tells you briefly what 
the course is all about, what course materials you will be using and how you can work 
with these materials. In addition, it advocates some general guidelines for the amount of 
time you are likely to spend on each course in order to complete it successfully. 

 
3.0 Course Aims 
The aim is to introduce you to the fundamental principles and concepts of classical mechanics 
and their application in everyday life. This will be achieved by 

• Introducing you to the concept of constraints and generalized coordinates. 
• Explaining the motion of two bodies interacting via a central conservative force. 
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• Explaining the importance applications of Lagrangian mechanics and conservation 
theorems. 

• Explaining Hamiltonian formulation of mechanics. 
• Explaining the concept of motion under non-inertia reference frame. 

 
4.0 Course Objectives 
 The course sets overall objectives, to achieve the aim set out above. 
 

In addition each unit also has specific objectives. The unit objectives are always included 
at the beginning of a unit; you should read them before you start working through the unit. 
You may want to refer to them during your study of the unit to check your progress. You 
should always look at the unit objectives after completing a unit. In this way you can be 
sure that you have done what was required of you for the unit. 

 
Set out below are the objectives of the course a whole. By meeting these objectives you 
should have achieved the aims of the course as a whole. 
 
On successful completion of the course, you should be able to: 
 
1. Explain and distinguish between different classes of constraints and give examples 

each. 
2. Express many Physical quantities in terms of generalized coordinates. 
3. Choose appropriate generalized coordinates in any physical system. 
4. Calculate the Lagrangian and the corresponding Lagrange’s equation of motion of 

many physical system. 
5. Calculate the Hamiltonian and the corresponding Hamilton’s equation of motion of 

many physical system. 
6. Derive the d’Alembert’s principle. 
7. Transform Lagrangian in another coordinate system. 
8. Describe motion under central conservative force. 
9. State Kepler’s Laws and its major application in the case of Gravity 
10. Explain Scattering cross section. 
11. Determine the time derivatives of motion in fixed and rotating reference frame. 
12. Explain the motion relative to earth and its application in a free falling object. 

Appendix 
 
 
5.0 Working through this material 

To complete this course you are required to read the study units, read set textbooks and 
read materials provided by NOUN. Each of the units contains self assessment exercises, 
and certain points in the course you would be required to submit assignments herein 
referred to as Tutor Marked Assignments (TMAs)  for assessment purposes. At the end 
of the course there is a final examination. The course should take you about a total of 17 
weeks to complete. Below you will find listed all the components of the course, what you 
have to do and how you should allocate your time to each in order to complete the course 
and successfully. 
 
This course entails that you spend a lot of time to read. I would advice that you avail 
yourself the opportunity of attending the tutorial sessions where you have the opportunity 
of comparing your knowledge with that of other learners. 

 
6.0 Course Materials 

1. Course guide 



 5 

2. Study units 
3. Assignment file 
4. Presentation schedule 

 
 
7.0 Study Units 
 There are 11 Study units in this course as follows: 
Module 1: Generalized coordinates and constraints 
 Unit 1  Constraints 

Unit 2  Generalized Coordinates 
Unit 3  Virtual work, Virtual Displacement and Generalized Forces 

Module 2: Lagrange’s and Hamilton’s formulation of mechanics 
Unit 4  d’Alembert’s Principle of Virtual Work 
Unit 5  Lagrangian Mechanics 
Unit 6  Hamiltonian Mechanics 

Module 3: Central force and scattering 
Unit 7  The Generic Central Force Problem 
Unit 8  Kepler’s Problem 
Unit 9  Scattering Cross Section 

Module 4: Motion in non-inertia reference frame 
Unit 10 Time Derivative in Fixed and Rotating Frames 
Unit 11 Motion Relative to Earth 

 
 Each study unit consists of two to three weeks work and includes specific objectives. 

Each unit contains a number of self-tests. In general, these self-tests, question you on the 
material you have just covered or require you to apply in some ways and thereby, help 
you to gauge your progress and reinforce your understanding of te material. Together 
with tutor marked assignments, these exercises will assist you in achieving the stated 
learning objectives of the individual units and of the course. 

 
8.0 Set Textbooks 
 L.D. Landau and E.M. Lifshitz (1979): Course of Theoretical Physics. Mechanics Vol. 1 

3rd ed. Translated from Russian Press, UK. 
  
 K.R. Symon (1974)Mechanics, 3rd ed., Addison-Wesley, USA. 
 
 T.W.B. Kibble (1973): Classical Mechanics 2nd ed., McGraw-Hill, UK. 
 
 M.R. Spiegel (1982): Schaum’s outline of theory and problems of Theoretical Mechanics. 

SI (Metric) Edition with an introduction to Lagrange’s Equations and Hamiltonian 
Theory McGraw-Hill, UK. 

 
H.Goldstein (2002) Classical Mechanics, Narosa Publishing Home, New Delhi. 

 
Marion and Thomtron (2000) Classical Dynamics of Particles and Systems, Third Edition, 
Horoloma Book Jovanovich College Publisher. 

 
R.G.Takawale and P.S.Puranik, Tata Mc-Graw (1998) Introduction to Classical 
Mechanics by Hill Publishing Company Limited, New Delhi 

 
9.0 Assignment File  

The assignment file will be supplied by NOUN. In this file you will find the details of the 
work you must submit to your tutor for marking. The marks you obtain for these 
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assignments will count towards the final mark you obtain for this course. Further 
information on assignments will be found in the assignment file itself and later in this 
course guide in the section on assessment. 

 
10.0 Presentation Schedule 

The presentation schedule included in your course materials may show the important 
dates for the completion of tutor marked assignment. Remember, you are required to 
submit all your assignments by the due date as dictated by your facilitator. You should 
guide against falling behind in your work. 

 
11.0 Assessment 
  There are two aspects to the assessment of the course. First are the tutor-marked 

assignments: second, there is a written examination. 
  
 In doing the assignment, you are expected to apply information, knowledge and 

techniques gathered during the course. The assignments must be submitted to your tutor 
for formal assessment in accordance with the dead-lines stated in the presentation 
schedule and the assignment file. The work you submit to your tutor for assessment will 
count for 30% of your total course work. 

 
 At the end of the course you will need to sit for a final written examination of three hours 

duration. This examination will also count for 70% of your course mark. 
 
12.0 Tutor-Marked Assignment (TMA) 
 The TMAs are listed in each unit. Generally, you will be able to complete your 

assignments from the information contained in the study units, set books and other 
reading. However, it is desirable in all degree level education to demonstrate that you 
have read and researched more widely than the required minimum. Using other 
references will give you a broader viewpoint and may provide a deeper understanding of 
the subjects. 
When you have completed each assignment, send it, together with a TMA form, to your 
tutor. Make sure that each assignment reaches your tutor on or before the deadline given 
in the presentation schedule and assignment file. If, for any reason you cannot complete 
your work on time contact your tutor before the assignment is due to discuss the 
possibility of an extension. Extensions will not be granted after the due date unless there 
are exceptional circumstances. 

 
13.0 Final Examination and Grading 
 The final examination for PHY 301 will be three hours duration and have a value of 70% 

of the total course grade. The examination will consist of quantities which reflect the 
types of self testing practice exercises and tutor-marked problems you have previously 
encountered. All areas of the course will be assessed. 

 
 You are advised to use the time between finishing the last unit and sitting for the 

examination to revise your self-tests, tutor-marked assignments and comments on them 
before the examination. 

 
14.0 Course Marking Scheme 
 The table shows how the actual course marking is broken down. 
  

Assessment Marks 
Assignments 30% of course marks 
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Table 1: course marking scheme 
 
15.0 Facilitators/Tutors and Tutorials 

There are 16 hours of tutorials provided in support of this course. You will be notified of 
the dates, times and location of these tutorials as well as the name and phone number of 
your facilitator, as soon as you are allocated a tutorial group 
 
Your facilitator will mark and comment on your assignments, keep a close watch on your 
progress and any difficulties you might face and provide assistance to you during the 
course. You are expected to mail your Tutor Marked Assignment to your facilitator 
before the schedule date (at least two working days are required). They will be marked by 
your tutor and returned to you as soon as possible. 
 
Do not delay to contact your facilitator by telephone or e-mail if you need assistance. 
 
The following might be circumstances in which you would find assistance necessary, 
hence to contact your facilitator if: 

• You do not understand any part of the study or the assigned readings. 
• You have difficulty with self-tests. 
• You have a question or problem with an assignment or with the grading of an 

assignment. 
 
You should endeavour to attend the tutorials. This is the only chance to have face to face 
contact with your course facilitator and to ask questions which are answered instantly. 
You can raise any problem encountered in the course of your study. 
 
To gain much benefit from course tutorials prepare a question list before attending them. 
You will learn a lot from participating actively in discussions. 
 

16.0 Summary 
Classical mechanics is a course that intends to provide the concept of motion of bodies in 
accordance with general principles firs enunciated by Sir Isaac Newton. It is the most 
common system of physics today. It is the physics of “ordinary” situations, considering 
objects too large to exhibit quantum effects, too slow to exhibit relativistic effects and not 
too dense enough to require general relativity. Upon completing this course, you will be 
equipped with the basic understanding of constraints, generalized coordinates, 
Lagrange’s and Hamilton’s formulation of mechanics and motion in non-inertia frame of 
reference. In addition, you will be able to answer the following type of questions. 

• Define degree of freedom and constraint. 
• Identify and Explain the three kinds of non-holonomic constraints. 
• Identify and Explain the two kinds of holonomic constraint. 
• Define Degree of freedom 
• Define constraints.  
• Mention two categories of Constraints and Give three examples each. 
• Mention three kinds of non-holonomic constraints. 
• Show that velocity dependent constraints are non-integrable constraints. 
• Write Velocity of any system with cartesian coordinates x and y in generalized 

coordinates.  

Final Examination 70% of overall course marks 
Total 100% of course marks 
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• Express Kinetic energy of a particle with Cartesians coordinates x and y in a generalized 
coordinates. 

• Derive generalized force from the expressions of virtual work and virtual displacement. 
• State and Derive the D’Alembert’s Principle of virtual work. 

• Given that kinetic energy { } { }( )∑ =⋅≡
i

kkiii tqqTrrmT ,,
2
1

  derive the generalized 

equation of motion.      
• Given mgzzU =)(  where αsinbz =  calculate the generalized force. 
• From the generalized equation of motion prove the Euler-Lagrangian equation and so on 

 
Of course, the list of questions you can answer is not limited to the above list. To gain the most 
from this course you should endeavour to apply the Lagrange’s and Hamilton’s formulation of 
mechanics to every other system like Atwood’s machine, Elliptical wire, central force system, 
motion of the earth, free fall systems and so on. 

 
I wish you success in the course and I hope that you will find it both interesting and 
useful. 
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MODULE 1 GENERALIZED COORDINATES AND CONSTRAINTS 
 
Unit 1  Constraints 
Unit 2  Generalized Coordinates 
Unit 3  Virtual work, Virtual Displacement and Generalized Forces 
 
UNIT 1  CONSTRAINTS 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1  Degrees Of Freedom 
3.2  Constraints 
3.2.2  Non-holonomic Constraints 
3.2.1  Holonomic Constraints 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  References/Further Reading 
 
1.0 Introduction 
 
A rigid body is defined as a system of n particles for which all the interparticle distances are 
constrained to fixed constants, ijji crr =−

  and the interparticle potentials are functions only of 
these interparticle distances. As these distances do not vary, neither does the internal potential 
energy. These interparticle forces cannot do work, and the internal potential energy may be 
ignored. 
The rigid body is an example of a constrained system, in which the general 3n degrees of 
freedom are restricted by some forces of constraint which place conditions on the coordinates 

ir
 perhaps in conjunction with their momenta. In such descriptions we do not wish to consider or 
specify the forces themselves, but only their (approximate) effect. It is generally assumed, as in 
the case with the rigid body, that the constraint forces do no work under displacements allowed 
by the constraints 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• Define degree of freedom and constraint. 
• Distinguish between holonomic and non-holonomic constraints. 
• Give examples of holonomic and non-holonomic constraints. 
• Identify and Explain the three kinds of non-holonomic constraints. 
• Identify and Explain the two kinds of holonomic constraints 

 
3.0 Main Contents 
3.1 Degrees of Freedom 
 
The number of degrees of freedom is defined as the number of independent coordinates that is 
needed to identify uniquely the configuration of the system. 
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Suppose we have a system of N particles each moving in 3-space and interacting through 
arbitrary (finite) forces, The number n=3N is called the number of degree of freedom. 
There is freedom, of course, in how we specify the degrees of freedom; e.g.: 

• choice of origin 
• coordinate system: cartesian, cylindrical, spherical, etc. 
• center-of-mass vs. individual particles: { }kr

  or { }RrrsR kkk −==
,  

But, the number of degrees of freedom is always the same; e.g., in the center-of-mass system, the 
constraint ∑ =

k ks 0  applies, ensuring that { }kr
  and ksR ,  have same number of degrees of 

freedom.  
The motion of such a system is completely specified by knowing the dependence of the available 
degrees of freedom on time.  
Simple illustration are: “The beads of a abacus are constrained to one-dimensional motion by the 
supporting wires” so also “Gas molecules within a container are constrained by the walls of the 
vessel to move only inside the container”. 
Throughout this section, we will work two examples alongside the theory. The first consists of 
an Atwood’s machine, and we may allow the rope length to be a function of time, l = l(t) 
The second consists of point particle sliding on an elliptical wire in the presence of gravity. The 
Cartesian coordinates of the particle satisfy 

1
)()(

22

=







+








tb

z
ta

x        (1.0) 

We will at various points consider a and b to be time dependent or constant. The origin of the 
coordinate system is the stationary centre of the ellipse. 

       
 
Figure 1.1 (a) Atwood machine    (b) Point particle sliding on elliptical wire 
 
Example 1.1: 
In the Atwood’s machine of figure 1.1(a), there are a priori 2 degrees of freedom; the z 
coordinates of the two blocks. (We ignore the x and y degrees of freedom because the problem is 
inherently 1-dimensional.) The inextensible rope connecting the two masses reduces this to one 
degree of freedom because, when one mass moves by a certain amount, the other one must move 
by the opposite amount. 
 
Example 1.2: 
In the elliptical wire of figure 1.1(b), there are a priori 3 degrees of freedom, the 3 spatial 
coordinates of the point particle. The constraints reduce this to one degree of freedom, as no 
motion in y is allowed and the motions in z and x are related. The loss of the y degree of freedom 
is easily accounted for in our Cartesian coordinate system; effectively, a 2D Cartesian system in 
x and z will suffice. But the relation between x and z is a constraint that cannot be trivially 
accommodated by dropping another Cartesian coordinate. 
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Self Assessment Exercise A 
1. Now define Degree of freedom 
2. State the number of degrees of freedom in an Atwood’s machine and elliptical wire 
 
3.2 Constraints 
 
Constraints mean a restriction on the degree of freedom of motion of a system of particles in the 
form of a condition. 
Constraints may reduce the number of degrees of freedom; e.g., particle moving on a table, rigid 
body, etc. It is divided into Holonomic and Non-Holonomic constraint. 
 
3.2.1 Holonomic Constraints 
 
Holonomic constraints are those that can be expressed in the form 0),,( 21 =trrf 

 . For example, 
restricting a point particle to move on the surface of a table is the holonomic constraint 

00 =− zz , where z0 is a constant. A rigid body satisfies the holonomic set of constraints 

0=−− ijji crr  , where cij is a set of constants satisfying 0>= jiij cc  for all particle pairs i, j. 
A system is called “holonomic” if, in a certain sense, one can recover global information from 
local information, so the meaning “entire-law” is quite appropriate.  
Holonomic constraints may be divided into rheonomic (“running law”) and scleronomic 
(“rigid law”) depending on whether time appears explicitly in the constraints: 

rheonomic: { }( ) 0, =trf k
 ,       (1.1a) 

Scleronomic: { }( ) 0=krf  .        (1.1b) 

At a technical level, the difference is whether 0=
∂
∂

t
f or not: the presence of this partial 

derivative affects some of the relations we will derive later. 
 
3.2.2 Non-holonomic Constraints 
 
The rolling of a ball on a table is non-holonomic, because one rolling along different paths to the 
same point can put it into different orientations. 
Non-holonomic constraints are, obviously, constraints that are not holonomic. There are three 
kinds of non-holonomic constraints: 

i Non-integrable or history-dependent constraints. These are constraints that are not fully 
defined until the full solution of the equations of motion is known. Equivalently, they 
are certain types of constraints involving velocities. The classic case of this type is a 
vertical disk rolling on a horizontal plane. If x and y define the position of the point of 
contact between the disk and the plane, ϕ defines the angle of rotation of the disk about 
its axis, and ϴ defines the angle between the rotation axis of the disk and the x-axis, 
then one can find the constraints 

.sin
,cos

θφ

θφ




ry
rx
−=

−=
       (1.2a) 

The differential version of these constraints is 

.sin

,cos

θφ

θφ
rddy

rddx
−=

−=
       (1.2b) 

These differential equations are not integrable; one cannot generate from the relations two 
equations ( ) 0,,1 =φθxf  and ( ) 0,,2 =φθyf . The reason is that, if one assumes the functions f1 
and f2 exist, the above differential equations imply that their second derivatives would have to 
satisfy 
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θφφθ ∂∂
∂

≠
∂∂

∂ ff 22

 i.e for 21 forff =        (1.3) 

which is very unpleasant mathematical condition. Explicitly, suppose f1 existed. Then we would 
be able to write 0),,(1 =φθxf  
Let us obtain the differential version of the constraint by differentiation: 

0111 =
∂
∂

+
∂
∂

+
∂
∂ φ

φ
θ

θ
dfdfdx

x
f .      (1.4) 

This differential constraint should match the original differential constraint θφ cosrddx −= . 
Identifying the coefficients of the differential yields 

11 =
∂
∂

x
f  01 =

∂
∂
θ
f  φ

φ
cos1 rf

=
∂
∂ .      (1.5) 

Taking the mixed second partial derivatives gives 

01
2

=
∂∂

∂
θφ
f  φ

φθ
sin1

2

rf
−=

∂∂
∂       (1.6) 

which, clearly, do not match. Such constraints are also called non-integrable because one cannot 
integrate the differential equation to find a constraint on the coordinates. A differential relation 
such as the one above is a local one; if the differential relation is integrable, you can obtain the 
constraint at all points in space, i.e., you can find the “entire law”. Clearly, non-integrability is 
also related to the fact that the constraint is velocity-dependent: a velocity-dependent constraint 
is a local constraint, and it may not always be possible to determine a global constraint from it. 

ii. inequality constraints; e.g., particles required to stay inside a box, particle sitting on a 
sphere but allowed to roll off, 

iii. problems involving frictional forces. 
 
Example 1.3: 
For the elliptical wire example in figure 1.1(b), the constraint equation is the one we specified 
initially: 

1
)()(

22

=







+








tb

z
ta

x   

If a and/or b do indeed have time dependence, then the constraint is rheonomic. Otherwise, it is 
scleronomic. 
 
Example 1.4: 
For the Atwood’s machine in figure 1.1(a), the constraint equation is 

0)(21 =++ tlzz  
Where l(t) is the length of the rope (we assume the pulley has zero radius). The signs on z1 and z2 
are due to the choice of direction for positive z in the example. The constraint is again rheonomic 
if l is indeed time dependent, scleronomic if not 
 
Self Assessment Exercise B 
1. Define constraints.  
2. Mention two categories of Constraints and Give three examples each. 
3. Mention three kinds of non-holonomic constraints. 
4. Show that velocity dependent constraints are non-integrable constraints. 
 
4.0 Conclusion 
 
Holonomic constraints are constraints that can be written in the form 

( ) 0,, 21 =trrrf M



 , 

i.e., there is some sort of condition on the coordinates and possibly time. The condition may not 
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involve the coordinate velocities. Holonomic constraints are also termed integrable because a 
differential version of the constraint can be integrated to yield the full constraint. The constraint 
is rheonomic if time appears explicitly, scleronomic if not. 
 
5.0 Summary 
 

• The number of degrees of freedom is defined as the number of independent coordinates 
that is needed to identify uniquely the configuration of the system. 

• Constraints means a restriction on the degree of freedom of motion of a system of 
particles in the form of a condition 

• Constraints may reduce the number of degrees of freedom; e.g., particle moving on a 
table, rigid body, etc.  

• Constraints are divided into holonomic and non-holonomic constraint 
• Holonomic constraints are those that can be expressed in the form 0),,( 21 =trrf 

  
• Holonomic constraints may be divided into rheonomic (“running law”) and scleronomic 
• Non-holonomic constraints are, obviously, constraints that are not holonomic.  
• There are three kinds of non-holonomic constraints: Non-integrable or history-dependent 

constraints, inequality constraints and problems involving frictional forces 
 
6.0 Tutor Marked Assignment 
 
1. Explain briefly what is meant by degrees of freedom. 
2. How many degrees of freedom does a rigid body in the following three dimensional motion 

has and explain what is meant by the motion:  i) heaving,  ii) surging, iii)swaying,    
iv)  rolling,  v) pitching,  vi) yawing. 

3. How many degrees of freedom are in atwood machine of figure 1.1(a) and elliptical wire of 
figure 1.1(b). 

4. State the constraint equation  of the elliptical wire example in figure 1.1(b), and state if it is 
scleronomic or rheonomic. 

5. In the Atwood’s machine in figure 1.1(a),  State the constraint equation and what condition 
could make the constraint equation rheonomic. 

6. Show that velocity dependent constraints are non-integrable constraints. 

7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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1.0  Introduction 
 
In general, if one has j independent constraint equations for a system of M particles with 3M 
degrees of freedom, then the true number of degrees of freedom is 3M − j. There is dynamical 
behaviour of the system in only these remaining degrees of freedom. One immediately asks the 
question that since there are fewer degrees of freedom than position coordinates, is there any 
way to eliminate those unnecessary degrees of freedom and thereby simplify analysis of the 
mechanical system? In our example, why keeping both x and z if one of them would suffice? 
This question leads us to the idea of generalized coordinates, which are a set of 3M − j  
coordinates that have already taken into account the constraints and are independent, thereby 
reducing the complexity of the system. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• Write Physical quantities in terms of generalized coordinates. 
• Use constraints equation to define different generalized scheme. 
• Calculate azimuthal angle. 
• Solve Related Problems. 

 
3.0 Main contents 
 
3.1 Generalized Coordinates  
 
For holonomic constraints, the constraint equations ensure that it will always be possible to 
define a new set of 3M −j generalized coordinates {qk} that fully specify the motion of the 
system subject to the constraints and that are independent of each other. The independence arises 
because the number of degrees of freedom must be conserved. The constraint equations yield 
(possibly implicit) functions 

),,,( 32111 tqqqrr jM −= 
        (2.1) 

that transform between the generalized coordinates and the original coordinates. It may not 
always be possible to write these functions analytically. Some of these coordinates may be the 
same as the original coordinates, some may not; it simply depends on the structure of the 
constraints. We will refer to the original coordinates as position coordinates to distinguish them 
from the reduced set of independent generalized coordinates. Generalized coordinates are more 
than just a notational convenience. By incorporating the constraints into the definition of the 
generalized coordinates, we obtain two important simplifications: 
1) the constraint forces are eliminated from the problem; and  
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2) the generalized coordinates are fully independent of each other. We shall see the application 
of these simplifications when we discuss virtual work and generalized forces. 

Just as the velocity corresponding to a coordinate jr is ,jj r
dt
dr  =  it is possible to define a 

generalized velocity kq  as .kk q
dt
dq =  Note that in all cases, velocities are defined as total time 

derivatives of the particular coordinate. Remember that if you have a function { }( )tqgg k ,= then 

the total time derivative g
dt
d is evaluated by the chain rule: 

{ }( ) ∑ ∂
∂

+
∂
∂

=
t
g

dt
dq

q
gtqg

dt
d k

k
k , .        (2.2) 

It is very important to realize that, until a specific solution to the equation of motion is found, a 
generalized coordinate and its corresponding generalized velocity are independent variables. 
This can be seen by simply remembering that two initial conditions which are )0( =tqk  and 

)0( =tqk  are required to specify a solution of Newton’s second law, because it is a second-order 
differential equation. Higher-order derivatives are not independent variables because Newton’s 
second law relates the higher-order derivatives to { }kq  and{ }kq . The independence of { }kq   and 
{ }kq  is a reflection of the structure of Newton’s second law, not just a mathematical theorem. 
Unless otherwise indicated, from here on we will assume all constraints are holonomic. 
 
Example 2.1: 
For the elliptical wire, the constraint equation 

1
)()(

22

=







+








tb

z
ta

x  

can be used to define different generalized coordinate schemes. Two obvious ones are 
x and z; i.e., let x be the generalized coordinate and drop the z degree of freedom, or vice versa. 
Another obvious one would be the azimuthal angle α 









= −

x
ta

tb
z )(

)(
tan 1α .         (2.3) 

The formal definitions { }( )tqr ki ,  are then 
αcos)(tax =   αsin)(tbz = .       (2.4) 

Here, we see the possibility of explicit time dependence in the relationship between the positions 
x and z and the generalized coordinate α. 
 
Example 2.2:  
For the Atwood’s machine, either z1 or z2 could suffice as the generalized coordinate. Let’s pick 
z1, calling it Z to distinguish the generalized coordinate, we have 

Zz =1   Ztlz −−= )(2  
This case is pretty trivial. 
 
Self Assessment Exercise A 
1. Write Velocity of  any system with cartesian coordinates x and y  in generalized coordinates  
2. Express Kinetic energy of a particle with Cartesians coordinates x and y in a generalized 

coordinates 
 
3.2 “Dot Cancellation” 
For holonomic constraints, there is a very important statement that we will make much use of 
later 
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kk q
r

q
r





∂
∂

=
∂
∂ .          (2.5) 

Conceptually, what this says is the differential relationship between a given degree of freedom 
and a generalized coordinate is the same as the differential relationship between the 
corresponding velocities. This statement relies on having holonomic constraints.  
Heuristically,one can understand the rule as simply arising from the fact that holonomic 
constraints use only the positions and time to define the generalized coordinates; as a result, any 
relationships between positional velocities and generalized velocities must be determined only 
by relationships between positions and generalized coordinates. The above relationship is then 
the simplest possible one. 
We derive the result rigorously by starting with the total time derivative ir

 : 

{ }( ) ∑ ∂
∂

+
∂
∂

==
k

ik

k

i
ki t

r
dt

dq
q
rtqr

dt
dr


 , .      (2.6) 

The last term does not exist if the constraints are scleronomic, but that is not really important 
here. Now, take the partial derivative with respect to 1q ; this selects out the term in the sum with 
k = l, and drops the t term: 

∑ ∂
∂

=
∂
∂

=
∂
∂

k l

i
kl

k

i

l q
r

q
r

q
r 





δ .       (2.7) 

So the dot cancellation relation is proven. 
 
Self Assessment Exercise B 
1. What is Dot cancellation. 

2. Prove that 
kk q

r
q
r





∂
∂

=
∂
∂ . 

 
4.0 Conclusion 
 
From the Physicist point of view the q’s are generalized coordinates in the sense that they need 
not have dimensions of length. By deriving equations of motion in terms of a general set of 
generalized coordinates, the results found will be valid for any coordinate system that is 
ultimately specified. 
 
5.0 Summary 
 

• Given a set of holonomic constraints, one can use the constraints to implicitly define a set 
of independent generalized coordinates. The transformation relations between the 
generalized coordinates and the original physical coordinates are of the form 

( )tqqqrr jMji ,, 321 −= 
  

where we assume there are j constraint equations. It is assumed that all the constraints are 
used so that the generalized coordinates truly form an independent set. 

• Dot Cancellation 

For holonomic constraints, it holds that 
k

i

k

i

q
r

q
r





∂
∂

=
∂
∂ . 

 
6.0 Tutor Marked Assignment 
 
1. Two particles are connected by a rigid rod so they are constrained to move a fixed distance 

apart. Write down a constraint equation of the form 0),,( 21 =trrf 
  and find suitable 

generalized coordinates for the system incorporating this holonomic constraint. 

http://en.wikipedia.org/wiki/Equations_of_motion�
http://en.wikipedia.org/wiki/Coordinate_system�
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Answer 
Let the position of particle 1 with respect to a stationary Cartesian frame be {x1, y1, z1} and that 
of particle 2 be {x2, y2, z2}. The rigid rod constraint equation is  

( ) ( ) ( ) ( ) 22
21

2
21

2
21

2
21 lzzzzyyxx =−+−+−+− . 

This reduces the number of degrees of freedom from 6 to 5, which we could take to be position 
of particle 1, {x1, y1, z1} However, the three position coordinates would be the coordinates of the 
centre of mass whose position vector is 

21

2112

mm
rmrmrcm +

+
= . 

 
 7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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UNIT 3 VIRTUAL DISPLACEMENT, VIRTUAL WORK AND GENERALIZED 
FORCES  
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1  Virtual Displacement 
3.2  Virtual Work 
3.3  Generalized Force 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  References/Further Reading 
 
1.0 Introduction 
 
Our discussion of generalized coordinates essentially was an effort to make use of the constraints 
to eliminate the degrees of freedom in our system that have no dynamics. Similarly, the 
constraint forces, once they have been taken account of by transforming to the generalized 
coordinates, would seem to be irrelevant. We will show how they can be eliminated in favour of 
generalized forces that contain only the non-constraint forces. 
To define generalized forces, we combine the equation relating virtual displacements of position 
coordinates and generalized coordinates, with the equation relating virtual work and non-
constraint forces as it will be shown later in this unit. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• Explain virtual displacement, virtual work and generalized forces. 
• Express total differential of any set of system position vectors, ir

  that are functions of 
other variables, { }mqqq ,,, 21   and time t in terms of virtual displacement. 

• Solve related Problems. 
 
3.0 Main Contents 
 
3.1 Virtual Displacement 
 
We define a virtual displacement { }ir

δ  as an infinitesimal displacement of the system 
coordinates { }ir

  that satisfies the following criteria. 
1. The displacement satisfies the constraint equations, but may make use of any remaining 

unconstrained degrees of freedom. 
2. The time is held fixed during the displacement. 
3. The generalized velocities { }kq  are held fixed during the displacement. 
A virtual displacement can be represented in terms of position coordinates or generalized 
coordinates. The advantage of generalized coordinates, of course, is that they automatically 
respect the constraints. An arbitrary set of displacements kqδ  can qualify as a virtual 
displacement if conditions (2) and (3) are additionally applied, but an arbitrary set of 
displacements { }ir

δ  may or may not qualify as a virtual displacement depending on whether the 
displacements obey the constraints. All three conditions will become clearer in the examples. 

http://en.wikipedia.org/wiki/Total_differential�
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Explicitly, the relationship between infinitesimal displacements of generalized coordinates and 
virtual displacements of the position coordinates is 

∑∂
∂

=
k

k
k

i
i q

q
r

r δδ


 .          (3.1) 

This expression has content: there are fewer { }kq  than { }ir
 , so the fact that ir

δ  can be expressed 
only in terms of the { }kq  reflects the fact that the virtual displacement respects the constraints. 
One can put in any values of the kqδ  and obtain a virtual displacement, but not every possible set 
of { }ir

δ  can be written in the above way. 
 
Example 3.1: 
For the elliptical wire, it is easy to see what kinds of displacements satisfy the first two 
requirements. Changes in x and z are related by the constraint equation; we obtain the relation by 
applying the displacements to the constraint equation. We do this by writing the constraint 
equation with and without the displacements and differentiating the two: 

With displacements  1
)()(

22

=






 +
+


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xx δδ ,         (3.2) 

without displacement  1
)()(

22

=







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


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
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z
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x  ,         (3.3) 

difference 0
)()()()(
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[ ] [ ] xtb

zta
z
x

tb
zz

ta
xx

)(
)(0

)()( 22 −=⇒=+
δ
δδδ .        (3.5) 

All terms of second order in xδ  or zδ  are dropped because the displacements are infinitesimal. 
The result is that xδ  and zδ  cannot be arbitrary with respect to each other and are related by 
where the particle is in x and z and the current values of a and b; this clearly satisfies the first 
requirement. We have satisfied the second requirement, keeping time fixed, by treating a and b 
as constant: there has been no tδ  applied, which would have added derivatives of a and b to the 
expressions. If a and b were truly constant, then the second requirement would be irrelevant. The 
third requirement is not really relevant here because the generalized velocities do not enter the 
constraints in this holonomic case except if kinetic energy enters the constraints . 
The relationship between the virtual displacements in the positions and in the generalized 
coordinate is easy to calculate: 

αδαδα sincos axax −=⇒= ,       (3.6a) 
αδαδα cossin bzbz =⇒= ,       (3.6b) 

 

α
δ
δ tan

b
a

z
x

−=⇒ .          (3.7) 

We see that there is a one-to-one correspondence between all infinitesimal displacements δα  of 
the generalized coordinate and virtual displacements of the positional coordinates ( )zx δδ , , as 
stated above. The displacements of the positional coordinates that cannot be generated from δα  
by the above expressions are those that do not satisfy the constraints and are disallowed. 
 
Example 3.2: 
 For our Atwood’s machine example, the constraint equation 0)(21 =++ tlzz  is easily 
converted to differential form, giving 021 =+ zz δδ  
Again, remember that we do not let time vary, so l(t) contributes nothing to the differential. The 
equation is what we would have arrived at if we had started with an infinitesimal displacement 

zδ  of the generalized coordinate Z 
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Zz δδ =1  0212 =+⇒−= zzZz δδδδ . 
Fixing time prevents appearance of derivatives of l(t). Again, also see the one-to-one 
correspondence between infinitesimal displacements of the generalized coordinates and virtual 
displacements of the position coordinates. 
  
Self Assessment Exercise A 
1. Read and understand the two examples given above properly 
 
3.2 Virtual Work 
 
Using the virtual displacement, we define virtual work as the work that would be done on the 
system by the forces acting on the system as the system undergoes the virtual displacement { }ir

δ  

∑ ⋅≡
ij

iij rFW 
δδ ,          (3.8) 

where ijF


 is the jth force acting on the coordinate of the ith particle ir
 . 

 
Example 3.3: 
In our elliptical wire example, 11F


 would be the gravitational force acting on the point mass and 

12F


 would be the force exerted by the wire to keep the point mass on the wire (i = 1 only 
because there is only one object involved). The virtual work is 

( )∑
=

⋅+≡
1

1
21

i
iii rFFW 

δδ .        (3.9) 

 
Example 3.4: 
In our Atwood’s machine example, the two masses feel gravitational forces zgmF ˆ111 −=


 

and zgmF ˆ221 −=


. The tension in the rope is the force that enforces the constraint that the length 
of rope between the two blocks is fixed, zTF ˆ21 =


 and zTF ˆ22 =


. T may be a function of time if l 

varies with time, but it is certainly the same at the two ends of the rope at any instant. 
 
Because of the possibility that there exist situations of the third type, we use the most generic 
assumption to proceed with our derivation, which is the third one. We write 

∑ =⋅
ij

ij
c

ij rF 0)( 
δ ,        (3.10) 

where the (c) superscript restricts the sum to constraint forces but the sum is over all constraint 
forces and all particles. Mathematically, the assumption lets us drop the part of the virtual work 
sum containing constraint forces, leaving 

∑ ⋅=
ij

i
nc

ij rFW 
δδ )( ,        (3.11) 

where the (nc) superscript indicates that the sum is only over non-constraint forces. 
 
Example 3.5: 
In our elliptical wire example, the force exerted by the wire, 12F


, acts to keep the point mass i on 

the wire; the force is therefore always normal to the wire. The virtual displacement 1r
δ  must 

always be tangential to the wire to satisfy the constraint. So,∑=
=⋅

1

1 2 0
i ii rF 

δ , the only non-

constraint force is gravity, 11F


, so we are left with 
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= ==
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1
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i
i
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ij zmgrFrFrFW δδδδδ 

.     (3.12) 

Wδ  will in general not vanish; it gives rise to the dynamics of the problem. 
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Example 3.6: 
In the Atwood’s machine example the constraint forces 21F


 and 22F


 act along the rope. The 

virtual displacements are also along the rope. Clearly, 121121 zfrF δδ =⋅


 and 1222222 zfrF δδ =⋅


 do 
not vanish but the sum does 

( ) 021222121

2

1
2 =+=+=⋅∑

=

zzTzfzfrF
i

ii δδδδδ


.     (3.13) 

 
Notice that, in this case all the terms pertaining to the particular constraint force have to be 
summed in order for the result to hold. The virtual work and non constraint force sum is  

∑∑ ∑
= = =
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2

1

1

1
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1
22111

)( )(
i j i
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   (3.14) 

 
Self Assessment Exercise B 
1. Express  total differential of any set of system position vectors, ir

  that are functions of other 
variables, { }mqqq ,,, 21   and time t in terms of virtual differential displacement 
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3.3 Generalized Force 
To define generalized forces, we combine Equation 3.1, the relationship between virtual 
displacements of position coordinates and generalized coordinates, with Equation 3.11, the 
relationship between virtual work and non-constraint forces: 
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         (3.15) 

where 

∑ =
∂
∂

⋅≡
ij kk

inc
ijk q

W
q
r

Ff
δ
δ


)( , 

is the generalized force along the kth generalized coordinate. The last expression, 

k
k q

Wf δ
δ= says that the force is simple the ratio of the work done to the displacement when a 

virtual displacement of only the kth generalized coordinate is performed; it is of course possible 
to displace only the kth generalized coordinate because the generalized coordinates are mutually 
independent. It is important to remember that the generalized force is found by summing only 
over the non-constraint forces: the constraint forces have already been taken into account in 
defining generalized coordinates. 
Infinitesimally, a force F


 causing a displacement rδ  does work .rFW 

δδ ⋅=  The generalized 
force is the exact analogue: if work Wδ  is done when the ensemble of forces act to produce a 
generalized coordinate displacement kqδ , then the generalized force fk doing that work 

is
k

k q
Wf δ
δ=  . But the generalized force is a simplification because it is only composed of the 

non-constraint forces. 

http://en.wikipedia.org/wiki/Total_differential�
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Example 3.7:  
In the elliptical wire example, the generalized force for the α coordinate (k=1) is  

( )
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

   (3.16) 

The constraints force, which acts in both the x and z direction and is α-dependent, does not 
appear in the generalized force. 
 
Example 3.8: 
In the Atwood’s machine example, the generalized force for the Z coordinate (k=1 again) is 

      
    (3.17) 
     
 

Again, the constraint force (the rope tension) is eliminated. Because Z is just z1 in this case, the 
generalized force in Z is just the net force on m1 acting in the z1 direction. 
 
Self Assessment Exercise C 
1. Make sure you understand the above examples very well. 
2. Derive generalized force from the expressions of virtual work and virtual displacement. 
 
4.0 Conclusion 
 
Generalized forces are defined via coordinate transformation of applied forces, Fi on a system 
of n particles, i. The concept finds its use in Lagrangian mechanics, where it plays a conjugate 
role to generalized coordinates. 
A convenient equation from which to derive the expression for generalized forces is that of the 
virtual work, Wδ caused by applied forces, as seen in D'Alembert's principle in accelerating 
systems and the principle of virtual work for applied forces in static systems. 
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irδ  is the virtual displacement of the system. Substituting the definition for the virtual 

displacement (differential), we have 
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From this form, we can see that the generalized applied forces are then defined by 
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thus, the virtual work due to the applied forces is 
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http://en.wikipedia.org/wiki/Physical_system�
http://en.wikipedia.org/wiki/Lagrangian_mechanics�
http://en.wikipedia.org/wiki/Generalized_coordinates�
http://en.wikipedia.org/wiki/Virtual_work�
http://en.wikipedia.org/wiki/D%27Alembert%27s_principle�
http://en.wikipedia.org/wiki/Virtual_work#Principle_of_virtual_work_for_applied_forces�
http://en.wikipedia.org/wiki/Virtual_displacement�
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5.0 Summary 
 
Virtual Displacement and Work 

• A virtual displacement is a set of coordinate displacements { }ir
δ  that obey the following 

conditions: 1. The displacement satisfies the constraint equations 
2. Time is held fixed during the displacement. 
3. The generalized velocities { }kq  are held fixed during the displacement. 

• Any displacement of a truly independent set of generalized coordinates { }kq  satisfies (1) 
automatically. 

• Virtual work is the work done during a virtual displacement. It is defined as  

∑ ⋅=
ij

iij rFW 
δδ . 

Because the displacement is virtual, we make the assumption that the contribution of 
constraint forces to the virtual work vanishes, leaving 

∑ ⋅=
ij

i
nc

ij rFW 
δδ )(  

where (nc) refers to non constraint forces only. 
• The generalized force along the generalized coordinate qk is defined to be  

∑ ∂
∂

⋅=
k

inc
ik q

r
Ff


)( , 

where )(nc
iF


 is the sum of all non-constraint forces acting on particle i. 
 
6.0 Tutor Marked Assignment (TMAs)  
 
1. Derive generalized force from the expressions of virtual work and virtual displacement 
 
7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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Module 2 Lagranges and Hamilton’s Formulation of Mechanics 
 
Unit 1  D’Alembert’s Principle Of Virtual Work 
Unit 2  Lagrangian Mechanics 
Unit 3  Hamiltonian Mechanics 
 
Unit 1 D’Alembert’s Principle of Virtual Work 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main contents 
3.1  d’Alembert’s Principle 
3.2  Generalized Equations of Motion 
3.3   The Lagrangian and the Lagrange’s Equations 
3.3.1 Generalized Conservative Forces 
3.3.2 The Euler-Lagrange Equations 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment (TMAs) 
7.0  Further Reading and Other Resources 
 
1.0  Introduction 
 
D'Alembert's principle is a statement of the fundamental classical laws of motion. It is named 
after its discoverer, the French physicist and mathematician Jean le Rond D’Alembert. The 
principle states that the sum of the differences between the forces acting on a system and the 
time derivatives of the momenta of the system itself along a virtual displacement consistent with 
the constraints of the system, is zero and it is the basis of Lagrangian Mechanics. 
It is the dynamic analogue to the principle of virtual work for applied forces in a static system 
and in fact is more general than Hamilton's principle, avoiding restriction to holonomic systems.  
 
2.0 Objectives 
 
After studying this unit, you will be able: 

• Derive D’Alembert’s Principle from Newton’s Second Law Of Motion. 
• To reformulate Newton’s equations system as a system of equations for the generalized 

coordinates q(t). 
• Use D’Alembert’s principle to relate generalized forces to the rate of change of the 

momenta: 
• Solve Related Problems. 

 
3.0 Main Contents 
 
3.1 D’Alembert’s Principle 
D’Alembert’s Principle: Our definition of virtual work was ∑ ⋅= iij rFW 

δδ  where the sum 

includes all (constraint and non-constraint) forces. Assuming our position coordinates are in an 
inertial frame (but not necessarily our generalized coordinates), Newton’s second law tells us 

∑ =
ij iij pF


the sum of all the forces acting on a particle give the rate of change of its 

momentum. We may then rewrite Wδ : 

http://en.wikipedia.org/wiki/Classical_physics�
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http://en.wikipedia.org/wiki/Mathematician�
http://en.wikipedia.org/wiki/Force�
http://en.wikipedia.org/wiki/Derivative�
http://en.wikipedia.org/wiki/Momentum�
http://en.wikipedia.org/wiki/Virtual_displacement�
http://en.wikipedia.org/wiki/Constraint�
http://en.wikipedia.org/wiki/Virtual_work�
http://en.wikipedia.org/wiki/Hamilton%27s_principle�
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∑∑ ∑ ⋅=⋅=
i j i

iiiij rprFW 
δδδ . 

But, we found earlier that we could write the virtual work as a sum over only non-constraint 
forces, ∑ ⋅= i

nc
ij rFW 

δδ )( . 

Thus, we may derive the relation 

0)( =⋅







−∑ ∑ i

i j

nc
ij rpF 


δ ,        (1.1) 

the above equation 1.1 is referred to as D’Alembert’s principle. The expression shows that the 
rate of change of momentum is determined only by the non-constraint forces. In this form, it is 
not much use, but the conclusion that the rate of change of momentum is determined only by 
non-constraint forces is an important physical statement.  
 
We may use D’Alembert’s principle to relate generalized forces to the rate of change of the 
momenta: 

∑ ∑∑ ∂
∂

⋅=⋅==
k ki

k
k

i

k
ikk q

q
rprpWqF

,
δδδδ


 .      (1.2) 

Now unlike the { },ir
δ  the { }kqδ  are mutually independent. Therefore, we may conclude that 

equality holds for each of the sum separately providing a different version of D’Alembert’s 
principle 

∑ ∑ ∂
∂

⋅==
∂
∂

⋅
ij i k

i
k

k

inc
ij q

r
pf

q
r

F





)( .       (1.3) 

This is now a very important statement: the generalized force for the kth generalized coordinate, 
which can be calculated from the non-constraint forces only, is related to a particular weighted 
sum of momentum time derivatives (the weights being the partial derivatives of the position 
coordinates with respect to the generalized coordinates). Effectively, we have an analogue of 
Newton’s second law, but including only the non-constraint forces. 
This can be a major simplification in cases where the constraint forces are complicated or simply 
not known. D’Alembert’s principle is not yet useful in the current form because the left side 
contains generalized forces depending on the generalized coordinates but the right side has 
derivatives of the momenta associated with the position coordinates. We need time derivatives 
with respect to the generalized coordinates on the right hand side so that all the dynamics can be 
calculated in the generalized coordinates. 
 
Self Assessment Exercise A 
1. State and Derive the D’Alembert’s Principle of virtual work 
 
3.2 Generalized Equations of Motion 
Here we perform the manipulation needed to make D’Alembert’s principle useful. We know 
from Newtonian mechanics that work is related to kinetic energy, so it is natural to expect 

{ } { }( )∑ =⋅≡
i

kkiii tqqTrrmT ,,
2
1

 .        (1.4) 

T should be obtained by first writing T in terms of position velocities { }ir  and then using the 
definition of the position coordinates in terms of generalized coordinates to re-write T as a 
function of the generalized coordinates and velocities. T may depend on all the generalized 
coordinates and velocities and on time because the { }ir

  depend on the generalized coordinates 
and time and a time derivative is being taken, which may introduce dependence on the 
generalized velocities. The partial derivatives of T are: 
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∑∑ ∂
∂

⋅=
∂
∂

⋅=
∂
∂
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i
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 ,      (1.5) 
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where in the last step we have made use of dot cancellation because the constraints are assumed 
to be holonomic. Now, we have ip  floating around but we need ip . The natural thing is then to 
take a time derivative. We do this to kqT ∂∂  (instead of kqT ∂∂ ) because we want to avoid 
second order time derivatives if we are to obtain any expression algebraically similar to the right 
hand side of d’Alembert’s principle. We find 
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Referring back to the second form of d’Alembert’s principle (Equation 1.1), we see that the first 
term in the expression is the generalized force Fk for the kth coordinate. Continuing onward, we 
need to evaluate the second term. We have 

k

i

l
l

kl

i
l

kl

i

k

i

qt
rq

qq
rq

qq
r

q
r

dt
d

∂∂
∂

+







∂∂

∂
+

∂∂
∂

=
∂
∂ ∑









 222

.    (1.8) 

When we exchange the order of the derivatives in the second term, we see that the second term 
vanishes because our holonomic constraint assumption that the generalized velocities do not 
enter the constraints, and thus do not enter the relationship between position and generalized 
coordinates implies .0=∂∂ ki qr 

  In the last term, we can trivially exchange the order of the 
partial derivatives. We can bring kq∂∂ outside the sum in the first term because 0=∂∂ kl qq . 
Thus, we have 
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where the last step simply used the chain rule for evaluation of .dtrdr ii
 =  Essentially, we have 

demonstrated that the total time derivative d/dt and the partial derivative kq∂∂  commute when 
acting on ir

 for holonomic constraints, which is a nontrivial statement because qk is time-
dependent. We emphasize that it was the assumption of holonomic constraints that allow us 
discard the second term above. Had that term remained, the dependence on 1q  would have made 
it impossible to bring kq∂∂  outside the sum because lq  in general may depend on lq  (via 
Newton’s second law). So we now have 
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or 
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Recalling the d’Alembert’s principle (equation 1.1), we may re-write the above: 
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This is the generalized equation of motion. The left hand side is completely determined by the 
non-constraint forces and the constraint equations. The right hand side is just derivatives of the 
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kinetic energy with respect to the generalized coordinates and velocities. Thus, we obtain a 
differential equation for the motion in the generalized coordinates. 
 
Example 1.1: 
For the elliptical wire example, the kinetic energy in terms of position coordinate velocities is 

( )22

2
zxmT  += .         (1.13) 

We have previously obtained formulae for x  and z  in terms of α : 
ααα  sincos aax −=   ααα  cossin bbz +=      (1.14) 

Let us specialize to the case 0=a  and 0=b ; so that 
αα  sinax −=   αα  cosbz =        (1.15) 

We use these to rewrite the kinetic energy in terms of α : 

[ ]αααα 222222 cossin
2

 bamT +=       (1.16) 

This is an important example of how to convert T from a function of the position velocities to a 
function of the generalized coordinates and velocities. Now take the prescribed derivatives: 
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In taking the total derivative in the first term, we obtain two terms: the one displayed in the last 
line above, and one that exactly cancels the last term in the first line. We have the generalized 
force fα from equation 3.16, fα= −mg b cos α, so the generalized equation of motion is 

ααα ∂
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−

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dt
df


        (1.18) 

Substituting equation 1.17 into equation 1.18, we have 
( )αααα 2222 cossincos bammgb +=−  .     (1.19) 

Solving for α , we get   
αα

αα 2222 cossin
cos

ba
bg
+

−= .       (1.20) 

Specializing to a = b = r (circular wire), this simplifies to 

r
g αα cos

−= .       (1.21) 

Example 1.1: 
For the Atwood’s machine example, things are significantly simpler. The kinetic energy is 

( )2
22

2
112

1 zmzmT +=  .      (1.22) 

Re-writing using the generalized coordinate Z gives 

( ) 2
212

1 ZmmT += .      (1.23) 

The kinetic energy derivatives term is  
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Using fz = (m2 – m1)g from equation 3.17 above, the generalized equation of motion is 
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Self Assessment Exercise B 
1. Make sure you study and understand the examples given above properly. 

2. Given that kinetic energy { } { }( )∑ =⋅≡
i

kkiii tqqTrrmT ,,
2
1

  derive the generalized equation 

of motion.      
 
3.3  The Lagrangian and the Lagrange’s Equations 
For conservative non-constraint forces, we can obtain a slightly more compact form of the 
generalized equation of motion, known as the Euler-Lagrange equations. 
 
 
 
3.3.1 Generalized Conservative Forces 
Now let us specialize to non-constraint forces that are conservative; i.e. { }( )ji

nc
i rUF 

∇−=)(  

where i∇


 indicates the gradient with respect to ir
 . Whether the constraint forces are 

conservative is irrelevant; we will only explicitly need the potential for the non-constraint forces. 
U is assumed to be a function of the coordinate positions only; there is no explicit dependence on 
time or on velocities, 0=∂∂ tU  and 0=∂∂ irU  . Let us use this expression in writing out the 
generalized force: 

{ }( ) { }( )∑ ∑ ∂
∂

−=
∂
∂

⋅∇−=
∂
∂

⋅=
i i

l
kk

i
ji

k

inc
ik tqU

qq
r

rU
q
r

Ff ,)(



.  (1.26) 

We made use of the holonomic constraints to re-write U as a function of the {ql} and possibly t, 
and realize that the previous line is just the partial derivative of U with respect to qk. Thus, rather 
than determining the equation of motion by calculating the generalized force from the non-
constraint forces and the coordinate transformation relations, we can re-write the potential 
energy as a function of the generalized coordinates and calculate the generalized force by 
gradients thereof. 
 
Example 1.2: 
For the elliptical wire the potential energy is due to gravity, 

mgzzU =)( .           (1.27) 
Re-writing in terms of α, gives  

αα sin)(),( tmgbtU = .         (1.28) 
The generalized force is then 

α
α
α

α cos)();( tmgbtUf −=
∂

∂
= .       (1.29) 

as obtained in equation 3.16. Note that we may allow b to be a function of time without ruining 
the conservative nature of the potential energy U becomes a function of t through the definition 
of the generalized coordinate but, obviously, if it is initially a conservative potential, a 
transformation of coordinates cannot change that. 
 
Example 1.3: 
For the atwood’s machine, the potential energy function is  

( )221121 ),( zmzmgzzU +=        (1.30) 
Re-writing in terms of Z gives 

( ) ( )[ ])(, 221 tlmZmmgtZU −−=      (1.31) 
The generalized force is 

( ) ( )12
; mmg

Z
tZUf z −=
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as found earlier. Again, l is allowed to be function of time without ruining the conservative 
nature of the potential energy. 
 
3.3.2 The Euler-Lagrange Equations 
An even simpler method exists, we may re-write the generalized equation of motion using the 
above relationship between generalized force and gradient of the potential energy as 
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Define the Lagrangian as 
UTL −≡  

sincewe have assumed holonomic constraints, we have 0=∂∂ kqU  . This allows the replacement 
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This is the Euler-Lagrange equation, there is one for each generalized coordinate qk.  
 
Self Assessment Exercise C 
1. Given mgzzU =)(  where αsinbz =  calculate the generalized force. 
2. From the generalized equation of motion prove the Euler-Lagrangian equation. 
 
4.0 Conclusion 
 
At the end we have been able to use D’Alembert’s principle to obtain a closed set of equations 
for only the generalized coordinates; they are known as the Euler-Lagrange equations. Writing 
these equations explicitly only requires the knowledge of a scalar valued function: the 
Lagrangian in terms of the generalized coordinates and the generalized velocities. 
 
5.0 Summary 
 

• D’Alembert’s Principle 
D’Alembert’s Principle is 

[ ] 0)( =⋅−∑ ii
nc

i rpF 


δ  

where ir
δ  is a virtual displacement that is differential and satisfies the constraints. 

D’Alembert’s principle may be re-written in terms of generalized coordinates and forces 
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• Generalized equation of motion 
D’Alembert.s principle can be used to prove the generalized equation of motion 
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where { } { }( )tqqTT kk ,, =  is the kinetic energy written as a function of the generalized 
coordinates. 

• Euler-Lagrange’s Equation 
When the non-constraint forces are conservative, they can be written as gradients of a 
time independent potential, { }( )ji rUF 

∇−= . From this, we can prove that the generalized 
forces can also be written as gradients 
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( )tqU
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If we then define the Lagrangian as L = T – U, 
then, we can prove the Euler-Lagrangian equation 
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In some cases, it is possible to write non conservative forces using a potential function. If 
the non conservative force can be written in terms of function { } { }( )kk qqU , in the 
following manner; 
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then one may include this function U as a potential energy in the lagrangian and apply the 
Euler-Lagrangian equation. 
If one has non-conservative forces that cannot be written in the above form, one can still 
write down a generalized Euler-Lagrangian equation 
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where Lno
kf

−  encompasses all forces that cannot be included in the Lagrangian. 
 
6.0 Tutor Marked Assignment (TMAs) 
 
1. A pendulum of mass m hung on a rigid rod of length l whose (upper) end is fixed. The mass 

is free to move on a circle of radius l on the xz-plane. The angle that the rod makes with the 
vertical axis is ϴ and the relation between r and ϴ is ( )θθθ cos,0,sin)( llfr −==  hence 
calculate (i) the Lagrangian and, (ii) the equation of motion. 

2.  Suppose now that this pendulum is free to move on the sphere defined by the distance l 
from the anchor point (i.e., a two-dimensional manifold) in which r is function of ϴ and ϕ, 
and are related by )cos,sinsin,cos(sin),( θφθφθφθ −== lfr . Calculate the Lagrangian 
and the corresponding equation of motion. 

 
7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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UNIT 2 Langrange’s Mechanics 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main contents 
3.1  Newton’s Second Law 
3.1.1 Conservative Systems 
3.1.2 Notation 
3.2  Lagrange’s Equations 
3.2.1 Generalized Coordinates 
3.2.1 Lagrange’s Equations in Generalized Coordinates 
3.3  Generalized Momenta 
3.4  Lagrangian For Some Physical Systems 
3.4.1 Example 1: 1-D motion—the pendulum 
 3.4.2 Example 2: 2-D motion in a central potential 
3.4.3 Example 3: 2-D motion with time-varying constraint 
3.4.4 Example 4: Atwood Machine 
3.4.5 Example 5: Elliptical wire   
3.4.6 Example 6: Particle in e.m. field 
3.5  Transformations of the Lagrangian 
3.5.1 Point transformations 
3.4.7 Gauge transformations 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment (TMAs) 
7.0  Further Reading and Other Resources 
 
1.0 Introduction 
 
It is not possible to develop the classical mechanical approach to statistical mechanics without 
having some understanding of the principles of classical mechanics. We will review the basic 
principles of Newton’s Laws of Motion. We will also recast Newton’s second law into the forms 
developed by Lagrange and Hamilton. These notes provide some of the details about the 
Lagrangian and Hamiltonian formulations of classical mechanics. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• express the Lagrangian L in Cartesian coordinates; 
• transform L to generalized coordinates; 
• give Lagrange’s equations in generalized coordinates. 
• Illustrate how to use Lagrange’s equations in generalized coordinates. 
• Apply the approach to the free motion of a particle confined to move on the perimeter of 

a ring. 
• Solve related Problems. 

 
3.0 Main Contents 
 
3.1 Newton’s Second Law 
We consider N particles moving in three-dimensional space, and we describe the location of 
each particle using Cartesian coordinates. We let mi be the mass of particle i, and we let xi, yi and 
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zi be respectively the x, y and z-coordinates of particle i. For time derivatives of the coordinates 
(and all other physical observables), we use the “dot” notation first introduced by Isaac Newton 

dt
xdx i

i


 =  and 2

2

dt
xdx i

i = .        (2.1) 

We let 
ixF  be the x-component of the force on particle i. Then, Newton’s Second Law takes the 

form ix xmF
i

= . 
For example, if we study the motion of a single particle of mass m moving in one dimension in a 
harmonic potential with associated force Fx=−kx, Newton’s second law takes the form 

xmkx =− . Solution of this differential equation for the coordinate x as a function of the time t 
gives a complete description of the motion of the particle; i.e. at any time t one knows the 
location and velocity of the particle. 
 
3.1.1  Conservative Systems 
In quantum mechanics, we often restrict our attention to a class of physical systems that are 
called conservative. In a qualitative sense conservative systems are those for which the total 
energy E is the sum of the kinetic and potential energies. For any isolated system E is conserved 
(i.e. dE/dt = 0), and for conservative systems, the sum of the potential energy and kinetic energy 
is conserved. Explicitly, we have the following definition: 
Definition: A classical mechanical system is conservative if there exists a function 

),...,,,( 2111 NzxzyxU  called the potential energy such that for any coordinate )( iii zoryorx , we 
can write 
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where )(
iii zyx ForForF is the x (or y or z) component of the force on particle i. 

As an example, we can consider the one dimensional particle moving in the harmonic well with 
force kxF −= . For such a system, a potential energy exists and is given by 2

2
1)( kxxU = . By 

differentiating the potential energy with respect to x, the force is obtained. We can then be sure 
that for a harmonic oscillator the total energy is conserved 

22

2
1

2
1 kxxmE +=  .        (2.3) 

3.1.2 Notation 
The notation used for derivatives, we need to distinguish the explicit and implicit dependence of 
a function on a variable. As an example, the expression for the kinetic energy T of a system of N 
particles in Cartesian coordinates is given by 

[ ]∑
=

++=
N

i
iiii zyxmT

1

222

2
1

       (2.4) 

Equation 2.4 above for the kinetic energy is an explicit function of the velocities of each particle; 
i.e. the ( )iii zyx  ,, , but no other variables. We can write 

jj
j

xm
x
T




=
∂
∂  .         (2.5) 

However, in the expression for T, there is no explicit dependence on the time t or the 
coordinates{ }iii zyx ,, , consequently, we write 

0=
∂
∂

t
T  and 0=

∂
∂

jz
T          (2.6) 

 
Equations 2.6 do not imply that the kinetic energy is independent of the time or the z-component 
of the coordinate for particle j. Equation 2.6 only state that in the expression for T as written, 
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there is no explicit dependence of T on t or zj. If we want the actual (i.e. implicit) dependence of 
the kinetic energy on time, we write 

dt
dT  which is not zero in the general case ( dt

dT  does equal zero for a free particle). We 

understand the notation ∂  to represent a derivative of the explicit dependence of a function as 
written on a variable and the notation d to represent a derivative for the actual (i.e. implicit) 
dependence of a function on a variable. It is important that the differences between ∂  and d are 
clear for the developments that follow. 
 
3.2 Lagrange’s Equations 
We now derive Lagrange’s equations for the special case of a conservative system in Cartesian 
coordinates. However, using Lagrange’s equations in a more general coordinate systems will be 
discussed after the derivation in Cartesian coordinates. 
We begin with Equation 1.4 for the kinetic energy. We first differentiate the expression with 
respect to one of the velocities. 

jj
j

xm
x
T




=
∂
∂ . 

We next take the implicit derivative of eq.1.4 above with respect to time 

jj
j

xm
x
T

dt
d




=
∂
∂ .          (2.7) 

The right hand side of equation 2.7 is the mass of the particle multiplied by the acceleration of 
the particle, which by Newton’s law must be the force on the particle. For a conservative system, 
We can express this force by jxU ∂∂− , so that 

jj x
U

x
T

dt
d

∂
∂

−=
∂
∂


.         (2.8) 

We now give a defining relation for the classical lagrangian:  
Definition: The Classical Lagrangian is given by  

L = T – U.          (2.9) 
The classical Lagrangian is the difference between the kinetic and potential energies of the 
system. Using this definition in eq. 1.7 we obtain 

0=
∂
∂

−
∂
∂

jj x
L

x
L

dt
d


.        (2.10) 

 
Equations 2.10 above are Lagrange’s equations in Cartesian coordinates. We use the plural 
(equations), because Lagrange’s equations are a set of equations. We have a separate equation 
for each coordinate xj. A completely analogous set of equations is obtained for the other 
Cartesian directions y and z. 
We emphasize that Lagrange’s equations are just a new notation for Newton’s second law. 
Example 2.1: Consider a one-dimensional harmonic oscillator. The Lagrangian for the system is 

22

2
1

2
1 kxxmUTL −=−=          (2.11) 

and Lagrange’s equation is 0=+=
∂
∂

−
∂
∂ kxxm

dt
d

x
L

x
L

dt
d




,        (2.12) 

    or kxxm −=  
which is just Newton’s Second law. To understand the utility of the new notation, we need to 
introduce the notion of generalized coordinates. 
 
Self Assessment Exercise A 
Derive Lagrange’s equation of motion in Cartesian coordinates. 
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3.2.1  Generalized Coordinates 
Much of Lagrange’s work was concerned with methods useful for systems subject to external 
constraints. 

 
figure 2.1 

A simple example of the kind of problem that interested Lagrange is the motion of a free particle 
of mass m confined to move on the perimeter of a ring of radius R depicted in the figure above. 
Constraints on a particle’s motion arise from some set of unspecified forces. 
For the particle on a ring, it is possible to imagine some force of infinite strength that limits the 
motion of the particle. The exact nature of the force is not important to us. We only need to 
consider the confined space. 
For a particle on a ring, the Cartesian coordinates x and y are not the most convenient to describe 
the motion of the particle. As a result of the constraint, a single coordinate ϕ is sufficient to 
locate the particle. The coordinate ϕ  is defined to be the angle that a line connecting the current 
location of the particle with the origin of coordinates makes with the x-axis. The connections 
between ϕ and the Cartesian coordinates are given by 

φcosRx =  and φsinRy = .           (2.13) 
The angle ϕ is an example of a generalized coordinate. Generalized coordinates are any set of 
coordinates that are used to describe the motion of a physical system. Cartesian coordinates and 
spherical polar coordinates are other examples of generalized coordinates. 
We may choose any convenient set of generalized coordinates for a particular problem. For the 
particle in a ring example, the convenient coordinate is ϕ. For systems with spherically 
symmetric potentials (the motion of the earth about the sun, the hydrogen atom), we can choose 
spherical polar coordinates. We label the i’th generalized coordinates with the symbol qi, and we 
let iq represent the time derivative of qi. 
 
Self Assessment Exercise B 
1. Derive Lagrange’s equations of motions for a conservative system in Cartesian coordinates. 
2. Choose any convenient set of generalized coordinates for the following systems:  (i) free 

particle of mass m confined to move on the perimeter of a ring of radius R depicted in the 
figure 2.1 above.   (ii) the motion of a particle on a ring,  (iii) for systems with 
spherically symmetric potentials (the motion of the earth about the sun, the hydrogen atom).  

 
3.2.1  Lagrange’s Equations in Generalized Coordinates 
 
Lagrange has shown that the form of Lagrange’s equations is invariant to the particular set of 
generalized coordinates chosen. For any set of generalized coordinates, Lagrange’s equations 
take the form 

R 
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,0=
∂
∂

−
∂
∂

ii q
L

q
L

dt
d


        (2.14) 

exactly the same form that we derived in Cartesian coordinates. We now illustrate how to use 
Lagrange’s equations in generalized coordinates by applying the approach to the free motion of 
a particle confined to move on the perimeter of a ring as discussed previously.  

The meaning of the expression of “free particle” is the absence of any external forces. We can 
arbitrarily set the potential energy U to zero. Then, in Cartesian coordinates, the Lagrangian for 
any free particle in the xy-plane can be expressed as 

)(
2
1 22 yxmL  += .        (2.15) 

We now transform L to generalized coordinates using Eq.2.13. We need the time derivatives of x 
and y expressed in terms of the generalized coordinate system. 

φφφ cossin RRx  +−=  and φφφ sincos RRy  += .     (2.16) 
Owing to the constraint, R is a constant and 0=R , then 

φφ  sinRx −=  and φφ  cosRy =        (2.17) 

so that L becomes [ ] 222222

2
1sincos

2
1 φφφφ  mRmRL =+= .       (2.18) 

Because of the constraint, the Lagrangian is a function of a single coordinate ϕ. We finally give 
Lagrange’s equations 

φ
φ




2mRL
=

∂
∂ , and  φ

φ



2mRL

dt
d

=
∂
∂  and 0=

∂
∂
φ
L .      (2.19) 

So therefore, 

022 ===
∂
∂ φφ
φ




mRmR
dt
dL

dt
d          (2.20) 

Equation 2.20 above implies the acceleration of the coordinates ϕ is zero so that the particle 
moves with a constant generalized velocity φ  
 
Self Assessment Exercise C 
1. Express Lagrange’s equation in generalized coordinates.  
2. Derive the Lagrange’s equation for a free motion of a particle confined to move on the 

perimeter of a ring in generalized coordinates. 
 
3.3 Generalized Momenta 
Equation 2.20 can be interpreted to mean that the quantity φφ  2mRL =∂∂  is conserved. To fully 
explore the meaning of the conservation of a quantity like ,φ∂∂L  consider the Lagrangian in 
Cartesian coordinates for a particle of mass in one dimension 

)(
2
1 2 xUxmL −=  .        (2.21) 

By differentiating L with respect to the velocity x , we obtain the linear momentum 

,xm
x
L



=

∂
∂         (2.22) 

which is conserved in the case of no external forces; i.e. the linear momentum is conserved if 
U(x) is a constant. Using these simple equation, we are lead to the following definition: 
Definition: The generalized momentum pi conjugate to the coordinate qi is defined by 

i
i q

Lp
∂
∂

=         (2.23) 

for example in the particle in a ring, the generalized momentum conjugate ϕ, φφ pL =∂∂   can 
be shown to be angular momentum of the particle. 
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 Self Assessment Exercise D 
1. Define the generalized momentum in Cartesian and generalized coordinates 
 
3.4 Lagrangian for Some Physical Systems 
 
3.4.1 Example 1: 1-D motion—the pendulum 
One of the simplest nonlinear systems is the one-dimensional physical pendulum (so called to 
distinguish it from the linearized harmonic oscillator approximation). As depicted in Figure 2.2 
below, the pendulum consists of a light rigid rod of length l, making an angle ϴ with the vertical, 
swinging from a fixed pivot at one end and with a bob of mass m attached at the other end. 
The constraint l = const and the assumption of plane motion reduces the system to one degree of 
freedom, described by the generalized coordinate ϴ. (This system is also called the simple 
pendulum to distinguish it from the spherical pendulum and compound pendula, which have 
more than one degree of freedom.) 

 
Figure 2.2  Physical Pendulums 
The potential energy with respect to the equilibrium position ϴ = 0 is U(ϴ) = mgl(1-cosϴ), 
where g is the acceleration due to gravity, and the velocity of the bob is θθ

lv = , So that the 

kinetic energy 222

2
1

2
1 θθ

mlmvT == .  

The lagrangian, L= T – U, is thus  

).cos1(
2
1),( 22 θθθθ −−= mglmlL        (2.24) 

This is also essentially the Lagrangian for a particle moving in a sinusoidal spatial potential, so 
the physical pendulum provides a paradigm for problems such as the motion of an electron in a 
crystal lattice or of an ion or electron in a plasma wave. 
Lagrangian equation of motion is  

θθ ∂
∂

=
∂
∂ LL

dt
d


 where θ

θ



2mlL

=
∂
∂   and θ

θ
sinmglL

−=
∂
∂ .    (2.25) 

So therefore the Lagrangian equation of motion is 
θθ sin2 mglml −= .          (2.26) 

  
 3.4.2  Example 2: 2-D motion in a central potential 
 
Using plane polar coordinates, { }θ,rq =  such that 
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,cosθrx =  ,sinθry =            (2.27) 
so that 

θθθ sincos  rrx −=   θθθ cossin  rry −=       (2.28) 

hence the kinetic energy )(
2
1 22 yxT  +=  is found to be )(

2
1 222 θ rrmT += .    (2.29) 

The lagrangian is 

)()(
2
1 222 rUrrmL −+= θ           (2.30) 

Since L is independent of ϴ then 0=∂∂ θL  while θθ  2mrL =∂∂  
Therefore the ϴ-component of the Lagrangian equation of motion is  

02 =θmr  while the r-component of the Lagrangian equation of motion will be rmrL  =∂∂
 while )(2 rUmrrL −=∂∂ θ  
so the radial Lagrange’s equation of motion is  

( ) )(2 rUmrrm
dt
d

−= θ  which gives  

)(2 rUmrrm −=− θ  .       (2.31) 
 
3.4.3   Example 3:  2-D motion with time-varying constraint 
Consider a weight rotating about the origin on a frictionless horizontal surface as depicted in the 
fig 2.3 below and constrained by a thread, initially of length a, that is being pulled steadily 
downward at speed u through a hole at the origin so that the radius r = a – ut. 

 
figure 2.3 

Then, on substituting for r in equation 2.29, the Lagrangian becomes, 

[ ]222 )(
2
1 θutaumTL −+== .       (2.32) 

So we again have the conservation of angular momentum 
tconslutam tan)( 2 ==− θ  

which can be integrated to give ϴ as a function of t,  
)](/[]/1)/(1)[/( 00 utamaltautamul −+=−−+= θθθ .     (2.33) 

 
3.4.4 Example 4: Atwood Machine 
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Figure 2.4 
Consider two weights of mass m1 and m2 suspended from a frictionless, inertialess pulley of 
radius a by a rope of fixed length, as depicted in Fig. 2.4 above. The height of weight 1 is x with 
respect to the chosen origin and the holonomic constraint provided by the rope allows us to 
express the height of weight 2 as -x, so that there is only one degree of freedom for this system. 

The kinetic and potential energy are ( ) 2
212

1 xmmT +=  and gxmgxmU 21 −= .    (2.34) 

Thus, UTL −=  

( ) ( )gxmmxmmL 21
2

212
1

−−+=       (2.35) 

and its derivatives are 

( )gmm
x
L

21 −−=
∂
∂  ( )xmm

x
L


 21 +−=

∂
∂ .     (2.36) 

The Lagrange’s equation of motion now becomes 
( ) ( )gmmxmm 2121 −−=+   

g
mm
mmx

21

21

+
−

=⇒  .        (2.37) 

 
3.4.5 Example 5: Elliptical wire   
For the elliptical wire of figure (1.1b), taking a and b to be constant, the Lagragian is 

[ ] ααααα sincossin
2

222222 mgbbamUTL −+=−=   .   (2.38) 

The Lagrange equations of motion is  
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   (2.39) 
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     (2.40) 

Thus  

( ) 0coscossin0 2222 =++⇒=
∂
∂

−


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
∂
∂ αααα

αα
mgbbamLL

dt
d
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

.   (2.41) 

 
3.4.6  Example 6: Particle in e.m. field 
The fact that Lagrange’s equations are the Euler–Lagrange equations for the extraordinarily 
simple and general Hamilton’s principle suggests that Lagrange’s equations of motion may have 
a wider range of validity than simply problems where the force is derivable from a scalar 
potential. 
In particular, it is obviously of great physical importance to find a Lagrangian for which 
Lagrange’s equations of motion equation 2.14 reproduce the equation of motion of a charged 
particle in an electromagnetic field, under the influence of the Lorentz force, 

),,(),( trretrerm BE ×+=          (2.42) 
where e is the charge on the particle of mass m. 
We assume the electric and magnetic fields E and B, respectively, to be given in terms of the 
scalar potential Ф and vector potential A by the standard relations 

A.B

A,E

×∇=
∂−Φ−∇= t         (2.43) 

The electrostatic potential energy is eФ, so we expect part of the Lagrangian to be Φ− erm 2

2
1

 , 

but how do we include the vector potential? 
Clearly, we need to form a scalar since L is a scalar, so we need to dot A with one of the 
naturally occurring vectors in the problem to create a scalar. 
The three vectors available are A itself, r and r . However we do not wish to use A, since A·A in 
the Lagrangian would give an equation of motion that is nonlinear in the electromagnetic field, 
contrary to equation 2.42. Thus, we can only use r and r . Comparing equations 2.42 and 2.43 
we see that A⋅r  has the same dimensions as Ф, so let us try adding that to form the total 
Lagrangian 

A⋅+Φ−= reexmL  2

2
1 .       (2.44) 

Taking { } { }zyxqqqq ,,,, 321 =≡ , we have 
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The lagrange’s equation of motion then becomes 
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This is simply equation 2.42 in Cartesian component form, so our guessed Lagrangian is indeed 
correct. 
 
Self Assessment Exercise E 
1. Make sure you study and understand the above examples very well. 
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3.5   Transformations of the Lagrangian 
3.5.1  Point transformations 
Given an arbitrary Lagrangian ),,( tqqL  in one generalized coordinate system, { }niqq i ,1=≡ (e.g. 

a Cartesian frame), we often want to know the Lagrangian ( )tQQL ,, ′  in another coordinate 
system, { }niQQ i ,1=≡  (e.g. polar coordinates). Thus, suppose there exists a set { }nigg i ,1=≡  
of twice differentiable functions gi such that ( ),,tQgq ii =  i = 1,…, n. 
We require the inverse function of g also to be twice differentiable, in which case qQg →: is 
said to be C2 diffeomorphism.  Note that we have allowed the transformation to be time 
dependent, so transformations to a moving frame are allowed. The transformation g maps a path 
in Q-space to a path in q-space. However, it is physically the same path; all we have changed is 
its representation. What we need in order to discuss how the Lagrangian transforms is a 
coordinate-free formulation of Lagrangian dynamics. This is another virtue of Hamilton’s 
principle i.e. 0=∂S  on a physical path for all variations with fixed endpoints and also since the 

action integral S given by ( )∫≡
2

1

,,
t

t

tqqLdtS   is an integral over time only. Thus, if we can define 

L′  so that 
( ) )),(),((),(),( ttqtqLttQtQL  =′        (2.46) 

for any path, then S is automatically invariant under the coordinate change and will be stationary 
for the same physical paths, irrespective of what coordinates they are represented in. 
We can guarantee this trivially, simply by choosing the new Lagrangian to be the old one in the 
new coordinates: 

( ) ( )( )ttQQgtQgLtQQL ,,,),,(,,  =′ ,        (2.47) 

where   ∑
= ∂

∂
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i
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t
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1
,  i = 1, …., n. 

One can prove that eq. (2.47) gives the correct dynamics by calculating the transformation of the 
Euler–Lagrange equations explicitly and showing that eq. 2.14 implies  
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
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′∂
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L

Q
L

dt
d


,      (2.48) 

but clearly Hamilton’s principle provides a much simpler and more elegant way of arriving at the 
same result, since equation 2.48 are simply the Euler–Lagrange equations for S to be stationary 
in the new variables. 
 
 
3.4.7  Gauge transformations 
It must be noted that we cannot always expect that the Lagrangian is of the form T − V, but 
nevertheless the lagrangian gives a function for which Lagrange’s equations represent the correct 
dynamical equations of motion. Thus it is the requirement that the equations of motion be in the 
form of Lagrange’s equations (or, equivalently, that Hamilton’s principle apply) that is 
fundamental, rather than the specific form of L. This naturally raises the question: for a given 
system, is there only one Lagrangian giving the correct equations of motion, or are there many? 
Clearly there is a trivial way to generate multiple physically equivalent Lagrangians, and that is 
to multiply L by a constant factor. However, we usually normalize L in a natural way, e.g. by 
requiring that the part linear in the mass be equal to the kinetic energy, so this freedom is not 
encountered much in practice. 
However, there is a more important source of non-uniqueness, known as a gauge transformation 
of the Lagrangian in which L is replaced by L′ , defined by 
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MtqqLtqqL
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+=′  ),,(),,( .      (2.49) 
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Example 2.2: Harmonic oscillator 
Consider the harmonic oscillator Lagrangian,  for a particle of unit mass 

( )22
0

2

2
1 xxL ω−=          (2.50) 

where we take 0ω  to be constant. Since x
x
L



=

∂
∂   and ,2

0 x
x
L ω−=
∂
∂  we immediately verify that 

Lagrange’s equation, equation 2.14 gives the harmonic oscillator equation 
xx 2

0ω−=         (2.51) 

Now add a gauge term, taking xM 2
02

1ω= . Then, from equation 2.49, the new Lagrangian is  

( )22
0

2 2
2
1 xxxxL ωω −+=′  .          (2.52) 

Calculating ,0xx
x
L ω+=
∂
′∂




 and ,0
2
0 xx

x
L

ωω +−=
∂
′∂  and substituting into the Lagragian equation 

of motion, we do indeed recover the harmonic oscillator, equation, equation 2.51 and the new 
Lagrangian is a perfectly valid one despite the fact that it is no longer in the natural form,T – U 
 
Example 2.3:   Electromagnetic gauge transformation 
It is well known that the scalar and vector potentials in equation 2.43 are not unique, since the 
electric and magnetic fields are left unchanged by the gauge transformation 

),,(),(),(),(
),(),(),(),(

trtrtrtr
trtrtrtr

tχ
χ
∂−Φ≡Φ′→Φ

∇+′≡→ AA
         (2.53) 

where χ  is an arbitrary scalar function (a gauge potential). 
Using the gauge-transformed potentials Φ′  and A ′  to define new Lagrangian L′  in the same 
way as L was defined by equation 2.44 we have 

AreexmL ′⋅+Φ′−=′ 2

2
1 .        (2.54) 

Substituting equation 2.53 in equation 2.54 we find 

)()( χχ er
t

eLL ∇⋅+
∂

∂
+=′          (2.55) 

which is exactly of the form equation 2.49 with χeM = . Thus electromagnetic and Lagrangian 
gauge transformations are closely related. 
 
Self Assessment Exercise F 
1. State what is meant by point and gauge transformation. 
2. Find the gauge transformation of Lagrangian of harmonic oscillator and electromagnetic 

fields. 
 
4.0 Conclusion 
 
The Classical Lagrangian is given by  

L = T – U.          (2.9) 
The classical Lagrangian is the difference between the kinetic and potential energies of the 
system. Lagrange has shown that the form of Lagrange’s equations is invariant to the particular 
set of generalized coordinates chosen. For any set of generalized coordinates, Lagrange’s 
equations take the form 
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5.0 Summary 
 

• Using the “dot” notation introduced by Isaac Newton 

dt
xdx i

i


 =  and 2

2

dt
xdx i

i =  

• For motion of a single particle of mass m moving in one dimension in a harmonic 
potential with associated force Fx=−kx, Newton’s second law takes the form xmkx =−  

• A classical mechanical system is conservative if there exists a function 
),...,,,( 2111 NzxzyxU  called the potential energy such that for any coordinate xi (or yi or 

zi) we can write 
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iii zyx ForForF is 

the x ( or y or z) component of the force on particle i. 
• The Classical Lagrangian is given by  

L = T – U  
• The classical Lagrangian is the difference between the kinetic and potential energies of 

the system. Using eq. 1.7 we obtain 
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• For any set of generalized coordinates, Lagrange’s equations take the form 
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d


.      

• The generalized momentum pi conjugate to the coordinate qi is defined by 

i
i q

Lp
∂
∂

= .      

• Given an arbitrary Lagrangian ),,( tqqL  in one generalized coordinate system, 
{ }niqq i ,1=≡ (e.g. a Cartesian frame), we often want to know the Lagrangian ( )tQQL ,, ′  

in another coordinate system, { }niQQ i ,1=≡  (e.g. polar coordinates).  
However, there is a more important source of non-uniqueness, known as a gauge 
transformation of the Lagrangian in which L is replaced by L′ , defined by 

q
Mq

t
MtqqLtqqL

∂
∂
⋅+

∂
∂

+=′  ),,(),,( . 

 
6.0 Tutor Marked Assignments (TMAs) 
 
1. As a model of the motion of a fluid element or dust particle in a planetary (e.g. Earth’s) 

atmosphere, consider the motion of particle of unit mass constrained to move on the surface 
of a perfectly smooth sphere of radius R rotating with angular velocity ω  about the z-axis. 
Suppose the force on the particle is given by an effective potential U(ϴ,ϕ), where ϴ and ϕ 
are the latitude and longitude respectively.  
(a) Write down the Lagrangian in a frame rotating with the planet, taking the generalized 
coordinates to be the latitude and longitude so that θsinRz = , )cos(cos tRx ωφθ += , 

)sin(cos tRy ωφθ += , where x, y, z is a non-rotating Cartesian frame. (b) Write down the 
equations of motion, and find a first integral (i.e. constant of the motion) in the case where 
U is independent of longitude. Among this class of potentials find the special case 

)(θUU =  required to make equilibrium possible (i.e. so that the equations of motion admit 
the solution 0== φθ   at each latitude). 
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Answers 
( ) ( ) ( )
( ) ( ) ( )
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Thus the kinetic energy is given by 
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 and the Lagrangian, L = T – U, by 

( )[ ] ),(cos
2
1 2222 φθθφωθ URL −++=  . 
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and thus the lagrange equations of motion 
θθ ∂
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=
∂
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dt
d


 and 

φφ ∂
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=
∂
∂ LL

dt
d


 become 
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θθφωθ
∂
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( )
φ

θθφωθθφ
∂
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In the case where U = U(ϴ), ϕ is an ignorable coordinate and thus 
φ∂
∂L  given by 

θφω
φ

22 cos)( 


+=
∂
∂ RL  is an integral of the motion. 

If U0 be such that 0== φθ   for all ϴ and ϕ, and use the identity ,cossin22sin θθθ ≡  

then,  θω
θ

2sin
2
1 220 RU

=
∂
∂  

Or integrating, we have 

θωθθωθ 22222
0 cos

2
12cos2cos

4
1)( RconstRU =++=  

where the second equality follows fom the identity 1cos22cos 2 −≡ θθ  and the choice 
2

4
1 Rconst = . 

 
2. Consider a charged particle constrained to move on a non-rotating smooth insulating sphere, 

immersed in a uniform magnetic field B = Bez, on which the electrostatic potential is a 
function of latitude and longitude. Write down the Lagrangian in the same generalized 
coordinates as above and show that it is the same as for the particle on the rotating planet 
with appropriate identifications of ω and U. 
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The Lagrangian is ,Φ−⋅+= ereTL A  with ω set o zero. We have now need a vector potential 

A such that .BAAB =∂−∂≡ xyyxz  A suitable choice is ,
2
1 yx BA −=  ,

2
1 xy BA −=  0=zA . 

Thus, ( )xyyxeAre  −=⋅ B
2
1  
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Thus, the Lagrangian is 

( ) ( )φθθφθφθ ,cos
2
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1 222222 Φ−++= eRemRL  B .  

Completing the square we can write the Lagrangian in the form 
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m
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This is the same as the Lagrangian for particle on the rotating planet where 

m
e
2
B

=ω  and ( )φθφθφθ ,cos
8

),( 2
222

e
m

ReU +=
B Note that the equation above can also be 

written as ,
2
1

0ωω =  where 
m
eB

=0ω  is the cyclotron frequency. 

3. Write down a Lagrangian for the problem of two particles of mass m1 and m2 connected by 
a light rigid rod of length l in a gravitational field g. Take the generalized coordintes of the 
system to be { },,,,, φθzyxq =  with the coordinates of two particles being given by 
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where 
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2
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m
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≡α  and 
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1
2 mm

m
+

≡α  (so that (x, y, z) is the centre of mass). 

 
Answer 
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Because 2211 αα mm =  the cross terms cancel when we expand the x-contribution to the 
kinetic energy. 
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Thus, adding the kinetic energy, we have 
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( ) ( )222
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The potential energy is given by 
( ) ( )zgmmgzmzmU 212211 +=+=  

and the Lagrangian is L = T – U 
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7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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UNIT 3 HAMILTONIAN MECHANICS 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1  Legendre Transform 
3.2   The Classical Hamiltonian and Hamilton’s Equations 
3.2.1  Derivation of Hamiltonian and Hamilton’s equation of motion if the Lagrangian is a 

function of two variables q and z (and possibly time).  
3.2.2 Example 1: Scalar potential 
3.2.3 Example 2: Physical pendulum 
3.3   Construction of the Hamiltonian in Spherical Polar Coordinates - Central Force Motion 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignments 
7.0  Further Reading and Other Resources 
 
1.0 Introduction 
 
Hamiltonian mechanics is a reformulation of classical mechanics that was introduced in 1833 
by Irish mathematician William Rowan Hamilton. It arose from Lagrangian Mehanics, a 
previous reformulation of classical mechanics introduced by Joseph Louis Lagrange in 1788, but 
can be formulated without recourse to Lagrangian mechanics using symplectic spaces. [The 
Hamiltonian method differs from the Lagrangian method, in that, instead of expressing second-
order differential constraints on an n-dimensional coordinate space (where n is the number of 
degrees of freedom of the system)], it expresses first-order constraints on a 2n-dimensional phase 
space. 
As with Lagrangian mechanics, Hamilton's equations provide a new and equivalent way of 
looking at classical mechanics. Generally, these equations do not provide a more convenient way 
of solving a particular problem. Rather, they provide deeper insights into both the general 
structure of classical mechanics and its connection to quantum mechanics as understood through 
Hamiltonian mechanics, as well as its connection to other areas of science. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• Explain Legendre transform. 
• Understand the application of legendre transform in thermodynamics. 
• Find the Legendre transform of any function. 
• Derive the Hamiltonian from Legendre transform and the corresponding Hamilton’s 

equation of motion. 
• Derive the Hamiltonian and Hamilton’s equation of motion in spherical polar coordinates. 
• Solve related Problems. 
 

3.0 Main Contents 
 
3.1 Legendre Transform 
The Legendre transform is a method of changing the dependence of a function of one set of 
variables to another set of variables.  

http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange�
http://en.wikipedia.org/wiki/Symplectic_manifold�
http://en.wikipedia.org/wiki/Coordinate_space�
http://en.wikipedia.org/wiki/Mathematical_equation�
http://en.wikipedia.org/wiki/Quantum_mechanics�
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In mathematics, it is often desirable to express a functional relationship f(x) as a different 

function, whose argument is the derivative of f , rather than x . If we let 
dx
dfp =  be the argument 

of this new function, then this new function is written )(* pf  and is called the Legendre 
transform of the original function, named after Adrien-Marie Legendre. The Legendre transform 

*f of a function f is defined as follows: ))((max)(* xfpxpf x −=  
The notation maxx indicates the maximization of the expression with respect to the variable x 
while p is held constant. The Legendre transform is its own inverse. Like the familiar Fourier 
transform, the Legendre transform takes a function f(x) and produces a function of a different 
variable p. However, while the Fourier transform consists of an integration with a kernel, the 
Legendre transform uses maximization as the transformation procedure. The transform is well 
behaved only if is a convex function. 
The Legendre transformation is an application of the duality relationship between points and 
lines. The functional relationship specified by f(x) can be represented equally well as a set of (x, 
y) points, or as a set of tangent lines specified by their slope and intercept values. 
The Legendre transformation can be generalized to the Legendre-Fenchel transformation. It is 
commonly used in thermodynamics and in the Hamiltonian formulation of classical mechanics. 

 
figure 1.1 The Legendre transformation: the cuve graph is f(x). Its tangent with slope P 
intersects the y-axis at the point –f*(p). 

  
The Legendre transform is most often used in the study of thermodynamics. Recall from 
thermodynamics, there are two free energy functions called the Gibbs free energy and the 
Helmholtz free energy. The total differential of the Helmholtz free energy is given by  

PdV - SdT- dA = ,        (3.1) 
where S is the entropy, T is the temperature, V is the volume and p is the pressure. From the total 
differential, it is evident that the Helmholtz free energy is expressed as a function of the 
temperature and the volume; i.e. A = A(T, V ). Now suppose we prefer to express the state of our 
system in terms of temperature and pressure rather than temperature and volume. We can define 
a new function G by 

 PV A  G +=         (3.2) 
where we have added to A the product of the variable we want (p) and the variable we want to 
eliminate (V ). The algebraic sign of the included PV product is chosen to be the opposite of the 
algebraic sign of the PdV term in Equation 3.1. Taking the differential of the expression for G 
we obtain 

dP V  SdT-  dP V  PdV  PdV - SdT-  dP V  PdV dA  dG +=++=++= .     (3.3) 
It is evident that G is a function of T and P as desired. Of course, G is the Gibbs free energy, and 
G is said to be the Legendre transform of A. As previously mentioned, in Equation 3.2 the 

http://en.wikipedia.org/wiki/Mathematics�
http://en.wikipedia.org/wiki/Adrien-Marie_Legendre�
http://en.wikipedia.org/wiki/Fourier_transform�
http://en.wikipedia.org/wiki/Fourier_transform�
http://en.wikipedia.org/wiki/Kernel_(mathematics)�
http://en.wikipedia.org/wiki/Convex_function�
http://en.wikipedia.org/wiki/Duality_(projective_geometry)�
http://en.wikipedia.org/wiki/Legendre-Fenchel_transformation�
http://en.wikipedia.org/wiki/Thermodynamics�
http://en.wikipedia.org/wiki/Hamiltonian�
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product PV is included with an algebraic sign opposite to the sign of PdV in Equation 3.1, so that 
the cancellation of the two PdV terms is assured. 
 
Self Assessment Exercise A 
Find the Legendre transform of the function ex. 
Show that the Legendre transform satisfies the following algebraic properties. 
 )/()()()(.1 ** apagpfxagxf =⇒=  

)/()()()(.2 ** apgpfaxgxf =⇒=  
bpgpfbxgxf −=⇒+= )()()()(.3 **  
)/1()()()(.4 **1 ppgpfxgxf −=⇒= − . 

where )(* pf  is the Legendre transform 
 

3.2  The Classical Hamiltonian and Hamilton’s Equations 
We now apply the notion of the Legendre transform to the classical Lagrangian. In our previous 
developments, we have taken L to be a function of all the generalized coordinates and their 
respective time derivatives; i.e. { } { }( )tqqLL ii ,, = . For generality, we have also included the 
possibility that the Lagrangian has explicit time dependence. Such explicit time dependence can 
occur when the external forces acting on a system are time-dependent. 
The resulting time-dependent potentials can be important in systems, as for example, the study of 
the interaction of radiation with matter. Light is composed of electric and magnetic fields that 
oscillate in time, and when light interacts with matter, the electrons are subjected to time-
dependent potentials. The quantum treatment of spectroscopy includes time dependent potentials, 
and we generalize the Lagrangian to admit such time dependences.  
We now use the Legendre transform to define a new function where we replace the velocity (the 

iq ) dependence by a dependence on the generalized momenta. The transformed function is as 
follows: 
Definition: For a system of particles each having masses mi described by a set of generalized 
coordinates qi, the classical Hamiltonian is defined by 

{ } { }( )∑ −=
i

iiii tqqLqpH ,,  .     (3.4) 

As we now show, the particular choice of the relative signs of the first and second terms in 
Equation 3.4 above makes the classical Hamiltonian a natural function of the generalized 
coordinates and momenta rather than the generalized coordinates and the velocities. The reason 
that the sum is included with a positive sign and the Lagrangian is included with a negative sign 
(rather than the opposite) is made clear shortly when we identify the meaning of the classical 
Hamiltonian. 
We now take the total differential of equation 3.4 

∑ ∂
∂
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∂
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iiii dt
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q
LdpqqdpdH 
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       (3.5) 

The derivative iqL ∂∂  is the definition of the generalized momenta pi. From Lagrange’s equation, 
we can write 

0=
∂
∂

−
i

i q
Lp

dt
d  or 

i
i q

Lp
∂
∂

= .        (3.6) 

Then the total differential of the classical Hamiltonian becomes 
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     (3.7) 
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The classical Hamiltonian is manifestly a function of the generalized coordinates and momenta 
rather than the generalized coordinates and velocities from equation 3.7, we have 

i
i

q
p
H

=
∂
∂ ,  i

i

p
q
H

−=
∂
∂  and  

t
L

t
H

∂
∂

−=
∂
∂ .      (3.8) 

Equations 3.8 are called Hamilton’s equation of motion. 
Consider the motion of a particle of mass in one dimension with the Lagrangian given in 
equation 2.21. The generalized momentum is given as ,xmxLpx  =∂∂=  and from the definition 
of the Hamiltonian, we have 

)(
2
1)(

2
1 2 xUxmxUxmxxmLxpH x +=






 −−=−=   ,   (3.9) 

the Hamiltonian is seen to be the sum of the kinetic and potential energies of the system. 
For conservative system, H is the total energy. But the equation above is not acceptable because 
H is not written explicitly as a function of the generalized momentum. We must substitute 

mpx x=  then equation 3.9 above becomes 

)(
2

2

xU
m

pH x += .        (3.10) 

The Hamiltonian is then seen to be an expression for the total energy of a conservative system in 
terms of the generalized coordinates and momenta. With the Hamiltonian expressed in terms of 
the proper variables, we can give Hamilton’s equations of the system as 

x
m
p

p
H x

x

==
∂
∂   and xp

x
U

x
H

−=
∂
∂

=
∂
∂ .    (3.11) 

 
3.2.1  Derivation of Hamiltonian and Hamilton’s equation of motion if the Lagrangian is a 

function of two variables q and z (and possibly time).  
 
Consider the Legendre transformation of the Lagragian with respect to the variables z. 

),),,,(,(),,(),,(* ttpqzqLtpqpztpqL −=  

where ),,( tpqz  is the inverse relation to ),,,( tzq
z
Lp
∂
∂

=  i.e. it is our definition of the conjugate 

momentum. The Legendre transformation of the Lagragian is called the Hamiltonian, and it is 
commonly denoted by the letter H, 

).),,,(,(),,(),,( ttpqzqLtpqpztpqH −=  
We now examine the derivatives of H with respect to its arguments. Firstly 
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However, the first and third term cancel, since ),,,( tzq
z
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=  so that  
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Secondly 
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Also, the second and the third term cancel to become 
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The Hamilton’s equations are 
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this procedure can be extended to vector-valued q. Given the Lagrangian ),,( tzqL , we define the 
Hamiltonian as  

∑
=

−=
n

i
ii ttpqzqLtpqzptpqH

1
)),,,(,(),,(),,( . 

Where the transformation between (q,z,t) and (q,p,t) is  

),,( tzq
z
Lp

i
i ∂

∂
= . 

Hamilton’s equations are system of 2n first-order equations 

),,( tpq
p
H

dt
dq

i

i

∂
∂

= , ),,( tpq
q
H

dt
dp

i∂
∂

−=  

 
3.2.2  Example 1: Scalar potential 
Consider the Lagrangian for a particle in Cartesian coordinates, so q ={x, y, z} may be replaced 
by r = xex +yey +zez. Also assume that it moves under the influence of a scalar potential U (r, t) 
so that the natural form of the Lagrangian is 

),(
2
1 2 trUrmUTL −=−=           (3.12) 

General momentum rm
r
Lp 

=

∂
∂

≡ ,            (3.13) 

so that in this case the canonical momentum is the same as the ordinary kinematics’ momentum. 
Equation.3.8 is solved trivially to give )( puq =  where .)( m

ppu =  Thus, from eq.3.9 we have 
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      (3.14) 

That is, the Hamiltonian is equal to the total energy of the system, kinetic plus potential. The fact 
that the Hamiltonian is an important physical quantity, whereas the physical meaning of the 
Lagrangian is more obscure, is one of the appealing features of the Hamiltonian approach. Both 
the Lagrangian and Hamiltonian have the dimensions of energy, and both approaches can be 
called energy methods. They are characterized by the use of scalar quantities rather than the 
vectors encountered in the direct use of Newton’s second law. 
An example is the harmonic oscillator, Hamiltonian corresponding to the Lagrangian equation 
3.9 is   

     
22

2
0

2 xm
m

pH ω
+= .           (3.15) 

From equation 3.9 the Hamiltonian equations of motion are 

m
px = ,  xmp 0ω−= .     (3.16) 

Gauge-transformed Harmonic Oscillator. 
Now consider the gauge-transformed harmonic oscillator Lagrangian  

( )22
00

2 2
2
1 xxxxmL ωω −+=′         (3.17) 

The canonical momentum is thus 

)( 0xxm
x
Lp ω+=
∂
′∂

= 


       (3.18) 

and we see that the gauge transformation has affected a transformation of the canonical 
momentum. Even though the generalized coordinate x remains the same. 

Solving equation 3.9 for x , we find m
xmppu 0()( ω−= . Hence 
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( ) UTxm
m

xmppH +=+
−

= 22
0

2
0

2
1 ωω        (3.19) 

Thus, even though L was not of the natural form T – U in this case, the Hamiltonian remains 
equal to the total energy, thus confirming that it is a quantity with a more direct physical 
significance than the Lagrangian. (The functional form of the Hamiltonian changes under the 
gauge transformation because the meaning of p changes). 
 
3.2.3 Example 2: Physical pendulum 
A nonlinear one-dimensional case is provided by the physical pendulum was introduced in 
module 2 The Hamiltonian is 

LpH −= θθ            (3.20) 
 becomes 

 )cos1(
2

),( 2

2

θθ θ
θ −+= mgl

ml
ppH            (3.21) 

which again is of the form T + U Thus the Hamiltons equations are 

,2θθ
mlp =  and 2ml

pθθ = .        (3.22) 

 
Self Assessment Exercise B 
1. Give the expression for the Hamiltonian of a system in generalized coordinates. 
2. Write the Hamiltonian equation of motion. 
3. Derive the Hamiltonian of Scalar potential and physical pendulum and their corresponding 

Hamilton’s equation of motion. 
 
3.3  Construction of the Hamiltonian in Spherical Polar Coordinates - Central Force 

Motion 
 

                                    
figure 3.1:  systems with spherical symmetry (spherical polar coordinates) 
 
For systems with spherical symmetry (e.g. the rigid rotator), spherical polar coordinates are the 
most convenient set of generalized coordinates. As depicted above, the spherical polar 
coordinates are r, ϴ and ϕ. The coordinate r is the distance from the origin of coordinates to the 
particle, ϴ is the angle the line connecting the origin of the coordinates to the particle position 
makes with the z-axis and ϕ is the angle the projection of the line defining ϴ onto the xy-plane 
makes with the x-axis. The connections between Cartesian coordinates and spherical polar 
coordinates can be derived readily using trigonometry. The result is 
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φθ cossinrx =  φθ sinsinry =  θcosrz = .       (3.23) 
Another important relation is the direct result of the Pythagoras theorem 

222 zyxr ++= .        (3.24) 
Consider a particle of mass m moving in three-dimensional space to a conservative central force 
with associated potential energy U(r). The meaning of a central force is the potential energy is a 
function only of the coordinate and independent of ϴ and ϕ. In Cartesian coordinates, the 
Lagrangian for the system is 

[ ] UzyxmL −++= 222

2
1

 .      (3.25) 

To transform L from Cartesian to spherical polar coordinates, we need expression for the time 
derivatives of each Cartesian coordinates in terms of spherical polar coordinates.  
Using equation 3.23 we have 

φθφφθθφθ sinsincoscoscossin  rrrx −+=      (3.26) 
φθφφθθφθ cossinsincossinsin  rrry ++=      (3.27) 

and   θθθ sincos  rrz −=              (3.28) 
We then substitute equations 3.26-3.28 into eq.3.25. After some algebra, the result is  

[ ] )(sin
2
1 222222 rUrrrmL −+++= φθθ  .      (3.29) 

The lagrange equation is 

,0sin 222 =+−−
dr
dUmrmrrm

dt
d φθθ         (3.30) 

for the ϴ- coordinate, we have 

( ) 0cossin 222 =− φθθθ  mrmr
dt
d        (3.31) 

and for the ϕ-coordinate we have 

( ) 0sin22 =θφmr
dt
d .         (3.32) 

The equation for the ϕ-coordinate is an expression of the conservative of the momentum 
conjugate to the coordinate ϕ (the angular momentum). 
To construct the classical Hamiltonian, we need expressions for the generalized momenta 
conjugate to each of the spherical polar coordinates. These expressions have already been 
obtained when constructing Lagrange’s equations. In particular, 
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Then using the definition of the classical Hamiltonian 
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      (3.34) 

Finally equation 3.34 above must be transformed to replace the velocities with generalized 
momenta. We finally obtain 
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m
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θ
φθ .       (3.35) 

If needed the equations of motion can be obtained by applying Hamilton’s equations to the 
constructed Hamiltonian. 
 
Self Assessment Exercise C 
1. Derive the Hamiltonian in spherical polar coordinates. 
2. Derive the corresponding equation of motion in spherical polar coordinates. 
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4.0 Conclusion 
 
The Legendre transform is a method of changing the dependence of a function of one set of 
variables to another set of variables. It is commonly used in thermodynamics and in the 
Hamiltonian formulation of classical mechanics. 
Using Legendre transform to classical mechanics then, for a system of particles each having 
masses mi described by a set of generalized coordinate’s qi, the classical Hamiltonian is defined 
by 

{ } { }( )∑ −=
i

iiii tqqLqpH ,,  .      

The classical Hamiltonian is manifestly a function of the generalized coordinates and momenta 
rather than the generalized coordinates and velocities. 
Hamilton’s equation of motion are. 
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The Hamiltonian is then seen to be an expression for the total energy of a conservative system in 
terms of the generalized coordinates and momenta. With the Hamiltonian expressed in terms of 
the proper variables, we can give Hamilton’s equations of the system 
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5.0 Summary 
 

• The Hamiltonian and Hamilton’s equations, the Hamiltonian function is derived from the 
Lagrangian function via the lengendre transformation 

∑ −=
k

kk LqpH  , 

{ } { }( )tpqHH kk ,,= . 
• The Hamiltons equation of motion are 
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6.0 Tutor Marked Assignments (TMAs) 
 
1. Use the Lagrangian to construct the Hamiltonian for the system. 

Answer  

Let 21 mmM +≡  be the total mass and 
21

21

mm
mm
+

≡µ that is, the reduced mass. Then, 
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2. Find the Hamiltonian corresponding to the Coriolis Lagrangian  

( )[ ] ),(cos
2
1 222 φθφωθθ URL −++=  .     

Answer 
From the above, 

θ
θθ



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∂
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≡ , so that 2R
pθθ = . 

http://en.wikipedia.org/wiki/Thermodynamics�
http://en.wikipedia.org/wiki/Hamiltonian�
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Also ( )φωθ
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3. Find the Hamiltonian corresponding to the Lagrangian of an harmonic oscillator of problem  

Answer 

The Lagragian ),(
2
1 2 xUxmL +=   which is the standard form treated. Thus, 

m
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Hamiltonian is  









−+= 2

0

4
2

2
0

2

22 l
xxm

m
pH ω . 

 
4. Consider the motion of a particle of charge e and mass m in a straight infinitely long 

magnetic confinement system with vector potential zeyx ),(ψ=A . 
 

If the Hamiltonian is  
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m
yxep

m
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m
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write down the Hamiltonian equation of motion 
 

Answer 
The Hamiltonian equation of motion are 
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5. Suppose a system has a Lagrangian 
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2
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2
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Find the equations of motion using the Hamiltonian formulation. 
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7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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Module 3 Central force and Scattering 
 
Unit 1  The Generic Central Force Problem 
Unit 2  Kepler’s Problem 
Unit 3  Scattering Cross Section 
 
UNIT 1  THE GENERIC CENTRAL FORCE PROBLEM 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1   The Generic Central Force Problem 
3.1.1  The Equation of Motion 
3.1.2  Reduction to a one body problem 
3.2  Dynamics of an Isolated Two-Body Central-Force System 
3.2.1  Reduction to one dimension 
3.3  The formal Solution To The Equation Of Motion 
3.3.1 Integration of Equation of motion 
3.3.2 A Differential Relation between r and ϴ 
3.3.3 Qualitative Dynamics 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  Further Reading and Other Resources 
 
 
1.0 Introduction 
 
The problem of the motion of two bodies interacting via a central force is an important 
application of Lagrangian dynamics, and the conservation theorems we have learned about. 
Central forces describe a large variety of classical systems, ranging from gravitationally 
interacting celestial bodies to electrostatic and nuclear interactions of fundamental particles. The 
central force problem provides one of the few exactly solvable problems in mechanics. And 
central forces underlying most scattering phenomena, again ranging from gravitational to 
electrostatics to nuclear. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• Define central force and know the properties of an isolated two body central force system. 
• Discuss the reduction of the two body problem to a mathematically equivalent problem 

of a single particle moving in one direction.  
• Discuss the reduction of a two-body three-dimensional problem to one with single degree 

of freedom. 
• Explain different shape of the effective potential energy function and its implications for 

the motion of the system. 
• Give the differential relation between r and ϴ. 
• Solve related Problems. 
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3.0 Main Contents 
 
3.1     The Generic Central Force Problem 
We first discuss the central force problem in general terms, considering arbitrary radially 
dependent potential energy functions. 
 
3.1.1     The Equation of Motion 
Review of Central Forces. 

Central force is defined as one that satisfies the strong form of Newton’s third law. That 
is, given two particles a and b, the force exerted by particle a on b is equal and opposite to that 
exerted by particle b on particle a, and, moreover, the force depends only on the separation of the 
two particles and points along the vector between the two particles. Mathematically, this means, 

.ˆ,,

ˆ)(,

ab

ab
abababbaab

ababababbaab

r
r

rrrrrrwhere

rrffff






==−=

=−=
  (1.1) 

 
Properties of an Isolated Two-Body Central-Force System 

Let us now consider an isolated two-body system interacting via a conservative central 
force. There are no other forces acting on the bodies. 
From the concepts of force, momentum, and energy for systems of particles. One can abstract the 
following facts about isolated two-body system: 
• Since no external forces act on the system, Newton’s second law for systems of particles tells 
us that the total linear momentum is conserved. 

  )(0 bbaa rmrm
dt
dp

dt
d 

+== .        (1.2) 

Since P


 is constant, the velocity of the center-of-mass MPR /


=  is fixed and thus the center-
of-mass system is inertial. We may therefore assume, without loss of generality, that ar

  and br
  

are coordinates in the center of mass system, where P


 vanishes and the center of mass is at the 
origin: 
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This eliminates three of the six degrees of freedom in the problem. The difference coordinate abr  
is now 
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Defining the reduced mass 
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ba

mm
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+

=µ          (1.5) 

gives us 

ab
a

a r
m

r  µ
=   ab

b
b r

m
r  µ
= .       (1.6) 

We shall see that the dynamics of the two-particle system will be reduced to that of a single 
particle with mass μ moving in the potential U(rab). We may consider two simple limits 
immediately: 

• In the limit when mb is far greater than ma we have am→µ , ,orb →
 and .aab rr 

→  That 
is, the center of mass is fixed on the heavier mass and the motion is entirely of the 
smaller mass. 
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• In the limit ,mmm ba ==  we have ,
22

,
2

ab
b

ab
a

rrandrrm 





===µ  [in this case the motion  

Since there are no external forces, there is no external torques either]. This angular momentum 
of the system is conserved. 
Since the system’s center-of-mass has been taken to be at rest at the origin, the angular 
momentum consists only of the internal angular momentum due to motion of the two particles 
about the center of mass. This angular momentum is 

bbbaaa rrmrrmL 
×+×= ,       (1.7) 

let’s re-write this in terms of abr  

ababababbabaab rrrrrrrL ρµµµ


×=×=×−×=     (1.8) 
The two-body system begins to look like a single particle of mass μ and coordinate abr . 
The kinetic and potential energies of the system are  
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The Lagrangian is 

)(
2
1 2

abab rUrL += µ .        (1.10) 

The Lagrangian is identical to that of a single particle system with mass μ and coordinate abr . 

Since L


 is conserved, we know the motion is restricted to the plane defined by abr  and abρ
 . Let 

this plane define a spherical polar coordinate system ),,,( abababr φθ  where ,abφ  is the azimuthal 
angle of the plane and abθ is the polar angle of the position vector abr  relative to the z-axis in the 
plane. Rewriting L in this system gives 

( ) )(sin
2
1 22222

ababababababab rUrrrL −++= φθθµ  .     (1.11) 

We may choose 0=abφ without loss of generality. The angular momentum vector points out of 
this plane (in the y direction) and the motion remains in this plane at all time by conservation of 
angular momentum. 
 
3.1.2   Reduction to a one body problem 
For simplicity and better understanding of the above equation of motion we discuss the reduction 
of the two body problem to a mathematically equivalent problem of a single particle moving in 
one direction. First we reduce it to a one-body problem, and then we reduce the dimensionality. 
Our original problem has six degrees of freedom, but because of the symmetries in the problem, 
many of these can be simply separated and solved for. As there are no external forces, we expect 
the center of mass coordinate to be in uniform motion, and it allows us to use 
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as three of our generalized coordinates. For the other three, we first use the Cartesian 
components of the relative coordinate 

21 rrr 
+=         (1.13) 

although, we will soon change to spherical coordinates for this vector. In terms of R


and r  the 
particle positions are: 

r
M
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1 −=   r
M
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2 −=     (1.14) 

where M=m1+m2.  
The kinetic energy is 
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21

mm
mmwhere
+

=µ  is called the reduced mass. Thus the kinetic energy is transformed to the 

form for two effective particles of mass M and μ which is neither simpler nor more complicated 
than it was in the original variables. 
For the potential energy, however, the new variables are to be preferred, ( ) ( )rUrrU 

=+ 21  is 

independent of ,R


 whose three components are therefore ignorable coordinates, and their 
conjugate momenta. 
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 are conserved. This reduces half of the motion to triviality, leaving an effective one-body 

problem with 2

2
1 rT µ=  and the given potential to )(rU  . We have not yet made use of the fact 

that U only depends on the magnitude of r . In fact, the above reduction applies to any two-body 
system without external forces, as long as Newton's third Law holds. 
 
Self Assessment Exercise A 
1. Use momentum conservation to reduce the two-body problem to the problem of one body 

motion in a central force field. 
 
3.2 Dynamics of an Isolated Two-Body Central-Force System 
Now, let’s explore the dynamics using the Lagrangian. Conservation of L


 already leads us to 

expect that one of the Euler-Lagrange equations will be trivial. Explicitly, we have (dropping the 
ab subscripts now): 

222 sin θφµθµµ rr
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        (1.18) 

We make the general point that, when writing the Euler-Lagrange equations for a 
multidimensional system, it is a good idea to start with the time derivatives on the left side 
unexpanded until the rest has been simplified because they are just the time derivatives of the 
canonical momenta and some of them may end up being conserved if the right side of the 
corresponding equation vanishes, either explicitly or by appropriate choice of initial conditions. 
We see in the above case that the ϕ equation of motion tells us lϕ = constant, which would have 
become very unobvious if the derivative had been expanded into its three terms. 
For initial conditions, we take r  and p  to be in the plane ϕ= 0. That p   is in the plane ϕ=0 
also implies ϕ= 0 initially. With these initial conditions, the ϕ equation of motion implies that ϕ 
= 0 for all time. Thus, 0sin22 == θφµθ rl , for all time. The ϕ equation then tells us we 

have tconsrl tan2 == θµθ . The angular momentum vector has length θlL =


 and points 
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perpendicular to the plane ϕ = 0 in which the motion occurs: L


 is along the y-axis. The r 
equation of motion simplifies to 

3

2

r
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µ θ+=
 .          (1.19) 

The equation of motion is now that of a single particle in one dimension with the effective 
potential function 
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We acquire a new “centrifugal potential” that arises due to conservation of angular momentum. 
It is a repulsive potential, reflecting the fact that, with lϴ constant, the kinetic energy must 
increase as r−2 if r decreases then more energy is needed to go to small radii. We may use the 
effective potential to write an effective one-dimensional Lagrangian: 
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Note that the 1D Lagrangian is not obtained simply by rewriting the 3D Lagrangian using ϕ = 0, 
ϕ2= 0 and μr2ϴ=lϴ one would have gotten the wrong sign for the centrifugal term. 
This difficulty occurs because the Lagrangian formalism assumes independent variations of 
the different coordinates. Instead, we must simply start with the effective potential. 
The effective total energy is 
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which is conserved because the effective potential is conservative. This effective total energy 
turns out to be equal to the true total energy because the ϴ kinetic energy is included via the lϴ 
term. 
 
3.2.1   Reduction to one dimension 
In the problem under discussion, however, there is the additional restriction that the potential 
depends only on the magnitude of r , that is, on the distance between the two particles, and not 
on the direction of r . Thus we now convert from cartesian to spherical coordinates (r; ϴ; ϕ), 
for r . In terms of the cartesian coordinates (x; y; z) 
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Plugging into the kinetic energy is messy but eventually reduces to a rather simple form 
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Notice that in spherical coordinates T is a function of r and ϴ as well as ,, φθ  andr  but it is not 
a function of ϕ, which is therefore an ignorable coordinate and  

tconsr
lLP tansin 22 ==
∂
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=
∂
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= θφµ
φφ
θ

φ .     (1.25) 
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Note that r sin ϴ is the distance of the particle from the z-axis, so Pϕ is just the z-component of 
the angular momentum, lz Of course all component of the angular momentum  prlL 

×== θ  is 
conserved, because in our effective one body problem there is no torque about the origin. Thus 
θl  is a constant and the motion must remain in a plane perpendicular to θl  and passing through 

the origin as a consequence of the fact that r  is perpendular to θl . It simplifies things if we 

choose our coordinates so that L


 is in the z-direction. Then ,2
πθ =  ,0=θ  φµθ

2rl = . The r 

equation of motion is then 
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This is the one-dimensional motion of body in an effective potential 
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Thus we have reduced a two-body three-dimensional problem to one with single degree of 

freedom, without any addition of a centrifugal barrier term 2

2

2 r
l
µ
θ  to the potential. 

 
Self Assessment Exercise B 
1. Use total angular momentum conservation to show that one body in a central force field 

moves in a plane. Write corresponding Lagrangian in polar coordinates.  
2. Use angular momentum conservation to reduce the problem to an analysis of a one-

dimensional motion. 
3. Give the expression for the centrifugal potential energy. 
 
3.3 The formal Solution to The Equation Of Motion 
We have obtained two equations of motion 
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Let’s attempt to integrate these two equations. Integrating the r equation most obviously yields 
as equation for r . But we already know what equation will be, by energy conservation. 
 
3.3.1 Integration of Equation of motion 
We can simplify the problem even more by using the conservation law, that of energy. Because 
the energy of the effective motion is a constant, 
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we can immediately solve for 
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This can be inverted and integrated over r, to give 
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which is the inverse function of the solution to the radial motion problem r(t). We can also find 
the orbit since 
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∫ −
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The sign ambiguity from the square root is only because r may be increasing or decreasing, but 
time, and usually ϕ/L are always increasing. Qualitative features of the motion are largely 
determined by the range over which the argument of the square root is positive, as for other 
values of r we would have imaginary velocities. Thus the motion is restricted to this allowed 
region. Unless L = 0 or the potential U(r) is very strongly attractive for small r, the centrifugal 
barrier will dominate, so +∞→effU  and there must be a smallest radius rp > 0 for which 

effUE ≥ .  
 
3.3.2 A Differential Relation between r and ϴ 
While we have formally eliminated t and obtained an integral relationship between ϴ and r, the 
fact that the integral is not in general analytic limits its usefulness. It may be more useful to have 
a differential, rather than integral, relation between r and ϴ. We need to eliminate d/dϴ from our 
original differential equations. The ϴ equation tells us that 
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Our equation of motion for r can then be re-written: 
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We now have a differential equation with ϴ as the independent variable and r as the dependent 
variable. The equation may be useful for obtaining the shapes of the orbits, and frequently 
written via a change of variables to u=1/r in the form  
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The constant of the motion, the energy, can be rewritten in terms of u and ϴ alone (i.e, 
eliminating explicit time derivatives): 

.1
2

)(
2

1
2

)(
22

1

2
22

2

22

2

2

2

2
2







+












+






=

++





=

++=

u
Uu

d
dul

E

rU
r

l
d
dr

r
l

rU
r

l
rE

θµ

µθµ

µ
µ

θ

θθ

θ

      (1.37) 

 
Self Assessment Exercise C 
1. Use energy conservation to find formally an orbit of a body moving in central field in 

coordinates r, ϴ. 
2. Derive the relation between r and ϴ 
 



 65 

 
3.3.3 Qualitative Dynamics 
It is instructive to consider the shape of the effective potential energy function and its 
implications for the motion of the system. The effective potential consists of two terms. The first 
is the true central force potential. The second is a “centrifugal” term: it is a repulsive potential 
arising from angular momentum conservation, which requires the kinetic energy to increase as r 
is reduced. The relative sizes of the two terms determine if or whether the effective potential is 
attractive or repulsive. The shape of the effective potential and the total energy of the system 
determine whether the orbits are unbounded, bounded, or bounded and circular, and whether 
bounded orbits are periodic (closed). To be clear: bounded and unbounded refers to whether 
there is an upper limit on r or not; open and closed refer to whether the orbit repeats itself after 
some period. All unbounded orbits are open, but not all bounded orbits are closed. 
The effective potential is: 

22
)()(

r
lrUrUeff µ
θ+= .          (1.38) 

 
Consider different cases for the shape of U(r). Some of these are illustrated in the Figure 1.0. 

• Repulsive Potentials: If U(r) has no attractive regions (no regions with positive slope), 
then both terms are repulsive at all r and all orbits are unbounded and open. This occurs, 
for example, for the Coulomb force between particles of like charge. 

• Small r Behaviour: The small r behaviour of the effective potential determines whether r 
is bounded below or whether there are “small r” bounded orbits with r bounded above. 

 
Figure 1.0: Effective potential for various true potentials.  
The potentials are U(r) = rn or U(r) =logr with unity coefficient except for the r−2 case. 

For all cases except r−2, the behaviour is qualitatively independent of the factor
µ
θ

2

2l , so it 

has been set to 1. For the r−2 potential, we show the three cases 
µ
θ

2

2l = 0.5, 1, 1.5. The 
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locus of r values filled by example bound orbits are indicated by dotted lines, by example 
orbits bounded below but unbounded above by dashed lines, and by completely 
unbounded example orbits by dash-dot lines, respectively. 

• Large r Behavior: The large r behavior of the effective potential determines whether r is 
bounded above at large r, which is a necessary condition for bounded orbits. 

• Circular orbits are obtained when there is a point in the effective potential where the 
gradient (effective force) vanishes. For potentials steeper than r−2, there is one unstable 
circular orbit. For potentials shallower than r−2 and for log or positive power law 
potentials, there is one stable circular orbit. 

• Of course, if the true potential is a more complicated function of r than simple power law 
or log functions, there may be additional bound orbits and circular orbits. 

• Whether an orbit is periodic (that is, “closed” the orbit repeats on itself after some time) 
is a nontrivial problem. Clearly, all bound orbits show periodic motion in r as a function 
of time. But periodicity in space that is, the periodicity of r(ϴ) is a more complicated 
problem. All circular orbits are periodic in space because r is constant. More generally, 
periodicity of r(ϴ) requires that the time periods for radial motion and angular motion be 
commensurate that is, their ratio must be a rational fraction. It is not obvious what the 
relation is between the form of the potential and whether this condition is satisfied. 
Bertrand’s theorem tells us that bound orbits are closed only if the potential in the 
vicinity of the bound orbits follows r−1 or r2. Details on Bertrand’s theorem can be found 
in Goldstein. 

When orbits are bounded, the two turning points are called the apsides or apsidal distances. 
When orbits are not closed, the apsides precess in (r, ϴ) space. The angle between two 
consecutive apsides is called the apsidal angle. Precession of the apsides occurs whenever the 
conditions of Bertrand’s theorem are not satisfied, including small perturbations of Bertrand’s 
theorem potentials by non-Bertrand’s theorem terms. 
 
 
Self Assessment Exercise D 
1. Discuss briefly the shape of the effective potential energy function and its implications for 

the motion of the system 
 
4.0 Conclusion 
 
Central force is defined as one that satisfies the strong form of Newton’s third law. That is, given 
two particles a and b, the force exerted by particle a on b is equal and opposite to that exerted by 
particle b on particle a, and, moreover, the force depends only on the separation of the two 
particles and points along the vector between the two particles. 
Considering an isolated two-body system interacting via a conservative central force. The 
dynamics of the two-particle system is equivalent to that of a single particle with mass μ moving 
in the potential U(rab) and likewise a two-body three-dimensional problem is equivalent to one 

with single degree of freedom, without any addition of a centrifugal barrier term 2

2

2 r
l
µ
θ  to the 

potential. The shape of the effective potential energy function and its implications for the motion 
of the system was also considered for various true potential and it’s depicted in figure 1.0 above  
 
5.0 Summary 
 

• Generic Central Forces. 
The problem of two particles interacting via a strong-form third law central force can be 
reduced to translational motion of the center-of-mass system combined with one particle 
in a central force. 
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If the two particles have masses ma and mb and position ar
  and br

 , then the relative 
coordinate and reduced mass are 

baab rrr 
−=   
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ba

mm
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+

≡µ . 

• The original coordinates can be rewritten as 
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a

a r
m
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b
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m
r  µ
= . 

• The lagrangian can be rewritten in the following ways 
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• We obtain equations of motion (after eliminating the constant ф coordinate) 
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• We define the effective potential 
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• The Lagrangian and energy can be rewritten in one dimensional form 
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where 2
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2 r
l
µ
θ is the repulsive “centrifugal potential” The quantitative behaviour of the 

system can be obtained by examining the shape of the effective potential: where it is 
repulsive, attractive, where its slope  vanishes e.t.c  The constancy of lθ gives us kepler’s 
second law 

tconsl
dt
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• The generic quadrature solution to the central force problem is given by 
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Elimination of t from the original differential relations also allows us to obtain the 
quadrature solution for θ in terms of r. 
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• We may obtain a generic differential equation relating r and θ 
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• The total energy of the system is constant and can be written as 
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6.0 Tutor Marked Assignments (TMAs) 
 
1. Consider a particle constrained to move on the surface described in cylindrical coordinates 

by 3rz α= , subject to a constant gravitational force zemgF ˆ−=


. Find the Lagrangian, two 
conserved quantities, and reduce the problem to a one dimensional problem. What is the 
condition for circular motion at constant r? 

2. From the general expression for ϕ as an integral over r, applied to a three dimensional 
symmetrical harmonic oscillator ,)( 2

2
1 krrV =

  integrate the equation, and show that the 
motion is an ellipse, with the center of force at the center of the ellipse. Consider the three 
complex quantities iii rkmipQ −=  and show that each has a very simple equation of 
motion, as a consequence of which the nine quantities ki QQ*  are conserved. Identify as 
many as possible of these with previously known conserved quantities. 

3. Show that if a particle under the influence of a central force has an orbit which is a circle 
passing through the point of attraction, then the force is a power law with 5−rFα . 
Assuming the potential is defined so that ( ) ,0=∞U  show that for this particular orbit E = 0, 
find the period, and by expressing x , y  and the speed as a function of the angle measured 
from the center of the circle, and its derivative, show that x , y  and the speed all go to 
infinity as the particle passes through the center of force. 

 
7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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UNIT 2  KEPLER”S PROBLEM 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1  Kepler’s Law 
3.2  The Kepler Problem: The Special Case of Gravity 
3.2.1 The Shape Of Solution Of The Kepler’s Problem 
3.2.2 Detailed Study of the Different Solutions 
3.2.3 Summary of Quantities 
3.2.4 Time Dependence of the Kepler Problem Solutions 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  Further Reading and Other Resources 
 
1.0 Introduction 
 
The Kepler problem is named after Johannes Kepler, who proposed Kepler's laws of planetary 
motion (which are part of classical mechanics and solved the problem for the orbits of the 
planets) and investigated the types of forces that would result in orbits obeying those laws 
(called Kepler's inverse problem) 
In classical mechanics, Kepler’s problem is a special case of the two-body problem, in which 
the two bodies interact by a central force F that varies in strength as the inverse square of the 
distance r between them. The force may be either attractive or repulsive. The "problem" to be 
solved is to find the position or speed of the two bodies over time given their masses and initial 
positions and velocities. Using classical mechanics, the solution can be expressed as a Kepler 
orbit using six orbital elements. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• State the three Kepler’s Laws. 
• Prove the three Keplers laws. 
• Define an orbit. 
• Derive and explain the conic equation of an orbit.  
• Explain Keplerian orbit. 
• Solve related problems.  

 
3.0 Main Contents 
 
3.1 Kepler’s Law 

Practical integration of equation ∫ −
±=

r

r eff rUEr
drl

0
)((220 µ

φφ θ  is in general a formidable task. 

The problem can be solved explicitly, however, for the potential of the form 
r
krU −=)(  

corresponding for example to the gravitation field. Consider motion of a planet of mass mp 
around the sun of mass ms. It was shown that this problem is equivalent to an analysis of a 
motion of one body of reduced mass 

http://en.wikipedia.org/wiki/Johannes_Kepler�
http://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion�
http://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion�
http://en.wikipedia.org/wiki/Classical_mechanics�
http://en.wikipedia.org/wiki/Classical_mechanics�
http://en.wikipedia.org/wiki/Two-body_problem�
http://en.wikipedia.org/wiki/Central_force�
http://en.wikipedia.org/wiki/Inverse_square_law�
http://en.wikipedia.org/wiki/Kepler_orbit�
http://en.wikipedia.org/wiki/Kepler_orbit�
http://en.wikipedia.org/wiki/Orbital_elements�
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 in central field U(r) around the center of mass 
sp

sspp

mm
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R
+

+
= , 

where rp and rs are the position of the planet and of the sun and .sp rrr −=  The corresponding 

effective Lagrangian, )()(
2
1 222 rUrrL −+= θµ   

Lagrange’s equations in polar coordinates are: 
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Using the second equation above to prove kepler’s second law, note that L does not depend on θ, 
therefore 
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where lϴ is a constant. The radius vector r sweeps out an area θ2
2
1 rdA =  in time dt. The rate at 

which the radius vector sweeps out area is θ2

2
1 r

dt
dA

=  Comparing this rate with the momentum 

θp  we proved that     tconsr
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dA tan
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which is Kepler’s second law which state that the radius vector drawn from the sun to a planet 
describes equal areas in equal times. 
Using first Lagrange’s equation we can prove Kepler’s first law which states that each planet 
moves in elliptical orbit with the sun at one focus 
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The equation above can rewritten as follows: 
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 on substituting for r  and θ  in the equation, we have  
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Thus, equation for the planet motion for linear oscillator in a constant field. Its solution is a sum 

of a general solution )cos( 0θθ −b  and a particular solution 
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Or, in polar coordinates, we have  
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where 
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This is an equation for conic sections which describes 
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Motion of the planet is bounded to the sun and therefore corresponds to the case p<1. 
Futhermore, since ms is far less than mp (ms=333,500 x mearth and mearth=5,977x1024kg), we have  
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i.e. centre of mass approximately coincides with the position of the sun and r is approximately 
distance from the sun to the planet. Therefore, we have proved Kepler’s first law which states 
that each planet moves in elliptical orbit with the sun at one focus. 
 

Using the second Kepler,s law θ2
2
1 r

dt
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= ,  and the expression for the angular momentum 

θµθ
2rp =  to write dtdA
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=  Integrating this expression over the whole area of the ellipse, we 
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== , where T is the period of planetary motion and πab is the area of the 
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=  which is the Kepler’s third law which 

states that the square of the period of revolution about the sun is proportional to the cube of the 
major axis of the orbit. 
 
Self Assessment Exercise A 
1. Use ϴ-component of Lagrangian equation to prove Kepler’s second law. 
2. Use r-component of Lagrange’s equation to prove Kepler’s first law. 
3. Use the second Kepler’s law and the expression for the angular momentum to prove 

Kepler’s third Law 
4. Derive the equation of a conic section and describe the shape for p > 0, p = 0 and p < 0 
 
 
3.2 The Kepler Problem: The Special Case of Gravity 
We now specialize to gravity, which allows us to fix the form of the central-force potential 
energy function. We solve the equation of motion and study the various solutions with k=GμM. 
 
3.2.1 The Shape of Solution of The Kepler’s Problem 
The General Solution 
 In our generic study of central forces, we obtained the differential relation in equation 1.36 
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For the gravitational force, we have, 2)(
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Re-writing using 
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= , we have  
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This is now a simple harmonic oscillator equation with a constant driving force. The solution is 
the sum of the generic solution to the homogeneous equation and a particular solution to the 
inhomogeneous equation: 
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We can relate the coefficient A in the solution to the constants of the motion, the energy and 
angular momentum by using equation 1.37 
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Let’s us write the orbit in terms of r instead of u and also drop the offset phase θ0,  
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If we write in Cartesian coordinates, with θcosrx =  and θsinry = , we have 
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( ) 021 2222 =−++− pypxx εε .         (2.17) 

In terms of p and ε, the total energy is 
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Let’s re-write in a more obvious form: complete the square on x to obtain 
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which is the equation for a conic section with 

21 ε
ε
−

=
pxc , 21 ε−

=
pa , 

( )21 ε−±
=

pb  cc xandaxf 20=±= ε  

where f denotes the x coordinates of the foci of the conic section. Recall that the center of mass 
of the system is at the origin, so one of the foci coincides with the center of mass. The ±  sign is 
picked depending on the sign of 21 ε−  to ensure that b is real. The turning points of the motion 
are given by the maximum and minimum values of r. Our polar form for the orbit, equation 2.15 
provides the easiest means to obtain these: they are 1cos ±=θ  they are therefore  

ε+
=

11
pr  

ε+
=

12
pr        (2.21) 
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ε+
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12
px        (2.22) 

01 =y   02 =y  
Where θcos2,12,1 rx =  so x pick up a sign and θsin2,12,1 ry = , so y vanishes in both cases. The 
energy is now 
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p
MGE

2
)1(

2
2 µεµ

−=−= .         (2.23) 

The sign and magnitude of the energy thus scales inversely as the semi major axis a. 
So what we have is the equation of a conic section. Being a circle, ellipse, or hyperbola 
depending on the sign of 21 ε− . From the qualitative discussion of central force orbits, E=0 is 
the dividing line between bound and unbound orbits. The implication then is that bound orbits 
with E<0 have positive a and ε2< 1 while unbound orbits with E>0 have negative a and ε2>1. 
The dividing case is E=0, ∞=a , ε =1. The conic section formula is undefined there, but if we 
go back before we completed the square, we see that ε2=1 causes x2 term to vanish leaving us 
with the equation n of a parabola (x a quadratic function of y). 
 
Self Assessment Exercise B 
1. Derive the equation for a conic section of an orbit and discuss he nature of the curve for 

every possible value of e. 
 
3.2.2 Detailed Study of the Different Solutions 
Let’s study these various solutions in some details. First, let’s obtain a dimensionless 
parameterization of the solutions. The shape of the effective potential is set by lθ and μ. The 
effective potential is minimized when the effective force vanishes. Equation 1.19 we have 

p
MG

lr
r

l
r

MG
==⇒= 2

2

3

2

2 µµ
µ θθ  .      (2.24) 

  



 74 

The value of the effective potential at this point, which gives the minimum physically allowed 
value of the total energy is 
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     (2.25) 

where we have defined a scale energy that is the absolute value of the minimum energy. 
Referring back to our equation for E in terms of ε and p. Equation 2.19, we see that  

)1( 2 −= εScaleEE          (2.26) 
With Emin and Escale in hand, let’s consider the various cases. Examples are illustrated in figure 
2.1 below 

• :1/ −<scaleEE not physically allowed. 
• :1/ −=scaleEE Equation 2.26 tells us that E=-Escale corresponds to ε2 = 0. Since the 

eccentricity vanishes. The solution from Equation 2.15 is p = r for all θ; i.e. the orbit is a 
circle. This is as one would expect from the effective potential that if the solution is at 
minimum of the effective potential then, there is no radial force. The conic section 
solution is elliptical (because ε2 < 1) and the semimajor axes are equal a=b=p as one 
would expect for a circle.  

• −1 < E/Escale < 0: Because the energy remains negative, Equation 2.26 implies that         
0  < ε2 < 1 and the conic section solution is an ellipse. As the energy increases, the 
eccentricity of the ellipse increases. Remember that the center of mass coincides with one 
of the foci of the ellipse. The center of the ellipse xc and the second focus 2xc move off to 
∞−  as 1→ε . 

• E/Escale = 0: For this solution, Equation 2.26 tells us that ε2=1. Our derivation of the conic 
section form fails here because the coefficient of the x2 term vanishes, but we can return 
to the Cartesian form of the solution to find 

p
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pypx
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22
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=−+
          (2.27) 

This is a parabola whose vertex is at p/2, whose focus is at the origin, and whose directrix is at p. 
Recall that the directrix is the line perpendicular to the axis of the parabola such that the parabola 
consists of the set of points equidistant from the focus and the directrix. The system is just barely 
not bound, with the radial kinetic energy and velocity approaching zero as ∞→r , because the 
total energy vanishes and the effective potential energy approaches zero as ∞→r . 
 

• E/Escale > 0: For this solution, Equation 2.26 gives ε2 > 1. The conic section is a 
hyperbola. A hyperbola has two branches. Because the polar form of the solution, 
Equation 2.15 implies a one-to-one relationship between r and θ, only one branch of the 
hyperbola can be a valid solution. Intuitively, based on continuously transforming the 
eccentricity, we expect this to be the left branch. We can see this explicitly as follows. 
The left and right branches are distinguished by the fact that the former has regions with 
x < 0, while the latter does not. In order to have negative values of x, θ must be allowed 
to go outside the range (-π/2, +π/2). A restriction on θ is placed by the requirement that r 

be positive, which translates to the requirement
ε

θ 1cos −≥ . Since ε2 > 1 (and ε is taken 

to be positive always), this defines a maximum value of |θ| that is between π/2 and π. 
Hence, x is allowed to be negative, and so the left branch solution is the appropriate one. 
For the hyperbolic solution, there is only one turning point, which is the x1 turning point. 
Let’s consider the evolution of the solution with ε. One focus of the hyperbola always 
remains at the origin. The “center” of the hyperbola, xc, starts out at +1 and moves in 
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toward the origin as ε gets larger, with 0→cx  in the limit ∞→ε .Thus, the hyperbola 
continuously transforms from a parabolic-like orbit to a straight vertical line, with the 
turning point x1 moving closer to the origin as ε increases. These solutions are definitely 
not bound. They in fact have excess kinetic energy so that, as ∞→r , the radial kinetic 
energy (and hence radial velocity) remains non zero. 

 
A Note on Repulsive Potentials. 

While we have so far considered only attractive potentials, it is straightforward to 
translate the above solution to the case of repulsive potentials. We will see that, for a given 
energy E, we obtain the same hyperbola as for the attractive potential, but we must choose the 
right branch, not the left branch.  

 
Figure 2.1: Example Keplerian orbits. The left and right figures have identical orbits; only the 

axis range is different. All these orbits have 
µ
θ

2

2l and p = 1, so they have the same angular 

momentum (same centrifugal barrier) but different total energies. The scale factor for the energy 

p
l
µ
θ

2

2

 is therefore also 1, so Escale = 1 and the various orbits have energy E = ε2 − 1. The legend 

is, in order of increasing eccentricity: ε = 0 (red), ε = 0.25 (green), ε = 0.5 (blue), ε = 1 (cyan), 
ε = 2 (magenta), ε = 4 (yellow). The center of each orbit (xc) is shown by the diamond of the 
same color, and the second focus by the squares. The first focus of all orbits is at the origin. The 
second branch of the hyperbolic orbits is not shown. 
 
The repulsive potential solution can be obtained from the attractive potential solution by simply 
taking GμM < 0 and making use of the physical fact that only E > 0 is allowed for a repulsive 
potential. Let’s go through the derivation with these changes. First, the solution for u becomes 

( ) 2

2

cos
θ

µ
θθ

l

MG
Au −= .        (2.28) 

Since 0≥u is required, the solution must have A > 0 and is only v alid  for some rang e of θ. 
Keeping our original definition of p (which now implies p < 0), our polar form of the solution is 

θε cos1+=
r
p .         (2.29) 

Since p < 0 and A > 0, we have ε= pA < 0 also. Since p < 0, the solution is valid only when the 
right side is less than zero. (Originally, our requirement was that the right side be greater than 

zero because both p and r were positive.) The region of validity is given by
εε

θ 11cos =−≥ . For 

there to be any region of validity, we must have |ε| > 1, which implies that only hyperbolic 
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solutions will be allowed. Furthermore, the region of validity has cos θ > 0, so we must use the 
right branch of the hyperbolic solution we obtained. The conversion from polar to Cartesian 
coordinates goes as before, as does the completion of the square. So the hyperbolic solution is 
still valid, as are the formulae for xc, a, b, and f. xc has the same sign as in the attractive 
hyperbolic case (since the sign flips in ε and p cancel each other), a and b change sign (a > 0, b 
< 0 for all repulsive solutions). Because xc does not change sign, the foci are in the same place as 
the attractive hyperbolic case. The sign flips in a and b do not affect the shape of the hyperbola 
since only a2 and b2 enter in the conic section formula. Thus, we have the exact same hyperbola 
as in the attractive case, except that the restriction on θ implies that we must now take the right 
branch, not the left branch. This also means that the turning point is now x2, not x1. 
The energy expressions, Equations 2.19 and 2.23, hold without change. The starting point for the 
energy equation, Equation 2.18 is insensitive to the sign of ε and  p. Equation 2.19 does not 
change meaning that because the sign flips in GμM and p cancel each other, so |ε| > 1 still gives 
E > 0 for all repulsive potential solutions. Equation 2.23 also keeps its same sign because both 
GμM and a change sign. 
Intuitively, the change from the left branch to the right branch reflects the fact that an attractive 
potential turns the trajectory inward toward the center of force while a repulsive potential turns it 
outward. 
 
3.2.3 Summary of Quantities 
The various quantities involved in Keplerian orbits are summarized in Table below. 
Quantity Symbol Formula(e) Sign Significance 
Angular 
momentum 

lϴ θµ 2r  
≥ 0 
= 0 gives trivial orbit 

Centrifugal potential 
(brings in effect of ϴ motion) 

Scale 
energy 

Escale 

p
MGµ

2
1  

> 0 Scale energy 
= minE  for attractive potential 

Scale radius p 
MG

l
2

2

µ
θ  

> 0 for attractive pot 
< 0 for repulsive pot 

Sets scale of orbit 

eccentricity ε 
scaleE
E

+1  

scaleE
E

+− 1
 

≥ 0 attractive pot 
 
< -1 repulsive pot. 

Sets shape of conic section, 
related to ratio of energy to 
scale energy 

Orbit center xc 
21 ε

ε
−

−
p  

aε=  

= 0 circular 
< 0 elliptical 
> 0 hyperbolic 

 

Semimajor 
axis 

a 
21 ε−

p  
> 0 circle/ elliptical 
< 0 hyperbolic 
attractive 

Distance from xc to vertices 
along major axis 

Semimajor 
axis 

b 
21 ε−±

p  
> 0 attractive pot. 
< 0 repulsive Pot 

Distance from xc to vertices 
along major axis 

Turning 
points 

x1 
 
 
x2 

21 ε+
p  

21 ε−
−

p  

> 0 
 
< 0 circle/elliptical 
 
> 0 hyperbolic 

Turning points of motion 
relative to CM = focus 1 
apsides for circ./ellip. orbits 

For hyperbolic orbits, x1 is the turning point for attractive potentials, x2 the turning point for 
repulsive potentials 

 
Table 2.1: Parameters for Keplerian orbits. 
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3.2.4 Time Dependence of the Kepler Problem Solutions 
So far we have only found the orbit solutions as functions r(θ). This of course describes much of 
the dynamics of the problem. But one does indeed frequently want the orbit as a function of 
time, so we obtain that result here. 
Period of Elliptical Orbits 

We can quickly obtain the period of elliptical orbits by using Kepler’s second law,  
Kepler’s second law tells us that 

µ
θ

2
l

dt
dA

= .          (2.30) 

The area of the ellipse is A = π a b, so the period is the time required to sweep out the area of the 
ellipse, 

µ

π
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2
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dt
dA
AT == .         (2.31) 

Let’s write this in terms of the parameters of the orbit p and ε to obtain Kepler’s third law: 
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       (2.32) 

The period depends only on a. Of course, a encodes information about the total energy E and the 
angular momentum lθ. The implication of Kepler’s third law for the solar system is that all orbits 
should lie on a single 32 aT α curve because M, dominated by the sun, is almost the same for all 
planets. 
 
Self Assessment Exercise C 
1. Prove that the scale energy is absolute value of minimum energy and that )1( 2 −= εScaleEE  
2. Prove that the Kepler’s law asserts that the period T of the motion and the main radius a of 

the ellipse satisfy a relation 2/3CaT = , where C is a constant independent of the initial data.  
 
4.0 Conclusion 
 
Kepler tells us not only that the orbit is an ellipse, but also that the sun is at one focus. To verify 
that, note the other focus of an ellipse is symmetrically located, at (−2εa, 0), and work out the 
sum of the distances of any point on the ellipse from the two foci. This will verify that d+r = 2a 
is a constant, showing that the orbit is indeed an ellipse with the sun at one focus.  
 
5.0 Summary 
 

• The Kepler’s problem 
 
 
 

When we specialize to 







r
rU 1)( α , we may obtain more specific results. The differential 

equation relating r and θ or u and θ is  
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• The generic solution may be written  
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We specify two initial conditions (neglecting θ0): and the total energy E. The constant A 
and ε are related to the total energy by 
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• The energy may also be written as 

a
MGE

2
µ

−=  

• The assorted orbital parameters are summarized in table 2.1 
• Kepler’s third law, which tells us that the period of elliptical orbits, is obtained from 

Kepler’s second law and the area of an elliptical orbit, giving as 

GM
aT

3

2π= . 

• The full time dependence of elliptical orbits can be obtained through use of the eccentric 
anomaly, ε, which is defined implicitly in terms of the true anomaly, θ. One begins with 

εθθ coscos)( axxr c +==  
and one obtains 

)cos1()( εεε −= ar     ( )εεεε sin)( 3 −= GMat  

)(cos)( εεε −= ax     εεε sin1)( 2−= ay . 
• An analogous parametization can be done for parabolic orbits, though the geometrical 

interpretation of the eccentric anomaly is no longer valid. Beginning with 
 

)1cosh()( εεε ar =     ( )εεεε sin)( 3GMat =  

)cosh()( εεε ax =     εεε sin1)( 2−= ay  
where the upper signs are for an attractive orbit and the lower signs for a repulsive one. 

 
6.0 Tutor Marked Assignments (TMAs) 
 
1. Use ϴ-component of Lagrangian equation to prove Kepler’s second law. 
2. Use r-component of Lagrange’s equation to prove Kepler’s first law. 
3. Use the second Kepler’s law and the expression for the angular momentum to prove 

Kepler’s third Law. 
4. Derive the equation of a conic section and describe the shape for p > 0, p = 0 and p < 0. 
5. Derive the equation for a conic section of an orbit and discuss the nature of the curve for 

every possible value of e. 
6. Prove that the scale energy is absolute value of minimum energy and that )1( 2 −= εScaleEE . 
7. Prove that the Kepler’s law asserts that the period T of the motion and the main radius a of 

the ellipse satisfy a relation 2/3CaT =  where C is a constant independent of the initial data.  
 
7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
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Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 80 

UNIT 3 SCATTERING CROSS SECTIONS 
   
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1   Setting up the Problem 
3.1.1 Initial Conditions 
3.1.2 Scattering Angle 
3.2  The Generic Cross Section 
3.2.1 Incident Beam 
3.2.2 Differential Cross Section 
3.2.3 Total Cross Section 
3.2.4 Calculating b(θs) 

3.3  
r
1 Potential 

3.3.1 Finding b(ϴs) 
3.3.2 Calculating the Differential Cross Section 
3.3.3 The Total Cross Section 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  Further Reading and Other Resources 
 
 
1.0 Introduction 
 
Now that we have studied central force motion, obtaining qualitative results for arbitrary 
potentials and specific results for 1/r potentials, we have information about the dynamics of 
collisional interactions. We can use this to develop the concept of scattering cross section, which 
intimately uses the kinematics of collisions and the orbit information from central force motion. 
The archetypal scattering problem, we will consider is one involving a particle incident on a 
force center that scatters the incident particle via a conservative central force with potential U(r). 
We have demonstrated that, a two-particle system interacting via a conservative central force is 
equivalent to such a system when considered in its center-of-mass frame. 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• State the expression for energy of a system of particle incident on a force center subject 
to a scattering potential. 

• Calculate the differential cross section. 
• Calculate the total cross section. 
 

 
3.0 Main Contents 
 
3.1  Setting up the Problem 
3.1.1 Initial Conditions 
 
As noted, we consider a particle incident on a force center subject to a scattering potential. It is 
assumed that the particle is asymptotically free, having enough energy to be in an unbound orbit. 
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In order to have unbound orbits, the potential energy must go to zero at large r. The energy of 
the system is therefore 

2

2
1

∞= vE µ  ,         (3.1) 

where ∞v  is the asymptotic particle speed as ∞→r . We will use ∞v  to parametize the initial 
energy of the system, ∞v  only specifies an energy. We must also specify the geometry. The only 
free parameter left is lθ, which we can see specifies the geometry as follows. Since the system is 
unbound, the trajectory must become straight lines at large radii, reflecting the incoming and 
outgoing velocity vectors. For example, for a r

1  potential, we know that the ingoing and 

outgoing velocity vectors define the asymptotes of the hyperbolic orbit. We can calculate the 
distance between the scattering center and these straight lines where they come closest to the 
scattering center. This distance is defined to be the impact parameter, usually associated with the 
symbol b. This is displayed in Figure 3.1 below. The small line from the center to the dotted line 
is the impact parameter. The impact parameter is related to lθ. We know that .rrl  µθ ×=  At 

,∞=r  we know that r  points in the direction along the asymptote and r  points to the origin, so 
the angle between r  and r  which we call γ  is subtended by the impact parameter b. r  is 
shown approximately in Figure 3.1 by the line that extend from the center to the -10 point. So, 

bvvrl ∞∞ == µγµθ sin        (3.2) 
lθ  specifies the geometry through b, which fixes the position of the asymptote )( ∞v  relative to 
the scattering center. 
 
3.1.2 Scattering Angle 
In Figure 3.1, the scattering angle, θs, is the angle between the incoming and outgoing velocity 
vectors. θs is determined by E and lθ or equivalently ∞v  and b, and the form of the potential 
function. 

 
Figure 3.1: Scattering impact parameter illustration  
(where *θ  is the Scattering angle herein represented as θs) 
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Self Assessment Exercise A 
1. Derive the expression of the angular momentum of the particle incident on a force center 

subject to a scattering potential in terms of μ, E and b 
 
3.2 The Generic Cross Section 
3.2.1 Incident Beam 

Now that we have made our definitions, let us bring in the concept of differential cross 
section. Suppose we have a beam of incoming particles, all with same velocity .∞v . Let the flux 
of particles F be the number of particles passing through a unit area in a unit time. If the beam 
has particle number density n, then the flux is 

∞= nvF           (3.3) 
Assume that the beam has a circular cross section and the axis of the beam points directly at the 
scattering center. The incoming particles will thus have a range of impact parameter values, 
ranging from b = 0 (along the beam axis) to b = bmax (at the outer edge of the beam). The beam 
radius is bmax and its cross-sectional area is 2

maxbA π= . 
 
3.2.2 Differential Cross Section 
The incident particles in the beam will be scattered into a range of angles depending on their 
input impact parameters (and the beam velocity). We define the differential scattering cross 

section, ),,( ssd
d φθσ
Ω

 via the probability of an incident particle being scattered into the solid 

angle dΩ in the direction ),( ss φθ   where θs is the polar angle measured from the beam axis and 

sφ  is the azimuthal angle around the beam axis. If ),( ssdN φθ  is the number of particles per unit 
time scattered into the solid angle Ωd  at ),( ss φθ , we define the differential cross section via the 
relation 

FA
dNd

d
d

A
ss

ss
),(),(1 φθφθσ

=Ω
Ω

.         (3.4) 

Let us explain the above. On the right hand side of the first line, the denominator is the number 
of particles per unit time incident on the target from a beam of flux F and cross-sectional area A. 
Since the numerator is the number of particles per unit time that scatter into Ωd  at ),( ss φθ , the 
right hand side is thus the fraction of particles that scatter into Ωd  at ),( ss φθ ; it is a probability. 

We include additional factors so that 
Ωd

dσ  is defined only by the scattering force, not by 

parameters of the experiment. We have 1/F on the right hand side but none on the left side 
because including the 1/F makes the ratio dN/F independent of F: if F goes up, dN goes up 
proportionally. However, we include 1/A on the left hand side to cancel the 1/A on the right side 
because ),( ssdN φθ may not scale with A: if one adds cross-sectional area at a radius from which 
particles do not scatter into the particular solid angle Ωd  at ),( ss φθ , ),( ssdN φθ will not increase 
when A increases. Hence the different treatment of F and A. Solving for the differential cross 
section gives 

Ω
=

Ω d
dN

Fd
d ss

ss
),(1),( φθφθσ .        (3.5) 

The beam area A has dropped out, 
Ωd

dσ  has units of area per steradian; hence the name cross 

section. If we assume central force scattering, the problem is azimuthally symmetric about the 
beam axis and we may integrate over sφ so that dΩ = 2πsin θsdθs. Furthermore, we know for 
central force scattering that there is a one-to-one correspondence between b and θs for a given ∞v . 
Therefore, the particles scattering into the interval dθs in polar angle come from some range db in 
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impact parameter. Azimuthal symmetry of the problem allows us to integrate over azimuthal 
angle in the beam also. We may relate db and dθs by requiring conservation of particle number: 

ssdd
dFbdbF θθπσπ sin22
Ω

−= .       (3.6) 

A negative sign has been inserted under the assumption that the potential decreases in strength 
monotonically with radius: if you increase the impact parameter a little bit, the scattering angle 
should decrease, so a positive db implies a negative dθs. Re-writing, we have 

ss d
dbb

d
d

θθ
σ

sin
=

Ω
.        (3.7) 

That is, if we know the function ),( ∞vb sθ , then, we can determine the distribution of particles in 
scattering angle given a uniform incoming beam. 
 
3.2.3 Total Cross Section 

Once one has calculated 
Ωd

dσ , it is formally a straightforward thing to calculate the total cross 

section: 

∫∫ ∫
∞

=
Ω

=
Ω

Ω=
00

2sin2 dbb
d
dd

d
dd ss πσθθπσσ

π

 .     (3.8) 

As one would expect, the total cross section is related to the probability that an incoming particle 
will be scattered to any angle. It can be viewed as a total “effective area” of the scattering center; 
the number of particles in the incoming beam that will be scattered is the same as if every 
particle within the central σ of the beam were scattered and all others left untouched. 
 
3.2.4 Calculating b(θs) 
For a generic central potential, we can obtain a formula relating b and θs by returning to the 
integral relations that define the orbit. Recall Equation 1.34: 
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θ is not θs, but it is related to it. Referring back to our scattering picture above, the scattering 
angle θs is the complement of the angle between the incoming and outgoing asymptotes. The 
angle between the asymptotes is related to the orbit angle as ∞→r . For repulsive scattering, the 
angle between the asymptotes is just inout θθ − , where these are the asymptotic orbit angles for 
the incoming and outgoing particles. For attractive scattering, since ϴ is measured from the +x-
axis, the angle between the asymptotes is inout θθπ −−2 . So the scattering angle is  

( )inouts θθπθ −−= 2        (3.10) 

where – (negative) goes with the attractive potential. Next, inout θθ −  is twice the angle between 
θout or θin and θ=0. θ=0 is obtained when r=rmin, the turning point. So we have 
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Self Assessment Exercise B 

1. Given the differential cross section 
ss d

dbb
d
d

θθ
σ

sin
=

Ω
 Calculate the total cross section and 

the b(ϴ).  
 

3.3 
r
1 Potential 

 For the 
r
1  potential, we can find the differential cross section explicitly because we have 

explicit relationships between ϴ and r 
 
3.3.1 Finding b(ϴs) 
 We demonstrated earlier that the azimuthal angle ϴ of the orbit relative to the center of 

mass is limited to be 
ε

θ 1cos >  this gives us ϴout and ϴin 







−±=

ε
θ 1arccos,inout          (3.12) 

where inout θθ −=  and the choice of sign for ϴin depends on initial conditions. So we have  



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
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
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
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
−=−

ε

ε
θθ
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1arccos2



inout

        (3.13) 

where the – (negative) is for an attractive potential. So we have 

2
sin11arccos21arccos2 s

s
θ

εε
π

ε
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
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




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












−=     (3.14) 

where the two different potentials have yielded the same result. With some works, we can write 
b in terms of ε. Starting with equation 2.19, we have 

this can be re-written    )1(
2

2
2

2

−= ε
µ
θ

p
lE  

)1(
2

2 −= εµµ

θ El
p

.        (3.15) 

Then,       1
2

2 −= εµ
µ
θ

EMG
l  

We have       1
/2

2 −=∞ ε
µ

µµ
E

MGbv .       (3.16) 

that is        1
2

2 −= εµ
E
MGb .        (3.17) 

So we may now find b(ϴs): 

2
cot

2
1

2
csc

2
2 ss

E
MG

E
MGb θµθµ

=−= ,     (3.18) 

where we take positive square root because .
22

0 πθ
<< s  
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3.3.2 Calculating the Differential Cross Section 

We will need 
sd

db
θ

 to calculate the differential cross section, so, taking the derivative: 

2
sec

2
csc

22
csc

22
1 2 sss

s

b
E
MG

d
db θθθµ
θ

==  .      (3.19) 

Finally, using our formula for the differential cross section: 
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d
d
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µθθ

θθ
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





===

Ω
.    (3.20) 

Note that the result is independent of whether the scattering is attractive or repulsive. This result 
is the well known Rutherford scattering formula, first observed in the scattering of α particles 
(4He nuclei) from gold nuclei in a foil. The observation that the scattering obeyed the simple 

expectation of a 
r
1  potential was an important piece of evidence that the atom consists of a 

charged nucleus surrounded mostly by empty space, as opposed to a “plum pudding” type model 
with electrons and protons intermixed uniformly in the atom. 
 
3.3.3 The Total Cross Section 

If one tries to calculate the total cross section from the Rutherford formula, one will end 

up with an infinite result. This is because, for a 
r
1  potential, the probability of scattering does not 

decrease sufficiently quickly with increasing b because the effective area of the scattering center 
is infinite. If the potential is made to converge more quickly (e.g., by multiplying be an 
exponential decay), then a finite total cross section is obtained. 
 
Self Assessment Exercise C 

1. Derive the b(ϴ), the differential cross section and total cross section for the 
r
1  potential 

 
4.0 Conclusion 
We have discussed the 1/r potential in terms of Newtonian gravity but of course it is equally 
applicable to Coulomb’s law of electrostatic forces.  
 
5.0 at infinity SUMMARY 

• For central-force scattering problems, we generally considered unbound central-force 
orbits, rather than parametizing in terms of energy E and angular momentum lϴ, we use 
the velocity ∞v  and the impact parameter b (distance of closest approach to scattering 
center). These parameter are related by 

2

2
1

∞= vE µ  bvl ∞= µθ , 

• We usually phrase scattering in terms of an incoming beam of particles of number flux 
∞= nvF . 

• The differential scattering cross section gives us the area of the beam that will be 
scattered into a solid angle dΩ: 

Ω
=

Ω d
dN

Fd
d 1σ .  

• The differential cross section can be found if the relationship between the input impact 
parameter and the scattering angle ϴs (the angle between the incoming and outgoing 
trajectories) is known 
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ss d
dbb

d
d

θθ
σ

sin
=

Ω
. 

• The total scattering cross section, which gives us the effective area of the scattering 
center, is 

∫ ∫ ∫
∞

=
Ω

=
Ω

Ω=
π

πσθθπσσ
0 0

2sin2 dbb
d
dd

d
dd ss . 

• The scattering angle is calculated from the potential function via 
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• For a potential 
r
krU ±=)( , the relationship between impact parameter and scattering 

angle and the differential cross section are given by 
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The relative sign between b and ϴs is chosen based on whether the potential is attractive 
or repulsive (E > 0 always for unbound orbits) 

 
6.0 Tutor Marked Assignments (TMAs) 
 
1. Consider a spherical droplet of water in the sunlight. A ray of light with impact parameter 

b is refracted, so by Snell's Law n sin β = sinα. It is then internally reflected once and 
refracted again on the way out. 

  
a) Express the scattering angle ϴ in terms of α and β. 
b) Find the scattering cross section dσ = dΩ as a function of ϴ, α and β (which is implicitly 

a function of ϴ from (a) and Snell's Law). 
c) The smallest value of ϴ is called the rainbow scattering angle. Why? Find it numerically 

to first order in δ  if the index of refraction is n = 1:333 + δ . 
d) The visual spectrum runs from violet, where n = 1:343, to red, where n = 1:331. Find the 

angular radius of the rainbow's circle, and the angular width of the rainbow, and explain 
whether the red or blue is on the outside. 

2. Consider the case of a projectile particle of mass μ being deflected by a repulsive central 
force potential U(r) > 0. As the projectile particle approaches from the right (at r = ∞ , ϴ = 0) 
moving with speed u, it is progressively deflected until it reaches a minimum radius ρ  at 

χθ =  after which the projectile particle moves away from the repulsion center until it 
reaches ∞=r  at a deflection angle ϴ and again moving with speed u. From the Figure 
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shown below, we can see that the scattering process is symmetric about the line of closest 
approach.  

      
Define the angle χ  in terms of impact parameter b, μ and E (total energy). 
 
7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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Module 4 Motion in Non-Inertial Reference Frame 
Unit 1  Time Derivative in Fixed and Rotating Frames 
Unit 2  Motion Relative to Earth 
 
UNIT 1  TIME DERIVATIVES IN FIXED AND ROTATING FRAMES 
 
CONTENTS 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1   Time Derivatives in Fixed and Rotating Frames 
3.2   Accelerations in Rotating Frames 
3.3  Lagrangian Formulation Of Non-Inertia Motion 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  Further Reading and Other Resources 
 
1.0  Introduction 
 
A non-inertial reference frame is a reference frame that is not tied to the state of motion of an 
observer, with the property that each physical law portrays itself in the same form in every 
inertial frame. As such, the laws of physics in such a frame do not take on their most simple 
form, as required by the special principle of relativity. To explain the motion of bodies entirely 
within the viewpoint of non-inertial reference frames, fictitious forces (also called inertial forces, 
pseudo-forces and d'Alembert forces) must be introduced to account for the observed motion, 
such as the Coriolis force or the centrifugal force, as derived from the acceleration of the non-
inertial frame 
 
2.0 Objectives 
 
After studying this unit, you will be able to: 

• Derive the time derivatives of vector A in fixed and rotating reference frame. 
• State the expressions for translational velocity and acceleration, V and A respectively. 
• Determine the relationship between the velocities of fixed and rotating reference frame. 
• Show the relationship between the acceleration of fixed and rotating reference frame. 

 
3.0 Main Contents 
 
3.1  Time Derivatives in Fixed and Rotating Frames 
 
Let us consider the time derivative of an arbitrary vector A in two reference frames. The first 
reference frame is called the fixed frame and is expressed in terms of the Cartesian 
coordinates );;( zyxr ′′′=′ . The second reference frame is called the rotating frame and is 
expressed in terms of the Cartesian coordinates r = (x; y; z). In the Figure below, the rotating 
frame shares the same origin as the fixed frame and the rotation angular velocity ω of the 
rotating frame (with respect to the fixed frame) has components (ωx, ωy, ωz). 

http://en.wikipedia.org/wiki/Frame_of_reference�
http://en.wikipedia.org/wiki/Observer_(special_relativity)�
http://en.wikipedia.org/wiki/Physical_law�
http://en.wikipedia.org/wiki/Special_principle_of_relativity�
http://en.wikipedia.org/wiki/Fictitious_forces�
http://en.wikipedia.org/wiki/Coriolis_force�
http://en.wikipedia.org/wiki/Centrifugal_force_(fictitious)�
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figure 1.1 

Since observations are often made in a rotating frame of reference, we decompose the vector A 
in terms of components Ai in the rotating frame (with unit vectors ix̂ ). Thus, i

i x̂AA =  (using 
the summation rule) and the time derivative of A as observed in the fixed frame is 

dt
xdx

dt
d

dt
d i

i
ii ˆˆ A

AA
+= .       (1.1) 

The interpretation of the first term is that of the time derivative of A as observed in the rotating 
frame (where the unit vector ix̂  are constant) while the second term involves the time dependence 
of the relation between the fixed and rotating frames. We now express dtxd i /ˆ  as a vector in 
rotating frame as 

,ˆˆˆ
jk

ijk
j

ij
i

xxR
dt
xd ωε==          (1.2) 

where R represents the rotation matrix associated with the rotating frame of reference; this 
rotation matrix associated is anti-symmetric (Rij =-Rji) and can be written in terms of the anti-
symmetric tensor εijk (defined in terms of the vector product k

ijk
ji x̂εBABA =×  for two 

arbitrary vectors A and B) as k
ijkijR ωε= (see appendix) where ωk denotes the components of the 

angular velocity ω in the rotating frame. Hence, the second term in equation 1.1 above becomes 

AAA ×== ωωε jk
ijk

i

i

i x
dt
xd ˆˆ

.       (1.3) 

This time derivative of an arbitrary rotating frame vector A in a fixed frame is, therefore 
expressed as 

A
AA

×+





=






 ω

rf dt
d

dt
d ,        (1.4) 

where ( )
fdt

d  denotes the time derivative as observed in the fixed (f) frame while ( )
rdt

d  denotes 

the time derivative as observed in the rotating (R) frame. An application of this formular relates 
to the time derivative of the rotation angular velocity ω itself. One can easily see that  

rf dt
d

dt
d







==






 ωωω

 .       (1.5) 

Since the second term of equation 1.4 above vanishes for A = ω; the time derivative of ω is, 
therefore, the same in both frames of reference and is denoted ω  in what follows. 
 
Self Assessment Exercise A 
1. Show that the time derivative of ω is the same in both fixed  and rotating frame of reference 
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3.2  Accelerations in Rotating Frames 
We now consider the general case of a rotating frame and fixed frame being related by 
translation and rotation. 

 
figure 1.2 
In the figure 1.2 above, the position of a point P according to the fixed frame of reference is 
labeled r′ , while the position of the same point according to the rotating frame of reference is 
labeled r, and ,rRr +=′  where R denotes the position of the origin of the rotating frame 
according to the fixed frame. Since the velocity of the point P involves the rate of change of 
position, we must now be careful in defining which time-derivatives operator, ( )

fdt
d   or ( )

rdt
d  

that is to be used. 
The velocities of point P as observed in the fixed and rotating frames are defined as 

f
f dt

rdv 





 ′

=   and  
r

r dt
drv 






=        (1.6) 

respectively. Using equation 1.4 the relationship between the fixed frame and rotating frame 
velocity is expressed as 

,rvV
dt
dr

dt
dRv r

ff
f ×++=






+






= ω      (1.7) 

where 
fdt

dRV 





=  denotes the translation velocity of the rotating-frame origin (as observed in 

the fixed frame). 
Using equation 1.7 above, we are now in a position to evaluate expressions for the acceleration 
of point P as observed in the fixed and rotating frames of reference 

f

f
f dt

dv
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r
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respectively. Hence, using equation  1.7 we find 

),()( rvrvaA
dt
drr

dt
d

dt
dv

dt
dVa

rrr

fff

r

f
f

×+×+×+×++=







×+×






+






+






=

ωωωω

ωω



     (1.9) 

or    ),(2 rrvaAa rrf ××+×+×++= ωωωω          (1.10) 



 91 

where 
fdt

dVA 





=  denotes the translational acceleration of the rotating frame origin (as 

observed in the fixed frame of reference). We can now write an expression for the acceleration 
of point P as observed in the rotating frame as 

,2)( rvrAaa rfr ×−×−××−−= ωωωω        (1.11) 
which represent the sum of the net inertial acceleration (af –A), the centrifugal acceleration 

( )r××− ωω  (see figure below) 

 
figure 1.3 

the coriolis acceleration  rv×− ω2  

 
figure 1.4 
 

and an angular acceleration term ωω r×−   which depends explicitly on the time dependence of 
the rotation angular velocity ω. 
The centrifugal acceleration (which is directed outwardly from the rotation axis) represents a 
familiar non-inertial effect in Physics. A less familiar non-inertial effect is the Coriolis 
acceleration. The Figure 1.4 above shows that an object falling inwardly also experiences an 
eastward acceleration. 
 
Self Assessment Exercise B 
1. Given the figure 2.1 above determine the relationship between acceleration between fixed 

and rotating reference frame. 
2. Make sure you have a good understanding of differentiation and integration 
 
3.3 Lagrangian Formulation Of Non-Inertia Motion 
The Lagrangian for a particle of mass m moving in a non-inertial rotating frame (with its origin 
coinciding with the fixed-frame origin) in the presence of the potential U(r) is expressed as 

),(
2

),( 2 rUrrmrrL −×+= ω        (1.12) 

where ω is the angular velocity vector and we use the formula 
[ ]22222 )()(2 rrrrrrr ⋅−+×⋅+=×+ ωωωω  .   (1.13) 
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Using the Lagrangian (equation 2.1), we now derive the general Euler-Lagrange equation for r. 
First, we derive an expression for the canonical momentum 

),( rrm
rd
LP ×+=
∂

= ω


       (1.14) 

and     )( rrrm
r
L

dt
d




×+×+=






∂
∂ ωω .        (1.15) 

Next we derive the partial derivative 

[ ],)()( rrmrU
r
L

××+×−−∇=
∂
∂ ωωω      (1.16) 

so that the Euler-lagrange equation are  
[ ])(2)( rrrmrUrm ××+×+×−−∇= ωωωω  .  (1.17) 

Here, the potential energy term generates the fixed-frame acceleration, fmaU =∇−  and the 
Euler-Lagrange equation 2.7 yields equation 1.11 
 
Self Assessment Exercise C 
1. State the Lagrangian for a particle moving in a non-inertia rotating frame and the 

corresponding Lagrange’s equation of motion 
 
4.0 Conclusion 
 
This time derivative of an arbitrary rotating frame vector A in a fixed frame is, therefore 
expressed as 

A
dt
dA

dt
dA

rf

×+





=






 ω , where ( )

fdt
d  denotes the time derivative as observed in the 

fixed (f) frame, while ( )
rdt

d  denotes the time derivative as observed in the rotating (R) frame. 

An application of this formular relates to the time derivative of the rotation angular velocity ω 
itself. One can easily see that  

rf dt
d

dt
d







==






 ωωω

 . Since the second term of equation 

above vanishes for A = ω; the time derivative of ω is, therefore, the same in both frames of 
reference and is denoted as ω . 
 
5.0 Summary 
 

• A non-inertial reference frame is a reference frame that is not tied to the state of motion 
of an observer, with the property that each physical law portrays itself in the same form 
in every inertial frame.  

• The first reference frame is called the fixed frame and is expressed in terms of the 
Cartesian coordinates );;( zyxr ′′′=′ .  

• The second reference frame is called the rotating frame and is expressed in terms of the 
Cartesian coordinates r = (x; y; z). 

• This time derivative of an arbitrary rotating frame vector A in a fixed frame is, therefore 
expressed as 

A
dt
dA

dt
dA

rf

×+





=






 ω  

where ( )
fdt

d  denotes  the time derivative as observed in the fixed (f) frame while 

( )
rdt

d  denotes the time derivative as observed in the rotating (R) frame.  

http://en.wikipedia.org/wiki/Frame_of_reference�
http://en.wikipedia.org/wiki/Observer_(special_relativity)�
http://en.wikipedia.org/wiki/Physical_law�
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• The velocities of point P as observed in the fixed and rotating frames are defined as 

f
f dt

rdv 





 ′

=   and  
r

r dt
drv 






= . 

• Expressions for the acceleration of point P as observed in the fixed and rotating frames of 
reference is 

),(2 rrvaAa rrf ××+×+×++= ωωωω   where 
fdt

dVA 





=  denotes the 

translational acceleration of the rotating frame origin.  
• The Lagrangian for a particle of mass m moving in a non-inertial rotating frame (with its 

origin coinciding with the fixed-frame origin) in the presence of the potential U(r) is 
expressed as 

).(
2

),( 2 rUrrmrrL −×+= ω         

• The Euler-Lagrange’s equation are  
[ ])(2)( rrrmrUrm ××+×+×−−∇= ωωωω  .  

 
6.0 Tutor Marked Assignments (TMAs) 
 
1. Given the following parameter of a rotating reference frame, r=10t+3, ω=6t2+4t+5. 

Determine the following: i) Centrifugal acceleration,  ii) Coriolis acceleration, iii) 
Centripetal acceleration. 

2. For a fixed and rotating reference frame associated with translation and rotation as depicted 
in fig 1.2 if R=5t3+2 Determine the velocity and acceleration of the fixed reference frame? 

3. Find the Lagrangian and the corresponding Lagrange’s equation of motion for a particle of 
mass m moving in non-inertia reference frame. 

 
7.0  Further Reading and Other Resources  
 
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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UNIT 2 MOTION RELATIVE TO EARTH 
 
CONTENTS 
1.0  Introduction 
2.0  Objectives 
3.0  Main Contents 
3.1  Motion relative to earth 
3.2  Free-Fall Problem  
4.0  Conclusion 
5.0  Summary 
6.0  Tutor Marked Assignment 
7.0  Further Reading and Other Resources 
 
 
 
1.0 Introduction 
 
We can now apply the expressions developed in unit 1 of this module above to the important 
case of the fixed frame of reference having its origin at the center of Earth (point O′  in the figure 
2.1 below) and the rotating frame of reference having its origin at latitude λ and the longitude ψ 
(point O in the figure below). We notes that the rotation of the Earth is now represented as ψ = ω 
and that 0=ω . 
 
2.0 Objectives 
 
After studying this unit you will be able to: 

• Represent the rotation of the earth in terms of fixed frame of latitude angle λ and the 
azimuthal angle ψ. 

• State the expression for acceleration of a point as observed in the rotating frame O. 
• State the expression for pure gravitational acceleration in the rotating frame of the Earth. 
• Solve related problems. 

 
3.0 Main Contents 
 
3.1 Motion relative to earth 

 
figure 2.1 
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We arrange the (x, y, z) axis of the rotating frame so that the z-axis is a continuation of the 
position vector R of the rotating-frame origin, i.e. zRR ˆ=


 in the rotating frame (where 

R=6378km is the Earth radius assuming a spherical Earth). When expressed in terms of the 
fixed-frame latitude angle λ and the azimuthal angle ψ, the unit vector ẑ  is 

zyxz ′+′+′= ˆsin)ˆsinˆ(coscosˆ λψψλ .      (2.1) 
Likewise, we choose the axis to be tangent to a great circle passing through the North and South 
poles, So that  

zyxx ′+′+′= ˆcos)ˆsinˆ(cossinˆ λψψλ .      (2.2) 
Lastly, the y axis is chosen such that  

yxxzy ′+′−=×= ˆcosˆsinˆˆˆ ψψ .     (2.3) 
We now consider the acceleration of a point as observed in the rotating frame O by writing 
equation 1.11 as  

dt
drrRg

dt
rd

ff ×−××−−= ωωω 2)(02

2
 .     (2.4) 

The first term fg0  represent the pure gravitational acceleration due to the gravitational pull of 
the Earth on point P (as observed in the fixed located at Earth’s center) and is given as 

r
r

GMg f ′
′

−= 30           (2.5) 

where rRr +=′  is the position of point P in the fixed frame and r is the location of P in the 
rotating frame. When expressed in terms of rotating-frame spherical coordinates ),,( φθτ : 

( )[ ],ˆcosˆsinˆcossin zyxr θφφθτ ++=       (2.6) 
the vector r′  is written as 

( ) ),ˆsinˆ(cossinˆcos yxzRr φφθτθτ +++=′     (2.7) 

and thus,    ( ) 23223 cos2 τθτ ++=′ RRr .        (2.8) 
The pure gravitational acceleration is, therefore, expressed in the rotating frame of the Earth as 

( )
( ) 












++

+++
= 23200

cos21
)ˆsinˆ(cossinˆcos1

εθε

φφθεθε yxzg rf -g    (2.9) 

where org  acceleration due to gravitational pull on the earth as observed in the rotating frame of 
the earth 2

2 /789.9 smR
GM ==0rg  and ε = r/R which is much lesser than 1. 

The angular velocity in the fixed frame is ẑωω =  where 

sradrad /1027.7
sec360024

2 5−×=
×

=
πω      (2.10) 

is the rotation speed of Earth about its axis. In the rotating frame, we find 
)ˆcosˆ(sin xz λλωω −= .       (2.11) 

Because the position vector R rotates with the origin of the rotating frame, its time derivative 
yield 

yRRR f ˆ)cos( λωω =×=         (2.12) 

)ˆsinˆ(coscos)( 2 xzRRRR ff λλλωωωω +−=××=×=     (2.13) 
and thus the centrifugal acceleration due to R is  

( ) )ˆsinˆ(coscos0 xzRR r λλλαωω +=××−= g ,   (2.14) 
where ω2R=0.0337m/s2 can be expressed in terms of pure gravitational acceleration r0g  as 

rR 0
2 gαω = , where α =3.4 x 10-3. We now define the physical gravitational acceleration as 

( )[ ]
( ) ( )[ ],ˆsincosˆcos1 2

0

0

xz

rRgg

r

f

λλαλα

ωω

+−−=

+××−=

g
    (2.15) 
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where terms of order ε have been neglected. A plumb line experiences a small angular deviation 
)(λδ   from the true vertical given as 

λαα
λαλδ

2cos)2(
2sin)(tan

+−
==

rz

rx

g
g .      (2.16) 

The function exhibits a maximum at a latitude λ defined as ),2/(2cos ααλ −−= so that 

3107.1
122cos)2(

2sintan −×≈
−

=
+−

=
α

α
λαα

λαδ     (2.17) 

or min86.5 arc≈δ  at 005.45
44

=





 +≈ radαπλ , we now return to equation 2.4, which is 

written to lowest order in ε and α as 

dt
drz

dt
rd

×−−= ω2ˆ
2

2

rg         (2.19) 

where   [ ])ˆcosˆ(sinˆ)cossin( zxyyzx
dt
dr λλλλωω +−+=×  .     (2.20) 

Thus, we find three component of equation 2.19 written explicitly as  









+−=
+−=

=

yz
zxy

yx







λω
λλω

λω

cos2
)cos(sin2

sin2

rg
        (2.21) 

A first integration of equation 2.21  yields 









++−=

++−=
+=

z

y

x

Cytz
Czxy

Cyx

λω

λλω
λω

cos2

)cos(sin2
sin2

rg





       (2.22) 

where (Cx, Cy, Cz) are constants defined from initial conditions (x0, y0, z0) and ),,( 000 zyx   

( )








−=

++=
−=

00

000

0

cos2

cossin2
sin2

yzC
zxyC

yxC

z

y

x

λω

λλω
λω







       (2.23) 

A second integration of equation 2.22 yields 

,sin2)(
0

0 ∫++=
t

x ydttCxtx λω      

∫∫ −−+=
tt

y zdtxdttCyty
00

0 cos2sin2)( λωλω      (2.24) 

∫+−+=
t

z ydtgttCztz
0

2
0 cos2

2
1)( λω  

Which can also be re-written as 














+−+=

++=
++=

)(
2
1)(

)()(
)()(

2
0

0

0

tzttCztz

tytCyty
txtCxtx

z

y

x

δ

δ
δ

rg

        (2.25) 

Where the coriolis drift are 









++= ∫

t

y ydttCtytx
0

2
0 2

1sin2)( δλωδ , 
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







+−+−








++−= ∫∫

t

z

t

x zdtttCtzxdttCtxty
0

32
0

0

2
0 6

1
2
1cos2

2
1sin2)( δλωδλωδ rg ,  (2.26) 









++= ∫

t

y ydttCtytz
0

2
0 2

1cos2)( δλωδ . 

Note that each Coriolis drift can be expressed as an infinite series in power of ω and  that all 
Coriolis effects vanish when ω = 0. 
 
Self Assessment Exercise A 
1. Derive the constant Cx, Cy and Cz and the coriolis drift. 
 
3.2 Free-Fall Problem  
As an example of the importance of Coriolis effects, we consider the simple free fall problem, 
where ),0,0(),,( 000 hzyx =  and )0,0,0(),,( 000 =zyx   
So that the constants (equation 2.23) are Cx = 0 = Cz and Cy = 2ωhcosλ 
Substituting these constants into equation 2.25 and keeping only terms up to the first order in ω, 
we find 

0)( =tx ,          (2.27) 

λω cos
3
1)( 3tty rg= ,       (2.28) 

2

2
1)( thtz rg−= .        (2.29) 

Hence, a free falling object starting from rest touches the ground z(T) = 0 after a time 

rg
hT 2=  after which the object has drifted eastward by a distance of 

r
r g

g
3

3 8
3

coscos
3
1)( hTTy λωλω == .     (2.30) 

Self Assessment Exercise B 
1. State one of the importance of the  coriolis effects 
2. Find the eastward drift of an object falling freely from a height of 100m with a latitude of 

450 
 
4.0 Conclusion 
Expressing x,y,z of a rotating frame of reference having its origin at latitude λ and the longitude 
ψ (point O in the figure 2.1 above).  in terms of the fixed-frame latitude angle λ and the 
azimuthal angle ψ, we derive the x,y,z which are function of t as follows: 














+−+=

++=
++=

)(
2
1)(

)()(
)()(

2
0

0

0

tzttCztz

tytCyty
txtCxtx

z

y

z

δ

δ
δ

rg

 where )(txδ , )(tyδ  and )(tzδ  are referred to as Coriolis drift 

and this can be applied to get the drift of an object falling freely from a height. 
 
5.0 Summary 

• According to figure 2.1 arrange the (x, y, z) axis of the rotating frame so that the z-axis is 
a continuation of the position vector R of the rotating-frame origin, i.e. zRR ˆ=


 in the 

rotating frame (where R=6378km is the Earth radius assuming a spherical Earth).  
• When expressed in terms of the fixed-frame latitude angle λ and the azimuthal angle ψ, 

the unit vector ẑ  is zyxz ′+′+′= ˆsin)ˆsinˆ(coscosˆ λψψλ  while that of x and y-axes are 
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zyxx ′+′+′= ˆcos)ˆsinˆ(cossinˆ λψψλ , yxxzy ′+′−=×= ˆcosˆsinˆˆˆ ψψ .      
• When expressed in terms of rotating-frame spherical coordinates ),,( φθτ : 

( )[ ].ˆcosˆsinˆcossin zyxr θφφθτ ++=  
• In the rotating frame, we find 

)ˆcosˆ(sin xz λλωω −= . 
• The angular velocity in the fixed frame is ẑωω =  where 

sradrad /1027.7
sec360024

2 5−×=
×

=
πω  

• The pure gravitational acceleration is, therefore, expressed in the rotating frame of the 
Earth as 

( )
( ) 












++

+++
−= 23200

cos21
)ˆsinˆ(cossinˆcos1

εθε

φφθεθε yxzg rf g   

where g 0r = GM/R2 =9.789m/s2 and ε = r/R which is much lesser than 1. 
• Because the position vector R rotates with the origin of the rotating frame, its time 

derivative yield 
yRRR f ˆ)cos( λωω =×= . 

• The centrifugal acceleration due to R is  
( ) )ˆsinˆ(coscos0 xzRR r λλλαωω +=××−= g  

• The physical gravitational acceleration as 
( )[ ]

( ) ( )[ ].ˆsincosˆcos1 2
0

0

xz

rRgg

r

f

λλαλα

ωω

+−−=

+××−=

g
 

• The coriolis drift are 









++= ∫

t

y ydttCtytx
0

2
0 2

1sin2)( δλωδ . 









+−+−








++−= ∫∫

t

z

t

x zdtgttCtzxdttCtxty
0

32
0

0

2
0 6

1
2
1cos2

2
1sin2)( δλωδλωδ    









++= ∫

t

y ydttCtytz
0

2
0 2

1cos2)( δλωδ  

• As an example of the importance of Coriolis effects, we consider the simple free fall 
problem, where ),0,0(),,( 000 hzyx = . 

 
 
6.0 Tutor Marked Assignments (TMAs) 
1. Find the eastward drift of an object falling freely from a height of 100m with a latitude of 

450 
 
 
7.0  Further Reading and Other Resources  
Classical Mechanics by H.Goldstein, Narosa Publishing Home, New Delhi. 
 
Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma    
Book Jovanovich College Publisher. 
 
Introduction to Classical Mechanics by R.G.Takawale and P.S.Puranik, Tata Mc-Graw Hill 
Publishing Company Limited, New Delhi. 
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Appendix  
 

Category Typerface Example 
Scalar Lower case, normal weight, italic s 
Vector Lower case or upper case, normal 

weight, italic, with arrow 
a  or A


 

Vector coordinate 
 Representation component 

Lower case, with arrow ia  

Unit vector Normal weight, italic, with hat â  
Tensor coordinate 
 representation  

Upper case,  A 

Tensor coordinate 
representation component 

Upper case, roman, with subscripts 
niiA 1
 

The following special symbols are defined: 
ijδ  kronecker delta  =1 when i=j. 

          =0 otherwise. 
ijkε  Levi-Civita symbol or tensor 

     =1 if i,j,k is an even permutation of 1,2,3 
     =0 otherwise (two or more of i,j,k are equal) 
     =-1 if i,j,k is an odd permutation of 1,2,3 

a. even permutation of 1,2,3 are: 123, 231, 312. 
b. odd permutation of 1,2,3 are: 321, 213,132. 
c. repeated indices: 112, 122 and so on 

Coordinate system 
Cylindrical 
The three coordinate are 

 22 yx +=ρ    





= −

x
y1tanφ    zz =  

The inverse relations are 
 φρ cos=x     φρ sin=y     zz =  
The area elements are 
 φρρ dd      dzdρ      dzdφρ  
The volume element is  
       dzdd φρρ  
The line element is  
     22222 dzddds ++= φρρ  
The unit vectors are  
  φφρ sinˆcosˆˆ yx +=   φφφ cosˆsinˆˆ yx +−=   zz ˆˆ =  
 
Spherical 
The three coordinates are: 

 222 yyxr ++=    





= −

x
y1tanφ    






= −

r
z1cosθ  

The inverse relations are 
 φθ cossinrx =     φθ sinsinry =    θcosrz =  
The area elements are 
 φθdrdr sin      θrdrd      φθθ ddr sin2  
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The volume element is  
       φθθ ddrdr sin2  
The line element is  
     2222222 sin φθθ drdrdrds ++=  
The unit vectors are  
  θφθφθ cosˆsinsinˆcossinˆˆ zyxr ++=   φφφ cosˆsinˆˆ yx +−=    
 θφθφθθ sinˆsincosˆcoscosˆˆ zyx −+= . 
 
Vector and Tensor Definitions and Algebraic Identities 
Dot and Cross Products 
  jijiij BAbabaabba ===⋅ δ),cos(

  

 jikjiijk BABAebaABnba ===×
 ε),(ˆ , 

where ),( ba
  is the angle from a  to b


 and n̂  is the unit vector normal to the plane defined by a , 

b


, and the right-hand rule, and the secondary expression using vector components hold in 
rectangular coordinates. 
 
Algebraic Identities 

( ) ( ) ( ) cbabacacbcba 
≡×⋅=×⋅=×⋅  

 
( ) ( ) ( )cbabcacba 

⋅−⋅=××  
 
( ) ( ) ( )[ ] ( ) ( )[ ] ( )( ) ( )( )cbdadbcadcbcdbadcbadcba 

⋅⋅−⋅⋅=⋅−⋅⋅=××⋅=×⋅×  
 
( ) ( ) ( )[ ] ( )[ ] ( ) ( ) ( ) ( )adcbbdcadcbacdbadcbacdbadcba 

−=−=⋅×−⋅×=××× . 
 
Note that, if any of the vectors are the gradient vector ∇


, care must be taken in how the above 

expressions are written out to ensure ∇


 acts on the appropriate vectors. Any two quantities that 
commute in the above should be commuted as necessary to get reasonable behavior of ∇


. But in 

some cases, even that may not be sufficient and you will have to keep track of which vector 
should be acted on by ∇


. A good example is the second line when ∇=


b . In the simple case of 

a  being constant, one simply needs to move the b


 in the first term: 
( ) ( ) ( )cacaca 

∇⋅−⋅∇=×∇×  
But if a  depends on position and does not give zero when acted on by ∇


, then the above must 

be read with care. One has to somehow remember that ∇


 should not be allowed to act on a  
since it does not act on a  in the original expression. Since the above expression does not 
correctly convey that meaning, it is better to abandon the vector notation. The completely 
unambiguous way to write it, using index notation, is 

( )[ ] ∑ ∑ ∇−∇=×∇×
j j

ijjjiji cacaca  . 

The key point is that in the first term, a  is in a dot product with c , but ∇


 must be allowed to act 
on c  first, and not as c


⋅∇ . 

 
 
 
 
 


