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PROBABILITY DISTRIBUTION |

MODULE 1
UNIT 1
PREREQUISITES

The main prerequisites for understanding the candérthis book is a knowledge of
elementary algebra, set theory, mathematical ingluctlifferentiation and integration.

Set

A set is any well-defined list or collection of ebjives. The objectives comprising the
set are called its elements or members.

A set will be denoted by capital letters or symimlsh as X,Y,A,B,..... and its elements
will be denoted by lower case letters X, y, a,b,.....

Example 1.1 Toss a cubical die once. There arpassible numbers that can appear. We
can write

Q={1,2,3,4,5, 6}
WhereQ is a set consisting of six elements 1, 2, 3, 4, &lled the element of the gt

There are essentially two ways of specify a padicget. One way if possible is by
listing its elements as in examplel.1 above. Therotvay is by stating properties which
characterize the elements in the set. The abov® sah be written as:

Q — {x:is an integer, 1 X <6}

If x is an elemenf), the notation x €2 means that x belongs €. The negation of this
assertion i.e. the statement that x does not betmfgwill be denoted by

X €Q
thus, for the above example ZXbut 8 €Q.
Definition 1.2
Subset: A set A is a subset of a set if each elemekalso belongs tQ.
In example 1.1 above, the set
A ={1,3,5}= (x: x €2 and x is odd}
Is a subset o2, that is each element of A isén

Two sets A and B are called equal if and only éytltontain exactly the same elements.
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Throughout this book, whenever the word set is ugedll be interpreted to mean a
subset of a given set denoted®yThe set which contains no elements is called\unk
set.

Definition

Let A be a set. The elements which are not includef also constitute a subset. This is
known as the complement of A and is denoted by A

In example 1,1 if A {1,3,5}
A°=1{2,4,6} = {x: x Q, x even}.
Definition:

Two sets A, B define two related sets. One of thesthe set of all elements which
belongs to both sets A and B. this is calleelintersection of A and B and is denoted by
ANB. the other is the set of all the elements whictuo in either A or B or both. This is
called the union of A and B denoted by A B.

Example 1.2
LetQ ={1,2,3,4,5,6}, A = {1,3,5} and B = {2,3,5}
Then

ANB = {3,5}

ANB ={1,2,3,5}

A and B contain 3 element each whileMAB contains 2 elements andB contains 4
laments.

Note that the number of elements imMB is not the sum of the number of elements in A
and B.

Definition: Difference of Two sets

The different of A and B is the set of elementsalthbelong to A but not to B and is
denoted by A/B

In example 1.2 above A/B = {x: x €A, x € BR
A/B = {1}
B/A = {2}

The union of two sets A B can be divided into thdegoint sets



A/B, A NB, B/A.
That is
ANB=(A/B)N (ANB)N (B/A)
The number of element in a set will be denoted Ay Trhus,

n(A N B) = n (A/B) + n(ANB) N (B/A)

Since
(A/B), (A N B), (B/A) are disjoint sets
nA = n(A/B) + n(ANB)
nB = n(B/A) + n(A\B)
n(A/B_ =nA -n (ANB)
n (B/A) = nB-n(A\B)
hence,

n(A NB) = nA-n (ANB) + n(ANB) + nB-n (ANB) = nA + nB — n(AN B)
note: A/B=AN B, BIA=BN A°
for any set A,
ANA° =D, ANA°=Q.
For any two sets A and B, we have the followingateposition:
B=BNQ=BN(ANAY=(BNA)N(BNAY,
Since AN B and A N B are disjoints, we have
nB = n(AN B) +n(A° N B)
de Morgan’s Law

(i) For any two sets A and B
(ANB)Y=A"NB°



Proof:

AS= (AN B) N (BIA),

B°=(ANB)° N (A/B).
Thus,

A°N B®= (AN B)
Since B/A and A/B are disjoint, Alternatively,

(A B ={x:x Aand X B}=AN B°
In general, if A, A,,.....A, are any n sets

(AL N A NLLNAYDS = AFSNALSLLAL

Thus

Series

A sequence is a set of numbers occurring in oatat,there is a simple rule by which the
terms are obtained. For example, 1, %,.xis a sequence. If the terms of a sequence are
considered as a sum, for instance, 1 + X+ x... The expression is called a series. A
series with a finite number of terms is calledratéi series otherwise it is called a finite
series otherwise it is called an infinite seriese Bummation is shown by the symbol.

When the sum is taken from the first term (r =dljitee nth term (r = n).
Example

The series 1 + x +2¢ ... + X% can be written as
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The above series is called a geometric seriesaotihmon ratio x. the sum
Xt=1—xnx=1
1-x
N, x =1
The commonratio is x. if — 1 < x < 17 x> 0 as n- > =, then the series converges to
1
1-x
The infinite series
Example
Find the sum of the series
Solution
A-pft=1+@—-p)+1—P)......

The common ratio is 1 — p, from (1) let x = 1 —@ kave

(1-pyt= 1 =1
1-(1-p) p
And
(1-pft=1-(1-p)=1-1 )
1-(1-p) P

Exponential series

The function y = &is called an exponential function. This functienone of the special
functions of analysis and can be defined as theafuam infinite series. It is defined by

EX=1l+x+X+.. +xX+ .. =X
2! n! r!
The notation r! is called factorial r and is defirees
Rl=r(r-1)(r-2) ..... 2.1

For example



Bl=5x4x3x2x1

Where 0! = 1 and 1! = 1. R! defined above has nammy unless r itself is a positive
integer.

The factorial of any negative integer is infinite.

Gamma Function

It is easily shown by direct integration that whmans an integer
M! =

Provided that m > - 1. It can be proved that (2) also have a meaning for fraction m.
for instance, it is known that

Since m! = m(m-1)!. By setting m = _ wle have
2
The Binomial Theorem

If n is a positive integer,
(a+bf = &'+ "C;a™ B + "C,a"0%+....+0"
Where"C, = n' . Using the summation notation, we have
(n=n)ir!
(a +bY using the summation notation, we have
Example
Find the sum of the series
Sh =P +"Cyp™" (1 - P) #'Cop"(1-Pf +...+ (1-pfiCre"™" (1-P)

Substituting p and 1-p for a, b in the binomialdiean above, we have

Thus,
Generalization of the Bionomial theorem is thaltinomial theorem. If n is a positive
integer

(atap+...3)"=....... 3 n  a™3&"% g

Sum is over allp m..... nwheren+mn+...+n=n.
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Product Notation
The product of the terms of a sequengexx...., X, can be written as;X,Xs....X,. This
product is shown by the symbol.
Where the product is taken from Xthe first term) to the nth term,.Xor example,
Ni! NoL...n! and a,...a

Can be written as

Thus the multinomial theorem can be written as

Example
(@+a+a)’=yy 2
3
Where n=2, k = 3. Possible values gfane
n; =2, n =0, =0
n=0,n=2,n=0
n=0,n=0nr=2
n=1.2=1n3=0
m=1ln==rnr=1
m=0n=1n=
hence, we have
@+ a+a)=a’+d+ds+ 288+ 283223
Exponential Functions
These are function in which the variable occurhia index, for example*®* are called
exponential functions, Let y ="& then
For example, if y =¥ then
dy =6xe™
dx
Derivative of loge h(x)
If y = loge 2 X then
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UNIT TWO

MATHEMATICS OF COUNTING

Probability had its origin in games of chance sashlisc and card games. The number of
definitions you can find for it is limited only biyhe number of books you may wish to
consult. Probability can be defined as a measurte gpu occurrence of a random
phenomenon. probability theory is developed asystfdthe outcomes of trail of an

experiment.

Definition
An experiment is a phenomenon to be observed aiogpta a clearly defined procedure.
Probabilities are numbers between 0 and 1, inctushat reflect the chances of a
particular physical events occurring. If a die asged once, the possible outcomes are
1,2,3,4,5,6, le2 = {1,2,3,4,5,6}. Then®2 is a set consisting of all possible outcome of
tossing a die once. This set is given a name ciilied a sample space.
Example 1.1
Write down the staple space for each of the follmpexperiments
() Toss a coin 3 times and observe the total numbkeeads
(i) A box contains 6 items of which 2 are defectivese@em is chosen one after the
other without replacement until the last defeciteens is chosen. We observe
the total number of items removed from the box.
Solution
() Possible outcomes are: number of heads is 0 whedmawe TTT, number of heads
is 1 when we have HTT or THT or TTH, number of he&l2 when we have
HHT, THH, HTH and number of heads are 0,1,2,3.ddethe sample space
={0,1,2,3)
(ii) Total number of items removed is 2 if we have “tinst is defective (D) and the
second is defective D (Note that the total numldeteons removed can not be

0 or 1) denoted by DD. The total number of itemsiaoeed is 3 if we have
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GDD or DGD (where G denoted good item), and soltws, the sample space
Q={2,3,4,5,6}
Definition 1.2 Event
Any subset A of a sample spaRes called an event, where A
Example 1.2
The following are examples of events
() An odd number occurs when a die is rolled once
Q={1,2,3,4,5,6}, A={1,3,5}
(if) Toss a coin 3 times, the total number of headsrabdas even
Q={0,1,2,3} A={0,2}

Definition 1.3 Trial of an Experiment
A trial is a single performance of an experiment
There are basically two methods for assigning driitias to events. These are
() Relative frequency approach
(ii) Classical approach
() Relative Frequency Approach
If we are interested in the occurrence of an eyenwe could perform a large
number of trials and define the relative frequeot as

RF(a) = Number of trials in which A occurs

Total number of trials

The ratio RF(A) is called the empirical probability the number of trials is very large
RF(A) will (in most casesO tend to a particularueatalled the probability that the event
A will occur, that is RF (A) is an estimate of P(Ahe probability that A will occur.
Example 1.3
Suppose we are interested in the occurrence of ashén we roll a well balanced die
(fair die) the die is then rolled 100 times and “@ppeared 15 times. The relative
frequency of “6” is thus 1Wvhich is the empirical probability of getting 6

100

(ii) Classical Approach:
12



In the above example, there are six ways the didatwhen it is rolled once.
So we can define a theoretical probability by

P(6) = number of ways of getting a “6” when rdlience= 1

Total number of possible outcomes when rolleckdh
The classical approach to probability gives
P(A) =nA
nQ

This definition is valid only when outcomes are altyulikely.

Example 1.4
A coin is rolled thrice. The possible outcomes assiito be equally likely are
Q= {HHH, HHT, HTH, HTT, TTT, TTH, THT, THH}
Let A be the event that 2 heads occur. Then
A = {HHT, HTH, THH}
nQ=8,nA=3
hence
P(A)=3
8
This classifiableapproach when applicable (the iptss®utcomes are equally likely) has
the advantage of being exact. Thus to compute laapitity by using the above definition
one must be able to count.
(i) nQ the total number of possible outcomes in the sarspace and
(i) nA, the number of ways in which event A can occur
equally like outcomes are also called equally pbtdautcomes. If an event cannot occur
its probability is O, if it must occur its probabylis .
the computation of nA and € is easy ifQ has only a few possible outcome, as the
number of possible outcomes becomes large, thidhadebf counting all possible
outcomes are cumbersome and time consuming.
Alternative methods of counting must therefore beedoped. For example if one asks

for the probability of getting sum of humbers shogvito be 30 when 7 dice are rolled
13



one must determine how many different ways areiplest get the sum to be 30. Such
possible ways include

(6,6,6,6,2,1,3) (2,5,2,6,6,3), (4,4,4,4,4,4,6)
In this chapter weintroduce nontechnical discussriechniques of mathematics of

counting frequently needed in problems of findidgand nQ

Exercise 1.1
1. Adieis rolled once. What are the probabilitiegefting
(1 An even number
(i) A prime number
(i)  An off prime number
(iv)  An odd number
(v)  An even number
Fundamental Principle of Counting
First Law of Counting
If an event A can occur in nways and thereafter an event éan occur in xnways,

“both A; and A can occur in this order inym, ways.

Example 1.5
Roll a die first and then a con
A can occur in 6 ways (1,2,3,4,5,0r 6) andcAn occur in 2 ways (H or T).
Thus, by the above law, there are
6x2=12
Possible ways for the outcomes

The outcomes are

a,H) @, (5, H) (5,1
(2,H) (2,T) (6,H) (6, T)
3,H)@E,T) (4, H) (4,T)

In general, if an eventAcan occur in pin different ways and if following this an event

A, can occur in ndifferent ways, and if following this second eveah event A can
14



occur in n different ways and so forth, then the evenisaAd A and A.... And A, can
occur in this order inym, _n, ways.
Example 1.6
If a die is rolled 10 times. Let 8lenote the outcome of the roll, i= 1,2 ,.... 1Q.dan
occur in 6 ways.
Thus thenumber of ways;AA,,.... And Ay can occur is J@possible outcome.
That is
N Q=67
Second Law of Counting
If an eventA can occur in pdifferent ways and an event &an occur in aiways then

either A orA, can occur in p+n, different ways.

Example 1.7
Let us toss a die or a coin once. leha the event “the die shows an even number and a
be the event “the coin lands heads’.can occur in 3 ways (2, 40r6) angilGan occur
only ocne.
\the number of ways in which an even number oraaltiee obtain is
3+1=4
A can occur in 3 ways Acan occur in 1 way
Therefore A or A, can occur in 4 ways
In general, if events AA,....,Ac can occur in n...n different ways, then either or,A

+ m, +... + ncdifferent ways

Example 1.8

Four people enter a restaurant for lunch in whiedré are six chars. In how many ways
can they be seated.

Let A;, Ay,A3 A, denote the events “choice of chair by the fourpbe the suffix
denoting order of seating. The first person taleivn has six choices. He can decide tosit

on any of the six vacant chairs. Therefore, theee6adifferent ways Acan occur, after
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the first person has seated, the second persositcan any of the remaining 5 chairs.
Thereafter the third person can sit on the remgidichairs.
Thus, using the notation of law of counting
N,=6,n=5n=4n=3
6 X 5 x4 x 3 =360 ways

They can be seated .
Example 1.9
How many 4 digits numbers can be formed from thgtslio,1,2,3,4,5 if the first digit
must not be 0 and repetition of digits are notvaid.
Let A;, Az Az, A4 denote mthe eventsSElECt the first second, third and fourth digits
respectively.since the first digits can not bel® first digit can e either 1,2,3,4, or 5
therefore A can occur in 5 ways, having chosen the first digit second digit can be
selected from the remaining 5 digits. there thst fand second digits have been chosen,
there remains 4 digits. The third digit can be emoBom the remaining 4 digits and the
fourth can be chosen from the remaining 3 digitser&fore,A, A,, Az and Acan occur
in 5,5,4,3 ways respectively
Thus there
5 x5x4x3 = 300 numbers
Example 1.10
Ten candidates are eligible to fill 4 vacant positiHow many ways are there of filling
them?
Let A;,A,, Az A4 be the events denoting candidates that fill pms#til,2,3,4 respectively.
Candidate filling position 1 can be any of the teardidates, therefore,Aan occur in
10 ways. Following this, the next position 2 canflled by any of the remaining 9
candidates since position 1 had been filled by caraidate. Therefore Acan occur in
ways. Similarly, A and A, can occur in 8 and 7 ways respectively. Thus theze
10x9x8x7 = 5040 ways
Exercise 1.2

1. A student is to answer all the five questions ineaamination. It is believed that

the sequence in which the questions are answergchawe a considerable effect
16



on the performance of the student. In how manyesffit order can the question
be answered
2. If awoman has 10 blouses and 6 skirts, in how nvaanys can she choose a dress
assuming any combination of blouse and skirt matche
3. In a study of plants, five characteristics are #® dxamined. If there are six
recognizable differences in each of four charasties and eight, recognizable
difference in the remaining characteristics. Howngnplants can be distinguished
by these five characteristics?
4. A bus starts with 6 people and stops at 10 diffestaps.how many different ways
can the 6 people depart if
() Any passenger can depart at any bud stop
(i)  No two passengers can leave at the same bus stop
5. Show that the number of ways of choosing r objdcten n objects with
replacement is given by n”
Permutation and Combination
A permutation is an arrangement of objects in andeforder (called ordered sample). A
combination is a selection of objects without relg@rorder (unordered sample)
A group of objects, with regard to permutation andhbination has three characteristics:
1. The way the objects in a group are arranged
2. The kind of objects in the group

3. The number of objects of each kind in the group

1.2permutations:
Suppose that a set contain n objects. We are ofterested in arranging the objects in a
definite order.
Two groups containing n object are said to fornfedént permutations if they differ in
arrangements
Consider groups of letters a, b, c, d.
(a, b, c,d): (b, c,d,a): (c,a,d,Db)

17



They are all different permutations because thangement of the letters is different in
each group.

Example 1.11

How many permutations of four letters can be forimech the letter a, b, c, d.

To answer this question we reason as follows:

Since are permuting 4 letters, four events areluagh Let A be the events denoting the
letter to occupy the ith position.;Acan occur in 4 ways, that is the first letter d@m
either a, b, c, or d. after this event has takexeyl A can occur in three ways (that is,
after having chosen the first letter, the lettecuguying the second position can be chosen
from the remaining three letters. After the secemdnt, there remains only two letters
from which one is to be chosen tooccupy the thositpn. So Ais 2 and it remains only
one letter.

A, can occur only in one way. Thus, there are 4 x23xx1 = 24 permutation of the four
letters. Permutation of four objects from four abgeis called permutation 4 and is
denoted byP,

Permutation of n Distinct Objects

Consider a set consisting of n district objectsngation of this set consist of n events
A, A, ....A,, where the object occupying the ith position is tutcome of A | = 1,
2,.....n A  can occur in pways, A can occur in n-1 ways and so on.

Thus there are n(n-1) (n-2)... x 3 x 2 x 1 permutaid the n objects. The number of

permutations of n distinct objects is n!.

Example 1.12

If n balls are distributed at random into r boxadjow many ways can this be done if
() Each of the balls can go into any of the r boxes
(i) No box has more than one ball.

Solution
() Let Aq, As....A, where the object occupying the ith position is daécome of A |

=1,2,.....n. A can occur in nway, A, can occur in n-1 ways and so on.
18



(if) The first ball can go into any of the r boxes, seeond any one of the remaining

(r-1) boxes etc, so in all there are r (r-1) (r-2Jt-n+1) different ways (n ).
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Example 1.13
How many permutation of three letters can be foriineth the letters a, b, c, d, e. abc,
bae, cba, cdb,..... are few of the required pernmartatince the permutation consist of 3
letters, 3 events are involved,;,AA, As. The first letter can be any of the 5 letters,
therefore A can occur in 5 ways. SimilarlysAan occur in 3 ways. Thus, there are
5x4x3=60
Permutation of three letters from 5 letters. Thidénoted byP; (5 permutation 3).
Definition 1.4
The number of permutation of r (r g) objects from n district objects is calléd
permutation r and is denoted Ty
It can easily be shown that
P, =n(n-1)(n-2)...(n-r+1)
to see this we can argue as follows. Since we aneytting r objects, there are r events
A1, A,.....Azinvolved.
The first position can be occupied by any of thehpects, following this the second
position can be occupied by any of the remainiry ebjects and so on. Thereforg, A
A, A, can occur in n, n-1, n-2, ...n-(r-1) ways respetyivethus the number
ofpermutation is
n(n-1)(n-20...(n-r+1)

But

n!'=n(n-1) (n-2)...(n-r+1) (n-r)(n-r-1)...1 (31D.

(n-N!' = (n-r)(n-r-1)...2.1
_n!' =n(n-1)(n-2)...(n-r+1).
(n-r)!

20



Therefore
"P=n(n-1) (n-2)...(n-r+1)
"P=__n!
(n-r)!
In example 1.13 above,n=5,r=3
P;=__ 5! =51=5x4x3=60

(5-3) 2

Example 1.14
A group of students consist of 5 men and 3 womée. Students are ranked according to
their performance in a quiz competition. Assumingwo students obtain the same score

(i) How many different ranking are possible?

(i) If the men are ranked just among themselves anavtidmen among themselves,
how many different rankings are possible?

Solution

(i) A possible ranking corresponds to a permutatiothefstudents. The number of
possible permutation of the 8 students gives thebmu of different ranking
possible. Thus the answer is

®Pg=__8! =8!=140320.
(8-8)!

(i) There are’Ps = 5! = 120 possible rankings of the men &Rgl=3! = 6 possible
rankings of the women. It follows from the fundar@mprinciple of counting
that there are

°Ps x ®P; = 5! X 3! = 72- possible rankings
Example 1.15
Four digits numbers are to be formed using anyefdigits 1, 2, 3, 4, 5, 6, (No repetition
of digit is allowed).

(i) How many four digit number can be formed

(i) How many 4 digit numbers greater than 3000 carolbradd?

(i)  How many 4-digit even numbers can be formed?
21



(iv)  How many of these even 4-digit numbers are grehaser 30007?
Solution
(i) This is permutation of 4 digits from 6 digits. Thtare the different permutation is

°P, = 6! =360.
2!
Alternatively, we can reason as follow:

The first digit to be selected can be any of thegiven digits, so n= 6. The second
digits to be select can be any of the remaininggisd(since no reparation is allowed) so
n, = 5. Similarly, R = 4 and p= 3. Thus, the answer is

N XmXmxn=6x5x4x3=360

(if) Since the number must be greater than 3000, thtedigit must be chosen room 3,
4,5 or 6 so n= 4. The second digit can be any of the remaibimigits, so B
=5 similarly, i = 4, n, = 3. Thus, there are

4x5x4x3=240
4 digit numbers greater than 3000 that can be fdmasing the digits 1, 2, 3, 4,5, 6,

(i) A number can be defined to be an even number ofatedigit of the number
is even. Going by this definition, we see thatrguired number is even if the
last digit is 2,4, or 6. Since there is a restoicton the last digit. We have to
select the last digit first. The last digit can smdected from 2,4 or 6, so we
have 3 choices. Having chosen the last digit, we maw select the first,
second and third digit. After chosen the last digfitere remains 5 digits, s n
= 5 similarly, B = 4,5, =3. Thus, the answer is 5x 4 x 3x 3=180

(iv)  The last digit must be 2, 4 or 6 and the firstdigust be 3, 4, 5or 6. If the last
digits is 2, then the number of ways of selectimgfirst digit is 4. However, if
the last digit is selected is 2 or 6 the numbewvays of selecting the first digit
is 3 (thatis 3,5 or 6, 3, 4 or 5)

Case 1. =1n=4n=4,n=3

The number of 4 digits numbers that can be formetis case is
4x4x3x1=48

Case Il: n=2,n=3n=4,n=3

22



The number of 4 digit numbers that can be formeitiismcase is

3x4x3x2=72
Hence, the total numbers of even 4 digit numbeesatgr than 3000 that can be formed is
48 +72= 120.

Example 1.16
The letters A,B,C, D and E are placed at randorfotm a five letters word (without
repetition). How many ways can a word be formecddbhat
(i) D directly follows A.
(i) A and D follow each other
(i) A, D and E follow each other
Solution
() For D to directly follow A, we must always have Adppearing in the word so
formed AD can be regarded as a letter so that we lreve the letters B,C E
and AD. The number of ways of rearranging tehse foaw letters is 4! Thus
there are 4! = 24 ways of forming a word such thairectly follows A
(i) A and D follow each other; either we have AD or &eh having 4! Ways. Thus
there are 2x 4! Ways of forming a word such thatrd follow each other
(if) ADE can be regarded as a letter so that we now Hawvdetters B.C ADE.
There are 3! Permutation of the new 3 letters. Alak also be permuted in 3!
Ways, that is
ADE, AED, DAE, DEA, EAD, EDA.
Thus there are
3! X 3!I'= 36 ways
Permutation of Indistinguishable Objects
Consider n objects wherg are of type 1, of type 2,.... Nof type k. ,in shown many
ways can the n object be arranged.
For example in how many ways can the letters ofatbed book be arranged. here n= 4, k
=3, n=1, n=2, = 1. First give the two O’s suffixes fmk. then treating the O’s as

different, the 4 letters may be arranged in 4! Wdgsevery distinct arrangement, the
23



20’s may be rearranged amongst themselves in 25\W@hout altering the permutation
for instance ¢ook are the same when the suffixes are removed.
Therefore, the number of permutations of the Isttéithe word book is

41=6

2!

Book, ookb, oobk, obok, okob, koob.

In general, the number of ways in which n objedtere i are of type 1, nof type 2...,
n, of type k can be arranged is given by

ntng 2. K
n!Inol...ng!

Example 1.17
How many distinct permutations are there of thietstof the word Television?
The ten letters to be permuted consist of 2e’s,1di; |, v, s, 0, n. thus the number of
distinct permutation is
10! =10!
212t1r1r1rararar 212!

1.3Combinations

Definition 1.5

Two groups are said to form different “combinatiaghthey differ in the number of

any kind of object in the groups. Consider a graip4 letters a, b, c, d. the
combination abcd, bcda, cadb are identical comionateach of them contains the
same number of a, b, c, d: one b, one c and one d.
The combinations of the 4 letters taken 3 at a anee

Abc, acd, abd, cbd
Therefore, there are 4 distinct combination foeéhletters from the four letters. Each

of tehse combinations has 3! = 6 permutation. Rstance.

abc = abc, acb cab <cba bac bca
acd = acd adc cad <cda dac dca
abd = abd adb bad bda dab dba
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cdb = cbd cdb bcd bdc dbc dcb
The number of distinct permutation‘R,=24
The number of distinct combinations is 4.
Therefore.

Number of combinations = number of permutations

3!

The number of distinct combination of 4 objectsnt&kat a time is denoted B
Thus,

4C3 :4P3/3!
In general,
"C,="P/r'=_n!

(n-n)!r

Theorem 1.1

The number of distinct combinations of n objectetar at a time (that is the number
of ways of choosing r objects out of n, disregagdander and without replacement) is
given by

Proof:

There aréP, = n!

(n-r)! permutations of n objects taken r atraeti If we disregard
order among the r objects, there are r! permutatioat will give the same
combination. Therefore the number of combinaticghe number of permutation
divided by r! thus.

"C,="P=__n!
r! (n-n)!r!
Example 1.18
A club consist of 15 members. In how many waysaanmmittee of 3 to be chosen?
Solution
This can be done iTC; ways

1°C;= 15! =15x7x13 = 455 ways
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3! 12! 3

Example 1.19
A club consist of 10 men and 5 women, in how maraysvcan a committee of 6
consisting of 4 men and 2 women be chosen. Thertagar be chosen from the 10
men if°C, ways, the 2 women can be chosen from the 5 wom&@,iways. Hence
the committee can be chosen in (by the fundamentatiple f counting)
Yc,x°C,=100 X 15! =2,100 ways

64! 213!
Exmaplel.20
Suppose we have a box containing n balls of whieer black and the remaining
white. A random sample of size k is selected witlreplacement. In how many ways
can the sample be selected such that it contditeck balls
The x black balls can be selected@ways and k-x white balls n be selected from n-
r white balls. Thus, there are

'Cy X"'Cyr

ways of selecting a sample such that it contaibggk balls and k-x white balls

Example 1.21
A committee of 4 men and 2 women is selected fr@nme&n and Swomen. If two of
the men are feuding and will not serve on the cdtemitogether, in how many ways

can the committee be selected

Solution
The number of ways of selecting 4 men and 2 worsen |
%, x°C, =2100
The number of ways of selecting the committee sihett the two men are in the
committee is
®C, x °C, =280
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Hence, the number of different committees thatlmamormed such that the two men
are not in the committee together is
2100 — 280 = 1820
Another method is to consider 3 cases
Casel The two men say, A and B are not in the committee
8C4x °C,= 700
Case II: A is the committee but not B:
#C4 x °C,= 560
Case lll: B is the committee but not A
¥C4 x °C, = 560
Thus, the total number of ways the committee casebected is
700+ 560+ 560 = 1,820
Example 1.22
How man subsets can be formed, containing at keastmember from a set of n

element

Solution
There are"C, subsets of size k that can be formed, the totahbmw of subsets

containing is least one member is

Example 1.23
A student is to answer 5 out of 8 question in aangration. How many if he must

answer at least 2 of the first for 4 questions?

Solution

() By the combination law the answer®af; = 56

(i) Possible choices are (2,3) (3,2) (4,1) where (/8ans answer 2 questions from
the first 4 questions and 3 from the remaining dsgions. The number of ways
of doing this is'C, x “Cj,

Thus the answer is
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(*Co X"Ca) + ("C3x 'Cy) + (*C4 x *Cy)= 52

1.4Partitioning
Dividing a population or a sample of n objects iktordered parts of which the first
contain r object, the secongd @bjects and so on is calledtdered partition.If the
division is into kunordered parts, then the partition is said to be unordered. For
example suppose a class contains 15 students amchateto divide the class into 3
tutorial groups of 5 each. Three lecturers arelabks and each is to take each group.
In otherwise, we want to divide the 15 students Bitordered groups (A,B,C) this is
an ordered partition since there are
3! = 6 ways
The lecturers can be assigned to take any partittwrinstance groups (A, B, C) can
be taken by
(L1, Ly, Lg) or (Ly, Ly, Lg) or (Ly, L3, L)
Or (Lp, Ls, Ly) or (Ls, Ly, Ly) or (Lg Lq, Ly)
Where Ly means lecturer | ad (LL,, L3) means L takes groups A, 1takes group B,
L5 takes group C and so on
There are™Cs ways of selecting those students those studentsti group A,
following this, there are 10 students left andlseré are°Cs selecting those to be in
the second group, therefore by the fundamentatiplim of counting, there are
®Csx%Csx°Cs=__ 15! X __ 10! X5!=_ 15!
10! 5! 5!l 5! 5I5!5!

Ordered partitions. The number of ways in whiclbjeot can be divided intordered

parts of which the fist contains objects the secondabjects and so on is

n n-r n-rl-r n-rl-r2-...-rk-
Crl- 1Cr2. 2Cr3... rk

nt__ . (nA! (N-g-r))!  (N-n-rp...Mcay -_n!

(n-r)'rd RI(N-re-rp))! ()N ri-ro-r3)! - R (N-r-ro...rea-n)t radeolrsl..n!

Where n =1 +r+ ... + K.
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Example 1.24
In how many ways can three committees of five,dhaaed two persons be formed

from 10 persons.
We seek the number of ordered partitions of theeisims
This is given by
10! =2520

513121
Example 1.25
In how many ways can 9 toys be divided among thhéldren if each gets 3 toys
If the toys are numbered 1 through 9, the partif{d@n2, 3), (4, 5, 6), (7, 8, 9}) means
child A gets toys 1, 2, 3 child B gets toys (4,)5ubile child C gets toys 8, 8, 9. We
distinguish between {(1, 2, 3), (4, 5,6) (7, 8, @id {(4, 5, 6), (1, 2, 3), (7,8, 9) so
these are ordered partitions. Thus there are

_ 9! =1680 ways

333!
When g = 1; for | = j, we can distinguish between ordered andrdered partition for
example partition a set consisting of 8 objects Inerad 1 to 8 into 3 parts of which
the first contains 2 objects, the second 4 objactsthe third 2 objects. A patrtition is

{1, 2), (3, 4,5,6), (7, 8)}.
In an ordered partition we distinguish betweenghsition

{(1,2), (3,4, 5, 6), (7, 8)} and {(7, 8), (3, 8, 6), (1, 2)}
But they are the same for unordered partition. &foge, the number of unordered
partition is

8 . 1=210
2! 41 2! 2!

Example 1.26
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In how many ways can a family of 9 divide itselfdr8 groups so that each group
contains 3 persons?
Solution
We are seeking for unordered partitions 13, r=3 ;=3
The number of unordered partitions is
9l 1 =280

3! 313! 3!
Since the three parts contain the same numberjetisb
The same relationship that exists between pernoutaind combination exist between

ordered and unordered partition of a set.

Example 1.27
In how many ways can a family of 10 be divided itlicee groups, one containing 4
and the others 37?
Solution
R=4,r, =, =3
The number of ordered partitions is
10! =4,200
4! 3! 3!
And the number of unordered partition is
10! 1=2,100
413! 3! 2!

Since only two of the three parts contain the saomaber of objects

1.5Selection of Non distinct Objects

The number of ways r districts balls can be disted into n cells in r. the number of
ways if a specified cell contains exactly k baks=(0, 1,2...r) iSCy (n-1)

That is the balls can be chosen@ ways and the remaining r-k balls can be paced

into the remaining n-1 cells in (n‘¥)ways
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Now, suppose the balls are non-district (indistingghable) we can only talk about
number of balls in the"icells
Let X4, X»..., X, denote the number of balls in thecell, then
X+ X+ X =T
The number of distinct distribution in which nolagimains empty is
r-1Cn_1

to see this let us assume that the r non-distibgicts are lined by and bars used to
divide them into groups. The r balls r-1 space bicl n-1 are to be occupied by bars.
For example if r =9 and n = 5, we have

0N0NON0NONONONONO
Thus 0/00/0/000/00 corresponds to

Xi=1x=2,%=1,%=3, % =2.
And there aréC,possible distribution of the bars. another posgiléribution is

000/0/00/00

If x;> 0, that is cells can remain empty, the numberoofnegative solutions of

X1+ Xo +...4 X=r
Is the same as the number of positive solutions of

Yi+Yy+...+y,=r+n
Where y = x; +1. Thus, there are

" Cha (1.2)
Distinct solution satisfyingx+ X, +... + X, =r
The number of distinct distribution is the numbémays n — 1 spaces can be selected

out of the n + r-1 spaces

Application to Runs

Definition

A run is any ordered sequence of elements of twdsi

For example, by a run of wins we mean a consecudBguence of wins. The
sequence WWWLWWLLWLWW gives 4 runs of wins. Thesfirun is length 3, the

second run of length 2, the third of length 1 arelfourth of length 2.
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Suppose now that we have two letters (W and L)mdhistinct letters (L) and m non-
district letter (W). the total number of distinaiderings of W and L i§"™C, r runs
of W is equivalent to arranging the letters W intoells none of which is empty. If
there are r runs on W

The number of L run is necessarily r+ 1, r-1 oru§Hrom (1.1) we have™(’C,.
1distinct was of having r runs of W. hence there are

(M-, ,"VC, ways of having r runs of W and (r + 1) runs of 1...

A sequence representing r runs of W is

LL... WW..\W |LL... WW..W |... WW... L..L
Y1 X1 Y2 X2 X Yre

Where ¥ + Vo +... Y+ 1= N, > Xy + X+2+ +... + x=m, %> 0.

Letyy + 1, y=Vy,1=2, ..., V1= V1 + 1

The number of non-negative solution to
Yi Yot ...+ Y=, (y>0)

Is the same as number of positive solution to
Yityo+...+ V=N +2

Thus, the number of outcomes that result n r rafig iC,

Hence

"ic,™1€ | is the total number of ways of having r runs of W
Exercise 1.3

1. How many 4 digits numbers can be formed from thgtsl0,1, 2, 3, 4,5, 6, 7,8, 9
if the first digit must not be 0 and repetitionsaowed. how many of these
number are (i) even (ii) less than 5,000?

2. A code consist of five symbols. The first three s are letters and the last two
are digits. How many codes can be made if no letterdigit is repeated in any
code word?

3. Suppose n objects are permuted at random amongdéivas. In how ways can
this be done such that k specified objects occugydcified positions

4. How many distinctarrangements are there of therewf word (1) University (ii)
biology (iii) Mississippi
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11.

12.

13.

. The number 1,2,3... n are arranged in random ordemow many ways can this

be done such that
(1 Q and 2 follow each other

(i) 2, 3 and 4 follow each other in that order

. Show that the number of distinct ordered sampkaz# r that can be drawn from a

population with n objects is
0] N' if sampling is with replacement and

(i) nl if sampling is without replacement
n—r!

. A total of n balls are randomly placed into n celishow many ways can this be

done. In how many ways if each cell is occupied

. A warehouse has 6 different containers to be Oisted among 10 retailers. In

how many ways can this be done? How many way ifetailer receives more

than one container?

. Prove the following identities

a. "Cy ="Cpx (b) m+1c:x ="C +'Cya

10.(a) In how many ways can 4 boys and 2 girls benged to sit in a row?

(b) In how many ways if only the boys must sit tibge?

(c) In how many ways if the boy and no girl musttegether?

(d) In how many ways if no boy and no girl musttsgether?

In howmany ways can a football team be seletted 15 players. In how many
ways if 6 particular players must be included ia tham?

From a box containing 5 red, 4 white and 3 lblawarbles, three marbles are
drawn one after the other without replacement, hwamy ways can this be done if
(1) all are white (ii) 2 re white and 1 is redi)(at least one is black

A pair of dice is rolled once. In how many wags

(1) The sum of the two numbers appearing exceeds 8

(i)  The maximum of the two numbers is greatentéda

(i)  The minimum of the two numbers is greater than 4
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A disciplinary committee of four is to be chndeom six men and five women.
One particular man and one particular woman reftsegrve if the other person
is on the committee. How many committees may beéar

Eleven people are to travel in two cars- salod station wagon. The saloon has 4
sets and the station going 7 seats. In how mang way party be split up?

In how many ways can a committee of 6 composih@ full professors, 2
associate professors and 1 senior lecturer betsdlédmm 5 full professor, 10
associate professors and 20 seniors lecturers

A box contain 12 balls labeled 1, 2, 3... 12,pmge a random sample of size 4 is
selected. In how many ways can the sample be sdléicballs labeled 2, 3, are
among the four selected.

Suppose a random sample of size r is drawn &gmopulation of n objects. In
how many ways can this be done if k given objecstnine included in the sample
and (a) sampling is without replacement (b) Sangpnwith replacement

| bought 2 tickets to a lottery for which nkiéts were sold and 4 prizes to be given
in how many ways can the tickets be drawn suchlthén at least a prize?

A committee of 8 is to be formed from 10 cogg@0men and 10 women). In how
many ways can the committee be formed if no huslsemges on it with his wife.
Lines are drawn to pass through six pointhhdw many ways can this be done if
each line passes a through only two points?

Interchanges may occur between any two of ttler@amosomes of a cell

(@ In how many ways can exactly one intercharagpein®

(b)  In how many ways can exactly k interchangesid¢

(c) Ifn=5,in how many ways can at most thrgern changes occur?

Prove thaf™"2C, = "C,"°Ci. where k <nl, n2

HINT: Select k objects from;r+ n, obejcts of n of type 1 and nof typell

A company is considering building additionalr@faouse at new locations. There
are ten satisfactory location and the company rdastde how many and which

ones to select. How many choices are there?
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25.  Are there more samples obtainable in five driiars 10 objects with replacement
than 12 objects without replacement?
Each of fifty items is tested and found to be deecor non-defective. How many

possible outcomes are there?

MODULE TWO
UNIT ONE
ELEMENTARY PRINCIPLE OF THE THEORY OF PROBABILITY

In chapter 1, we considered some elementary metloddmathematics of counting
essential for determining probabilities of eveltsthis chapter, we continue our study by
discussing how to apply the knowledge gained irptdral to determine probabilities of
events and general properties of probabilities. pAsent some theorems and definitions

that are basic to the understanding of commonlpemiered problems.

Example 2.1

Suppose a fair die is rolled once. There are sssite outcomes. The sample space is
0={ 123456}

let A;, A, and A, represent the following events
A; = “an even number occurs”
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A, = “an odd number occurs
Az = a prime number occurs”

The six possible outcomes @ are equally likely. The probability that A occuss
denoted by P(A) and the probability that A does auxtur by P(K). if we let ny be the

number of outcomes that have attribute A, then

A ={24,6}
A, ={1,35}
A, ={235}
Thus,
P(A) :% =3/6=1/2 p(A)= g, P(A) :g
Example 2.2

Suppose that a box contains 10 items of which afective. Two items are selected at

random without replacement. Find the probabilities:
0] both items are non-defective (i)  only one it&adefective
(i)  both items are defective: (iv) atleast atea is defective
Let A, Ay, Az, A4, denote the events

“both items are non-defective

“only one item is defective”

“both items are defective”

“at least one item is defective”
respectively. The number of ways of selecting ehgdrom 10 is

°C, =45ways
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So there are 45 elements in the sample space.

0] The number of ways of selecting 2 items from the-defective items i8C, = 15.

That is A can occur in 15 ways. Thus.

6¢c na 15
P(Al): 10;2: n—le E: 1/3

(i)  The number of ways of selecting 1 item frone #hdefective items and 1 item

from the 6 non-defective items &€, x °C, = 24 so, A can occur in 2 ways.

Thus,
‘e x oc 24 8
P(Az) :11—0(:'21 = E = E
Similarly
A 6 2
(i)  P(A3) = = —= —

10¢, 45 15

(iv) At least one defective means 1 or 2 defediiems. So,

P(As) = P(1 defective item) + P(2 defective items) AP P(As) :% + % = 2/3.

Example 2.3

Suppose a fair die is rolled twice. Find the pralitgithat the sum of the numbers on the

two faces is (i) even, (ii) less than 5.
The sample spad®, consists of 36 elements.
) Let A be the event “the sum of the two faceeven”. Possible outcome are:
1,1) (1,3) (1,5 (2,2 (2,4) (2,6),...
3,1) (5,1) 42 (6,2),...
A can occur in 18 ways. Thus,
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P(A) :g = 1/2

(i)  Let B be the event “the sum is less than 5’o&urs if the sum is 2, 3, or 4. The
sum is 2 if the outcome is (1,1) the sum is 3 & tlutcome is (1,2) or (2,1) and the

sum is four if the outcome is (3,1), (1,3) or (2,Pherefore B can occur in
1+2+3=6ways

Thus

P(B) === 1/¢.

Example 2.4

3 balls are drawn at random with replacement frdm»acontaining 8 red and 3 white
balls. Find the probability that (i) all 3 are réd) 1 is red and 2 are white.

The sample space consists of phssible outcomes. Let A be “the evet all 3 ac® end

B the event “1 is red and 2 white”

PA) =2 = &

nA 83
nQ 113

(The first red can be chosen in 8 ways the seco®dways and the third Red in 8 ways).

P(B) ==, nB = 8,3.3+3.8.3+3.3.8

Q!
(8 x 3 x 3) = number of ways of picking the firgtlte red, second white and third white

(RWW), 3 x 8 x 3is for WRW and 3 x 3 x 8 is for WR)N Thus

_3.833
113 °

P(B)
2.1  Properties of Probability

Definition 2.1: Mutually Exclusive events

Two events Aand A are mutually exclusive if an only if
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AN A = ¢ for every i# .

That is, two or more events are mutually exclugive two of them have points in

common. In example 2.1
A ={2, 4, 6}
A, ={1, 3, 5}
AN A, = o,

Therefore A and A are mutually exclusive events.

Definition 2.1

If A, and A are any two events,M A is the event that occurs if and only if both A

and A occur. In general, if AA, ..., A, occur.

In example 2.1. AN Ao Az is the event that an even prime occurs.
AN Az = {2}

Thus

1
P(A,NAy) = .

The event AN Az is the event that an odd prime occussiA; = {3,5}.

Thus

P(AN Ay) =

(s ]

Complementary Event
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The event “A occurs” and “A does not occur” are uality exclusive. The event “A does

nt occur” is called the complement of A and is deddy A,
Theorem 2.1

If ACis the complement of an event A, then B(A 1 — P(A). This theorem states that the
probability that an event will not occur is equallt minus the probability that it will

Ooccur.

In example 2.2 (iv); The event “no defective iteim'the same as the event both items are

non-defective”.

From Theorem 2.1, we have

P(A)=1-P@§) =1-P(4)=1— 7=

wl | e

A,f = A; since the event “no defective item” is the samthasevent” both items are non-

defective.

The following events are complementary events
(1 at most 2 and greater than 2

(i)  atleast 4 and less than 4.

Definition 2.2

If A, and A are any two events,;AJA, is the event that occurs if t least one gfadd

A, occurs.

In general, if A, A,,..., A, are any events, N A, is the event that occurs if at least one

of A;i=1, 2,..., n, occurs.
In example 2.1, the eventlBlA; is the event that an even or a prime number occurs
A]_ L A3 = {2, 3, 4, 5, 6}
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Thus

n(Au4;) _ 5

nil 4]

P(ALU A, =
The event AUA, is the event that an event or an odd number occurs
A1UA2 = {1, 2, 3, 4, 5, 6} =Q,

thus

L

P(ALUA)) = PQ) = e 1.
Theorem 2.2
If A, and A are any events, then

P(ALUAZ) = P(A) + P(A) — P(AINA,).

The proof of this theorem follows directly from tdefinition

nid, U4y
il

P(A,UA,) =
dividing through by @ the result follows.

Corollary

0] If A, and A are mutually exclusive event then
P(AUA?) = P(A) + P(A)
since A and A are mutually exclusive,
AAnA=¢
hence
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P(Ag_ n Az) =0
(i) If Apand A are any two events
P(ALUA2) < P(A) + P(A)

In Example 2.1 above,
P(ALU Ag) = P(A) + P(A) - P(Ay N Ag) = 4 5 — 2=2.
(i) If A and B are any two events defined on gamnple space then
P(A) = P(ANB) + P(ANB®)
P(B) = P(AB) + P(A’NB)
In general, if A, A,,...A, are any n mutually exclusive events, then

P(AU AU...U A= P(A) +...+ P(A).

Theorem 2.2 can be generalized for n > 2 eventariteasily be shown that for any 3
events A, Az, A3

P(ALU AU Ag) = P(A) + P(Ag) + P(Ag) - P(A N Ay)
- P(AIN Ag) — P(AN Ag) +...+ P(A).
To see this, let B = U A,, then
P(A U AU Ag) = P(BU Az) = P(B) + P(A) — P(BN Ay)
P(B) = P(A) + P(A) + P(A) — P(AN A7)
P(B N Ag) = P(AsN B) = P{(AsN (AU A2} = P{(A3sN A U (AsN Ap)}

= P(AsN Ay + P(AsN Ap) + P(Asn Ag) — P(ALN AN Ag)
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(by theorem 2.2). thus
P(ALU AU Ag) = P(A) + P(A)) — P(AN A2) + P(Ag)
- P(AiN Ag) = P(AN Az) + P(AN Az Ag)
Note:
AU AU Az is the event that at least one of them will occur.

Definition 2.3

Two or more events are said to be exhaustive if threon equals the whole sample

space. In other words,1AA,,..., A, are exhaustive events if
PAUAMU...UA)=1
In other words it is certain that at least onehefm will occur.

Note:

1.  0<PA)<1

2. PQ) =1.

3. For an sequence of mutually excusive everid4...
P(UZ14;) = L2, P(4)).

Examples:

2.5 A box contains 6 balls numbered 1 to 6. A baé drawn from the box at random.
Find the probability that the number on the badlvdn was either 1, 2, or 6.

Solution

43



2.6

2.7

2.8

Let A;, Ay, A; denote the events that the ball drawn was 1, 26arespectively.
A1U AU A; denote the event the number on the ball drawneithsr 1, 2 or 6.

A1, A, and A are mutually exclusive events. Thus
P(AlU AU Ag) = P(A) + P(A) + P(Ag)

=1/6 + 1/6 + 1/6 = 12.

Four fair dice are tossed once, what is théadriity that the sum of the numbers

on the four dice is 23?
Solution
The possible outcomes to get 23 are
(6,6,6,5), (5,6,6,6), (6,5,6,6), (6,6,5,6).
The sample spad@ consists of elements.

Therefore, the probability that the sum of the narsbon the four dice is 23 is

416",
If P(A) = 2/3, P(AN A,) = Ya and P(AU A,) = 5/6, find P(A).

Solution

From the addition law of probability
P(AU Az) = P(A) + P(Ag) —P(ALn A)
We have
P(Ay) = P(ALU Ay) P(Arn Ay) — P(A)=5/6 +Y%-2/3=5/12.

Suppose a fair on is tossed three times, wghhei probability that at least one
head occurs?

Solution
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2.9

2.9

2.2

Let A; be the event that the first toss lands headshé event that the second toss
lands, and Athe event that the third toss lands heads.

A1U AsU Az is the event that at least one head occurs.

We are required to compute B(AA,U As) The complement of AJ A,U Az s
A n A n A That is, the first does not land heads, the stdoes not and the

third does not.

ACnALNAS ={T, T, T}
Thus

P(A n A" n A = 1/8.
Hence

P(AlU AU A3) =1-1/8=7/8.

If A,C A, then P(A) < P(A)
Ar = AU (AJAY).
Since A and A/A; are mutually exclusive, we have
P(A) = P(A) + P(A/A1)> P(Ay)
Since P(A/A,) > 0.
If A, As,..., A, are n events, then
P(Uft14;)" = P(U1 4,°)
From de Morgan’s law, we have
(Ui=: Al]c =Mz A
hence

P(U?:1A1]c =P(Uz14:%)

Conditional Probability

The conditional probability of an event A giventtlam event B has occurred is denoted

as P(A|B). the word “given” is represented by tipeight stroke. We wish to determine
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the probability that an event A will occur “conditial on” the knowledge that another
event B has occurred.
Suppose a fair die is rolled and it is known thaesen number appeared uppermost. Let
A be the event that the number was greater thamd3Bathe event that the number that
appeared was even. The problem is to find the tiondi probability that the event A
occurred given that the event B has occurred, B(AjBce we know that the number was
even, the number must be either 2,4 or 6. Thereftbre conditional sample space
contains 3 elements. The event A occurs if the rermmbhowing is 4 or 6, thus

P(A|B) = 2/3.
We can therefore define conditional probabilityfofiven Bas the number of ways AnB

can occur divided by number of elements in the tawhl sample space. That is,
n{ANB

P(AIB) = ==

Whereniz# 0, whereQg is the condtional sample space given that B hasroed.

Divide the numerator and denominator &y n

nlAnE)
nlg _ P(AnB

nB A "
—_— P(B
nilg (&)

P(AlB) =

In the above example,
NnANB)=2
nB) =3
Definition 2.4
Let A and B be two events such that P(B) > 0. Ttien conditional probability of A

given B, denoted by P(A|B) is defined to be P(A#B’;E% 2.2

Examples
2.11 Suppose a box contains 4 red balls and 3 Iblakik Compute the probability that
(1 the second ball drawn is red if the first balawn was red; without
replacement,

(i)  the second ball drawn is red if the first lddawn was black
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2.12

Solution

If the first ball drawn is red, there remains 6l9aB red balls and 3 black balls.
The probability of the second ball being redéts: . But if the first ball is black,

the box is left with 4 red and 2 black so the pholitg of the second ball being red
is then 4/6 = 2/3. Thus

P(29is reffirst was red) = 3/6/ = %2
P(29is red/ first was black) = 4/6 = 2/3.

This shows that the probability of the event “tkeand ball drawn is red” depends

on the colour of the first ball drawn.

Suppose two fair dice are rolled. If the surthe numbers appearing is 6, what is

the probability that one of the number is 2?
Solution

Let A be the event “one of the nhumbers is and Bstlma is 6. there are five ways
for the event B to occur: (3,3), (2,4), (4,2), (5abd (1,5) and there are two ways
for the event AnB to occur: (2,4) and (4,2).

Thus,

P(An B) = 236, P(B) =536
Hence,

P(AIB) :%: 2/5.
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2.13 There are two children in a family. If theseai least a girl in this family, what is

the conditional probability that both are girls.
Solution
The sample space is
Q={BB,GB,BG,GG}
Let A be the event “both children are girls andaBéast a girl in the family.
B = {GB, BG, GG}, A = {GG}, ANB = {GG}.

_ P(AnB) _14 _1

P(Al B) PE) 343

2.14 There are three children in a family. If theyeat least one boy and at most two
boys in this family. What is the conditional probayp that there are exactly two

boys in this family.
The sample space is
Q ={BBB, BBG, BGG, BGB, GBB, GBG, GGB, GGG}

Let B be the event “at least one boy and at mdxiy® in the family” and let A be

the event “exactly two boys in the family”. Then
B = {BBG, BGG, BGB, GBB, GBG. GGB}
ANB = {BBG, BGB, GBB}.
Therefore

P(A| B) = m:% :gzi_
P(B) 68 6 2
Exercises 2.1

1. A fair die is thrown twice.
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(1 If it is known that the sum of the numbers agmpeg was 8, what is the

probability that the difference between the two bens was 2.

(i) If it is known that the difference the two nbers was 3, what is the

probability that the sum of the two numbers was 7?
Two unbiased dice are thrown once. What is theability that
(1) at least one 5 is thrown.
(i)  the sumis 10
(i)  the sum is 10 given that no 5 is thrown?
Suppose events A and B are sun that P(A) =P(AnB) = 1/6.
Find (i) P(BIA); (ii) P(A"U B").

If A and B are two events defined on the sanwbglility space, show that: (i)
P(A) = P(ANB) + P(AN B°) = P(B) + P(AN B°) — P(A" N B).

Prove that P(AN B°) = 1 — P(A) — P(B) + P(A B).
Suppose a well balanced coin is tossed twice.
Find the conditional probability that

() both coins show a tail given that the first showsead;
(i)  both are heads given that at least one of thenhésad.

A red die and a green die are rolled once. Eiedcconditional probability that:

0] the number on red die is odd, given that then sof the two numbers

showing is 9;

(i)  the sum of the two numbers is 9 given that oh¢he numbers is odd and

the other even?
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2.3 Bayes Theorem

suppose a box contains r red balls and b blacls.b@ivo balls are drawn at random
without replacement. Assume that the probabilitydzfwing any particular ball is;.
Let A; be the event “the first ball drawn is red andAgtbe the event” the second ball

drawn is red. Then

r-1
r+b-1

P(Ai):rL-l-b’ P(A 1 A)=

o
r+b-1

P(a,1A°)

The probability of the eventAdepends on Aand A°.
That is A is equivalent to An A; N A;°
A, =A; N A, or AN A,.
Therefore,
P(A) = P(A N Ay + P(A N AL) = P(A) P(A) P(Asl A + P(AS) P(Axl AL°).
Theorem 2.3

If the probability of an event B, depends on k nalljuexclusive and exhaustive events
A, Ay +...+ A, then

P(B) = P(BN A) + P(BN Ay +...+ P(BN A)
= Z P(Bn Al):z P(A)P(BIA).

Example 2.15

Suppose a box contains 3 red balls, 2 black balis5agreen balls. Two balls are drawn
at random without replacement. Find the probabitigt the second ball drawn is red. Let

A1 be the event “the first ball drawn is red #he event the first ball drawn is black and
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A3, the event “the first ball drawn is green. Let 8the event “the second ball drawn is

red. The event B occurs if
(1 the first ball is red and the second is red or
(i)  the first ball is black and the second is med
(i)  the first ball is green and the second is.red
Thus
B=BNA;or BN A,or BN Az P(BIA,) =2/9, P(B A,) = 3/9,
P(BI As) = 3/9.
P(B) depends on AA,, Az which are mutually and exhaustive events. Theeegfor
P(B) = P(BN A;) + P(BN A,) + P(BN Ay)

= P(A) P(BIA) + P(A) P(BIA,) + P(A) P(BIA;) = 3/10.2/9 + 2/10.3/9 +
5/10.3/9

since P(A) = 3/10, P(A) = 2/10, P(A) = 5/10.
Thus

P(B) = 1/90 (6 + 6 + 15) = 27/90 = 3/10.

Example 2.16

Suppose a factory has three machingsMb, M3 which produce 60%, 30% and 10% of
the total production respectively. Of their outpotachine M produces 2% defective
items, machine Mproduce 3% defective items while maching produces 4% defective

items. Find the probability that a part selectechatiom is defective.
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Solution

Let B be the event “a part selected at random fiectige”. A defective item could have

been produced by either maching, Ml, or M. Thus
B=(BNM)U(BNM,)U([BN M,

Since (BN My), (B N My), (B N M3) are mutually exclusive events. The following

information is contained din the equation.
P(M) = 60% = 0.6, P(M) = 0.3, P(M) = 0.1
P(B|M) = 0.02, P(B|M) = 0.03, P(B|\) = 0.04
Hence
P(B) = P(M) P(BIM) + P(Mp) P(B|Mp) + P(B|Ms) P(Ms)

=(0.6 x 0.02) + (0.3 x 0.03) + (0.1 x 0.04) = ®G00.009 + 0.004 = 0.025.

suppose you are now asked, what is the probalili&g a given defective part was
produced by machine Mthat is, you are to find P(NB) =P (a part was produced by

machine M given that the part was defective).
NOTE:

1. P(M;| B)# P(B|My), but
2. P(Myn B) = P(BnM)

P(B) = Y. P(M, nB)

hence,

pM[E) = P(MiB) _ P(M)P(BIM,) -

> P(M,nB) Y P(M,)P(BIM,)
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Thus,

06x002 _ 0012 _

P(My|B) = = = 048
(MiJB) 0025 0.02F
03x003 0009

P(M,|B) = = = 036
(MeIB) 002F  0.02F

p(My[B) = 01X 004 _ 0004 _ o

0.025  0.02¢

Equation (2.4) is an example of Bayes theorem whiely be stated as follows.

Bayes Theorem

If Ay, As,...A, are set of mutual exclusive and exhaustive eviardssample spade and

B is any other event if2 such that P(B) > 0, then

palB) = TAPBIA) 15 25
> P(A)P(BIA)
Example 2.17

Suppose a college is composed of 70% male and 8@%lé students. It is known that
40% of the male students and 20% of the femaleestisdsmoke cigarette. Find the

probability that a student observed smoking a elgaris male?

Let M,F denote male and female respectively an@r®tbs smoker. The above problem

contains the following information.
P(M) = P(A student selected at random is male)7= 0.
P(F) = P(A student selected at random is femal@B=

P(S|M) = P(a student selected at random smokes g the selected student is male) =

0.4
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P(S|F) = P(a student selected at random smokes theaé¢ the selected student is female)
=0.2

By Bayes theorem, we have
P(M|S) = P(a student observed smoking is male)

= P(A student selected at random is male given thatselected student is a

smoker)

_ P(M nS)
P(S)

Where P(S) = P(a student selected at random i&esin
= P(SN M) + P(SN F) = P(M)P(S|F)
=(0.7x0.4) +(0.3x0.2)=0.28 +0.06 =0.34
Thus

P(M)P(S|M) _07x04 _ 028 _14
P(S) 034 034 17

P(MIS) =

Example 2.18

A table has drawers. Drawer 1 contains two redfamdblack biros, drawer Il contains
four red and three black biros and drawer Ill cot#aone red and six black biros. A
drawer is chosen at random and a biro is chosan fhe drawer. Find the probability
that

0] the biro chosen is black

(i)  the biro chosen is from drawer | if the chod®ro is black.

Solution
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Let P(i) denote the probability that drawer | ides¢ed (I — 1, 2, 3) and R and B

representing red and black biros respectively.

Then
P(1) =1/3, P(2) = 1/3, P(3),=1/3

P(B|1) = 5/7, P(B|2) = 3/7, p(B|3) = 6/7

From equation (2.3)
P(B) = P(Bnl) + P(Bn2) + P(Bn3) = P(1)P(B|1P®R2)P(B|2) + P(3)P(B|3)

(1)
= 1/3.5/7 + 1/3.3/7 +1/3.6/7 = 1/3 (5/7 + 3/7/7)6= 2/3.

P(1|B) = P(the biro chosen came from drawegilen that the chosen biro is

(ii)
black).

_P@nB) _P(Bnl) _ POPBIY _ 1.2
- - 2 14

P(B) P(B)

P(B)
Definition 2.5
Let A, B and C be three events such that P(C) thén the conditional probability of A

L1 B given C is defined by
P(AO BI|C) = P(A|C) + P(B|C) — P(AB|C).

Exercise 2.2
Suppose that a box contains 5 balls labeled5l tewo balls are drawn at random

1.
(one after the other without replacement).

What is the probability that
the sum of the numbers on the two balls selectetas?

(i)
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(i)  The number on the first ball drawn is even if ikisow that the sum of the
two numbers is even.

In a large population, it is observed that 3@ceet of the people that are black

have caner and 25 percent of the people are nck blave cancer. Assume that 10

percent of the population is black. What is thebaimlity that a person selected at

random and found to have cancer is not black.
A vaccine produces immunity against smallpo28rpercent of cases.

Suppose that, in a large population, 20 percente lBen vaccinated. Find the
probability that a person who contracts smallpog heen vaccinated, assuming
that a vaccinated person without immunity has #raes probability of contracting

smallpox as an unvaccinated person.

In a factory machines A,B,C produce respectifly 30 and 50 percent of the
total production. Of their output 3, 4, 5 perceespectively are defective items.
An item is drawn at random from the total productiand is found defective.
What are the probability that it was produced byhiae A, B,C?

In a faculty of a certain college, 60% of thedsints are female: 20% of the
females and 50% of the male are studying mathemdfi@a student data card is
selected at random and the student is found taumyiag mathematics, what is

the probability that the selected student is a fhale

In JAMB examination each question has 5 possiblvers, exactly one of which
is correct. If a student knows the answer he seli& correct answer. Otherwise
he selects one answer at random from the 5 posaiideers. Suppose that the

student knows the answer to 70% of the questions.

) What is the probability that on a given questtbe student gets the correct

answer?

(i)  If the student gets the correct answer to asgion, what is the probability

that he knows the answer?
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2.4

(i)  what is the expected score of the student in taeneation?
A television set retailer finds out that 80%this customers buy coloured T.V.,
and that 4 out of every 20 customers who buy celdur.V set also buy antenna.

Calculate the probability that:

(1) a randomly selected customer buys antenna

(i)  arandomly selected customers who buys arstdras bought a
colored T.V

(i) a randomly selected customer who has not bhoag antenna has bought a

colored T.V set.

In a factory, machines A, B and C produce 20,a88 40 percent of the total
output, respectively. Of their output 5,4 and 3cpet respectively are defective
bolts. A bolt is chosen at random and found to ledéective. What is the

probability that the bolt came from machine (i)i& B (iii) C?

Four percent of an article manufactured by apanmg are defective. All the
articles produced are regularly inspected and thmsed defective are rejected. It
is found that one out of every eight of defectiviicke produced is missed by the
inspector, while every good article passes inspaciiVhat is the probability that a

customer buys a defective article produced by dmepany?

Independence

The notion of independence is a basic tool of podibga theory. Consider tossing
a die twice, and let Abe the event that the first toss gives an evenbeurand A
the event that the second toss gives an even numberevent AN A, is the
event that both tosses give even numbers. The @rue of A does affect the

probability of A occurring.
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Therefore

P(AlA1) = P(A0) and P(AN Az) = P(A)P(Ag]Ar) = P(A)P(A).
Hence, we say that two events @&d A are independent if

P(A.N Az) = P(A)P(AY).
Example 1.19

Toss a fair die twice and let A be the event “tinst foss shows 3” and B be the

event the sum of the two numbers showing is 7.

P(A) ==

o
B={(1,6), (6, 1), (2, 5), (3, 4), (4, 3), (5, 2)}

] 1
P(B) :E = E

ANB = (the firstis 3and sumis 7) = {(3,4)}

Therefore,

_1
P(AN B) =2
Thus P(AN B) = P(A)P(B) hence, A and B are independent eszent

In general case of n events, we have the followlfinition.

Definition 2.6
The events A A,,...A, are independent if
() P(AIN Aj) = P(A)P(A) for all 1 #j

(i) PAN A N A = PAPAPMAY for all I, j, k such that i# | # k
2.7)
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(N-1) P(A N Ay N As... Ay = P(AP(A)P(A)...P(A)
That is, the events-AA,,...A, are said to be mutually independent if
P(Av Az And = P(A)P(An)...P(An)
For every subsequence of two or more events.
Ann Ano.. Ak is a subsequence of AA,... A, if the subscript integers satisfy
1<m<m.nc<n,
If n = 3, we have, A A,, A; are independent if
() P(AN A2 = P(A)P(A)
P(AiN Az) = P(A)P(Az)
P(A2 N A3) = P(A)P(Aq)
(i) P(ALN AN Ag) = P(A)P(A)P(As)

Condition (i) is called pairwise independent. Weghtithink that pairwise independence
always implies independence. But this is not newmdgsso, as illustrated by the
following example.

Example 2.20

Let a pair of fair dice be rolled once. Considke évents. Anumber appearing on the
first die is even, A= the number appearing on the second die is ddg3;75} and A; =
the difference of the two numbers is even

A1={(2, 1), (2, 2),(2,3),(2,4),(2,5), (2, 6%,1), 4, 2),..., (6,1), (6, 2),...}

A,={(1,1),(1,3),(1,5),(2,1),(2,3), (2, 58@a),...}

A:={(1,1),(1,3),(1,5). (2, 2), (2,4), (2, 68.1), (3, 3), (3,5), (4, 2), (4,4),
(4,6),(5,1), (5,3), (5, 5). (6, 2), (6, 4), &}

AN A={(2,1), (2, 3),(2,5), 4,1), (4, 3), 4, 58,@1), (6, 3), (6, 5)}

AN As={(1, 1), (1, 3), (1,5), (3, 1), (3, 3), (3, 58,(), (5, 3), (5, 5)

AiNA NA3=0.

Thus
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P(A) = v2, P(A) =2, (P(A) = %

o 1 1 1
P(A1N Az) " v P(AL N Ap) = P(A:N Aj) =<

P(A1 N Az) = P(A)P(Az; P(AL N Az) =P(A)P(As); P(Ax N Az) = P(A)P(As)
That is, A, A,, As are pairwise independent but

P(A.N Az N Az) = 0# P(A)P(A2)P(Aq) :g

Since condition (ii) is not satisfied, we conclutiat A;, A, and A are not independent.

Definition 2.7

If the events A A,...A, are independent then

P(AL N Az... Ap) = P(AY)P(AY)...P(AY) (2.8)
Example 2.21
A man fires 10 shots independently at a target. Méhthe probability that he hits the
target (i) 10times; (ii) at least once

If he has probability 1/3 of hitting the target amy given shot.
() Let A; be the event “he hits the target at the ith sfiot’1, 2, 3,...10)

AiN A, N ...N Ay is the event he hits the target 10 timgsAy,... Ajg are
independent events.

Therefore, the probability of hitting the targettires is

P(AiN Az N..., N Agg) = P(AYP(Ay)...p(A10) :é’é - = (E)ln

"3 3
(i)  P(hitting the target at least once) = 1 — R(itting the target at all).
P(not hitting the target at all) = P{A A, N ... N Ayp)
Where, A= not hitting the target at the ith shot,, A, ..., Ag are independent

eventsand P(A=1 é = g

Hence

-6

PA1NA,N...NA)=PA)YPA...PA 10 =§-

wl | k2
wl | k2

Examples
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2.22 Suppose a box contains 5 red and 3 black Babsll is chosen at random from
the box and then a second ball is drawn at random the remaining balls in the
box. Find the probability that
(1) both balls are black
(i)  both balls are red
(i)  the first ball is black and the second islre
(iv) the second is red
(v) the second is black.

Solution

Let A; be the event "the first ball is red

A 1 be the event “the first ball is black

A , be the event "the second ball is red

A, be the event “the second ball is black

(i)  P(both balls are black) =R( N A ))

P& N A= PAIPGA ) | A)
P@l) = g P(A2|A1) =2

7

Thus
PAL1NA=

oo | wa
=1 | b2

& | w

x

(i)  P(both balls are red) = P¢A A )
P(A N AZ) = P(AP(A) |A)
P(A) =2, P(A, | Ay =2

Thus

s

4
P(Ag_ﬂAz): X;=ﬂ

(i) P(AiN A, = P(first ball is black and the second ball id)re PA1)P(A ») Ay)

o | L

PA,) ZEJ P(A | Ay=3

7
Thus
P@‘l NAy=

56

3 13
wo—
7

o | wa
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(iv)

(V)

P(A2) =P(A. N A;) + P(Ae N Ay)

From (ii) and (iii) we have

53,153 _ 5
14 ' 56 56 8
A = ~ - 5 3 2 3

2.23 Two fair dice are rolled. Given that the dst®w different numbers, what is the

probability that at least one die shows a 67?
Solution
Let A be the event: the dice show different numbers
A={(12),(21),(1,3),(3,1),(1,4), (4 1),8. (5 1),(1,6), (6, 1),
(2, 3),...(5, 6), (6, 5)

B = At least one die show a 6.

= {(1.6), (6.1), (2, 6), (6, 2), (3, 6), (6, 3).,63, (6, 4), (5, 6), (6, 5)}
ANB={(16),(6.1), (2 6), (6, 2), (3, 6), (6,3%6), (6, 4), (5, 6), (6, 5)}

HﬂM:E=§

30

2.24 Let A and B be any two events defined on #rmeessample space. Suppose P(A) =

(i)

0.3 and P(AIB) = 0.6. Find P(B) such that
(1) A and B are independent

(i) A and B are mutually exclusive.

Solution
If A and B are independent, then P(B) = P(A)P(B)
Thus
P(Au B) =P(A) + P(B) — P(A)P(B)
We have

0.6 =0.3+ P(B)— 0.3 P(B) = 0.3 + 0.7 P(B)
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(ii)

2.25

(i)
(ii)

(iii)
(iv)

=]

3
7

P(B) == = 0.43

=]

If A and B are mutually exclusive, then
P(ANB)=0
Thus
P(Au B) = P(A) + P(B)
0.6 =0.3 + P(B)
P(B)=0.3
Two women A, and B share an office with a lenglephone. The probability that

any call will be for A isg. Suppose that A is out of her office during th&cef

hours half of the time and B one third. Find thel@ability that forany call during
the working hours

(1) no one is in to answer the call

(i) A call can be answered by the person beirda

(i)  Two successive calls are for the same woman

(iv) A caller who wants A has to try more than ttirmes to get her.

Solution

P(A and B are not in the office)%zé = %

P(A call can be answered by the person beaitpd)
= P(call for A and A is in the office) + P(callrf8 and B is in the office)

2

3"

P(for AA) + P(for BB) =

+12_5
23 9

Ea | =

wl | k2
wl | k2
ol | =

1 3
+ 1= 5
PX>2)=1-P(X=1)-P(X=2).

Where X number of time for a caller who wants A batry to get her. Thus,

Px>2)=1{55) - (1-53)G3)=1-5-5-3

372/ M3 2 9

Exercise 2.3
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10.

(@) Show that if A and B are independent evehes)
() AandB, (ii) A°and B are also independent.
Let A and B denote two independent events sughA is a subset of B. prove that
either P(A) =0 or P(B) = 1.
A man fires 10 shots independently at a tarfjes. probability of hitting the target
at any shot is 1/3. Calculate the probability that
(i) noneof the shots hits the target (i) At liease shot hits the target
(i) The target is hit at least twice if it is &w that it is hit at least once.
A box contains 6 red balls and 4 white ballsteEhballs are drawn from the box
one after the other without replacement. Find tledability that
(1) the first two are white and the third red
(i)  the first two are white and the third white.
(i)  two are red and one is white
(iv)  the second ball drawn is red
(v)  the third ball drawn is white
A die is rolled 8 times. What is the probabilityat
(1) exactly 2 sixes appear.
(i)  atleast 2 sixes appear.
(i)  at most 2 sixes appear.
Prove that if A,...,A, are independent events then
(i) P(AjU Aou...UA) =1-[1-PAKL-PA)]...[1 - PA)]
(i) P(AU AyU... UA,) < 1- @ PA) *PA )+t PA ]
Hint: (1 —%)(1 —%)...(1 —%) > e % "% " *)x <1
Show that P(ABNC) = P(AlBNC)PE |C)P(C).
A die is tossed n times. What is the probabtlitgt a 6 appears at least two times
in the n tosses.
Suppose that A or B occurs is 0.7 while P(A).2; find P(B).
A boy decides to continue tossing a fair camilthe has thrown total of three

heads. Find P the probability that exactly n tosses will needed
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11.

12.

13.

14.

15.

16.

17.

Six blood samples are selected from 40 bloospsess, of which four are

cancerous. What is the probability that exactly tvfdhe blood samples selected

are cancerous?

Prove that if A A,,...A, are any n events, then
PALNA,...NA)>1—-{PA°)+PA)+ ...+ P(AO}.

Prove that

() P(AN B = P(A) — P(AN B)

i) PANBY)=1-P(A)-P(B) P B)

(i) P(A)=P(AN B)+P(AN B

(iv) P(ANB)>P(A) +P(B)-1.

three coins have probability 0.5, 0.6 and 0r8&hkads respectively. One of then is

selected at random, that is, with equal chance&ch, and tossed. If the outcome

is head, what is the probability that the coin wittobability 0.8 for heads was

selected?

On a certain weekend there are 4 movies. Gakethhe probability that at least one

of A and B will be selected by one or more of th&tudents.

A box contains n white balls numbered 1 to hlatk balls numbered 1 to n, and n

red balls numbered 1 to n. if two balls are dratvraadom without replacement,

what is the probability that both balls will be thie same colour or bear the same

numbers.

On the first round, three fair coins are fligp®t random. The coins resulting in

heads are flipped at random on the second rourtielsecond round results in

exactly one head, what is the conditional probgbiinat the first round ended

inexactly two head?
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UNIT THREE

DISCRETE RANDOM VARIABLES
3.1lIntroduction
This chapter introduces idea of a random variabtkits probability density function.
A random variable is a variable whose actual nucaérvalue is determined by
chance. There are two easily identifiable typesarfdom variables, discrete and
continuous. A discrete variable is one that takely @ limited number of possible
values, otherwise the variable is called continudinss chapter is devoted to discrete
random variables.
Section 3.2-3.4 are devoted to some special desa@idom variables. Bernoulli,

Binomial Poisson, uniform,Geometric and negativanhbiial.

Example 3.1
Consider variable X, the number of heads in thossds of a coin. There are four
possible values (0, 1,2, 3,) of X.
The actual value assumed is due to chance theréfasea random variable. The
sample space for this experiment is
Q= {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
X =0 if the outcome is TTT
X = 1if the outcomes is HTT, or THT, or TTH
X = 2 if the outcome is HHT or HTH or THH
X= 3 if the outcome is HHH
Let p be the probability of the con landing taiin& landing tail and landing head are
exhaustive events the probability of the coin lagdiead is 1-p.
P(TNTNT)=P(MP(T)P(T)
Since the outcome at each trials are independent.
P(TTT) = p.p.p=P
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P(HTH) = P(T)P(H)P(H) = p (1-P) (1-P) = (1%P)

P(HTH)= P(H)P(H)P(H)=( 1-P) (1-P) = P(12P)

P(HHT)= P(H)P(H)P(T) = (1-P)(1-P)P==(1%P)
The probability of getting two heads = P (THH) -HFH) + P(HHT) = 3P (1-F)
Similarly we have

P (o0 head) = P(TTT) =p

P (1 head) = P(HTT) + P(TTH) + P(THT) =%bp)

P (3 heads) = P(HHH) = (1)

Thus we have the following table

Heads 0 1 2 3

Probability P 37 (1- p) 3p(l-p) (1 —py

P (0 head) = P (X is 0) Zpp(X=1) 37 (1-p) and so on

The random variable X defined above is an examplehat is called a discrete random
variable. A random variable is denoted by a capdtier such as X. Y, Z... and the
values that the random variable takes on is derptedlower case letter x, y, z...

The notation (P(X=x) means the probability that iliedom variable X takes on the value

X.

Definition 3.1
A random variable X on a sample spdees a function assigns to each elem@nbne
and only one real number X ( ) = x, the spaceisfihie set of real number
D ={xxx=x (), weQ).

Definition 3.2
A random variable x is discrete if t can assumenast a finite or a countable infinite
number of possible values.
In the above example,

Q=
Where w = HHH, wo = HHT..., s = TTT
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={0, 1, 2,3}and X (w) =3, X (W) = 2.X(Ws) =2, X (W) = 2
XMs=1,X(w) =1 X(w=1X(w)=0
That is {w:X(w) = x} id an event

Definition 3.3
The real valued function f defined on R by f(xX) £Xp= x) is called the discrete
probability density function of X.
Let X be a discrete random variable and supposethigavalues it can assume arg x
X2+ Xn
The probability can be written as
P(X'=x1) = f(X1), =px=X2) = f(X2)..., P(X =) = f(Xn)
Such that
F(x) is calledprobability density function of X
For an illustration, let us consider the followiegamples.
Example 3.2
Suppose a pair of fair dice is tossed onc, Let X,¥present the sum, maximum and
minimum respectively of the two numbers appearing the probability density function
of

@) X, @)y, (i) Z
Solution
The sample spac¢e = {( 1, 1), (1, 2) ,..., (6, 6)} consist of 36 elents

() P(X=2)=P{(1,1)}=1

36
P(X=3)=P{(12),((2,1)=2
36
PX=4)=P{(13),3,1),(2,2)}=3

36

P(X=12)=P{(6,6)}=1
36
Thus,
F(2)=11(3) =2 f(4) =3---
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36 36 36
In tabular form we have
X 2 3 4 5 6 7 8 9 10 11 12
F(x) |1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36
in function form
(i) Y =Maximum of the two number
Possible values of Y are 1, 2, 3,4, 5, 6
g(1)=P(Y=1)=P{(1,1)}=1 o
g2 =P(Y=2)=P{(1,2),(2,1) (2, 2=3
36
g3)=P(¥Y=3)=P(1,3),(3,1),(2,3) (3,3 3)}=5 o
g(4) =P (Y=%)=P{(1,4)(4,1)2,4) (4,2) (3,&),3) (4,4 =7
36
g(5) =P (Y = 5)
=P{(1,5),(51),(2,5) (5,2) (3,5) (5,@) 5)(5,4) (5,5) =9
36
g(6) = P (Y = 6)
=P {(1,6), (6,1) (2,6) (6,2) (3, 6) (6, )@ (6, 4) (5, 6) (6,5) (6,6)
=11
36
Putting in form a table we have
Y 1 2 3 4 5 6
aly) |1 3 5 7 9 11
36 36 36 36 36 36

This can be written in a functional form as
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(i) Z = Minimum of the two numbers
The possible values of Z are 1, 2, 3, 4,5,6

(1,3)(3,1)(1,2)(2,1)(1,2)! =11
36

P(Z = 2) = P (2,6)(6,2)(2,5)(5,2)(2,4(4,2)
(2,3)(3,2) (2,2)= 9/36

P(Z= 4)P{(4,6) (6,4) (4, 5) (5,4) (4,4) 5.36

P(Z =5) = P(5,6) (6,4) (5,5) 3/36

P(Z= 6) = P(6,6) 1/36

Putting in form of a table we have

Z 1 2 3 4 5 6
hz) 12 |9 |7 |5 |3 |1
6 |36 |36 [36 |36 |36

H(Z)=13-2z=1,2,3,45,6
36
= 0 for other values of x.
The probability density function of a discrete rand variable X has the following
properties
() O<f(x)<1,xER
(if) {X:f (x) = O} is a finite or countable infinite sudget of R
(i) XfCxy=1
The above densities can be represented in terrasd@gram as illustrated in figure (a),

(b) (¢)

A

A

v
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Example 3.3

Let X,Y,Z be the random viable introduced in exaenpll above

The above three properties are satisfied, propettie & (i) are immediate from
definition of probabilities. To check (iii) we have

Yf(xq) = 1/36+ 2/36+ 3/36 + 4/36 + 5/36+ 6/36 +5/36 364+ 3/36 + 2/36+ 1/36 =1

>G (y) =1/36 + 3/36 + 5/36 + 7/36 + 9/36 + 11/36=1
Yh(z) =11/36 + 9/36 + 7/36 + 5/36 + 5/36 + 3/36 + 1436
Example 3.4

Suppose a box contains 1 balls of which 4 are ned6Gaare black. A random sample of
size 3 is selected. Let X denote the number ofb@&ts selected. Find the probability

density function of x if

() Sampling is without replacement
(i) Sampling is with replacement
(i)  The possible values of X are 0, 1, 2, 3.
P(X =0) = (P no red ball in the three balls s@db;lze’q =65 4 =1

1s 98 6
P(X = 1) = P(1 red and 2 black balls G; x °C, =1
c, 2
P(X =2)="Cx°C; = 3
10c, 10
P(X =3) ="Cy™C;=1
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30
Thus the p.d.fis

X |0 1 2 3
Fey (2 |1 |13 |1
6 2 10 |30

As a check, we add up all the probabilities

1/6+ %2 + 3/10 + 1/30=1

(i) Sampling with replacement

P(X = 0) =P (first ball is black, second black dhd third black) = P(bbb).
The probability of black at any drawing is

6/10= 3/5

This value is constant since drawing is with repfaent. Therefore

13 3 7\ 3
P(obb) =.2. 2= (%)
P(X = 1) = P(Rbb) + P(bRb) + P(bbRf=.2 + 222 4 222
2 x3 x3 2y [3\2
_3'5><5><5:3'(E) (E) :
Similarly ,
2 2 3 2 32 3 2 2 2\2 /2
Px=2)= 22+ soi+ sai=3x (I ()
222 2\3
P(X=3)=P(RRR)=.-.2 = ()
Thus, the p.d.f of X is
X 0 1 2 3

® | @
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This can be written as

f(x) = {@* @)H x=0,1,23

0 elsewhere

Example3.5
A box contains 6 balls labeled 1, 2, 3, 4, 5, 6 balls are drawn at random one after

the other. Let X denote the larger of the two nuralzm the balls selected, obtain the
probability density function of X if

() Sampling is without replacement (ii) Samplisgvith replacement

Solution

() The possible values of X are 2, 3, 4, 5, 6. Tdrger of the two numbers can not be

1 since sampling is without replacement and wenzarget same number twice.
P(X =2) = P{(1, 2), (2, 1)} =
P(X =3)=P{(1,3), 3, 1), (2,3), 3, }=
P(X =5) = P{(1, 5), (5, 1), (2, 5), (5, 2), (3, %5, 3), (5, 4), (4, 5)} ==
Similarly,
P(X = 6) =

Thus the probability density function of X is
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f(x) 1/15 2/15 1/5 4/15 1/3

In functional, form, this can be written as

- ;51 x=2.3.4.5

0 elsewhere

The possible values of X are 1, 2, 3, 4, 5TBe larger can be 1 in this case
since (1, 1) is a possible outcome. The sampleespansists 36 possible

outcomes
P(X=1)=P(1,1) =
P(X = 6) = P{(L, 6), (6, 1), (2, 6), (6, 2){6, 6)} =—

Hence the probability density function X is

X 1 2 3 4 5 6

f(x) 1/36 3/36 5/36 7/36 9/36 11/36

In functional form we have

112x-1
36

f(x) = x=1,2,3,4,5,6

3.6 A couple decides that they will continue to éahildren until either they
have a boy and a girl in the family or they hawverfohildren. Assuming that boys
and girls are equally likely to be born. Let X denthe number of children in the
family. Find the probability density function of X.

The number of children in the family can either2)&, or 4.
P(X =2) =P{(B, G), (G, B)}
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That is, the couple will stop having more childiethe first child is a boy and the

second of girl or the first is a girl and the set@nboy.

Thus,

P(X=2)=P(B, G) + P(G, B) = P(B)P(G) + P(G)P(B

G2+ Gx3)=3
Similarly,
1

P(X = 3) = P{(BBG),(GGB)} = P(BBG) + P(GGB) =+ - = -

Hence, the probability density function of X is

X 2 3 4
f(x) Y Ya Yy
Exercise 3.1
1. A fair coin is tossed until a head or five tadlscur. Let X denote the number of

tosses of the coin. Compute the probability derfsitytion of X.
2. A box contains 2 red balls and 3 blue ballslBate successively drawn without
replacement until a blue ball is drawn. Let X dentbte number of draws required.

Compute the p.d.f of X

3. The pdf of a random variable X is given by
X 1 3 4 6 8
) | K | k| k| kK
2 3 4 5

Find (i) K (ii) P(X> 3).
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4, Toss a fair coin two times. Let X be the numiieineads obtained. Find the pdf of
X.

5. A coin with probability p of a head is tossedilumhead appears. Let X denote the
number of times the coin is tossed. Find the pdf.of

6. A fair die is tossed twice. Let X denote thedueat of the two numbers appearing.
Find the pdf of X

7. A fair coin is tossed3 times. Let X represert difference between the number of
heads and the number of tails obtained. Find thefX.

8. The pdf of a random variable X is given by
f(x)={k 2", x=1, 2, 3, ...N, zero elsewhere}. Find the vaifi€.

Definition 3.3

Probability Distribution function. Let X be a randovariable with probability density
function f(x). The probability distribution functioof X denoted f(x) is defined by

F(x) = p(X< x) for x real.
=Lysr f ()

Properties of the Probability distribution function

1.

3.

F is a non decreasing function, that is if g thbn

F(a) < F(b).
lim F(b) = 1.
o
lim F(b) =0
o

F is right continuous. That is F(b +) = F(b).

Let A be any subset of R and let f(x) be the prdbgldensity function of X. ew can

compute P(X A) by noting that {w : X (w) A} is an event and that

{fw: X(w) e A} = U {w:X(w)=x}
XeA
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Thus
P(Xe A) = Lyiea f(X;).
If A is an interval with end points a and b, say 4a,b].

Then
{(X € A) = P(a< X <b) =22 f(x,).

Example 3.7
Consider the random variable X the sum of the twamipers appearing when a fair die is

tossed twice of Example 3.2. The probability dsition function for X is given by

X 2 3 4 5 6 7 8 9 10 11 12

F(x) 1 3 ¢ 10 15 21 26 30 33 35 36

36 |36 |36 |36 |36 |36 |36 |36 |36 |36 |36

Suppose we wish to find the probability that X efvieeen 4 and 9 (4 and 9 inclusive) we

write it as

PA<X<9)=P(X=4)+P(X=5+PX=6)+P(X=7PX=8)+P(X=9)
-3 4 3 6 5 4 _221_3
_35+35+35+35+35+35_35_4'

) . _30 3 27 _27 _ 3_ B

This can also be written as Pﬁ()g)—P(XsB)—E—E_ %3 F(9) — F(3)

3.2 SPECIAL DISCRETE RANDOM VARIABLES

3.2.1 In Section 3.1 we introduced discrete random véeghnd the probability density
function of some random variables were determi®enne variables are so common and
important that names are given to them.

In this section we shall consider in consideraldéaidl a number of important discrete

random variables.

Bernoulli Random variables
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Definition 3.4

Bernoulli Trail:

A random trail or experiment is which the outconan de classified into one of two
mutually exclusive and exhaustive ways usuallyechlsuccess or failure is called a
Bernoulli trail. The random variable associatedhvBernoulli trail is called a Bernoulli
random variable (X).let X=0 if outcome is a faillaed X =1 if the outcome is a success.

That is any variable assuming only two values Ikedaa Bernoulli random variable.
Suppose that we toss a coin once. Let the probabiiiit landing head be p. péz, if the

coin is fair and let denote the outcome of the.tds&n there are two possible values for

X, Heads or tails. These two values are mutuakgjusive and exhaustive and we may

associate the two possible outcomes of the tosswaiiues 1, O of the random variables

X. That X = 1 when a head appears and X = 0 whiail appears.
P(X=1)=p,PX=0)=1-p.

The p.d.f. of X is

X 0 1

(%) 1-p P

Or in functional form
F)= pQ-pf™ x=0,1
0 elsewhere 3.1
f(x) as defined above is called the Bernoulli ptabgy density function and any variable
X having (3.1) has its probability density functigncalled a Bernoulli random variable

and is said to have the Bernoulli distribution.

3.2.2 The Binomial Random Variable
This is one of the most important random varialiestatistics and the most important
discrete random variable. Consider n independgtiteons of Bernoulli trails. Let XI

= 1, 2,..., n be Bernoulli random variables assodiareth the trails. The random
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variables X%, X,,...X,, are independent Bernoulli random variables. Letassume the

probability of success is p and failure 1-p and

Px=1)=p
Then, sum $= + % +---+ X, is the number of successes in n Bemoulli trialgatTs, §
is a counting- variable counting the number of sgses in n repeated trials. This random
variable § is called the Binomial random variable. The pdssialues of $are 0, 1, 2,
3, 4,----, n.
P(S = 0) = p(no success)
= p(1sttrail is a failure) P(2trail is a failure)...P(nth trail is a failure).
=P =0)P(%=0) P(%=0)...P(% =0)
=(-pA-p)A-p)..1L-p)= (1)
S, is 1 if the sequence of outcome is
1000000...00r010...00r0.010...0,...0000 1
P(S=1)=P(1,0,0,0,..0)+P(), 1,0,0,...,0) + .P@®, 0,...1)
= P(X: = 1)P(%=0)...P(% =0) + P(X =0)P(% =1)...P(%,=0) +...+
+P(Xx=0)...P(5=1)
=P(1-p)...(1-p) +(1- YPQ —p)...(L = p)...(1 — @)+ p)(1 - p)
= P(1-pf™ + P(1-pJ ™ +...+ P(1-p) ™ = np(1-pJ”*

Similarly,
P(S =2) ="C, P (1-p)"?
Where"C; is the number of sequences in which exactly 2 hahee 1 and the others 0
e.g.(1,1,0,0,0,0,0,..,0),(1,0,1,0,..,0)...
In general, it can easily be seen that
P(S,=k) ="C,p* (1-p)*™* k=0, 1,...,n
Where"C, is the number of sequences in which exactly k vahee 1 and others 0.

For example when n = 4, possible sequences of m@sare given below.

Sequence S P(S)
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(0,0,0,0) 0 1-p
(1,0,0,0 1 P(1-p)’
(0,1,0,0) 1 P(1-p)
(0,0,1,0) 1 P(1-p)
(0,0,0,1) 1 P(1-p)
(1,1,0,0 2 P’(1-p)°
(1,0,1,0 2 P’(1-py’
(1,0,0,1) 2 Bl - pf
(0,1,1,0) 2 Bl - pf
(0,01,1) 2 P’(1- py’
(0,1,0,1 2 P’(1-p)°
(1,1,1,0) 3 B1l-p)
(1,1,0,1) 3 Bl -p)
(1,0,1,1) 3 B1-p)
(0,1,1,1) 3 B1l-p)
(1,1,1,1) 4 P
Thus,

P(S,=0) = (1 - p}

P(S = 1) = 4p(1 - p)

P(S, = 2) = 65(1 - pf

P(S = 3) = 4p(1- p)

P(S=4)=p
Theorem 3.1

Let S, denote number of successes in n repeated Berrtmils, with probability of

success p. the probability density function gfsSgiven by
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f(x) =P(§=x) ="C,p‘(1-p)* x=0,1,...,n (3.2)
0
Definition 3.5
A discrete random variable X denoting total numbesuccesses in n trails is said to
have the binomial distribution if

P(X =x) ="C,p*(1-p)"*;x=0,1,2,...,n
0< p<1
The conditions under which binomial distributionvarise are
0] The number of trails is fixed
(i)  There are only two possible outcome ‘successfailure’ at each trial.
(i)  The trails are independent
(iv)  The probability p of success at each tragasstant
(v)  The variable is the total number of successestrails.

Example 3.8
A soldier fires 10 independently at a target. Rimel probability that he hits the target.
() once (ii) at least 9 times (i) at mostawmes.

If he has probability 0.8 of hitting the targetaaty given time? Let X denote the number
of times he hits the target. Then X is a binomaiable with n =10 and p = 0.8
From equation (3.2), we have
P(X = x) =*°%C, (0.8} (0.2)°*
() P(X=1)=C,0.8(0.2y = 8(0.2}
(i) P(He hits the target at least 9 times) = B(¥)
=P(X=9)+P(X=10)
P(X = 9) =1%C4(0.8)’ (0.2) = 10 x (0.8)x 0.2 = 2(0.8}
P(X = 10) =*%C,¢(0.8)° = (0.8)"°

Hence,
P(X>9) = 2(0.8Y + (0.8)° = (0.8§(2 +0.8) = (0.8%2.8) = 0.3758
(i) P(at mosttwice) =P 2)=P(X=1)+ P(X =2)
P(X = 0)= (0.2"
P(X = 1) = 8(0.25;
P(X = 2) = 45 (0.8)(0.2f
Thus,
P(X < 2) = (0.2}° + 8(0.27 + 45(0.8% (0.2 = 0.00008.

Example 3.9

A fair die is rolled four times. Find the probabjliof getting 2 sixes. Let us call a six a
success on a toss of a die and let X be numbeixe$ gsuccesses) in 4 trails. X is
binomial random variable with n = 4 and p = 1/6ush
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Px=2)='G,() (2 = 2.
Example 3.10

Suppose that a certain type of electric bulb hasohability of 0.3 of functioning more
than 800hours. Out of 50 bulbs, what is probabiiitst less than 3 will function more
than 800 hours. Let X be the number of bulbs fumitig more than 800 hours.

Assuming that X has a Binomial distribution,

P(X = x) = 50 ¢0.3)(0.7)%*
P(X<3)=P(X=0)+P(X=1)+P(X=2)
P(X =0) = (0.7%% P(X = 1) = 50.(0.3) (0.7§
P(X = 2) =°C, (0.3Y(0.7)®.
Thus,
P(X < 3) = (0.73° + 15(0.7§° + 110.25(0.7¥ = 0.0000046

Exercise 3.2

1. A fair coin is tossed 4 times. Compute the pbilig that (i) exactly two heads
occur (ii) at least 3 heads occur.

2. An investigation reveals that four out of evéie patients are cured of malaria
when treated with a new drug. If a sample of tetiepts is treated by the new
drug, compute the probability that (i) exactly gatients are cured, (i) at most
four patients are cured

3. A man fires 12 shots independently at a taffjee. probability of hitting his target
IS Ya.

(1) What is the probability of his hitting the tgat at least two times?
(i)  How many times must he fire so that the ptabgy of his hitting the target
at least once is greater than 7/9?

4, Six children are born in a hospital in a givety.dCalculate
(1) the probability that the number of boys is #ame as the number of girls.
(i)  the probability that there are more girls thays

(i)  the most likely number of boys.
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5. An experiment has 90 percent probability of gsscand 10 percent probability of
failure. The experiment is repeated four timesdRire probability of obtaining
(i) No success (ii) No failure (iii) two successew two failures.
6. Let X be a Binomial random variable with paratsgn.p). show that
0] P(X = k) first increases monotonically and traetreases monotonically.
(i)  The value of k that maximizes P(X = k) is tlagest integer less than or
equalto (n + 1)P
(i) PX=k)=

n—k+1
k

7. A fair coin is tossed repeatedly until three abtained. Find P the probability

P
S PXx=k—-1).

that exactly n tosses are needed.
8. Show that (iX7-, "Cp* (1 —-pJ =1 (i) Xr_x"Cp(1—p)*=np
O<p<1.

3.3 Geometric Random Variable
Consider a Bernoulli trail with probability p of success on one trail. The trail is
continued until a success occurs. Let X denote rmurobtrails before the first success.
For example, a student decides to continue tak#tddBl examination until he passes. X
in this case denote number of times he takes tamigation before the first success.
The probability that the first x — 1 trails arelfmés and the %X trail is a success is given
by (L-pf*p.
To see this, the required probability is
PFFF..FS)=PF)PF) ..PRPOS)=1L-p)DEAPP) .. L-pP=(1-
p)“* p.
The probability that x trails are needed for thstfsuccess is the same as the probability
that the first x — 1 trails are failures and tffeisxa success. Thus,
P(L - m-l, x=12...

P(X=x)= 0 otherwise

Where X is the number of trials before the firstsess and if we define Y as the number

of failures preceding the first success, we have
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P(l _ m y= 0,1,2...
P(Y=y) = 0 otherwise
Definition 3.6
A discrete random variable X is called)a geometaicdom variable if its probability

density function is given by

(1 _ p>)-1 x=,12.3...
p
F(X) =p(X=x) = 0 otherwise
O<p<1 (3.3)

Where X is the number of independent Bernouillalgitaken for the first success to
occur (the successful trial is included in the dduo see that (f(x) is a probability
density function, all that needed to be checkeabas

P (-p)T=1=PL+ (1-p) + (1P ]

From geometric series,
- 1 1

=1_ -
xr=1 (1'py( - 1-(1 -p) - '

Example 3.11
A fair is tossed until a head appears (a) Whahes grobability that three tosses are
needed? (b) What is the probability that at mostdlosses are needed?

Solution

Let X denote the number of tosses until a sucae$®éd) occurs. Since the coin is fair,
1

p=7
Px=3)=-p'p () 2= ()

P(at most three tosses are needed) =P8X
=P(X=1)+P(X=2)+P(X=3)

111 (1]2 1 1 (1]2 (1)3_7
= S A el e N [l A
2 22 (2)2 2 |2 2) 8
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3.12 A fair die is rolled until a six appears.
What is the probability that (i) at most 4 roll®areeded. (ii) at least 3 rolls are needed?
Solution
) P(at most 4 rolls are needed)= P{X4)
=P(X=1)+P(X=2)+P(X=3)+P(X=4)

X is a geometric random variable with P%z

P(X = ) :@]Xl%

2
’E,P(x :3):(E] i
6 6) 6
jS
51 (5}2 1 (5}3 1
+Z 2+ 2S4S 2
66 \(6) 6 \(6) 6

4 x=1 _ 4
652\ 6 6 1-5/6

P(X = l) :%’ P(X = 2) =

oo

P(X = 4) :(

olo
ol

Thus

P(X<4) =

ol

(i)  P(atleast 3rolls are needed) =P{8) =P(X=3)+ P(X=4) + ...

P(Xz 3) = g f()() :i(g} ) %:% i(ﬁj ) :E ﬂ:(ﬁj :15

= ~\ 6 6 1-5/6 6 36
or
11 25
PX>3)=1-{P(X=1)+P(X=2)}=1--=2"
(X=3) {P( ) + P( )} % 36
Example 3.13

The probability that a certain test yields a “pesit reaction is 0.6. what is the

probability that not more than 4 negative reactioosur before the first positive one?

Solution
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Let X denote the number of negative reactions leefloe first positive one, then
P(X =x) = (0.4)0.6); x=0,1, 2,...
Thus,

P(X<4) = i P(X =x) :i (04 (06)= (06) ZA: (04)* =(1- (04)°)=0.9898

The geometric random variable has an interestiogenty which is summarized in the
following theorem.
Theorem: 3.2
Suppose that X is a geometric random variable. Taeany given two positive integers
s and t,
PX>s+tX>s)=P(X>t).

Proof:

PX>s+t|X>s) _P(X >s(;tinsc)|x >s) _ P|=(>z<X>>SsJ;t

PX=x)=p(1l-py,x=1,23, ..

- . X-1_ (1_ p) ot s+t
P(X =P 1- p)* =P =(1-
( st ) X:SZ-HH( p) 1- (1_ p) ( p)

P(X>s+1) =Py a-p) =& P _q_p)

S+ 1-(1-p)
Thus,
P(X>s+t|x>s)=(1_L)s:(1—p)t
d-p)

P(x >0 =3 pa-p) = PP = py.

1
Hence,

PX>s+t|X>s)=P(X>1).
The above theorem states that if a success haxaatred during the first s repetitions of
Bernouli trails, then the probability that it willot occur during the next t repetitions is
the same as the probability that it will not ocduring the first t repetitions of Bernoulli

trails. Therefore the distribution is said to hdme memory”.
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Exercise 3.3

1. On a certain road the probability of an accidemi@any day is 0.05 (assuming not
more than one accident can occur on any day). Assunmdependence of
accidents from day to day on this road, what is phebability that the first
accident of the year occurs in the month of March.

2. A fair die is rolled until a six appears. Cahtiel the probability that he has to
throw the die more than three times before he getx.

3. Let X be a geometric random variable with p 2.QCalculate the following
probabilities. (i) P(3 < x 6) (ii) P(X X< 4) (i) P(X < 2).

4, Prove thati xp(l- p)*™ =
x=1 p

5. Suppose a Bernoulli trail with probability p eficcess is continued until rth
success occurs. Let X be the number of indepertdais needed in order to have

r successes. Show that
k-1
P(X:K){Ir _J p'A-p) " k=r,r+1..

3.13 Pascal or Negative Binomial Random variable
A probability distribution closely related to theametric distribution is the Pascal or
negative binomial distribution.
Suppose that independent repetition of Bernoudlil tneeded to have “success” occurs
exactly r times.
X = x if and only if success occurs on tHetxail and success occurs exactly (r — 1) times
in the previous x -1 trails. The probability ofghevent is determined as follows:
The probability of r — 1 successes in x — 1 trailgiven by the binomial formula

x=1Cr_lpr-1(1 _ pyzl—(r—l)zx-JCr_lpr—l(l_p)x—r
Therefore, the probability of this event is

PX'Crp™(11 - pf™

hence,

f(x) = P(X=x) ='C pA = p)", x =1, r+1,... (3.4)
Similarly, if we let Y be the number of failuresfbee the I'success we have
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P(Y =y) = p.{"™'C,p"(1 - pY
R(y) =¥"'C/(1-p).y=0,1,2,...
Definition 3.7
A random variable having its probability densityétion given by (3.4) or (3.5) is said to
gave a Negative Binomial or Pascal distribution.
Example 3.14
Show thaly_, *~!C,_P"(1 —P)* " =1.
Solution

By Binomial theorem,
nin+1)

o (1—-P)+ }

PT=(1-(0-p) "= {1+n[1—p)+

I TG PTU-PYT =PI -p) T I, CTHGL(1-P)

rir+1)

=p"(1—-p)" {El — ) +7(1 _p)r+1 + = (1 _p)r+2 . }

rir+1)

=p{1+ra-p) + G A+ -

Example 3.15
A fair die is rolled until two sixes occurs, finkde probability that
0] exactly 5 tosses are needed
(i)  at most 5 tosses are needed.
Solution
Let X be the number of tosses needed to get twessiX is a Pascal random variable
with pdf: f(x) =*Cp%(1-p)4 x = 2,3,..
Wherep=%,r=1.

Feo =G-0(2)
0 Px=5-4(2) =012
i) PXx<5)=2X1,f(x)=PX=2)+PXx=3)+PX=4)+P(X=05)
P(x =2) = G)E,P[X —3) =2 G)E,P[X — =3 G)q
Thus,
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1 1 3 1 13
3.3.2 The Hyper geometric Random Variable

Suppose that we have a box containing n items ofhwhy, are defective and n — are
non-defective. Suppose that we choose at randonterksi from the box without

replacement. Let X denote the number of defectems in the k items selected. Then
?:1cx ?:_”1':':{—1'

m Cx

P(Xx =x)= ,x=0,123, ...k (3.4)

The reader will notice that X = x if and only if webtain x defective items from;n
defective items in the boX,C, ways of doing this).

Any random variable having its probability dendlityction as given by (3.5) is called
hyper geometric random variable and is said to lmgyper geometric distribution.

3.4 The Poisson Random Variable
Definition: Rare Event
An event is said to be rare if the probability ppbkerving the event is very small.
Consider n repeated Bernoulli trails, where n ig/\arge and P very small, let X be be
the number of successes in n trials. Then
P(X =x) ="C,p"(1 - pJ™.
Settingh = n p, we have
. i n FATS Ayn—x . nin—-1).(n—x+1) Fay* PR
Per=v= e () (1- 37 @ (-9

n x! 1T n

n-1 (n-2) n-x+i f(l i)”_x

n n n X! n

Consequently,

limy_, "CP(1-p)"= %e"‘
(3.5) gives an approximation to the binomial disition withA = np, when n is large and
p is small, where e = 2.71828 is the base of nelngarithms.

Definition:

A random variable X is called a Poisson random alde if its probability density
function is given by
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x=0,1,2,..

flx) = (> 0) (3.8)

0 otherwise

X represents the total number of events which lwaeeirred up to time t. When t= 1 then
f(x) corresponds to the probability density funotf number of events in a unit interval.
For examples, the number of calls that come intelephone exchange in a unit time
interval, the number of vehicles passing througlesignated point in a unit time interval.
In order to motivate our discussion, let us conside following examples.

Example 3.16

Suppose a rare disease occurs in 2 percent ofya fapulation. A random sample of
10,000 people are chosen at random from this pbpnoland tested for the disease.
Calculate the probability that at least two pedpee the rate disease.

Solution
The probability p of having the disease is 0.02 and 10,000. Let X be the number of
people having the disease. X is a binomial randanmbile with parameters n= 10,000
and p = 0.02. we shall apply the result (3.5) smezlarge and p very small.
Hence,
Np =0.02 x 10,000 = 20,,

Thus,
=200 3007%

P(X = x) =220

P(X=)=¢&"

P(X = 1) = 200 &
Hence

P(X>2)=1-P(X<2)=1-2%1+200)=1-201%"

Example 3.17

On a given road, an average of five accidents roexery month. Calculate the
probability that over a year period there will hen accident (ii) at most 2 accidents.

Solution
In this case). =5, t = 12. From (3.8) we have
—Atan¥
f[.ﬂ — g L)

X!

f(0) = &' = &

f(1) =2 “1'2’“7' = 60650
f(2) =20 =52 g0

thus,
P(no accident) = f(0) =%

P(at most two accidents) = f(0) + f(1) + f(2) e 60 €*° + ?e‘ﬁo
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=e% (1 + 60 + 1800) = 18618

Tables for the Poisson distribution are availalbhel d@rief abulation is given in the
Appendix.

Exercises 3.4

1.

10.

11.

12.

If 3% of the items manufactured in a factory atefective. Compute the
probability that in a simple of 100 items. (i)t2ms will be defective (ii) at least
2 items will be defective. Use Poisson approxinratmthe Binomial.

Use the Poisson approximation to calculate tobability that at least two sixes
are obtained when six dice are rolled once.

The telephone switchboard of a University hasaerage of two incoming calls
per minutes. Calculate the probability that, ovénr@e-minute interval, there will
be (i) no incoming calls (ii) exactly one incominall. (iii) at most two incoming
calls.

Let R be the negative binomial pdf with parameters r androve that

Prove thaﬁ:n—g;i = %fim e ¥y"dy. Hint: Use integration by parts.

A fair die is tossed 20 times. Let a succestheri" toss corresponds to at least a
five appears. What is the probability that

(1) exactly 10 failure prior to the first success?

(i)  exactly 10 failures prior to the fifth suc=?

(i)  exactly 8 failure and 3 successes for thstfil throws.

if (i) f(x) = _Ii , show that (x + 1)f(x +1)& f(x).

(i) f(x) = "Cp*(1 —p), show that (1 — p)(x + 1)f(x + 1) =p(n —(X)f

In each case, show that f(x) increases monotdpicahd then decreases

monotonically as x increases. Find x that maximfpes

Suppose that the number of accidents occurrimga chighway each day is a

Poisson random variable with parametet 2.

(@) What is the probability that at least two aecits occur in a day?

(b)  what is the probability that at least threeideots occur in a day given that
at least one accident occurs in a day?

Describe the Poisson distribution, stating ¢je#ine meanings of the symbols

used. Show that the variance of the distributioggsal to its mean.

Show that f(x) 2'C,..P"(1-p)*™", X, x = n, n+1,... is a pdf.

Note P'=(1—(1-p)f'={1 +n(1—p)+ "= (1-p)?+ -},

¥ . . -
Show that f(x) :#;'_ﬁ,x = 1,2, ..., 0< p<lis a pdf. Find the probability
generating function of X. '
Solve the problem of exercise 3.2, No 7.

e
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13. If n>8 and in s binomial distribution the probabilitfy ©successes in n trails is
equal to the probability of 8 successes in n tfeat] the probability of success on
any given trail.

14. Let X be a random variable with moment gemegaunction M(t). If R(t) = In”
My(t) for all t. Find R”(0).

15. If a fair die is rolled repeatedly, find theopability that the first “six” will appear
on an odd-numbered roll.

p,x=-1
16.  f(x) =
(1-p¥p*, X =0,1,2

(1) Show that f(x) is a pdf

UNIT FOUR
EXPECTATION OF DISCRETE RANDOM VARIABLE

In this chapter we introduce the concept of the rmealue of a random variable. It is
closely related to the notion of weighted averddge moment and probability generating
functions of a random variable are also introduced.

4.1

Let X be a random variable having possible valugsw ..., X, and let the experiment

on X be performed n times. For example let X beahteome of rolling a die. There are
six possible values;x= 1, % = 2, % = 3, % = 4. X = 5 and ¥ = 6. Suppose the die is

rolled n times. The successive rolls constituteepehdent repetitions of the same

experiment. Let X X, . ..., X, denote the outcomes of the experiment of rollirdjean
times (that is Xdenote the outcome of tHBtoss). Then
7o Kot Kbtk

Is the average of the numbers that appeared.; ldeinbte the number of timegsoccur.
Then we have

1 1
S+ X+ X) = 2T f =T 2

We know that

lim,, ... f; =P(X =x;) = f(x,). When f; is replaced by f(x;),the sum X x;f(x;) is

called the expectation of the random variable Xistthe expected value of a random
variable X is the long-run theoretical average gadfi X.

92



Definition 1
Mathematical Expectation. Let X be a random vagabith probability density function
as follows:

Value of X, » X1 X2 X3 Xk

Probability f(x1) f(x)) | f(xa) (%)

The mathematical expectation of X, denoted by E(ylefined to be

E(X) = Xf(X2) + Xof(X2) +...+ %cf(xy)

E(X) =Xy x f(x).

E(X) is weighted average of possible values ohg,weight attached to the value xi is its
probability f(x). E(X) is also called the mean of X thie population mean.
We may express the result of (1) in words.
To compute the expected value or mean of a randamable, multiply each possible
value of the variable by its probability and addgsé products.

Examples
4.1 A fair coin is tossed three times. Let X denote tnmber of heads obtained. Find
the mathematical expectation of X.

Solution
The probability density function of X is as follows

X 0 1 2 3
f(x) 1 3 3 1

3 3 3 3
Hence,

E(X) = (1 x 1/8) + (1 x 3/8) + (2 x 3/8) + (3 x8)/
=0+3/8 + 6/8 +3/8 =12/8=1.5

4.2  What ate the mathematical expectations of #r@bles X, Y and Z as defined in
example 3.1.1 of chapter 3.

Solution
The probability density function of X is

X 2 3 4 5 6 7 8 9 10 11 12

f(x) |1/36 | 2/36 | 3/36| 4/36/ 5/36 6/36 5/36 4/36 3/36/362| 1/36

E(X) = (2 x 1/36) + (3 x 2/36) + (4 x 3/36) + (54436) + (6 x 5/36) + (7 x 6/36) +
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(8 x 5/36) + (9 x 4/36) + (10 x 3/36) + (11 x Z/36(12 x 1/36)

=7.0
The p.d.fof Yis
Y 1 2 3 4 5 6
a(y) 1/36 3/36 5/36 7/36 9/36 11/36
E(Y) = (1 x 1/36) +(2 x 3/36) + (3 x 5/36) + (4 K38) + (5 x 9/36) + (6 x 11/36)
= 4.47
The p.d.fof Zis
Z 1 2 3 4 5 6
h(Z) 11/36 9/36 7/36 5/36 3/36 1/36
E(Z) = (1 x 11/36) + (2 x 9/36) + (3 x 7/36) + (H6) + (5 x 3/36) + (6 x 1/36)
= 2.53.
Exercises 4.1
1. Suppose a box contains 10 balls of which 4 adeand 6 are black. A random
sample of size 3 is selected. Let X denote the murobred balls selected. Find
(E(X) if

(1) Sampling is with replacement.
(i)  Sampling is without replacement.

2. A box contains 6 balls labeled 1, 2, 3, 4, 5TWo balls are drawn at random one
after the other. Let X denote the larger of the twamnbers on the balls selected.
Compute E(X) if (i) Sampling is with replacementgji) Sampling is without
replacement.

3. A box contains 3 balls and 2 white balls. A hslivithout replacement one after
the other until a white ball is drawn. Find the Egfed number of draws required.

Expectation of a Binomial Random Variable
The probability density function of a binomial \asle X is defined by
f(x) ="Cp'(L-p)*x=0,1,2,...,n
the mean or expected value of X is
EX)=2iz0x "GP (1-p)"T = Lizox. s PT(L-P)"TT
and since the term of x 0 is zero,

n—x (n—1): - n—x
E(X) Z.}. ll:._k 1|'|:.ﬂ: x‘llp [1 p} = np E.}. 1 |:..k 1|||:'n x"ll X 1[1 - p}
Using the binomial theorem, we have
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n=-1

S (n—1)! _ _ _
Z x — E! o X)!px—1[1 —p)" =Z T (-t

x=1 x=0
=(p+@-P)" =1
sincep+1-p=1. Hence,
E(X) = np.

Example 4.3
A fair die is rolled 12 times, what is the expectennber of six appear?

Solution
Let X be the number of sixes that appear. X isreotmial random variable with n = 12
and P = 1/6 (probability of a six). Hence
E(X) =np = 12x 1/6 =2.
That is, we expected to get 2 sixes when a diellsd 12 times.

Definition 2
Let X be a discrete random variable having prolighdensity function f(x).

2}

— |XE f(x;) = o,then we say that X has finite expectation otherwisesay that X
does not have finite expectation.

Examples
4.4 The Random Variables X has Probability
X -2 -1 0 3 5
f(Xx) Ya 1/8 1/8 Y Ya
Compute the expected value of the following rand@mables.
i X, (ii) 3X, (ii) X + 5, (iv) X2
Solution

O = (2 () @)+ (56D + (52
= -2/4 - 1/8 +3/4 +5/4 = 11/8 =1

(i)  The possible values of 3x are -6, -3,0, 9, 15
The probability density function of 3x is

3X

15

f(x)

Yy

1/8

1/8

Y

Yy
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E(3X) = (-6 X ¥a) + (-3 x 1/8) + (0 x 1/8) + (9 x}/4 (5 x ¥a)
= -6/4 — 3/8 + 9/4 + 15/4 = 33/8

Note that

PBX=-6)=P(X=-2_,
And so on and

E(3X) = 33/8 = 3 x 11/8 = 3E(X)
(iii)

X+5 3 4 5 8 10

f(Xx) Ya 1/8 1/8 Ya Ya

Note that P(X +5) = 3 =P(X = 3 — 5) = P(X = -2)
E(X +5)= (3 x %)+ (4x1/8) + (5x 1/8) + (84) + (10 x1/4)
:%+4/8+5/8+8/4+10/4+51/8:§&5+ J.§:5+ E(X).

(iv)

X2 4 1 0 9 25

f(x) Y, 1/8 1/8 Yi Y,

E(X?) = (4 x V) + (1 x 1/8) + (0 x 1/8) + (9 x ¥a) + (R5/a)
=1+ 1/8 + 9/4 + 25/4 = 77/8 :29

Note that E(%X) # [E(X)]%

Definition 3

Let X be a random variable whose probability dgnsihction is given by

X X1 Xo . Xk
f(x) f(x1) f(x2) f(xw)

Let y(X) be a function of X. then the mean or expectaldi® of the new randog(X) is
given by
Ely(X)] = w(xo) f(x1) +w(x2) f(x2) +...+y(xd) f(xi)

Ely(X)] = Zi: w(x) f(x)

That is

Theorem 1
Let X be a random variable and \gfX) = a X + b where a, b are constants, then
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Ef(X)) =aE(X)+ b

Proof:
Suppose the probability density function of X is
{x;, f(Xi), 1 =1, 2, ...,k

From the above definition we have
E(@X + b) = (ax+ b) f(x) + (@% + b) f(p) + ... + (% + b) f(x) + bf(xy) +...+ bf(x)
= afxf(xy) + %f(X2) +... Xf(xi)] + b[f(x) + f(xz) +...+
fox)l= Zioy 2 f ) + b X, f(x) = aE(x) + b
since {E(X) =X xf(x), X f(x,) =1}

Properties of Excitations
1. If c is a constant and P(X = c) =1, then E(Q.=
2. If a and b are constants and X has a finite &spien, then aX has finite
expectation and
(i) E(aX) =aE(X) + b.
(i) E(aX + b) = aE(X) + b.
3. If X and Y are two random variables having gnéixpectations, then
(1) X +Y has random finite expectation and EQ¥ = E(X) + E(Y)
(i) (X) 2 E(Y) if P(X>Y) = 1.
(iii) EXI<EIXI.
4, A bounded random variable has, a finite expemtatihat is if P(X<M) = 1, then
X has a finite expectation aneX | < M.

Definition 4
Variable. Let X be a random variable with mean E€X).
The variance of X, denoted by Var(X) is defined by
Ver(X) = E{X - pf} = Z(x, — wf(x)
A general formula that is usually simple for compgtthe variable is given below
Var(X) = E{(X - pf} = E{X* =2 Xy + |f}
= E(X) - E@2uX) + E() = E(X) - 2pE(X) + |f (property 2)
= E(X) - 24 + = EQX) -
Thus, the computing definition of variance is
Var(X) = E(X) - [EX)I° (7)
The variance of X is interpreted as a numericalsueaof spread or dispersion about its
mean.

Example 4.5

1. Find the variance of a random variable havirgy fihllowing probability density
function.
X 1 2 3 4 5 6
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f(x) 1/6 1/6 1/6 1/6 1/6 1/6

EXX)=(1x1/6) + (2 x1/6) + (3 x 1/6) + (4 x 1/6 (5 x 1/6) + (6 x 1/6).
=1/6 + 2/6 +3/6 + 4/6 + 5/6 + 6/6 = 21/6

E(X?) = (12 x 1/6) + (Z x 1/6) + (3 x 1/6) + (4 x 1/6) + (5 x 1/6) + (6 x 1/6)
=1/6 + 4/6 + 9/16 + 16/6 + 25/6 + 36/6 = 91/6.
Hence from (7) we have
Var(X) = 91/6 — (21/6)= 105/36 = 2 (11/12).

Example 4.6
Find the variance of a Bernoulli random variabléhwparameter p. that is X has
the following p.d.f.

X 0 1

f(x) 1-p P

E(X) -0 x (1p) + (L x P) = p

E(X%) = 0 x (1-p) + (£ x p) = p.
Hence,

Var(X) =p- g =p(1-p)

Properties of Variance
1. If c is a constant and P(X) = c) = 1, then \)& £ O.
2. If a and b are contents, then
()  Var(ax) = & Var(X)
(i) Var(aX +b) = dVvar(X)
(i)  Var(X) >0
The proof of property (1) is very trivial and thssleft as an exercise to the reader,
we shall now give a proof of (ii). From (7),
Var(aX) = E[aX] — [E(aX)F = E & X* - [aE(X)F

= & E(X?) — &[E(X)]? = H(E(XI]?} = a® Var(X).

Definition 5
Standard deviation. Let X be a random variable widan L.

The standard deviation is the positive square obtte variance, and is given by

Jvar(X) = JEX?) — (E(X))?
The variance of the binomial random variable.
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To calculate the variable of X, we need E(X) and3x(
Var(X) = (E(X)}.

From (3) we have

E(X) =np.

EX(X - 1)] = Zizgx(x — DGR - pJ™= Zjep x o — D F(L—p)
(w2hen x =1 or 1 the expressmn is zero)
= 2 2: 2}1n—}.p( _pyx

{n—2)!

=N 1) Pz P

Lety=x-2=n(n-1)Lizin— 2,0’ L -pf*Y=n(n-1) p[P+ (L -p)*
Hence

EX(X-=1)=n(nh-1)p
E(X(X—1)) = E(X) - E(X) =n(n — 1)p
EX®) =n(n—1)p+EX)=n(nh—=1) p+ np.
Thus,
Var(X) = N(n — 1) p + np — Ap® = rfp? — ng + np — Ap® = np(1 — p).

The Variance of a Geometric Random Variable
The probability density function of X is given by
fx) =p(l-pyt, x=1,2, ...
oo X— 1
E(X) :E.J:=1xp(1 - p] = ;

E(X)=P +2p (1-p) + 3p(L = P¥ ... = P{1 + 2(1 + p) + 3(1-p}+ ...}.
From the Binomial theorem

(1-af=1+2a+3a+... lal<].
Putting a = (1 — p), we obtainl

E(X) =P.(1-(1-ph=:

EX(X-1)] =X 0 x(x — 1)P(1 - p)*
= p[2.1(1-p) + 3.2 (1 — P)...+ r(r -1)(1 — pY*+...].
Multiply both sides by 1-p,
(1 - p) EX(X- 1)] = p(2.1(1 —B)+ (3.2(1 — pJ +...+ r(r-1)(1-pJ +...+]
E(X(X-1)] - (1-p)E[X(X-1)] = p[2(1-p) + 4(1-P+ 6(1 — p§+...+ 2r(1 — p) +...]

=2p(1 - p) [ +2(1-p) + 3(L —P}...] = 2p(L- p) 5 =

2(1-g)

B

Hence

99



EIX(X)] - (1-p) EIX(X - 1)] ===~

E[X(X = 1)] {1 - (1-p)} :""ilT‘P

which implies that

E[X(X - 1)] =227

E(C) =252 + E(X) = 2':1;"3' #2

Thus

2[1 Pl 1 Z(1l-pl+p—1 1-g

var(x) = TR ML
B

The Variance of a Poisson Random Variable

Let X be a poisson random variable with parament

_;IL;IL - —;ll_ ;'Lx B —;'L o ;.Lx—:l
E(X) EJ& =0 xe ! x=1% (=m—1)! - }ll € x=1 (— 1

=)\e? ) —=}ue*e‘\—x

EX(X — 1)] = B2 gx(x — De ™5 = T2 2 -

2 ;.l_x—z _ ¥
=e* e )z °?_E.—=JF
hL - !

E(X?) — E(X) =A®
E(X®) =22+ E(X) =A% + &
Hence,
Var(X) =A2 + L —2% =,
This shows that the mean and variance of a pasaimom variable are both equal.
Exercise 4.2
1. Compute the variance and standard deviatiohefandom variable X defined in
exercises 4.1.1
2. A fair coin is tossed twice. Let X denote themier of heads that appear.
Compute
(1) the expected value of X
(i)  the variance of X
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(i)  the expected value cij

3. Calculate the mean, variance and standard d=viat the random variable having

the following probability density function.

X -2 1 0 1 2

f(x) 3/1C | 1/5 1/1C 1/5 1/5

4. Let X be any random variance, show that E(AX)+=RE(X) + B

Where a, b are contants.

5. Letf(x):t;;p|x|,x:i 1,42,...,0<p<1

Show that f(x) is a pdf. Find E(X).
6. Let X be any random variable having finite exp&on. Prove that
|EX | <E |X |
7. Let X be a random variable such that for somestamt K, de | <K). Prove that
X has finite expectation anJ:EX | <k.
8. Show that if X and Y are any two dependent ramdeariables with finite
variances, then Var(X + ¥3 Var(X) + Var(Y).

4.3  Probability Generating Function
In this section we shall introduce important math&oal concepts in probability theory.
The rth moment of a random variable X is definedd§}("), where E(X) and E(X - 1)
are called the rth moment of X about 0 and p rdspdy.
From (2)

EX)=2Z:%" f(and E(X — )" = X(x; —w" £lx).
Note that the second moment of X about p is theamee of X. an indirect way of
calculating expectation is the use of probabilitgngrating function or moment
generating function. it is a mathematical devicesitaplify the calculations of moments

of X. its more general usefulness will not be appauntil we get to chapter 6.
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Definition 6
The probability generating function of a non-negmtiinteger-valued random variable X
is defined by
E(S)=P(S) =X ,8"f(x); -1 =5 =1; —5, = 5 < 55 (8)
From (6), we see that
P(S)=E@S
By differentiating with respect to s we have
P’ (s) = E(X3™)
P(s) = E[X(X — 1) $7
P9 (s) = E(X(X = 1)(X = 2)...(X — r + 1)§"
Putting s =1 in the above derivatives, we have
P'(1) = E(X)
P"(1) = E[X(X = 1)] = EQ®) — E(X)
P (1) = E[X(X = 1)(X = 2)...(X = + 1r)].
Thus the mean and variance of X can be obtained R¢s) by the following formulas.
E(X)=P'(2)
E(X) — E(X) = P"()
EQ®) =P’(1) + E(X) = P’(1) + P'(1)
And
Var(X) = E(¢) — [E)T" = P"(2) + P'(1) - [P'(L)f

We now illustrate the use of these formulas withfthllowing examples.

Examples 4.7
Let X be a poisson random variable wit paramgtéfind the mean variance of X

—In X
g "k

f(x) =

,x=0,1,2, ..

x!

The probability generating function is defined by

P(S) = E(8)= Zns™ (@ (L - p)™ = I "((sp)(L - p)™
By the Binomial theorem

=[sp + (1 —p)]

102



Thus,
P(S)=[sp + (1-p)] (12)
Differentiating, we have
P'(s) =np [sp + (1 - p)I
P"(s) =n(n—1)p[sp + 1 - p]*
Var(X) =p” (1) + - [p'(1) - [P'(1)F = n(h — 1) p+ np — (npj = np(1 — p).
The table below summarizes some of the resultsisfchapter

Random Probability | Mean Variance Probability Moment
variable density generating function generating
function function
Bernoulli | P(1-p)"* |P P(1-p) (sp+1 —p) be (1-p) -
oL T <0
Binomial | "C,p(1-p)" | Np Np(1-p) | [sp +(1-p)] [pe+(1-p)I"
x=0,1, 2,
...Nn
Geometric | p(-p)* 1 1-p P[1-s(1-p)I* ps
- 2 1—(1 - p)e"
x=1,2,... P P
Poisson e =) A A e el - 1)
X!
Uniform 1 a+b (b — a)? s — ghtd
b—a+1 2 12 (b—a+1)(1-5)
X= a, a +
1,...b

The Moment Generating Function
Definition 7
Let X be a discrete random variable with pdf f(i#)e moment generating function
denoted by M) is defined by
Mx() = E(€")
Where t is any real constant for which the expemtagxists. (13)
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Mx(t) = Xy, e™ f(x)

RX=1+1tX +':”r2

tx‘l t?‘! X?‘!
[ iy

E(€") = E(1 + tX +

!
Under fairly general conditions we shall assumat #xpectation of infinite sum equals
the sum of the expected value but this is truesimegal for finite sum

M x

1+ tE(X) + E[X?') +

+ ...
That is
2 n
Mx(®) = 1+ tE(X) +Z EGX?) + ..+ — E(X™) + -

Differentiating with respect to t, we have

nin-1)t""2

My = EQC) +...+ E(X™) + -

M”,(0) = E(X2+)

hence,
Var(X) = M,"(0) ~ [Mx'(0)’]
And
Mx(t) = E(€), M(t) = E[X" e™] (15)
Putting t = 0, we have
M©(0) EXP
that is, E(X) is the rth derivative of Mt) evaluated at t=0. (16)

Note: It is assumed that €* f(x) converges for all values of t.
The domain of M(t) is all real number t such thate™ f(x) converges. If M(t) is defined

for some §> 0, then it is defined in the intervak( < t,.

Examples 4.9
Let X be a binomial random variable with parameteend p. then
Mx(t) = E(€) = Xi_qe™"CP (L - p) ™= Zi., "C(PE)(1-p)”
from the binomial theorem
@+bj=Xi, "Cab™=[pé+(1-p),
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on putting a = peb = 1- p.

Example 4.10

Let X be a Poisson random variable with paramket&hen

_ T e MF Y (Re™™ et _ et-1
MX(t) T &y=0 EIX ! =e Ex:ﬂ P =€ ée - é(e )

Differentiating, we have
M’»(0) =re'e™ eV
M’ (0) = re'e?-e) |X=O: A E(X)
M, (t) = et @hlen 4 g2 2tai(i-en
M’(0) = A +22 = E(X®)

Hence,
Var(x) =h + A% =A% = .
Example 4.11
Let X be a geometric random variable with paramptéhem
My(t) = E2ope™ P(1—p) "= = EZ, e P(1—p)"

b . r d-p -
_:pExzi[Ett-l -pI= i — P e(1-p)I

The fourth equality follows from sun to infinity afeometric serie}¥>_, a*. Further

applications of M(t) will be considered later in Chapter 6.

Exercise 4.3
1. Find the probability generating function of tlygpometric distribution with
parameter P. hence determine the mean and vaditice distribution.

2. Let X be uniformly distributed on (0, 1, 2,...Rnd the mean and variance of X.

Hint: Efx _ n[x+lj|’2;-t X2 = n[n+135[2n+1j.

3. Let X be a random variable with finite varianBeove that for any real number a,
Var(X) = E[X — af] — [E(X) + af.

4, A fair die is tossed 50 times. Let X be the nemdiiitimes six appears. Evaluate
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© N o O

10.

11.

12.
13.
14.

15.

(i) E(X) (i) E(X® (i) VAR(X)

Find the expected value and variance of theawmneariable X os Example 3.1.1.
Show that if ¢ is a constant, Var(x + ¢) = Var(X

Let X be uniformly distributed on (0, 1, 2,..Nfind P(S), mean and variance of X.
Let X be defined by

X 1 2 3

£(x) %

B
| =

Find P(S) and hence the mean and variance of X.
Prove that if X has varianeé, and mean p, then
22.(x; — a)f(x) = ¢*+ (a— w)® every real number a.

Derive the MGF for the following: (a) Bernoull{b) Negative Binomial, (c)
Binomial and use it to find the mean and variance.

A random variable X has the pdf f(x) defined by
c(x +2),x=1,2,3,4
f(x) = {

0 elsewhere
Find (i) c, (i) moment generating function of {j) use result of (ii) tofind the

mean and variance of X.
Prove that for any random variable, X, B(X [E(X)].
Show that [E(X — &)is minimized when a = E(X).

A fair die is rolled until all the 6 sides ajpped at least once. Find the expected
number of rolls needed.

p, Xx=-1

Let f(x) = {
P(1-py x=0,1,2,..

(a) Show that f(x) is a pdf. (b) Find t), the moment generating function of
(b) Hence, the mean and variance of X.
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MODULE THREE (UNIT 1)
CONTINUES RANDOM
5.1 INTRODUCTION

In the chapter so far, we consider discrete random variables and their probability
density functions e.g. Binomial, Poisson, Geometric. These are essentially counting
variables. However, there exist random variables whose set of possible uncountable,

such random variables are called continuous random variables.

In this chapter, we shall study in considerable detail, a number of important continuous
random variables and their characteristics. We shall consider an idealized range space
for a random variable X, in which all possible real number (in some specific intervals or
set of intervals) many be considered as possible outcomes. We shall essentially replace
the summation in the previous chapters in the discrete probability function case by

integration for the continuous probability density function case.

Example 5.1

Let a point be chosen at random from the interval (0, 2) and let X represent the point
chosen. Then 0 £ X< 2. the range space of X consists of unaccountable real numbers. Any
real number in the interval (0, 2) is a sample point. Let A be the event that the point

chosen is 0.3. From the basic definition of probability we have
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P(A) = numberof point A _ 1 -0,
(00]

numberof pointsin Q -

Hence,

In general, if X is a continuous random variable, probability that X takes a specific value
is 0. random variables denoting measurements of physical quantities such as time,
weight, temperature, length are continuous random variables. The proability that X lies

between two defined values is given by
P(a<X<bh).

P(X € A) = jA f(Xdx

For any set A of real numbers

P(X) is denoted by F(X).

Definition
The distribution function F of a random variable X is the function
P(X) = P(X £ X), -0 < x <o,

If we know the probability distribution function of X, then we can calculate the

probability that X fails in a specific interval. For example

P(a<X <£b)=P(X<b)-P(X<a)=Fb)-Fa).

Properties of Distribution Function
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A probability distribution function is any function F satisfying the following conditions:
(i) 0<F(x) <1forallx

(ii) F(x) is a non-decreasing function of x.

(iii)  F(-e2) =0and F(+o=) = 1.

(iv)  F(x+)=F(x) for all values of x where F(x+) = |_jmF(x + 6).
0-0

Graphs of a typical distribution function

Example 2

Show that

F(x):e Xx<0
1 X >0

is a probability distribution function

Solution
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0<e*<1forx <0 ande"isanon decreasing continuous function, hence F(x) is a

probability distribution function.

Probability density function P.df

For discrete random variable
F(x) = P(X<x) = > f(y)

Where f(y) = P(X =y).

Similarly, for continuous random variables, there exists a function f(x) such that
F(x) = Py(X<x) = [ f(y)dy

Such a function f is called probability density function of X. to see this consider the

following.

The probability that the random variable X takes on a value between x and x + Ax is

P(x < X< x+Ax)=P(X<x+ Ax) —P(X <x)
= F(x + Ax) — F(x).
this is the probability associated with an interval of length Ax

F(x+ Ax) — F(x)
AX

is the probability per unit length in the interval. If we now let Ax tends to zero, we have

Lim F(x+x) = F(X)
Ax-0 AX

= F'(x) = (¥

Hence, F(x) = J‘_X f (y)dy where F(-o0) =0
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F(x) represents the probability per unit distance along the x acis and

-4
FO) = —— Fix)

This shows that the p.d.f of X is obtained by differentiating the distribution function of X.

Properties of probability density function
A probability density function is any function satisfying the following conditions.

(i)  f(x)20

(ii) j_"; f(x)dx =1

(i) P(X<a)=fmf(x)dx=1-I:f(x)dx=1—P(X>a)
(iv)  if Ais any interval, P(X g A) = j f(x) dx.

Figure (2) represents a graph of the function f(x). the area enclosed by the curve f(x)

between a and b is
[0 f(xdx = Pla<X <b) = F(b) - F(a).

Graphical Representation of a Continuous Random Variable.
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Theorem

(i) The function F is non decreasing

(ii) LXI_I;I‘I F(x) =0 and LXI_III F(x) = 1.

Proof:

(i) Suppose x; £ X, and let A={X < x;}, B={X<x;), then

A OB since x; £x,

Thus

P(A) < P(B)).
(i) LimF(X) = Lim I_wa(y)dy:O

Lim () = Lim [ f()dy=1
Examples

e,
Exponential Distribution. Let f(x) = {O

The graph of f(x) is shown in Figure 2 below

f(x) a




v

Figure 3. Density function of exponential distribution.

The random variable X having its probability density function given by (1) is said to have

exponential distribution with parameter A.

5.4 Normal Distribution

—1y2

Let f(x) = ie 2" —o0<X<o00,

Vo

The graph of f(x) is shown in Figure 4 below.

v

Figure 4. Standard Normal Distribution
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5.5 Let the random variable X have the probability density function f(x) — 1/2e %0

<x <o, Find (i) P(2 £ X £7) (ii) P(X 2 10).

Solution
7 _x 7
P2<x<7)= L 1/2e V2 dx=—g 2 | Z:e‘l -e772=0338
And
P(X 210)= ["1/267%" dx=- ™21 ® e,
10 10

Suppose that X is a continuous random variable whose probability density function is

given by

e 0< x< oo

0 otherwise

(i) what is the value of a? and (ii) find P(X > 1).

Solution

(i) From property (ii) of a probability density function, we have
[ fydx=1

implying that

_[: ae®dx=1=a I: e dx=1/2
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hence

2e ™ 0D<x<oo

f(x) =
0 otherwise
(ii) P(X>1)= [2e™ dx=e’=0.14
1
5.2 Expectation and variance of continuous random variables.

Let X be a continuous random variable with probability density function f(x). Suppose we divide the

range of X into small intervals, each of length Ax (by the definition of f(x)).

The expected value of X is therefore approximately

D xf(x) Ax

The limiting value of thisas Ax 0
j xf () dx

This leads us to the following definition.

Definition 3

If X is a continuous random variable with probability density function f(x), then
E(x) = j_°°w xf (X) dx

In general,
EX) = [ X F(x)dx
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E(D(X)) = j_‘:qa(x) f(x) dx

The variance o® = E[(X — p)] = J. (X— ) f(x) dx = E(x*) —

—00

Where pu= E(x).

Examples
5.6 Suppose X is a continuous random variable with p.d.f f(x) = Ae™, 0 < x < oo.

Find (i) the mean and variance of X and (ii) the probability distribution function F(x), and the probability

that X lies between 2 and 5.

Solution
E(X) = J': x.Ae'Ade=J'0°° xA e dx
By integrating by parts
= fw - x%((e‘”x) =—xe ™I :+J': e‘”xdx:%.

Similarly,

E() = [ X A dx= |- %((e‘“): - Xe™| °(;’+2 [ xe™dx

= 2[ x"¥dx= % [ xAedx=26(x) = /132
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2_1_1

hence, var(x)z? it

L =1-e

J-_xf( Y)dy=J~ f ( y)dy — J-:x/w —Aydy: ™M

pR<x<5) =[ le¥dx=F(5)-F (QL-e* -1+e™ =™ e

(u)  Flx)=

5.7 Let X be a continuous random variable with probability density function

F(X) - 0<x<6

elesewhere
find (1) F(x) (ii), E(x), E(x?) and var (x).

solution

(1) Fx) = |2 = pxx)

E(x) = f:xldx:ilxz[g:%—%—%:?,
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hence var(X) =12-9=3
5.3 symmetric probability Density Function

definition 4

a probability density function f(x) is called a symmetric probability function if

f(-x) =f(x) for all x.

1 x2
for example. If f(x) =E<e% isasynmexfunction

similarly,

fx) = =

—-0<x<a
2X

is a symmetric probability density function

Definition.
A probability density function f(x) is said to be symmetric about a if
F(a + x)=f(a — x) for all x.

If x = 0. then f(x) is symmetrical about 0. for example, if

1
F(x) = We%l(x—ﬂ)2 =< X <=
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Then

Flu-x)=——el (Hopn. 1 o1
V2x 2 2 2

hence, f(# =" thus f(x) is symmetrical about 4.
theorem 1

if f(x) is a symmetric probability density function then
f(x) = 1-f(-x)
where f(x) is the distribution function of x.

proof
fx)= [ f(ydy=["f(-ydy

since f(y) =f(-y). Let z = -y, then
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f(-x) = j_x f(2)(-1dz= j f(2dz= j f( z)dz—j_x f(2dz=1- f(X)

and hence

f(x) = 1-f(x)

terminology

when we speak of the probability distribution of a random variable X we mean its
probability density function and when we speak of the distribution function or
cumulative distribution function we always mean f(x).

5.2 some important continuous random variables.
5.2.1 The Normal Distribution

one of the most important continuous random variables is the Normal random
variable, X. The range of X is the real line.

Definition

The Normal Distribution. The continuous random variable X has the normal
distribution with mean 4 and varianceo® if 4 has the probability density function.

1 —1(x-p)
Jor 2 0°

The graph of f(x) is given in Figure (4)

F(x) = =< X<=

It can be verified that f(x) satisfies
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f(dx=1
]

2. J' xf(Xdx =

3 | (x=p)* f(Xdx=0°

Properties of the Normal Distribution.

f(Xdx=1
1. I (3 this can be verified.
Thus let z = XZH
ag
L 2 o 1
_[ 1 e 2(X 'f) dx= ie2dz=1
g2 o 42X
1, 1 2,2
1 0 Y 1 0 0 _7(2 +Y)
12=z— | e? dy=— e dzdy.
2n J.—oo y 2n J.—oo J.—oo y

Let us introduce polar coordinates to evaluate this double integral:

Z=rcosB,y=rsin0O

j2=1 jz” [ e drdg=—- J'Z”—e_zloodé?:i " 46=1.
27 Jo 27T Y0 0 2770

where dzdy = rdrdB, Hence

Yoy )2
j 1 e? (x ;u) dx=1
> gN2IT o
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E(X) = p, Var(X) = 0.
The p.d.f is completely specified when p and o are known.

When p = 0 and o = 1. X is said to have a standardized normal distribution. This
is, the pdf of X is

2

f(x) = ie_éx ,—00< X< 00

N2
The importance of the standardized normal distribution is the fact that it is
tabulated.

f(x) is symmetrical about the point p, hence F(-x) = 1 — F(x).

Most available tables are tabulated only for positive values of x since F(-x) can be
found from f(x) and f(x) are given at the back of this book. The graph of f(x) is
bell-shaped curve centred at its mean.

X-H
o
standardized normal distribution. The proof of this is left as an exercise. Y is said

has a

IF X has a normal distribution with mean p and variance o> then Y =

to have a standard Normal distribution.

The moment generating function of X is defined by

Mx(t) = E(etX) — J'oo etx 1 e—% (X—/J)Z dx

—o glzﬂ 0.2

Lety= X-H ,thendy:idx
o o

X=U+YyoO.

Thus,

e
MX(t) = J._wet(/“'ya') %e 2y -o'dxdy
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tu 12 1 52
e o —=(y-to) tu+=c?
= J' e? dy=e 2

- J2x

J-oo —f(y—w)2

Jon

Lety—to =y, then

Lyto)? o —Ly2
ij e 207 dy:ij_ e? dy=1.

N2 N 21T
Hence,
+Lon2
M,(t) = ew 2
Examples
5.8 If X has a standard normal distribution i.e. mean of X, u=0, and variance = 1. Find

(i)

(i)  P(X<0.5) (i)  P(X=0.5)
(i) P(X<-0.3) (iv) P(0.3<X<0.5)

(v) P(-0.3<X<0.5)

Solution
P(X<0.5) = j“; f(x)dx = F (05).

From table (3) F(0.5) is found by locating the first two digits (0.5) in the column
headed x, the desired probability of 0.6915 is found in the row labeled 0.5 and
the labeled 0.00. That is

e
P(X£0.5)= [*—2—e * dx= 06915

Jor
and
P(X20.5)=1-P(X<0.5)=1-0.6915 = 0.3085.
P(X<-0.3) = F(-0.3) =1 -F(0.3)

From the table, F(0.3) =0.6179.
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(iv)  P(0.3<X<0.5)=F0.5)—-F(0.3) =0.6915-0.6179 = 0.0736

(v) P(-0.3 <X <0.5)=F(0.5)—F(-0.3) =0.6915 — 0.3821 = 0.3074.

Example 5.9
If x is a normal variable = 5 and variance 0” = 16, find (i) P(X) < 6)
(i)  P(3<x<7)(iii) P{X-5\>2}.

Solution

From property (4)

X—u 6—5

i Pix<e)=P(* < =2)=p(y < 2)=05987

- _of3-5 _X-5 _7-5\ _ .
(ii) P(3<X<7)-P(T<T<T)—( 0.5 <Y < 0.5)
- ®(0.5) — (-0.5) = 0.6915 — 0.3085 = 0.3830

(iii)  P{IX-5]>2}=P(X-5>20rX—5<-2)=P(X>7or X< 3}
=P(X>7)+P(X<3)=p(y >7T‘5) + (y <3T_5)

=P(Y>0.5) +P(Y<-0.5) =0.3085 + 0.3085 = 0.6170.

Notation:

When we write X is N (0%), we mean that X has a Normal probability distribution with
mean and variance o’

5.3.2 The Normal Approximation to the Binomial
Let X be a binomial random variable with parameters n and p, then
E(X) = np, var (X) = np (1-p)

An approximation to the distribution of X is given by De Moivre Laplace limit theorem.
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Theorem (De Moivre laplace Limit Thoerem)

If X denote a binomial random variable with mean up and variance np(1-p), then for any
a<b,

. X —np
1 ———— < b= D) — P(a).
i pla = 2= <o) = 00) - 000

The accuracy of this approximation is quite good for values of n greater than 10 P(1-p).

This theorem says that if X is B(n,p) then large n, X is N(np, np (1-p).

Example 5.10

Let X be a binomial random variable with parameters n = 40, p = 0.20. find the
probability that X = 5.

Since X is discrete and normal distribution is for continuous random variable, we write

P(X=5)={45<55=p(* " <25 2

<—>
1.90 1.90 1.90

=p(0.26<y<0.79) = (0.79) — $(0.26) = 0.18226.

Notation: Whenwe write X is Ny (L 0), we mean that X has a normal probability
distribution with mean p variance 0°

5.2.4 The Exponential Distribution

A continuous random variable, X is said to have an exponential distribution with
parameter > 0 if its pdf is given by,

_ (™ ifx =0
fe) = {O x< 0

The pdf has the graph shown in Figure 3. It can easily be shown that
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f Ae™™ =1,
0

The exponential distribution plays an important role in point processes and in describing
random phenomena. A number of real life situations can be modeled using an
exponential distribution.

For example, time to failure of an equipment.

Properties of the Exponential Distribution
(1) E(X) and standard deviation of X are the same. The expected value of X is given by

E(X) = f, xAe " dx

On integrating by parts we have

oo oo oo 1
f xle Mdx = f —xd (e"“) = —xe"lxl(z)o+ f e Mdx = -
0 0 0 A
(ii) The variance of X is given by
Var(X) = E(X") = (E(x))’
E(X?) = foooxz le Mdx = fooo —x2d(e™*) = —xze_lxlog + Zfoooxe_’lxdx ==

Hence,

Thus, the mean and standard deviation of an exponential distribution are the same.

(ii) Lack of Memory of the Exponential Distribution

A random variable X is said to be without memory =, or memorable, if
P(X>s+t\X>t)=P (X>s)foralls,t>0

PX>s+t)X>t=P(X>s+tand X>t=P(X>s+t

P(X> t) P(X >1t)
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By the definition of memoryless, we have,
P(x>s)=1-F(x+t)
1-F(t)
That is,
1-F(s) = F(s+t)
1-F(t)
(1-F(s)) (1-F(t) =1 -F (s + 1)
F(X) = P(X< x) =dy = 1-e°
1-F(x)=ex
P(X>s)=1-F(s)=e"
PX>s+t)=1-F(s+t)=¢e
(p(x>t)=1-F(t)=e
P(X>s)=e
eu=e

thus, an exponential random variable is memoryless. The only continuous random
variable X assuming non negative values satisfying

PX<s+t/X>t)=p(X>s)foralls,t>0
(iii)  The moment generating functions of X is given by (definition 7 of chapter 4).
5,2,5 The Gamma Distribution
Definition 6
The gamma function, denoted by ', is defined as follows:
I (x) =

By integrating by parts, we have

e}

FX) = [, —y* td(e™)dy = —y*e™ [%o + [7(x—Dy*2eVdy
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=(x=1) f, y*2e¥dy = (x - DI (x = 1)
M(x) = (x — 1)M(x-1) = (x-1). (x-2) M(X-2) = (X-1)!r(1)\

(1)=["eYdy =1.
Hence

M(x) = (x-1)!
It is also easy to verity that
o _1
M 1) =J vy e dy=Vr

.. oy le=¥gy
(ii) fo —m =1

Definition 7

Let X be a continuous random variable assuming only non-negative values. Then X is said
to have a gamma distribution if its pdf is given by

A@0™ _x

Flx) = { o e x>0

0 elsewhere

A and n are called the paramenters of the distribution. f(x) is denoted by '(n, A).

Properties of the Gamma distribution
n n
1. E(X) =;,Var(X) = A_Z

To see this, we have

[ee]
. X"e M dx,

o l(lx)n_le_lx _ oo A\MLxMe—Ax _ an
E(X) = fO x. rm) o fO rm) X = I‘(n)f

Let y = Ax, dy = Adx

joox”e — Ax dx = foo(z)ne_yl dy = - jooy"e_y dy.
B A A /1n+1 B

0

Hence,
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F(n+1) _n
)

n
E __
(X) =7
Similarly,

© 2 A(ax)nle~Mx _ AT 0 i1 -Ax
EX*) =, x o= s J, x™e ™ dx.

fwx"“e"“ dx = fn+2)
0

Ant2
Hence,
2y _ A" T(n+2) _ n(n+1)
E(X )_F(n)' an+z 12
Thus
n(n +1) n? _n
Var(X) - A_Z = /'l_z

The moment generating function of x is given by

tx Anxn—1p-Ax _ AZ —x(A-t)
M,(t) = f —F(n) x = “xnle dx

n 1 i
T a-on 1f [x(A — )" e *@A Dy,

Lety = x(A—t), dy = (A —t) dx. Therefore

M, (t) =Lf°°yn—1e—ydy = " F(n) = [L]n (8)
X rm)@a-on-o rm@a-on’ A-t
2. If X'is a random variable having '(n, A) distribution and Y is a poisson random

variable with parameter Ax, then

P(X<x)=P(Y2=n)

That is
foo Anyn—le—/ly _ - (Ax)ke_’lx
0 rn) T4an ko
3. If n =1, f(x) becomes
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f(x) = Ae™.

Hence, the exponential distribution is a special case of the Gamma distribution.

5.2.6 The Chi-square Distribution

A special case of the gamma distribution in which A =§ and n replaced by n/2, where n
is a positive integer is called the chi-square distribution. The pdf is given by

n

xz L G):e—gx = — ! n x%_le%’x >0
B

A continuous random variable having pdf f(x) given by (7) is said to have a chi-square

flx) =

distribution with n degrees of freedom (denoted by x,). Because of its importance, the
chi-square distribution is tabulated for various value of the parameter n) see table 4). If
X has a chi-square distribution with n degrees of freedom, we have

(i) E(X) =n;
(ii) Var(X) = 2n;
(i) My (t)=(1-2t)™2% ¢t >§.

The graph of f(x) is shown in figure below.
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5.2.7 The uniform distribution

A continuous random variable X assuming all values in the interval (a, b) where both a
and b are finite is said to be uniformly distributed over the interval (a, b) if its pdf is

given by

1
f(X) — (E a S X S b
0 elsewhere

The graph of f(x) is shown in figure below:

Properties of the Uniform Distribution
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a+b ebt_ eat

1L E(X) 2, M(0) =

t(b- a)
2
et =1+ta+ - 4o
2
e +14+th+ & 4.

2!

ebt_ eat _ 1 [(b—a) + (b%2-a?)t n (b3- a3)t? n ]
t(b- a) b—-a 2! 3!

1 [(p2-a?)t (p3-a®e2 |
MX(t)_b—a[ 21 t 31 t ]
2_ 2 —
MX'(0)=(b a%) _ (b—a)(b + a) _ b+ a
2(b—a) 2(b- a) 2
Similarly,
’ _(b3_a3)
M,'(0) = o)
Hence,
_(b3—a3)_a+b_ b2+ab+a2)_a+b_1 2 2y
Var(X) = 0o = 5 = 6[Z(b + ab +a?) — 3(a+b)]
X—a
< <
F(x)=P(XSx)={b—a a<x=<b
1 x>b

5.2.8 The Beta Distribution
A continuous random variable X is said to have a beta distribution if its pdf is given by q,

B>-1

al B!

a+ f+ 1) 4 _ B
f(X)={—x 1-2)F, 0< x< 1
0 elsewhere

f(x) becomes the pdf of a uniform distribution over (0, 1) when a = = 0.

Properties of the Beta distribution
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r 1 (a+ B+ 1) (a+ g+ !
1. E(X)= fO erﬂ!x“ (1 —.X)B dx = Tfo x"t a(]. —X)'B dx.
From definition (Beta function)
a! B! _ 1 a _ B
(a+ B+1)! fo x%(1 —x)" dx
and
1
r+ a)! f!
f x"t¥1-a)f dx = ( ) B
0 r+ a+ pg+1)!
We have
E(Xr) _ (a+ B+ 1) % (r+a)p! _ (a+ B+DI(r+ a)!
B! a! (r+ B +1)! al(r+B+1)!

The moment generating function of X does not have a simple form.
5.2.9 The Weibull Distribution

A random variable is said to have a Cauchy distribution with parameter 8, -o0 < 0 < oo, if
its pdf is given by

For an illustration of a Cauchy distribution random variable. See example 6.12

Exercises
1. If X'is N(0,1), determine the following probabilities

(i) P(X>0.9)

(ii) P(X<-0.7)

(iii)P(0.7< X< 0.9)

(iv) Find a such that P(X < -a) 0.10
(v) P(IX] £1.5)

2. A random value X has the pdf.
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10.

11.

_fex 0< x< 1
fl) = {0 elsewhere

Determine the value of the constant c. find F(x) and the mean and variance of X.

A random variable X has the pdf.

X 0<x<1
fx)=142—x 1x < 2
0 elsewhere

(i) Show that f(x) is actually a pdf
(ii) Find the means and variance of X.
Let X bed a continuous random variable having probability density function

e _co< x<oo

EW(X) (iii) Var (X)

f(x) =
Find (i) P(-2<X<2) (ii

— N |

Let X be a Normal random variable with mean 8 and variance 2. Find P(-2<X<6).
Determine the values of a and b such that P(X< a) = 0.25 and P(X>b) = 0.25

Suppose that X is N(5, 9). Find a constant c such that P(X > ¢) = 2P(X< c).

Let a point be chosen uniformly in the interval (a, b). ). Let let X denote the
distance of the point chosen from a. find the probability distribution function F(x)
of X.

o _1
(a)  Showthat| e > dx = 21

(b) Show that f(x) = 1-|a|, -1 <x < 1is a pdf

k-1 Xp—A
Show that f;oj;(—k)e"y dy = Yk-i2 ; :

The lifetime in hours of an electric light bulb is a random variable with probability
density function

f(x) =0 exp (—%x),x >0
Determine the value of 6

A probability density function f of random variable X is defined by
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0, x<0

!x, 0<x<1

fl) = i 1<x<c
kO, X >c

Where c is a constant

12.

13.

14.

15.

16.

17.

(i) Calculated the value of c and hence the mean and variance of X.
(ii) Sketch the graph of f.

A random variable X has pdf.

F(x) = k exp {-(x-2)%/9} < x <

(i) Find the value of k,
(ii) What is the probability distribution of X?

Suppose (x) = f(x) , where F(x) =f(x) x>0
1-F(x)
Show that F(x) =1 —exp — {fol)l(x)dx}
The pdf of a random variable X is defined by
f(x) = % e, -00< x <0
Find P(1<) /x/ <2
(a) If X is N (0°) find k (as a function of u and 0 such that P(X > k) = 2P (X <k)
Let X be a random variable with pdf
(@)  f(x)=re™? x>a;
(b)  f(x)=% " _co< x<oo
Find the M.G.F of X and hence the mean and variance of x in each case

(a) F(x) =ex>g;
(b) F(x) =1/2e<x<
Find the M.G.F of X and hence the mean and variance of X in each case

A random variable X has mean 5 and variance 3. If the pdf of X is given by f(x) =

ﬁ , ifa<x<band zero otherwise. Find aand b
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18.

19.

20.

If f(x) =in 1/x, 0 < x < 1 and 0, otherwise show that f(x) is a pdf

Let X be a random variable with zero expectation and probability density function
ae*—o< x < f

given by f(x) = { elsewhere

Find a.

Let f(x) =% (k) = % (k-1)/ (1+/x/)k, k = 1-00 < x< coshow that f is pdf
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UNIT 2
JOINTLY DISTRIBUTED RANDOM VARIABLES

6.1 Bivariate Distribution

In our study so far, we have considered only umaar distribution, Univariate
distribution depends on only one random variable \ee are frequently interested in
specifying two or more random variables for a mendfea population and interested in
probability statements. For example, the age Athrdsystolic blood pressure, P may be
of interest and we would consider (A,P) as a siredperimental outcome. We might
study the height H and the weight W of a choses@egiven rise to the outcome (h, w).
A probability distribution which depends on two dam variables. Table (1) gives the
joint variables. Table (1) gives the joint probépildensity function of two discrete
random variables X, number of white marbles, andni¥mber of blue marbles in a

sample of 3 chosen at random from a box contaidired, 3 white and 5 blue marbles.

Table 1
XY 0 1 2 3
0 1/55 3/22 2/11 1/22 21/55
1 9/110 3/11 3/22 0 2755
2 3/55 3/44 0 0 271220
3 1/220 0 0 0 1/220
35/220 21/44 7122 1/22 1

We denote the probability that X takes the valug ahd Y the value y by f(x, y) where

fx,y)=P(X=x,Y =vy).

For example, the probability that the sample costdi white and 2 blue marbles is

denoted by f(1, 2). From the table,
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f(1, 2) = 3/22
This is calculated thus:

2 5 a
PX=1Y=2) =2 2 20 _ 3

“Cy 220

&

The reader should verify the entries in table (1).

Note:

) 2Xfx,y)=1.

(i) 0<f(x,y)<1forall (x,y).

(i)  the row totals form what is called the margirdistribution of X denoted by(f)
and the column totals is called the marginal distion of Y denoted by fy).

From table (1) the probability of obtaining a pautar value of X irrespective of the

value of Y is given below.

Table 2
X 0 1 2 3
fe(X) 21/55 27/55 271220 1/220
Similarly for Y, we have
y ‘ 0 1 2 3
fy(X) ‘ 35/220 21/44  7/22 1/22

If we know the joint probability density functiorf twwo random variables X and Y, then
we can compute the marginal probability densityction f,(x) by summing over y and
the marginal probability density functioy(y) by summing over x i.e.

() =Z, f(x.y)

By) =2 (f(x, ) )
Note: It may happen that X is discrete while Y is contins, but in most applications it

is either both are discrete or both are continuous.
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Definition 1
Two discrete random variables X and Y are saideonidependent if their joint density
function is give by

f(x, y) = &(x) fv(y)

PX=x,Y=y)=P(X=x)P(Y =vy) for all pairsf x, y.

In the above example,

27

(1) :E

7

£(2) =—
f(1,2)=— = Ex ~

hence X and Y are dependent (not independent) rnvdwmiables.

6.2 Expectation of Sum and Product of Jointly Distibuted Discrete Random
Variables

Let f(x, y) be the joint probability density funoti of X and Y and,fx), fy(y), the
marginal probability densities of X and Y respeelyw Then

E(X) =X xi(X)
and

E(Y) =X, Yiy(y).
For example, consider the variables X and Y hatmgjoint pdf given by the table (1).
The marginal pdf is given by table (2). Then

E() = (0 x =)+ (1 x =) + (2 x Z)+ (3 —)=0.38

220

E(Y) = (_U x%)+ (_1 x?)+ (_2 x;—2)+ (_3 x 2—12)=2.61

and
E(X +Y) = E(X) +E(Y) = 2.99.
Expectation of Product

The expectation of product of two discrete rand@mables is defined as
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EXY) =X, XZ,xyf(xy)
For the above example we have

(X0 x)+(  (Ox1)x2)+

+(£1 xﬂ)xﬁ)+([1 x 1) x

(- Ox)x7)+( (0x3)x)
1) + ([1 xzjx:—z)
=)

X([S % 0) xzi—u)

Hll'.l..'l
b

+(2 x0) x;—S) (2 x1) x

(12 xR+ (xg) -

44

Variance of Sum of Two Random Variables
From the definition variance E€X— [E(X)]? replacing X by X + Y we have Var(X + Y)
=EX+Y)F
= EQC + Y2 + 2XY) — [E(X)F = [E(Y)]? = 2E(X)E(Y)
= EQ®) + E(Y?) + 2E(XY) = [E(X)F- [E(Y)]? = 2E(X)E(Y)
= E() — [EQ)P + E(Y?) ~ [E()]* + 2[E(XY) — ECQE(Y)]
= Var(X) + Var(Y) + 2[E(XY) — E(X)E(Y)]
= Var(X) + Var(Y) + 2Cov(X, Y)]
Where Cov(X<Y)= E(XY) — E(X)E(Y)

Definition 2: Covariance
The covariance of two random variables X and YUaded by Cov(X< Y) is denoted by
Cov(X, y) = E{(X -EX))((Y — E(Y)}
= E[XY = XE(Y) — YE(X) + E(X)E(Y) = E(XY) — E(X)E(Y)

Example 1

Given the following joint probability density fution of X and Y. Find
(1 The marginal probability density function ofatd Y

(i)  The expectation of X and Y

(if)  The covariance of X and Y
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(iv)

(i)

(ii)

(iii)

(iv)

The variance of X + Y.

XIY 1 2 3

3 A 2 0

4 0.2 0 A
6 15 A5 A
Summing along the rows we have

X 3 4 6
fx() 3 3 4
Summing along the column, we have

y 1 2 3
fv(y) 0.45 0.35 0.2

E(X) = (3% 0.3)+ (4 x0.3) + (6 x 0.4) = 4.5
Similarly E(Y) = (1 x 0.45) + (2 x 0.35) + (3 x).= 1.75
Cov(X, y) = E(XY) — E(X)E(Y)
E(XY) = 23xyf(x, y)
=((3x1)x0.1)+ ((3x2)x0.2) + ((4 x 102)
+((4%x3)x0.1)+((6 x1) x0.15) + (12 x L465((6 x 3) x 0.1) = 8.0
Hence,
Cov(X, Y) = 8.0 — (4.5)(1.75) = 0.125
E(X%) =21.9
Var(X) = 21.9 — 20.25 = 1.65
E(Y?) = 3.65
Hence,

141



Var(X +Y) = Var(X) + Var(Y) + 2Cov(X, Y) = 1.65+ 0.25 = 2.49.

6.3 Independent Random Variables
X and Y are said to be independent if
PX=x,Y=y)=PX=x)P(Y =)
For all pairs (x. y). That is,
f(x, y) = &(X)f,(y) for all pairs (X, y).
thus for any subset A and Bof R
P(Xe A, Y £ B) = P(Xe A) P(Y ¢ B).

Example 2
Two random variables X and Y have the joint prolighdistribution given by

XIY 1 2
1 0.2 0.4
2 0.3 0.1

Show that X and Y are not independent.

Solution
The marginal pdf of X is
X 1 2
fx(X) 0.6 0.4
And that of Y is
Y 1 2
fy(y) 0.5 0.5
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P(X=1,Y=1)=0.2
P(X=1)=0.6,P(Y=1)=0.5
P(X=1)P(Y=1)=0.3¢P(X=1,Y=1)=0.2
Hence X and Y are not independent.
Consider two independent random variables X anth&mh
E(XY) = E(X)E(Y).
To see this, note that
EXY)=X, XZ,xyflx,y) = X, Z,xviG)f, ()
=Zxf,] [ZvE(] = EE®).
Thus if two random variables X and Y are independien
E(XY) = E(X)E(Y) (3)
That is Cov(X, Y) = 0.
Note that independent and zero covariance areheatame. That is if E(XY) = E(X)E(Y)

it does not imply that X and Y are independent.

Definition 3: Correlation Coefficient
Let X and Y be two random variable having finitenreero variance. One measure of
degree of dependence between X and Y is the coarleoefficient denoted by p(X, Y)

and defined by

it can be shown that 4 p<1.

If X and Y are independent random variables then

@ p=0

(i)  Var(X+Y)=Var(X) + Var(Y)

(i) Var(axX + bY) = &Var(X) + b*Var(Y) where a and b are constants.
(iv)  Var(X-=Y) = Var(X) + Var(Y).

6.4  Conditional Probability Density Function

In chapter Two, we defined the conditional probabof an event A given event B by
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P(A | B) = P{ANB)

P(B)

Similarly, this idea can be extended to randomaldes. Thus
y |y 2y = PE=xandv=y)
PO =x |y =y) =
Definition 4
If X and Y are two jointly distributed discretendom variables, trhe conditional

probability density function of X given Y =y is deted and defined by
P(X=x¥Y =y) _ F(X.))
P(Y=y)  fy(¥)’

fly(x ly) = Px =xly =y) =

It follows that

Ty
flytx by) =222
And
F(x, ) = & < [Y)f,).
Example 3

Let the joint probability density function of X antlbe given by the table below.

XY 1 2 3

3 i 2 0
4 2 0 A
6 15 15 i

Compute the conditional probability density funatiof X given that Y = 2.
Solution
From the joint p.d.f. table we have using the folamu

FiEy)
fx ly(X 1y) = .
x Iy |y) fr )
_f@2 _ PE=ay=z) 02 _ 4
B ly=2(3 |2) T ey B(Y=2) 035 T
_ P(x=4¥=2)
flytd [2) = FEE22
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P(X=6,Y=2) 0.15 3

fX|y:2(6|2):W = E = ;

Hence, the conditional pdf of X givenY =2 is
X 3 4 6

fx ly=a(x [2) 0

4
7

It is left as an exercise to show that the condélgdf of X given that Y= 1,3 are

1. flyx 1)
X ‘ 3 4 6
I
fy |2(x 1 1) 5 5 S
2. fx |3(X |3)
X 3 4 6
fx |3(X |3) 0 1 1
2 2

Definition 5: Conditional Expectation
The conditional expectation of X given Y =y is iefd by
E(X |y) = Y xfy ly(X |y)
Where £ |(x |y) is the conditional probability density functiohX given Y =y.

Definition 6: Conditional Variance
The conditional variance of X given y is defined by
var(x ly) = E0 ly) - [E(X ly)2

Example 4
Calculate the conditional expectation and condéiovariance of X given that Y = 2

where the joint pdf of X and Y is given in ExamleFrom example 3, we have
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2
EXIY=2)=(3 x )+ (6 x ) = 2=4?
eIy =2)=(s x )+ (36 x 3= =2
Hence condition variance of X given thatY = 2 is

Var(X ly = 2) = E(@ |y = 2) — [E(X |y = 2)F == - (3—;’)2 =220

Exercise 6.1

1. Two discrete variables X and Y have the joinbhability distribution given
below.

(a) Find the value of k,

(c) Are X and Y independent?

XIY -1 5 7

0 0.1 0.2 K

1 0.05 0 0.15
2 0.3 0.1 0

(b) Find the marginal disttiba of X and Y and
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2. Given the following joint probability densityriation of random variables X and
Y.
XY 1 2 3
1 1/8 1/8 Ya
2 3/8 0 0
3 0 1/8 0
Find



1. The marginal probability density function ofaxd Y and hence E(X) and
E(Y).

2. Are X, Y independent?
3. Find the conditional pdf of Y given that X =arfwhich E(Y|x) is defined.

The joint probability distribution of two randovariables X and Y is given by

XY -1 0 3
2 A 0 A
3 2 1 0
4 0 3 2

(a) Determine whether or not X and Y are independent.
(b) Calculate the correlation coefficient, P(X, Y).

(c) Find the variance of X + Y.

Suppose a box has 3 balls labeled 1, 2, 3. Talle are drawn at random one after
the other without replacement. Let X and Y denbt number on the first and

second balls drawn respectively
(@)  Find the joint probability distribution of Xhd Y
(b)  Determine whether or not X and Y are indepehde

Suppose the situation is as an exercise 4, erogpthat the two balls are selected

with replacement.
(@)  Find the joint probability distribution of Xhd Y
(b)  Determine whether or not X and Y are indepehde

(c) Find the Var(X +Y).
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6. Let X and Y be two random variables having thatjprobability density function

given by the following table.

XIY -3 -1 0 2 5

-1 1/20 1/10 0 0 3/20
3 1/40 1/40 1/20 1/20 0

4 3/40 1/40 1/40 1/20 1/20
5 1/20 1/40 1/10 1/20 1/10

Compute the following probabilities

0] X is even (i)  Yis odd
(i) X +Yiseven (iv) XYis odd
(v X>0andY>0 (vi) Xis even given that ¥ even

(vi) X >O0giventhatY is<O.

6.5 Multinomial Distribution

Multinomial distribution is a generalization of theéomial distribution in which each of
n independent identical experiments can resultng af k possible outcomes with
probabilities
P Pz, P 2Pk = 1.

For k= 2 we have the binomial distribution.
Consider an experiment, such as rolling a die, ¢hatresult in only a finite number of k
distinct outcomes at let Ybe the number of the n experiments that resutiuttome
number i.
Then

PX1= X1, Xo=% = ... Xk = X) =p ™0™ opp ™ c( Xy, Xo, -ov X)
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Where Xy, %o, ... %) = number of possible sequences of outcomes &ntaxperiments
to yield
X=X, Xo=Xo = ... Xg = X

From our knowledge of mathematics of counting,

nl

C(X1, X, oo X) = ———

P I
can be regarded as the number of ways n objectbegrartitioned into k classes such

that class contains gbjects (I = 1, 2, ...K). Thus,

P(Xy = X, X2 = Xg,... Xi = %) = ——

iimato PO P
ix=nXip=1
Example 5
Suppose that a fair die is rolled 12 times. Firelghobability that 1 and 6 appear 2 times

each. 3 thrice each, 3 times, and 4 and 5 once each

Solution

Let X; be the number of times ith outcome appears.

N=12,%=2,%=3,%=3,%=1,%=1, %= 2, n:é

Hence,

PX1=2,%=3,%=3,%=1%=1,%=2)

w0 D OO O -550"

Example 6

In a certain large population, 70% are right-hand2@s left handed and 10% are
ambidextrous. If 10 persons are chosen at randomm fihe population, what is the
probability that (i) all are right-handed? (iiare right-handed, 2 are left handed and 1 is

ambidextrous.

Solution
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P,=0.7B=02R=0.1

Let Xy, X5, X3 denote number that are right-handed and ambidextr@spectively, then

PX1 =X, Xo =% = X3=X3) = (Pt Tip, M py

.k.k.k

() P(X;=10,%=0=X%=0) == (0.7}%0.20(0.10 = (0.7}° = 0.028

10

(i) PX1=7,%=2=X=1)=—(0.7)(0.2%40.1)'= 0.0119.

2I I

6.6  Continuous Random Variables

In this section we will consider a pair of contimgaandom variables X and Y and some
of their properties. The results in the earliertise¢ which have been proved for discrete
random variables are also applicable to continuoaisdom variables. The joint

probability density function of X and Y is denotegd f(x, y) such that
fj; f:n flx,y)dxdy =1

and
f(x,y)> for all (x, y)¢ R

(that is, summation in discrete case is replaceohiegrals) and the marginal probability

density functions are given by

%00 = fx. ) dy

) = f () dx
The joint probability distribution function F is fileed by
F(X,y) =POX X, Y<Y)
Where X, Y are defined on the same probability spac
Fouoy) =2 17, Flwv)dudy
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If B is in the range space of (X, Y)
PX,e<=B)=P@B)=[ [ flx,y)dxdy
and
aB
PP Flx,v) = flx,v).
The marginal probability distribution function atefined yb

R(x) = P(X< x) and F(y) = P(Y<Yy).

From the joint probability distribution function wean get the marginal distribution

functions by the following relationship
F(X) = F(x,%) =lim,,_, F(X,y).

R (y) = Fee, y) =lim,_,, F(x, ).

Let X and Y be any continuous random variables.nTheand Y are independent if and

only if
(X, ¥) = f(X)fy(y), <0< x <0, =<y <0

The conditional probability density function of X defined by

Fiey)
fy[:"':'.

Fuy Gly) =

Similarly, the conditional probability function &f given X is

Fiey)

fel)

fore(vIx) =

The conditional expectation is defined by

E(vIx== [y (:v |x) dy
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Example 7

Let X and Y have the joint pdf

2 0 <x < y< 1
f(X,y)={

0 elsewhere
Find
() The marginal probability density functions.
(i)  Determine whether or not X and Y are indepeande
(i)  Find the conditional expectation of X given=Yy.

Solution
The marginal probability density function is givien
0] fx(x) = ff[x,y)dy,x <y=<10<x <1

) =[ 2dy= zy.fi =2(1—x)

and
fy(y) = [ flx,y)dx, 0 <x <y
= f; 2dx = fog =2y
Hence
21-x) O0<x<1
fx(x) :{
0 elsewhere
and
2y 0O<y<l1
fly) = {
0 elsewhere

(i) F09fv(y) = 2(1 - x) 2y = 4y(1-x¥ f(X, y)
So X and Y are not independent.
= — fxy) o Zav= %
(i) E(X |y) —fxfx F(x |y)dx = [x = dx = [x zydx = fydx.
=% f;xdx, 0=x=<y

1
:E v,0 <y, 1L

Example 8
Let the random variables X and Y have the joint pdf

x¥fy 0<x<1,0<y<l1
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f(x,y) =
0 elsewhere
Find (i) the marginal probability density functigr(@) are X, Y independent? And (iii)

find the Cov(x, Y).

Solution

(i) fxX)=J f(x,y)dy, 0<y=<1

1 1
:fn (x + }})d}} = Xy +E};2!1

0
fy(y) = fnl[x +y)dx, 0<x <1

_1 [1_3
=X +x}fﬂ—2+}f.

+{< O<x<1

0 elsewhere

+{/ O<y<1

0 elsewhere

e
= X -
2

Hence,

11 B | =

fx(x)

1 Ba | =

fy(y)

(i)  f(x,y) #fx(X)fy(x)). Thus, X and Y are not independent.

(i) E)= [fafdr=[lx(G+x)dr=—

E(Y) = [, v fr(n)dy
E(Y) =—.

E(XY) = f fx}’f(xr}’jdxd}’= fl flxy(x+}’)dxd}’= fl Ul(f}’+ X}’zjdxl dy
o o o o

3 z-

=

.rﬁi(xz}"Fx}’:jtix =1/3x%y + %xz}:r?[; = (l}}, 4+ lv:

Hence
E(XY) = 1/3
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Thus,

Cov(X,Y)=1/3-7/12.7/12. = -1/144.
Example 9
Let the random variables X and Y have the joint pdf

3_{0<y<x<1

fx, y) =
0 elsewhere
Find the marginal p.d.f of X and of Y and the cdiadhial pdf of Y given X = x.

Solution
£o(x) = ff(x,}f)dy, D=<y<x0<x=<1
- -
}--l .l .
= f =dy = —yIﬂ =1
p X X
Therefore
1 O0<x<1
fx(X) :{
0 elsewhere
1 11
R(y) = .rj flxy)dx = _I; ~dx=—logy,
Therefore
-logy O<y<1
fy(y) :{
0 elsewhere
E_ O<y<x<1
_ Fy)
1:Y |x(y |X) = P =

0
Hence X and Y/x are uniformly distributed over 19, (0, x) respectively.

Example 10
Let the random variables X and Y have the joint pdf

fx,y) =

Find the P(X + Y< 2).

xz{% 0<x<1,0<y<2

0 elsewhere
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Solution
Let A={x,y: x+y<2}.

PR =l [ fCyayax = [T 773+ 2 ayax

:J-DI 4x + 92° — 528 dx _ 115?.

6
Exercise 6.2
1. Suppose that X and Y have the joint p.d.f

K x>0, y>0
f(x, y) ={

0 elsewhere
Find (i) K and (ii) the marginal pdf of X and %f
2. Suppose that X and Y have the joint pdf

C(x-y) 0<x<2
f(x,y) = X<y <X.
0 elsewhere

(@) Find (i) c and (ii) the marginal pdf of Xantia
(b)  Compute the following (i) P(x< 1) and (ii) P€OY < 2).
3. Suppose that X and Y have the joint pdf

{%f + 2k oxx=2
f(x,y) = .

elsewhere

()  Find K using the fact thaf f(x, y) dxdy = 1.

(i)  Are X and Y independent random variables.
4. Two random variables X and Y have the joint giden by

C(k—2xy +y)xx<1,0<y<1
f(x, y) ={<
0 elsewhere
(@) Show that X and Y are uniformly distributingeo [0, 1].
(b)  Find the joint probability distribution funot of X and Y. Hence, find the
marginal distribution functions of X and Y.

5. Suppose that X and Y have the joint pdf

Ae”  0<x<y
f(x, y) :{

0 elsewhere
(1) Find the marginal probability density functeof X and of Y.
6. Suppose that X and Y have the joint pdf
—%{.J:E— .J:_v+_v2j|

f(x, y) =c 00K X <0

0 oL X <00
(1) Determine the value of c.
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10.

11.

(i)  Are X and Y independent random variables?
Let X and Y have the probability density funatidefined by
2 if (X,y) is inside the triangle having varces at
f(x, y) ={ (0,0),(0,1), (1, 0)
0 elsewhere
Find the marginal probability density functionXfaind Y

Let X]_/Xl + X2) (||) E(X1IX1 + XZ = m)

A fair die is successively rolled. Let X and ¥mbte, respectively, the number of
rolls necessary to obtain a 6 and a 5. Find () E(X(b) E(XIY = 1), and (c)
E(XIY =5).

Let the random variables X and Y have the jpdft

T 0<x<s  0<y <. Find E(XIY = y).

g ¥Ye~
¥

F(x,y) =

If it is assumed that, in single — car accidenta certain area, the probabilities of
minor severe, and fatal injuries to the driver @® 0.4 and 0.1 respectively, find
the probability that in 10 accidents there are Aani4 severe and 2 fatal injuries
to the 10 drivers.
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Example 2
Let X have the poisson pdf with parameteFind the pdf of Y = X

-2
f(x) = fo;X =0,1,2, ..
Solution
Possible values of Y are: 0, 1, 4, 9, 16...
P(Y =y) =P(X =y) = P(X = +/y)
(single-valued inverse function)
:f(ﬁ), X :\/}
e_l)l\/;
= 5 y=0,1,4,9,16...
_ _ N 0 elsewhere
Since X is a positive random variable), y = 0, 19416, ...
Example 3
Suppose X is a random variable having probabilgsity function f(x) given by

X |2 |1 |0 |1 |2 |3
fx) |.15 | .25 | 0.15.2 | .15 | 1

Find the p.d.f. of Y = X

Solution
Possible values of Y are 0, 1, 4, 9.
This is not a one-to-one function
P(Y=0)=P(X=0)=0.15
PY=1)=P(X=-1orl1)=P(X=-1) + P(X=1)025 + 0.2 = 0.45
P(Y=4)=P(X=-20r2)=P(X=-2) + P(X=2)0s15+0.15=0.3
PY=9)=P(X=3)=0.1
Hence, the pdf of Y is given by

y 0 1 4 9
h(y) 0.15 0.45 0.3 0.1
Example 4

Let X has the pdf given by
() ={(§) =12
0

elsewhere
Find the pdf of Y defined by
1if X is even
Y = {

1if X is odd
Solution
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P(Y=1)=P(X=2,4,6,8,...
=PX=2)+P(X=4)+P(X=6) +...

=)+ @)+ () + =3

P(Y =-1) =
Hence, the pdf of Y is given by

Similarly,

Y 1 1
a(y) 1 2
3 3

Continuous Case

Let X be a continuous random variable having prdighiensity function f(x). we wish
to find the probability density of a variable Y £X§. We shall discuss methods for
finding the pdf of Y.

Let R/(y) be the probability distribution function of Yhen, expressing/y) in terms of
X, we obtain

Fy(y) = P(Y<y) =P@(X)<y)

= {P (X< gl(y)) if Y is a strictly increasing function of X
P (X>g'(y)) if Y is a strictly increasing function of X

Where X = g'(y) is the inverse of the transformation Y = g(X)dag(X) is a one-to-one
function.
Hence,

Re(y) = F(@™(y)).
Thus, the pdf of Y is given by

R(y) = Fe(y) = F(@ ™ (y)-

Example 5
Let X be uniformly distributed over (0, 1). Fincetpdf of Y =_71loge(1 —x), x > 0.

Solution
Fe(y) = P(Y<y) = P2log.(1 - x) < y) = P(~log(1—x) < 1y)
=P(log (1 — Xp Ay) = P(1 —= X> V) = P(X< 1 - &)
The pdf of X is given by

1 O0<x<1
00 ={
0 elsewhere

and
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F(u) :fouf(x)dx = f;ll dx =u
Hence
R(y)=(1-€&

Thus, the pdf of Y is given by

re™ y>0
f(x) =
0 elsewhere
Example 6
Let X has the pdf, f(x) =& x > 0. Find the pdf of Y = 2X + 1.
Solution

P(Y<y)=P@X +1<y) = F(X < X2)
PX<x)=[ e*dx=1—e"*
y-1\ _ y-1\ _ —(y-1)/2
F(*) = P(X < 37) =1-e 00,
On differentiating, we obtain
1

R(y) = Fy(y) =5e7207Y.

Hence,
1 “Lyq
Ee Z(y ),y >1
ww:{
0 elsewhere
Example 7
let X has the density function given by
AxA1 0<x<1
um:{
0 elsewhere

Show that Y = - logX is an exponential random variable.

Solution
P(Y<y) =P(-log X <y) = P(X>€”) = 1 - P(X< &)

P(X<U) = [ 2x*tdx = x%‘ =y

thus,
PX<¢&) =gV
P(Y<y)=1-&Y:f,(y)=2e™,y>0
Hence,
R(y) =P(Y<y) =1-€Y,
- y>0
F(y) = Fy(y) = {
0 elsewhere

This shows that Y is an exponential random variable

Example 8
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Let X be a random variable having pdf

2X 0<x<1
-

0 elsewhere
Find the pdf of Y = 4%
Solution

Fr(y) = P(Y<y) = P@®<y) = (X? < Z)

=Hxt =)= P(5F =¥ = )R(Y) ()

Fx(u) = [} f(x)dx = [ 2xdx_x2|0:

Thus, ,
Ry) = K(Z) 5 () = 0

2

since X cannot be less than zero. Hence,

2
Riy)=(2) =2
Thus, the pdf of Y is

0<Y<4

Fyv(y) = fv(y) = {
0 elsewhere

that is, Y is uniformly distributed over (0, 4).

Example 9
Let X be a continuous random variable having prditpldensity function f(x). derive an
expression for the probability density functiontioé random variable Y =%

Solution

R@Y)=P(Y<SY)=P¥<y)=(—/y <X < +/y) = K(+/y) - F(—/y).

Differentiation gives

F’x(\/_)— fx(\/—) F'x(— \/—)— fx( Jy).
% () + &(=/y); y>0

0 elsewhere

Hence
Fyv(y) =fv(y) = {

Example 10
Lex X be a random variable having the pdf.

%(x+l); -1< x<1
fx) =
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0 elsewhere
Find the pdf of Y = X.
Solution
From example 10above, we have

fY(Y)—_(fx(\/_)"‘fx( \/_)
fx(\/—)—g(\/; + 1)

hence,

fx(y) = %{%(ﬁ + 1)+ (v + 1)} - %(1)= {Eyi 0<y<1

0 elsewhere

Note: The transformation Y =?¢napped x:-k x < 1 onto the sety: 0 <y < 1.

Example 11
Let X be a continuous random variable having pdf.fDerive the formula for the pdf of
= X]

Fv(y) = P(Y<y) =P(X|<y) = P(y < X <y) = k(y) — ~(-y)
By differentiation we see that

y <0

Theorem 1

Let Y = g(X) be a differentiable strictly increagitr strictly decreasing function on an
interval D and let D denote the range of g. let X e a continuous randariable with
pdf f(x) such that f(x) = O for xI D. Then the pdf of Y is given by

f(y) = (@) |25y € D*
where x = g'(y) is the inverse function of g. equivalently

fy(y) =
where x is expressed in terms of ;D" and x = g'(y).

Proof:
Case 1: suppose that g(X) is strictly increasing

Re(y) = P(Y< ) = P(@(X)< y) = P(X< g ™(y)) = Fx(g™(¥)
Thus by differentiation, we have

Fy(y) = fx(g (y)) (g (y)).

Since g(X) is strictly i mcreasmg so also iHy).
Hence

97 O] = |5 197 0)]
Since;—y [g"l(y)) > 0. Thus
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FY) = K@ |5 07 0| = K [S]ix = 97 0.

Case II: When g(X) is a strictly decreasing funatad X
F(¥) = P(Y=Y) = P(O(X)< y) = P(X= g*(y))
=1-P(XX=g(y) =1 - k(@)

Thus,
Fyv(y) = fy(y) = -i(@hy)).
Since g(X) is strictly decreasing so also T§yJ.

da 1 . . 1 _la
Thereforeg g (y) is negative angd; gy = |E g — 1(y)|.
Thus,
L) = K@) |5 8= 10)] = &0 [ 5] x= 07'0)

Example 12
Let X be a random variable having the pdf
1 O<x<1
f(x) =
0 elsewhere
Find the pdf of Y = -2 logx.
Solution

Y is a strictly decreasing differentiable functiohX. hence by Theorem 1
_ ax|. . _ yi2
fo(y) =00 [T x = €

Y =-2log X,
then
E— _l 'y/2 d_x — le'ylz
dy 2 Nayl = 2
Hence
— 1 1 _y2
fY(y) - l;ze ’ y2 0.
Thus
% e’ y>0
K (y) =
0 elsewhere
Example 13

Let X be a random variable with pdf
2X 0<x<1

K(x) =
0 elsewhere
Find the pdfof (i) Y =2X -5 (i) Y = X

Solution
(1) Y is a strictly increasing function of X. thus,
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d +5
fy()’) = fx(x)d—;,x = yT
ax _ 1
dy )
Thus,
) =255 =x= 27

Hence
y+5

> -5 S}’S—3
fy(y) =

0 elsewhere

(i)  Yis strictly increasing on (0, 1) and<QY < 1.
X=+fyand E= 15
= —_— = — 2
yan & 2 y

thus,

dx
fY(Y) = fx(x)a
1 1 143 1
fry) = 2x |Ey 2| =2y 2.0y X = /y: 1.

1 0<y<1
fy(y) =
0 elsewhere

Hence,

Example 14Chi-square Distribution
Let X be a random variable having the N¢f). Find the pdf of (i)Y = % (i) Z = Y2

Solution
i Y= %,x:wvc,j—;: o
Y is a strictly increasing function of X, hence
— dx .
) = 0 [T]: X1+ 30

1 _ 2
S &-w .
o2

1
Substituting for x, we see that
_ 1 —iy?
fX(u-I_yo-) - O'\/Ee 2
Thus

») 1 -1y2 1 1y <<
= e 22 .0 = e 2 —00 C0,
fY y oV2m oV2am ! y

Thatis Y is a standard normal random variable (NjD

(i) z=Y?
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_ ay| 0 ay| 0
f2(z) = v (y) izl —oo T | o
1 1
y:ZE,Z—y: %ZE
Z
Hence
= Lo lny Lol
fZ(Z)_ me 2 -ZZZ+ \/ﬁe 2 .ZZZ
14 4
1 1\2,5 -z
-5 )z
e VT o
T
0 elsewhere
Definition 3

A continuous random variable X that has the pdf

fx) = ?—)_ 71 _g, 0 <x<w

0 elsewhere
is said to have a chi square distribution with grdes of freedom and is writtéft ,,,.

Let X be a random variable having the N¢f), distribution.

X

_A\2
Then the pdf ot = (Tﬂ) isX? ).
Proof: See Example 14.

The pdf of Y = g(X) when g is not one to one.

Theorem 2

Let X be a continuous random variable having pxlf $uch that f(x) > 0, D and f(x) = 0, X
D. Suppose D can be partitioned into two setamdl B such that the transformation Y = g(x)
which is a monotone differentiable function in Ddas a strictly increasing function on, Bnd
strictly decreasing differentiable function of X By, then the pdf of Y is given by

@) = fx(x)

dx dx
— + fx(x) =
dy onDq fX dy onD,

Where x = g(y), D = D D,
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Consider the following examples.
Example 15
Let X be a continuous random variable having pxlf §fven by

1
x2

fx) = \/%e? —0 < x < ©

Find the pdfof () Y 3X| (i) Y= X2.
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(i)

(ii)

The graph of Y is given below.

Figure 1

Y is strictly increasing on (O) = D; and strictly decreasing on;0) = D,

_, ax
On Dl,y—x,a = 1.

dx 1 _lyz
fx()’) E = Ee 2
Oon D, —xd—x =1
,y— ’dy - .
dx| 1 _lyZ
fx(=y) ol = Ee 2
Thus,
_ ax N 2 I S R B
) = O3 b T (=93 b= T

Hence

The function Y = X is a strictly decreasing differentiable functidiXoon (<o, 0) and is
a strictly increasing function of X on (&). Thus D = (s, ) can be partitioned in toD
= (-0, 0) and B = (0,0) so that D = U D..

Thus, by Theorem 2, we have

O = L@ =

+ fx(x)

onD,
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dx 1
on Dy, x =—,/yand |d—y| =y

dx 1 _1 _
fX(_\/;) E = Ee Zy,gy 2
On Dy, x = +,/yand
dx| 1 _3y 1 _1
fX(\/;) E - Ee 2 .Ey 2
Hence
1 1
yze 2¥
- Ly dy1l y=0
) = \/%e 2y.%y2+%e Zy-%yz = NeT
0 elsewllere

Example 16

Let X be a uniform random variable over the intde(\fgﬁ,g). Find the probability density

function of Y = tan X.

Solution
1—7‘[< <7T
X =372 S¥52
0 elsewhere

Y = tan X is a strictly increasing function of X ihe interval(?,g) Hence,

fr») = f@ |5 5x = tanty

1 1
1+ y2?

Thus, the pdf of Y is given by
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1

)= 59 o<y <o
This pdf is called the Cauch pdf.
Exercise 7.1
1. Let X be a uniform random variable over thenaé (-1, 1).

0] Let Y =2X — 1. Find the pdf of Y.
(i)~ Find the pdf of (@} = |X|(b)W = sin(5)X

2. Let X has the pdf given by
2x
fx) = {—2N+1_2,x =1,2,..N(even)
0 elsewhere
Find the pdf of Y defined below.
2 if X is even
o1
5is Xis odd
Hence, find the mean and variance of Y.

3. Let X has pdf

fx) = {2xe‘x2’ 0<x<m

0 elsewhere
Find the pdf of (i) Y = X @i Y =1|X|.

4. Suppose that X is a continuous random variagleed over (0, 1) such that P£0.45)
= 0. Let Y = 1 - X. Find the value of K such thg¥& k) = 0.40.

5. Suppose that X has the pdf f(x) % & > 0. Find the pdf of the following random
variables, (a)Y =X )z = —

xX+1)?"

6. Suppose that X is a geometric random variabile parameter p. Find the pdf of
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(@ Y=X (b)Z=X+r, where ris a constant.
7. Find the pdf of Y ="&if X has
() Normal distribution with mean p and variane
(i) Exponential distribution with mean
8. Let X be uniformly distributed over (0, 1).
Find the pdf of Y = X,

9. Let X be a continuous random variable havindpbility distribution function F. show
that Y = F(X) is a uniform random variable over 1),

10. Let X be uniformly distributed over (0, 1). Hithe pdf of
(@ Y=¢& by z=X+1

1
X+1

) W= d) Y=X" wherep +0.

11. Let X be exponentially distributed with paraerét Find the pdf of Y = logX.

12. Let X be have gamma density with parameters)( Find the pdf of

(i) Y=+X (i) Z = cX, where C>0.
13.  Anangld is chosen at random fro(ﬁ;,g). Let X = sinf. Find the pdf of X.

14. Let X be exponentially distributed with paraerét
Let Y =nif n< X <n + 1 where n is a nonnegative integer. Firelgdf of Y.
15. Let X and Y be independent random variable d&astng uniform pdf on (0, 1,...N).

Find the pdf of (i) min (x, Y) (ii) Max (X, Y).

7.2 Functions of Two Random Variables

The method discussed in section 7.1 of findingpthieof a function of one random variable of
the continuous type will now be extended to funwiof two random variables

Let X and Y be continuous random variables and>XX«Y.
The problem of finding the pdf of Z is somewhat morvolved. The following steps are useful.
1. Introduce a second random variable W = K(X, Y).
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2. Obtain the joint pdf of Z and W, say d(z, w).
3. Obtain the desired pdf of Z by simply integrgtof(z, w) with respect to w. that is
[ d(z, w) dw.
The following will be assumed in obtaining the jiomg pdf of Z and w.
(1) The functions h(X, Y) and k(X, Y) satisfy thelfowing conditions.
(@) The equations
Z =h(x,y) and w = Kk(x, y)
may be uniquely solved for x and y in termsohd &, ssay x = gz, w),

y = @(x, W)

. . . a a d 7] . .
(b)  The partial derlvatlveg’zf, ﬁ, % ﬁ exist and are continuous

From the result of section 7.1 it can be provedgisesults of advanced calculus that under the
assumptions (i) and (ii), the joint pdf of Z andi¥\given by d(z, w) = f(x, y)/| where x = gz,
w), ¥ = g(z, w) and

dz ow
|9y 9y
0z 0w

ox ax‘

The determinant J, is called the Jacobian of gmestormation (x, y)y> (z, w). some of the
important random variables we shall be interesteate

X +Y, XY, X/Y, min. (X, Y), max. (X, Y), etc.
Distribution of Sum
Let Z =X+ Y and W = X, the Jacobian,
/= |(1) —11| = -1
Thus d(z, w) = f(x, y)J| = f(w, (z —w)),
F(z) = f_oooo(w, z—w)dw = f_Oooof(x,z — x)dx
If X and Y are nonnegative independent random bée& then

R@) = [ fx(Ofy(z — x)dx
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Example 17
1 O0<x<1 O<y<l1
Let X and Y have the joint pdf f(x, y){= 0 eldesve
Find the pdf of Z=X +Y.
Solution

LetW=X;Z=X+Y,thenx=w;y=2z-wand
10 1_ _
J = |1 —1|_ 1

Hence, d(z,w) =1.1 = 1.

Let A be the set A = {(x, y), 8 x< 1, 0< 1}. Ais shown in figure below.

f(x)

v
<

Figure 2

Under the transformation, Z = X + Y, W = X, the Ipdlaries of Aare x =0,x=1,y=0and y =
1. The set B in the z, w —plane which is the mag@hA under the one-to-one transformation is
determined as follows:

x = 0 implies thatw =0; y =1 implies thatw = 1

y =0 implies that z = w; y = 1 implies that z =td..
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Thus, the boundaries of B are the linesw =0, z=w, z =w + 1. This is show in the figure
below.

z

B TTw
L.
w
Figure 3
Hence
d(z,w) =1
thus, (z, wg B
d(z) = [[1dw =z 0<z<1
J_ldw=1-z 1<z<?2
z 0<zx1
d(z)={ 2-z 1<z<2
0 elsewhere
Example 18

Suppose a point (X, y)is selected at random imcéeccentre (0, 0) and radius 1 and that this
point is uniformly distributed over the circle. Hithe pdf of

R = /(X2 + Y?), the distance from the origin.

The joint pdf of X and Y is

if (X, y) lies inside or on the circle

SRS

d(z)=

0 elsewhere
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Let W = tar*(Y/X) then tan W = Y/X, X = r cos w, y = r sin w.

-
\_

The Jacobian is

v

Figure 4

ox Ox
__|or owl|cosw —rsinw| _ 2 . _
] = a_y a_y Snw T CoS W = r(cos*w + sin“w) =r.
dx Jdw
hence
=T (r,w)e B
d(r, w) =f(x, y)J|I=" 0 elsewhere
Thus,
a _ (271 _(2r 0<r<1i
d(n) =/ d(r, w) dw = f; W = {0 elsewhere
Example 19
3X O<y<x

If f(x, y) = 0 < x < 1. Find the pdf of Z = XY.

0 elsewhere

LetW=X,A={(x,y),0<y<x,0<x<1}and B{(z, w) : z=x -y, w = x}
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Figure 5

The Jacobian is

10 1
]_—11

hence

3w O<z<w
d(z, w) = 0<w<l1

0 elsewhere

d(z) == le 3 wdw

“(1-z%) 0<z<1

d(z) = 0 elsewhere

Distribution of Product

Suppose X and Y are continuous random variablemgabe joint pdf (X, y). show that the pdf
of Z = XY is given by

Solution

Let W = X, thus, x = w, y =‘f/- The Jacobian

174



J = i I
Hence, o

d(zw) = f(w, Z) I
Thus,

) = 1|2 (. @
Example 20

Let X and Y be independent random variables witghfdtlowing pdfs.

0<x<1 ()={4y3/15 1<y<?2
elsewhere’ 0 elsewhere

e = {2

Find the pdf of Z = XY.

Solution
The joint pdf of X and Y is f(x. y) = f(x) g(y).

Thus, from 2.

diz) = |%| gw)g (%) dw, where W = X

d(2) =f|%|.2w%(%)3 dw = %Z3f$dw.

Let A = {(X. y): O< x < 1, 1<y < 2}. The transformation, Z = XY, W = X gives thetd®
determined as follows:

Whenx=0,w=0;whenx=1,w=1,

Wheny=1,Z=w,wheny=2,z=2w.
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The linesw =0; w=1; x =w, z = 2w are the boames of B as shown in the figure below.

A
y

2

v
<

Figure 6

Thus

3
d(z) = Slisfzz/zﬁdw= gz, 0<z<1

_8z%3 1 1 _ 4z ., 5

= )20 W—15(4 z7), 1<z<?2
% 0<z<1

dz) = 1 ,,

4Z 4 2
15(4 z%) 1<z<2

Distribution of Quotients

Suppose X and Y are continuous random variablemgadke joint pdf f(x, y). show that the pdf
of Z= Y/Xis given by

fz(2) = j || f (x, xz)dx — 00 < z < o0
Let W = X, then x = w, y = zw, the Jacobian is
_ 11 0)_
] = |Z Wl = w.
Hence

d(z,w) = f(w,zw)|]| = f(w, zw)|w]
Thus

f(2) = [Iwl f(w,zw)dw. 3)
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Example 21

Let X and Y be independent random variables hategrespective gamma densitig@.;, 1)
andI'(ap, A). Find the probability density function of Z = Y/X

201 xa1-1p—Ax

fx(x) = ey x>0
202 ,02-1p—Ax

fry) = —xr(az)e y>0

The joint pdf of X and Y is given by
2191+ az y@1-1o—A(x+y)
flx, ¥) =fx)fy ) = @)l (@)
From (3) we have
_ _ /10(1+112W0(1—1(ZW)112—1 /‘{(W+WZ)
f2(2) = fwflx,zw)dw = [w @D T e dw
a0
1 2
But
© +a,—-1,-Aw(1+ _ _TI(eataz)
fo witaz=1p=Aw(1+2) g\, — A T
Hence
_ F(a1+ az) Z@2-1

(2) " Ia) rag) Q+)0t e’ 2>0
Example 22
Let X and Y be independent exponential random téesgm with parametek. Find the
jointpdfof Z=X+Y and W :Xf ”

Solution
The joint pdf of X and Y is given by
fuy (X, y) =22 x >0, y>0

The transformation gives

X=wz,y=2z(1-w)
The Jacobian of the transformation is

Il =z

The joint pdf of Z and W is given by

£y (zw) = {2/129_’12, z>00<w<1

Zw s 0 ) elsewhere
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Example 23
Let X and Y have the joint pdf(x,y) =

x >1,y>1, find the joint pdf of Z = XY

x2y2
andlW = %
Solution
From the transformation z = wy, w = x/y, we have
y X
] = |1 —x|= _—Zx
y o2l Y
lJ| = 2w.
Thus
_ 1 1
fZ,w(Z:W) = fz,w(x,y)lfl 1= 72" 7w

12221, o< w<z
2wz

= 0, otherwise.

Example 24
Let X; and Xbe random variable with joint pql;l, xz,(xl, Xo). Let Y1 = X1+ X,

Y, = X1 - Xo.Find the joint pdf of Yand Y; in terms offxl’xz,(xl, X2).

Solution
fYLyz,(YL y2) = foxZ‘(X]_, X2)|]|
=200+ v = 20— ¥2)

9x1  0xq 101
J= 0y1  0y2| _ 2 2 _ _1
T [fy2 x| T |1 _ 1T 2
dy1 0y» 2 2
Hence
_ 1 Y1t Y2 Y1~ Y2
lelyz,(yli y2) - Efxl,XZ ( 2 4 2
Example 25

Let X and Y be independent exponential random béet with parameters, and X,
respectively.

0] find the joint pdfof U=X+Y and V = X

X+Y

(i)  show that U and V are independeniif= A,.
Solution

The joint pdf of X and Y is given by
fiv (X, y) = Mhpe ™ hax+ 227)
x=uvandy=u-uv.
The joint pdf of u and v is given by
fu,v(u’V) = fX,Y(X!y) |]|
Substituting for x and y in terms of u and v
fu,v(u,V) :}Ml kze—(lluv+ A,u(1-v)) UI — ulllze—uv(ll— A3)—ul,
(i)  PuttingA, =4, =A. We obtain
fuu,v) = W%e™ u>0,0<v<1
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fuw) = fol ulle Mdy = ul2e?,u >0
) = fooou/’lze_’ludu =1 0<v<1.

Example 26
The joint pdf of X and Y is given by
—(x+y)
fayy = {7 x>0 y>0

0 otherwise
find (i) P(X>2,Y >3), (ii) P(Y < X) and (iiithe pdf of Z = X/Y.

Solution
Let A={x, y)! x>2,y>3), we have
PX>2,Y>3) =[], fey)dxdy= [ [ f(xy)dxdy
=f3°° [fzooe‘(x+3’)dx]dy = f;oe‘y [fzooe‘xdx]dy = e 2 f;oe—y dy =e™5
(i)  LetA{(x,y);y<x}
P(Y <X)=[f, fC,y)dxdy = [ [fyoo e‘("“’)dx] dy = ["e™® dy = %
Example27
1 2 2 2
Let f(x, y) :{ a2ty s
0 elsewhere
find (i)fx(x) and (ii) &(z) where Z =VX? + Y2,

Solution

0 L= [T fandy=[—dy =% V:ziiz - L=

(i) A2 =P+ Y <A = [[ o, oo fOoY)dxdy = [[La, 0 —dxdy

7'1.'Z2

2
= — = S (since [[,, ... dxdy = area of a circle radius z.)

nr?
(i) F.=P@<2)=P (3 <x)= [l fx,y)dxdy
Y 7SZ
=(> Y2 —(x+y) -1 — 1
| . Iy K dxdy =1— —
Differentiating we obtain
1
fZ(Z) = m,o <z< oo,

Example 28
Distribution of sum. Let X and Y have the joint @¢, y) and let Z = X + Y then

F(2)=PX+Y<2)= [, _ fCeydxdy = [ [27f(x,y)dxdy.
Changing variable, x =v -y

Fa)=[" [T fwo—-yydvdy = [ [[° flv—yy)dyldv.
Thus

R@) =/, flz—y.y)dy.
Example 29 Student’s t-Distribution
Let X be a standard normal distribution and Y a-sfuare random variable with v

degrees of freedom. Find the pdfhbE XT\/Y; where X and Y are independent.
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Solution
yw
N

Let Z = XT\fandW:Ythenyzwandxz-

Then Jacobian of the transformation is
1 0
1 Jw  Vw

2y W

] =

Thus

- L] R R S
dzu(z W) = KOO [5] = =2 o
substituting for x and y, we have

2 v=1
1 _1zfw 1 Y4 YJw w2 _lzZw_w

dZ,w(Z,W) :—\/z_e 2 v 1,5 _V R S 2
T

The marginal pdf of z is given by
v—-1

= [ A L[ e 0T

—€e 2 v

aE T W 02

d;(z) =

Note
%) 2_1 _ _ v+1
J, v eTMdu = F(T)

Hence

rt3) 1
\/mr(g). 22%,_m <Z< 0,

(1+7

The above distribution,Ak) is called a t-distribution.

dz(Z) =

Note

0] That a t-distribution is completely determinkd the parameter v, the number of
degrees of freedom of the random variable thathashi-square distribution.

(i)  The t-distribution is a bell-shaped distribarti symmetric about zero.

(i)  The t-distribution is flatter than the Normalistribution. As the sample size
becomes large, t-distribution approaches the stdndarmal distribution (n > 30
is sufficient).

(iv)  The values of the t-distribution for varioualues of degrees of freedom have been
tabulated.
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Example 30

Exercise 7.2

1. Let X, and % be independent normal random variables ;Néf;), N(lp, 6%)
respectively. Find the pdf of Y =& Xo.

2. Let X and Y be independent random variablesritathe respective pdfs.
f(x) = €*, x>0, g(y) = 2¢ y > 0. Find the pdf of = =

3.  LetXandY have the joint pdf f(x, y)2e™*™) x >0, y > 0. Find the pdf of
Z=X+Y.

4. Let X and Y be independent random variables é&asting the normal probability
density function N(Og?). Find the probability density function of
. Y .. Y2 Y . Y]
0 5 @ = G = ) 5

5. Suppose X and Y are independent normal randomables with mean O and
variances’. Find the pdf of (i) X +Y (i) X+ Y2

6. If X and Y are independent exponential randomatd¢es with parametér. Find
the joint pdf of Z= X+ Y andV = % Hence find the pdf of Z and of W.

7. Let X and Y have uniform distribution over thdarval (a, b). Find the pdf of
Z=|Y-X|

8. Let X be uniformly distributed over (0, 1) ared ¥ be uniformly distributed over
(O, x). Find
(1) The conditional pdf of Y given X = x.
(i)  Thejoint pdf of X and Y
(i)  The marginal pdf of Y.

9. Letf(x,y)=c(y—x, 0<x<y<1

=0, elsewhere

Find the pdfof Z=X + .

7.3 Sum of Independent Identically Distributed Ran@mVariables

The Moment Generating Function Technique

Let X3, X,,....X, be independent identically distributed randomafalgs. In this section
we will find the pdf of sum of the X’s. The momegenerating function technique will be
used to establish the pdf of sum Bernoulli, Poiseaponential, Normal, Gamma random
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variables. All the probability distributions abogrcept Bernoulli and exponential has the
following remarkable and very useful property callReproductive properties.

Definition: Reproductive Property

A probability distribution F is said to have repuative property if when two or more
independent random variables having the probabfliistribution F are added, the
resulting random variable has the distribution e shall establish this result using
moment generating function defined in Chapter dtise 4.3.

Moment Generating Function
The moment generating functiong{l) of a random variable X is defined by
Mx(t) = E(€")

The domain of M(t) is all numbers t such that'éas finite expectation.

Theorem 3
Suppose that a random variable X has mgft)MLet Y = aX + b. Then, the mgf of the
random variable Y is given by \t) = €' M,(at).
Proof:
My(t) = E(&) = E(€* ") = E(@™ ™) = E(@™ ™) = & E(é™) = &' My(at).

Theorem 4

Let X and Y be two random variables with mgf's(® and M,(t), respectively. If M(t)

= My(t) for all values of t, then X and Y have the pabbity distribution. That is, the
mgf uniquely determines the probability distribution of the dam variable. The proof
of this theorem is outside the scope of this wtrk,reader is referred to volume Il of this
book.

This theorem will now be used to show that a linfegiction of a random variable also
has a normal distribution.

Example 31
Suppose that X has distribution Ngg).
Let Y = aX + b. show that Y also has a Normal dsition with mean ap + b and
variance ac°. The mgf of Y is
My(t) = E(&") = €'(Mx(at))
from theorem I.
Mx() = E(€)
* 1 _12e-w? 1 [ _1/20-w?
f et* = e o2 dx = f et*e o2 dx
—oo oV2an oV2TJ_w
Lets = ? then M(t) becomes

oo
_ 2
f et(as+u)e 1/2s ods =
— 00

et

My (t) = f e~1/25%+tos ¢

oV2m 27 J_
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ot 4 o282
+o° 2 —1/252+tas ds

Making the change of varlable u = st-we see that

a2t2

1 (ee] -
M, (t) = glth+297t? %f_w e du = tpn+e™t 2

Substituting at for t, we have

My(at) = patht o?a?t?/2

Hence,
242 a2a2t2?
My(t) = e <eat“ +— = etbtan+—;

Wherey = b + pa = E(Y), Vara = E(Y), Var(Y) Z&.
This is the mgf of a normal variable with meas ap + b and variancée. Thus, by
theorem 2, Y is a normal random variable with mean+ b and variancéd.

— ptr+ o?t%a?/2

Example 32
Let X be N(u0°). Show that = =*is N(0, 1).

Solution
g g O'
Leta——andb——— then Y = aX + b.

From Example 312 Y is a normal random variabldwitean ap + b and variancea
Substituting for a and b, we see that

() au+b=--=0
(i) ao’=%=1
Thus Y is standard normal (N(0O, 1)) random variable

Theorem 5

Let X and Y be independent random variables andxz+=Y.

Let Mx(t), My(t) and M(t) be the mgfs of the random variables X, Y anaZpectively.
Then

Mz(t) = Mx(t) My (t) (4)

Proof:
By definition,
Mz(t) = E(&) = E(€* """ = E(€"+e" "E*™) E(e") = Mx(t) My(®).

In general, if X, X,,..., X, are independent random variables.
ThemfgofZ=X+ X, + ...+ X, IS
My (t) = My, () My, (t) ... My, (t)
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If X1, Xs,....., X, are independent identically distributed with mgt(®j, then
Mz(t) = [Mx()]".

Example 33: Sum of Binomial Random Variables
Let X and Y be independent binomial random varigbléth parameters {(np), (rp, p)
respectively. Find the pdf of Z=X + Y.
Mx(t) = E(€) = 2z, e (") p* (1 = p)™a~* = [pet + (1 - p)I™=.

The mgf of Z is given by (from Theorem 5).

Mz(t) = Mx(t) My(t) =[pe + (1 — p)]™*m2
but this is the mgf of a binomially distributed dem variable with parameters;(#h n,
P).
thus, by theorem 2, Z is a binomial random variabld its pdf is given y

fuzy= { "TRER AT 22012t

0 elsewhere

In general,if X, X,,...Xk are independent binomial random variables wittapeters
(ng, p), (B, P),---(nx, p) respectively, then the moment generating fonadf Z = X,
Xo,....., Xc IS given by

Mz(t) = [pe’ + (1 = )],
Thus Z is a binomial variable with parameters jnwpere n =p+n, ... n..

Example 34:Sum of normal random variables
Suppose that X and Y are independent random vasahith distribution N( ¢%) and
N(H, 6%) respectively. Show that Z = X + Y is a normaldam variable with mean;
I, and variance?; + c%
Mx(t) =it + 1/20%t?
My (t) = ezt + 1/202,t2
Hence
Ma(t) = Mx(O)M(t) = et + 1/20%1¢? ghat e’
= et(m + 1)+ 1/2t%(0%1+ 02;3) — etu+1/2t202
where U = i+ W, 6° = 6% + 6%. Sincee™™*+1/2t*e* js the mgf of N(ug?), hence by
Theorem 4, z is a normal random variablewith meanu + |, and variance
(52 = (521 + (522.
In general, if X, Xa,....., X, are independent N{ps?;) then
Z =X+ Xo+...+ X
is N(i,6%) where pt = g+ o +...+ [, 02 = 6%+ 0% +...+ 0%

Example 35:Sum of Poisson Random Variables.
Suppose that X and Y are independent poisson randoiable with mea, andi,
respectively. Show that Z = X + Y is a Poisson mndvith meari; + A,
My (t) = E(et™) = © etXe_/;;lﬂxl — p~M(1-e").
Similarly,
My (t) = e A1(1=¢%),
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Hence,
Mz(t) = e_ﬂl(l—et)e—/‘lz(l_et) = e_(l_et)(21+ A2) — e—(l—et)ﬂ,l — /11 + /12

The mgf of Poisson distribution with parametés e *(2=¢9, thus Z is a poisson random
variable with mean (parametéryx A, + A,. In general, if X, X,,...,X,, are independent
P@.), then

/= X1+ X2 +...+ Xn
is a Poisson random variable with paramgtei; + A, +...+ A,.

Example 36

Let X and Y be independent gamma random variakle parameters (ni) and (B, 1)
respectively. Show that Z = X + Y is a gamma rand@mable withparameter {/ n,
A).

Solution
© Anlxln—le—)lx ed (x)nl—le—x(l—t)
My (t) = E(e*¥) = f e¥——— dx = f M dx
X —o r'(ny) 0 rn,)
A ” lo—x(A-1) g A™ foo ni-lg-u 4
— xn_ e” - X = ut e u
. rny)J, (A —t)m=1r(ny) Jo
But [, u™ e ™ du = I'(n).

Hence,
(o =[]

. I
similarly  My() =[] .
Thus,
_ y nq y np _ 2 Tl1+n2 _ y) n _
Mo =[5 5 = [T = [ =
This show that Z is a gamma random variable wittapeters (n+ m, A).
In general, if X, X, ,... + X, are independent gamma random variables with pdeame

(ny, A), 1 =1,2,...k. then Z = X+ X, +... + X, has a gamma distribution with parameters
(n,A) wheren=pn+mnm +...+ n.

Example 37
Suppose that Yhasy? (n,) (chi-square distribution with; degrees of freedom) | = 1,
2,...k where the Xs are independent random variables.

Let Z = X;+ X5 +... + X,. Show that Z has distributiqﬁn wheren=p+m +...+ n.
Recall (5.9) that chi-square distribution is a splezase of the gamma distribution in
which = 1/2 and n replaced by n/2. Since the mgf of ganimi.) is given by
2 n
=l s
substituting fok = 1/2 and replacing n by n/2 we have
[ 1/2 n/2 _ 1 /2

Mx()) = [1/2—t] - [E] '

The mgf of X is therefore given by
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n/2
My (t) = [— 1=1,2,...

1-2t
Hence, the mgf of Z is

ni+ny+-+ng n

Mz(t) = My, ()M, (£) ... My, (£) = | = 1 © ==
where n = p+ n, +...+ n which is the mgf of*, distribution.

Example 38
Let X1, X,,... X, be independent identically normal variables witkam 1 and variance

o2 Show that () EX) = u, whereX = %(Xl + Xy +...+ X)) (i) Var(X) :%2 and
(i) ¥ = EE has g2(n).

() E®=E(;IIX)= SEX) = ron=u
() Var(®)=Varf2zix) = SXVar(x) = no* ==

n —112 —n2 —1n2 2
(iii) Y = 1();12 H) — (Xlo-zp-) + (Xzazu) R (Xnazu)
—u\ 2 _
= (X1G P—) 4 (Xza H) 4ot (Xna P—) =Y 2+ Y2+, +Y2

From Example 14, we know that;*¥hasy*(1) and from Example 30, since,%are
independen?(1) we have that Y ig?(n).

Example 39
Let X;, X,,...X, be independent identical normal random variabléhd wean p and
variances”
n _¥\2
Show thats? = 2“1(0;21)0 has a?(n-1).
We shall proceed as follows:
Xi-p=X-X+X-u o
(X1 - WP = (Xa - X)° + (X - pf + 206 - X)(X - p)
Summing, we have
=X - w? = =1
K - D& - W= @ - I - D\
since ).(X; — X) = 0,we see that
n (X — X)2 + X — w?
1(X _ u)z ! ( ) Z ( H)

X — X+ ELX - w2+ 23L& - D& -

dividing through bys?, we have
YL Xi-w? _ Z(X-X) n X - w)?
o2 - o2 o2
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Xi — w)?

From Example 37, we haﬁ;l( = isy%(n) and (it is left as an exercise to show that

TXi-w? .
Tu IS Xz(l)

. 2 . 2
o g
_IXi—X)?
S===
SinceX and $ are stochastically independent, we have

E(é) = E(&Y* 52 = E(&")E(™)
1 vz .
but My(t) = E(é%) = [J] , since Z isy(n),

My() = EE") =[] P is Z2u)
hence,

n-1

=[]
and this is the mgf of a chi-square distributiothwi — 1 degrees of freedom. This shows

that $ has a chi-square distribution with n — 1 degrddse@dom.

Exercise 7.3
1. Let X, X,,...X,, be independent identically distributed random alalgs, each of

which is N(u,69). Show thaf = 225 jg (), &)

2. Let X;, X,,...X,be independent identically distributed exponentirahdom
variables with parameters. Show that Z = X+ X, +...+ X, has a gamma
distribution with parameters n aid

3. LetX, X,...X, be independent N{jis?;). Show that

Y = & X; + X, +...+ aX, is a normal random variable with mean upg,a+
&l +...+ @, and variance?® = &16% + a0’ + ...+ &y on%.

_ X(Xi=X)2 : . . .
4. Let S = = where X, X,,... X, are independent identically distributed

normal random variable with mean p and variasfc&Show tha%z)s2 has a chi-
square distribution with n — 1 degrees of freedom.

If X hasy’(n), show that E(X) = n and Var(X) = 2n.

If X _szl and Y _szl where X and Y are independent random varaiblevdtioat
X +Y - Y

7. (@ 1fX—=N(0, 1) prove that (i) Y =%hasy*(1)

- 2
(b)  If X = N(u,0? prove tha(%) — ¥

@ - N(X;—X)? . . . o
8. Let = = where X are independent identically distributed random

o U1

variables N(ig), prove that (i) E(3 = o° (i) Var(S) =2

n-1"
(iii) Show thatX and $ are stochastically independent.
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9. Suppose X is uniformly distributed over (0, Ejnd the moment generating
function of (i) Y = -2 In X and (i) Z =—2)~,InX;, where the Xs are
independent uniformly distributed over (0, 1) ramdeariables.

10. Let X, X,,.. be independent identically distributed geonsetandom variable
with parameter p. Find the moment generating fonodf Y = X; + X, +...+ X,

11. Let X andY be independent random variableh tie respective pdf N(0, 1) and

e Find the pdf ofZ = %
12. Let X and Y be independent chi-square randoraibies with parameters, land
ko. Find the pdf itz = 24

Y/ky

13. Let X, X, be independent random variables each having aonexpial pdf with
parametei. Y; = X; +, ...+ X; 1<i<n. Find the joint pdf of ¥, Y,,...Y,

14. Let X, X, be independent Poisson variables with meanShow that the

conditional pdf of X given t has the binomial pﬂf(%, t), wheret =X + X,

7.4  Order Statistics

7.4.1 Independent Identically Distributed Random Vaiables

Let X, X,,..., X, be independent continuous random variables, eacimdp distribution
function F(x) and probability density function f(>jefine

Xay = smallest of X, X,,... X,
Xo = second smallest of XX,,... X
Xny = largest of X, X,,... X,

That is, X1), X2),... X(n) are random variable obtained by arranging X;,... X, in an
increasing order.

X(l) = min (Xl, XZ,... Xn)
Xy = max gixl Xoy oo Xp).
The random variablesXis called the'f order statistics and the ordered valugssxx)

< ... < Xmn are known as the order statistics correspondiniii@orandom variables X
X2, Xn.

For Example, let ¥ X5, X3 be a random sample of size 3 from a random vasall
having probability density function f(xyo-< X <co.

The possible values of 2, X2 and Xs) are as follows:

X1y = X1 X2) =%, Xz =X if X1< X< X3
X1) = X2, Xo) =%, Xz = Xg if Xo< X< X3
X1) = X3, Xo) =X, x(g) X1 if X3< %< X
X1) = X3, X2) = X1, x(g) Xo if X3< X< X
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There are 3! = 6 permutations of;,(X,, X3) and hence 6 possible ordered statistics. We
shall now find the joint probability density funati of X1), X, Xg). Since for any
permutation, say X X< X3)
€ € € € €
P<x2 - E<X(1) <x2 + E,xl‘l' E<X(2) <x1 +§,X(3) <x3 +E) =Ef(x2)
€ f(x1) € f(x3) =€ flx)f (x2)f (x3),

as illustrated in the Figure (1) below

o~
+
e

(+) (+)
(N (

% X %
Figure 1

Since there are 3! Possible permutations, the meDigs partitioned into six dejoint sets
Dy, D2=,”_D6. We have )&) X(z) X(g).
Thus, for X< X< X3

€ € € € €
P(xl— E<X(1) <x1+ E<X(2) <x2— E,X3—E<X(3) <X2—E>
= 3! € fla)(f(x2))f (x3)
Dividing by (1° and lettinge -> 0, we have
f(X1) X2 X@) = Nt (X f(X2) f(X3); X1< %< X3
in general, we can extend this idea to a sampéezefn and we have fog x; ... X,
fx@). Xy - Xy (X1, Xo,... Xn) = NH(X)F(X2)... f(Xn);
X< X<, < X
the marginal density function ofthe i" order statistic can be obtained by integrating
the probability density function (5)

fus (x) = f "'ffx(l),x(z)_"x(n) (X1%X3, . X)) dXp dx3 ... dxy

fx(l)(xl-) = f ...ffx(l)___’x(n)(xl,xz, e Xp) dxy dx, ... dx;_qdXiiq ... dX,,.

Example 33
Let X3, Xo, X3 be a random sample of a random varaible X haviegtd.f.
Fx) = {1 0<x<1
0 elsewhere
Find

0] the joint p.d.f. of X, X, and X
(i)  the joint p.d.f of Xy, X2y and Xg) the ordered statistics
(i)  the marginal p.d.f of X,.
Solution
fepnies X0 X2, x3) = foo, (61 fie, (02) firy (3) — 15 0 < xq, x5, x3< 1
fx(l),x(z),x(g) (x(1)»x(2)»x(3)) =3!fx, (x1)fx2 (xz)fx3 (x3); 0 <xq,x5,x3<1
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fxl(xl) = fxl U:B! dx(g)l dx )

1

1

! 1 3!
= 3' f (1 - xz)dxz = 3' [_ - x1 - —x12 = _[1 - 2x1 - xlz]
" 2 2 2

=3(1 —x,)?

Thus,

_ 3(1-x)* 0<x<1
fry (%) { 0 elsewhere
Another method of finding the joint marginal p.a@f X, Xeg),... X@ is by direct

reasoning as follows:
(1 For X to equal x, | — 1 of (X X,....X,) should be less than x and n-1 should be
greater than x and 1 of them equals x.

i — 1 observations n-l observations

///|| m\\
X— - X X+ E
P(l — 1 of the Xs are less than X) = [FOO _
P(n — 1 of the Xs are greater than x) = [1 — F(X)]
Thus for any given set of partition of {XX,...X,)) into 3 as stated above, the required
probability is from Chapter 1 section 14 numbemafys of partitioning a set of n object

into the 3 group above 4 W given by

fe, () = m [FOOI=H1 = F ()" f(x). (6)
(i) The joint p.d.f. of X and X1 <j
(i—1) values l (j—1—1)values l (n—)) values
| |
Xi X
Figure 3

The probability that exactly i of the/X lie in (<o, x) and (n-1) lie in () is
"Gi [FOII'L - F(x)]n -

since F(X) = PO x) = P(any of the % ..., X, falls in (-0, X).

the event {{ < x} occurs if and only i or more of the;X lie in (~<o, X). Thus

Foy@ = P(Xoy <2) = Ty "GIFN [L-FRI? -0 <x<o0 ®)
Ifi=1, we have _ _
Fy @ = T "G FOOV [1-FOIT )
By Binomial theoren}?_; "Cj [F(x)]' [1 — F(x)["=1
Thus
Fry () =1 ="C; [F(X)]° [1 = FO)I™* = 1-[1 — F(x)] —0 <X <o (10)
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Similarly, when we puti=nin (8)

Fry () = [FOII" —0 <X <0 (11)
By differentiating, we have

frey @) = E, () =n [1 - FOOT™ (x) —0 < X <00

Feiy () = Fe (X) = N[FOOI™(X) —0 < X <0

2. The Joint Distribution Function of, X).
To find the joint distribution function of Yand X,, we proceed as follows.

{(X1, Xn) = X2y < X1, Xy < X} = {(X 1, %) © Xy < XX, Y)}:
X(1> X1, Xy < Xn}-
See figure 5 below.
Xn)

Figure 5
We know that P(¥%) < X») = [F(X,)]", therefore
P(X@> X1, Xm) = P(4< X1 < Xn, X1< X2 < Xn... X1< X < Xp)
= (F(%) — F(x))"

Thus
fx(l)x(n) (xll xn) = P(x(l) < X1, x(n) < Xn) = [F(Xn)]n - {F(Xn) - F(Xl)}n (12)
from which the density function can be derived bfedentiation:
62
fX(l),X(Z) (xli xn) = MFX(l)X(n) (xli xn)
= n(n-1) fO)f(Xn) [F(Xn) — F(0)]™? X1 < Xy (13)

Distribution Function of the Range of a Random Samie
The random variable R, defined by R 5% X, is called the range of the observed
random variables.

PR 1) =P~ Xy <0 =l _ _ Fruyeen Xar Xo) dxadx;
=[5, 7 am= 1) [FOe) = O] (xe) fxn) dxdx.

Making the change of variable y = R} F(x), dy = f(x,) dx,

Fatr F(x1+1)—F(x1)
[ 1P - Feor = eddn, = |
1 — Flx)]™?

1
y"tdy = 1 FCu+1)
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Thus
Fr(r) = P(R< 1) =nf" [Flxy + 1) = F(x )]V f () dxg (14)
Fr() = n(n - 1)f° FCe) f Cep + MIF Oy +1)— F(x0)]" 2dx,

Example 40
Let X3, X5,... X, be a random sample from uniform distribution on(0 Find
(1 The distribution function of R = % —
(i)  The probability density function of R.
Solution

() PR =[TFC +1) — Fx)]"  f (xy)dx,

Where F(x) =f; 1 dx = x;

Fx+nN=21ifx+r>1
=x +rifx,+r<1.

Thus

P(R<T) = nf " ldx, + nf (1= x)"dxy

Rs(r) = n(1—r)F1+ "

(i) falf) = () = {n(n DA-rr*2 0< r < 1

otherwise
Another method of finding the probability densitynttion of R is by using the formula

(1) for sum of random variables.
fr() = f—oofxu),x(n) (x1, 7+ x1)dx;

_ {n(n D[ fEOfr+x)[Fr+x)—F@)]"%dx r>0
0 r<0
Example 41

Let X4, Xy, ... X, be independent random variables having the uniftistmibution on (a,
b). Find the pdf of (i) %)= min (X3, Xz,... Xp) (ii) X = max (X, Xz,... Xp).

Solution
The pdf of X is

f,(x) = ﬁ,a <x<bh.
The pdf of X; is given by

fey ) = T 1)'(n D! [FCOT L = FOOI" (O f (x)
where

F(X) = f —a dx = z;a

—am 1 1 b — x )" 1
fx(l)(x)—n[l—x a] b—a_n((b—?)” ,a<x<b
- n(b—x)*1
() foo @ =n[=" L= {W,a<x<b
. [b_a e 0 elsewhere
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Exercise 7.4

1.

2.

Let X3, X,,...X, be independent and each is uniformly distributeer @a, b). find
the joint pdf of )gl), X(z),... X(n).
Let X, X,,... X, be independent random variables each having aanexypial
density with parametér. Find the pdf of (i) X = min (X, X;,... X;)
(i)  Xp=max (%, Xa,... Xp).
Let X;, X5,... X, (n odd) be independent random varaibles each nmijo
distributed over (0, 1). Find the p.d.f of the nadof the sample.
Note:When n is odd, the medianX%n_ﬂ)_

2

Show that if n people are distributed at randdomg road Y miles long, then the
probability that no 2 people are less than a dcgdnmiles apart is
[1 _ (n—l)k]n,k < Y
y n-1
Let X;, Xs,... Xo,.1 be a random sample from uniform distribution on(0 Show
that the median of the sample has a beta distobuwtith parameter (n + 1, n + 1).
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MODULE FOUR
UNIT 1

LIMIT THEOREMS

The Law of Large Numbers and the Central Limit Theadem
The most important theoretical results in probabidire limit theorems. In this chapter

we prove often useful tools in probability, the Gehev’s inequality. This inequality is
then used to deduce the law of large humbers figgandent and identically distributed
random variables. In section 8.5 the central lim#orem which is a fundamental result in

the theory and applications f probability theorgigen.

8.1 Chebychev’s Inequality
Chebychev;s inequality gives an upper bound in $eshvariance of a random variable X
for probability that X deviates from its mean bymathan k units.

Theorem 8.1Chebychev’s Inequality
Let X be a random variable (discrete or continuauish mean g and varian@g. Then
for any positive number k we have
2
P{ X | >Kp<7
Or equivalently
p(lxul = ko<

Proof:

Let X be a non-negative random variable such ti{g) E p <».
Define another random variable Y as follows:

0 if X<k
Y {
k if X >k

This new variable Y is a discrete variable haviwg values 0,k. The probability density
function of Y can be written thus:

y 0 k

P(Y =) P(X < k) P(X > k)

Hence,

E(Y) =OP(X < k) + kP(X > k)
That is

E(Y) = kP(X> k).
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Since the variable X Y for all possible values, we have
E(X)> E(Y) = kP(X> k),

Thus,

P(X> k) <22 @)

Equation (2) is called the Markov inequality and e generalized thus: For any 9, k
>0

p{lw [ = i <222 3)
The proof of Chebychev’s inequality is an immedied@sequences of (3) by putting j =
2 and W = X - 4, we obtain

pUlx -l 21 < BB -
Since (X - p§> kK’<==> |X-p |> k, we have
P{|X-p|>k}:P{(X-p)22k2 52—2.

o2

K2

Thus
p{lx-nl<ky< 2.

Example 8.1
Let X be a random variable having Poisson distiitsutvith meari and variance®. Use

Chebychev's inequality to show that (i) PR-1 | > 1} <1 (ii) P (x>%) <2

Solution .

Using Chebychev’s inequality with pu% ando® = A we have
. A
0 P{lxnlzky< 2,

Putting k = 1 we obtair
P{IX-u | >k} <A
(i) LetD=>===>0?="
On substituting foo® we have

k2:4k2,k2:(%)2,k= %

Thus
p{|X-p | >4 <2
Since |x-x | 2% if and only if XA <_7’1 or X-A> A2, we see that
(x| >2}= P{x-x<-§) + P(X—/’l > %)
=p(x <)+ pP(x>2) <2
Since P(X < i) >, we have
2

F(X > ﬂ) <2
2 A
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8.2  The Law of Large Numbers of Bernoulli Trails

Let Xy, X,,..., X, be n independent and identically distributed Balinoandom variables
and let X = X + X, +...+ X, be Binomial random variables (number of successeH)
parameters n and p. The mean and variable of X@end npq respectively.

The mean p grows as n increases but the standsiatide grows only as/n, Using
Chebychev’s inequalit

P{ f/x- np|>a} <<

n
g2’

Theorem 8.2
Let X be the number of successes in n independentdsilli trails with probability p of
success. For any> 0.

P{12— P> ¢} <20 < 2

4€2n

and
: X _
lim, o, P{IZ = PI> e} =0
Proof:
Applying Chebychev’s inequality
X\ = e W — P4
E(;X) = P,Var(n) = —.npq =~
174 Z
#(”)= p—qz—> 0Oasn—> o
€ ne 1
pg=0-p)p < Zforallp,O <p<l1
Hence
P{E— p| ZE}—> 0Oasn—> o
This means that for large number we can be almergaio that% will be very close to

probability p of success. This shows that the neddrequency of success in independent
Bernoulli trails converges (in a probabilistic sengo the theoretical probability p of
success at each trail. This important result castéied more precisely as the law of large
numbers.

The Law of Large Numbers
8.3 The Weak Law of Large Numbers:
Let X, X,,..., X, be independent and identically distribution randesmiables with all
E(X) < and let $— X; + Xo +...+ X
We know that
E(X) = E(X) = ... E(X), E(S) = nE(X) and Var($) = nVarX;

Sn

E(2)=2E@,) =2 nEWX) =EX)

n
nvarX,

Sny _ 1 _ 1
Var(;) = 3 Var(Sn) =2 =3 Var(Xl)
This shows that expectation éf is equal to the expectation of; dnd the standard
deviation ofil—” IS
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{VarX} _ StdXy
Vn

Which tends to zero as n tends to infinity. Thig distribution of §n becomes more

and more concentrated near E(X

We state the more general result in the followimeprem.

n

Theorem 8.3: A (WLLN) Weak Law of Large Numbers fbrdependent Random
Variables. Let X, X,...X, be independent and identically distributed rand@mables
with finite mean p and’. Let S, = X; — X, + ... + X,. then ford > 0.

limn_,ooP(S?”— ,u|> 6)=O (4)

Proof:
Applying Chebychev’s inequality tsé‘- we have

u=E (Sf) JVar (Sf) = n—lz Var(S,)
P{lrs.- E0)| > 6} < 20"

o?n

For at least one k satisfyinggnk < m}.
Corollary 1:
Let f(x) be a continuous real function on [0, 1heh as n -»o uniformly with respect to
pe[0, 1]
E{f (2)} - £ .
Corollary II: Weierstress Approximation Theorem.

Let f(X) be a continuous real function on [0, 1fided on the real interval € p <1 and
let

R(P) =i f (5)'Cp (1 - py -
Then RB(p) -> « f(p) as n ->0 and the convergence is uniform in g(4p is called the
Bernstein Polynomials.

Theorem 8.5
A WLLN for independent but not necessarily identi@amdom variables.
Let Xy, X5,...X,, be independent random variables with all

E((X®) <wand let §= X; + Xp +... + X,and p = Eé%n) then

P { Sf - “n| = E} = Ezlnz Var(Xy) + Var(X,) + -+ Var(X,)}.€ > 0.

When VarX < M for all |, that is when the variances are alubded bya constant which
does not depend on n, then we have

Sn M
P{: —,un| ZE} < = —>0asn—> oo,

8.5 The Central Limit Theorem
The central limit theorem is a fundamental resulttlhe theory and application of

probability. The law of large numbers asserts élfldh a series of n independent trails
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with constant probability p of success in one traids (in a certain probabilistic sense)
to p as n increases. But this assertion does haistanything about the distribution 3111’5

as n becomes large. The answer to this questigivén by the so called central limit
theorem. The theorem asserts that under quite glecanditions the sum of independent

variables has the Normal distribution in the limit.

Theorem 8.6: Central limit theorem
Let X;, X, ..., X, be a sequence of independent random variablesB¢K}) = u and

Var(X,) = 6’1=1,2,.Let§=X; + X, +...+ X,. Then under general conditions,

_ Sn_ E(Sn) _ Sn_ ?=1lui

Z
" JVar S, NN

Has approximately the standard Normal distribution.

The Identically Distribution Case
Theorem 8.7
Let X4, X5, ..., X, be independent identically distributed randomalfales. Then

Sn
Sn— . o H

tend to the standard normal distribution as m->
What is remarkable about this theorem is that &lneed to know about X is its mean
and variance and there is no need to specify theeaf its distribution. Also Xan be

discrete, continuous or both. The outline of theoprs given below,
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Proof:
Let My, (t) = E(&), S(t) = [E(E)]"
Letzn:% = % — \/ﬁ.g.
The m.g.fof Zis
Mz, (6) = 57 1y ()]

Taking log we have

— ks L
In My, (£) = —ntt—ninMy (M).
Using Maclaurin series
M(t) = 1+ MOt + M 2= 4
From above we have

2_ +2)\+2
In My (t) = —\/ﬁ%tt+n1n[1 + % %

where A is the remainder term from Maclaurin seri@gnilarly, when the Maclaurin

+ 4 @)

series
X2 X3
In(l+x):X—7+ ?+

ut M2+ d?) ut (u2+ o?)t?

is used to expand I@l t =+ Sttt A).settmgx= N — T 4
we find that
ut 12+ 0?)
|n(1+ £ )y g A)
_ut WP+?) N ) S
=t Dy a4 B t+A]+

It is left as an exercise to show that for large n.
Ut (u*+a%)
e A
On substituting in (7) we obtain
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t
InM, (t) = —\/ﬁ%

+n + + A—- =

It can easily be shown that as noe>

In My, (8) = <.
Hence,

lim My, (£) = e/,

the moment generating function of a random varididering the standard normal
distribution.
Theorem
Let X,- n > 1, and X be random variables such thaj,_,,, My (t) = My(t),—o0 <t <

co. Then Lim/AXnx= FXxat all points where FXxis continuous.

Example 8.2

A boy throws a fair die 100 times. What is the @oility that his mean score will exceed
3.

Let X represent the outcome of each toss.

Possible values of X are 1, 2, 3, 4, 5, 6.

E(X) = 3.5. Var(X) = 2.92.

Thatis p = 3.5¢6° = 2.92

Let X be the mean score. By the central limit tle@orX is normally distributed with

mean 3.5 and Vaf/n.

o? _ 292
n 100
Hence,
X— 3.5
7 =
v/0.029

has a standard normal distribution.
P(X>3)= P (Z > ﬁ) — P(Z> —2.94) = 0.9984.

0.170
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Example 8.3

Marks in an 1.Q examination are normally distritltevith mean 55 and standard
deviation 10. What is the probability that

() the mean mark of a group of 10 students will bevalsD

(i)  the mean mark of a group of 20 students will b&ben 40 and 50.

(i)  the sum of the marks of the 10 students will be than 500.

Solution
Let Xy, X5,... Xy0 be the mark scored by each student respectively.
E(Xl) = E(Xz) =...= E(Xlo) =55

O—X = O-XZ = O-Xn = 10.

1

(1 X = mean, be the central limit theory (assuming hO=is large enough for this

distribution)% has a standard Normal distribution.

X-55 _ X-55
10/Y10 V10

X — 55 > 50 — 55
V10 V10

(i)  The mean mark of a group of 20 students betweill be between 40 and 50. In

P(X > 50) = P( ) = 0.9306.

this case, n = 20.

P(40 < X <50) = P(X <50) — P(X < 40)
40 - 55
V5

50 — 55
V5

P(X<40)= P(z < )= P(Z < —3V5) =0.00

P(X<50)=P(z< )= P < -V5)=0.01
Hence
P(40 €< 50) = 0.01 — 0.00 = 0.01

(|||) 810:X1+X2 +...+ XlO

S10 — nu
= has a standard Normal
S;0— 550 __ 500- 550 _  —50 _153
Y1000  10¥10  10vi0 '

Hence,

P(S< 500) = 0.057.
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8.6  Normal Approximately to the Binomial Distribution
Let X4, X5, ..., X, be n independent identically distributed Bernoudils where

{ 1 with probability P
Xi =

0 with probability 1 - P
E(X)) = p and Var(X = p(1 — p). From theorem 2, the distribution

Sn— E(Sp)
Vno?

where §=X;+ X, + ... + X,

--> standard Normal.

E(S)=np
var($) = np(1 - p)e° = p(1 - p).
Note that § has binomial distribution with mean np and varanp(1-P).

P(S<y)=Xr "GP (1-pf*
For large n

P(S<Y) =P{Zn = %}

_ y—np
»= (\/np(l - p))
where % is standard Normal random variable. Thus, fromvabese have

Fo,0) = PGSy <) = T, "Gl (1-p = (2%)

Example 8.3

It is claimed that 60% of the voters | a given ward going to vote for party A. assuming
that all voters will vote, and that there are 10€vs. What is the probability that Party A
receives at least 50 votes.

Let p = 0.6. prob. Of voting for A. n = 100. Assungiindependent voting

P(S, > 50) = ¥+%,100C, p* (1 —p)°>*=X1%%, 100C; (0.6)(0.4) %%

Using normal approximation (6) above, we have

P&>50)=P(z >

50-100 x0.6 )

50— 60
Trens) = P(Z = 222) = 09793

Nex

8.7 The Normal Approximation to the Poisson Distrilition
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If a random variable X has a poisson distributidmse mean i&, then for large\ the
standardized random variable.
X- 2

Z="7

has a standard Normal Distribution. you will re¢afit E(X) =A , Var(X) =A,
Continuity correction may be introduced.

It has been shown that the approximation is good fo5.

Example 8.4

A system suffers random breakdown at a constamt oat10 per month. Find the
probability that there will be at least 8 breakdgvimany month.

Let X be the number of time the system breaks diovany month. Then X has a poisson
distribution withA = 10. Thus

elO(lo)k
k!

P(X>8)= Yrs
Using Normal approximation, we have

X-10
= has N(0.1)

8- 10 -2
P(X 28) = P(2>2=2) =P (2 >=%) = 07357
Exercise 8
1. It is claimed that 30% of the voters in a givecal government area are going to

vote for party A in a local government electionsAsing that all voters will vote,

there are 4000 voters and the claim is based oropep (unbiased) sampling

method. What is the probability that Party A wédceive more than 1,500 votes.

2. (&) Suppose that a system consists of comporantsof which has a

probability of 0.05 of failing during a specifiorie. The system functions
properly when at least 150 components function. uAssg these
components function independently of one anothéatvis the probability
that the system functions properly during a spetifne.

(b)  Suppose that the above system is made of n @oemps each having
probability of 0.90 of not failing during a givemme. The system will
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function if at least 80 percent of the componenisction properly.
Determine n so that the probability that the systemmctions properly

during a specific time is 0.96.
Let X be a non-negative interger-valued randoamiable whose probability

generating function ®s) = E($) is finite all s.
Use Chebychev’s inequality to verify the followiimgequalities:

@ PX <k) < P’;—,Es).O < s < 1,k any positive inequalities:

(b) P>k <=X2s>1

Prove the Chebychev’s inequality.
Let X be a random variable (discrete or continuaugh E(X) = p and Var(X) =

. Then for any positive constant number k we have
1
P{IX - u|> k o} Sk—z.
Prove that (i) 1 — x € for real x, (ii) log x< x -1 for x > 0, and

(i) IV, X; < e ZEaXijf X, <1,N =102, ..

i=1
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